Huntington disease update

  • The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene \(\it (HTT)\) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease‐modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely \(\it HTT\) transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified \(\it cis-\) (DNA repair genes) and \(\it trans-\) (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Larissa ArningORCiDGND, Huu Phuc NguyenORCiDGND
URN:urn:nbn:de:hbz:294-85971
DOI:https://doi.org/10.1515/medgen-2021-2101
Parent Title (English):Medizinische Genetik
Subtitle (English):new insights into the role of repeat instability in disease pathogenesis
Publisher:de Gruyter
Place of publication:Berlin
Document Type:Article
Language:English
Date of Publication (online):2022/02/17
Date of first Publication:2022/01/12
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Tag:Huntington disease; genetic modifers; repeat expansion disorders; somatic repeat expansion
Volume:33
Issue:4
First Page:293
Last Page:300
Institutes/Facilities:Medizinische Fakultät, Abteilung für Humangenetik
Medizinisches Versorgungszentrum Katholisches Klinikum Bochum, Abteilung für Humangenetik
open_access (DINI-Set):open_access
faculties:Medizinische Fakultät
Licence (English):License LogoCreative Commons - CC BY 4.0 - Attribution 4.0 International