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Abstract

In our contemporary life, digital infrastructure plays a crucial role and it is almost impossible
to imagine a modern world without the advantages provided by highly advanced technology.
Due to the influence of this infrastructure on so many areas of our life, robust, reliable, and
secure systems are necessary. Moreover, this includes performing any kind of communication
encrypted avoiding misuse of information and protecting data integrity. Creating an environ-
ment of encrypted communication became even more important over the last years since many
systems are connected including a huge amount of embedded devices. Therefore, underlying
cryptographic algorithms need to be implemented on highly diverse platforms including mi-
crocontrollers, Field-Programmable Gate Arrays (FPGAs), and Application-Specific Integrated
Circuits (ASICs).

In addition, due to extensive research in the field of quantum computers during the last
years, it is more likely than ever that today’s deployed public-key cryptography can be broken
in the near future. As a consequence, the National Institute of Standards and Technology
(NIST) announced a Post-Quantum Cryptography (PQC) standardization process in order to
find suitable cryptographic algorithms that are secure against attacks mounted on both classical
and quantum computers.

These two emerging fields of study lead to the requirement for secure and efficient hardware
implementations for modern cryptography. More precisely, the emergence of post-quantum
secure algorithms introduces new challenges with respect to efficient implementations target-
ing microcontrollers, FPGAs, and ASICs. At the same time, side-channel and fault-injection
attacks pose a huge threat against any type of cryptographic implementations on embedded
devices, where securing conventional symmetric cryptography is still raising unconsidered and
challenging questions.

In this work, we first address the protection of symmetric cryptography against side-channel
and fault-injection attacks. We start by investigating protection mechanisms that combine
established countermeasures against side-channel attacks with instantiations of linear Error-
Correcting Codes (ECCs). Exploiting the structure of linear ECCs and dynamically exchanging
their underlying generator matrices, allow us to introduce additional noise into cryptographic
operations achieving increased protection against side-channel adversaries.

In the second part, we revisit existing models abstracting fault injections and propose a new
generic, simple, and consolidated fault adversary model. Here, we connect the physical behavior
of different fault-injection mechanisms more closely with the theoretical abstracted adversary
model. Additionally, we cover and introduce security notions for secure and composable gadgets
protecting hardware implementations against fault-injection and combined attacks.

For our third part, we use the aforementioned theoretical and essential work to create formal
verification frameworks parsing gate-level netlists of implemented countermeasures and analyz-
ing their security. We first present the framework FIVER which incorporates our fault adversary
model and evaluates – based on a data structure relying on binary decision diagrams – fault-



injection countermeasures. We continue to drive this work even further by presenting VERICA
which is capable of verifying the security of gadgets and entire cryptographic functions in a
setting considering combined attacks.

Eventually, we propose efficient implementations of the PQC scheme BIKE targeting reconfig-
urable hardware. Our first implementation presents an optimized polynomial multiplier, a core
performing the polynomial inversion based on Fermat’s little theorem, and the first hardware
implementation of the black-gray flip decoder. We further improve these results by introducing
a new multiplier design exploiting the sparseness of one of its input operands and an optimized
polynomial inversion based on the extended Euclidean algorithm.
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Kurzfassung

Sichere und effiziente Hardwareimplementierungen für moderne
Kryptografie

In unserem heutigen Leben spielt die digitale Infrastruktur eine entscheidende Rolle, und es
ist fast unmöglich, sich eine moderne Welt ohne die Vorteile unserer hochentwickelten Tech-
nologie vorzustellen. Aufgrund des Einflusses dieser Infrastruktur auf so viele Bereiche unseres
Lebens sind robuste, zuverlässige und sichere Systeme unverzichtbar. Dazu gehört auch, dass
jegliche Art von Kommunikation verschlüsselt durchgeführt wird, um den Missbrauch von In-
formationen zu vermeiden und Datenintegrität sicherzustellen. Die Schaffung einer Umgebung
für verschlüsselte Kommunikation ist in den letzten Jahren noch wichtiger geworden, da viele
Systeme über eine immer weiter wachsende Anzahl von eingebetteten Systemen miteinander ver-
bunden sind. Somit müssen auch die zugrunde liegenden kryptografischen Algorithmen auf sehr
unterschiedlichen Plattformen wie Mikrocontrollern, FPGAs und ASICs implementiert werden.

Darüber hinaus ist es aufgrund umfangreicher Forschungsarbeiten auf dem Gebiet der Quan-
tencomputer in den letzten Jahren wahrscheinlicher geworden, dass die heute eingesetzte asym-
metrische Kryptografie in naher Zukunft gebrochen werden kann. Infolgedessen hat das NIST
einen Standardisierungsprozess angekündigt, um geeignete kryptografische Algorithmen zu fin-
den, die gegen Angriffe auf klassischen Computern und auf Quantencomputern sicher sind.

Diese beiden sich abzeichnenden Forschungsbereiche erfordern das Erforschen von sicheren
und effizienten Hardwareimplementierungen für moderne Kryprografie. In diesem Zuge bringt
das Aufkommen von sicheren Post-Quantum Algorithmen neue Herausforderungen in Bezug
auf effiziente Implementierungen auf Mikrocontrollern, FPGAs und ASICs mit sich. Gleich-
zeitig stellen Seitenkanal- und Fehlerinjektionsangriffe eine große Bedrohung für jede Art von
kryptografischen Implementierungen auf eingebetteten Geräten dar, bei denen selbst die Siche-
rung symmetrischer Kryptografie immer noch unbeantwortete Fragen aufwirft.

In dieser Arbeit befassen wir uns zunächst mit dem Schutz von symmetrischer Kryptogra-
fie vor Seitenkanal- und Fehlerinjektionsangriffen. Zu diesem Zweck untersuchen wir als erstes
Schutzmechanismen, die etablierte Gegenmaßnahmen gegen Seitenkanalangriffe mit Instanzi-
ierungen von linearen Fehlerkorrekturcodes kombinieren. Durch die Ausnutzung der Struktur
von linearen fehlerkorrigierenden Codes und dem dynamischen Austausch der zugrunde liegen-
den Generatormatrizen können wir zusätzliches Rauschen in eine kryptografische Operation
integrieren, was zu einem Design mit erhöhter Wiederstandfähigkeit gegen Seitenkanalangriffe
führt.

Im zweiten Teil überprüfen wir bestehende Modelle zur Abstraktion von Fehlerinjektionen
und stellen ein generisches, einfaches und vereinheitlichtes Fehlermodell vor. Hier verknüpfen
wir das physikalische Verhalten verschiedener Fehlerinjektionsmechanismen enger mit unse-
rem theoretischen Fehlermodell. Außerdem präsentieren wir Sicherheitsdefinitionen für sichere



und zusammensetzbare Gadgets, die Hardwareimplementierungen gegen Fehlerinjektionsangrif-
fe und kombinierte Angriffe schützen.

Im dritten Teil verwenden wir die oben genannten theoretischen und grundlegenden Arbei-
ten, um formale Verifikationsframeworks zu erstellen, die Netzlisten von Gegenmaßnahmen auf
Gatterebene zu analysieren und deren Sicherheit zu überprüfen. Wir stellen zunächst das Frame-
work FIVER vor, welches unser Fehlermodell als Grundlage einbindet und – basierend auf einer
Datenstruktur, die auf binären Entscheidungsdiagrammen beruht – Gegenmaßnahmen gegen
Fehlerinjektionen evaluiert. Wir treiben diesen Ansatz weiter voran, indem wir mit VERICA
die Sicherheit von Gadgets und ganzen kryptografischen Funktionen in einer Umgebung mit
kombinierten Angriffen verifizieren.

Schließlich präsentieren wir effiziente Implementierungen des PQC Verfahrens BIKE für re-
konfigurierbare Hardware. Unsere erste Implementierung beinhaltet eine optimierten Polynom-
multiplikation, einen Kern, der die Polynominversion basierend auf dem kleinen fermatischem
Satz durchführt, und die erste Hardwareimplementierung des Black-Gray-Flip Decoders. An-
schließend verbessern wir diese Ergebnisse, indem wir einen neuen Multiplizierer entwickeln,
der die Spärlichkeit eines seiner Eingangsoperanden für eine bessere Leistung ausnutzt, und ei-
ne optimierte polynomielle Inversion, die auf dem erweiterten euklidischen Algorithmus basiert.

Schlagworte.
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Gegenmaßnahmen, Verschleierung, Rekonfiguration, Fehlermodellierung, Angriffsmodel, Kom-
binierte Gadgets, Fehlerverifikation, Formale Verifikation, Binäre Entscheidungsbäume, Sym-
bolische Simulation, BIKE, QC-MDPC, FPGA
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Chapter 1

Introduction

This chapter briefly introduces the necessity of efficient implementations of crypto-
graphic algorithms on embedded devices. Thereby, threats through physical attacks
and their corresponding countermeasures are reviewed. On this basis, we highlight
the advantages of formal verification in the design process of those countermeasures.
Eventually, we discuss new challenges arising from post-quantum cryptographic algo-
rithms and their implementations. All of these parts, including the design of coun-
termeasures against physical attacks, their formal verification, and post-quantum
cryptography form the foundation and contributions of this thesis.

Contents of this Chapter

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Summary of Research Contributions . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Motivation

In our contemporary life, digital infrastructure plays a crucial role and it is almost impossible
to imagine a modern world without the advantages provided by our highly advanced technol-
ogy. These innovations can nowadays be found in many sectors including economy, education,
healthcare, public transportation, and the majority of critical infrastructure. For example, our
economy would not work without a secure and reliable digital banking system. Especially the
last few years have shown that a modern educational system needs to support functional home-
schooling. Our healthcare system would be inefficient without robust digital monitoring systems
supporting hospital attendants. Just recently, a presumptive attack on the German rail networks
has demonstrated that the infrastructure of public transportation highly depends on reliable
technology. Eventually, critical infrastructure does not only include public transportation but
also the energy supply controlled by advanced, digital systems.

Due to these influences of the digital infrastructure on so many areas of our life, robust,
reliable, and secure systems are necessary. This includes to perform any kind of communication
encrypted in order to avoid misuse of data and maintain data integrity. Encrypted communica-
tion became even more important over the last years since many devices ranging from servers to
personal computers to a huge amount of embedded devices (including mobile phones, Internet of
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Things (IoT), home automatization, etc.) are now connected. To this end, the underlying cryp-
tographic algorithms need to be implemented on highly diverse platforms like microcontrollers,
FPGAs, and ASICs.

However, all cryptographic implementations on these devices have in common that they
usually are vulnerable to physical attacks. Even though the algorithms are mathematically
secure, an attacker can exploit physical side channels to gain information about the secret
key material used in an encryption or decryption process on the target device. For example,
information can be leaked through timing differences in the algorithm’s execution time if it
depends on secret key material or sensitive data. Furthermore, critical side channels are also
present in the power consumption of target hardware devices. In general and without any
countermeasure in place, the dynamic power consumption of common hardware depends on
the processed data due to switching activities of transistors in modern Complementary Metal-
Oxide-Semiconductor (CMOS) technologies. Therefore, an attacker who has physical access
to the target device can measure the power consumption – while the cryptographic algorithm
performs an encryption or decryption – and extract sensitive information from the power traces.
This cannot only be achieved by directly measuring the power consumption at the power supply
but also by acquiring electromagnetic emanation of the Integrated Circuit (IC). Both of these
attacks are passive attacks, i.e., attacks that do not actively influence the computation.

As opposed to this, fault-injection attacks are classified as active attacks since ongoing compu-
tations are actively disturbed by using one of many different fault-injection mechanisms. The
most common mechanisms are clock or voltage glitches, electromagnetic pulses, and focused
laser beams. More precisely, the purpose of clock and voltage glitches is to increase the propa-
gation time of a digital signal so that memory elements sample wrong intermediate results. In
contrast, electromagnetic pulses directly target the sampling process of registers by reducing
the electrical potential between the ground and supply voltage. Eventually, faults injected by
focused laser beams are caused by currents charging or discharging internal nodes of the tar-
get circuit so that transitional faults occur which could eventually lead to wrong intermediate
results sampled by the registers.

Due to the threat arising from physical attacks, a lot of research focused on investigating and
developing countermeasures over the last two decades. Countermeasures against Side-Channel
Analysis (SCA) are divided into hiding- and masking-based approaches. While hiding-based
countermeasures aim to hide secret information within noise, masking-based countermeasures
apply the concept of secret sharing to prevent information leakage. Countermeasures against
Fault-Injection Analysis (FIA) are often based on some kind of redundancy. Common ap-
proaches use redundancy in time, spatial redundancy, or redundancy in information. Even
though the basic principles of these countermeasures are well understood, applying them to a
target cryptographic algorithm is still a time-consuming and error-prone task requiring experi-
enced designers and developers.

To this end, incorporating formal verification into the workflow of a hardware designer imple-
menting countermeasures can reduce complex and expensive development cycles. For example,
formal hardware verification can avoid to create physical test environments and expensive pro-
totyping. However, such formal verification frameworks require precisely defined models to
abstract side-channel and fault-injection attacks. On the one hand, these models need to be
simple enough to design efficient verification approaches while describing physical effects as
accurately as possible. On the other hand, excessive abstractions could lead to oversimplified
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models that do not reflect the actual processes occurring in the hardware. Therefore, adversary
models for formal verification tools need to be selected by balancing between accuracy and
efficiency.

Besides the well-known threats emerging through physical side channels and their corre-
sponding research areas of designing and verifying countermeasures, extensive advances in the
development of quantum computers raise new challenges for modern cryptography. More pre-
cisely, established schemes for Public-Key Cryptography (PKC) like RSA and elliptic-curve
cryptography can be broken in polynomial time by large-scale quantum computers as presented
by Peter Shor in 1999. Therefore, over the last two decades, extensive research focused on find-
ing new schemes which are secure against attacks mounted on powerful quantum computers.
The research in this area was even more boosted by the announcement of the NIST searching
for new standardized PQC schemes in 2017.

The most important selection criteria for submitted schemes is to provide the required security
against both classical and quantum attackers, i.e., attacks mounted on classical computers
and quantum computers. However, the NIST published additional selection criteria including
the cost and performance of the implemented algorithm on various platforms. This includes
optimized implementations for servers or personal computers Central Processing Units (CPUs)
as well as embedded devices like microcontrollers, FPGAs, and ASICs.

1.2 Summary of Research Contributions
The research of this thesis contributes to all of the aforementioned areas and is partitioned
into four parts. More precisely, we contribute to countermeasures against physical attacks,
their theoretical models abstracting the underlying physical behavior, and frameworks verify-
ing countermeasures on their gate-level netlist. Additionally, we investigate efficient hardware
implementations for post-quantum secure algorithms at the example of Bit Flipping Key Encap-
sulation (BIKE). All contributions are published in peer-reviewed journals or at international
conferences [RSBG20, RG20, RBSG22, FRSG22, RSS+21, RFSG22, RMG22, RCGG22]. These
publications form the basis for the chapters of this thesis. Please note that the content is slightly
rearranged for the sake of readability. In addition, the author contributed to other works which
are out of scope for this thesis and therefore excluded [WRS+20, HFL+20, KLRG22b, LMRG22,
KLRG22a, FGG+22]. In the following, we summarize the research contributions in more detail.

1.2.1 Protecting Hardware Implementations against Physical Attacks

The first part of this work addresses the design of countermeasures preventing SCA and FIA.
Here, we mainly target hardware implementations of symmetric cryptographic algorithms.

Orthogonal Concurrent Error Correction [RSBG20]. The first work in this part revises the
layout of linear ECCs to protect hardware implementations of the Advanced Encryption Stan-
dard (AES) against FIAs. Therefore, we exploit the concept of concurrent error detection and
elaborate important properties of linear ECCs with respect to their applications as protection
mechanisms in the context of fault injections. Based on this concept, we develop a new layout of
the linear ECCs which is arranged orthogonal to the state matrix of AES. This novel code lay-
out allows us to achieve more compact hardware implementations for FPGA and ASIC designs.
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Moreover, we combine our novel approach with the side-channel countermeasure LUT-Masked
Dual-rail with Precharge Logic (LMDPL) to achieve additional protection against side-channel
adversaries. To confirm the resistance against first-order SCA, we perform a Test Vector Leak-
age Assessment (TVLA) using 200 million power traces acquired from a FPGA measurement
board.

Dynamic Fault-Injection Countermeasures [RG20]. In the second work, we combine a first-
order secure Threshold Implementation (TI) with linear ECCs since the combination of both
countermeasures promises implementations with reasonable overhead. However, combining
higher-order TI with linear ECCs would result in considerably higher implementation costs.
For the first time, we employ the inherent structure of non-systematic linear ECCs as a coun-
termeasure against FIA and additionally mutate the underlying generator matrices in a dynamic
way to achieve protection against higher-order SCAs. In order to demonstrate the effectiveness
of our approach, we apply our scheme to the PRESENT cipher and perform a TVLA with
150 million power traces that confirm protection against attacks processing information from
up to the third statistical moment.

1.2.2 Adversary Models and Security Notions for Physical Attacks

After the practical design of countermeasures against physical attacks on hardware platforms,
we address their theoretical security models and abstractions of the corresponding physical
behavior. Therefore, we first contribute to this research area by introducing a novel fault-
injection adversary model and afterwards defining new security notions for FIA and combined
attacks, i.e., attacks combining SCA and FIA.

Revisiting Fault Adversary Models - Hardware Faults in Theory and Practice [RBSG22].
FIAs are known as a critical attack vector for cryptographic algorithms implemented on em-
bedded devices for a long time. Therefore, researchers from academia and industry proposed a
long list of countermeasures. However, the security of most approaches is validated on custom
adversary models which are not closely coupled to the actual physical behavior of the deployed
fault-injection mechanism. Additionally, custom adversary models complicate to compare the
security of different countermeasures. To this end, we present a simple, generic, and consol-
idated fault-injection adversary model that represents and abstracts the physical behavior of
common fault-injection mechanisms. To demonstrate the advantages, we apply our model to
cryptographic primitives and extend existing verification tools in order to support our novel
adversary model.

Security Notions for Secure Hardware Gadgets [FRSG22, RFSG22]. Security models ab-
stracting and describing SCAs were extensively researched over the last two decades. This does
not only include models for proving security of entire cryptographic primitives but also com-
posability notions allowing to build smaller circuits – so called gadgets – that can be used to
construct larger designs and still provide the desired security. We use this as a basis to push
the research further to composability notions covering combined attacks. Therefore, we first
revise existing security notions and slightly redefine them. Afterwards, we define new compos-
ability notions for combined attacks using the Probe-Isolating Non-Interference (PINI) notion
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as inspiration. Eventually, we present gadgets for hardware implementations that fulfill these
security notions.

1.2.3 Novel Frameworks for Formal Hardware Verification

Given the results from the previous part, we now present two verification frameworks incorpo-
rating the presented adversary model and security notions.

Formal Verification of Countermeasures against Fault-Injection Attacks [RSS+21]. The
validation of countermeasures against FIA is often done by empirical testing in a late stage
of the design process. To avoid this and receive early feedback, a designer can deploy formal
verification tools. However, existing tools to test hardware implementations of countermeasures
against FIA can report false positive verification results, which could be devastating. In this
chapter, we present a new formal verification framework called FIVER that parses gate-level
netlists and converts them into a data structure based on Binary Decision Diagram (BDD).
Utilizing BDDs for this task allows us to perform extensive analyses by considering all input
assignments. To demonstrate the effectiveness of our framework, we present several case studies
on protected designs of the lightweight ciphers CRAFT and LED-64 as well as of AES.

Verification of Combined Attacks [FRSG22, RFSG22]. Next, we present the first formal
verification framework for combined attacks. Therefore, we combine strategies from the SCA
verification tool SILVER [KSM20] with FIVER which we introduced in the previous chapter.
The new tool – VERICA – can execute all strategies and analyses which could be performed
by SILVER and FIVER. Additionally, VERICA is able to check combined security as well
as combined composability notions. Furthermore, we extend the capabilities introduced by
FIVER with a strategy checking protection against Statistical Ineffective Fault Analysis (SIFA).
Again, we perform several case studies on existing designs from the literature and revealed
implementation flaws in gadgets promising protection against combined attacks.

1.2.4 Efficient Hardware Implementations of BIKE

In this part, we explore efficient hardware implementations of the PQC scheme BIKE mainly
tailored to FPGAs as targeted platform.

Folding BIKE – Scalable Hardware Implementation for FPGAs [RMG22]. We present the
first complete hardware implementation for BIKE. One of the challenges for efficient implemen-
tations is the polynomial inversion required in the key generation of BIKE. We explore different
strategies to realize the inversion in hardware based on Fermat’s little theorem. Moreover, we
improve already existing polynomial multipliers and present a design that outperforms previous
implementations. Eventually, we implement for the first time the Black-Gray-Flip (BGF) de-
coder on hardware. As an additional feature, our implementation is fully scalable and generic
with respect to BIKE specific parameters. Altogether, our fastest design requires 2.69 ms for
the key generation, 0.1 ms for the encapsulation, and 1.89 ms for the decapsulation considering
the lowest security level.
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Racing BIKE – Optimized Hardware Design [RCGG22]. The second chapter improves the
hardware implementation of BIKE. Therefore, we optimize the implementations of the two key
arithmetic operations – the polynomial multiplication and polynomial inversion. First, for the
polynomial multiplier, we exploit that each multiplication in BIKE involves at least one sparse
polynomial. As part of this, we propose a design that is able to deal with the indefinite Hamming
weight in BIKE’s encapsulation and still finishes in constant time. Second, our inversion core
is based on the extended Euclidean algorithm improving the latency by 5.5 times compared
to our previous approach. Besides these two main contributions, we additionally present a
united hardware design of BIKE with shared resources and shared sub-modules among the Key
Encapsulation Mechanism (KEM) functionalities. On Xilinx Artix-7 FPGAs, our lightweight
implementation consumes only 3 777 slices and performs a key generation, encapsulation, and
decapsulation in 3 797 µs, 443 µs, and 6 896 µs, respectively.

1.3 Structure of this Thesis

The main part of this thesis is divided into four topics presenting the contributions as introduced
above. The first part presents two novel countermeasures protecting hardware implementations
of symmetric cryptography against physical attacks considering side-channel attacks and fault-
injection attacks. The second part defines formal models describing physical attacks used as
a foundation for formal verification. These definitions and models are used in the third part
introducing verification frameworks for hardware implementations. Eventually, the fourth part
introduces efficient hardware implementations of BIKE.

Part I: Preliminaries. This part covers important preliminaries used throughout this work and
introduces important definitions. First, we provide background about physical attacks covering
SCAs and FIAs separately in Chapter 2. We finish the section by discussing countermeasures
against FIAs including linear ECCs which serves as transition to Chapter 3 covering important
background and definitions from coding theory. Here, Section 3.2 introduced a special family of
linear ECCs called Quasi-Cyclic Moderate-Density Parity-Check codes. These codes are used
in the PQC scheme BIKE introduced in Chapter 4. Eventually, the last chapter of this part
covers models for digital logic circuits and theoretic background of BDDs.

Part II: Protecting Hardware Implementations against Physical Attacks. The second part
of this thesis covers the two works introducing novel protection mechanisms based on linear
ECCs that are combined with existing countermeasures thwarting SCA. Chapter 6 presents
the application of linear ECCs that are applied orthogonal the state matrix of AES instead of
using a byte-oriented approach as done in previous works.

In Chapter 7, we discuss the countermeasure based on dynamic reconfiguration techniques
exchanging linear ECCs of a protected design. Combined with a first-order protected SCA
implementation, we show that a higher-order protection is achieved due to the additionally
introduced noise of the reconfiguration approach.

Part III: Adversary Models and Security Notions for Physical Attacks. Part III is also
structured into two chapters. The first chapter (Chapter 8) deals with the introduction and
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definition of our formal model describing fault injections. To this end, we first cover common
fault-injection mechanisms and explain the physical behavior occurring in the hardware. Af-
terwards, we introduce our novel model with all its parameters required to accurately abstract
fault-injection methods. Eventually, we apply the model to cryptographic examples.

Chapter 9 introduces the new security notions for analyzing and designing hardware gadgets
protected against combined attacks, i.e., attacks exploiting information from SCAs and FIAs.
Here, we redefine security notions originally introduced in [DN20] and provide new notions
inspired by the PINI notion.

Part IV: Novel Frameworks for Formal Hardware Verification. Part IV takes up the the-
oretical models and definitions from Part III and incorporates them into formal verification
frameworks. Therefore, Chapter 10 introduces FIVER which formally verifies hardware coun-
termeasures against FIAs. FIVER uses BDDs as underlying data structure allowing it to per-
form a verification without any false positives as it could happen in frameworks presented in
the literature.

Based on the side-channel verification tool SILVER [KSM20] and FIVER, Chapter 11 presents
a framework that combines techniques from both tools into a novel tool (called VERICA) that
verifies digital logic circuits for protection against combined attacks. Therefore, VERICA pre-
serves all functionalities from SILVER and FIVER but additionally incorporates the theoretical
notions for combined security from Chapter 9.

Part V: Efficient Hardware Implementations of BIKE. While previous parts mostly con-
sidered physical attacks and the verification of symmetric cryptography, this part investigates
efficient hardware implementations of BIKE. Chapter 12 presents the first hardware implemen-
tation of BIKE including a polynomial inversion, polynomial multiplication, and a decoder. The
design is generically implemented so that the internally applied data width can be controlled
by a bandwidth parameter allowing to adapt the implementation to the required environment.

Based on that work, Chapter 13 presents several optimizations to achieve more efficient
designs. First, we show the advantages of exchanging the symmetric cores of the random
oracles of BIKE. Second, a novel multiplier design is introduced that has a considerably lower
footprint and latency. Third, the work investigates the efficiency of using the extended Euclidean
algorithm as inversion approach outperforming the previous approach based on Fermat’s little
theorem.

Part VI: Conclusion. The last part concludes this thesis by summarizing the individual results
and contributions. Additionally, future research directions are presented and discussed.
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Chapter 2

Physical Attacks and Countermeasures

Physical and implementation attacks, such as passive Side-Channel Analysis and
active Fault-Injection Analysis, have become a major threat to cryptographic algo-
rithms implemented on embedded devices. In this chapter, we discuss both attack
vectors by introducing different adversary models, evaluation methods, and counter-
measures.

Contents of this Chapter

2.1 Side-Channel Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Fault-Injection Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Side-Channel Analysis

In this section, we discuss passive side-channel attacks by introducing common sources of in-
formation leakage used to attack embedded devices, presenting adversary models to abstract
the physical behavior of power side-channel attacks, and evaluation methods to assess designs
under test. Furthermore, we present existing countermeasures from literature preventing SCA.

2.1.1 Physical Side Channels

Over the last 25 years, SCA has become a well-known threat to implementations of crypto-
graphic algorithms. These threats range from analyses of timing differences, over measurements
of the power consumption of a target device, to the evaluation of the electromagnetic emanation
of an IC. In the following, we briefly describe these three methods in more detail since they are
frequently used to attack and evaluate cryptographic implementations.

Timing Analysis. Runtime dependencies in implementations of cryptographic algorithms can
be exploited to recover sensitive data or secret key material. More precisely, whenever the
runtime of a target algorithm depends on secret data (e.g., branching or cache accesses), an at-
tacker can carefully measure differences in the execution time and gather information about the
processed sensitive data. This attack vector was presented for the first time by Paul C. Kocher
in 1996 [Koc96].
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Power Consumption. The foundation for modern cryptography is the fast development of ICs
resulting in high-efficient CPUs and ASICs supporting dedicated accelerators for cryptographic
operations. However, due to data-dependent switching activities of the underlying CMOS struc-
tures, plain implementations (in software and hardware) can leak sensitive information via the
power consumption of the target device. Therefore, measuring the dynamic power consumption,
allows an attacker to gain information about the processed data which eventually could reveal
information about secret key material. The discovery of this side channel in 1999 by Kocher
et al. [KJJ99] was the beginning of an entirely new research direction investigating new attack
methods and their corresponding countermeasures.

Electromagnetic Emanation. Related to the previously described side channel, an attacker
can measure the electromagnetic emanation generated by an active hardware device. Again, the
electromagnetic emanation directly depends on the processed data and the switching activities of
the transistors. Therefore, an attacker can exploit the dependencies between the electromagnetic
emanation and the processed data to gain information about secret data processed by the target
device.

2.1.2 Adversary Model

In this thesis, we only consider side-channel adversaries using information gained from the
power consumption or the electromagnetic emanation of a target hardware device. In order
to develop and assess countermeasures preventing SCA, a proper definition of the adversary
model is inevitable. A commonly used adversary model is based on the work from Ishai, Sahai,
and Wagner [ISW03]. In general, an adversary is assumed to learn intermediate values from a
hardware implementation which can be modeled by having access to the exact values of wires
carrying the internal signals of the circuit. Since it is infeasible to construct countermeasures
where an adversary has access to the values of all wires at the same time without learning
anything about the processed data, the power of the adversary is limited by the number of
wires she can probe and, hence, learns the corresponding values [ISW03]. We call this model
d-probing model where an adversary has access to up to d wires which can freely be chosen from
all available wires. The set of selected wires is also called probes. Hence, if an adversary is not
able to learn anything about the processed data using any possible probe combination of up the
d probes, a target circuit is assumed to be secure against a d-th order attacker.

However, hardware designs suffer from additional sources leading to exploitable side-channel
leakage. This includes physical defaults like glitches, transitions, and couplings [FGP+18]. In
an ideal digital circuit, each gate – and therefore each transistor – is only evaluated once for
each new input. However, each single transistor introduces a propagation delay (depending on
physical properties and the previous data) which implies that some gates are evaluated more
than once. The short time where the gate evaluates to the wrong value is called glitch. While
glitches only occur in combinatorial logic, transitions are caused by consecutive values written
to memory cells. Eventually, couplings are caused by adjacent wires such that information from
one wire can couple into another wire. The result of each of these physical defaults is that an
adversary probing one wire can gain information about values of more than the probed wire.
Therefore, Faust et al. introduced an (g, t, c)-robust d-probing model covering these additional
effects [FGP+18]. The parameters g, t, and c indicate whether the effect of glitches, transitions,
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and couplings, respectively, are considered. In this work, we focus our analyses on the glitch-
extended d-probing model, i.e., the (1, 0, 0)-robust d-probing model.

Recently, the random probing model gained more attention in the community [BCP+20]. In
this model, each wire is assumed to leak its value with probability p. However, as mentioned
above, we do not conduct evaluations in the random probing model but rather model a side-
channel adversary by the glitch-extended d-probing.

2.1.3 Practical Evaluation Methods

To assess the resistance of a design implemented on an embedded device against power side-
channel attacks, the applied evaluation method should be independent of any theoretical models,
intermediate values of the executed algorithm, and on any specific attacks. Therefore, Goodwill
et al. proposed to use Welsh’s t-test which is an extension of the Student’s t-test [GGJR+11].
Before we describe the corresponding leakage assessment, we recap important statistical pre-
liminaries mainly taken from [SM15].

Statistical Preliminaries. The evaluation of acquired power traces relies on the application of
statistical properties. We start by defining the raw statistical moment in Definition 1.

Definition 1 (Raw Statistical Moment). The d-th order raw statistical moment of a random
variable X is defined by Md = E

(
Xd
)
.

For the first order (i.e., d = 1), we denote µ = M1 as the mean. Additionally, we define the d-th
order central moment for d > 1 by Definition 2.

Definition 2 (Central Moment). The d-th order central moment for d > 1 is defined by
CMd = E

(
(X − µ)d

)
.

For d = 2 the central moment is also called variance denoted by σ2. Eventually, we define the
standardized moment by Definition 3.

Definition 3 (Standardized Momement). The d-th order standardized moment for d > 2 is
defined by SM2 = E

((
X−µ

σ

)d
)

.

Here, SM3 is called the skewness and SM4 the kurtosis.
In general, Welsh’s t-test is used to validate the null hypothesis that samples from two popu-

lations have equal means which implies they are indistinguishable from each other. Therefore,
let Q0 and Q1 be two sets analyzed by the t-test. Further, let µ0 and µ1 the means of the two
sets and σ2

0 and σ2
1 the sample variance of Q0 and Q1. The cardinality of Q0 and Q1 is denoted

by n0 and n1, respectively. Then, the t-value for the two sets Q0 and Q1 is computed by

t = µ0 − µ1√
σ2

0
n0

+ σ2
1

n1

. (2.1)
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Test Vector Leakage Assessment. TVLA is used to evaluate a cryptographic implementation
with respect to side-channel leakage and was proposed in [GGJR+11]. As already mentioned
above, the advantage of TVLA is that it can be applied without any knowledge about the origin
of possible side-channel leakage. Therefore, TVLA utilizes Welsh’s t-test (cf. Equation 2.1)
where the two sets consist of power traces acquired from the target device. More precisely,
the power traces Ti∈{1,...,n} belong to some data Di∈{1,...,n} where n denotes the total amount of
queries to the target. Each power trace Ti consists of m samples points such that Ti = {t1, ..., tm}
and each sample point is evaluated individually based on Equation 2.1. In a cryptographic
context, the associated data Di are mostly plaintexts or ciphertexts while the underlying secret
of the target algorithm is fixed for the analysis. Eventually, the two sets Q0 and Q1 can be
constructed from the power traces Ti by applying one of the following two approaches.

Specific: In the specific t-test the two sets Q0 and Q1 are constructed based on intermediate
results of the target algorithm. All traces that belong to an execution of the algorithm
where a specific intermediate value (e.g., one single bit or one byte) is equal to x are
collected in Q0 while all remaining ones are collected in Q1. However, this strategy suffers
from the specific selection of x which does not allow a comprehensive evaluation of the
target design.

Non-Specific: In order to overcome these limitations, the non-specific t-test is used. The two
sets Q0 and Q1 are constructed by traces acquired from a fixed input (e.g., plaintext or
ciphertext) and a random input, respectively. Due to this procedure, the test is often
called fixed vs. random t-test.

After constructing the two sets, the means µ0, µ1 and the variances σ2
0, σ2

1 can be estimated
to compute the first-order t-values for each sample point individually based on Equation 2.1.
In order to determine the t-values for higher orders, the traces need to be preprocessed first.
Afterwards, the mean and variance of the preprocessed traces are computed allowing to apply
Equation 2.1. For second-order tests, the mean-free squared traces Y = (X − µ)2 are used
for the t-value computation. Hence, the mean is actually the variance CM2 of the original
traces. For third and higher orders, the standardized moment SMd (cf. Definition 3) describes
the estimated mean. To compute the entire t-values for higher orders, the estimates of the
variances of the preprocessed traces are required as well. For the second order, the variance σ2

Y

of the mean-free squared values Y = (X − µ)2 is estimated as σ2
Y = CM4 − CM2

2 (for a detailed
derivation, please see [SM15]). In case d ≥ 3, the variance σ2

Zd
of the preprocessed traces Zd for

order d is given by

σ2
Zd

= SM2d − SM2
d = CM2d − CM2

d

CMd
2

.

Eventually, based on the computed t-values, the null hypothesis is accepted or rejected.
Usually, a threshold of |t| > 4.5 is defined to reject the hypothesis, i.e., a design is considered to
be insecure for the given order d. This simplification allows to reject the null hypothesis with
a confidence of more than 0.999 99.

Note, in 2017 Ding et al. showed that the threshold of ±4.5 needs to be adapted for mea-
surements with many sample points in order to avoid false positives in the evaluation phase
[DZD+17].
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Measurement Setup. In many chapters of this thesis, we perform practical side-channel evalu-
ations to validate the desired protection level against SCA. Therefore, we utilize the side-channel
measurement setup presented by Bache et al. in [BPW+19]. The setup consists of a software
part controlling the measurement and a hardware part executing the design under test. More
precisely, the software controls the entire hardware including the oscilloscope, amplifier, and the
target FPGA. Additionally, all statistical computations (i.e., the t-test as introduced above)
are executed by the software framework. The hardware part is divided into a control and target
FPGA. The control FPGA generates randomness for masks and decides whether a fixed or
random input is processed. The target FPGA executes the design under test while its power
supply is connected via an amplifier with the oscilloscope. In this work, we use different types of
oscilloscopes, amplifiers, and target FPGA boards which we briefly summarize in the following.

