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Abstract. Secure embedded bootloaders are the trust anchors for mod-
ern vehicles’ software. The secure software update process of ECUs is
well-defined across the entire automotive industry. Every OEM has his
own implementation, but follows the general software update process.
This paper demonstrates code execution attacks by combining software
and hardware weaknesses in secure automotive bootloaders. The attack
can be performed entirely automated, no static code analysis is required.
Random fault injection parameters were sufficient to obtain code execu-
tion in a reasonable time. All experiments were conducted with electro-
magnetic fault injection and without any hardware modifications of the
targets. We successfully performed our attack on two entirely different
gateway Electronic Control Units (ECUs) used in current vehicles (at
the time of this research) from Volkswagen and BMW. As a result of
this attack, consisting of a combination of a hardware and a software at-
tack, the general secure software update process used in the automotive
industry needs to be revised.
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1 Introduction

Modern vehicles possess a unique threat landscape, distinct from that of other
connected devices. On one hand, vehicles are susceptible to remote attacks sim-
ilar to those faced by Internet of Things (IoT) devices or personal comput-
ers. Attacks in this threat category were mainly demonstrated by researchers
[2, 7, 11, 17, 18]. Until now, remote attacks from malicious parties, excluding at-
tacks against keyless entry systems, weren’t observed by the public. We assume
that this is due to the lack of a clear financial incentive. On the other hand,
vehicles are also vulnerable to attacks from individuals with physical access to
the system, such as in the case of car thefts or chip-tuning activities. These
scenarios are particularly relevant in the real world, as evidenced by statistics
on car thefts, and are driven by the existence of a market for stolen cars and
components or chip-tuning software [3].

In order to defend against these various threat groups, the automotive indus-
try employs a defense-in-depth strategy that incorporates security technology at
various layers of the system, from backend security and secure vehicle network
architectures to microcontrollers in ECUs. The hardware security of ECUs is
particularly crucial for the success of this defense strategy, as hardware attacks
are a common method for obtaining firmware for information gathering and ex-
ploit preparation in remote attack scenarios, and are used directly to manipulate
firmware or unlock debug interfaces in scenarios with physical access. Addition-
ally, the introduction of new functionalities such as Features-on-Demand (FoD)
will further challenge the hardware security of vehicles, as they present new
opportunities for malicious actors.

One popular form of attack against microcontrollers and Hardware Security
Modules (HSMs) is the use of Fault Injection (FI) techniques, which have become
increasingly accessible with the advent of inexpensive hardware setups. This
paper focuses on a specific type of FI attack known as Wild Jungle Jumps,
which involve the manipulation of program counters to achieve code execution
at arbitrary memory addresses [6].

1.1 Safe and Secure Microcontrollers

In many modern vehicles, security trust anchors are built with safe and secure
microcontrollers, such as the MPC56xx and MPC57xx series from NXP. These
controllers use the PowerPC (PPC) Variable Length Encoding (VLE) instruction
set and are specifically designed for body-control or gateway applications. There-
fore, the manufacturer equipped them with a feature set rich of security functions
and a dedicated embedded HSM core. A wide range of security functionality al-
lows high protection of the internal flash memories and debug interfaces of these
processors.

In body control applications, these processors store the cryptographic mate-
rial for the immobilizer system of the vehicle. Acting as a gateway, these micro-
controllers perform firewall functionalities for Controller Area Network (CAN)
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and FlexRay buses and act as a host controller of managed automotive Ether-
net switches including software updates and configurations. Once a malicious
actor can control the gateway ECU, any traffic in the vehicle network can be
manipulated

1.2 Repair shop testers

Repair shops and repair shop testers are crucial entities for an Original Equip-
ment Manufacturer (OEM)’s ecosystem. In repair shops, cars without over-the-
air update functionalities receive regular software updates in fixed maintenance
cycles or because of a recall action. Furthermore, repair shops need to be able to
swap ECUs and perform teach-in processes. These functionalities are provided
by diagnostic protocols, which are a major attack surface for ECUs [20]. Since
high-speed Internet connectivity is still not guaranteed in all places, many re-
pair shop testers are designed to operate offline. This requires the presence of
all firmware update files and security access algorithms in the repair shop tester
software. All these firmware files, security access algorithms, and repair shop
tester software can be found on shady Internet forums, torrent, or download
portals, and hardware clones of OEM-Testers are sold online. These tools are
illegal to redistribute, but the required effort to obtain or buy cloned hard- and
software is extremely low. This allows attackers to use official tools for informa-
tion gathering or attacks.