Oscilloscope: The first oscilloscope that is used for practical evaluations is the 6404D Pico-
Scope. The second oscilloscope (Spectrum M4 oscilloscope) is a more performant device
achieving a higher throughput since it is integrated into a PCI express card. Both oscil-
loscopes have a resolution of 8 bit.

Amplifier: The used amplifiers are Low Noise Amplifiers (LNAs) from MiniCircuits. The ZFL-
1000LN+ amplifier has a gain of 24 dB while the gain of the ZFL-2000GH+ can be con-
trolled by an additional input voltage.

Targets: Both target boards are explicitly designed for side-channel measurements. The
Sakura-G board is equipped with a Spartan-6 FPGA to implement the target design
while the Sakura-X board is equipped with a more recent Kintex-7 FPGA.

2.1.4 Countermeasures

In this section, we discuss important approaches to design countermeasures against SCA. In the
first part, we briefly describe hiding methods and especially focus on randomization techniques.
In the second part, we introduce masking with a focus on Boolean masking and TI.

Hiding

As introduced above, power SCAs exploit dependencies between the processed secret data and
the power consumption of the target device. Hence, an approach to decrease these dependencies
is to hide the secret data in the overall power consumption of the device. This can be achieved
by increasing or adding noise such that the signal cannot easily be identified in the power
traces. Vice versa, a designer could try to decrease the signal of the secret data such that it is
indistinguishable from the noise. In both cases, the objective is to decrease the Signal-to-Noise
Ratio (SNR) of the running implementation on the target device.

Randomization. Hiding mechanisms can also be realized by randomization, e.g., randomizing
the clock frequency [HDL+20] to hamper the alignment of traces which is an essential step
to conduct a side-channel attack. Another strategy relies on reconfiguration techniques that
randomize the dynamic power consumption of the target device. These kinds of hiding methods
are especially effective when they are combined with provable secure protection mechanisms
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(e.g., with masking which is introduced in the next section) to achieve protection against higher-
order attacks [SMG15, SMG17].

Masking

Masking is a common countermeasure to protect cryptographic hardware implementations on
embedded devices against SCAs and is studied for more than twenty years [CJRR99]. The basic
principle is to split up a sensitive value x into multiple shares xi with 0 ≤ i < s leading to

x = x0 ◦ x1 ◦ · · · ◦ xs−1. (2.2)

Here, s defines the number of shares and ◦ denotes the group operator of the underlying masking
scheme. In order to achieve a secure masking, s− 1 shares are chosen uniformly at random and
the remaining share is determined such that Equation 2.2 is satisfied. Since all sensitive values
are split up into shares, any function f processing x is also transferred to a shared representation
f = f0 ◦ f1 ◦ · · · ◦ fs−1.

We call a masking scheme instantiated with group operator ⊕ a Boolean masking and an
arithmetic masking when an addition or multiplication is applied. In this thesis, we only use
Boolean masking which is explained in more detail in the following paragraph.

Boolean Masking. Boolean masking is a common countermeasure to protect implementations
of symmetric cryptographic schemes against SCA. As mentioned above, it is realized by sub-
stituting the group operator of Equation 2.2 with an Exclusive OR (XOR) operation. To this
end, we formally define a Boolean sharing by Definition 4.

Definition 4 (Boolean Sharing). A Boolean sharing of a value x ∈ Fm
2 is a vector x =

⟨x0, . . . , xs−1⟩ such that x = ⊕s−1
i=0 xi, with xi ∈ Fm

2 uniform random and for all X ⊊
{x0, ..., xs−1} the values xi ∈ X are independent. Further, let S : Fm

2 7→ Fm·s
2 be a probabilis-

tic share function that outputs a valid Boolean sharing ⟨x0, . . . , xs−1⟩ for some x. Similarly,
U : Fm·s

2 7→ Fm
2 is a deterministic unshare function that computes the original value x for a share

vector ⟨x0, . . . , xs−1⟩.

When using S(x) for a x ∈ Fm·ℓ
2 , we apply the sharing function element-wise on ℓ different

values Fm
2 . Similarly, we write U(x) for x ∈ Fm·s·ℓ

2 when unsharing ℓ different share vectors
element-wise.

Further, we define a shared circuit as a digital logic circuit that operates on Boolean shares.
As usually done in literature, we consider the sharing and unsharing functions outside of the
scope of the adversary [AIS18].

Definition 5 (Shared Circuit). A shared circuit Cs
F for a function F : Fm·ℓ

2 7→ Fm·ℓ′
2 and a

Boolean sharing scheme with s shares is a probabilistic circuit realizing a function FC : Fm·s·ℓ
2 7→

Fm·s·ℓ′
2 , such that ∀x ∈ Fm·ℓ

2 it holds that F(x) = U(FC(S(x))) ( functional correctness).

However, the challenge of all masking schemes is to share non-linear functions. In the fol-
lowing, we discuss Threshold Implementations and constructions from gadgets which are both
approaches based on Boolean masking.
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Threshold Implementations. TI was originally proposed by Nikova, Rechberger, and Rijmen
and is known as a provable secure and widely used masking scheme to protect digital circuits
against SCA [NRR06]. To provide the desired security, the target implementation has to fulfill
the following properties.

Correctness: Given a function y = F(x) from Fm·ℓ
2 to Fm·ℓ′

2 , the TI realization of F requires
a shared representation FC = (F0, ..., Ft−1) where the Fi are called component functions.
Correctness is ensured if y = FC (x) satisfies y = ⊕t−1

i=0 Fi(x) for x = ⊕s−1
i=0 xi and x =

⟨x0, . . . , xs−1⟩.

Non-Completeness: To ensure a secure TI implementation in the presence of glitches, each
function FC has to be non-complete. Particularly, for a first-order secure implementation
of a function F each component function Fi∈{0,...,t−1} must be independent of at least one
input share xj∈{0,...,s−1}.

Uniformity: Since the security of TI is based on Boolean masking, a uniform distribution of
the shared representation is essential. However, the results of a shared function FC are
used as input to subsequent functions such that uniformly distributed outputs of FC are
required. In other words, the set of all possible output sharings F = {F0, ..., Ft−1 | x ∈ X}
must be uniformly drawn from the set Y = {y |⊕t−1

i=0 yi = y} assuming a given set of all
possible input sharings X = {x |⊕s−1

i=0 xi = x}. Violating the uniformity property would
lead to a biased sharing.

Again, the complexity to find TIs for non-linear functions increases with the complexity of
the underlying function and its algebraic degree. Nevertheless, constructing efficient TIs for
arbitrary non-linear functions can be challenging.

Composability Notions. To overcome the challenges of finding suitable TIs, unprotected cir-
cuits can be transformed to secure implementations by replacing all Boolean gates with atomic
and secure building blocks called gadgets. Since the theoretical foundations of the d-probing
model introduced in Section 2.1.2 are not sufficient to argue about the composability of gadgets
ensuring secure composed circuits, additional security notions are required.

A common technique of defining security notions is simulation [Can01, Mau11]. For this,
a real and an ideal game are defined. The ideal game is assumed to be trivially secure with
respect to a given adversary model. Furthermore, the ideal game is modeled by a probabilistic
polynomial-time simulator determining the view of the adversary without using information of
the secrets. To this end, a circuit in the real game is secure iff the view of the adversary is
indistinguishable from the ideal game’s simulator. Hence, the adversary is not able to distinguish
the two games with a probability higher than 1/2. As a consequence, the view of the adversary
is independent of the circuit’s secrets.

Given that, the first security notion to analyze gadgets with respect to their composability
has been proposed by Barthe et al. [BBD+15] and is known as Non-Interference (NI). In this
thesis, we use the term Probe Non-Interference (PNI) in order to prevent any confusion with
other non-interference definitions introduced later.

Definition 6 (Probe Non-Interference [BBD+15]). A shared gadget G is d-PNI iff any set of
d′ ≤ d probes can be perfectly simulated with at most d′ shares of each input.
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PNI limits the amount of leakage for shared intermediate variables in a gadget. However,
the composition of PNI gadgets does not guarantee probing secure circuits. Hence, Barthe et
al. proposed Probe Strong Non-Interference (PSNI) as an extension to PNI introducing more
restrictions [BBD+16].

Definition 7 (Probe Strong Non-Interference [BBD+16]). A shared gadget G realizing a func-
tion F : Fm·s·ℓ

2 7→ Fm·s
2 is d-PSNI iff for any set of probes, of which d1 are internal probes and

d2 are output probes such that d1 + d2 ≤ d, the probes can be perfectly simulated by d1 shares of
each input.

A circuit composed of PSNI gadgets is again PSNI and therefore also probing secure. Since a
circuit constructed of PSNI gadgets can produce a huge overhead in terms of area and latency,
more efficient compositions can be achieved by combining PNI and PSNI gadgets following rules
presented in [BBD+16, BGR18]. Another strategy to reduce the overhead has been proposed
by Cassiers and Standaert introducing the PINI security notion [CS20].

Definition 8 (Probe-Isolating Non-Interference [CS20]). A gadget G is d-PINI iff for any set
of d1 internal probes and any set S2 of d2 share domains, such that d1 + d2 ≤ d, there exists a
set S1 of at most d1 share domains such that the outputs of the share domains in S2 and the
probes can be simulated with the inputs of the share domains in S1 ∪ S2.

Hence, PINI ensures that information cannot leak from one share domain to another. There-
fore, the composition of circuits can easily be done since all share domains are isolated. In the
next section, we briefly introduce three types of gadgets that are frequently used in this thesis.

Gadgets

Given the composability notions from the previous section, we now describe common gadgets
that fulfill some of these security assertions.

Domain-Oriented Masking. Domain-Oriented Masking (DOM) has been presented in 2016 by
Gross, Mangard, and Korak [GMK16]. The approach associates each share of a variable x with
a specific domain. More precisely, assuming that x is divided into s = d + 1 shares denoted by
x = x0 ⊕ x1 ⊕ ...⊕ xd, the indices of the shares indicate the corresponding domain. To this end,
the main idea is to keep all shares independent from shares of other domains [GMK16]. Based
on this idea, the authors propose an algorithm to construct shared Boolean multiplications for
arbitrary security orders. The formal description of this gadget is given in Algorithm 1 (by
Reg[v] we indicate that the value v has been sampled and stored in a register).

The DOM gadget fulfills the PNI security property in the standard and glitch-extended model.
However, it is only PSNI secure in the standard probing model and does not provide security
under the PINI security notion.

Hardware Private Circuit 1. In 2021, Cassiers et al. presented a paper introducing two new
gadgets for hardware that fulfill the PINI security notion [CGLS21]. These Hardware Private
Circuits (HPCs) are specifically designed to provide security in the glitch-extended d-probing
model for arbitrary orders while being trivially composable. The first gadget is called HPC1 and
is depicted in Figure 2.1a. HPC1 is composed of a DOM gadget (see previous paragraph) and
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Algorithm 1 Multiplication Gadget using Domain-Oriented Masking.
Require: a = ∑d

i=0 ai, b = ∑d
i=0 bi.

Ensure: c = a · b = ∑d
i=0 ci

1: procedure DOM(a0, ..., ad, b0, ..., bd)
2: for i = 0 to d do
3: ui,i ← ai · bi

4: for j = i + 1 to d do
5: ui,j ← ai · bj ⊕ ri+j(j−1)/2
6: uj,i ← aj · bi ⊕ ri+j(j−1)/2
7: end for
8: end for
9: for i = 0 to d do

10: ci ← Reg[ui,0]
11: for j = 1 to d do
12: ci ← ci ⊕ Reg[ui,j ]
13: end for
14: end for
15: end procedure

a refresh gate at one of its inputs. Hence, the total amount of required bits of fresh randomness
is given by d · (d + 1).

Hardware Private Circuit 2. The second gadget that has been introduced by Cassiers et al.
is named HPC2 and is sketched for d = 1 in Figure 2.1b. The main motivation for introducing
HPC2 is to reduce the number of random bits required for refreshing inside the gadget. Hence,
HPC2 gadgets have the same randomness costs as DOM gadgets, i.e., (d · (d + 1)/2) random
bits. For a generic and algorithmic description of HPC2, we refer the interested reader to
[CGLS21].

2.2 Fault-Injection Attacks

The second class of physical attacks we discuss in this thesis falls in the area of active attacks
consolidating all mechanisms to inject faults in an ongoing cryptographic operation. In this
section, we briefly introduce different attack mechanisms and adversary models. Afterwards,
we describe different approaches to counteract FIAs.

2.2.1 Fault-Injection Mechanisms

An attacker using active fault-injection attacks aims to alter an intermediate state of an ongoing
cryptographic process (e.g., an encryption or decryption). The erroneous intermediate values
eventually lead to a wrong output of the faulted algorithm. In case the fault was precisely
placed, the attacker is able to use the faulted (and often also the correct) outputs to receive
information about the sensitive key material.
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Figure 2.1: Gadgets from Hardware Private Circuits [CGLS21].

Besides the theory of where and when a fault needs to be placed to gain information about
the internal secrets of an algorithm, many research focused on injection mechanisms, i.e., which
methods can be used to successfully inject faults in an IC. These attack vectors include clock
or voltage glitches [ADN+10, ZDCT13], electromagnetic pulses [DDRT12, DLM21, OGM15,
OGM17], or focused photon injection using laser beams [SA02, RSDT13, CLFT14, SBHS15].
A detailed description of these mechanisms and the physical background of their functionality
is given in Chapter 8 since it is closely connected to the contribution of the chapter.

2.2.2 Adversary Model

Since we consider physical attacks, we assume that an attacker has physical access to the target
device. Additionally, for most of the aforementioned injection mechanisms, the attacker needs
to modify the Printed Circuit Board (PCB) or target chip in order to successfully launch an
attack (e.g., removing an oscillator or decapsulating the chip).

The faults occurring in the hardware are often modeled by stuck-at and toggle (bit-flip) faults
as they are often used in IC testing and verification [RU96]. The stuck-at model is further
divided into stuck-at-0 and stuck-at-1 faults where a wire is assumed to be faulted such that it
is tied to logical zero or logical one, respectively. The fault described by the toggle model relies
on the original value where a logical zero is turned into a logical one and vice versa. However,
as we show in Chapter 8, these basic models are often too inaccurate to precisely describe the
underlying physical behavior of the fault injection mechanisms.

2.2.3 Analysis Techniques

In order to exploit injected faults in a hardware implementation of a cryptographic algorithm,
researchers proposed a plethora of analysis techniques over the last two decades. These anal-
ysis techniques range from the seminal Differential Fault Analysis (DFA) over ineffective and
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statistical methods like Ineffective Fault Analysis (IFA) and Statistical Fault Attack (SFA) to
a combination of both.

Differential Fault Analysis. With the seminal work of Biham and Shamir presenting the first
DFA on the Data Encryption Standard (DES) [BS97], a foundation for further research with
respect to fault analysis of the AES was laid. In 2002, Giraud presented the first DFA for AES
by inducing faults in the ninth round and requiring around 250 faulty encryptions [Gir04]. This
attack was later improved by Blömer and Seifert such that 128 to 256 faulty ciphertexts are
sufficient to recover the secret key [BS03]. By injecting faults between the eighth and ninths
round, Dusart et al. were able to reduce the number of required faulty ciphertexts to 40 [DLV03].
Eventually, Ali and Mukhopadhyay pushed DFA on AES to its limit requiring just one faulty
encryption [AM11].

However, all approaches have in common that pairs of correct and faulty ciphertexts are
required for a successful attack. As a basic intuition, DFA computes the difference between a
correct and faulty ciphertext and instantiates a counter for each possible key candidate. By
estimating the corresponding key bytes, the attacker recomputes the intermediate state and
searches for correlations to the difference between the correct and faulty ciphertext. In case a
correlation is found for one estimated key candidate, the corresponding counter is increased.
Eventually, the key candidate that belongs to the highest counter is assumed to be the correct
key used in the underlying cryptographic implementation.

Ineffective Fault Analysis. In 2007, Clavier presented IFA and demonstrated its effectiveness
on DES [Cla07]. In order to successfully mount an attack based on IFA, the attacker is assumed
to precisely inject a known fault (e.g., stuck-at-1 or stuck-at-0) into a known gate. Given that,
random data is fed into the implemented algorithm and the attacker observes the output. In
case the output is correct, the fault was ineffective and the attacker learns the intermediate
value where the fault has been injected. However, this attack assumes a powerful attacker who
is able to precisely inject controllable faults while requiring a huge amount of encryptions or
decryptions.

Statistical Fault Attack. SFA was introduced by Fuhr et al. in 2013 [FJLT13]. SFA assumes
that faults are injected in a specific byte or nibble of a cipher and that the faults do not occur
randomly but rather with a biased distribution (e.g., stuck-at faults). Based on this, an attacker
collects N faulty ciphertexts and guesses the involved parts of the key K̂. Using all key guesses,
the attacker calculates back the intermediate result v of the encryption or decryption up to the
point where the fault was injected. The most likely key candidate is determined by applying
the Squared Euclidean Imbalance (SEI) to all intermediate results for each key guess. The key
candidate with the highest SEI value is assumed to be the correct key candidate. Assuming a
cipher state divided into bytes, the SEI is defined by Equation 2.3 where |{v | v = n}| denotes
the number of intermediate values v that is equal to n.

SEI
(
K̂
)

=
255∑
n=0

( |{v | v = n}|
N

− 1
256

)2
(2.3)
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Statistical Ineffective Fault Analysis. Eventually, Dobraunig et al. proposed a powerful attack
combining IFA and SFA to SIFA [DEK+18]. This method is seen to be very powerful since it
can be used to circumvent almost all detection-based countermeasures (for more details about
countermeasures see Section 2.2.4). This is possible since SIFA only requires correct ciphertexts
to recover the secret key. Hence, all ciphertexts that are detected and marked as faulty are
not required to mount a successful attack. However, the same assumptions about a biased
distribution of the injected faults as for SFA are supposed. But instead of knowing the exact fault
type and location as for IFA, the attacker does not need to know the fault type which is a more
realistic scenario for real-world attacks. To this end, SIFA has relaxed assumptions about the
attacker’s capabilities and can be used to circumvent many well-established countermeasures.

2.2.4 Countermeasures
Countermeasures against FIA commonly rely on redundancy with respect to area, time, or in-
formation. Another approach tries to infect the intermediate state of a cryptographic algorithm
such that the values are independent of sensitive key material.

Redundancy in Time. One trivial approach to detect faults is to recompute an algorithm’s
output twice or several times [MSY06]. The outputs are compared allowing to detect or correct
errors. In general, k + 1 re-computations are required to detect up to k faults or 2k + 1 re-
computations to correct up to k faults. However, in case error detection is applied and a fault
is detected, the output is held back and not released.

Infection. In contrast to fault-detection-based countermeasures, infection-based countermea-
sures always return an output. Therefore, in case an effective fault is injected in an ongoing
encryption or decryption process, the intermediate result is infected by randomness such that
the final output is useless to the attacker. Examples for infection-based countermeasures can
be found in [GST12, TBM14]

Redundancy in Area. Spatial redundancy pursues the same purpose as redundancy in time.
However, instead of computing an algorithm’s output several times sequentially, the algorithm
is instantiated in parallel and executed simultaneously [MSY06]. Again, this approach can
be combined with simple detection or correction schemes instantiating the algorithm k + 1 or
2k + 1 times, respectively.

Redundancy in Information. More advanced techniques consider code-based approaches to
protect a target algorithm against FIA. Especially linear ECCs have been extensively inves-
tigated in the literature [AMR+20, SRM20, RSM21]. The first approach [AMR+20] utilizes
linear ECCs for detection purposes only. Later, [SRM20] extended the capabilities to con-
struct protection mechanisms allowing to correct occurring faults. Eventually, in [RSM21] both
approaches have been combined and the detection, as well as correction capabilities of the un-
derlying code, are used to create fault-resistant designs. Since linear ECCs are not only used as
countermeasures against FIA but also play a crucial role in other cryptographic areas, we cover
them separately in Chapter 3.
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Chapter 3

Coding Theory

In this chapter, we cover the theoretical background of linear error codes which
are used in many cryptographic applications. The detection and correction capabil-
ities of linear error codes can be used as countermeasure against physical attacks
as highlighted in the previous chapter. Additionally, they serve as foundation for
entire cryptographic schemes. After an introduction of linear ECCs, we cover a
specific family of linear error codes called Quasi-Cyclic Moderate-Density Parity-
Check (QC-MDPC) codes. They particularly got attention in the last years due to
the post-quantum standardization process hosted by the NIST.

Contents of this Chapter
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3.1 Theory of Linear Codes

Linear ECCs are well-known from communication theory and are an established technique to
detect or correct errors occurring on communication channels. However, as mentioned in the
introduction of this chapter, they also serve as foundations for many applications in cryptogra-
phy. Therefore, we start this section by defining linear codes and stating their corresponding
detection and correction capabilities. For this, we closely follow the notations presented in
[vT93].

Definition 9 (Linear Code). A linear (n, k) code C of length n, dimension k, and co-dimension
r = (n− k) is a k-dimensional subspace of Fn

q .

Each linear code is defined by a matrix G ∈ Fk×n
q called generator matrix. The counterpart

of a linear code’s generator matrix is the parity-check matrix H ∈ F(n−k)×n
q . Both matrices are

formally defined by Definition 10 and Definition 11.

Definition 10 (Generator Matrix). A matrix G ∈ Fk×n
q is called a generator matrix of a (n, k)-

linear code C if C =
{

mG | m ∈ Fk
q

}
.
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Definition 11 (Parity-check Matrix). A matrix H ∈ F(n−k)×n
q is called parity-check matrix of

C if C =
{

c ∈ Fn
q | HcT = 0

}
.

In this thesis, we only consider linear codes defined over Fn
2 . On the one hand, binary linear

codes are best suited to protect symmetric ciphers against fault injections. On the other hand,
this thesis investigates optimized hardware implementations of a cryptosystem that is based on
binary linear codes. To this end, given a valid codeword c ∈ C of a binary linear code and a vector
e ∈ Fn

2 such that c′ = c⊕ e, the vector sT = Hc′T is called syndrome. Due to Definition 11, it
holds that sT = HcT ⊕HeT = HeT.

In order to determine the detection and correction capabilities of a linear error code, we define
its minimum Hamming distance.

Definition 12 (Minimum Hamming Distance). The minimum distance dmin of a linear code C
is the smallest Hamming Distance (HD) between all codewords and is defined as

dmin = min ({HD (c1, c2) | c1, c2 ∈ C, c1 ̸= c2}) . (3.1)

Since the minimum distance dmin is an essential property of a linear code, they are commonly
called (n, k, dmin)-codes. The detection and correction capabilities are given by Corollary 1.

Corollary 1. A code C with minimum distance dmin can detect u = dmin − 1 errors and correct
v =

⌊
dmin−1

2

⌋
errors. If dmin is even, this implies C can simultaneously detect u = dmin

2 errors
and correct v = dmin−2

2 errors.

Hence, a faulted codeword c′ = c⊕ e, where e ∈ Fn
2 denotes an error vector, can be detected

by an (n, k, dmin)-code as long as HW(e) ≤ u and corrected as long as HW(e) ≤ v.
Furthermore, Definition 13 defines additional important properties of linear error codes.

Definition 13 (Equivalent Codes). Two linear codes over F2 are equivalent if one can be
obtained from the other by a combination of operations of the following two types:

(a) an arbitrary permutation of its coordinate positions

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Hence, equivalent codes have the same properties, i.e., the same minimum distance dmin.

Definition 14 (Systematic Codes). A code C is called systematic code if and only if G = [Ik | P ]
where Ik denotes the identity matrix of size k.

Note that every generator matrix G of a non-systematic code C can be transformed to another
generator matrix G̃ of a systematic code based on Definition 13 [Bla03].

3.2 Quasi-Cyclic Moderate-Density Parity-Check Codes
A special family of linear ECCs is described by QC-MDPC codes which we briefly introduce
in this section. Therefore, we start by defining circulant matrices, Quasi-Cyclic (QC) codes,
and important properties of such codes. For the corresponding definitions, we closely follow the
notations of [ABB+20b].
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Definition 15 (Circulant Matrix). A binary square matrix A is called circulant matrix if each
row is the rotation of one element to the right of the preceding row.

As a result, a circulant matrix is completely defined by its first row. Additionally, a block-
circulant matrix is composed of circulant square blocks of identical size called order. The number
of circulant blocks in a row is called index. A formal definition is given below.

Definition 16 (Quasi-Cyclic Code). A (binary) QC code of index n0 and order r is a linear
code which admits as generator matrix a block-circulant matrix of order r and index n0. A
(n0, k0)-QC code is a quasi-cyclic code of index n0, length n0r and dimension k0r.

A binary r × r matrix A can be expressed by an element from a quotient polynomial ring
R = F2[X]/(Xr − 1). The mapping between A and R is described by a natural ring isomor-
phism φ which maps the first row of A, represented by (a0, a1, ..., ar−1), to the polynomial
φ(A) = a0 + a1X + ... + ar−1Xr−1. Therefore, all matrix operations can be seen as polynomial
operations.

Definition 17 (Transposition). The transposition of a polynomial a0 + a1X + ... + ar−1Xr−1 =
a ∈ R is defined as aT = a0 + ar−1X + ... + a1Xr−1.

This definition ensures φ(AT) = φ(A)T. Furthermore, the isomorphism φ can be extended
to any binary vector (v0, v1, ..., vr−1) = v ∈ Fr

2 such that φ(v) = v0 + v1X + ... + vr−1Xr−1. To
stay consistent with Definition 17, the transposition of φ(v) is defined as φ(vT) = v0 +vr−1X +
... + v1Xr−1 resulting in φ(vA) = φ(v)φ(A) and φ(AvT) = φ(A)φ(v)T.

Definition 18 (Quasi-Cyclic Moderate-Density Parity-Check Code). A quasi-cyclic code of
length n = n0r, dimension k = k0r, order r and a parity-check matrix with constant row weight
w = O(

√
n) is called an (n0, k0, r, w)-QC-MDPC code.

In the next section, we introduce the basic principles behind decoders used in QC-MDPC
codes.

3.3 Iterative Decoding for QC-MDPC Codes
The decoding process, i.e., recovering the correct message from a faulty codeword, for Low-
Density Parity-Check (LDPC) and Moderate-Density Parity-Check (MDPC) codes is a complex
proceeding. In 1962, Gallager presented the first decoding algorithms for LDPC codes [Gal62].
The principle behind these iterative algorithms can also be transferred to decoding algorithms
used for QC-MDPC codes. More precisely, the algorithms determine bits of the codewords that
most probably contain an error and flip the corresponding bits according to some predefined
and code-specific threshold. In the following, we introduce these bit-flipping algorithms more
formally.

Given an erroneous codeword c′ ∈ Fn
2 and a parity-check matrix H ∈ F(n−k)×n

q of an under-
lying code C, we first compute the syndrome sT = Hc′T as introduced in Section 3.1. Next, we
compute the number of Unsatisfied-Parity-Check (UPC) equations for each codeword bit. The
number of UPC equations for bit j of c′ is determined by performing an element-wise multi-
plication of the syndrome s with Hj indicating the j-th column of H. We denote the result
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by upcj = s ∗Hj where ∗ represents an element-wise multiplication. To this end, the number
of violated parity-check equations for a single bit of c′ is given by |upcj |. Based on these val-
ues, all bits in c′ for which |upcj | > T are flipped. The threshold T is a predefined parameter
determined for each decoder and code individually.

The intuition behind the bit-flipping algorithm is to identify the columns in the parity-check
matrix H that most likely lead to a non-zero entry in the syndrome s. Since a column of H
directly corresponds to a bit in c′, and therefore to the error vector included in c′, a higher |upcj |
indicates that position j is erroneous with a higher probability. In the following, we explain the
algorithm by reference to an example.

Example 1. As an example, we assume a given generator matrix G ∈ F8×14
2 as defined in

Equation 3.2.

G =



1 0 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 1 0 1 1 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 0 0 1 0
1 0 1 1 0 1 1 0 0 0 0 0 0 1


(3.2)

Furthermore, we encode the message m = [0 1 1 1 0 0 1 0] with G as introduced in Definition 10.
Hence, the error-free codeword c is given by

c = m ·G =
[

0 0 0 1 0 0 1 1 1 1 0 0 1 0
]

.

Now, let us assume that a single-bit error occurs during transmission over a noisy communica-
tion channel. Therefore, we assume the following error vector

e =
[

0 0 0 0 0 0 0 0 0 0 1 0 0 0
]

with |e| = 1 which leads to the faulty codeword

c′ =
[

0 0 0 1 0 0 1 1 1 1 1 0 1 0
]

.

The parity-check matrix H ∈ F6×14
2 associated with the defined generator matrix G is given by

H =



1 0 1 0 0 0 0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 1 1
1 0 0 1 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0


. (3.3)

Given H and c′, we now compute the syndrome s ∈ F6
2 which results in

s =
(
Hc′T

)T
=
[

0 1 1 0 0 0
]

.
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Eventually, we determine the UPC equations |upcj | by performing an element-wise multipli-
cation of the columns of H with the transposed syndrome sT followed by a summation of the
resulting elements. The vector U containing all added violated parity-check equations |upcj | for
each bit position j of c′ is given by

U =
[

1 1 0 1 0 0 1 1 0 0 2 0 1 1
]

.

Hence, in this example, |upc10| is the largest value in U such that we can assume that the
corresponding bit in c′ is erroneous and need to be flipped.

This example visualizes the computation of UPC equations and the corresponding bit flipping.
However, over the years, many different algorithms for efficient bit-flipping decoders have been
proposed [HvMG13, DGK20c]. In the next chapter, we present a specific decoder used in BIKE.
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Chapter 4

Bit Flipping Key Encapsulation
In 2017, the NIST announced a standardization process to find new asymmetric cryp-
tographic schemes that are secure against attacks mounted on large-scale quantum
computers. One important category of these PQC schemes are Key Encapsulation
Mechanisms which we introduce in the first part of this chapter. Afterwards, we
describe Bit Flipping Key Encapsulation – one candidate of NIST’s standardization
process that proceeded to the fourth round. Since BIKE is based on linear ECCs, a
decoder recovering an intentionally added error is required. We explain the function-
ality of BIKE’s decoder in the last section of this chapter.

Contents of this Chapter

4.1 Key Encapsulation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Key Encapsulation Mechanisms
In general, key encryption schemes can be divided into symmetric and asymmetric cryptogra-
phy. Symmetric key encryption schemes use the same key for the encryption and decryption
and are perfectly suited to encrypt large data. In contrast, asymmetric cryptography uses a
key pair consisting of a private and public key. Such schemes are often impractical to use
for encrypting large data because their underlying algorithms are usually more complex than
symmetric algorithms. However, asymmetric cryptography is often used to implement KEMs
allowing to secretly exchange a shared private key applied in symmetric encryption schemes.
KEMs consist of three algorithms, the key generation, encapsulation, and decapsulation. The
key generation generates the public and private key using some random input. The public key
is transmitted to the communication partner and is utilized in the encapsulation to derive the
shared secret key with the help of additional randomness (often called message). Additionally,
the encapsulation computes a cryptogram which is sent back. Eventually, in the decapsulation
this cryptogram is used together with the private key to compute the same shared secret key as
in the encapsulation. An important property of each asymmetric encryption scheme and KEM
is that it is only possible to compute the same shared secret from the cryptogram if the private
key is known.

In the next section, we introduce the KEM BIKE which is a candidate of NIST’s PQC
standardization process.
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Table 4.1: BIKE parameters.

BIKE Specific Decoder Specific
Security r w t f0 f1 c NBIter τ

Level 1 12 323 142 134 0.0069722 13.530 36 5 3
Level 3 24 659 206 199 0.005265 15.2588 52 5 3
Level 5 40 973 274 264 0.00402312 17.8785 69 5 3

4.2 Specifications
BIKE is a code-based scheme and was initially defined as a suite of three different algorithms.
However, with the submission to the third round to the NIST standardization process, only
one algorithm survived which is presented in this section. BIKE uses QC-MDPC codes (cf.
Section 3.2) as underlying structure. Before we introduce the exact definitions of the key gen-
eration, encapsulation, and decapsulation, we discuss important parameters specifying BIKE.

Parameters. Besides the security level λ1, BIKE is specified by three parameters r, w, and t.
The parameter r defines the block length and needs to be prime such that (Xr − 1)/(X − 1) ∈
F2[X] is irreducible. The row weight w defines the number of bits set in the private key and is
chosen such that w/2 is odd. The parameter t is a positive integer and determines the decoding
radius, i.e., the Hamming weight of an error vector e = (e0, e1). As an additional parameter,
the shared secret size ℓ is defined as a positive integer and fixed to 256 for all parameter sets.
Please note that the code length n is set to n = 2r, i.e., n0 = 2 as introduced in Definition 16.
All parameters are summarized in Table 4.1 with their corresponding values for the different
security levels. The parameters given in the last five columns are required in the decapsulation
described below.

Special Functions. Besides the parameters introduced above, BIKE defines a set of three
functions H, K, and L modeled as random oracles. The functions are defined over the following
domains and ranges.

H :{0, 1}ℓ → {0, 1}2r
[t]

K :{0, 1}r+2ℓ → {0, 1}ℓ

L :{0, 1}2r → {0, 1}ℓ

Here, {0, 1}2r
[t] describes a polynomial of length 2r with exactly t non-zero coefficients. Over

the time period of NIST’s standardization process, the exact definition of the three random
oracles changed. In the beginning, H was realized by an AES256 implementation while K
and L were realized by a SHA2-384 instantiation. However, as we demonstrate in Chapter 13,
this choice is not optimal for hardware implementations. Therefore, H has been replaced by
a SHAKE256 core while K and L have been replaced by an instantiation of SHA3-384. The

1The security level λ = 1 corresponds to an equivalent security of AES-128, λ = 3 to AES-192, and λ = 5 to
AES-256.
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Algorithm 2 Key Generation.
Require: BIKE parameters n, w, t, ℓ.
Ensure: Private key (h0, h1, σ) and public key h.

1: Generate (h0, h1) $← R2 both of odd weight |h0| = |h1| = w/2.
2: Generate σ

$← {0, 1}ℓ uniformly at random.
3: Compute h← h1h−1

0 .
4: return (h0, h1, σ) and h.

advantage of this choice is that both algorithms work on the same structure, i.e., Keccak.
Hence, in order to realize H, the SHAKE256 core generates random strings which are used to
determine the non-zero bit positions of the target polynomial. In case the sampled randomness
is larger than r, it is discarded to avoid any kind of bias. Additionally, if a position of the target
polynomial is sampled multiple times, the corresponding randomness is also rejected. This
procedure is called rejection sampling. For K and L, the SHA3-384 is used as hash-function
whereas the 384-bit hash value is truncated to 256 bits.

Just recently, Guo et al. presented an attack on the procedure of the rejection sampling used
for H [GHJ+22]. Since the input to H is a secret string m (m is used as seed for SHAKE256),
the attacker is able to gain information about m due to runtime differences. Therefore, the
exact definition of H was adapted again in order to achieve a constant-time implementation.
More precisely, the Fisher-Yates algorithm is used as proposed by Sendrier in [Sen21]. Since
these latest changes are not relevant for this thesis, we refer the interested reader to the full
specification of BIKE containing all recent modifications [ABB+22].

Key Generation. The formal definition of BIKE’s key generation is given in Algorithm 2. The
first step is to sample two secret polynomials h0 and h1 such that both consist of exactly w/2
non-zero coefficients. Additionally, a random bit string σ of ℓ bits is sampled. Together, both
polynomials and σ represent the secret key of BIKE. The public key is computed by multiplying
h1 with the inverse of h0.

Encapsulation. The encapsulation (cf. Algorithm 3) starts by sampling a random bit string
m of ℓ bits. The string is called message and is used as input to H, i.e., it is used as seed for
SHAKE256 as explained above. However, the output of H are two error polynomials e0 and
e1 which are required to have in sum a Hamming weight of t. The error polynomials are used
together with the public key h to compute the first part of the cryptogram C = (c0, c1). More
precisely, e1 is multiplied by h and added to e0. The second part of the cryptogram is computed
by adding (exclusive or) the message m to a hash derived by hashing e0, e1 using L. Eventually,
the shared secret key is derived by K using m and C as input.

Decapsulation. The core functionality of the decapsulation is to recover the intentionally
added error vector from the cryptogram. Therefore, the syndrome s is computed by multiplying
c0 with h0. Together with the secret key polynomials h0 and h1, all three polynomials are used
as input for a decoder which is described in the next section in more detail. However, the
decoder either returns two error polynomials e′

0 and e′
1 or indicates a failed decoding by ⊥. In

case the decoding succeeds, the determined error polynomials are hashed by L and the result is
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Algorithm 3 Encapsulation.
Require: Public key h.
Ensure: Encapsulated key K and ciphertext C = (c0, c1).

1: Generate m
$← {0, 1}ℓ uniformly at random.

2: Compute (e0, e1)← H(m).
3: Compute C = (c0, c1)← (e0 + e1h, m⊕ L(e0, e1)).
4: Compute K ← K(m, C).
5: return (C, K).

Algorithm 4 Decapsulation.
Require: Private key (h0, h1, σ) and ciphertext C = (c0, c1).
Ensure: Decapsulated key K.

1: Compute syndrome s← c0h0.
2: Compute {(e′

0, e′
1),⊥} ← decoder(s, h0, h1).

3: Compute m′ ← c1 ⊕ L(e′
0, e′

1).
4: if H(m′) ̸= (e′

0, e′
1) then

5: Compute K ← K(σ, C).
6: else
7: Compute K ← K(m′, C).
8: end if
9: return K.

added to c1 obtaining m′. In order to verify the correctness of the recovered error polynomials,
m′ is given to H and the resulting polynomials are compared to e′

0 and e′
1. If the polynomials

match, the same shared secret key as in the encapsulation can be derived using K with m′ and
C as input. If the polynomials do not match, K is invoked with σ and C as inputs.

4.3 Decoder
As briefly introduced above, the decapsulation of BIKE invokes a decoder (cf. Algorithm 4)
trying to recover the error vector sampled in the encapsulation process in order to recover the
message m. An efficient algorithm for this task has been presented in [DGK20c] and is called
Black-Gray-Flip decoder (cf. Algorithm 5). Since the submission to the third round of the NIST
PQC competition, the BGF decoder is included in the BIKE specifications. The decoder is an
iterative algorithm, running for NBIter iterations, taking (s, h0, h1) as input, and returning an
error vector e′ = (e′

0, e′
1) in case of a successful decoding or ⊥ when the decoding fails. Based

on the Hamming weight of the sum s + eHT, a threshold T is computed by

threshold(x) = max(⌊f0 · x + f1⌋, c) (4.1)

where f0, f1, and c are constants associated with the security level λ. The procedure BFIter
counts the UPC equations by invoking ctr (i.e., the Hamming weight of Hj · s where Hj is the
j-th column of the matrix H) and flips all bits in the error vector that were indicated by counter
values exceeding the threshold T (for more details about this procedure, please see Section 3.3).
Additionally, BFIter generates two lists – black and gray – which mark all positions where the
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Algorithm 5 Black-Gray-Flip Decoder [DGK20c, ABB+20b].
Require: H ∈ Fr×n

2 , s ∈ Fr
2

1: e← 0n

2: for i = 1 to NBIter do
3: T ← threshold

(∣∣∣s + eHT
∣∣∣)

4: e, black, gray ← BFIter
(
s + eHT, e, T, H

)
5: if i = 1 then
6: e← BFMIter

(
s + eHT, e, black, (d+1)/2+1, H

)
7: e← BFMIter

(
s + eHT, e, gray, (d+1)/2+1, H

)
8: end if
9: end for

10: if s = eHT then
11: return e
12: else
13: return ⊥
14: end if

15: procedure BFIter(s, e, T, H)
16: for j = 0 to n− 1 do
17: if ctr(H, s, j) ≥ T then
18: ej ← ej ⊕ 1
19: blackj ← 1
20: else if ctr(H, s, j) ≥ T − τ then
21: grayj ← 1
22: end if
23: end for
24: return e, black, gray
25: end procedure

26: procedure BFMIter(s, e, mask, T, H)
27: for j = 0 to n− 1 do
28: if ctr(H, s, j) ≥ T then
29: ej ← ej ⊕maskj

30: end if
31: end for
32: return e
33: end procedure

counter exceeds T or T − τ , respectively. In the first iteration of the decoder, these two lists
are used to adjust the error vector by applying the procedure BFMIter. All parameters used to
define the decoder are summarized in Table 4.1 for all three security levels.
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Chapter 5

Hardware Verification

In the previous chapters, we covered physical attacks and common countermeasures
for hardware implementations of cryptographic algorithms. Additionally, we intro-
duced practical evaluation techniques to quantify the security of side-channel counter-
measures. However, these methods are often very time-consuming and error-prone.
As a solution, formal verification can support a designer in the development cycle
of countermeasures against physical attacks. This requires to define appropriate ab-
stractions to model a digital hardware circuit in computer-aided verification tools.
These abstractions are covered in the first part of this chapter. Since we especially
use BDDs to perform verification of a target protection mechanism in this thesis, we
introduce their background in the second part of this chapter.

Contents of this Chapter

5.1 Circuit Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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5.1 Circuit Abstraction

The formal verification of security compliances of countermeasures against physical attacks
implemented on hardware platforms requires to transfer the underlying digital logic circuit into
an abstract model. To this end, a gate-level netlist describing a target digital logic circuit C
is the perfect basis to construct such a model. The circuit C realizes an arbitrary Boolean
function F : Fp

2 → Fq
2 with input size p ≥ 1 and output size q ≥ 1. At the lowest level, we

decompose the circuit C into atomic components, called gates, which can be further divided
into purely combinational gates and memory gates.

Definition 19 (Combinational Gate). A combinational gate gc is a physical component in a
digital logic circuit that evaluates its output as a pure (Boolean) function of the present inputs
only (without any dependency on the history of inputs).

In this work, we limit the set of Boolean functions implemented as combinational gates
by Gc = {not, and, nand, or, nor, xor, xnor}. We further distinguish between gates with fan-
in size one (unary gates) and size two (binary gates) leading to the sets Gu = {not} and
Gb = {and, nand, or, nor, xor, xnor} such that Gc = Gu ∪ Gb.
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Definition 20 (Memory Gate). A memory gate gm ∈ Gm is a physical, clock-synchronized
component in a digital logic circuit for which the output depends not only on the present inputs
but also on the history of previous inputs.

Memory gates store a single Boolean variable x ∈ F2 while we model them as clock-dependent
synchronization points. We suppose that a memory gate has only one output. Some standard
libraries make use of flip-flops with two complementary outputs. In such cases, the gate is
further decomposed to a sequential gate followed by a combinational gate not. Analogously to
the definition of combinational gates, we define the set Gm = {reg}.

Definition 21 (Randomness Gate). A randomness gate g ∈ Grand is a physical, clock-
synchronized component in a digital logic circuit C without inputs. For each clock cycle the
output is an independently and uniformly chosen random value.

Given that, we unite all valid gates in one set G = Gc ∪ Gm ∪ Grand to properly model a digital
logic circuit C as defined in Definition 22.

Definition 22 (Circuit Representation). A digital logic circuit C is modeled by a Direct Acyclic
Graph (DAG) formally described by D = {V, E}, with V the set of vertices and E the set of edges.
A single vertex v ∈ V represents a combinational or memory gate g ∈ G and a single edge e ∈ E
represents a wire connecting two vertices v1, v2 ∈ V and carrying a digital signal, modeled as an
element from the finite field F2.

Based on this definition, the model cannot handle circuits with loops, which is a common
practice in digital logic circuit designs1. Hence, to allow our model to handle such cases, the
circuit needs to be unrolled before it is translated to a DAG. By unrolling, we describe the
process of removing any cyclic loops and replacing them with acyclic structures. For example,
a cryptographic round-based implementation of an arbitrary block-cipher can be unrolled by
instantiating the round logic r-times connecting them separated by registers where r denotes
the number of rounds.

5.2 Binary Decision Diagrams
As introduced in the previous section, we model digital logic circuits representing Boolean
functions as DAGs. However, this model cannot be used efficiently to evaluate the exact output
values for specific – or even all – input assignments. For this purpose, Akers proposed Binary
Decision Diagrams in 1978 [Jr.78]. Later, Bryant showed that reduced and ordered BDDs
have a canonical representation [Bry86] which restored the attention of BDDs in the research
community.

Reduced Ordered Binary Decision Diagram. In general, BDDs can be represented by binary
decision trees as shown in Figure 5.1. More precisely, Figure 5.1 depicts the BDD for the
function F(x1, x2, x3) = x1 · x2 ⊕ x3 where the top node is called function node. The round
nodes labeled with the variable names x1, x2, and x3 are called internal nodes. The rectangular
nodes at the bottom are the terminal nodes of the BDD and can either be 1 or 0.

1By this, we do not refer to combinatorial loops which are not considered as a usual synchronous design
architecture.
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Figure 5.1: BDDs for the function F = x1 · x2 ⊕ x3.

Figure 5.1a shows a non-reduced BDD of the target function F which is evaluated by following
the solid arcs (also called then arc) if the corresponding variable is set to 1 and the dotted arcs
(also called else arc) if the variable is set to 0. The order of the BDD is given by the sequence
the nodes appear in the graph from top to bottom, i.e., for the example the order is given by
x1 < x2 < x3. For each level l with l ≥ 0, the BDD consists of 2l internal nodes.

The number of internal nodes can be reduced by generating the reduced BDD depicted in
Figure 5.1b. Note, we use the term BDD to refer to Reduced Ordered Binary Decision Diagrams
(ROBDDs).

ROBDD with Attributed Arcs. Implementations of BDD libraries can be optimized (e.g.,
reducing the memory requirements) by introducing complement arcs realized by attaching at-
tributes to the BDD’s arcs [Som99]. All arcs without any attached attributes are called regular
arcs. Hence, assuming we have given a function F, we can compute and represent the inverse
function G = F̄ by annotating the corresponding arc indicating that G is the complement of F.
To this end, using attributed arcs in BDDs allows to reduce the constant outputs (i.e., terminal
nodes) to just one single output (e.g., 1).

Formal Definition of BDDs. Given this more visualized description, we present a more formal
definition of BDDs in this paragraph based on the notations of Somenzi [Som99]. Therefore, we
start by recalling important definitions and theorems from Boolean algebra B with B = {0, 1}.
We denote conjunctions by ·, disjunctions by + and negations by x̄. We first define the cofactors
of a Boolean function F in Definition 23.

Definition 23 (Cofactors). Lef F(x1, ..., xn) be a Boolean function. Then

Fxi = F(x1, ..., xi−1, 1, xi+1, ...., xn)
Fx̄i = F(x1, ..., xi−1, 0, xi+1, ...., xn)

are the positive and negative cofactors of F with respect to xi.
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The cofactors of a Boolean function F can be used for Shannon’s expansion theorem as defined
in Theorem 1.

Theorem 1 (Shannon’s Expansion). Let F(x1, ..., xn) be a Boolean function. Then

F(x1, ..., xn) = x̄i · Fx̄i + xi · Fxi .

Shannon’s expansion theorem is one fundamental building block for defining BDDs which is
given below.

Definition 24 (Reduced Ordered Binary Decision Diagram [Som99]). A ROBDD represents a
vector of Boolean functions F̂ and is modeled as a DAG (V ∪F ∪{1}, E). The nodes of the DAG
are partitioned into three subsets. Internal nodes are described by V where each node v ∈ V has
an outdegree of two. Every node v has a label l(v) in the support of F̂. The function nodes
are denoted by F where each function F ∈ F has an outdegree of one and an indegree of zero.
Eventually, the set {1} denotes the terminal node 1 with outdegree zero. The function nodes are
in one-to-one correspondence with the components of F̂. The outgoing arcs of function nodes
F ∈ F may have the complement attribute. The two outgoing arcs for a node v ∈ V are labeled
T and E where the E arc may have the complement attribute. The notation (l(v), T (v), E(v))
is used to access an internal node v ∈ V and its two outgoing arcs. The variables in the support
of F̂ are ordered, i.e., if vj is a descendant of vi with vj , vi ∈ V, then l(vi) < l(vj). The function
vector F̂ represented by the BDD is defined by the following properties.

(1) The function of the terminal node is the constant function 1.

(2) The function of a regular arc is the function of the head node. The function of a comple-
ment arc is the complement of the function of the head node.

(3) The function of a node v ∈ V is given by l̄(v)FE + l(v)FT where FT and FE are the func-
tions for T (v) and E(v), respectively.

(4) The function of F ∈ F is the function of its outgoing arc.

As already mentioned above, BDDs are canonical in their representation.

Theorem 2 (Canonicity of BDDs). BDDs are canonical, i.e., the representation of a vector of
Boolean functions F̂ is unique for a given variable ordering, if:

(1) There are no distinct internal nodes v1 and v2 such that l(v1) = l(v2), T (v1) = T (v2), and
E(v1) = E(v2).

(2) For every node, FT ̸= FE.

(3) All internal nodes are descendants of some node in F .

The proof for Theorem 2 is given in [Som99]. However, all these properties allow efficient
manipulations of BDDs (applying Boolean operations) and to check a given Boolean function
F for satisfiability.
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Satisfiability Problem. If a variable assignment of a target Boolean function F evaluates to 1,
the assignment is called satisfying assignment. Checking a function for satisfiability is trivial
and can be accomplished in constant time on BDDs since it is sufficient to check the BDD
for constant 0. Another interesting problem is to count the number of satisfying assignments
which is especially important for this thesis in Part IV. For the example given in Figure 5.1,
F(x1, x2, x3) has four satisfying assignments. However, this result depends on the number of
variables influencing the function. For example, F(x1, x2, x3, x4) = x1 · x2 ⊕ x3 has eight valid
satisfying assignments.

We briefly outline an algorithm for computing the number of satisfying assignments based on
the description from [Som99]. For each node v ∈ V, the algorithm computes the number αv of
satisfying assignments for the Boolean function represented by v. The same holds for each arc
e ∈ E denoted by αe. Additionally, we assume that the number of variables is given by n. The
index of the function node is 0 while the index of the terminal node is n + 1. If the node v is
the terminal node, αv = 2n. When determining αe for an arc, we have to distinguish between
regular arcs and complement arcs. Assuming two nodes v, w ∈ V connected by a regular arc e,
αe = αw. If v and w are connected by a complement arc, αe = 2n − αw. To this end, for an
internal node v ∈ V holds

αv = αT + αE

2 .

Hence, the algorithm can be realized by a post-order traversal through the given BDD.
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Chapter 6

Orthogonal Concurrent Error Correction

Countermeasures against FIA and SCA attacks are often of different nature and
follow design principles that are not necessarily compatible, hence combining coun-
termeasures to resist both threats simultaneously is a challenging task and requires
a careful design to preclude mutual levering due to unexpected interplay.
The contribution in this chapter is twofold and based on joint work with Florian
Bache, Pascal Sadrich, and Tim Güneysu [RSBG20]. First, we present a novel or-
thogonal layout of linear ECCs to adjust classical Concurrent Error Detection (CED)
to an adversary model that assumes precisely induced single-bit faults which, with a
certain non-negligible probability, will affect adjacent bits. Second, we combine our
orthogonal error correction technique with a state-of-the-art SCA protection mecha-
nism to demonstrate resistance against both threats.
Eventually, using AES as a case study, our approach can correct entirely faulted
bytes while it does not exhibit detectable first-order side-channel leakage using 200
million power traces and TVLA as state-of-the-art leakage assessment methodology.
Furthermore, our hardware implementations reduce the area and resource consump-
tion by 14.9 % – 18.3 % for recent technology nodes (compared to a conventional CED
scheme).
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6.1 Introduction
Due to the advances in more cost-efficient equipment and more experienced adversaries, protec-
tion against FIA eventually started to gain more attention in recent years. Common approaches
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to increase protection against FIA mainly follow the concepts of (concurrent) error detection,
error correction, or recently proposed, infective computation [GST12]. In particular, CED based
on redundancy in time or area (often in terms of error detecting codes) has been researched
extensively and established as the main principle to design and implement FIA countermeasures.

In contrast, passive SCA analyzes the dependencies of processed sensitive information in
observable physical characteristics, e.g., power consumption [KJJ99] of the device that runs
the cryptographic implementation. As introduced in Section 2.1, an adversary might be able
to extract sensitive information from the device through statistical analysis of side-channel
measurements. Hence, due to the complexity of this approach, many attacks with different
capabilities and complexities have been proposed and as a consequence, a similar wide range of
countermeasure variations have been developed. In particular, masking (based on secret sharing
concepts) is a promising approach due to its sound theoretical foundation and examination.

However, since techniques to thwart SCA and FIA usually follow design strategies that often
are incompatible, combining both countermeasures in the same design is a challenging task. In
particular, ensuring that the interplay of both approaches does not reduce the security of the
device, requires careful implementations of the different mechanisms.

6.1.1 Contribution
Our contribution in this chapter is twofold: In a first step, we present an alternative approach to
enhance the correction capabilities of classical Concurrent Error Correction (CEC). In partic-
ular, we refrain from applying a traditional, word-oriented encoding to a cryptographic design
but choose an orthogonal pattern for the linear ECC instead. Benefiting from the fact that
each bit of one data word will be encoded by different code words, we can correct multiple and
adjacent bits of a single word which is not possible using a traditional layout. Assuming that
decreasing technology sizes pose a huge challenge to adversaries precisely injecting single-bit
faults and faulting adjacent bits becomes more likely, our approach will be at a clear advantage
over classical schemes demonstrated in a dedicated case study.

As a second step, we extend our design to validate our claims with respect to resistance
against SCA by modifying the basic architecture following the principles of Boolean masking.
This second case study then demonstrates the effectiveness of our new scheme in combination
with LMDPL as the SCA countermeasure of choice to resist both FIA and SCA. In particular,
we use state-of-the-art leakage assessment strategies based on TVLA to demonstrate that our
design does not exhibit detectable leakage using up to 200 million power measurements while
providing error correction capabilities at the same time.

6.1.2 Related Work
Since the introduction of DFA in 1997 [BS97], researchers aimed to improve fault-injection
attacks and countermeasures likewise [Gir04, AM11]. Using statistical methods under the as-
sumption of a non-uniform fault distribution, SFA [FJLT13] became a powerful tool to break
many cryptographic implementations. Dobraunig et al. recently proposed SIFA [DEK+18], a
combination of SFA with IFAs [Cla07] which has been presented as an attack that is capable
to break implementations even in the presence of sophisticated countermeasures against FIA.

With advancing attack techniques, new countermeasures were proposed at the same pace.
In [BCN+06], various methods reaching from simple duplication to more advanced schemes
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applying Multi Duplication with Comparison (MDC) structures have been presented. Since
simple duplication schemes are limited in security, recent publications deal with the more
sophisticated application of linear ECCs [SMG16, AMR+20, SRM20] or even non-linear ro-
bust codes [RNK19] to address more advanced adversary models. In addition, only a few
approaches [BKHL20, SJR+19, SRM20] are known to prevent successfully SIFA by changing
the fault distribution.

Research investigating the properties of combined countermeasures (against SCA and FIA)
gained more interest in recent years. To address this problem, Schneider et al. [SMG16] first
applied ECCs to TIs. Later, Reparaz et al. [RMB+18] used techniques from Multi-Party Com-
putation (MPC) to simultaneously implement protection against SCA and FIA. Recently, De
Meyer et al. [MAN+19] combined masking with Message Authentication Code (MAC) tags
originating from information theory to extend the protection against FIA.

6.2 Preliminaries

In the following section, we briefly introduce the considered adversary model and justify the
capabilities and limitations of this adversary. Afterwards, we recap the concept of CED.

6.2.1 Adversary Model

As introduced in Chapter 2, cryptographic implementations can be broken using various types of
side channels or precise fault injections [KJJ99, ADN+10, ZDCT13, SA02, RSDT13, CLFT14,
SBHS15]. Hence, in the case of side-channel attacks, we assume an adversary based on the
d-probing model (cf. Section 2.1.2).

Considering FIAs, not only precisely injected single-bit faults can be used to recover secret
information but instead many results also confirm that even arbitrarily injected faults can suc-
ceed to exploit such vulnerabilities [AM11, DEK+18, SJR+19]. Furthermore, common fault
injection techniques, e.g., using electromagnetic pulses or clock glitches, cause sampling faults
[DLM19, ADN+10]. Hence, such attack vectors do not tamper the combinatorial logic of a
digital circuit but rather disturb the sampling process of a flip-flop or decrease the clock pe-
riod leading to wrong values stored in the register cell. Additionally, considering continuously
shrinking geometry sizes for ICs, [SBHS15] investigates the precision of single-bit faults based on
laser fault injection. The findings show that precisely injecting faults into advanced technology
nodes is becoming more challenging, the smaller the geometry gets. In particular, the injection
of faults in register cells becomes highly dependent on adjacent cells and their current value. To
this end, we assume an adversary that is capable to precisely inject single-bit faults but with a
certain, non-negligible probability will affect and change adjacent and related cells (belonging
to the same part of the internal state). Moreover, since attack vectors like laser [SHS16] or
electromagnetic fault injections are not limited to a single laser or coil, we also consider cases
where an adversary has two synchronized lasers or coils available for precise fault injections at
two different locations or points in time. For these reasons, we follow the biased fault model
defined in [SMG16] using the biased distribution EBb

with the subsets

E1 = {e | e ∈ E ∧HW(e) ≤ b} with Pr[e ∈ E1] = 1
E2 = {e | e ∈ E ∧HW(e) > b} with Pr[e ∈ E2] = 0.

(6.1)
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Figure 6.1: Schematic concept of Concurrent Error Detection.

Here, E denotes the error variable and b the maximum number of faults injected in a defined
area represented by an error vector e. All possible error vectors in E1 are assumed to be equally
distributed.

Finally, we distinguish two different scenarios: (1) the adversary is able to inject b faults into
one single nibble or byte (e.g., using a single laser, an electromagnetic pulse, or clock glitches)
based on the fault distribution EBb

and (2) the adversary is able to inject b faults in up to two
different nibbles or bytes also following EBb

.

6.2.2 Principles of Concurrent Error Detection

Concurrent Error Detection (CED) is a generic concept that can be applied to any target
functions to achieve fault tolerance (i.e., a correct functionality even under fault occurrence).
In particular, CED allows to continuously monitor the execution of the target function and
detects all covered faults during operation.

Figure 6.1 outlines the main principle of CED based on spatial redundancy. A naive instanti-
ation of this principle uses duplication of the target function for the concurrent prediction with
FP instantiated as the identity function and the message passed unmodified to the prediction.
Comparing the output of target function and prediction then allows to detect any fault occur-
rence as a mismatch. Depending on the targeted security level, this scheme can be extended
beyond duplication by instantiating multiple functions in parallel or computing more complex
functions on FP , e.g., parity bits for parts or even the entire state [KKG03, BBK+03]. To this
end, a more sophisticated approach applies systematic linear codes still using an unmodified
target function but instead of duplication just processes the encoded part of the code for con-
current prediction. Also, if the code is chosen such that the minimum distance is dmin ≥ 3, the
capabilities of the code will be extended from detection to correction allowing to correct one (or
more) faults per code word and continue operation successfully (cf. Section 3.1).

Eventually, the complexity of the concurrent prediction depends on the target function and
the chosen code. In general, using linear ECCs, linear functions are easier to encode than
non-linear functions and in case choosing n = i · k with i ∈ N and i ≥ 2, it will be possible to
predict the output without knowledge of m. For more details, we refer the interested reader to
[AMR+20, SRM20].
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6.3 Design Concept

In this section, we first outline our basic design considerations and argue for our final code
selection before we discuss the application of linear ECCs and challenges when combining our
concept with SCA countermeasures.

6.3.1 Design Considerations

In general, our concept addresses efficiency (i.e., area and performance) and security of hardware
platforms while mostly disregarding software implementations.

Given our adversary model, we implement a correction mechanism for actively injected faults
instead of simple fault detection, since reliability and fault tolerance are important features of
modern cryptographic implementations. However, adequate coverage of expected faults (based
on the distribution in Equation 6.1) is only possible when revisiting the conventional application
of ECCs.

For classical encoding schemes, the correction within a single data word is limited by the
Hamming distance of the ECC and the parameter v introduced in Corollary 1. An adversary
injecting faults that affect adjacent bits (e.g., due to shrinking geometry sizes) rapidly exceeds
the correction capabilities of classical schemes. Since increasing the correction capabilities of
the ECC easily raises the costs to an unacceptable level, our novel orthogonal design approach
allows to keep the area footprint as small as possible.

Additionally, we do not only consider the protection against FIA but also address combined
resistance against fault injections and (power) side channels. Selecting appropriate masking
schemes for protection against SCA, in particular the transformation of non-linear sub-functions
becomes more challenging and more expensive. For this reason, we decided to focus on linear
and systematic codes instead of robust codes, as robust codes introduce additional non-linearity
which hampers the efficient implementation of mask-based protection mechanisms against SCA.

6.3.2 Code Criteria

The detection and correction capabilities eventually depends on the choice of the parameters n,
k, and dmin, while improved capabilities directly increase the area overhead in hardware. Hence,
it is essential to carefully consider the following steps for the final choice of the parameters to
balance capabilities and expenses:

1. Selection of k: For traditional schemes, k is often deduced from the word size within the
target function but following the orthogonal encoding scheme (cf. Section 6.4) also allows
other choices for k. In fact, k is only required to be a divisor of the state size to ensure
efficient, non-overlapping encodings using P , i.e., the encoding matrix of a systematic
code as defined in Definition 14.

2. Selection of n: To allow an independent data path for the redundancy r according to the
CED principle (cf. Section 6.2.2), the codeword length n should be selected such that
n = i · k with i ∈ N and i ≥ 2 where i determines the desired security level and the corre-
sponding implementation overhead.
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3. Selection of dmin: Given n, k, the selection of the generator matrix G should be made with
regard to maximize the minimal distance dmin.

4. Construction of G: Given n, k, dmin, the construction of the final generator matrix G should
be based on systematic codes with a non-singular part P . This ensures the efficient
inversion of internals at any point in time.

6.3.3 Correction

This section briefly describes the correction mechanism when using linear ECCs. We denote
a faulty message by m′ = m⊕ e1 and a faulty redundant part by r′ = r ⊕ e2, where e1 and e2
represent error vectors with HW(e1) + HW(e2) ≤ v to allow correction of the occurred faults.
To calculate the syndrome s, the faulty message and redundancy are concatenated to c′ = [m′ |
r′] inherently providing a concatenation of the error vectors as e = [e1 | e2]. Eventually, the
transposed syndrome is derived by

sT = H · c′T = H · (c⊕ e)T = H · eT. (6.2)

This formula points out that all possible errors are encoded by the parity check matrix H.
Additionally, since we are limited by the number of correctable errors due to the code parameter
dmin, the fault-free case and all syndromes with the corresponding faults can be perfectly stored
in a Look-Up Table (LUT) with S entries where

S = 1 +
v∑

i=1

(
n

i

)
(6.3)

Generally, for a valid code word c holds 0 = H · cT = H ·GT ·mT which implies H ·GT != 0.
Since we specified to use systematic codes, H can be simply set to H =

[
P T | In−k

]
. It turns

out that the calculation of the syndrome simplifies to an encoding of m′ by P T and a subsequent
addition (modulo two) with r′.

Additionally, the position of the correction modules in the target cipher should be well-
considered. First, a correction module should be placed before every non-linear function. If an
erroneous word is fed into a non-linearity, the error propagation will be hardly predictable and
could eventually prevent the correction. Second, the inputs of any function that combines code
words to produce a new code word should be fault free. Otherwise, faults from different sources
can be accumulated and a correction might become unfeasible.

6.3.4 Combination with SCA Countermeasures

In this section, we identify challenges and requirements that should be considered when com-
bining our technique with protection mechanisms against SCA.

Sequential logic: We assume faults occur with a higher probability in sequential logic (since
effective faults eventually manifest in registers). Hence, our approach focuses on the
protection of the data-dependent flip-flops whose number should be minimized for better
efficiency of the correction modules.
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Figure 6.2: Orthogonal encoding scheme showed exemplary for the first row.

Non-linear functions: Due to our rearranged scheme, all code words are generated from k bits
of different words and each non-linear function F : Fw 7→ Fw has to be combined with
a preceding decoding F−1

P and a succeeding encoding FP which introduces overhead with
every additional non-linear function between register stages.

Hardware primitives: Since our approach protects all data dependent registers, we cannot apply
countermeasures based on hardware primitives or macros without direct access to register
values (e.g., given for BRAM modules in modern FPGAs).

6.4 Case Study A: FIA Countermeasure
This section presents a practical case study using AES and discusses important features of our
hardware design.

6.4.1 Encoding Procedure
As mentioned in Section 6.3.2, our implementation is not restricted to the underlying functions
of AES, hence we choose k = 4 and encode the AES state matrix in an orthogonal orientation
to the state bytes. The encoding is performed on

[
Aj

i Aj
i+4 Aj

i+8 Aj
i+12

]
where Al denotes

a single byte and Aj
l a single bit of the corresponding byte with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7. As

an example, the encoding of the first row of the AES state matrix is shown in Figure 6.2. For
each row, the encoding scheme produces eight redundant nibbles rj which are processed by a
concurrent predictor. To this end, the approach requires 4 · 8 = 32 generators P in total to
encode the entire 128-bit state in parallel.

In contrast to our chosen encoding scheme applied to single bits out of the same row, it is
also conceivable to apply it to single bits out of the same column. Generally, this approach can
be realized with the same error coverage as for the introduced scheme based on a row-encoding.
However, since ShiftRows works on the AES state matrix’s rows, a column aligned design would
increase complexity and hence result in an increased area consumption.
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6.4.2 Code Selection

Given k = 4 and the fact that we opted for n = 2k, we performed an exhaustive search over all
potential matrices P that provide a minimum Hamming distance d = 4 and are invertible1. It
turns out that the matrix

P =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


and all 4! = 24 possible arrangements of these four rows and columns are the only matrices that
fulfill our requirements. However, because the above-stated matrix P is also self-inverse, we
decide to use it for our countermeasure as it simplifies the implementation process.

A direct consequence of choosing a self-inverse matrix P is that instead of using the parity
check matrix H =

[
P T | Ik

]
, we can apply the inverse of the transposed P to the redundant

part such that H can be adapted to H̃ =
[
Ik

∣∣∣∣ (P T
)−1

]
= [Ik | P ] = G while the syndrome

s is still zero ∀c ∈ C. As explained below, this method allows particular optimizations when
implementing the predicting module for SubBytes. Note, however, that a different LUT is
required to correct the corresponding faults although the fault coverage is left unaltered.

6.4.3 Concurrent Prediction

For concurrent prediction of the AES encryption using the orthogonal encoding scheme, all
sub-functions have to be reconsidered before application to the redundant part of the internal
state. In particular for the byte-oriented, non-linear sub-functions, application of the orthog-
onal encoding within the concurrent prediction becomes more challenging and requires careful
consideration.

Key Addition. Predicting the output of the key addition is straightforward and requires no
modification of the addition module, assuming that the round key encoding follows the same
orthogonal encoding principle as the state. Due to the linearity of the chosen code and the key
addition operation, the addition prediction can be performed concurrently on the redundancy
using the same addition operation (XOR).

Shifting of Rows. Fortunately, the predictor for ShiftRows also comes without any additional
costs mainly due to the inherent structure of the chosen code. All left-shifting of each particular
row can be applied independently of the remaining rows and performed bit-wise such that
each word

[
Aj

i Aj
i+4 Aj

i+8 Aj
i+12

]
can be considered independently. Hence, the successive

1We decided to choose a code with a minimum distance dmin = 4, since, in addition to the 1-bit error
correction, this also provides capabilities for 2-bit error detection.
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6.4 Case Study A: FIA Countermeasure

operations of decoding, left-shifting, and encoding given as P ◦ LS ◦ P −1 can be combined into
a single operation. In particular, given the previously chosen P eventually leads to

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 ·


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ·


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


which can be implemented as simple right-shifting of each particular row (instead of the original
left-shifting).

Byte Substitution. Applying a conventional encoding scheme to SubBytes could be realized
by merging the preceding decoding step with the actual execution of the substitution and a
subsequent encoding into an adapted S-box. Assuming an implementation of SubBytes as LUT,
both realizations would require the same hardware resources. However, in the case of our applied
orthogonal encoding scheme, we are not able to merge these three steps into one recomputed
LUT as every S-box input depends on eight different codewords. Instead, we can optimize our
implementation by adapting the preceding correction module using H̃ (cf. Section 6.4.2) such
that the inputs to our modified substitution layer are already decoded during the correction
process. Hence, no dedicated initial decoding is required and the adapted module just contains
the original S-box and a successive orthogonal encoding.

Mixing of Columns. For a conventional encoding scheme GP the predictor of MixColumn would
be realized by a preceding decoding of the redundancy r and re-encoding after executing the
actual operation as depicted in Equation 6.4.

MC ′ = G
(
MC

(
G−1

P (r)
))

(6.4)

Obviously, these three operations do not have to be performed separately but rather can be
merged into one modified MixColumn MC ′. This would reduce additional hardware costs but
still exceed the resources compared to an unmodified implementation.

However, our proposed encoding scheme does not require any modifications of MixColumn
to predict the output and can be used unaltered. This benefit comes from the fact that
FP (MC (A)) = MC (FP (A)) holds for the applied orthogonal encoding function FP and any
arbitrary P . Each bit of a single byte is multiplied by the same bit of the encoding matrix P
and it does not matter if the multiplication happens before or after a multiplication in GF

(
28).

6.4.4 Implementation Overview

Figure 6.3 shows a schematic overview of our proposed implementation. The left part represents
the encryption path and is left unaltered compared to a parallel, round-based implementation of
AES (except for the inserted correction module). We decided to use a two-stage pipeline version
to correct faults before SubBytes and MixColumn to prevent undesired fault propagation (cf.
Section 6.3.3).

The right part represents the prediction circuit where the plaintext is initially transformed
by P to provide the redundant parts of the code words. As mentioned before, the execution of
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Figure 6.3: Schematic overview of our proposed scheme.

the key addition requires another encoding module to encode the corresponding round key prior
to the addition. The predicting sub-function of SubBytes SB′ contains the original AES S-box
followed by an encoding matrix P as explained in Section 6.4.3. As a first step of the diffusion
layer, the SR′ module predicts the ShiftRows operation performing right-shifting instead of left-
shifting as explained in Section 6.4.3. Before the second step of the diffusion layer prediction
is performed using an unaltered MixColumns module, the intermediate result of the ShiftRows
prediction is buffered in a register stage and used for the correction inside the shared correction
module.

Also, we would like to emphasize that Figure 6.3 only shows an implementation with a single
and shared correction module in the data path. In general, this strategy provides a realization
with a smaller area overhead but reduced throughput. A doubling of the throughput can be
achieved when spending more area and implementing two independent correction modules, one
per register stage (located at the outputs of the registers) as the design allows pipelining.