1.3 Secure Software-Update Process of ECUs

A simplified software update process of non-volatile memories in automotive
control units, based on ISO 14229-1:2020 [5, p. 374], is shown by fig. 1. ISO 14229-
1:2020, also called Unified Diagnostic Services (UDS), is the standard protocol
for software updates in automotive systems and is used by most OEMs and
suppliers in the world. Depending on the vehicle manufacturer, some variations
of this process are possible. Some OEMs require the transfer and verification of an
Erase-Routine. For safety-critical reasons, often the code to erase memory isn’t
part of the bootloader and needs to be transferred separately. This Erase-Routine
enables erase functionality of the non-volatile memory (e.g. flash memory), which
is necessary to perform write operations afterward. Another variation lies in the
data transfer. Depending on the ECU, the transferred data can optionally be a
compressed or encrypted binary file. Most ECUs, implementing the ISO 14229
standard software update procedure, allows the writing of arbitrary binary code
to the ECUs’ non-volatile memory. A signature verification to enable execution
of the transferred binary code is always performed after the write to non-volatile
memory.

2 Related work

In the paper ”BAM BAM!! On Reliability of Electromagnetic Fault Injection
(EMFI) for in-situ Automotive ECU Attacks [14]”, the author performs an EMFI
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attack targeting the Boot Assist Module (BAM) present in older versions of the
Freescale/NXP PowerPC microcontrollers. More recent models of PowerPC Mi-
crocontroller Units (MCUs) from the same manufacturers make use of a Boot
Assist Flash (BAF) module instead, which is re-writable and thus vulnerable
flash code there can be patched, so the attack does not affect these newer con-
trollers.

Wiersma and Pareja [22] demonstrated an attack against the Device Con-
figuration (DCF) system of recent PowerPC MCUs next to an analysis of the
resilience of MCUs for safety-critical applications against fault injection attacks.

Wouters et al. [23] demonstrated voltage glitching on internal bootloaders of
microcontrollers used in immobilizer systems. Through their attack, they could
obtain the internal firmware and identified several security flaws in the immo-
bilizer systems of major car manufacturers such as Toyota, Kia, Hyundai, and
Tesla.

Attacks against internal bootloaders of three different MCUs were demon-
strated and summarized by Van den Herrewegen et al. [21]. The researchers
performed static and dynamic analysis and documented the first multi-glitch
attack on a real-world target.

Nasahl and Timmers used glitching attacks on an evaluation setup to obtain
code execution on an AUTOSAR-based demonstration ECU [12]. By leveraging
fault injection weaknesses in the ARM Instruction Set Architecture (ISA) they
could corrupt a memcpy operation to perform a jump into writable RAMmemory.

3 Contribution

In this paper, we present an EM fault injection attack which grants unauthenti-
cated code execution on modern ECUs by making use of the large programmable
flash memory that can be easily written using leaked repair shop tools. The at-
tack requires a single glitch and little to no knowledge of the target, and was
tested on multiple ECUs based on different PowerPC MCUs. We first show the
attack on a production ECU which outputs stack traces on a serial logging in-
terface, and later generalize the attack on other ECUs which make use of the
same PowerPC core architecture without the need of any feedback channel.

4 Test Setup

A test setup was built to perform the fault injection tests on real-world tar-
get ECUs and on an ARM-based evaluation board. The chosen technique was
EMFI because it does not require any hardware modification of the target, so
an exploited target is visually indistinguishable from an unaltered ECU, which
is desirable from the attacker’s point of view.

In any fault injection method, several parameters can be altered for a fault,
which constitutes the search space for the successful attack parameters. For
finding the correct parameters, it is important to be able to automate the setup,
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Fig. 1. Typical flow chart for a se-
cure software-update procedure of
non-volatile memory.