6.4.5 Correction Module
Above, we mentioned that the decoding step before applying SubBytes can be merged with
the operations in the correction module by modifying the correction process from Section 6.3.3
using H̃ as parity check matrix. In case of implementing our approach using only one correction
module, it would be desirable to apply the same LUT for correcting faults after AddKey and
ShiftRows in order to keep the footprint low. To this end, the decoding is done by multiplying
the redundancy rin with P as explained above and depicted in Figure 6.4. To determine the
corresponding error vector e = [e1 | e2], the input data min and decoded redundancy r̃in = P ·rin
are added and afterwards fed into the LUT. The correction in the encryption path can be
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Figure 6.4: Improved correction module to lower costs for SB.

accomplished by adding the first part of the error vector e1 to min. For the redundancy we
consider three cases:

(1) The correction is done after AddKey such that the outputs mout and rout serve as inputs
to SubBytes and a fault has not occurred in the redundant path (FAULTY R = 0 and
CORRECT SB = 1)

(2) The correction is done after AddKey such that the outputs mout and rout serve as inputs to
SubBytes and a fault occurred in the redundant path (FAULTY R = 1 and CORRECT SB = 1)

(3) The correction is done after ShiftRows such that the outputs mout and rout serve as inputs
to MixColumns (FAULTY R = X and CORRECT SB = 0)

While CORRECT SB can be easily determined by tracking the current position of valid data in
the algorithm flow, FAULTY R is only true if the error vector e2 is non-zero. In case, both control
signals are in a true state, a fault occurred in the redundant path and the corrected output
should be returned for processing in SubBytes. Hence, the already decoded redundant input
needs to be corrected and fed to the output to get rid of the decoding module before applying
the substitution. As the LUT is generated for correcting faults on the input data min and rin,
the actual error vector e2 has to be transformed so that it can be used to correct faults on the
decoded redundant data. Due to the advantageously chosen matrix P , this transformation can
be realized by reversing and subsequently negating e2 as for all one-bit error-vectors eone the
matrix P ′ describes a flip of every bit (cf. Equation 6.5).

ēone = P −1 · eone =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 · eone =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


︸ ︷︷ ︸

P ′

·


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


︸ ︷︷ ︸

P ′′

·eone (6.5)

Finally, the reversed and negated error vector ē2 can be added to the decoded redundancy
r̃in and afterwards can be used in SubBytes in the redundant path.

In case no fault occurred in the redundant path, e2 is the zero-vector and the decoded redun-
dancy is released to the output rout. The case where CORRECT SB is zero can be easily covered
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Figure 6.5: Combined protection of SB against SCA and FIA.

without using the output of the multiplexer controlled by FAULTY R as shown in Figure 6.4.
The error vector e2 is directly routed to an XOR-operation adding a zero-vector in case no fault
occurred or removing an error in rin in case e2 is non-zero.

6.5 Case Study B: Combined Protection
We now extend our approach by adding a countermeasure against SCA. Before we describe the
combined design, we briefly justify the selection of the chosen masking scheme.

6.5.1 Countermeasure Selection

In Section 6.3.4 we defined three requirements for an efficient combination of our proposed
orthogonal encoding scheme with a countermeasure against SCA. Based on this list, we decided
to implement the LMDPL scheme from [LMW14, SBHM20]. LMDPL is a masking technique
which was specially designed to avoid glitches and early propagation. The implementation is
realized on gate-level such that each elementary gate of a target function can be replaced by
a protected gate. Therefore, the structure of a cipher can be left unaltered and non-linear
functions do not have to be separated by several pipelining stages. This perfectly matches our
first and second requirements avoiding additional register stages and additional non-linearities.
Furthermore, LMDPL requires registers around a non-linear function F to allow precharging
its combinatorial logic. Since our design already includes a pipeline stage before and after
SubBytes, LMDPL seems to be a natural fit. Finally, LMDPL is a generic approach and
does not require any platform-specific primitives (e.g., BRAM in FPGAs) which meets our last
requirement. All register outputs are directly accessible and can be routed through a correction
module introduced in Section 6.4.5. Even though LMDPL does not allow to use pipelining, we
decided to avoid the routing to the correction module through the multiplexers (cf. Figure 6.3)
and instantiated two correction modules right after both register stages.

6.5.2 Combined Approach

Since LMDPL is based on masking, both the encryption and the redundant path have to be
modified and split into masked shares to protect our proposed FIA countermeasure against
SCA. Figure 6.5 shows the realization of SubBytes as it is the most interesting part and the
only part equipped with dual-rail logic. All in all, we get a design with four different data
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paths. The leftmost one processes the intermediate results of the data share while the path
right beside generates new table values from z. To generate updated table values for all 16
S-boxes in parallel, the design requires 576 bit fresh randomness every two clock cycles provided
by a Pseudorandom Number Generator (PRNG) based on Keccak [BDPA13]. Like the mask
z this randomness is reused in the redundant part containing our proposed scheme. Both
the data and the mask shares are protected against FIA by the rightmost module and the
second rightmost, respectively. To avoid any demasking in the correction process, each share is
corrected separately on the masked data.

One important key feature of LMDPL is the precharge phase of combinatorial logic placed
in the S-boxes. In the original work, this precharge phase is realized by resetting the input
and table registers such that all gates and signals will be forced to zero. However, our orthog-
onal encoding scheme includes corrections modules right after every data-dependent register.
Even if our design would reset these registers, this would still result in glitches due to the opti-
mized correction module. Hence, we realized the precharge phase by a multiplexer which either
precharges the LMDPL logic with zeros or forwards the current state. To avoid any glitches and
ensure that all input signals to the multiplexer are settled, we triggered the precharge signal
by the falling edge of the clock. Furthermore, this modification allows us to remove the high
amount of registers storing the table values. The mask share is now synchronized with the data
share and the computed table values can be used in the same clock cycle at the falling edge
of the clock. For a more optimized implementation regarding the critical path a second clock
domain (e.g., a faster or phase-shifted clock) could be used instead.

6.6 Evaluation

In this section, we present and discuss the implementation results for FPGAs and ASICs.
Moreover, we compare our approach to related work.

6.6.1 FPGA Implementation

For comparison reasons, we first implemented a countermeasure using linear ECCs arranged in
a conventional way as we are not aware of any works that applied linear codes to AES (using
a 20 nm Xilinx Kintex UltraScale FPGA). We opted for a [16, 8, 5]-code2 to align the word size
of k = 8 in AES with the generator input width. For both, the conventional and orthogonal
CED, we implemented two variants optimized for either area (single correction module) or
throughput (two correction modules). Note that we considered the Independence Property from
[AMR+20, SRM20] for all our implementations.

Using one correction module, our approach outperforms the conventional countermeasure by
18.3 % in terms of CLB resources (as shown in Table 6.1) since the orthogonal arrangement
allows to reuse MixColumn and the area for the LUTs to correct occurring faults is considerably
smaller. Similarly, when adding a second correction module, the required CLBs for our novel
design is decreased by 35.3 % compared to the conventional approach.

2Such a code can be found in the appendix of [BCC+14].
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Table 6.1: FPGA implementation results (xcku035).

Resources Performance
Logic Memory Area Frequency Throughput

LUT FF CLB MHz MB/s

Reference AES Implementation
Round-Based 1 388 271 253 454.5 559.4

Classical CED with Correction
One Correction Module 4 533 659 714 259.7 180.7
Two Correction Modules 5 756 659 911 303 404

Orthogonal CED with Correction (OCEC)
One Correction Module 3 532 659 583 277.8 193.2
Two Correction Modules 3 717 659 589 339 452

Combined Approach
LMDPL + OCEC 31 141 1 177 4 290 46.1 32.1

6.6.2 ASIC Implementation

Table 6.2 provides ASIC results for three different libraries. We started our synthesis with the
Open Cell Nangate 15 nm library3, but we also provide implementation results for Nangate
45 nm and UMC 90 nm libraries.

Again, our approach outperforms the conventional CED scheme by 14.9 % using the NGate15
library and one correction module. For two correction modules, we highlight two interesting
points. First, in the 45 nm technology the area decreases slightly compared to the design using
one correction module (due to better optimization during synthesis) while providing higher
throughput due to pipelining. Second, the gap between the footprints of a conventional encoding
and our proposed orthogonal scheme significantly increases.

6.6.3 Comparison to Previous Work

In Table 6.3 we compare our approach to already existing countermeasures. Starting in 2002,
Karri et al. proposed a countermeasure against FIA for AES which is based on the inverse
operations of the encryption algorithm [KWMK02]. In 2004, Bertoni et al. suggested to use
parity schemes to detect faults [BBKM04]. Although these countermeasures come with small
additional implementation costs regarding the area overhead, they do not provide an appropriate
security level.

Compared to [SMG16] and [MAN+19] our design comes with roughly the same area overhead
on a modern Xilinx UltraScale FPGA. In the 45 nm technology, our approach requires slightly
less hardware resources. However, both approaches rely on fault detection and withhold the
faulty ciphertext or perform an infective computation, respectively. Hence, all aforementioned
types of countermeasures can be broken by SIFA as shown in [DEK+18].

3www.silvaco.com/products/nangate/FreePDK15_Open_Cell_Library/index.html
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Table 6.2: ASIC implementation results.

NGate15 NGate45 UMC90
Area Freq. T’put Area Freq. T’put Area Freq. T’put

kGE MHz MB/s kGE MHz MB/s kGE MHz MB/s

Reference AES Implementation
Round-Based 15.5 4 016 4 943 14.2 870 1 070 14.7 290 357

Classical CED with Correction
One Corr. Module 39.9 2 360 1 642 36.2 490 341 37.1 137 96
Two Corr. Modules 46.7 3 416 4 555 42.4 625 833 44.2 191 255

Orthogonal CED with Correction (OCEC)
One Corr. Module 33.9 1 634 1 137 31.4 543 378 31.8 160 111
Two Corr. Modules 34.2 3 417 4 556 31.2 787 1 050 32.5 260 346

Combined Approach
LMDPL + OCEC 112.8 180 125 101.7 128 89 104.1 100 70

Only [BKHL20] and [SJR+19] provide security against SIFA. The former approach relies on
modular redundancy and comes with a huge area overhead which was, however, not explicitly
evaluated. The later work considers a combination of a transform-and-encode strategy while
the encoding is realized by linear ECCs. Unfortunately, no target platform and no overhead
were provided.

6.7 Security Evaluation

In this section, we first discuss the fault coverage of our proposed scheme and compare it
with the coverage of conventional encoding (i.e., applying a [16, 8, 5]-code aligned to bytes) and
Triple Modular Redundancy (TMR). Afterwards, we evaluate the resistance of our combined
countermeasures against SCA.

6.7.1 Fault Coverage

To evaluate the resilience against FIA, we consider the adversary model defined in Section 6.2.1.
Generally, the fault coverage of an arbitrary protection scheme is determined by Equation 6.6
where Fnot denotes the number of faults that cannot be corrected by a target countermeasure
and Ftot the total number of possible faults.

C(b) = 1− Fnot
Ftot

(6.6)

Furthermore, we do not distinguish between faults occurring in the encryption part or in the
redundant part.
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Table 6.3: Comparison to other countermeasures against FIA.
Approach Cipher Target Platform Area Overhead Correction

Karri et al. [KWMK02] AESa Xilinx XCV1000BG 20.97 % NO
AESb Xilinx XCV1000BG 18.90 % NO
AESc Xilinx XCV1000BG 38.08 % NO

Bertoni et al. [BBKM04] AES STMicro 0.18 µm 18.00 % NO

Schneider et al. [SMG16] LED UMC 0.18 µm 156 % NO

De Meyer et al. [MAN+19] AES NGate 45 nm 153 % NO

Breier et al. [BKHL20] GIFT-64i – > 200 % YES
GIFT-64ii – > 400 % YES

Saha et al. [SJR+19] Present – N/A YES

This Work AES UltraScale xcku035 154 % YES
This Work AES NGate 45 nm 119 % YES

a Algorithm level. b Round level. c Operation level. i Single-Bit faults. ii Double-Bit faults.

Fault Coverage assuming Faults in one Byte

Initially, we discuss the first scenario where an attacker injects faults into one single byte
following a biased distribution EBb

(see Figure 6.6a). Our approach and a TMR based scheme
can correct every possible fault. Our approach uses a [8, 4, 4]-code and is able to recover one
entire faulty byte due to the orthogonal layout. TMR corrects any faults that occur in just
one of the copies such that a coverage of 100 % is achieved (i.e., Fnot = 0). Implementing
a conventional encoding scheme for AES, leads to a decreased coverage for b ≥ 3 since the
underlying [16, 8, 5]-code is only capable of correcting up to two faults. Following Equation 6.6,
the fault coverage Cconv(b) is defined by

Cconv(b) = 1−
∑b

i=3
(8

i

)∑b
i=1

(8
i

) .
Fault Coverage assuming Faults in two Bytes

Considering the second scenario of our adversary model, where an attacker is assumed to inject
faults into up to two different bytes following EBb

, we again make use of Equation 6.6. To
determine the total number of possible faults Ftot(b), we used Equation 6.7 where R denotes
the number of bytes that can be targeted by an attacker.

Ftot(b, R) =
b∑

i=3

[((
2 · 8

b

)
− 2

(
8
b

))
·
(

R

2

)
+ R

(
8
b

)]
+

2∑
i=1

(
8 ·R

i

)
(6.7)

Without loss of generality, we considered only one row of the AES state matrix and its corre-
sponding redundancy. To this end, the number of attackable bytes R results in R = 8 for our
approach and the conventional encoding scheme and in R = 12 for TMR as the scheme requires
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Figure 6.6: Fault coverage compared to a conventional encoding and to TMR.

two copies of the original design. If b ≤ 2, the number of faults can be determined by the second
summand as only two bytes can be targeted and the faults are uniformly distributed over the
attackable area. In case b > 2 the first summand has to be taken into account as well. By using
the first binomial coefficient

(2·8
b

)
, we determine the number of different faults with b flipped

bits within two bytes. As we would like to calculate all combinations of such faults in an entire
row, we multiply it by

(R
2
)
. However, before multiplying, we subtract 2

(8
b

)
possible faults to

exclude all cases where all bit flips b occur in one single byte which otherwise would be counted
several times. These cases are added just once by R

(8
b

)
.

The number of uncorrectable faults Fnot for all three cases was determined by a simulation.
We iterated over all possible error vectors combined by two bytes x and y and bounded by
b which results in

(16
b

)
possibilities. Since all approaches are based on different correction

capabilities, we distinguished between these cases.

(1) Our Approach For each possibility where HW(x⊙ y) > 0 we found a fault that cannot
be corrected since two bit flips occurred in the same codeword (⊙ denotes a bitwise and).
This method gives us all possible faults that cannot be corrected considering just two
bytes. To cover all cases for the entire row, we multiply the result by

(8
2
)
.

(2) Conventional Encoding For each possibility where HW(x) > 2∨HW(y) > 2, we found
a fault that cannot be corrected since more than two bit flips occurred in one codeword.
To cover all cases for the entire row, we multiply the result by

(8
2
)

as above.

(3) TMR For each possibility where HW(x) ≥ 1 ∧ HW(y) ≥ 1 we found 4 · 8 + 4 · 4 = 48
faults that cannot be corrected since they occurred in more than one instantiation. No
final multiplication is required.

The resulting fault coverages are given in Figure 6.6b. In case b = 1, all three approaches
achieve 100 % fault coverage. For b = 2, the coverage for TMR rapidly drops below 35 % as
faults only can be corrected when they occur in the same instantiation. While the conventional
encoding scheme still provides 100 % security (since dmin = 5), the correction capability of our
design decreases to 89.23 %. Assuming up to three faults, our approach and the conventional
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Figure 6.7: 1st-Order results of the unprotected design (10 000 traces).

encoding provide similar results whereas our approach performs slightly worse. From there on,
our approach outperforms the conventional encoding. TMR performs worse than the orthogonal
for b ≤ 6 method but has a better fault coverage for b ≥ 7.

6.7.2 Side-Channel Analysis Evaluation

We applied the non-specific fixed-vs-random approach presented in [SM15] to evaluate the side-
channel security of our proposal. To identify quantifiable lower and upper bounds for the leak-
age, we further employed the confidence-interval framework from [BPG18] where all confidence
intervals are calculated for a family-wise error rate corrected significance level α = 0.01.

Our implementation was instantiated on a Sakura-X side-channel evaluation board where the
target was supplied with a 4 MHz clock and the current was measured indirectly via the voltage
drop over a shunt in the supply path (with a 20 dB low-noise amplifier) using a 8 bit oscilloscope
at a sample rate of 1.25 GS/s.

For reference, the result of the first-order evaluation of an unprotected version is shown in
Figure 6.7 using only 10 000 traces. As expected, the non-zero lower bound clearly indicates
detectable leakage.

The first-order evaluation of the protected design is depicted in Figure 6.8a and the lower
bound of zero for every sample indicates that our evaluation was not able to detect first-
order leakage. If there is some (undetectable) leakage, the absolute difference in means for the
measurements is lower than 0.003 LSB. The second-order evaluation is shown in Figure 6.8b
and confirms the detection of expected (albeit small) second-order leakage. For at least one
sample point the absolute difference in variances is 0.027 LSB2 while there is no difference above
0.033 LSB2 for any sample. The third-order evaluation in Figure 6.8c shows results similar to the
second-order case, but the influence of noise increases exponentially in the attack and evaluation
order [CJRR99], hence the confidence intervals are not as tight as in the previous case.

For reference, Figure 6.9a shows a sample trace of the power consumption of our implementa-
tion with enabled SCA countermeasures. Furthermore, Figure 6.9 also provides the evaluation
results of the same collected data as analyzed before using Welsh’s t-test. The threshold of
tth = 4.93 is adjusted for family-wise error rate at a total significance of α = 0.01. An un-
protected design shows clear leakage using only 10 000 traces as shown in Figure 6.9b. Our
protected implementation exhibits no first-order leakage even when 200 million traces are used
in the evaluation. Figure 6.9d and Figure 6.9e show the second- and third-order t-test results
respectively. As expected, some leakage can be detected.
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(a) 1st-Order results of the SCA protected design.
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(b) 2nd-Order results of the SCA protected design.
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(c) 3rd-Order results of the SCA protected design.

Figure 6.8: Confidence intervals for α = 0.01 and 200 million traces. Lower bounds in red,
upper bounds in blue.

6.8 Conclusion
Revisiting Concurrent Error Detection, we presented a novel approach to use ECC for protection
against active FIA. Arranging ECCs in an orthogonal pattern, we are able to correct adjacent
bits of internal values using simple linear codes. Using a case study based on AES, we show
that our approach is up to 35.3 % smaller in terms of area compared to classical arrangements
while providing better fault coverage for the considered adversary model. Our second case study
shows that our approach combines efficiently with state-of-the-art masking countermeasures to
extend the protection even against passive side-channel analysis. Through practical evaluation
using 200 million power traces, we validated the security of our design against first-order SCA
using a state-of-the-art leakage assessment methodology.
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Figure 6.9: Non-specific t-test results for α = 0.01. t-values are solid blue, the significance
threshold is red.

62



Chapter 7

Improved Side-Channel Resistance by Dynamic
Fault-Injection Countermeasures

The combined protection against SCA and FIA is currently an open line of research.
A promising countermeasure with acceptable implementation overhead appears to be
a mix of first-order secure Threshold Implementations and linear Error-Correcting
Codes.
In this chapter, we employ for the first time the inherent structure of non-systematic
codes as fault countermeasure which dynamically mutates the applied generator ma-
trices to achieve a higher-order side-channel and fault-protected design. As a case
study, we apply our scheme to the PRESENT block cipher that does not show
any higher-order side-channel leakage after measuring 150 million power traces.
All contributions presented in this chapter are part of a joint work with Tim
Güneysu [RG20].
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7.1 Introduction
Over the last years, a plethora of countermeasures has been proposed against SCA and FIA.
Promising techniques to specifically counteract SCA can be divided into hiding and masking.
While countermeasures based on hiding try to decrease the SNR in order to harden the extrac-
tion of usable information (e.g., from power traces), masking is based on secret sharing and
multi-party computations. TI belongs to this type of SCA countermeasure and was originally
designed to provide provable first-order security [NRR06]. However, the principle of TI can be
extended ensuring also higher-order protection [RBN+15, CBR+15] but with a drawback of an
unacceptable implementation overhead [MW15].

63



Chapter 7 Dynamic Fault-Injection Countermeasures

Countermeasures designed to resist FIA are often based on detection schemes that either with-
hold a faulty computation [KKG03, AMR+20] or perform an infective computation hampering
an attacker to obtain any exploitable information from the outputs [GST12, MAN+19]. How-
ever, recently Dobraunig et al. demonstrated that these kinds of countermeasures can be broken
by using a statistical analysis method called SIFA [DEK+18]. Therefore, linear ECCs seem to
be a promising method to provide resilient protection against fault injections as they can also
be used to correct occurred faults which would thwart SIFA based attacks [SJR+19, SRM20].

7.1.1 Realated Work

Despite the wealth of countermeasures treating SCA and FIA as a separate problem, only few
works target the combined setting. In 2016, Schneider et al. [SMG16] used two already existing
countermeasures (TI and linear ECCs), which separately resist SCA and FIA respectively, and
combined the two techniques into one protected design. The resulting implementation provides
first-order security against SCA including protection against fault injections. However, extend-
ing the TI to resist higher-order SCA would increase the implementation costs significantly
and would be impracticable in a real-world environment. In the following years, Reparaz et al.
[RMB+18] proposed a concept inspired by MPC protocols that achieved protection against SCA
and FIA. De Meyer et al. [MAN+19] discuss a technique based on masking schemes while the
resistance against FIA is achieved by adding MAC tags incorporating an information theoretic
approach to the design. All proposals, however, share the unfavorable property of excessive
costs in time and/or area in case protection against higher-order attacks should be considered
as well.

7.1.2 Contribution

In this work, we present an alternative strategy to design a combined countermeasure against
SCA and FIA that is suitable to achieve higher-order protection at reasonable cost. Therefore,
we revisit existing solutions that successfully combine first-order secure masking schemes with
hiding techniques, such as [SMG15, SMG17]. One strategy in this regard is to exploit the
composition of small S-boxes into affine equivalences in order to replace the affine functions
on the fly. This reconfiguration technique introduces additional randomness into a running
encryption process and hides higher-order leakage. This can be further improved by encoding
the cipher’s state with randomly selected functions resulting in hiding the higher-order leakage
in the introduced noise of the encoding scheme. The latter approach is inspired by the idea
behind White-Box Cryptography.

Based on the observations from previous works, we now come up with the following original
strategy: we compose a first-order secure TI with a randomization technique based on linear
ECCs that augments our fault-injection protection with additional noise. In contrast to previous
works, we do not rely on systematic codes here but rather explicitly pick generators producing
non-systematic codes. These generators are dynamically evolved during runtime in order to
hide higher-order leakage as a hiding countermeasure. As shown in our work, we finally achieve
a combined hardware countermeasure that successfully resists higher-order side-channel and
fault-injection attacks at very reasonable implementation costs.
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7.2 Preliminaries
As motivated in the introduction, the presented approach is based on a first-order secure masking
technique, more precisely on TI, and on linear ECCs to achieve resilience against FIA. In
Section 2.1.4 we introduce the concept of TI while Section 3.1 presents background about linear
ECCs. In this section, we briefly cover important notations from linear algebra by following
definitions from [BV18].

Lemma 1. The determinant of a quadratic matrix A is non-zero if and only if A−1 exists.

Lemma 2. If two matrices A and B are invertible the product A ·B is invertible as well and
the product’s inverse is calculated by

(A ·B)−1 = B−1 ·A−1.

Definition 25. A quadratic k × k matrix Q is called an orthogonal matrix if and only if

QT = Q−1

and the columns are unit vectors.

This includes that Q ·QT = QT ·Q = Ik holds for all orthogonal matrices.

Definition 26. A quadratic k × k matrix P is called a permutation matrix if and only if one
entry per row and column is one and the rest is zero.

Thus, due to Definition 25, each permutation matrix is also an orthogonal matrix. Note,
however, that not every orthogonal matrix is a permutation matrix.

7.3 Methodology
This section describes our general design considerations and defines our adversary model. Based
on this information, we introduce our generic principle and describe our implementation strat-
egy. Eventually, we deduce suitable codes for lightweight ciphers.

7.3.1 General Considerations
We now introduce our combined countermeasure that aims to resist both side-channel attacks
and fault-injection attacks. The fundamental (first-order-only) concept is inspired by [SMG16]
and relies on a design which combines TI and linear ECCs. As evaluated in [AMR+20, SRM20],
linear ECCs provide terrific properties protecting cryptographic implementations on hardware
against fault-injection attacks. However, instantiating first-order secure TI as only counter-
measure against SCA, higher-order attacks can be still successfully applied to the combined
countermeasure. Note that the ideas of TI can generally be extended to higher orders at – un-
fortunately – significant costs [MW15]. To provide higher-order protection against SCA without
excessive cost overhead, we therefore utilize the existing properties provided by linear ECCs in
a continuous randomized update process as hiding countermeasure.

We select FPGAs as target platforms for our case-study. They inherently provide a perfect
environment for implementing reconfigurable systems realizing the dynamic exchange of the
ECCs.
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Figure 7.1: Generic principle of protecting a target cipher C.

7.3.2 Adversary Model

First, we assume an attacker that characterizes a target device by acquiring the power consump-
tion or the electro-magnetic radiation. Here, we follow the well-known d-probing model where
an implementation is assumed to be secure under a d-order attack [ISW03]. Furthermore, our
adversary model includes glitches which will be considered in our security evaluation. For more
information, please see Section 2.1.2.

Second, we assume an adversary that additionally is able to inject faults into the target
implementation. We model occurring faults by additive errors and instead of assuming an
uniform error distribution, we follow the biased fault distribution EBb

from [SMG16] where the
attacker can inject up to b faults into a target codeword c. This approach considers biased
fault injections which seems to be more realistic considering an attacker trying to recover a
cryptographic secret. In this work, we only consider faults occurring in the data depended path
of the design since this kind of faults are more important regarding the design of countermeasures
thwarting physical attacks.

7.3.3 Design Strategy

As introduced before, we employ a first-order secure TI combined with linear ECCs as funda-
mental building block. Inspired by previous work [SMG16], we decided to choose n = 2 · k such
that each word of k bits is separately encoded by a generator matrix G. However, instead of
relying on systematic linear error codes – as it was mainly done in the past (e.g., in [AMR+20])
– we explicitly want to apply non-systematic codes. By dynamically exchanging the applied lin-
ear codes, we generate additional algorithmic noise in order to hide any exploitable higher-order
side-channel leakage given the presence of a provably-secure first-order secure masking scheme.
This way, we achieve an increased security level exploiting the already existing properties of the
FIA countermeasure, i.e., of the underlying ECC.

The fundamental principle of our approach is depicted in Figure 7.1 and expects a shared
input p with s-shares. Due to the selected parameters for the linear ECCs (n = 2 · k), the
target cipher C is duplicated, and a redundancy is created processing the same input data as
the original cipher. However, since we apply non-systematic codes to the target cipher C, both
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instantiations have to be adapted in order to process the encoded states. Generally, each word
m of k bits of the cipher’s state is encoded by a generator matrix G = [G1 | G2]. To ensure
the maximum possible security level against FIA, the selection of a code should be made with
regard to maximizing the minimum distance dmin. Given a subfunction F of the target cipher
C and i ∈ {1, 2}, each subfunction Fi of the cipher’s instantiation Ci has to be adapted so that

Fi = Gi ◦ F ◦G−1
i (7.1)

holds. Equation 7.1 also reveals another important requirement to the generator matrix G: the
sub-matrices G1 and G2 have to be non-singular in order to calculate their inverses G−1

1 and
G−1

2 , respectively.
The protection against higher-order side-channel attacks should be achieved by dynamically

exchanging the linear ECC, i.e., the generator matrix G and therewith the sub-matrices G1 and
G2. This task is accomplished by a reconfiguration controller which adapts on the one hand
the cipher’s subfunctions and on the other hand the module being responsible for the error
handling. Depending on the properties of the applied ECCs, the error handling module can
either be implemented to detect or to correct occurring faults.

7.3.4 Suitable Codes for Lightweight Ciphers
In this section, we describe the procedure of finding suitable codes implementing our approach
for lightweight ciphers. Additionally, we investigate the total number of different variations
that can be generated using dynamic ECCs. For lightweight symmetric ciphers, we assume
a nibble-oriented state such that k = 4 and n = 8. Selecting these parameters, the maximum
minimum distance dmin that can be achieved is dmin = 4. We performed an exhaustive search
over all possibilities of [8, 4, 4] linear ECCs and identified the set

K1 =
{

G ∈ F4×8
2

∣∣∣ dmin = 4 for C =
{

m ·G | m ∈ F4
2
}}

which contains 596 736 different generators. Since we need to split up G into the sub-matrices
G1 and G2 in order to allow separate processing of the data in C1 and C2, we tested the sub-
matrices G1 and G2 of each G ∈ K1 for invertibility. This classification leaves us with a slightly
narrowed set

K2 = {G = [G1 | G2] ∈ K1|det(G1), det(G2) ̸= 0}
including 483 840 different generators. However, since each generator is represented by 32 bit,
storing all possible generators would require 483 840 · 32 bit ≈ 2 MByte which consequently
would result in exploding implementation costs.

To reduce these costs, we further minimized the size of K2 being able to randomly generate
new generator matrices on the fly. Therefore, we defined a set P including all permutation
matrices of size 4 × 4 leading to |P| = 4!. Given that and a valid generator matrix G, we can
construct another valid generator matrix G̃ by randomly choosing Pi∈{1,2} ∈ P and permuting
the columns within the sub-matrices Gi∈{1,2} which results in

G̃ = [G1 · P1 | G2 · P2] . (7.2)

This operation does not change the capability of the underlying code and the resulting sub-
matrices are still invertible due to Lemma 2. Subsequently, given one arbitrary generator matrix
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from the set K2, we can generate 4! · 4! = 576 different variants from it applying Equation 7.2.
Hence, we do not have to store the entire 483 840 generators but rather can reduce the size of K2
creating a new set K3 with 483 840/576 = 840 different generators which we call basis generators
in the following. In summary, we can generate all G̃ ∈ K2 on the fly using the defined 840 basis
generators and permutations from P.

As shown in Equation 7.1, the dynamic exchange of the linear ECCs does not only require
the sub-matrices Gi∈{1,2} but also their inverses. Assuming we have pre-calculated and stored
all the inverses of the basis generator’s sub-matrices in a set K̄3, we can compute the inverses
of the permuted matrices Gi · Pi on the fly by

(Gi · Pi)−1 = P −1
i ·G−1

i = P T
i ·G−1

i (7.3)

where Pi ∈ P and i ∈ {1, 2}. To simplify the implementation processes for hardware devices,
we define an additional set P̄ which contains all transposed permutations from P.

7.4 Case Study

As we concentrated our investigations mainly on lightweight ciphers, we apply our approach
in a practical case study to the PRESENT block cipher [BKL+07]. As a target platform we
selected FPGAs as already mentioned in Section 7.3.1.

7.4.1 PRESENT

PRESENT is a block cipher consisting of a 64-bit state and supporting key lengths of 80 bits
and 128 bits. Independent of the chosen key length, the cipher executes 31 rounds where each
round includes a key addition, a linear layer, and a non-linear substitution. The key addition
adds (XOR) a round key Ki for 1 ≤ i ≤ 32 to the current state where the last round key K32 is
used for post-whitening. The linear layer is realized by a bit-wise permutation of the state. In
order to perform the non-linear substitution, the state is divided into nibbles which are used as
inputs to 16 parallel 4-bit to 4-bit S-boxes S(x). Note that we refer to the PRESENT version
using an 80-bit key in the following.

7.4.2 Reconfiguration Controller

One important part of our design is the reconfiguration controller as depicted in Figure 7.1.
To generate all possible variations from K2 on the fly, we instantiated two 36 KB Block-RAM
(BRAM) modules (cf. Figure 7.2) storing K3 and K̄3, respectively. Using the random bits rB,
we can read one of the stored basis generators and the corresponding inverse into one clock cycle
setting the data width to 32 bits. The outputs G and G−1 are separated into two 16-bit words
representing Gi∈{1,2} and G−1

i∈{1,2}, respectively. Using additional randomness rEN and rRE, the
permutation matrices Pi ∈ P and P̄i ∈ P̄ with i ∈ {1, 2} are selected in order to permute the
prior determined basis generators Gi ∈ K3 and G−1

i ∈ K̄3 applying Equation 7.3. The outputs
G̃i∈{1,2} and G̃−1

i∈{1,2} are then used to reconfigure the TI S-boxes, the error handling module,
and modules being responsible for encoding the state and round keys Ki.
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Figure 7.2: Randomized generation of G and G−1.

7.4.3 Cryptographic Instantiations

The non-linear S-boxes of the instantiations C1 and C2 are realized using BRAMs. Since we
implement a first-order secure TI, we decompose the cubic-non-linearity S(x) into two quadratic
functions S(x) = T (R(x)) using affine equivalences. We decide to apply the same shared decom-
posed functions as the authors in [SMG16] where R1 = R2 = R3 = Rd and T 1 = T 2 = T 3 = T d.
Each 8-bit to 4-bit LUT is stored in an own dual-port BRAM module as exemplary shown in
Figure 7.3 for two realizations of Rd where the above BRAM is placed in the instantiation of
C1 (encryption path) and the lower BRAM in C2 (redundancy).

This implementation strategy reduces the amount of sequential logic and logic cells and allows
a concurrent reconfiguration of the non-linear functions due to the dual-port memories. A
reconfiguration is conducted by an eight-bit counter which on the one hand reads out the values
of the shared decomposed functions Rd and T d and on the other hand serves as foundation to
determine new addresses. To complete the computation of the addresses, the counter values
are split into two nibbles and are separately encoded by the corresponding generator matrices
G̃i∈{1,2}. The new S-box values are determined based on the original values of Rd and T d and
a subsequent encoding by G̃i∈{1,2}. During reconfiguration, the second BRAM port is used for
processing the data of the encryption and redundancy such that the input values are forwarded
to the address ports and the outputs are used as inputs to the subsequent subfunction. After a
reconfiguration is completed, a context switch is performed and the freshly reconfigured LUTs
are used.

7.4.4 Error Handling

The realization of the error handling module follows the design of [SMG16] and is used to detect
occurring faults within an encryption. After every key addition, the states of the encryption
path and of the redundant path are decoded and compared in order to prevent faulty encryptions
within the detection capability of the used ECC. As the applied ECCs change over time, the
detection module has to be reconfigured as well which requires the inverse G̃−1 of the used
generator matrix G̃. Here we just rely on combinatorial logic and do not utilize BRAM in order
to avoid additional delays when performing the error check.
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Figure 7.3: Reconfiguration of the TI S-boxes exemplary shown for the quadratic decomposed
function Rd.

7.4.5 Overall Implementation

Figure 7.4 shows a schematic of the overall implementation composed of the aforementioned
building blocks. Note that all data paths are realized in shares to implement a correct TI. Each
plaintext that should be encrypted is first encoded by G1 forwarded to the cipher’s instantiation
C1 (left data flow) and encoded by G2 forwarded to the cipher’s instantiation C2 (right data
flow). Besides the shared plaintext, every round key Ki needs to be encoded as well so that
additional encoding modules (implemented in combinatorial logic) are placed right before every
key addition. The following register stage is included in the BRAM modules and is used to
prevent glitches. The LUTs R1 and R2 represent the encoded quadratic function R generated
by the reconfiguration technique described in Figure 7.3. Again, the next register stage is
included in the BRAM modules. However, to generate the values of T , only the inputs get
encoded by the reconfiguration controller. The outputs of T are returned in a non-encoded
form in order to allow a straightforward application of the permutation layer. Afterwards both
states of C1 and C2 are encoded again by G1 and G2, respectively. As described above, the
error handling module compares the states of C1 and C2 after the key addition. In case a fault
is detected, the Error Flag is raised and an ongoing encryption is directly interrupted.
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Figure 7.4: Schematic of the overall implementation.

7.4.6 Reconfiguration Performance

In Section 7.4.3 we already mentioned that a reconfiguration can be performed in parallel to an
encryption due to the dual-port BRAMs. One reconfiguration takes 28 = 256 clock cycles (one
clock cycle for each value of the TI S-boxes). The latency of one encryption adds up to 64 clock
cycles which perfectly fits the 256 clock cycles required for the reconfiguration. Hence, four
encryptions are performed with the same encoding (i.e., the same generator matrices) before
a context switch between the two parts of the BRAMs is induced and the freshly reconfigured
LUTs can be used for upcoming encryptions. Furthermore, due to this technique, no additional
latency is introduced and a continuous encryption process can be ensured.