Fig. 2. Diagram of our automated test
setup

so that the entire parameter search algorithm can be executed without human
interaction. In an EMFI attack, the main parameters are the following:

– Injection coil (shape, size, number and direction of turns),
– position in space of the injection coil,
– duration of the activation of the coil,
– voltage across the coil,
– time offset from trigger signal (if the target firmware has deterministic ex-

ecution time, this is equivalent to choosing which instruction to attack).

In our test setup, the setting of every one of these parameters could be
automated, except for the injection coil, which must be changed manually. To
reduce the manual work necessary, we only performed our tests with two coils
included in the ChipShouter kit: a 1mm diameter core clockwise wound coil, and
a 1mm diameter core counter-clockwise wound coil.

4.1 Description of the test setup

The hardware test setup for the collection of the data necessary for the attack
is shown in fig. 2. It is composed of the following items:

– USB-to-CAN - for CAN communication with the target.
– USB-to-UART - for receiving debug logs from the target over a Universal

Asynchronous Receiver-Transmitter (UART) connection.
– ChipShouter - for injection of the electromagnetic fault.
– Computer Numerical Control (CNC) mill - for manipulating the po-

sition where the electromagnetic fault is injected.
– Field-Programmable Gate Array (FPGA) development board - for

consistently triggering the glitch on a specific CAN message.
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– Keysight E36313A power supply - for power-cycling the ECU between
attempts.

The target ECU is placed on the CNC mill bed and the CNC mill drill
is replaced with an Electromagnetic Pulse (EMP) injection tip connected to a
Chipshouter, which allows to place the injection tip in any position above the
target MCU with a precision of ±0.01 mm. The diagnostic CAN interface of the
ECU is connected via a CAN bus to the control computer, and an FPGA is also
connected to the same bus via a CAN transceiver to listen for a specific CAN
frame and emit a delayed trigger signal when a match is found. This trigger
signal is fed to the ChipShouter and allows for fine-tuning the timing of the
glitch. The programmable power supply is used to power-cycle the ECU when
necessary. Finally, a USB-to-UART adapter is used to collect feedback data from
the target ECU.

The software used to control the setup was written in the Python program-
ming language, using Scapy for the CAN and UDS communication [15]. A Post-
greSQL database is used for logging and data analysis.

Exploit code as well as example code on the target was written in C, PPC
and ARM assembly and compiled using the powerpc-eabivle-gcc and arm-none-
eabi-gcc toolchains.

4.2 Target description

The initial target chosen for this attack was a gateway ECU from Volkswagen.
The ECU makes use of an MPC5748G MCU, with a locked Joint Test Action
Group (JTAG) debug interface. The target MPC5748G MCU is used in several
ECUs by different manufacturers. It contains a total of 4 PowerPC cores: two
e200z4 cores, one e200z2 low-power core, and one e200z0 HSM core. All cores
run the PowerPC VLE instruction set. The UART logs emitted by the target
ECU contain stack traces whenever an exception interrupt is called, including
the values of all general-purpose registers and some special registers. While it is
impossible to extract the firmware from the ECU over JTAG interface, UART
interface, or UDS services, the application firmware for this ECU can be found in
Open Diagnostic Data Exchange (ODX) flash container files leaked from repair-
shop testers.

Leaked firmware files and UART logs were useful tools for studying the fault.
Both are not necessary to perform a successful attack. Later on, the attack was
tested successfully on different ECUs from other manufacturers, some of which
did not have UART logging or leaked firmware files available.

Since the communication interface used by the repair shop hardware to flash
the target ECU is CAN, the test setup was built so that the trigger for the glitch
would be derived from a specific CAN frame. The glitch is triggered after the
last ISOTP consecutive frame of a UDS request but before the corresponding
response, as seen in fig. 3 [4]. This is done in an attempt to inject the glitch
during the processing of the UDS request.
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Fig. 3. A snapshot of the oscilloscope screen during a fault injection attack. The yellow
line represents the CAN protocol, and shows the request and response ISOTP messages.
The magenta line is the trigger from the FPGA, which detected the searched CAN
frame. The blue line shows the voltage spike sent to the EMFI coil.

5 Information Gathering

This section describes our information gathering process and enhancements of
information leakage by using fault injection attacks.

5.1 Stack-Traces and PPC exception handlers

The target MCU takes interrupts whenever an exception is generated, beginning
the execution of the corresponding Interrupt Service Routine (ISR). Exceptions
are generated by signals from internal and external peripherals, instructions, the
internal timer facility, debug events, or error conditions. During development,
exception interrupts can be used to diagnose programming errors (such as, a
jump to an invalid instruction is detected) and run-time errors (such as an error
happened when reading from the Error correction code (ECC) memory).

On the target ECU, ISRs associated to exception interrupts are programmed
to output a stack trace over the UART interface and then resetting the MCU.
The emitted stack traces contain all the general purpose registers, several special
use registers, and the list of the addresses of the functions that are currently on
the execution stack. An example can be seen in Listing 1.2. In particular, the
special registers emitted include Save/restore register 0 (SRR0) and Critical
Save/Restore Register 0 (CSRR0), which in general contain the address of the
instruction that caused the interrupt. Machine Check Status Register (MCSR)
and Exception Syndrome Register (ESR) are also emitted in the stack traces,
which contain bit-masks detailing what kind of exception was generated to give
information about the cause of the exception.

When a fault is injected, an exception may be generated and, if that hap-
pened, the corresponding interrupt will be taken, causing the processor to start
executing the associated ISR. The values of ESR and MCSR can then be used
to determine which exception was caused by the fault, while Link Register (LR),
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SRR0 and CSRR0 can be used to determine the address being executed by the
processor at the time of the fault.

As illustrated from fig. 3, the fault was injected during the time interval
between when a UDS request was sent and the response was received. In this
situation, one of the following outcomes can happen whenever a fault is injected:

– Nothing anomalous happens and the correct UDS response is received.
– An undetected mistake is generated, causing a corrupted UDS response to

be received and/or an unexpected message on the UART log.
– An exception is generated, and the processor emits a stack trace and the

MCU resets.
– No stack trace is emitted and the MCU resets.

These stack traces found on real ECUs extracted from cars contain other
information that could be useful for other attacks as well. For example, it is
possible to trace the execution of the program over time by examining the value
of LR (see Figure 5), or to reverse engineer which cryptographic algorithms are
used by checking if magic numbers used by specific algorithms appear in the
general purpose registers (for example, the initialization values of an hashing
algorithm like in Figure 6).

5.2 Parameter search

The aim of the presented attack is to find a repeatable fault that causes the
unsigned code stored in the flash to be executed, bypassing the signature check.
The search space of all the possible faults corresponds to the multi-dimensional
space (x, y, z, c, i, t, o) defined by the parameters described in section 4:

– (x, y, z): position of the coil in space
– c: Coil used
– i: intensity of the fault (current through the coil)
– t: duration of the fault
– o: time offset from trigger

A genetic algorithm was written [Reference removed to keep the paper anony-
mous] to search for fault parameters tuples (x, y, z, c, i, t, o). An initial population
of parameter tuples is initialized with uniform random values, except for a pa-
rameter c which is fixed with every run of the algorithm since the coil type can
not be automatically changed by the test setup. Each parameter tuple is tested
by executing a fault on the automated setup; and a fitness score is assigned to
the tuple depending on the effect of the fault. The score is then used to gen-
erate the next generation of the population by rewarding tuples that obtained
exceptions that correlate positively with corruptions of the program counter.

The genetic algorithm was run initially after erasing the application firmware
from the MCU and before flashing an exploit payload. Because of this, the best
outcome of a fault was to cause an ”Illegal Instruction” exception with an SRR0
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Fig. 4. Sensitivity of the different areas of the MPC5748G MCU package to the fault
with respect to different errors. These images were drawn from unbiased data with
random and uniformly distributed fault parameters, using the 1mm core diameter
counter-clockwise wound coil. p indicates the probability of a fault for the 0.5 mm ×
0.5 mm area pointed by the white arrows, which is the highest probability in the
relative image.
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value within the erased memory, indicating that the MCU was attempting to ex-
ecute code inside the erased memory reserved for the application firmware. This
occurrence was rewarded with the highest fitness score in the genetic algorithm.