7.5 Analysis

This section presents the implementation results as well as the security analysis. After we com-
pare our approach to already existing implementations, we focus our evaluation on a theoretical
discussion about the achieved fault coverage. Afterwards, we apply a state-of-the-art leakage
assessment methodology based on TVLA validating higher-order security.
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Table 7.1: Implementation results compared to related work.
Approach Logic Memory Latency Freq. Through. Power

LUT FF LUTRAM BRAMi cycles MHz MBit/s mW

1st-order TI [MW15] 808 384 – 0 64 207 413 N/A
2nd-order TI [MW15] 2 245 1 680 – 0 128 204 406 N/A

Affine Equivalences [SMG15] 1 834 742 – 1 64 112 224 N/A
Glitch-Free Duplication [MW15] 5 442 12 672 – 0 704 459 458 N/A
Dynamic Hardware Mod. [SMG17] 3 236 3 246 1 952 192 124 153 315 N/A

Dynamic ECCs [this work]ii 3 955 219 0 196 64 135 266 423iii

i 18 KB tiles. ii Only work that includes a countermeasure against SCA and FIA. iii Dynamic power.

7.5.1 Implementation Results

Since our approach uses reconfiguration techniques, FPGAs seem to be a perfect platform for
implementing and evaluating our design. As a target platform, we selected a Xilinx Kintex-7
XC7K160T FPGA. Table 7.1 shows the implementation results divided into area utilization,
speed, and power. Comparing our approach to designs reported in the literature, the area
overhead regarding the required amount of LUTs is reasonable considering that our approach
has implemented resistance against FIA which is missing in all other designs. The decreased
number of registers used in our implementation originates from the instantiated BRAM modules
realizing the non-linearities. Each BRAM module contains a non-configurable input register
which is in case of TI needed anyway to avoid glitches. However, our design requires a total
amount of 196 BRAM tiles since each instantiation Ci∈{1,2} requires 96 tiles realizing the S-boxes
and the four additional tiles are required to hold the basis generators and the corresponding
inverses.

The achieved throughput of 266 MB/s is comparable to the designs by Sasdrich et al. [SMG15,
SMG17] and slightly lower than the approach by Moradi and Wild [MW15].

Even though no work from the considered references provides any results regarding the power
consumption, we decided to include it within our evaluation table as an additional important
metric, especially for devices relying on power provided by battery. We determined the power
consumption using Vivado leaving all settings at their default values. Eventually, we obtained
a power consumption with a high confidence of 423 mW for our target device (excluding static
power).

7.5.2 Resistance against Fault Injections

The resistance against FIA is determined by the underlying ECCs. In our case study, we
only used linear codes with the maximum minimal distance being available for the selected
parameters, i.e., n = 8, k = 4, dmin = 4. Since we rely on the same structure and codes with
the same capabilities as the authors in [SMG16], our design achieves the same fault coverage.
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Table 7.2: Fault coverage of the applied linear ECCs.

EB1 EB2 EB3 EB4 EB5 EB6 EB7

100 % 100 % 100 % 91.36 % 93.58 % 94.31 % 94.49 %

Using the biased fault distribution EBb
introduced in Section 7.3.2, where an attacker is able to

inject up to b faults into a single codeword, the fault coverage Ccov follows

Ccov = 1− Fnot
Ftot

where Fnot represents the number of undetectable errors and Ftot the total number of errors
that can occur in the defined fault model. The corresponding fault distribution is given by
Table 7.2. Note that the used codes have a 100 % fault coverage as long as b ≤ 3 due to a
minimum distance of dmin = 4 (cf. Corollary 1). However, this does not mean that Fnot = Ftot
when b ≥ 4 as only faults that are equal to valid codewords will not be detected. For detailed
information, we refer the interested reader to the original work from Schneider et al. [SMG16].

7.5.3 Resistance against Side-Channel Analysis
For evaluating the resistance against SCA, we used the side-channel measurement board Sakura-
X equipped with a Kintex-7 FPGA holding the cryptographic implementation and a Spartan-6
FPGA controlling the measurement which includes the generation of a stable clock of 4 MHz.
The voltage drop was measured using a 1 Ω shunt resistor while amplifying the signal with a
ZFL-1000 LN+ amplifier (24 dB gain). The analog signal was converted into an 8-bit digital
word using a 6404D PicoScope and a sampling rate of 625 MS/s. Furthermore, we used the
PicoScope’s low-pass filter with a cut-off frequency of 25 MHz. As leakage assessment method-
ology, we applied an univariate Welch’s t-test (cf. Section 2.1.3) since it can be extended to
higher-order statistical moments [SM15].

To validate our implementation and measurement setup, we first conduct measurements by
setting all masks to zero and disabling the additional randomness required for the dynamic
reconfiguration of the ECCs. The corresponding results are shown in Figure 7.5. As expected,
after acquiring 1 million power traces, we clearly see leakage in all considered statistical orders.

In our second experiment, we use random masks and enable the Linear Feedback Shift Register
(LFSR) providing the required randomness for the reconfiguration of the dynamic ECCs. The
t-test results for the first three statistical moments after acquiring 150 million power traces are
shown in Figure 7.6. Within the considered confidence threshold of ±4.5, we do not detect any
t-value that falls outside the interval. Hence, we do not detect any noticeable leakage in the
considered statistical moments.

7.6 Discussion
Implementing the error handling module just as detection module (cf. Figure 7.1), offers weak
points against SIFA-based fault attacks. However, the application of storing the S-box values
in BRAMs does not allow to implement correction modules as the input registers of BRAMs
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Figure 7.5: Measurement results using a static code, zero masks and 1 million traces.

are not accessible by the user so that faults occurring in these registers cannot be corrected
before processed by the S-boxes. The non-linearities would uncontrollably spread a fault over
an entire codeword such that the correction capabilities would be exceeded. To this end, our
approach could be still implemented using distributed memory instead of BRAM as the designer
can place input registers combined with correction modules before each non-linearity. This
procedure would allow to apply our combined protection mechanism and to successfully thwart
SIFA based attacks.

Section 7.3.4 deals with suitable codes for lightweight ciphers which does not include larger
algorithms like the AES. Performing an exhaustive search over all [16, 8]-codes (each byte of the
AES state matrix is encoded separately), would not be possible as there are 216·8 possibilities.
However, picking already existing codes like the [16, 8, 5]-code described in the appendix of
[BCC+14] and using the same permutation process as described in Section 7.3.4, would produce
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Figure 7.6: Measurement results using dynamic codes, random masks and 150 million traces.

8! · 8! different generator matrices given just one basis generator. Hence, an application to AES
would be conceivable but not all existing basis generator matrices could be exploited.

7.7 Conclusion

In this work, we present a combined countermeasure against SCA and FIA based on a combi-
nation of a first-order secure TI and linear ECCs. Using the underlying structure of the linear
codes as an opportunity to introduce additional noise by randomizing the used generators, we
achieve a higher-order protected design against SCA. We narrowed down the size of the required
generator matrices resulting in a reconfiguration controller which is able to generate 483 840 dif-
ferent variations on the fly while achieving acceptable implementation overhead. Eventually,
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a case study on PRESENT, including power measurements with 150 million traces, shows
protection up to the third statistical order while providing resistance against FIA.
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Chapter 8

Revisiting Fault Adversary Models - Hardware
Faults in Theory and Practice

Security validations of proposed countermeasures against FIA are mostly performed
on custom adversary models that are often not tightly coupled with the actual phys-
ical behavior of available fault-injection mechanisms and, hence, fail to model the
reality accurately. Furthermore, using custom models complicates comparisons be-
tween different designs and evaluation results.
In this chapter, we aim to close this gap by proposing a simple, generic, and con-
solidated fault-injection adversary model that can be perfectly tailored to existing
fault-injection mechanisms and their physical behavior in hardware. To demonstrate
the advantages, we apply it to a cryptographic primitive and evaluate it based on
different attack vectors. We further show that our proposed adversary model can be
integrated into the state-of-the-art fault verification tool VerFI. Finally, we provide a
discussion on the benefits and differences of our approach compared to already exist-
ing evaluation methods. Our generic fault-injection adversary model was originally
presented in [RBSG22] in cooperation with Pascal Sasdrich and Tim Güneysu.

Contents of this Chapter
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8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.1 Introduction
Over the last two decades, a plethora of different fault-injection mechanisms has been proposed,
e.g., clock or voltage glitches [ADN+10, ZDCT13], electromagnetic pulses [DDRT12, DLM21,
OGM15, OGM17], or focused photon injection using laser beams [SA02, RSDT13, CLFT14,
SBHS15]. Likewise, many different analysis techniques ranging from DFA [BS97], over IFA
[Cla07] and SFA [FJLT13], to SIFA [DEK+18, DEG+18] has been presented to exploit injected
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faults. Naturally, different approaches to increase protection against FIA have been proposed
at similar pace, mainly following the concepts of redundancy and (concurrent) error detection
[SMG16, AMR+20], error correction [SRM20, RSBG20], or infective computation [GST12].

However, checking and verifying that an implementation is successfully protected against FIA
is a manual, downstream, test-driven, and error-prone process. Further, the quality of analysis
and verification results comprehensively depends on the accuracy of underlying adversary mod-
els. If the adversary models fail to reflect the practical realities and capabilities of an adversary,
countermeasures and protection mechanisms might be inappropriate, can fail to provide the
desired level of security, and ultimately the physical implementation is still vulnerable to FIA.

Given these observations and challenges, security should be considered during the entire de-
velopment and life cycle of the implementation. More precisely, continuous analysis, evaluation,
and verification of the design, even before deployment, can assist the designer to choose and
implement countermeasures correctly. In addition, accurate description and modeling of the
capabilities and limitations of the physical adversary and environment will ensure appropriate
protection of the implementation after deployment.

Currently, a wide range of custom adversary models is used for evaluation and verification of
protection mechanisms and often, with new countermeasures, new adversary models are pro-
posed at the same time. Unfortunately, most of the adversary models are hardly compatible
and do not allow fair and meaningful comparisons between different approaches and implemen-
tations. Ideally, a standardized model that is simple and generic, but allows customization
would help to analyze, verify, and compare different implementations and countermeasures. Ul-
timately, designers would be able to choose countermeasures and protection mechanisms appro-
priately, and easily evaluate and verify the security level for the targeted practical environment
and circumstances with minimal effort using the standardized adversary model tweaked for the
given realities.

8.1.1 Contribution

In this work, we review existing approaches and methods to inject faults into cryptographic
implementations in order to consolidate existing adversary models and extract an unified ad-
versary model for standardized fault analysis and verification. In particular, we introduce a
generic and abstract adversary model that can be parameterized and instantiated to model
different adversaries with varying capabilities and limitations. More precisely, we show how
the generic adversary model can be customized to reflect and model common fault injection
approaches, including (but not limited to) clock or voltage glitches, electromagnetic pulses, and
focused laser beams, and apply each model to a practical example emphasizing similarities and
differences of the different adversary model instances.

Eventually, our consolidated and unified adversary model can be used to establish a stan-
dardized evaluation metric for FIA countermeasures that allows fair comparison in adversary
capabilities and limitations as well as vulnerabilities of different protection mechanisms. In par-
ticular, our proposed adversary model facilitates application for design and verification through
a simple, adaptable, and intuitive design. We demonstrate these features by integrating our
fault model into the fault verification tool VerFI [AWMN20] and providing a case study on the
lightweight block cipher LED-64 [GPPR11].

80



8.2 Fault-Injection Mechanisms

i0
i1

i2
i3

o0

o1

o2

o3

Tlogic,max

Tclk ≥ tlogic,max + tclkq + tsetup − δ

(a) Normal condition.

i0
i1

i2
i3

o0

o1

o2

o3

T ′
clk < tlogic,max + tclkq + tsetup − δ

unstable

(b) Clock glitch occurrence.

Figure 8.1: Physical effects of clock glitches on digital circuits.

8.2 Fault-Injection Mechanisms

Over the last two decades, many different fault-injection mechanisms were proposed and success-
fully established to attack hardware implementations of cryptographic algorithms. We survey
the most common techniques and explain the fundamental physical mechanisms.

8.2.1 Clock Glitches

Faulting digital circuits through generation and injection of clock glitches is considered as a
rather inexpensive technique for FIA. However, before we examine the physical fundamentals
and mechanisms of intentional fault injection through clock glitches, we briefly review state-of-
the-art literature with respect to FIA based on clock glitch generation.

State of the Art. In an early work on the general principles of fault injection via clock glitches,
Agoyan et al. [ADN+10] demonstrated its effectiveness using the example of an AES hardware
implementation. Soon thereafter, Endo et al. [ESH+11] presented an on-chip clock glitch gen-
erator composed of Delay Locked Loops (DLLs) to test and validate the effectiveness of newly
developed countermeasures addressing the threat of clock glitch insertion. In 2014, Korak et al.
[KHEB14] increased the success rates of clock glitches in combination with heating of the device
under attack. Although it was assumed that internal application of Phase-Locked Loops (PLLs)
can easily defeat the threat of fault injection through clock glitches, Selmke et al. [SHO19] re-
cently presented successful fault injections using clock glitches on a microcontroller internally
equipped with a PLL. Note, however, that this attack is still limited and only possible if an
ongoing computation is not interrupted by the LOCKED signal of the PLL, as also noted by the
authors.
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Physical Mechanism. At a first glance, clock glitches may have limited relevance in real-world
scenarios (since they can be prevented by using the LOCKED signal of PLLs as described above)
when compared to other fault-injection mechanisms covered later in this section. However, since
clock glitch generators can be instantiated fairly easily in many common FPGAs, allowing to
create cost-efficient test setups for countermeasure validation, we opt to cover this mechanism
in more detail in the following paragraph.

For this, Figure 8.1 schematically depicts the physical effects of clock glitches on the behavior
and operation of digital circuits. Under normal operation conditions (Figure 8.1a), all signals
can propagate through the combinational logic and settle to a stable state before the rising edge
of the clock signal triggers the sampling process of the subsequent register. As a consequence,
the (maximum) clock period Tclk of a digital circuit is usually determined under the following
conditions and assumptions:

Tclk + δ ≥ tlogic,max + tclkq + tsetup (8.1)

Here, δ denotes the clock skew, tlogic,max the maximum propagation delay of the combinational
logic, tclkq the delay of the register, and tsetup the setup time for the input of the register.

Given that an adversary now can generate a clock glitch for an effective fault injection, the
clock period T ′

clk is instantaneously decreased such that the inequality in Equation 8.1 is violated
(but will hold again afterwards). Hence, for some primary input combinations the clock period
might be too short to allow full propagation of the signals through the entire combinational logic
and a stabilization of the correct result at the input of the register is not guaranteed. Figure 8.1b
visualizes this behavior, eventually leading to the fact that the output of the considered gate is
still independent of the current primary inputs and might lead to a faulty value sampled by the
register at the arrival of the rising edge of the clock glitch.

8.2.2 Underpowering and Voltage Glitches
Similar to fault injection through clock glitches, underpowering and voltage glitches are also
considered as rather inexpensive but effective methods for FIA. While underpowering considers
the scenario of lowering the supply voltage of the target device throughout the entire compu-
tation process, voltage glitches only lower the supply voltage for a very limited period of time
during the execution. Again, we briefly summarize state-of-the-art literature, before we discuss
the physical fundamentals and mechanics of fault injection through underpowering and voltage
glitching.

State of the Art. The first successful fault injection using the mechanisms of underpowering
was presented in 2008 by Selmane et al. [SGD08]. Using a 130 nm ASIC embedding an AES
engine on a smart card target device, the authors report a successful recovery of the secret
key processed inside the AES encryption engine. Their evaluations further demonstrate the
dependency between voltage level and success rate of fault injection through underpowering.
However, since underpowering naturally effects the entire execution of a cryptographic algo-
rithm, precisely injecting faults, e.g., in a specific iteration of the algorithm, is very difficult
and hardly achievable. As a consequence, Zussa et al. [ZDCT13] focused their investigations on
the fault-injection mechanism of temporary voltage glitches to disturb the execution of crypto-
graphic algorithms. More precisely, the authors prove that the physical mechanisms of voltage
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Figure 8.2: Transistor-level schematic of a CMOS inverter.

glitches and underpowering can be traced back to timing violations, as explained in the following
paragraph.

Physical Mechanism. Considering the example of simple CMOS inverter at transistor level,
as given in Figure 8.2, we briefly summarize the findings of [ZDCT13] with respect to timing
violations caused through voltage glitches (and underpowering). Assuming that each CMOS
gate introduces some propagation delay upon signal switching, the propagation delay in case
of a simple CMOS inverter can be explained through the switching process in the transistors.
Exemplary, we assume a switching activity from low to high at the output of the P-type Metal-
Oxide Semiconductor (PMOS) transistor P0 in Figure 8.2. In this case, the propagation delay
tpLH, as derived in [Raz08], is given by the following equation:

tpLH =
CL
[ 2|Vth,p|

VDD−|Vth,p| + ln
(
3− 4 |Vth,p|

VDD

)]
Kp (VDD − |Vth,p|)

. (8.2)

Here, CL models the load of connected gates, Vth,p the threshold voltage of the transistor,
and Kp = µpCox

Wp
Lp

the gain of the PMOS transistor.
Obviously, under a lower supply voltage VDD, the propagation delay of the inverter tpLH

increases. Further, similar equations can be derived for the N-type Metal-Oxide Semiconductor
(NMOS) transistor and even for more complex gates than a simple inverter, resulting in the
same effect and impact. Eventually, as the variation of the supply voltage affects all transistors
and gates between two register stages, lowering the supply voltage through voltage glitches or
underpowering will increase the maximum propagation delay of the combinational logic. As a
consequence, the inequality in Equation 8.1 might be violated. Hence, as for clock glitches, the
final result might not be stable at the input of the register resulting in the sampling of a faulty
value.

8.2.3 Electromagnetic Pulsess

Another approach for fault injection into embedded devices, having higher precision than clock
or voltage glitches but still at reasonable equipment and expertise requirement [BKH+19], uses
electromagnetic pulses. Again, we briefly summarize related state-of-the-art literature and dis-
cuss the physical mechanisms responsible for the manifestation of faults.

83



Chapter 8 Revisiting Fault Adversary Models - Hardware Faults in Theory and Practice

CLK

D Q

Q̄

(a) D Flip-Flop.

VDD

0 V
S

VDD

0 V
D

VDD

0 V
CLK

VDD

0 V
Q

(b) Simplified diagram.

Figure 8.3: Physical effects due to faults caused by EMPs [DLM19, DLM21].

State of the Art. Over the last years, the understanding of the underlying mechanism of faults
caused by Electromagnetic Pulses (EMPs) changed. While in 2012, Dehbaoui et al. [DDRT12]
performed some experiments on microcontrollers and FPGAs leading to the conclusion that
Electromagnetic Fault Injection (EMFI) can be explained by timing violations of the critical
path (as for clock glitches), two years later, Ordas et al. [OGT+14] demonstrated that timing
faults cannot capture and describe the complete behavior of EMFI. In the following years,
they performed further experiments and eventually deduced a sampling fault model [OGM15,
OGM17]. Most recently, Dumont et al. [DLM19, DLM21] were eventually able to explain the
physical behavior for the sampling fault model and confirmed its correctness by conducting
several simulations and additional practical experiments. For this, we will summarize the latest
findings and explain the underlying physical mechanism responsible for fault injections caused
by EMP in the following paragraph.

Physical Mechanism. Any EMFI setup usually consists of a ferrite core, a coil, and a voltage
pulse generator to establish a magnetic field used to induce a current in any wire loop based on
the theory developed by M. Faraday. Particularly in ICs, those wire loops are the power and
ground networks, where the induced current leads to a voltage swing S between the power and
ground grid (cf. Figure 8.3b for the effects of an undershoot).

However, in the following, we limit our explanations on D Flip-Flops (DFFs) (see Figure 8.3a),
as they are the main elements in digital ICs susceptible to EMFI. The aforementioned voltage
drop caused by the EMP consequently pulls the potential of the clock signal and the input signal
D down, as visualized in a simplified diagram in Figure 8.3b. More precisely, this behavior is
caused by the falling edge of the swing S and can therefore be associated with the first EMP
generated by the rising edge of the voltage pulse generator supplying the EM probe. With the
rising edge of S – caused by the second EMP generated through the falling edge of the pulse
generator supplying the EM probe – the circuit recovers the original state.

Here, the authors of [DLM21] describe the recovering phase as a race between the clock signal
and the input signal D. A successful fault injection is performed only if the clock signal wins
the race, meaning that the clock recovers faster than the input signal D, and therefore the DFF
stores a faulted value (cf. Figure 8.3b). Note, however, that not only a negative swing can be
induced, but also a positive swing, then leading to an overshoot instead of undershoot. While
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Figure 8.4: Physical effect of Laser Fault Injection as introduced in [Bau04].

the negative polarity often leads to bit-resets, the positive overshoot induces bit-set faults with
higher probability. For more details, we refer the interested reader to [DLM19, DLM21].

In summary, Dumont et al. showed that EMFI causes sampling faults which can also be
modeled as set or reset faults in memory elements such as DFFs. Additionally, their most recent
work in [DLM21] demonstrates a very fine spatial resolution of EMFI, surprisingly independent
of the electromagnetic probe geometry.

8.2.4 Laser Fault Injection

Laser fault injection using focused laser beams was initially presented in 2002, in the seminal
work of Skorobogatov and Anderson [SA02]. Since then, many follow-up works have been
presented and improved the potential of laser-assisted fault injection. Before we summarize
and explain the physical effects of laser-induced faults, we dedicate the next paragraph to the
current progress and state-of-the-art research with respect to optical fault-injection methods.

State of the Art. The first case study of laser fault injections, presented in the seminal work
[SA02] of Skorobogatov and Anderson, was designed for a target platform built in a quite
large 1 200 nm technology. However, in the following years, several other works studied the
influence of laser beams to the operation of ICs and improved the application for lasers as a
fault-injection mechanism. For instance, in 2013, Roscian et al. [RSDT13] already targeted a
250 nm technology and performed investigations on the underlying fault model. In the following
year, Courbon et al. [CLFT14] demonstrated the tremendous accuracy of laser fault injection
and used it to characterize registers instantiated in a 90 nm technology. Similarly, Selmke et al.
[SBHS15] investigated the accuracy of laser-induced faults for a 45 nm technology, but concluded
that precise fault injections into memory cells become more difficult for smaller technologies.

However, not only memory cells, but also any combinational gate of a digital IC is susceptible
to laser-induced faults, as was shown in 2016 by Schellenberg et al. [SFG+16]. In this work, the
authors used successful injections of faults to perform a fault sensitivity analysis, also possible for
smaller target technologies. Most recently, Dutertre et al. [DBC+18] successfully performed fault

85



Chapter 8 Revisiting Fault Adversary Models - Hardware Faults in Theory and Practice

P0

N0

0 1

CL

(a) NMOS.

P0

N0

1 0

CL

(b) PMOS.

Figure 8.5: Sensitive drain regions for laser fault injection [RSDT13].

injections on an AES implemented on a very small 28 nm technology. However, although the
hardness of laser fault injection varies with the targeted geometry size, the basic fundamentals
and physical effects can be traced back to the same phenomena.

Physical Mechanism. Figure 8.4 exemplary shows the fundamental physical effect when a
focused laser beam hits and affects an NMOS transistor. More precisely, the laser beam starts
an ionizing process in a PN-junction while along the laser injection path a dense distribution of
electron-hole pairs is produced (cf. Figure 8.4a). Afterwards, the carriers are rapidly collected
by the electric field and the charge is compensated, resulting in a reduced voltage on that
node while eventually, a temporary drift current arises as visualized in Figure 8.4b. However,
shortly afterwards (usually at a magnitude of a few picoseconds) the funnel collapses and a
small diffusion current dominates the collection process, which again is shown in Figure 8.4c.
For more details, we refer the interested reader to [Bau04, WA08].

As a consequence, the effect of producing a temporary drift current Idrift in a PN-junction of
a transistor can be used to alter the state of a gate. For the sake of simplicity, we consider the
CMOS inverter given in Figure 8.5 as a minimal example, where subsequent connected gates
are simplified and modeled by a load capacity CL. As a first step, we assume the input of the
inverter to be zero and the output to be one, as visualized in Figure 8.5a. Once an adversary
hits the drain region of the NMOS transistor with the help of a focused laser beam, the output
state of the inverter may change. In particular, the high drift current through the transistor
forces a discharge process of the output node, i.e., the electrical charge from CL is moved such
that the output changes from one to zero. Note, this effect can only occur if the temporary drift
current is larger than the current flowing through the PMOS transistor, which still conducts
correctly. Hence, if the drift current Idrift collapses, the output node will eventually switch back
to its former high level. This results in a temporary injected fault which is called Single Event
Transient (SET) (or transient Single Event Upset (SEU) [Pet11]). A similar effect occurs when
the input of the inverter is one and the output is zero, but in this case the laser beam has to hit
the drain region of the PMOS transistor (instead of the NMOS transistor) in order to switch
the output node from zero to one, i.e., to load CL [RSDT13].

In summary, we can state that this fault-injection mechanism either causes bit-set or bit-
reset faults considering the given inverter. Further, the bit-set or bit-reset faults can occur
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Table 8.1: Functions included in U and in B.
Inputs ui(x0) ∈ U bi(x0, x1) ∈ B
x0 x1 u0 u1 u2 u3 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

0 0 – 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0
0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 1 – 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0

as temporary faults in both, combinational logic (i.e., logic gates) or in memory gates (e.g.,
registers). However, in case the attacker targets memory gates, the stored value will be altered,
which is called a static SEU [Pet11], as this transient fault cannot be recovered while transient
faults in combinational gates may be recovered by sufficient long clock periods (in comparison
to the duration of the fault).

8.2.5 Miscellaneous Mechanisms

Besides the mechanisms introduced above, a few more techniques can be found in the literature,
such as body biasing [MTOL12, O’F20], overpowering [CML+11], temperature [Sko09, HS13],
and X-Ray beams [ABC+17]. However, they only have a minor or auxiliary role in practice in
comparison to the mechanisms described above and therefore we decided to exclude them from
following considerations in our work, although our versatile concept still allows modeling these
mechanisms.

8.3 Concept

Given the broad range of physical fault-injection mechanisms that we surveyed in the previous
section, our efforts in this section focus on a consolidated and unified model for fault-injection
adversaries, ideally covering all previously introduced concepts. Since we focus on fault-injection
techniques and adversaries for physical hardware and digital ICs, we utilize the circuit model in-
troduced in Section 5.1. In this section, we introduce formal definitions of fundamental concepts
as well as initial assumptions and limitations. Then, based on those definitions and assumptions,
we propose and describe our generalized fault-injection adversary model in more detail.

8.3.1 Fault Model

For the description of faults and fault propagation in digital logic circuits, we first intro-
duce the two sets of unary and binary Boolean functions. More precisely, the set of unary
functions is given as U = { u | u : F2 → F2 } while the set of binary function is defined as
B =

{
b | b : F2

2 → F2
}
.

In general, for a Boolean function F : Fp
2 → Fq

2, we can construct 2q×2p distinct Boolean func-
tions in p variables and q output bits, i.e., we have |U| = 4 unary and |B| = 16 binary functions.
Further, the specific assignments of all possible functions for U and B are presented in Table 8.1.
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As described in Section 5.1, we consider a limited set Gc of combinational gates. More specif-
ically, we consider a single unary gate {not} ∈ Gu that executes the unary Boolean function u0
on its input. Further, the binary gates {and, nand, or, nor, xor, xnor} ∈ Gb execute the Boolean
functions bi with 0 ≤ i ≤ 5 on their inputs, respectively.

Then, given a DAG D modeling a digital circuit C as defined in Definition 22, we can associate
each gate in the physical circuit, with a vertex v ∈ V of the graph, representing a combinational
or memory gate by a Boolean function from the sets U or B. For this, we define the following
golden mapping τgolden from gate to vertex and associated Boolean function Fg:

τgolden:

{not} 7→ {u0} {or} 7→ {b2}
{reg} 7→ {u1} {nor} 7→ {b3}
{and} 7→ {b0} {xor} 7→ {b4}
{nand} 7→ {b1} {xnor} 7→ {b5}

Given the gate-function mapping and the abstract representation of a digital circuit in terms
of a DAG, we can formally describe the effects and propagation of an injected fault.

Definition 27 (Fault). A fault can occur in a digital circuit C if and only if a gate g ∈ G
within the circuit does not evaluate according to its associated Boolean function Fg.

Definition 28 (Error). In a digital circuit C an error occurs if a wrong value is visible at the
output of the circuit. An error is always caused by a fault.

Considering our limited set of combinational and memory gates, a fault in a combina-
tional gate occurs immediately if the considered g ∈ Gc evaluates to an incorrect result z′ with
z′ ̸= Fg(x). For registers gr ∈ Gm, faults will only manifest in synchronization to the provided
clock signal such that z′ ̸= Fr(x).

Moreover, if a fault occurs in a gate of a digital circuit, i.e., the faulted gate evaluates
incorrectly, this fault may also have an impact on subsequent gates. More specifically, if a
faulty signal z′ is input to further gates, these gates may evaluate correctly according to their
associated function but still provide wrong results due to incorrect inputs. In general, this effect
is called fault propagation. Two different scenarios of fault propagation are given in Example 2.

Example 2. In this example we assume a gate g ∈ Gc producing a faulty output z′ ∈ F2. The
faulty output z′ = 1 is the first input x0 to a gate g2 = {or} while the second input x1 = 1. In
this case, fault propagation will stop immediately, as the output of g2 will be 1 regardless of
the first input. However, given that x1 = 0, then, upon correct inputs, g2 would evaluate to 0,
however, due to x0 = z′ = 1, the fault will propagate through g2 and may affect further gates in
the circuit.

Definition 29 (Fault Scenario). We define a fault scenario as the occurrence of a fault in a
target gate g ∈ G under a given input x ∈ Fp

2 to the circuit C.

Hence, each specific fault in a target gate g ∈ G creates a unique fault scenario for each valid
input x ∈ Fp

2. Therefore, the input size p, the amount of considered gates, and the number
of valid faults for each gate (more details will be given in Section 8.3.2) determine the total
amount of fault scenarios Nscenario for a given circuit C.
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8.3.2 Consolidated Adversary Model
Introducing two abstraction levels for a digital logic circuit, we can explain and introduce our
generic and consolidated fault-injection adversary model. As a consequence, this allows us to
create a dedicated fault-injection adversary model that can be adjusted by a set of parameters
introduced afterwards.

Initial Assumptions

For this, let us define and list some initial assumptions in order to provide a reasonably complex
fault-injection model for digital logic circuits. First, we assume that all primary inputs to a
target circuit C are fault-free since inputs that are already faulted can never be recognized by
any fault model framework or by countermeasures that should be evaluated. Second, we do not
consider any routing information of the circuit in our fault model since these undermine our
attempt to create a generic model. We work on a netlist level which can be perfectly mapped to
DAGs as described in Section 5.1. Nevertheless, this abstraction level allows us to attach timing
information, i.e., propagation delays of the gates, to each node in the DAG representing the
physical logic gates. Third, we do not consider fault probabilities, hence, purely focusing on a
quantitative rather than qualitative analysis. Finally, we do not specifically consider persistent
faults in our fault adversary model. If persistent faults should be modeled, it can still be
accomplished within our assumption by triggering a specific fault on each evaluation. This,
however, is not part of a fault model but rather part of the utilized framework integrating the
fault adversary model.

Abstraction Levels

The description of a circuit C as a DAG D allows us to separate the fault modeling into
two abstraction levels – a structural level and a functional level. On the structural level, we
consider the edges and vertices of the DAG, i.e., the wires in C connecting the circuit gates.
This gives us the possibility to model, describe, and track the propagation of faults through
the entire circuit. Additionally, the structural level provides information about the placement
of synchronization points, i.e., the memory gates. This information is important since faults
ultimately will manifest in register stages which we demonstrate in Section 8.4. However, the
actual faults are injected directly in combinational gates gc ∈ Gc or in memory gates gr ∈ Gm
where both types of gates describe the functional level of C through the associated Boolean
functions given in τgolden (cf. Section 8.3.1).

Modeling Faults

On a very abstract (and simplified) level, we model a single fault by altering the associate
function of the target gate to an arbitrary function within the same domain, i.e., defined over
the same number of inputs and outputs. In particular, faults injected into a gate gu ∈ Gu or
in a memory gate gr ∈ Gm are modeled by exchanging the associated function with a function
u ∈ U . Similarly, faults injected into a gate gb ∈ Gb are modeled by exchanging the associated
function of gb with a function b ∈ B.

In this sense, for each fault scenario, the DAG of the circuit is re-evaluated and updated, such
that for each vertex v ∈ V of the graph, the associated functions are selected from τgolden or a
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fault type is chosen from a fault model τfaulty, depending on whether the fault event occurred
in the corresponding gate or not, such that:

vg =
{

τgolden(g) g is fault-free
τfaulty(g) g is faulted

,∀g ∈ C

Notably, this model provides a generic approach to map various fault types to a circuit im-
plemented in hardware. To this end, we further define a notation which allows us to denote
mappings where several gates are mapped to the same Boolean function. For example, given
a subset of gates Gsub ⊂ Gb and each of the gates g ∈ Gsub should be mapped to the functions
bi0 and bi1 in case a corresponding gate in C is faulty, we denote the underlying mapping τj

as τj : Gsub 7→ {bi0 , bi1} for a specific fault model j. However, to meet realistic scenarios for
an actual attacker, we further introduce a set of parameters which allows us to constrain the
generic model and customize it depending on given circumstances.

Parametric Adversary Model

To this end, we introduce the following three parameters to describe the limitations of an
adversary: n, t, and l. While the first parameter n defines the power of the attacker in terms
of how many faults can be injected at the same time, the second parameter t defines the type of
the faults. Finally, l limits the circuit locations where the faults can occur, i.e., the gates of the
circuit that can be targeted by the adversary. In the following, we present more details about
the three parameters and their design rationales.

Number of Fault Events n: The parameter n sets the total number of faults that can occur
at the same time and therefore it constrains the power of an attacker in terms of simultaneously
injected faults. Hence, when modeling adversarial fault injections in a digital circuit C, n
can be selected from N = {1, 2, ..., N} with N = |V|, i.e., N is equal to the total number of
combinational and memory gates that are available in C.

By selecting n ∈ N , we assume that an attacker is able to inject up to n faults, meaning that
we consider all possible fault scenarios with n′ ≤ n faults. This assumption is well established in
literature when evaluating countermeasures against fault-injection attacks [SMG16, RSBG20].
However, even if we select n as an upper bound, we still might observe more than n faults
manifesting in a register stage or primary output due to fault propagation. We further explain
this phenomenon in Example 3.

Example 3. For this example, we assume that we model an attacker with n = 1 and that a
fault is injected into the nand gate in Figure 8.6. Although n is constrained by 1, the fault can
propagate through the and and xor gate such that three errors would eventually manifest at the
primary output register stage. Hence, n only indicates the number of faults an attacker is able
to inject but it does not give any information about the total number of errors that will occur at
the output of the circuit. This behavior was also mentioned by Aghaie et al. in [AMR+20].

Fault Type t: The fault type t can be selected from a set T = {τsr, τs, τr, τbf, τfm} which
contains different fault models τj . Each of these fault models describes how a gate from a target
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Figure 8.6: Influence of a single fault on subsequent gates.

circuit C is mapped to a function u ∈ U or b ∈ B in the resulting DAG D. In this paragraph,
we introduce common fault models used to describe different fault-injection mechanisms.