Later, to evaluate the effectiveness of the evolutionary algorithm in finding
the optimal parameters for the glitch, the test was repeated with randomized
fault parameters, which caused a success in only 9 out of 10256642 glitch at-
tempts on the target. The unbiased attempts were also used to generate the
data set for Figure 4, which shows the probability density of several faults oc-
curring with respect to the x and y parameters. The first plot simply shows the
MCU package for reference of the coordinates. The plots named ”No effect”, ”Un-
expected response”, ”Reset without stack trace” and ”Reset with stack trace”
correspond to the mutually exclusive outcomes described in section 5.1. The
other plots represent different error states that can be inferred from the flags set
in the registers leaked through the stack traces. In particular, ”Jump to Pay-
load” indicates that a stack trace was emitted with SRR0 within the interval of
the erased flash and having bit 36 set in the ESR [13].

Analyzing Figure 4, one can see that ”Jump to Payload” is highly correlated
with ”Alignment Exception” and (in lesser measure) to ”Illegal Instruction”,
because these exceptions are caused by faults that write the program counter.
The ”Unexpected response” plot shows that corrupted CAN messages are often
obtained when injecting faults in a specific area of the processor, which may
indicate that the physical layer implementation of the CAN protocol is located
in that area of the silicon. The ”Reset without stack trace” shows a sensitive area
which has a 90% probability of causing an immediate hard reset when targeted
by an electromagnetic fault, which may indicate the power supply circuitry is
located there. ”Load”, ”Store” and ”Instruction Fetch” errors are correlated with
targeting significantly different areas of the chip with faults, which also gives
hints to where different parts of the Integrated Circuit (IC) are implemented in
the silicon.

6 Vulnerability and Exploitation

After finding a set of fault parameters that are likely to lead to the corruption of
the program counter in some way, it is necessary to direct the program counter
to the desired unsigned code address in some way.

6.1 Directed jumps to memory

The method typically used to reach injected unsigned code is to attempt to load
externally controlled data into the program counter, similar to the attack of
Timmers et al. [19] on ARM-based processors.

For example, transferring the desired destination address into the target us-
ing a CAN frame, then injecting a glitch at the moment when that data is copied
somewhere else, it is possible that the destination encoded in the assembly in-
struction is corrupted to become the program counter.
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This kind of fault is harder to inject on a PowerPC target compared to an
ARM target since loads into the program counter are not encoded in a similar
way to loads into any other register, so the probability of flipping all the bits
necessary to cause a load into program counter is extremely low.

Moreover, this kind of attack requires the attacker to know where his pay-
load was transferred (which is not always the case) in order to send the exact
destination address to the target memory. The payload is usually transferred
into a large buffer that can be manipulated by the attacker (such as the ISOTP
message buffer in the case of an automotive target), which means the payload
needs to be transferred before every fault attempt, reducing the rate at which
faults can be injected.

In practice, after 4 million injected glitches while trying different UDS mes-
sages as target buffers, no success was obtained on our PowerPC target using
this technique.

6.2 Random jumps to application flash

After erasing the entire memory of the target using the official repair shop tester
software, the entire flash memory of the MCU will contain the byte 0xff, with
the exception of the small bootloader that will flash any received firmware and
authenticate its signature before booting it. Since 0xffff is an invalid instruction
in the PowerPC VLE instruction set, if the target MCU was to try executing
this erased memory, it would throw an ”illegal instruction exception”, call the
interrupt exception handler, and reset afterward.

In some ECUs, the interrupt exception handler emits a small stack trace
whenever an exception happened, which included, among others, the address
that was being executed when the exception happened as well as the type of
exception. This allowed us to verify that, while injecting faults, the program
counter was sometimes jumping to random locations in the erased application
flash, attempting to execute it, and consequently emitting an illegal instruc-
tion exception stack trace on the UART interface. fig. 4 shows how exceptions
reported on the UART stack traces correlated with the position of the fault
injection coil over the target MCU.

6.3 Weak authentication for persistent memory writes

Extracted UDS security access algorithms from repair shop tester software be-
came publicly available in open source projects, for example on GitHub [8,
10]. Therefore, we treat the security access authentication in the standardized
firmware update process, shown in fig. 1, as widely broken. Even if a security
access algorithm is not hosted on these open source projects, our attack can be
performed by abusing the original repair shop tester to write our payload for
our attack to an ECUs program memory, just by replacing the firmware update
files in the directory of the repair shop tester software.

These tools allowed us to write custom firmware to the application flash of
different real-world target ECUs. The written content can’t be executed, since
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signature checks will fail. To apply our attack on ECUs from BMW, we used the
software tool E-SYS. For ECUs from Volkswagen, we flashed ECUs by using the
open-source software VW-Flash [9].

6.4 Exploit: Execution of arbitrary code

Finally, we can combine the described hardware and software vulnerabilities to
obtain arbitrary code execution. First, a firmware is assembled where a small
payload (with entry point named start) is preceded and followed with long
”trampoline” sections programmed with NOP slides interleaved with uncondi-
tional branches to the payload entry point. This firmware was flashed to the
entire application flash memory of the target.

.rept 1000

.rept 113
se_nop

.endr
e_b _start

.endr
_start:

// The actual exploit code is written here

Listing 1.1. Example GNU assembler code which generates a long PPC nopslide which
interleaves one branch instruction every 113 NOP instructions.

Since PPC VLE instructions can be aligned at every even address, and since
the branch instruction is 4 bytes long, if the fault causes a jump in the middle
of a branch instruction, it would cause an illegal instruction exception. Since
the NOP instruction is 2 bytes long, it is important to keep the ratio of branch
instructions to NOP instructions very low to minimize the probability of this
happening.

Similarly, if the fault causes a jump in the middle of the payload code, it
would likely not function correctly since the initialization code of the payload
would not have been executed. The probability of this happening can be reduced
by keeping the payload size small.

Ideally, we want to inject the fault during the execution of a large UDS job
that involves a variety of machine code to increase the probability of encountering
an instruction that, when glitched, can lead to the corruption of the program
counter. We tested all the available UDS jobs and choose the one that took the
longest amount of time to execute, hoping it would be correlated with a large
variety of instructions.

By applying random faults during the execution of a chosen UDS request, we
cause random jumps to the application flash memory. Since the great majority
of the target’s memory contains our ”trampolines”, we have a high probability
of jumping into one of them. Once the processor jumps there, it will reach our
exploit code.

An advantage of using random corruptions of the program counter is that no
large transfer of payload is necessary to prepare the target for the fault. After
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every failed fault, if the target did not reset, we can just re-send the UDS request
and try again. In this way, we were able to test up to 2 faults per second. Another
advantage is that it is not required to know where the payload will be placed
exactly in the application flash, since it can be written as a position independent
executable.

After using the genetic algorithm presented in [Reference removed to keep
the paper anonymous], a fault that executes our unsigned payload was found on
average after 950 injected faults, and the parameters found can reproduce the
execution of the unsigned payload with a probability of 0.06. Without the search
algorithm, our fault led to code execution around once every 106 attempts.

6.5 Impact: Looting secrets, unlocking JTAG

As a showcase of our attack, we wrote three different exploits. First, we simply
printed a ”Hello, World!” message on the UART interface to demonstrate the
arbitrary code execution. Secondly, we wrote a payload that would dump the
contents of the firmware over the UART interface. Finally, we wrote a payload
that disabled the JTAG censoring permanently, allowing for more exploration
and exploitation over the development interface.

Firmware extraction Crucial software components, such as the bootloader of
an ECU, are not always part of repair shop tester firmware files. Also, special
firmware files for security-critical ECUs, such as the immobilizer ECU, are often
not part of available firmware leaks. To obtain these files, an attacker needs
to extract the data from an ECUs flash memory. The presented hardware and
software attack is suitable for this scenario, as it enables attackers to dump the
firmware using a dumper payload to later study it in reverse engineering.