For this, we define τsr as a fault model where each gate from G is mapped to the set or reset
function. We decided to use the terms set and reset instead of stuck-at-one and stuck-at-zero
since the physical fault mechanisms of electromagnetic pulses and laser fault injections cause bit-
sets or bit-resets by charging or discharging nodes in the digital circuit. Even if in the presence
of clock glitches the fault mechanism could be described by a stuck-at behavior, we stay with
the terms set and reset in the remainder of this work to highlight that the faulty behavior is
caused by an active attacker. Note, however, that the choice of terminology does not affect
the underlying modeling procedure but both physical mechanisms can be modeled similarly.
Particularly, the faulty behavior of a gate gu ∈ Gu or a memory gate gr ∈ Gm is modeled by the
function u2(x) = 0 or by u3(x) = 1 with x ∈ F2 (cf. Table 8.1). Hence, we apply a mapping
that is described by {not, reg} 7→ {u2, u3}. Similarly, a faulty gate gb ∈ Gb is modeled by one of
the functions b6(x) = 0 or b7(x) = 1 with x ∈ F2

2, describing a reset or set fault, respectively.
In this case, the mapping is formally described by {Gb} 7→ {b6, b7}. In essence, the mapping
τsr serves as a baseline for most of the fault-injection mechanisms introduced in Section 8.2,
however, more details about the connection between the physical behavior and the proposed
parameter selections are given in Section 8.4.

To allow more fine-grained evaluations, we additionally define the mappings τs and τr
which describe only set or only reset fault, respectively. Hence, the mapping τr defines
{not, reg} 7→ {u2} for unary gates and Gb 7→ {b6} for binary gates. Similarly, τs defines
{not, reg} 7→ {u3} for unary gates and Gb 7→ {b7} for binary gates. This distinction can be
useful for specific primitives or technologies where a fault injection can either cause set or reset
faults only. Examples of such primitives are NOR flash memories where only bit-set faults occur
as shown and explained in [CMD+19].

Another common fault model that can be found in the literature is based on bit-flips which
we describe by the mapping τbf. In this case, we map each gate from G to its inverse gate
resulting in the following fault model:

τbf:

{not} 7→ {u1} {and} 7→ {b1}
{reg} 7→ {u0} {nand} 7→ {b0}
{or} 7→ {b3} {xor} 7→ {b5}
{nor} 7→ {b2} {xnor} 7→ {b4}

Each gate is modeled by a function returning the inverse of the values that would be returned
by the original gate.
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Eventually, we intentionally leave space for custom definitions of fault models τfm in T
to provide an adversary model that is as generic as possible while at the same time already
covering common fault types and models. For this, we introduce one custom mapping τnang15
in Section 8.4 and guide the reader through the process of precisely defining and modeling an
attacker that uses a laser to inject fault events in a Nangate 15 nm technology.

Fault Location l: The fault location l is the third parameter which is necessary to properly
describe fault injections in our generic adversary model. We define the set L = {ci, m, mci} in
order to distinguish between different areas on the structural level of a circuit C. The first choice
covers and models fault injections that solely affect combinational logic gates, i.e., gates from Gc.
Here, c∞ considers all combinational gates available in the circuit under test as targets for fault
injections. A more fine-grained separation of combinational gates is also possible and denoted
by the index i while the separation is performed based on the gates’ propagation delays. More
precisely, we exploit that each gate has a specific maximum propagation delay which can be
extracted from a CMOS library or for the sake of simplicity be assumed to be the same for each
gate. Based on the individual propagation delays of the single gates, we approximately compute
the Data Arrival Time (DAT) for each combinational gate g ∈ Gc and access the corresponding
value by t(g). Another approach could incorporate the notion of slack (i.e., the difference
between the DAT and the Data Required Time (DRT)). However, we decided to rely our model
just on the DAT since it is independent of the used clock frequency and can be better applied to
actual circuits under test (see Example 4 and Section 8.4.1). In addition to the computation of
the DAT for each gate g ∈ Gc, we define a set Gregin that contains all combinational gates driving
registers. The DAT of gates g ∈ Gregin are used to create an ordered set P = {t0, t1, ...tT −1}
where t0 > t1 > ... > tT −1 and T ≤ |Gregin|. This allows us to create clusters of gates defined by

Gcluster,i = { g ∈ Gregin | t(g) ≥ ti, ti ∈ P } . (8.3)

Finally, setting the location parameter l = ci corresponds to fault injections that are performed
in the subset Gcluster,i with i < T . The following example describes the process of generating
Gcluster,i based on the circuit given in Figure 8.7.

Example 4. First, for the sake of simplicity, we assume that each gate in Figure 8.7 has the
same propagation delay tgate. Second, we determine the set of gates whose outputs are connected
to registers which is in our example Gregin = {g0, g3, g5, g6, g9}. The corresponding propagation
delays are given by P = {t0, t1, t2} with t0 = 4tgate, t1 = 3tgate, and t2 = tgate. Given this infor-
mation, we construct the different subsets of Gregin representing the clusters and containing the
following gates

Gcluster,0 = {g9} Gcluster,1 = {g3, g5, g6} ∪ {g9}
Gcluster,2 = {g0} ∪ {g3, g5, g6} ∪ {g9}.

Please note, by c∞, we describe fault injections targeting all combinatorial gates of the circuit
under test.

Besides, setting l = m, specifies fault injections where an attacker targets memory gates
gr ∈ Gm only. The location parameter l = mci models faults that can occur in both types of
gates where combinational gates can still be separated into subgroups.
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Figure 8.7: Propagation delays of different data paths in an exemplary circuit.

For reasons of clarity, Table 8.2 summarizes the available parameters with the corresponding
options which are shortly described in the last column.

Instantiating Adversary Models

To bring together and connect the three introduced parameters n, t, and l, we define the function
ζ(n, t, l). This allows us to instantiate different types of attackers and model the behavior of
fault injections based on the committed parameter list. For example, we can regulate the
strength by changing the fault type t, or determine the accuracy of the fault injections setting
n as a powerful attacker may be able to precisely inject single bit faults. However, one of
the main advantages of introducing ζ is that we create a basis to allow comparability between
different designs which should be evaluated regarding their protection against fault-injection
attacks (under a given adversary model). In Section 8.4, we evaluate a cryptographic circuit
using our generic adversary model to transfer our definitions to a practical instantiation.

8.4 Practical Instantiation

After we introduced our generic adversary model expressed through the corresponding function
ζ to model adversaries with different capabilities, we show in this section how to map our
theoretical considerations to real-world fault injection mechanisms and how to model associated
adversaries. Therefore, we establish a connection between available fault injection mechanisms
introduced in Section 8.2 and our findings from Section 8.3.

Further, to demonstrate the practical application of ζ, we consider the ASCON S-box
[DEMS16] as an example of a cryptographic primitive and potential target of FIA. The cor-
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Table 8.2: Parameters to accurately model fault injections.
Parameter Options Description

n N = {1, 2, ..., N} Maximum number of fault events, N depends on
the application

t T = {τsr, τs, τr, τbf , τfm} τsr: Fault model for set/reset fault
τs: Fault model for set faults
τr: Fault model for reset faults

τbf : Fault model for bit-flips faults
τfm: User-specified fault model

l L = {ci, m, mci} ci: Faults in comb. gates only
m: Faults in memory gates only

mci: Faults in all gates

responding S-box circuit is depicted in Figure 8.8, exhibiting some interesting properties that
provide a good starting point for the application and discussion of our concept. First, this circuit
already consists of both gate types, i.e., combinational gates from Gc and memory gates from
Gm. Second, although the circuit is constructed on an almost regular pattern, fault propagation
can be observed. More specifically, at the deepest logic level, the primary output y4 is an input
to the xor-gate which determines the output y0. Hence, the structure of the ASCON S-box
is perfectly suited to demonstrate and discuss different practical instantiations of our generic
adversary model.

However, to facilitate a comparison of different fault injection mechanisms and associated
adversary models, we first define the total number of effective faults Neff as (single-bit) faults
that eventually manifest in a primary output stage of a circuit C. In our example, Neff can be
at a maximum five for each given fault scenario since the number of output registers is q = 5.
Given that, the maximum number of possible faults Nmax is limited by

Nmax = q ·Nscenario = q · 2p ·
∑
g∈C
|τj(g)| (8.4)

under a considered fault model j.
As indicated in Equation 8.4, we consider each input combination to determine the maximum

number of possible faults Nmax because each valid input creates an independent fault scenario.
We explicitly decided to follow this approach1 for the considered example to allow a fairer
comparison between the different instantiations of ζ at the end of this section. Note that for
real-world applications (e.g., analyzing entire protected block-ciphers) with inputs p ≥ 64 such
an analysis is currently not possible. However, this is not a limitation of our adversary model
(since our model targets the description of fault occurrences in hardware gates) but a limitation
of exhaustively simulating fault injections in all available gates for all valid inputs which is not
part of this work and still an open research question.

Please be aware, that the following analysis results only hold for an instantiation of the AS-
CON S-box as shown in Figure 8.8. Hence, in case the registers of the S-box are removed or any

1The corresponding source-code can be accessed at https://nextcloud.seceng.rub.de/index.php/s/
7ZmqynqYNnfPLw8
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Figure 8.8: ASCON S-box [DEMS16].

combinational logic is added to the circuit, the analysis has to be re-performed. Consequently,
the following examples only demonstrate the functionality of our proposed fault model and the
mapping between theory and practice without any claims for generality.

8.4.1 Clock Glitches

As first step, in order to model clock glitches and the underlying fault mechanism
explained in Section 8.2.1, we instantiate our adversary model as ζ(n, τsr, ci) with
n ∈ N = {1, 2, ..., |Gcluster,i|}. By setting t = τsr and l = ci, we consider set and reset faults
occurring in combinational gates g of the cluster Gcluster,i with 0 ≤ i ≤ T − 1.

This choice can be justified when looking closer at the origin of faults injected by clock
glitches. Particularly, if the attacker manages to decrease the clock period of a clock cycle,
this makes registers sample their input signals early. Then, a fault occurs if the internal logic
cannot propagate the correct signals timely (negative slack) and the current input to a register
differs from the correct input. As a consequence, there are several possibilities for how false
inputs can occur, depending on the duration of the clock glitch. For short clock glitches2 with
Tclk + δ < tT −1 the propagation of the data could be stopped before it stabilizes at any of the
outputs of the gate g ∈ Gregin such that in a worst-case scenario all registers connected to these
gates sample wrong results. This corresponds to a fault model instantiated as ζ(n, τsr, cT −1)
with n ∈ N = {1, 2, ..., |Gcluster,T −1|}. We decided to allow n to be an element from N and not to
fix n = |Gcluster,T −1| in order to provide more fine-grained analysis possibilities. Note, however,
that the number of faults occurring in one cluster cannot be controlled by an attacker using

2By short clock glitches we refer to a clock cycle with a drastically decreased duration (i.e., the time between
two rising edges) compared to the cycle duration of the undisturbed clock.
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clock glitches since they solely depend on the previous data processed by the circuit. Due to this
behavior, the faults can be modeled best by set and reset faults and assuming that the previous
state of each bit was either one or zero. However, the attacker can precisely control the clusters
where the faults should occur by adjusting the duration of the clock glitch. This capability is
modeled by selecting different ci which corresponds to fault injections in combinational gates
that are included in Gcluster,i with 0 ≤ i ≤ T − 1. The least number of combinational gates is
affected by setting l = c0 while the maximum number of affected combinational gates is given
by l = c∞.

For clarification of these decisions, we transfer this model to the ASCON S-box depicted
in Figure 8.8. Instead of assuming the same propagation delay for each gate, we now extract
the propagation delays from the Open-Cell Library3. Here, we use the slowest propagation
delays for an input transition of 0.198 5 ns and a load capacity of 26.016 2 fF for the gates with a
driving strength of one. In our example, we need the propagation delays of xor-gates, not-gates,
and and-gates which are 0.24 ns, 0.26 ns, and 0.20 ns, respectively. Applying these propagation
delays to the ASCON S-box, results in three subsets G0 = {g1, g3, g4}, G1 = {g1, g2, g3, g4},
and G2 = {g0, g1, g2, g3, g4} = Gregin with corresponding DATs of t0 = 0.118 ns, t1 = 0.96 ns, and
t2 = 0.94 ns that can be considered as targets for fault injections. Hence, considering l = c0
could lead to wrongly sampled bits in the registers y0, y1, and y3 while l = c2 could lead to a
total of five effective faults manifesting in the registers.

Note, however, that any designer should use these values with caution since t1 and t2 are
very close to each other. Due to process variations in chip manufacturing processes, these
values could easily change such that faults in all corresponding gates could occur with the same
likelihood. Hence, our model just considers an abstraction of the circuit under test.

Applying the specific adversary model ζ(1, τsr, c0) to the ASCON S-box, we consider 25 input
combinations, three available gates to inject a set or reset fault, and five output registers to
observe an error, resulting in a maximum number of Nmax = 960 faults. For each fault, we
compare the resulting output y′

i to the correct S-box output yi and for each output bit that is
different from the correct one, we increase a fault counter which eventually results in Neff = 96
effective faults appearing at the output. Additionally, we instantiate our adversary model as
ζ(5, sr, c2) modeling a worst-case scenario where the clock glitch prevents data propagation in
all gates g ∈ Gregin. In this case, there are Nmax = 38 720 faults where Neff = 13 824 are effective.

8.4.2 Voltage Glitches

As mentioned in Section 8.2.2, the fundamental physical behavior of voltage glitches (or under-
powering) is very similar to clock glitches and is caused through the violation of Equation 8.1.
By lowering the voltage, the right side of this inequality is increased such that the memory gates
are triggered before all signals can propagate through the logic. As a result, this phenomenon
can be modeled by the same adversary model as clock glitches. Hence, we model fault injections
caused by voltage glitches also by a ζ(n, τsr, ci) adversary with n ∈ N = {1, 2, ..., |Gcluster,i|}.

Obviously, applying the voltage glitch adversary model to our example generates the same
results as described in Section 8.4.1.

3https://www.cs.upc.edu/˜jpetit/CellRouting/nangate/Front_End/Doc/Databook/CornerList.html
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8.4.3 Electromagnetic Pulses

The modeling of fault injections caused by EMPs can be conducted by instantiating the ad-
versary model function as ζ(n, τsr, m) with n ∈ N . In Section 8.2.3, we explained that EMPs
induce a positive or negative voltage pulse in the target circuit. These pulses produce a set
or reset fault respectively. Hence, setting t = τsr perfectly models the physical mechanism of
EMFI since the target gate functions are mapped to the set or reset function. Additionally,
the choice for selecting memory gates as fault location l, matches the recently published results
by Dumont et al. [DLM19, DLM21] who refined and confirmed the model of sampling faults
caused by EMFI.

Applying the fault model function to the considered example depicted in Figure 8.8, leaves us
with 25 input combinations, 5 gates for the set and reset faults (ignoring primary inputs as we
assume inputs to be correct), and five output registers, which eventually results in Nmax = 1 600
possible faults at the primary output. All together, there are Neff = 160 effective faults resulting
in a fault rate of rfault = 10 % for the ASCON S-box under the given ζ(1, τsr, m) adversary
model.

8.4.4 Laser Fault Injection

At last, considering the mechanism of optical fault injections, an appropriate modeling is pos-
sible by defining the adversary model function as ζ(n, τfm, mc∞). This selection covers fault
injections into combinational and memory gates likewise. As described in Section 8.2.4, a fo-
cused laser beam on a digital circuit charges or discharges specific nodes on transistor level.
Hence, targeting memory gates, the value of a register can either be set or reset which needs to
be covered in the custom fault mapping τfm defining {reg} 7→ {u2, u3}.

Additionally, the instantiation of the adversary function covers faults that directly occur in
the combinational logic. Here, we define specified mappings for τfm between the instantiated
gates g ∈ Gc and the defined functions in U and B. The simplest example – faults occurring in
a CMOS inverter – was already discussed in Section 8.2.4 where the mapping {not} 7→ {u2, u3}
is applied. For the remaining gates from Gb, we now exemplary derive the mapping of an and
gate designed in the 15 nm Open-Cell Library4 which is depicted in Figure 8.9. Therefore, we
will call the custom-defined mapping τfm in the following τnang15 as it is tailored to the given
example.

The and gate consists of six transistors where three transistors are NMOS and three are PMOS
transistors. In our model, we assume that an adversary can affect any number of transistors
available in a target gate. Hence, our parameter n only describes the number of faults on gate
level but does not distinguish the number of charged or discharged nodes. However, in case of
the considered and gate, the attacker can easily change the function to a set or reset behavior by
affecting the inverter stage. Additionally, it is possible to simultaneously inject a drift current
Idrift into the transistors N0 and N1 to force the gate to behave as an or gate. This is possible
if Idrift is larger than the current delivered by one of the PMOS transistors P0 and P1 such
that the input node to the inverter can be discharged if either P0 or P1 conducts. In case both
PMOS transistors conduct, the injected drift current would be too small to discharge the input

4https://si2.org/open-cell-library/
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Figure 8.9: AND gate from the 15 nm Open-Cell Library. Blue areas mark drain regions of
PMOS transistors, red areas mark drain regions of NMOS transistors.
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Figure 8.10: XOR gate from the Open Nangate 15 technology.

node to the inverter so that the output of the gate would be zero. These observations lead us
to the mapping {and} 7→ {b2, b6, b7} which is added to τnang15.

Fault mappings for all remaining gates from G can be derived in a very similar way. As we
require a specific mapping for a xor gate in order to evaluate the example from Figure 8.8, the
corresponding schematic is shown in Figure 8.10. Again, the attacker can easily generate set
and reset fault events by charging or discharging the output node. However, there are other
possible modifications which allow the attacker to force the gate to behave as a nand gate or
as an or gate. The former change can be achieved by discharging the input node to the second
stage, i.e., by shooting on N0 or N1. To force the gate to behave as an or gate, the attacker
has to hit one of the PMOS transistors P3 or P4. All together, we end up with the mapping
{xor} 7→ {b1, b2, b6, b7}.

For the sake of completeness, we listed the corresponding mappings for all remaining gates
from Gc, describing all fault types in presence of Laser Fault Injection (LFI) for the Nangate
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Table 8.3: Fault types for LFI on a Nangate 15 technology.

Mapped Functions

Gate Functions from U and B Description

not {u2, u3} {set, reset}
and {b2, b6, b7} {or, set, reset}

nand {b3, b6, b7} {nor, set, reset}
or {b0, b6, b7} {and, set, reset}

nor {b1, b6, b7} {nand, set, reset}
xor {b1, b2, b6, b7} {nand, or, set, reset}

xnor {b1, b2, b6, b7} {nand, or, set, reset}

15 nm technology, in Table 8.3. The first column shows the available gates of the technology.
The second column indicates the mappings to the functions from U and B while the last column
states the corresponding Boolean functions.

Evaluating the ASCON S-box, given the described adversary model instantiation
ζ(1, τnang15, mc∞), can be accomplished by distinguishing between faults that are injected into
registers and combinational gates. The former case reveals the same fault rate as the eval-
uation under faults caused by EMPs (Nmax = 1 600 and Neff = 160). The evaluation con-
sidering faults in combinational gates results in Nmax = 11 360 possible faults while there are
Neff = 1 480 effective faults. Thus, adding these numbers, results in Neff = 1 640 effective faults
and Nmax = 12 960 possible faults under the given ζ(1, τnang15, mc∞) adversary model.

8.4.5 Comparison of Fault-Injection Mechanisms

The previous sections illustrate that the introduced adversary models can describe the different
fault injection mechanisms in a finer-grained fashion. A distinct differentiation between the
available fault injection mechanisms based on the instantiated ζ is easily possible. It further
demonstrates that the laser fault model ζ(n, τnang15, mc∞) is the most precise but also the
most complex instantiation. Assuming that the same n is selected, a design which is evaluated
in ζ(n, τnang15, mc∞) and reports no effective faults, will also report no effective faults in the
remaining adversary models. The adversary model ζ(n, τnang15, mc∞) covers all set and reset
faults in combinational and memory gates which automatically includes all faults modeled by
the adversary models for clock glitches, voltage glitches, and EMPs (again assuming the same
n). However, this does not hold vice versa so that a design, which for example is evaluated and
secure under the EM fault model ζ(n, τsr, m), is not necessarily secure against attackers using
optical-based fault injection mechanisms.

8.5 Case Study: Integration into VerFI

In this section, we demonstrate the practical application of our new adversary model while
integrating it into the state-of-the-art verification tool for fault injections VerFI [AWMN20].
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VerFI. VerFI is an open-source tool to verify hardware countermeasures against fault injection
attacks presented at HOST in 2019 [AWMN20]. The tool works on netlist level and can be
configured via a simulation file. This file contains information about the plaintext and key,
which should be used for the analysis, different parameters that are cipher related (e.g., duration
in clock cycles, port names, end condition), and parameters to define the fault injection. Given
that, one can precisely specify the submodules which should be faulted, how many faults should
be injected, and which fault injection type should be considered (toggle, stuck-at). Based on
this information, VerFI analyzes the given circuit and reports the number of non-detected faults,
detected faults, ineffective faults, and the total number of evaluated faults.

Adjustments to VerFI. In order to demonstrate the application of our proposed adversary
model, we adapted VerFI such that it was able to work with user-defined fault mappings5.
Therefore, we modified the library-file and extended the parameter list for each gate by fault
mappings which are specified in form of Boolean expressions. Consequently, we adapted the
parsing function which reads in the gates from the library-file and stores the corresponding
parameters. The required expressions describing the fault mappings are evaluated and stored
in LUTs which are used in the fault simulation step to generate the outputs of the faulty gates.
Within this fault simulation step each valid combination of fault mappings for a set of target
gates (gates in which faults are currently injected) is analyzed before the next set is determined.

Analyzing a protected LED-64 implementation. To demonstrate the evaluation of a pro-
tected block cipher, we selected an implementation of the lightweight block cipher LED-64
[GPPR11] taken from Impeccable Circuits [AMR+20]. The authors published a list of hard-
ware implementations of common block ciphers where each cipher is implemented with different
levels of protection6. We decided to use the LED-64 implementation where each state nibble
is protected by four bits of redundancy. We constrained the allowed area for fault injections
to the xor-gates adding the multiplication results in MixColumns for one resulting nibble and
to the following 4-bit state register in the data path as well as in the redundancy. Altogether,
the total number of target gates consists of 32 xor-gates and eight registers. The target circuit
was analyzed for n = 4 while injecting faults in clock cycle 31 only. The plaintext and key were
fixed to the values

p = 0x0123456789ABCDEF k = 0xDEADBEEFDEADBEEF

for all following analyses. Hence, compared to the previous examples, we performed a non-
exhaustive evaluation with respect to the inputs.

Table 8.4 summarizes the evaluation results provided by the adjusted version of VerFI7. The
upper three rows report the results for the fault models which were originally provided with
VerFI (toggle, stuck-at-1, stuck-at-0) instantiated with our adversary model. The number of
fault scenarios is the same for all three cases and is given by ∑4

k=1
(32+8

k

)
since setting n = 4

also includes fault injections with n < 4.
5The adapted version of VerFI can be found at https://nextcloud.seceng.rub.de/index.php/s/

7ZmqynqYNnfPLw8.
6https://github.com/emsec/ImpeccableCircuits
7Detailed results (for n < 4) can be found in the appendix in Section 15.1.
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Table 8.4: Fault analysis of LED-64 using VerFI. The top three rows are results produced
by using the proposed fault models in VerFI. The lower three rows report results
obtained from an adapted version of VerFI reflecting our generic adversary model.
Fault Model Detected Non-detected Ineffective Scenarios (sum)

ζ(4, τbf , mc∞) 97 428 3 598 1 064 102 090
ζ(4, τs, mc∞) 96 660 497 4 933 102 090
ζ(4, τr, mc∞) 87 372 49 14 669 102 090

ζ(4, τsr, c7) 1 520 14 162 1 696
ζ(4, τsr, m) 1 520 14 162 1 696

ζ(4, τnang15, mc∞) 14 383 842 72 462 1 245 232 15 701 536

The lower three rows summarize the VerFI report for adversary models instantiated for clock
and voltage glitches, electromagnetic pulses, and laser fault injections, respectively. The number
of fault scenarios for the clock glitch model results in ∑4

k=1
(8

k

)
· 2k because we selected for the

location parameter l = c7 which includes all combinational gates with connected outputs to the
considered registers. For each combination of k target gates, there are 2k possibilities to combine
set and reset faults. Switching to ζ(4, τsr, m) (i.e., modeling faults caused by electromagnetic
pulses), results in ∑4

k=1
(8

k

)
· 2k fault scenarios while only 14 scenarios are not-detected. This

number depends on the underlying linear code which in this case has 14 valid codewords with
a Hamming weight of four. Evaluating the countermeasure based on the adversary model
describing laser fault injections, leads to the largest number of fault scenarios. The number is
given by

4∑
k=1

k∑
j=0

(
32
j

)
·
(

8
k − j

)
· 2(k+j).

The first binomial coefficient describes the number of faults occurring in the combinational gates
while the second binomial coefficient determines the number of registers that are faulted. The
last term determines the combinations of fault mappings that exist for one combination of k
target gates. However, evaluating the target countermeasure, results in the largest number of
non-detected faults which mainly is caused by the increased number of fault scenarios.

We showed that our approach provides the possibility of instantiating a more fine-grained
fault model. A target design can be analyzed under different adversary models which are
tailored to the most common fault injection mechanisms. Additionally, using these results to
compare the security to other protection schemes, is much more consistent and straightforward
to accomplish.

8.6 Discussion

After all, we briefly summarize and discuss the benefits of a unified adversary model to describe
fault injection attacks. First, using a unified fault adversary model allows a distinct evaluation
of developed countermeasures and protection mechanisms under the same assumptions. Second,
while our adversary model considers the physical behavior of actual fault injection mechanisms,
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it is also designed to work as generic and simple as possible. This makes an application easy
to use and allows a straightforward instantiation in practice. Third, the application of a con-
solidated fault adversary model enables the possibility to compare proposed countermeasures
based on the same assumptions and limitations with respect to the attacker. In this sense, our
model strives to fulfill these criteria since only a limited number of parameters are necessary to
describe and model the adversary in a very compact way. In essence, the user directly conceives
the properties of the instantiated adversary model and can compare it to evaluations of pro-
tection schemes under a similar adversary model which makes it highly expressiveness. Fourth,
due to the generic form, the adversary model can naturally be adapted to other technologies
and hardware primitives (e.g., different memory technologies). With this property the model
achieves a high transferability being able to customize it to the given circumstances.

Expansion to More Advanced Logic Gates. Even given that we limited our fault model in
Section 8.3 to unary and binary logic gates, it could be easily and without any restrictions
expanded to more advanced logic gates. This includes standard logic gates (e.g., and, or) with
more than two inputs and optimized gates like and-or-invert. To expand our adversary model,
the user defines additional sets containing all functions with p-bit inputs with p > 2. The
corresponding set would then contain 2(2p) different functions that would transform the p-bit
input to a 1-bit output. Given the additional sets of functions, the used mappings in τ need to
be adapted in order to accurately describe the occurring faults.

Limitations of VerFI. Despite the fact that we were able to integrate our adversary model
into the fault verification tool VerFI, we see some limitations with respect to the evaluation
results. In VerFI, the user can just evaluate the given design by fixing the plaintext and key
to a constant value. This covers not all fault scenarios and could lead to false positives when
evaluating a countermeasure against fault injection attacks. Additionally, beyond the practical
evaluation using VerFI of this work we see further potential for performance improvements in
order to evaluate larger parts of the target design within the same run.

Comparison to Existing Models. The most common and already existing fault models are
restricted to toggle, stuck-at-1, and stuck-at-0 faults (in our model we call them bit-flip, set, and
reset faults, respectively). Compared to these approaches our model can analyze fault injections
in digital circuits more precisely and in more detail incorporating the physical behavior of the
different fault injection mechanisms. However, an argument against our model could be that
a user of a fault verification tool would still cover all worst-case fault scenarios by applying
a bit-flip model resulting in a lower number of combinations of fault mappings that need to
be tested. The bit-flip model comes with the disadvantage of insufficient precision regarding
the description of fault injections. First, it is not possible to distinguish between different fault
injection mechanisms. Second, faults in some hardware primitives cannot be accurately modeled
like the NOR flash memory mentioned in Section 8.3.2. Third, besides these arguments, our
proposed fault adversary model enables the user to precisely reconstruct the cause of failures in
a developed countermeasure.

Limitations of Our Proposed Model. Despite these clear advantages, our adversary model
is not reflecting the parameters of the technology node and the physical layout of integrated
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circuits. Since the model considers hardware designs on netlist level, a detailed integration of
technology-related parameters is not (yet) possible. Additionally, place-and-route information
cannot be used in the evaluation phase resulting in simplified assumptions for e.g., critical paths.

Practical Application. Eventually, we discuss the practical application of the proposed ad-
versary model. Particularly, our model is applicable for robustness evaluation, i.e., evaluating
the correctness and effectiveness of countermeasures against FIA. Additionally, our approach
enables analysis of circuits in a setting with precise adversarial control over the fault injection,
i.e., we do not consider random faults and hazards due to environmental effects and condi-
tions (usually considered during safety evaluation in contrast to security analysis). Hence, our
presented fault model first and foremost supports the constructive development of robust FIA
countermeasures. In particular, the integration into verification tools can assist in correctly,
effectively, and efficiently designing protected designs (e.g., [RSS+21]).

The benefits of this approach are manifold. First, analyzing a design requires no setup or
expensive equipment (see for example the fault injection setups from Riscure [Ris21] or NewAE
[Inc]). Second, no prototyping is required since the circuit under test can be evaluated on a gate-
level netlist. Third, the development process is faster, cheaper and less error-prone. Fourth, the
designer does not need deep expertise in fault injection setups. Altogether, the application of
our proposed adversary model can assist designers in early stages when implementing hardware
countermeasures against fault injection attacks.

8.7 Conclusion
By reviewing and summarizing existing fault injection mechanisms developed over the last
two decades, we created a basic understanding of the physical behavior appearing on the ac-
tual hardware when attacking cryptographic implementations. Subsequently, we introduced a
generic and abstract (but simple) fault adversary model which can freely be parametrized by
selecting three parameters describing the number of faults, the fault types, and the fault loca-
tions. Given that, we connected the practical fault injection mechanisms with the theoretically
introduced fault adversary model and accurately described how it has to be instantiated to
provide a perfect mapping between theory and practice. This connection gave us the opportu-
nity to demonstrate the application of the adversary models – instantiated to model different
attack mechanisms – to a practical case study of a protected design of the lightweight cipher
LED-64. This case study was accomplished by extending the fault verification tool VerFI by
our proposed adversary model. Eventually, we discussed the advantages and benefits of using
our consolidated fault adversary model and limitations in existing state-of-the-art verification
tools.
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Chapter 9

Security Notions for Secure Hardware Gadgets

A well-established countermeasure against SCA is to replace insecure gates in a tar-
get digital logic circuit with secure and composable gadgets. These gadgets usually
fulfill specific composability notions ensuring to maintain their security properties
even in composed circuits. Interestingly, these security guarantees were mainly in-
vestigated in the context of side-channel security while ignoring FIA for hardware
implementations.
In this chapter, we close this gap by transferring existing fault composability notions
for software designs to hardware. Afterwards, we introduce a new composability no-
tion for fault-resistant gadgets inspired by the SCA notion PINI.
Moreover, we push the definition of composability even further by addressing secu-
rity notions for combined attacks. Again, existing literature only provides combined
security notions for software based on the PNI and PSNI notions. We slightly adapt
these notions by transferring them to hardware implementations. Additionally, we
present two new PINI influenced combined composability notions and provide corre-
sponding practical gadget instantiations.
The contributions in this chapter are extracted from two collaborations with Jakob
Feldtkeller, Pascal Sasdrich, and Tim Güneysu [RFSG22, FRSG22]. More pre-
cisely, this chapter covers theoretical background and important definitions which
are mainly contributions from Jakob Feldtkeller and not part of the contributions of
the author of this thesis. To this end, we omit all proofs and refer the interested
reader to the original works [RFSG22, FRSG22]. Even though, we still present the
definitions and theorems in this chapter since they are important for the remainder
of this thesis.
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9.1 Introduction

Masking is seen as one of the most promising countermeasures against SCA. Over the last 20
years, many countermeasures based on Boolean masking have been proposed, e.g., threshold
implementation. However, protecting arbitrary functions against SCA using threshold imple-
mentation is not an easy task – especially not for non-linear functions. To this end, the research
community focused on designing and developing smaller building blocks – gadgets – which can
be used to replace gates in insecure circuits generating secure designs.

However, the security guarantees provided by the (glitch-extended) d-probing model are not
sufficient for secure compositions. Hence, dedicated composability notions have been introduced
which restrict leakage propagation to a gadget’s boundaries. For this, Barthe et al. proposed
PNI [BBD+15] and PSNI [BBD+16] while Cassiers and Standaert presented PINI [CS20].

Surprisingly, the research mainly focused on composability notions for designing protected cir-
cuits against SCA while mostly ignoring countermeasures against FIA. Nevertheless, Dhooghe
and Nikova presented first composability notions for composable gadgets providing fault se-
curity in [DN20] targeting software implementations. Inspired by the ideas of PNI and PSNI,
they introduced the two notions Non-Accumulation (NA) and Strong Non-Accumulation (SNA)
ensuring that faults do not propagate and spread uncontrolled.

In the same work, Dhooghe and Nikova proposed the first composability notions for combined
security, i.e., designs that are protected against combined attacks using SCA and FIA. Again,
based on the principles of PNI and PSNI, they introduce Non-Interference Non-Accumulative
(NINA), Strong Non-Interference Non-Accumulation (SNINA), and Strong Independent Non-
Interference Non-Accumulation (SININA). While NINA only considers attacks against SCA
or FIA but no use of both attack vectors combined, SNINA incorporates the effects of fault
injections on the side-channel security. Eventually, SININA covers the composition of gadgets
where the security against fault injections and side-channel attacks is provided independently,
i.e., injected faults do not have an influence on the side-channel security.

9.1.1 Contribution

In this chapter, we first recap the fault composability notions introduced by Dhooghe and
Nikova [DN20] and transfer them to hardware implementations. Please note, for the sake of
consistent naming, we rename NA to Fault Non-Interference (FNI) and SNA to Fault Strong
Non-Interference (FSNI). Additionally, we present a novel fault composability notion inspired
by PINI called Fault-Isolating Non-Interference (FINI).

Moreover, we address composability notions for gadgets against Combined Analysis (CA).
Again, we first review the software security notions from [DN20] by embedding them in a
hardware context. To this end, we consider gadgets with multiple-output functions and give for
the first time formal security arguments for the impact of faulty randomness. Eventually, we
propose two new combined composability notions based on the design principles of PINI. Using
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these new notions, we also present corresponding hardware gadgets for protection for arbitrary
security orders.

9.2 Adversary Models
In this section, we briefly recapitulate and state our adversary models in the context of side-
channel, fault-injection, and combined security. Additionally, we define probing, fault, and
combined security in the context of hardware implementations.

9.2.1 Side-Channel Security

In this section, we introduce our side-channel adversary model and corresponding probing se-
curity.

Adversary Model

An adversary Ap in the context of stateless probing security [ISW03], is given access to a
circuit C that can be invoked multiple times. Prior to each invocation, Ap can select up to d
wires of C, so called probes. The view of the adversary Ap is defined by the glitch-extended
probes [FGP+18], i.e., by the exact values of all registers a probed wire directly depends on1.
Further, a probe propagates into another wire whenever this wire is required for simulation of
the probe [CS20]. For more details, please see Section 2.1.4.

Probing Security

In this context, probing security [ISW03] is defined as the view of the adversary Ap always being
independent of any secret, i.e., all probes can be simulated without any knowledge apart from the
structure of C. Please note, that probing security does not capture horizontal attacks [BCPZ16].

9.2.2 Fault-Injection Security

Now, we present our fault-injection adversary model and define fault security in detail.