Extraction of secret data Modern cars have all kinds of secrets hidden in
an ECUs firmware. Some examples are cryptographic keys for vehicle internal
communication (AutoSAR SecOC [1]), cryptographic data for backend commu-
nication, shared keys inside bootloaders, secrets for vehicle immobilizers, and
certificates for features on demand, just to mention some examples. All this
data is valuable for attackers and need to be protected to guarantee a vehicle’s
security. Since our attack allows low-level code execution, any secret which is not
protected from a dedicated HSM can be read out. Besides the fact that HSM
co-processors are not affected by this attack, an attacker can control the HSM
and is able to execute API calls.

Re-Enabling JTAG The MPC57xx microcontroller series allows locking the
JTAG debug interface via so-called DCF records. These records are written in
an One Time Programmable (OTP)-section of the internal flash memory where
records can only be appended and never deleted. A low-level state machine
(System Status and Control Module (SSCM)) is parsing all records sequentially
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during the power-up sequence of the microcontroller. For the censorship setting,
which enables or disables the JTAG interface, the last appended record takes
precedence, meaning it is possible to disable the censorship flag by appending a
DCF record with a normal flash write.

Once we obtain code execution through a successful glitch, we can simply
append a DCF record which re-enables the JTAG interface on these processors.
We could successfully perform this attack by transferring the code example from
the application note [16] to the application memory.

7 Generalization of the attack

The presented attack was successfully performed on three different ECUs. The
only similarity between these ECUs was the MCU ISA and a secure bootloader
following the ISO 14229 standard. Anything else, including the processor series,
the firmware, the bootloader implementation, the hardware and software man-
ufacturer, and even the OEM using the ECU are different. Furthermore, the
attack was performed without any static analysis of the actual firmware on the
target. Parameter search using genetic algorithm for the injected fault allowed
us to perform a code execution attack within one hour on average. Since the sim-
ilarities between our targets were marginal, we expect a wide variety of ECUs
to be vulnerable to this attack. Additionally, we successfully demonstrated the
application of the same algorithm on an ARM-based evaluation board for MCUs
that are predicted to be used in the successors of the tested ECUs. It was found
that the ARM processor architecture is significantly more susceptible to wild
jungle jumps into writable memory areas, compared to PowerPC processors,
though this might have been caused by the development board used being more
susceptible to electromagnetic fault injection attacks due to the layout of the
PCB compared to an automotive target.

As mentioned before, for targets that do not emit a stack trace upon en-
countering an exception interrupt, it is possible to ”train” most of the fault
parameters on an off-the-shelf MCU with the same model as the attacked one,
and then find the remaining ones via exhaustive search on the target itself (usu-
ally, this only involves finding the point in time to inject the fault upon, during
the execution of a long UDS job).

8 Mitigation

The attack can be mitigated by using countermeasures against arbitrary code
execution which are available on some hardware. The controllers found on the
tested ECUs can temporarily limit the execution of code from the flash while it
is not authenticated yet using the Memory Protection Unit (MPU) module, but
this was not implemented by manufacturers. Particular attention must be placed
on disabling the execution of the unauthenticated code early in the boot process,
to minimize the attack surface for the presented attack. In general, the current
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software update process of secure firmware updates in automotive systems needs
to be extended to prevent this or similar attacks.

We also speculate that the execution of the bootloader inside the HSM core or
other types of secure elements can reduce the vulnerability of an ECU, since the
code for these is execute from a section of the flash memory that is functionally
separated from the large application flash. Moreover, the documentation for
these cores is usually kept secret thus making the development of an exploit
much harder.

9 Conclusions

We demonstrated the efficient application of fault injection attacks to obtain
code execution through program counter manipulation on different real-world
targets.

Thanks to commonly leaked ”UDS Security Access” credentials, the attacker
is able to inject a large amount of code in the program flash of the victim device,
which can then be executed without authentication by injecting electromagnetic
faults. The success probability of obtaining arbitrary code execution in this way
increases as the size of the programmable flash grows, and on modern ECUs it
is so high that an uninformed attack is successful within minutes.