Adversary Model

An adversary Af in the context of fault security (more details below) is given access to a circuit
C that can be invoked multiple times. Prior to each invocation, Af selects up to k gates in C
and a fault type from the set of allowed fault types T for each gate. Faults are modeled by
transforming the selected gates to a different gate type which is specified by the fault type t ∈ T
(cf. Chapter 8). Typical fault types are set, reset (replacing the targeted gate with a constant
one or zero, respectively), or bit flips (inversion of the gate). A fault propagates into another
wire whenever the value of the wire is influenced by the fault. The view of the adversary Af

is defined by the abort signal (if existent) and the correctness of the outputs. Correctness is
defined by equivalence to the golden circuit, which is a fault-free version of C.

1Glitches are physical defaults that occur when there are timing differences in the propagation path of signals.
Hence, providing Ap with all stable inputs of a probed wire captures all possible leakage via glitches [FGP+18].
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Figure 9.1: Fault model and golden circuits for general circuits (a to c) and shared circuits in
particular (d to f).

To this end, specific faults are modeled by replacing the faulted gate with a different gate
defined by the introduced fault. Afterwards, the fault propagation can be identified and effective
and ineffective faults be distinguished by comparing the faulty circuit model to a fault-free circuit
model, the so called golden circuit. We illustrate the used fault model in Figure 9.1(a-c).

Ecoding Circuits for Fault Protection

In Section 2.2.4, we introduce countermeasures against FIA. For the definition of composable
gadgets, we rely on redundancy in information and define more formally an encoding that
transforms values from the unprotected domain to the protected domain.

Definition 30 (Value Encoding for linear ECCs). Let C be a linear code as defined in Defi-
nition 9 for q = 2. Further, let E : Fm

2 7→ Fn
2 be a deterministic encode function following the

encoding mechanism of the linear code, and D : Fn
2 7→ Fm

2 be a deterministic decode function
that receives a codeword c and computes the corresponding message m or aborts.

We define an encoded circuit as a digital circuit that operates on values secured by information
redundancy of linear codes. In accordance with Definition 32 and similar to Definition 5 we
do not consider the encoding and decoding as part of the circuit, as faulting them inherently
violates the definition of fault security.

Definition 31 (Encoded Circuit). An encoded circuit CC
F for a function F : Fm·ℓ

2 7→ Fm·ℓ′
2

and a linear code C is a deterministic circuit realizing a function FC : Fn·ℓ
2 7→ Fn·ℓ′

2 , such that
∀x ∈ Fm·ℓ

2 it holds that FC(E(x)) ∈ C and F(x) = D(FC(E(x))) ( functional correctness).

Fault Security

Recently, Dhooghe and Nikova proposed a definition for active security [DN20] where an ad-
versary is allowed to inject up to k faults into a circuit C at arbitrary – but prior to each
invocation selected – locations. Then active security, in terms of correctness, is given iff for all
fault combinations C either aborts or outputs a correct result, i.e., equivalence with the golden
circuit. Here, the view of the adversary contains the (optional) abort signal and the correctness
of the result. Please note, that to provide security against some attacks (e.g., SIFA [DEK+18])
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no abort signal is allowed. We extend this definition with the adversary model from Chapter 8
by explicitly requiring a protected decoding algorithm for error detection or correction2.

When analyzing gadgets for secure composability in the presence of fault injections (e.g.,
gadgets from [DN20]), we further extend the locations L of valid fault injections to additionally
consider faulty inputs. This includes faults in data inputs (due to faulty outputs of other
gadgets) as well as randomness gates.

Definition 32 ((k, t, l)-Fault Security). Let GD be a gadget realizing a decoding function D such
that – given an input with at most k faults and an abort signal – GD either aborts or outputs a
correct result. A circuit C together with a decoding GD is (k, t, l)-fault secure iff for any set of
up to k faults of type t injected in gates of type l in C, the concatenation GD(C(·)) either aborts
or outputs a result equal to the golden circuit of C.

The final decoding gadget is necessary for both practicality and security. It is practically
impossible to guarantee functional correctness at the output with an unrestricted adversary, as
they can always fault the output directly. For security, the output behavior must be independent
of any sensitive information. In the following, we write k-fault security when we do not restrict
the fault type and fault location.

9.2.3 Combined Security
Eventually, we introduce our adversary model in the context of combined attacks and define
combined security. Moreover, we provide further details about a definition of a golden circuit.

Adversary Model

An adversary Ac in the context of combined security is the combination of the adversaries Ap

and Af . Hence, Ac is given access to a circuit C that can be invoked multiple times and prior
to each invocation Ac can select up to d wires of C that are probed and up to k gates of C
that are faulted according to a fault type t ∈ T . The view of the adversary Ac is defined by the
glitch-extended probes, the abort signal (if existent), and the correctness of the outputs of the
concatenation GD(C(·)), where GD is a circuit realizing a fault detection or correction mechanism
for up to k faults. Correctness is again defined by equivalence to the golden circuit of C. Here,
however, the golden circuit of C incorporates the faults targeting randomness gates g ∈ Grand,
i.e., g ∈ Grand are replaced by some g′ according to the fault model (see below for more details).
Please note, that faulting some gates gives Ac knowledge about the changed distribution of
the dependent values, however, not necessarily the concrete values. This knowledge of changed
distributions can cause additional probes that need to be simulated when the independence
property of an intermediate Boolean sharing is violated. In general, value distributions are
sufficient for simulation and the changed distribution is given to Ac for faulty gadget inputs.

Combined Security

Security in the combined adversary and security model has to amalgamate the definitions of
probing security and fault security, while additionally considering any reciprocal effects. For

2[DN20] implicitly requires a protected decode gadget as well, however, we explicitly include it into the
definition to make this requirement more transparent
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this, we adopt and refine the formal notions in [DN20], considering the extended fault model
from Chapter 8 and explicit decoding functions. Again, all probes and faults are selected prior
to each invocation of the circuit and the view of the adversary is defined by the probed values,
the (optional) abort signal, and the correctness of the result of the concatenation GD(C(·)),
where GD is a circuit realizing an error detection or error correction mechanism for up to k
faults.

Definition 33 ((d, k, t, l)-Combined Security). Let GD be a gadget realizing a decoding function
D, such that, given an input with at most k faults and an abort signal, GD either aborts or
outputs a corrected result. A circuit C together with a decoding GD is (d, k, t, l)-combined secure
iff for any set of up to k faults of type t injected on gates of type l in C, and any set of up to d
probes placed on wires in C the following holds:

Privacy: The abort signal and the probes can be simulated without access to any wire
of C.

Correctness: The concatenation GD(C(·)) either aborts or outputs a result equal to the
golden circuit of C.

In the following, we write (d, k)-combined security when we do not restrict the fault type and
location. Further, we emphasize the adversarial knowledge on faults, since injecting faults is
strongly linked to placing probes [Cla07, SMC21].

Remark 1 (Adversarial Knowledge on Faults). A fault is known iff the adversary exactly learns
the targeted gate, and the fault type t, i.e., the misbehavior caused by the fault.

With this, an adversary additionally learns the following details: (i) the location of propa-
gated faults, (ii) the distribution of the faults under a chosen input distribution, and (iii) the
probability of fault occurrences under a chosen input distribution. Still, the adversary does not
necessarily learn the exact values (but only distributions). This is also the case when the exact
position of the fault injection is not modeled, e.g., in the case of faulty inputs (see below).

Golden Circuit of Probabilistic Circuits

Accurately modeling CA requires a precise notion of fault propagation and misbehavior in a
shared circuit. Unfortunately, this is a non-trivial task as, on the one hand, there are multiple
valid Boolean sharings for one value, such that faults can be effective in the traditional meaning
(i.e., have a different value than the fault-free circuit) but still be functionally correct, which
is especially true for faults injected in generated randomness. On the other hand, if we have
a faulty sharing, then it is hard to precisely determine the faulty shares, requiring a precise
propagation of faults. As a consequence, we introduce an adjusted definition for the golden
(fault-free) circuit of a shared circuit, where, if faulted, the randomness-generation gates are
already replaced, as shown in Figure 9.1(d-f). Intuitively, this is correct as the actual value of
randomness cannot have an impact on the functional correctness.

Definition 34 (Golden Circuit). The golden circuit Cgolden of a shared circuit C under a set
of faults F is the circuit C transformed by the faults on generated randomness, i.e., {f ∈ F |
f targets g ∈ Grand}.
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In the following, we show that Definition 34 is meaningful and sound, since faults in random-
ness gates do not affect functional correctness and are at most equivalent to a probe for probing
security of a circuit C.

Unaltered Randomness Distribution. We first start by showing that all faults in randomness
gates that do not change the randomness distributions, e.g., bit-flips on uniformly drawn ran-
domness, can be ignored without further impacting functional correctness, probing security, or
simulation-based composability notions.
Theorem 3. Faulting a gate g ∈ Grand, generating some randomness rg, has no effect on func-
tional correctness, probing security, or simulation-based composability of C if the randomness
distribution of rg is not changed.

Altered Randomness Distribution. Next, we show that faults injected in a randomness gate
which alter the randomness distribution, e.g., set or reset faults, can be replaced by a probe
without impacting functional correctness, probing security, or simulation-based composability
notions. This further implies that propagation of faulty randomness does not affect probing
security or composability (besides providing additional probes). For this, we first provide a
lemma claiming that a value with a biased distribution cannot mask some other value before
we show the actual claim in Theorem 4.
Lemma 3. Let x, y ∈ F2 where x has a biased distribution and the distributions of x and y are
independent of each other. Further, let ◦ be a binary operator over F2. Then the distribution of
x ◦ y and y ◦ x is dependent on the distribution of y.

Theorem 4. Faulting a gate g ∈ Grand, generating some randomness rg, is equivalent to plac-
ing a probe on rg with respect to functional correctness, probing security, or simulation-based
composability of C if the randomness distribution of rg is changed.

Together, Theorems 3 and 4 show that faulting some randomness has no impact on correctness
and affects security at most in equivalence to a probe. As probes (backward) and fault (forwards)
propagation are converse, fault and probing security is not impacted when defining the golden
circuit in replacing/modifying randomness generating gates. Hence, our definition of the golden
circuit is sound.

9.3 Fault Non-Interference
Dhooghe and Nikova present security notions for composable injection-secure gadgets [DN20].
Inspired by the PNI property, the FNI property ensures that each intermediate fault only
propagates to at most a single output. However, this is relaxed by also allowing abortion of
computations upon fault detection. Please note, this definition is equal to the definition of Non-
Accumulation [DN20], however, with an explicit requirement for the existence of an appropriate
decoding gadget.
Definition 35 (Fault Non-Interference [DN20]). A gadget G is k-FNI iff for any set of k′ ≤ k
faults at inputs and injected on gates in G, the gadget either aborts or gives an output with at
most k′ bit faults and there exists a decoding gadget GD, such that given an input with at most
k faulty inputs and an abort signal, GD either aborts or outputs a correct result.
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9.4 Fault Strong Non-Interference

Analogous to PSNI tightening PNI, the notion of FSNI extends FNI and ensures full compos-
ability in distinguishing input and intermediate faults. Again, this definition is equal to the
definition of Strong Non-Accumulation [DN20], however, with an explicit requirement for the
existence of an appropriate decoding gadget.

Definition 36 (Fault Strong Non-Interference [DN20]). A gadget G is k-FSNI iff for any set
of k1 faulty inputs and every set of k2 faults injected in gates of G, with k1 + k2 ≤ k, the gadget
either aborts or gives an output with at most k2 bit faults and there exists a decoding gadget GD,
such that given an input with at most k faulty inputs and an abort signal, GD either aborts or
outputs a correct result.

Both k-FNI and k-FSNI imply k-fault security given a decoding gadget GD that can detect
or correct k faults. In addition, it holds that the composition of two FSNI gadgets is FSNI
again [DN20].

9.5 Fault-Isolating Non-Interference

When considering circuits, hardened against fault attacks by replication, we can observe that
each injected fault can only propagate within the affected redundant part. Then, having more
replications than allowed adversarial faults (maximum fault cardinality) can ensure the desired
level of fault security. In addition, we observe that this property is inherently composable as
long as the isolation of different redundant parts remains intact. Breaking this down to the core
principles, namely the isolation of domains with regard to faults, replication reveals a strong
similarity with PINI [CS20]. While PINI isolates probe propagation within share domains,
replication isolates fault propagation within redundancy domains.

Definition 37 (Redundancy Domain). The redundancy domain ℓ of a redundant circuit is
defined by all gates and wires with replication index ℓ.

In order to generalize the core principle of replication and allow a formal treatment, we now
introduce the notion of Fault-Isolating Non-Interference. FINI is the dual to PINI in that it
introduces redundancy domains and requires them to be isolated in terms of fault propagation
(as illustrated in Figure 9.2). Then, assuming sufficient redundancy domains, detection or
correction is always possible by comparing the values in different redundancy domains, regardless
of the fault propagation within a single redundancy domain.

In this work, we focus on a realization of FINI via replication since it is an obvious match
and transports the ideas and principles more easily. However, we intentionally construct FINI
as a general notion that can be applied to other redundancy-based countermeasures with an
appropriate definition of redundancy domains. When considering replication, the redundancy
domain is defined by the replication index, i.e., all values with replication index ℓ belong to the
redundancy domain ℓ.

As FINI, similar to PINI, introduces an isolation between different redundancy domains
instead of an isolation between gadgets, faults at inputs are allowed to propagate to outputs of
the same redundancy domain. Further, faults injected inside the gadget are restricted to only
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ℓ = 0
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Figure 9.2: Isolation of fault propagation within redundancy domains.

propagate to outputs belonging to a single redundancy domain. We now give a more formal
definition in Definition 38.

Definition 38 (Fault-Isolating Non-Interference). A gadget G is k-FINI iff the following holds:

(i) For any set F1 of k1 faulty redundancy domains and every set of k2 faults injected in gates
of G, with k1 + k2 ≤ k, there exists a set of at most k2 redundancy domains F2, such that
the gadget either aborts or gives an output where all values, except those belonging to the
redundancy domains F1 ∪ F2, are equal to the values of the golden circuit.

(ii) There exists a decoding gadget GD, such that given an input with at most k faulty redun-
dancy domains and an abort signal, GD either aborts or outputs a correct result.

9.5.1 FINI Security and Composition
FINI formalizes the intuitive security and compositional properties of replication codes. Here,
the main argument for fault security comes from the fact that at most k redundancy domains
can be manipulated while up to k manipulated redundancy domains can be detected or corrected
by the corresponding decoding function.

Theorem 5. A k-FINI gadget is k-fault secure.

Now we argue that an arbitrary composition of FINI gadgets results in a (larger) FINI gadget.
Again, this follows from the properties of replication codes, which introduce a natural isolation
of different replications, i.e., a fault injected to one redundancy domain cannot propagate to
another redundancy domain. This ensures that the upper bound of faulty redundancy domains
remains unchanged after composition.

Theorem 6. The composition of two k-FINI gadgets is k-FINI.

Remark 2. The connection of gadgets has to be consistent, i.e., redundancy domain ℓ of a
gadget is connected only to redundancy domain ℓ of subsequent gadgets. However, we can
permute the index of domains when necessary.

9.5.2 FINI Gadgets
The construction of FINI gadgets for combinational gates follows a simple method: replication
of the gate. By applying the compositional property of Theorem 6, the construction method
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Algorithm 6 FINI-secure correction gadget.
1: procedure CorrectF INI(a0, . . . , an−1)
2: for ℓ = 0 to n− 1 do
3: bℓ ← maj(a0, . . . , an−1)
4: end for
5: return b0, . . . , bn−1

6: end procedure

can be generalized to all combinational or sequential circuits (which also includes the simple
case of a single gate).

Theorem 7. The (k + 1)-times replication of any circuit is k-FINI.

In Theorem 7 we instantiate the number of replications with k + 1, which is the minimum
number required for fault detection via comparison. It is trivial to see that the same claim
is true for implementations with more than k + 1 replications, as the comparison still detects
faulty values. Similarly, when using at least 2k + 1 replications, we can use a majority function
as decoding gadget additionally resulting in error correction.

The only gadgets that cannot be trivially constructed according to Theorem 7 are gadgets
that combine different redundancy domains. The most prominent examples of this category
are detection and correction modules. Here, the logic for detection/correction needs to be
replicated for each redundancy domain, such that faults injected into this logic only affect
one redundancy domain at the output [AMR+20, SRM20]. We show an example for this in
Algorithm 6 considering a correction module3.

9.6 Combined Non-Interference
In the context of CA, it is again useful to define notions of secure composition to reduce the
analysis complexity of gadgets. In this, we build upon the work of [DN20] by transferring their
definitions to the glitch-extended probing model along with necessary refinements. To this end,
we use Remark 1 to explicitly specify the information access of a simulator to mimic the view
of the adversary. Similarly, we use Definition 34, to overcome the fact that faulting randomness
can lead to more faults at the gadget output than allowed.

Definition 39 ((d, k)-Combined Non-Interference). A gadget G is (d, k)-Combined Non-
Interference (CNI) if for any set of k1 faulty inputs, k2 faults injected on gates in G, and
d′ probes, such that d′ + k1 + k2 ≤ d and k1 + k2 ≤ k the following holds:

Privacy: The probes and the abort signal can be simulated with d′ +k2 shares of each
input and knowledge of the faults both injected and on inputs.

Correctness: The gadget either aborts or outputs a result with at most k1 + k2 bit faults
compared to the golden circuit and there exists a decoding gadget GD, such
that given an input with at most k faulty inputs and an abort signal, GD

either aborts or outputs a correct result.
3The actual implementation of the function maj is irrelevant for the FINI property.
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Specifically, CNI is a combination of PNI with FNI, however, in contrast to the NINA defini-
tion in [DN20], we do not add k1 to the number of allowed input shares for simulation, to clarify
that faulty inputs must not reveal additional shares. Hence, we restrict the possible leakage
through faulty inputs to the knowledge an adversary can have about those inputs according
to Remark 1, i.e., the changed distribution under the faults. This ensures that a fault can
only leak input shares locally and not by probe propagation from other gadgets. In addition,
we refined the definition of NINA by giving a formal description of what a correct output is,
specifically comparing the output of the gadget with the output of the golden circuit as defined
in Definition 34. Those changes also apply to the other composability notions, given below, in
comparison with their counterpart from [DN20]. Please note, that knowledge about the faults
according to Remark 1 is enough for simulation as a simulator requires only distributions and
not concrete values.

9.7 Combined Strong Non-Interference
Similar to the underlying definitions, CNI is not sufficient for arbitrary compositions in the
context of CA. Hence, Combined Strong Non-Interference (CSNI) is defined as the combination
of PSNI and FSNI (similar to SNINA in [DN20]).

Definition 40 ((d, k)-Combined Strong Non-Interference). A gadget G is (d, k)-CSNI iff for
any set of k1 faulty inputs, k2 faults injected on gates in G, d1 probes placed on intermediate
values, and up to d2 probes placed on shares of each output, such that d1 + d2 + k1 + k2 ≤ d and
k1 + k2 ≤ k, the following holds:

Privacy: The probes and the abort signal can be simulated with d1 + k2 shares of
each input and knowledge of the faults both injected and on inputs.

Correctness: The gadget either aborts or outputs a result with at most k2 bit faults com-
pared to the golden circuit and there exists a decoding gadget GD, such that
given an input with at most k faulty inputs and an abort signal, GD either
aborts or outputs a correct result.

We now show that CSNI gadgets, according to our refined definitions, still can be composed
to larger circuits without degrading combined security. We give illustrative examples of valid
and invalid compositions in Figure 9.3.

Theorem 8. The composition of two (d, k)-CSNI gadgets, that is loop-free and where no output
of one gadget is used multiple times as input to the other gadget, is (d, k)-CSNI.

9.8 Indpendet Combined Strong Non-Interference
While CSNI supports arbitrary composition, as shown by Theorem 8, the maximum number
of allowed probes and faults is not independent. Indpendet Combined Strong Non-Interference
(ICSNI), however, is designed to allow independent security levels for probing and injection
attacks, without losing the notion of composition (similar to SININA in [DN20]).

Definition 41 ((d, k)-Indpendet Combined Strong Non-Interference). A gadget G is (d, k)-
ICSNI if for any set of k1 faulty inputs, k2 faults injected on gates in G, d1 probes placed on
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G1
G2

G3

(a) Sequential composition

G1

G2
G3

(b) Parallel composition

G1
G2

G3

(c) Composition with common input

G1
G2

(d) Composition with loop

G1
G2

(e) Output of G1 is used multiple times

Figure 9.3: Valid (a to c) and invalid (d and e) examples of gadget compositions according to
Theorem 8 and Theorem 9. Example (d) is invalid as it contains a loop and (e) is
invalid as the output of G1 is used two times as input to G2.

intermediate values, and up to d2 probes placed on shares of each output, such that d1 + d2 ≤ d
and k1 + k2 ≤ k, the following holds:

Privacy: The probes can be simulated with d1 shares of each input and knowledge of
the faults both injected and on inputs.

Correctness: The gadget outputs a result with at most k2 bit faults compared to the golden
circuit.

Theorem 9. The composition of two (d, k)-ICSNI gadgets, that is loop-free and where no output
of one gadget is used multiple times as input to the other gadget, is (d, k)-ICSNI.

9.9 Combined-Isolating Non-Interference
Combining both PINI and FINI is an obvious step to construct a composability notation for
CA that is based on the isolation of domains. However, due to reciprocal effects and the dual
nature of faults, which can both manipulate internal values and serve as a probe [Cla07, SMC21],
it is insufficient to isolate faults in redundancy domains (FINI) and probes in share domains
(PINI) and a more complex notion is required. Those reciprocal effects can be easily seen when
considering any HPC gadget where some randomness is faulted to a known value which nullifies
the provided security guarantees. Similarly, with known faults, identifying correct guesses of
shares becomes possible. Consider the example illustrated in Figure 9.4, where a gadget G
with three shares and three redundancy domains is connected to a detection module. Further,
assume that all shares in the first redundancy domain are faulty with a known and biased
distribution (e.g., set/reset), representing an implicit guess on those shares. Then the error
flag leaks information about all faulted shares, since it indicates the correctness of the guess,
regardless of how the detection module is realized.

As a result, the domain definition for fault propagation in the CA setting has to be more
restrictive than given pure fault attacks. In particular, faults are restricted to propagate only
in the combination of both share and redundancy domain. This ensures that a fault can leak
at most one share domain even in circumstances where it can be used to learn values (similar
to placing a probe).

116



9.9 Combined-Isolating Non-Interference

G Det

ℓ = 0

ℓ = 1

ℓ = 2

error-flag

E
F0

⊸P0

Figure 9.4: Insecure fault propagation in combined attack model. If all shares within one re-
dundancy domain are faulty with a known biased distribution then the error flag
indicates whether the faults represent a valid guess of the shares.

Definition 42 (Shared Redundancy Domain). The Shared Redundancy Domain (SRD) (i, ℓ) of
a replicated and shared circuit is defined by all gates and wires with share index i and replication
index ℓ.

Here, in contrast to faults, it is not necessary to further restrict the propagation of probes.
On the contrary, as all replicated wires carry the same value, it is sufficient to probe one of
those wires to learn all those values. Hence, each share domain consists of multiple SRDs.

We now define Combined-Isolating Non-Interference (CINI) as a composability property for
combined security, where faults are isolated within SRDs and probes within share domains.
That is, for every set of probes and faults the number of input share domains Ac can learn is
bounded by the sum of the cardinality and position of the probes and faults, and the number
of faulty output SRDs is bounded by the cardinality and position of the faults, as visualized in
Figure 9.5.

Definition 43 (Combined-Isolating Non-Interference). A gadget G is (d, k)-CINI iff for any
set F1 of k1 faulty SRDs, every set of k2 faults injected in gates of G, any set of d1 probes
placed on intermediate values, and any set S2 of d2 share domains, such that k1 + k2 ≤ k and
d1 + d2 + k1 + k2 ≤ d, there exists a set F2 of at most k2 SRDs and a set S1 of at most d1 + k2
share domains such that the following holds:

Correctness: The gadget either aborts or gives an output where all values, except those
belonging to the SRDs F1 ∪ F2, are equal to the golden circuit, and there
exists a decoding gadget GD, such that given an input with at most k faulty
SRDs and an abort signal, GD either aborts or outputs a correct result.

Privacy: The abort signal, the outputs of the share domains in S2, the outputs vio-
lating the independence property of Boolean sharing, and the probes can be
simulated with the inputs of the share domains in S1 ∪ S2 and knowledge
of the faults both injected and on inputs in F1.

Please note, that CINI restricts the number of probes and faults together to be smaller than
or equal to the order of probing security d. Hence, the order of fault security is always dependent
on the order of probing security. In Section 9.10 we show how to achieve independence between
fault and probing security.
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Figure 9.5: Propagation of probes and faults in the CINI context. While probes leak entire share
domains (all inputs with same share index), faults are restricted to influence at most
one output SRD. Further, probes at outputs restrict the leaked share domain of the
inputs to be the same. Similarly, input faults are restricted to affect the same SRD
at the output.

9.9.1 CINI Security and Composition

Intuitively, the security of CINI comes from the fact, that there are always more share domains
than the number of probes and faults an adversary is allowed to place or inject. This is sufficient
for security, as the isolation of probe and fault propagation within share domains and SRDs,
respectively, restricts the possible leakage. Theorem 10 states that (d, k)-CINI gadgers are
always (d, k)-combine secure.

Theorem 10. A (d, k)-CINI gadget is (d, k)-combined secure.

Moreover, Theorem 11 states that circuits constructed from CINI gadgets are again CINI
secure.

Theorem 11. The loop-free composition of two (d, k)-CINI gadgets is (d, k)-CINI.

9.9.2 CINI Gadgets

One explicit goal of CINI is the trivial implementation of linear functions, e.g., addition, by
simply sharing and replicating them. This is possible, as replication and Boolean sharing are
linear themselves.

Theorem 12. An implementation with d + 1 shares and (k + 1)-times replication of a linear
function is (d, k)-CINI in the glitch-robust probing model.

Implementing non-linear functions, e.g., multiplication, is more complex since values need to
be combined across share-domain boundaries. Hence, similar to PINI, we have to ensure that
the masks of such terms are refreshed beforehand. In addition, a faulty value is not allowed to
cross SRD boundaries, which requires fault detection or correction for terms combining different
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Figure 9.6: CINI requires all values crossing a domain boundary to be both correct and blinded.

share domains. Both principles are illustrated in Figure 9.6. As no fault is allowed to affect
more than one SRD, each intermediate value is only allowed to be used in one SRD (except for
generated randomness), requiring detection/correction within gadgets for values that are used
across SRD boundaries.

Based on those design principles, we can extend the refresh-then-multiply technique, used in
the HPC1 gadget [CGLS21] (originally PINI), to a refresh-and-correct-then-multiply technique
to construct a CINI gadget (given in Algorithm 7). The major difference to the original HPC1
gadget is the replication of the logic and the majority function for correction in Line 18. Also,
and in contrast to HPC1, all intermediate values are only allowed to be used once (see Remark 4).
In the following, we state that the derived gadgets are CINI secure. Please note, the proofs can
be found in the original paper [FRSG22].

Theorem 13. The gadget HPCC
1 as defined in Algorithm 7 with a register-free majority function

is (d, k)-CINI in the glitch-robust probing model.

Remark 3. We emphasize that faults targeted at randomness count as internal faults, i.e.,
contribute to k2.

Remark 4. For security, it is essential that the majority function (Line 18) is computed for
each SRD individually.

Remark 5. For security it is also essential that the mask refreshing in Line 12 is done one by
one, i.e., ṽℓ

j ← (((bℓ
j + rj,0) + . . .) + rj,d).

Remark 6. The assumption that the majority function is implemented register free is done for
simplicity and readability of the proof. In fact, when there are registers in maj then probes on
vℓ

i,j and potential probes within maj are strictly less powerful as a probe on vℓ
i,j without registers

in maj.

As mentioned, the security of HPC2 [CGLS21] relies on the fact that cross-domain leakage is
prevented by some ri,j that is observable in only one of (ai + 1) · ri,j or ai · (bj + ri,j) and, hence,
ensures a proper masking of bj (if bj is not an input to the simulator). However, this only holds
because both terms get the same ai as input and one of them is using the negated form. Now,
when replicating the gadget there exist some terms (a0

i + 1) · ri,j and a1
i · (b1

j + ri,j) such that aℓ
i
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Algorithm 7 HPCC
1 : CINI multiplication

(with difference to HPC1 highlighted).
Require: n = 2k + 1
Require: aℓ

i = aℓ′
i and bℓ

i = bℓ′
i for 0 ≤ ℓ, ℓ′ ≤ n, 0 ≤ i ≤ d

Require:
∑d

j=0 aℓ
j = a and ∑d

j=0 bℓ
j = b for 0 ≤ ℓ ≤ n

Ensure: cℓ
i = cℓ′

i for 0 ≤ ℓ, ℓ′ ≤ n, 0 ≤ i ≤ d
Ensure:

∑d
i=0 cℓ

i = a · b for 0 ≤ ℓ ≤ n
1: procedure HPCC

1 (a0
0, . . . , an

d , b0
0, . . . , bn

d )
2: for i = 0 to d do ▷ Initialize randomness
3: for j = i + 1 to d do
4: r̃i,j

$← F2
5: r̃j,i ← r̃i,j

6: ri,j
$← F2

7: rj,i ← ri,j

8: end for
9: end for

10: for ℓ = 0 to n− 1 do ▷ Refreshing
11: for j = 0 to d do
12: ṽℓ

j ← bℓ
j +∑d

i=0,i ̸=j r̃i,j

13: end for
14: end for

15: for ℓ = 0 to n− 1 do ▷ Correction
16: for i = 0 to d do
17: for j = 0 to d do
18: vℓ

i,j ← maj(ṽ0
i . . . ṽn−1

i )
19: end for
20: end for
21: end for

22: for ℓ = 0 to n− 1 do ▷ Multiplication
23: for i = 0 to d do
24: wℓ

i ← aℓ
i · Reg[vℓ

i,i]
25: for j = 0 to d, j ̸= i do
26: zℓ

i,j ← aℓ
i · Reg[vℓ

j,i] + ri,j

27: end for
28: cℓ

i ← Reg[wℓ
i ] +∑d

j=0;j ̸=i Reg[zℓ
i,j ]

29: end for
30: end for
31: return c0

0, . . . , cn
d

32: end procedure
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Algorithm 8 HPCC
2 : CINI multiplication for d ≤ 2, k ≤ 2

(with difference to HPC2 highlighted).
Require: d ≤ 2, k ≤ 2, n = 2k + 1
Require: aℓ

i = aℓ′
i and bℓ

i = bℓ′
i for 0 ≤ ℓ, ℓ′ ≤ n, 0 ≤ i ≤ d

Require:
∑d

j=0 aℓ
j = a and ∑d

j=0 bℓ
j = b for 0 ≤ ℓ ≤ n

Ensure: cℓ
i = cℓ′

i for 0 ≤ ℓ, ℓ′ ≤ n, 0 ≤ i ≤ d
Ensure:

∑d
i=0 cℓ

i = a · b for 0 ≤ ℓ ≤ n
1: procedure HPCC

2 (a0
0, . . . , an

d , b0
0, . . . , bn

d )
2: for i = 0 to d do ▷ Initialize randomness
3: for j = i + 1 to d do
4: ri,j

$← F2
5: rj,i ← ri,j

6: end for
7: end for

8: for ℓ = 0 to n− 1 do ▷ Masking
9: for i = 0 to d do

10: for j = 0 to d, j ̸= i do
11: ṽℓ

i,j ← bℓ
j + ri,j

12: end for
13: end for
14: end for

15: for ℓ = 0 to n− 1 do
16: for i = 0 to d do ▷ Correction and partial products
17: wℓ

i ← aℓ
i · Reg[bℓ

i ]
18:
19: for j = 0 to d, j ̸= i do
20: uℓ

i,j ← (aℓ
i + 1) · Reg[ri,j ]

21: vℓ
i,j ← maj(ṽ0

i,j . . . ṽn−1
i,j )

22: zℓ
i,j ← aℓ

i · Reg[vℓ
i,j ]

23: end for
24: end for
25: for i = 0 to d do ▷ Reduction
26: cℓ

i ← Reg[wℓ
i ] +∑d

j=0,j ̸=i(Reg[uℓ
i,j ] + Reg[zℓ

i,j ])
27: end for
28: end for
29: return c0

0, . . . , cn
d

30: end procedure

comes from different replications. Hence, by faulting a0
i or a1

i it is possible to force both (a0
i +1)

and a1
i to be true and, hence, ri,j is observable in both corresponding terms. However, in a

combined attack setting this flaw cannot be exploited for d ≤ 3 and k ≤ 3, as the corresponding
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attack requires one fault (at a0
i ) and two probes (at c0

i and c1
i ). Hence, for the remaining cases,

we describe an HPC2-based CINI gadget in Algorithm 8 and prove the security in Chapter 11
via a tool-based analysis. As HPC3 [KM22] also depends on the masked shares multiplication
trick it suffers from the same limitations. Interestingly, HPCC

2 achieves a tight realization of
CINI, meaning that a well-placed fault indeed reduces the order of probing security by one
(cf. Chapter 11). In contrast, HPCC

1 actually achieves a higher security level than strictly
required for some orders, e.g., the (2, 2)-HPCC

1 gadget is also (2, 1)-ICINI and (1, 2)-ICINI (see
Section 9.10). This indicates some overhead in terms of randomness for HPCC

1 .
While potentially more efficient, gadgets based on detection have to avoid SCA leakage caused

by fault propagation and construct a SCA-secure tree of detection flags. Both are non-trivial
problems that we leave for future work.

9.10 Independent Combined-Isolating Non-Interference

The presented CINI definition requires that the number of probes and faults together is smaller
than or equal to the order of probing security d. This means that it is of course possible to build
a gadget that can resist d′ probes together with k′ faults for arbitrary d′, and k′, however, it
requires an implementation with at least d′ +k′ +1 shares and is, hence, effectively a (d′ +k′, k′)
gadget. This results in significant overhead in the number of shares and in consequence also in
other metrics.

To avoid this overhead, we define Independent Combined-Isolating Non-Interference (ICINI),
a composability notion for CA security where the order of probing and fault security can be
selected independently. This independence requires only a small change compared to the CINI
definition, namely that we now have d1 + d2 ≤ d instead of d1 + d2 + k1 + k2 ≤ d, separating
the number of injected faults and the order of probing security.

Definition 44 (Independent Combined-Isolating Non-Interference). A gadget G is (d, k)-ICINI
iff for any set F1 of k1 faulty SRDs, every set of k2 faults injected in gates of G, any set of d1
probes placed on intermediate values, and any set S2 of d2 share domains, such that k1 + k2 ≤ k
and d1 + d2 ≤ d, there exists a set F2 of at most k2 SRDs and a set S1 of at most d1 share
domains such that the following holds:

Correctness: The gadget either aborts or gives an output where all values, except those
belonging to the SRDs F1 ∪ F2, are equal to the golden circuit, and there
exists a decoding gadget GD, such that given an input with at most k faulty
SRDs, GD outputs a correct result.

Privacy: The outputs of the share domains in S2 and the probes can be simulated
with the inputs of the share domains in S1∪S2 and knowledge of the faults
both injected and on inputs in F1.

Please note, that in contrast to CINI the parameters for probing and fault security are now
clearly separated. This also requires the use of correction countermeasures, as detection violates
this separation [DN20]. To see this, assume an intermediate value that gets randomized by some
randomness, i.e., xℓ

i + r, where a reset fault is injected on xℓ
i . The detection then removes the r

in some other fault domain ℓ′ and an appropriate probe leaks xi (cf. Figure 11.3 in Chapter 11).
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9.11 Conclusion

9.10.1 ICINI Security and Composition
The security and composition of ICINI really on the same fundamental properties as for CINI,
i.e., more domains than allowed attack points and isolation of probe and fault propagation
within the respective domains.

Theorem 14. A (d, k)-ICINI gadget is (d, k)-combined secure.

Theorem 15. The loop-free composition of two (d, k)-ICINI gadgets is (d, k)-ICINI.