No information about the software running on the target device is necessary
for a successful attack. The map of the fault sensitivity can be obtained from
another sample of the same MCU as the target one. Additionally, the attack was
easily reproducible on multiple ECUs that were based on similar PowerPCMCUs
with minimal changes to the exploit code and on an ARM-based evaluation
board.

The equipment necessary to perform the presented attack is readily available,
and the attack can be easily automated. Using a genetic evolution algorithm can
reduce the time taken to find reproducible fault parameters from several days to
less than one hour.

When applied to the real world, this attack can be used to reset stolen ECUs
to a virgin state to resell them, pairing new keys to an immobilizer system, or aid
in the development of further exploits by leaking firmware and restoring debug
interfaces.

Responsible Disclosure

All affected OEMs were informed in April 2022 about this attack. Furthermore,
we shared a draft version of this paper. We additionally disclosed this research
to insurance companies and automotive software suppliers to discuss impact and
mitigation strategies.

One target ECU from BMW is being phased out within 2022 and will then
be no longer used in newly produced vehicles. The latest models of BMW vehi-
cles make use HSMs and Secure Elements in their ECUs. Therefore, successful
exploitation with the described attack might require additional steps.
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Appendix

Machine Check Exception
Exception number: 1
Exception address: 0105 D1EE
Stack pointer: 40006 F98
R0 010 F2FB8 R8 400070 EC R16 00000000 R24 400070 EC
R1 40006 F98 R9 013996 A8 R17 00000000 R25 4004 FAD8
R2 013 DF918 R10 00000005 R18 00000000 R26 00000002
R3 02029200 R11 FFF1E400 R19 00000000 R27 00000002
R4 0000 FFF1 R12 400070 DC R20 00000000 R28 0000 E400
R5 00000000 R13 4001 DD90 R21 00000000 R29 0000 FFF1
R6 010 F3130 R14 00000000 R22 00000000 R30 40007090
R7 0000 FFF1 R15 00000000 R23 00000000 R31 4003 EFA8
--------------------------------------------------------------
XER 00000000 CR 80000000 LR 010 F2FB8
USPRG0 00000000 CTR 010 F2EF4 IP --------
--------------------------------------------------------------
SPRG0 00000000 SRR0 013 D1FD6 IVPR 01000100 MSR 00000200
SPRG1 400200 C8 SRR1 02029200 DEAR 00000000 PVR 81530000
SPRG2 00000000 CSSR0 00000000 ESR 00000000
SPRG3 00000000 CSSR1 00000000 MCSR 00088008
MCSSR0 0105 D1EE MCAR 00000078
MCSSR1 02021200
PID0 00000000
--------------------------------------------------------------
PIR 00000000

S T A C K T R A C E
> 0x010F2FB8
> 0x010F307A
> 0x010F1F1E
> 0x011281FC
> 0x0139957E
> 0x01023FFC
> 0x010243D2
> 0x0102523A
> 0x01025912
> 0x013981EC
> 0x011F0982
> 0x0103FA54
> 0x013D0C36
> 0x013D29E6

Listing 1.2. Example Stack-Trace
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Fig. 5. Value of link register (LR) emitted on the stack traces caused by injecting a
fault at different points in time. This gives an indication of where the ECU was running
code from at any point in time between reception of the UDS request and emission of
the UDS response.

Fig. 6. Ten data words from the UDS request and nine constants from the SHA-1
algorithm were only found in the stack traces when the fault was injected 1.8ms after
the UDS request was sent. The top bar plot shows the number of matches over the
whole time axis, while the bottom plot shows a zoomed-in view of exactly which values
were found in at least one of the registers in the stack trace. The first ten values
(starting with hexadecimal 41) are the found words from the input pattern, while the
last nine values are the constants from the SHA-1 algorithm.
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Fig. 7. Sensitivity of the different areas of the S32K148 MCU package to the fault with
respect to different errors. These images were drawn from unbiased data with random
and uniformly distributed fault parameters. p indicates the probability of a fault for
the 0.5 mm× 0.5 mm area pointed by the white arrows.
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