9.10.2 ICINI Gadgets
One can observe that the provided CINI gadget for linear functions already adheres to the more
restrictive ICINI property. The reason is the natural isolation of each SRD when implementing
the function for each share and replication individually.

Theorem 16. An implementation with d + 1 shares and (2k + 1)-times replication of a linear
function is (d, k)-ICINI in the glitch-robust probing model.

As with PINI and CINI, implementing a non-linear gadget is more complex and requires
careful separation of probe and fault propagation. Of course, the same design principles as for
CINI apply also for ICINI, namely (i) the masking of values crossing share-domain boundaries
need to be refreshed, and (ii) values crossing SRD boundaries need to be corrected. In addition
ICINI requires (iii) remasking is done with more than k random values. This ensures that an
attacker cannot remove the randomness from a refreshed value.

Interestingly, increasing the amount of randomness is sufficient to make the CINI multiplica-
tion gadget ICINI in the case of HPCC

1 .

Theorem 17. The gadget HPCI
1 as defined in Algorithm 9 with a register-free majority function

is (d, k)-ICINI in the glitch-robust probing model.

Remark 4, Remark 5, and Remark 6 also hold for the ICINI gadget in Algorithm 9 with the
majority function in Line 20 and the masking in Line 14 and 30. Please note, the gadget HPCC

2
cannot be easily transferred to ICINI since the contradiction mentioned in Section 9.9.2 then
also occurs for smaller orders (d ≥ 2 and k ≥ 1).

9.11 Conclusion
In this chapter, we first present composability notions for gadgets protecting hardware imple-
mentations against FIA. We start by reviewing existing composability notions designed for
software and transfer them to designs targeting hardware implementations. Additionally, we
introduce a new security notion based on PINI.

In the second part of this chapter, we push the research of composability notions even further
by approaching security notions for combined attacks. Again, we start by transferring software
notions to the context of hardware implementations. Furthermore, we present two new com-
posability notions with corresponding gadget instantiations for arbitrary security orders with
respect to SCA and FIA.
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Chapter 9 Security Notions for Secure Hardware Gadgets

Algorithm 9 HPCI
1: ICINI multiplication.

Require: n = 2k + 1
Require: aℓ

i = aℓ′
i and bℓ

i = bℓ′
i for 0 ≤ ℓ, ℓ′ ≤ n, 0 ≤ i ≤ d

Require:
∑d

j=0 aℓ
j = a and ∑d

j=0 bℓ
j = b for 0 ≤ ℓ ≤ n

Ensure: cℓ
i = cℓ′

i for 0 ≤ ℓ, ℓ′ ≤ n, 0 ≤ i ≤ d
Ensure:

∑d
i=0 cℓ

i = a · b for 0 ≤ ℓ ≤ n
1: procedure HPCI

1(a0
0, . . . , an

d , b0
0, . . . , bn

d )
2: for i = 0 to d do ▷ Initialize randomness
3: for j = i + 1 to d do
4: for m = 0 to k − 1 do
5: r̃i,j,m

$← F2
6: r̃j,i,m ← r̃i,j,m

7: ri,j,m
$← F2

8: rj,i,m ← ri,j,m

9: end for
10: end for
11: end for
12: for ℓ = 0 to n− 1 do ▷ Refreshing
13: for j = 0 to d do
14: ṽℓ

j ← bℓ
j +∑d

i=0,i ̸=j

∑k−1
m=0 r̃i,j,m

15: end for
16: end for
17: for ℓ = 0 to n− 1 do ▷ Correction
18: for i = 0 to d do
19: for j = 0 to d do
20: vℓ

i,j ← maj(ṽ0
i . . . ṽn−1

i )
21: end for
22: end for
23: end for
24: for ℓ = 0 to n− 1 do ▷ Multiplication
25: for i = 0 to d do
26: wℓ

i ← aℓ
i · Reg[vℓ

i,i]
27: for j = 0 to d, j ̸= i do
28: zℓ

i,j ← aℓ
i · Reg[vℓ

j,i] +∑k−1
m=0 ri,j,m

29: end for
30: cℓ

i ← Reg[wℓ
i ] +∑d

j=0;j ̸=i Reg[zℓ
i,j ]

31: end for
32: end for
33: return c0

0, . . . , cn
d

34: end procedure
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Chapter 10

Formal Verification of Countermeasures against
Fault-Injection Attacks

Over the last two decades, researchers proposed a plethora of countermeasures to
secure cryptographic implementations against FIA. However, the design process and
implementation are still error-prone, complex, and manual tasks which require long-
standing experience in hardware design and physical security. Moreover, the valida-
tion of the claimed security is often only done by empirical testing in a very late stage
of the design process. To prevent such empirical testing strategies, approaches based
on formal verification are applied instead providing the designer early feedback.
In this chapter, we present a fault verification framework to validate the security
of countermeasures against fault-injection attacks designed for ICs which has been
presented in a joint work with Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu [RSS+21]. The verification framework works on netlist
level, parses the given digital circuit into a model based on Binary Decision Dia-
grams, and performs symbolic fault injections. This verification approach constitutes
a novel strategy to evaluate protected hardware designs against fault injections offer-
ing new opportunities for performing full analyses under a given fault model.
Eventually, we apply the proposed verification framework to real-world implementa-
tions of well-established countermeasures against fault-injection attacks. Here, we
consider protected designs of the lightweight ciphers CRAFT and LED-64 as well
as AES. Due to several optimization strategies, our tool is able to perform more
than 90 million fault injections in a single-round CRAFT design and evaluate the
security in under 50 min while the symbolic simulation approach considers all 2128

primary inputs.
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Chapter 10 Formal Verification of Countermeasures against Fault-Injection Attacks

10.1 Introduction

With the discovery of DFA in 1997 by Biham and Shamir [BS97], researchers from academia
and industry proposed a plethora of countermeasures to secure cryptographic operations against
FIA. More precisely, modern countermeasures leverage redundancy in time, area, or information
and can be classified as detection-based, correction-based, and infection-based techniques. While
detection-based countermeasures were intensively investigated in [AMR+20], using linear error
codes, originally known from coding theory, to protect symmetric block ciphers, this approach
was extended in [SRM20] such that linear error codes also were deployed to correct occurring
faults. The last class – infection-based countermeasures – was investigated in [GST12] and
infects the state of a cryptographic algorithm with random bits in case a fault occurred intending
to generate useless outputs for an attacker.

However, despite extensive theoretical research on efficient and effective countermeasures, in
particular the process of designing and implementing such methods in practice is still an error-
prone, complex, and manual task, requiring longstanding experience and expertise in hardware
design and physical security. Furthermore, the correctness and security of implemented designs
and countermeasures are predominantly evaluated through empirical testing of prototypes or
final products, making it difficult to correct or adjust design deficiencies and security flaws. To
counteract this issue, formal verification can support the designer during the design process and
provide an early indication of deficiencies and flaws.

As a consequence, the approach of empirical testing is replaced by security proofs which,
however, require an appropriate definition of the adversary model and an abstraction of fault
injection methods. In Chapter 8 we propose a new and generic fault model which allows to
precisely define and describe an attacker. While the work from Arribas et al. [AWMN20]
already presents a fault verification tool called VerFI, directly working on a gate-level netlist of
a cryptographic circuit, it works with a limited set of fault models (i.e., bit-flip and stuck-at)
and exposes some open challenges, particularly with respect to the reliability of the reported
results. More precisely, as the tool is simulation-based, the user has to select dedicated test
vectors, which can lead to undetected corner cases and false positive results. To this end,
we close this gap by proposing a verification approach that inherently prevents misleading
evaluation results and reports.

10.1.1 Contributions

We propose a formal verification approach and corresponding tool for countermeasures against
FIA for cryptographic algorithms implemented on ICs. Hence, similar to VerFI [AWMN20], our
approach works on a given gate-level netlist serving as starting point to create a model of the
underlying digital logic circuit. However, instead of relying on empirical testing methods, we
present a formal verification approach that is based on BDDs. This data structure inherently
provides the possibility to observe the output of a Boolean function considering all combina-
tions of the input variables. Hence, we avoid false positives that could be created by selecting
inauspicious test vectors. Additionally, we propose a symbolic fault injection approach allowing
to cover all possible fault events that can occur in digital logic circuits under a given fault
model while avoiding to detect any undiscovered corner cases that may lead to successful fault
injection attacks.
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10.2 Fault-Injection Analysis

Furthermore, instead of fixing the applied fault model to a predefined subset as in VerFI, we
incorporate the generic fault model presented in Chapter 8. This permits a precise definition
and description of the adversary while analyzing the countermeasure’s claims.

In order to achieve reasonable performance with respect to the evaluation time and circuit
size, we present different kinds of optimization strategies. On the one hand, these strategies
address the reduction of the complexity of the number of fault combinations that can occur
in a digital logic circuit. On the other hand, we propose several approaches to increase the
performance of our fault verification tool. The tool is publicly available and can be accessed
via https://github.com/Chair-for-Security-Engineering/FIVER.

10.2 Fault-Injection Analysis

In this section, we briefly discuss existing countermeasures against fault injections and review
the fault verification tool VerFI.

10.2.1 Fault Analysis Techniques and Countermeasures

In the context of cryptographic fault analysis, several techniques have been introduced to recover
a secret key after a successful fault injection. Examples include DFA [BS97], SFA [FJLT13],
Differential Fault Intensity Analysis (DFIA) [GYTS14], IFA [Cla07], and SIFA [DEK+18]. For
more information, please see Section 2.2.3.

Depending on the situation and the scenario, various factors, such as access to faulty results,
the precision of the fault injection, or the underlying cryptographic algorithm affect the final
choice of the analysis technique. However, due to the efficiency of such powerful attacks, the
research community has also dedicated a considerable body of research to propose methodologies
for counteracting fault injections. For this, all approaches and countermeasures commonly rely
on redundancy in terms of area, time, information, or any combination of them.

For instance, an encryption function can be instantiated twice (or multiple times) to form
a basic detection scheme (based on spatial redundancy) allowing to check the consistency of
the outputs through a simple comparison [MSY06]. Another trivial way to detect the presence
of a fault is recomputation (as temporal redundancy), i.e., the construction recomputes the
output multiple times using the same dedicated function and compares the results [MSY06].
In [AMR+20], a code-based approach based on CED schemes, i.e., information redundancy,
has been proposed, where fault propagation in hardware implementations has been taken into
account. More precisely, the authors guarantee the detection of any induced fault in any location
of the design, including data path, Finite State Machine (FSM), control signals, and consistency
check modules at any clock cycle. However, since the proposed technique is vulnerable against
advanced attacks such as IFA and SIFA, the detection facility of [AMR+20] was extended to
fault correction in [SRM20] to also protect implementations against IFA and SIFA.

Additionally, the authors proposed important properties and guidelines to design resilient
hardware countermeasures against fault injection attacks. The most significant criteria, called
Independence Property, was introduced in [AMR+20] and demands that a digital circuit is
separated into independent parts such that each computes exactly one output bit. Then, a
checkpoint is placed at the output of each separate part ensuring to detect or correct any fault
within the capabilities of the underlying countermeasure. To this end, introducing a checkpoint
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after each non-linear function ensures to stop fault propagation as early as possible and prevents
unnecessary complexity when designing large circuits fulfilling the independence property over
several non-linear functions. Hence, in the context of designing countermeasures for block
ciphers, a checkpoint should be introduced after each substitution layer which ensures to detect
occurring faults in each round.

A couple of more techniques have been proposed to protect against SIFA [BKHL20, SJR+20,
RAD20]. A combined countermeasure against SCA and SIFA has been introduced in [DDE+20].
In this approach, the non-linear layer should be implemented by Toffoli gates and the whole
design should be masked. Then, the authors claimed that a simple duplication can prevent a
single-fault SIFA. In [BBB+21], a randomized duplication-based approach is presented, where
no masking is needed.

10.2.2 State-of-the-Art Fault Verification

Practical evaluation of countermeasures against fault attacks on physical devices and real prod-
ucts is a complex and time-consuming task and needs considerable expertise and experience.
Hence, this certainly highlights the necessity of verification tools and automated analysis tech-
niques to accelerate evaluation and assist designers in the analysis of countermeasures. More-
over, it can help to reduce the cost of the fabrication process while maintaining the desired level
of security.

In 2017, the authors of [BGE+17] presented a tool for automatic construction of algebraic
fault attacks called AutoFault. AutoFault works on gate-level netlists and uses a SAT solver
to detect possible vulnerabilities in a given design without deeper knowledge of the cipher
construction. However, the user has to define a list of fault locations which limits evaluations to
the corresponding areas of a target design. Hence, if AutoFault is used to verify countermeasures
against fault attacks, the tool could report false positive results since a full coverage of all
possible fault events is impossible.

In [KRH17], a framework, called XFC, for fault characterization in block ciphers was pre-
sented. It receives the block cipher specification and a fault model in order to determine locations
for fault injection during the execution of the encryption. By tracing the fault propagation and
its effects on the ciphertext, the tool evaluates the exploitability of a fault in terms of DFA and
returns the computational complexity of the recoverable part of the (round) key. However, while
XFC is mostly limited to a specific class of DFAs, ExpFault [SMD18] is designed to cover even
more fault analysis techniques. Unfortunately, even though both tools can help adversaries to
find the optimal location to inject faults and facilitate fault attacks, they are not able to assist
designers in assessing the security of implementations equipped with fault attack countermea-
sures. As a consequence, this issue was addressed in a framework called SAFARI [RRHB20].
More precisely, this framework uses XFC to automatically identify locations that can be ex-
ploited by fault injection attacks, given a description of the (unprotected) target block cipher
in a dedicated block cipher specification language. Then, based on user-defined security levels,
SAFARI automatically equips the given block cipher with a parity or redundant-based coun-
termeasure and returns HDL or C code accordingly. Recently, another work that focuses on
the exploitability of fault injection attacks on microcontrollers was presented at CHES in 2019
[HBZL19]. The authors propose a tool called TADA which automatically detects vulnerabilities
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of a block cipher software implementation on assembly level and returns exploitable faults with
the help of an SMT solver.

Unfortunately, all aforementioned works aim to detect exploitable fault injection attacks on
hardware or software implementations of block ciphers, hence taking an adversarial perspective.
Only [RRHB20] additionally applies protection mechanisms to susceptible areas. However,
none of these works take the perspective of the designer in targeting the assessment and formal
verification of countermeasures against fault injection attacks implemented for hardware devices.
More specifically, all those approaches are not able to verify a given design considering all
possible fault events that could occur under all valid input combinations.

There are a few works addressing this topic by proposing open-source fault simulators for fault
diagnosis [NCP92, LH96, BN08]. However, their application to cryptographic fault analysis is
quite limited as they can simulate only a single-bit fault injection. As a result, VerFI [AWMN20]
is the first automated open-source cryptographic fault diagnosis tool designed to evaluate fault-
protected cryptographic implementations. For this, the tool directly operates on the gate-level
netlist of a hardware design and is able to assess detection, infection, and correction-based
countermeasures. Moreover, the user is able to define a fault model, a bounded adversary
model, the location of the faults, the desired clock cycles for fault injections, and some input
test vectors for simulation. Then, the tool simulates the circuit considering the parameterized
fault injection and provides the coverage for every test vector and a final overall result including
the total number of faults, all the non-detected faults per input test vector, reporting the
location and type of faults, and the corresponding faulty outputs, which may assist the designer
to identify the design failures.

10.2.3 Limitations of VerFI

Although VerFI facilitates the verification of fault-protected implementations, the result of the
analysis depends on the selected input test vector(s). Hence, it is possible that the tool indicates
the security of a design under a certain set of test vectors, while different test vectors would
lead to observable or exploitable faults.

For this, let us consider a simple PRESENT S-box implementation [BKL+07], protected by
a single bit of parity, as depicted in Figure 10.1. More precisely, the S function receives a
4-bit input Sin = ⟨a, b, c, d⟩ and provides the 4-bit S-box output Sout = ⟨x, y, z, t⟩, where a
and x are most significant bits. Simultaneously, the redundant part S′ operates on the 4-bit
input, independent of S, and estimates the parity bit of the S-box output. Eventually, the
consistency check module verifies the correctness of the S output given the estimated parity
bit and indicates a fault in case of inconsistency. However, such a design is not necessarily
secure against single-bit fault injection in case fault propagation occurs in the S function. In
other words, for some test vectors, an attacker can inject a single-bit fault in such a way that
an even number of faulty bits appear at the output, hence no opportunity to be detected by
the consistency check module. One of such cases is shown in Figure 10.1, where a single-bit
fault propagates to two different output bits (x and y) depending on input test vector, i.e.,
Sin ∈ {0x1,0x2,0x3,0x9,0xA,0xB}. More precisely, the tool reports all single-bit faults are
detected when Sin ∈ {0x0,0x4,0x5,0xD,0xE,0xF} and there is at least one non-detected fault
in the rest test vectors due to fault propagation. To mitigate this issue independence property
has been defined in [AMR+20] to guarantee an n-bit induced fault affects at most n-bit output
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Figure 10.1: A simple PRESENT S-box implementation protected by a single-bit parity. The
shown fault propagation happens when ⟨a, b, c, d⟩ ∈ {0x1,0x2,0x3,0x9,0xA,0xB}.

bits. To this end, no cell should be involved in the computation of multiple output wires. As one
can see, this property is not fulfilled in the given example, leading to insecure implementation
for some test vectors in the underlying adversary model.

Hence, VerFI confirms the security of the design if the evaluation is only based on a limited
number of test vectors, while additional test vectors could reveal the flaw. This behavior
becomes even more challenging with increasing circuit size and number of inputs, as using VerFI
it is almost impossible to check all input combinations for such a fault-protected cryptographic
design. As a consequence, this highlights the importance of an automated tool that does not
rely on the simulation of test vectors but symbolically checks all possible cases under given fault
models.

10.3 Verification Concept

Before we present our verification approach in more detail, we introduce appropriate models for
fault events and describe important terms required for diagnosing fault effects. The proposed
verification approach covers the generation of circuit models, symbolic fault injection, and the
corresponding fault diagnosis.
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10.3 Verification Concept

10.3.1 Fundamental Terminology

Formal verification of security requires formal descriptions and definitions of adversary models
and security properties. More precisely, given capabilities and limitations of an adversary model,
formal verification can prove security properties of any design under verification in the presence
of the given adversary models. To this end, we briefly outline the fundamentals of our basic
fault injection models as follows.

Fault Events. Any accidental condition that results in a malfunction or misbehavior of a
digital logic circuit is considered as a fault event. However, while environmental faults have an
erratic and random nature, adversarial faults are often precisely located and purposely injected
into the circuit. Depending on their retention time, fault events can be classified as transient,
persistent, or permanent. While transient fault events have a dynamic nature and volatilize
after certain periods or changes in the circuit, elimination of persistent fault events requires a
full reset of the circuit or system, whereas permanent faults are of static nature and will remain
permanently. However, when modeling fault events, considering only transient fault events is
sufficient, as any persistent or permanent fault event can be modeled as a repetitive transient
fault event.

Observing that digital logic circuits are used to implement the computation of arbitrary
Boolean functions F : Fp

2 7→ Fq
2, any fault event in such a digital logic circuit can be precisely

modeled by another Boolean function F′ : Fp
2 7→ Fq

2 as we propose in Chapter 8. More precisely,
we model fault events at the structural level of logic circuits, assuming logic gates as atomic
components, while the misbehavior of a single logic gate is considered as a fault event. As
a consequence, changing the functionality of the misbehaving logic gate in the context of the
entire circuit results in a clear specification of the faulty function F′ that can be compared to
the golden, i.e., fault-free, function F.

Fault Positions. Given our adversary model, as introduced in Chapter 8, the adversarial capa-
bilities are mostly determined and limited by the number of fault events that can be purposely
injected into a single evaluation of a digital logic circuit1. More specifically, any fault injection
might be limited and constrained in spatial or temporal dimension. For the spatial dimension,
we mostly distinguish between combinational and sequential logic gates that are considered as
sources for transient fault events. Further, in addition to the spatial locations, each adversary
is also limited in the number of fault injections, i.e., the number of fault events that can be
caused simultaneously within the same clock cycle. In fact, for the temporal dimension, we
distinguish between univariate and multivariate fault injections. In that sense, univariate fault
injections only consider fault events occurring in the same clock cycle, while for multivariate
fault injections, fault events can occur in different clock cycles.

As a result, the total number of possible fault events, ultimately describing and limiting the
adversarial capabilities, is derived as the product of the spatial and temporal limitations. This
means, given n fault events in spatial dimension, and v fault events in temporal dimension,
the total number of fault events that is injected into a single circuit evaluation is yielded by
n× v. Further, depending on the adversary model and if necessary, the distribution of fault

1In the context of this work, we focus on analysis and verification of clock-synchronous digital logic circuits
only.
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events can be adjusted, e.g., according to a uniform or biased distribution. However, whenever
possible, we opt for an exhaustive fault verification, hence, allowing to cover any possible fault
distribution.

Classifying Fault Effects. As indicated before, diagnosis of fault events and effects requires
knowledge of the expected behavior. As a consequence, comparing the faulty behavior to the
expected behavior of a golden circuit allows to evaluate and examine the fault effectivity.

In the context of pure fault-detection countermeasures, fault handling is delegated and esca-
lated to the system. More precisely, in such a context, the circuit under diagnosis might expose
a misbehavior that is detected and clearly communicated as such to the system level. As a
consequence, for fault-detection countermeasures, we usually distinguish between ineffective,
detected, and effective faults. For this, each fault event that does not lead to observable misbe-
havior is classified as ineffective, while all fault events that clearly lead to misbehavior that is
not detected by the circuit are marked as effective faults, leaving the remaining events in the
class of detected fault events. In contrast to this, fault-correction countermeasures attempt to
correct any detected misbehavior immediately such that only ineffective or effective faults can
be observed.

10.3.2 Verification Approach

In the following, we present our verification approach for fault injection countermeasures on
hardware devices. More precisely, we explain how we use a Verilog gate-level netlist of a digital
logic circuit to create an appropriate model. This model is used as a foundation to introduce
techniques using BDDs to perform efficient evaluations of fault events. Eventually, we provide
more insights into optimization strategies that allow supporting larger circuits.

Requirements for Cryptographic Fault Verification. There are some simulation tools [NCP92,
LH96, BN08] in the field of integrated circuits testing, also known as reliability analysis, that
examine the working environment stress, e.g., thermal cycling and vibration, or the potential
manufacturing failures in a chip. However, they are not suitable for cryptographic fault analysis
and verification of fault-protected implementations as they are commonly limited to single-bit
faults. Moreover, often the user cannot set different fault models or specify desired locations for
fault injection. It becomes even more challenging if the evaluated design incorporates dedicated
countermeasures against fault attacks. In particular for detection- and infection-based coun-
termeasures, the design returns a fixed value or a random value completely unrelated to the
secret key if a fault event was recognized. Hence, the evaluation tool must be able to anticipate
the behavior of the design and the integrated countermeasure for correct evaluation. While all
these facts are supported by the recently-introduced fault-diagnostics tool VerFI [AWMN20],
the result of such an evaluation is based on the given test vector(s). This may lead to a false-
positive result. Namely, some faults may appear at the output only for certain input values and
might be not detected by every test vector, like the example provided in Section 10.2.3. In this
work, we mainly focus on cryptographic fault analysis that naturally covers every possible test
vector, avoiding false positives.
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Abstraction Levels. The circuit definitions introduced in Section 5.1 allow us to introduce
two abstraction levels structural and functional. The structural level incorporates the edges
and vertices of the DAG, i.e., the wires in the circuit C connecting the Boolean gates from G.
In a verification environment, the structural level is used to define and distinguish different areas
of the original circuit, e.g., the register stages or dedicated modules that should be considered
in an analysis. Furthermore, the structural level gives us the opportunity to develop special
optimization strategies as we describe later in this section. However, the actual faults are
injected at the functional level – directly in the combinational or sequential gates. At this level,
we can precisely and generically cover several known fault models summarized in Chapter 8.

From Netlist to Direct Acyclic Graph. Figure 10.2 depicts the verification approach which
we follow in this chapter. As already mentioned above, we analyze hardware circuits based on
their (Verilog) gate-level netlist. In the first step, the netlist is transformed into the circuit
model introduced in Section 5.1 and therefore converted into a DAG D. The underlying data
structure allows us to perform several preprocessing steps at the structural level, as follows.

■ First, each node d ∈ D is attached with an information holding the gate type. It is accessed
by the function type (d) and returns one of the following values from Gt.

Gt = {in, out, not, buf, reg, and, nand, or, nor, xor, xnor}

■ Second, dependencies between the existing nodes in D are identified. To be more precise,
each node d ∈ D is equipped with its propagation path, i.e., with a list of nodes that are
influenced by the output of d.

■ Third, all nodes in D are separated into two classes depending on whether the correspond-
ing logic gate g is from Gm or from Gc, i.e., g is whether a sequential or combinatorial gate,
respectively. We access this information for a given node d by the function location (d).

■ Forth, the structural level is perfectly suited to extract topological characteristics of the
underlying circuit. This includes the assignment of each node d ∈ D to its logic stage.

A single logic stage consists of all combinatorial gates between two successive register stages.
Special cases are 1) the first logic stage where the combinatorial gates are between the primary
inputs and the first register stages, and 2) the last logic stage where the combinatorial gates
are between the last register stages and the circuit’s primary outputs. We use the function
stage (d) to refer to the logic stage of node d.

Symbolic Simulation using BDDs. The next step in our verification approach consists of
mapping the Boolean function associated with each node d ∈ D to a BDD which includes the
entire subgraph spanned by the node d. Therefore, the DAG is topologically sorted and each
node d is evaluated starting from the primary inputs. For each primary input, i.e., type (d) = in,
a new BDD variable is introduced. For all remaining nodes d ∈ D a BDD is constructed from the
fan-in BDDs, based on the Boolean function associated with the node d. As an example, let us
assume that a node d is associated with an and-gate. Therefore, d has two input edges connected
to two previous nodes which have already been evaluated (due to the topological sorting) and the
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Figure 10.2: Flow of the proposed verification approach.

corresponding BDDs have been constructed. Then, the BDD for d is constructed by computing
the logical and of both fan-in BDDs based on the concept given in Section 5.2.

We decided to select BDDs as the underlying data structure to model a digital logic circuit
since they offer many advantages. First, BDDs were originally proposed for defining, ana-
lyzing, testing, and implementing digital Very Large Scale Integration (VLSI) circuits [Jr.78].
Therefore, they seem to be a natural choice for our application, i.e., verifying hardware coun-
termeasures against fault injection attacks. Second, one core idea of BDDs is to work with
symbolic simulations which inherently consider all possible states of the BDD variables. Hence,
the verification of a digital logic circuit is not limited to a predefined set of test vectors (inputs)
but rather all valid inputs are tested and evaluated. This procedure avoids false positives as
discussed in Section 10.2.2. Third, since executions of Boolean functions over BDDs are elemen-
tary operations (cf. Section 5.2), injecting faults by exchanging the associated Boolean function
of the target node in the DAG D with a faulty one is a straightforward task that results in
simple re-computation of the corresponding BDD.

Symbolic Fault Injection. Our concept of symbolic fault injection is based on the very generic
approach presented in Chapter 8, i.e., modeling faults by replacing the original Boolean oper-
ation F of a target gate g ∈ C with another Boolean operation F′ chosen from the same set of
functions according to a predefined mapping τ .

In the context of our verification approach, when analyzing the effect of a fault injection in
a target logic gate, the corresponding graph node d ∈ D is replaced with another graph node
d′, according to a fault mapping τ . However, since each graph node is explicitly associated
with a Boolean operation, the replacement of the graph node not only changes the structural
description of the circuit node but also affects the functional behavior. More precisely, while
d is associated with a Boolean operation F, the replaced graph node d′ is associated with a
different Boolean operation F′, necessitating a re-generation of the BDD for all subsequent
graph nodes (affected by the fault injection). Note that for the remainder of this work, we
denote the structurally modified DAG D′ as the faulty model, while we refer to the original,
fault-free DAG D as the golden model.

In fact, our verification approach is designed to analyze the golden model D under all possible
fault events that can occur for a given fault model ζ(n, t, l). More specifically, the fault model
ζ determines the fault verification process in terms of the number of graph nodes n that should
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be faulted, the fault mapping τ that is considered to replace the target nodes, and which circuit
location l should be considered (i.e., combinational logic, sequential logic, or both).

Therefore, in the first step, our verification approach creates a set of nodes Λ. Particularly,
the nodes in Λ are extracted from the golden model D according to the considered location
parameter l, such that

Λ = { d ∈ D | location (d) = l } .

In a next step, the nodes in Λ are separated into s subsets θi (s denotes the total number
of logic stages) holding all nodes belonging to the same logic stage, i.e., each subset θi is
defined as θi = {λ ∈ Λ | stage (λ) = i } for 0 ≤ i < s. Therefore, the set of all valid gates
λ ∈ Λ categorized based on logic stages is noted by Θ = {θ0, θ1, ..., θs−1}. In particular, such
a categorization allows to distinguish between univariate and multivariate fault injections, i.e.,
different fault injections with respect to the temporal dimension.

Besides considering the location parameter l and the separation in the temporal dimension to
create valid sets of nodes that should be faulted, we further consider the number of fault events
n that should be injected simultaneously in a single subset θi. Therefore, we introduce the sets
Γi for 0 ≤ i < s which hold all combinations of n nodes that are available in a single subset θi,
formally defined as

Γi = { γ | γ = {d ∈ θi}, |γ| = n } .

Note, however, that the cardinality of each Γi, i.e., the number of valid combinations of nodes
that need to be evaluated in each logic stage, drastically increases in |θi| and n since |Γi| =

(|θi|
n

)
.

Next, given a valid set of target nodes γ ∈ Γi, each node in γ = {d0, . . . , dn−1} is associated
with a Boolean operation F which is replaced by faulty operations according to the fault type
t defined in ζ(n, t, l). In particular, the fault type t (e.g., bit-flip, set, or reset) is defined and
described by a fault mapping τ (cf. Chapter 8). For example, a fault mapping for the gate
type and could be defined by τ : {and} 7→ {set, reset, nand}. Hence, the number of different
fault mappings that can occur for one γ depends on the cardinality of the corresponding fault
mapping and is determined by

n−1∏
j=0

∣∣∣τ(type (dj)
)∣∣∣, dj ∈ γ.

Eventually, each of these valid combinations leads to a new faulty model D′ which should be
compared to the golden model D to determine the effect of the injected fault (more details are
provided in the subsequent paragraph).

As already mentioned above, our verification approach considers univariate and multivariate
fault injections. For univariate fault injections, faults are injected in only a single set Γi. In
contrast, for multivariate fault injections, v different sets Γi are selected, where v denotes the
number of different logic stages that can be faulty at the same time (e.g., setting v = 2 would
describe a bivariate fault injection). Note, that in each logic stage (temporal dimension), n
nodes can be faulted such that v × n nodes of the golden model D are affected. Therefore,
analyzing multivariate fault injections drastically increases the combinations of nodes that need
to be evaluated. More precisely, each selection of v different sets creates∏

v

∣∣Γi

∣∣
valid combinations.
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Fault Diagnosis. The ultimate goal of our fault verification approach is the diagnosis of fault
effectiveness and severity (cf. Figure 10.2). For this, given a golden model D and a faulty model
D′, the effects of fault injection in D resulting in D′, are evaluated by analyzing and compar-
ing both models. Particularly, the output nodes of both models are combined to new BDDs
(commonly by an exclusive-or which we highlight in more detail in Section 10.4.2) in order to
detect any differences in the outputs considering all valid assignments of the primary input
variables. This strategy is especially beneficial for the data structure of BDDs since counting
the number of satisfying variable assignments, i.e., leading to a logical 1, can be accomplished
efficiently. Hence, determining and counting the satisfiability of the BDDs combining the out-
puts of the golden and faulty models, directly yields the number of input combinations leading
to a difference in both models.

More precisely, based on the analyzed fault-injection countermeasure, incorporated in the
design under test, the combined BDDs of the golden and faulty models are used to determine
the number of effective, ineffective, and detected faults, as well as the total number of fault
events as introduced in Section 10.3.1. Note, however, that the exact fault diagnosis procedure
depends on the underlying countermeasure which we discuss in more detail in Section 10.4.2.

Optimizations. As already indicated before, this verification approach poses some challenges
with respect to the complexity when analyzing large circuits or when the number of fault
injections n increases. Therefore, we further propose two optimization strategies which both
rely on the structural analysis of the circuit model while being independent of the functional
behavior of the circuit, i.e., the realized logical function.

The first strategy benefits from the identification of fault propagation paths, which are de-
termined in the initialization phase. More precisely, the propagation paths are determined by a
backwards-iterating algorithm given a topological sorting of the DAG D. Hence, in a breadth-
first search, the algorithm considers each node d ∈ D and adds the propagation paths of all
nodes di connected to the output edges of d along with the node di itself. This procedure gener-
ates topologically sorted lists of propagation paths since the nodes from the deepest logic levels
are added first. Then, assuming a target node λ ∈ Λ is faulted, i.e., the associated Boolean
function is replaced, we can observe that not all BDDs associated with nodes d ∈ D need to be
re-evaluated. In particular, evaluating only the nodes that are located on the fault propagation
path is sufficient and reduces computational overhead especially when injecting faults on gates
in deeper logic levels.

The second optimization strategy reduces the number of nodes that are tested in the eval-
uation phase (cf. Figure 10.2). This is achieved by creating a subset Λred ⊂ Λ which is used
instead to generate the valid combinations of target nodes in Θ, using the following ideas and
observations. First, registers form synchronization points in a digital logic circuit C (cf. Defi-
nition 20) and occurring fault events will eventually manifest in such register stages. Hence, it
is straightforward that all nodes in Λ associated with a register in C also need to be included
in Λred. Second, all nodes d ∈ D associated with gates that are directly connected to registers
(i.e., whose output edges are connected to a register input) are added to Λred as well since they
influence the behavior of the synchronization points immediately. Third, we observed that most
digital logic circuits have sensitive gates directing faults from several locations through the cir-
cuit, eventually manifesting in registers. More precisely, we cluster gates to Boolean functions
F̃ : Fp

2 7→ F1
2 with p > 1, i.e., to Boolean functions that providing only single-bit outputs. The
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Figure 10.3: Clustering gates of a given digital logic circuit to reduce the verification complexity.

output gates of such clusters symbolize sensitive gates and fault propagations within such clus-
ters are local and always pass them. Hence, fault injections in these clusters can be modeled by
considering the sensitive gates only. Therefore, we add all nodes associated with sensitive gates
to the reduced set of nodes Λred.

Note, this approach conservatively selects cluster of gates, i.e., each gate with fan-out greater
than one is treated as a sensitive gate regardless of the fact that output signals are may re-
combined by another gate such that they only influence a single wire. Additionally, analyses us-
ing the reduced set of nodes Λred should only be performed in the bit-flip model, i.e., ζ(n, τbf , l).
Again, this conservative approach models a worst-case scenario and ensures that a fault event is
definitely effective. Hence, both restrictions guarantee full coverage of all possible fault events
that otherwise may occur in a non-reduced set Λ.

However, switching to the introduced circuit model D, nodes associated with registers and
nodes directly connected to registers can be extracted from D in a straightforward way. All
nodes d ∈ D associated with sensitive gates are identified by iterating over all nodes and ex-
tracting each node d with more than one output edge. All three steps are formally defined
in Algorithm 10 describing the complete process of generating the reduced set of nodes Λred.
Here, Line 6 adds all nodes associated with registers to the reduced subset Λred while Line 11
considers the input nodes directly connected to the registers. Eventually, Line 21 adds all nodes
associated with sensitive gates to Λred.

Finally, we visualize the determination of sensitive gates and corresponding clusters of gates by
an exemplary circuit depicted in Figure 10.3. Altogether, the exemplary circuit consists of five
clusters denoted by c0, ..., c4. While gates g5, g6, and g7 influence the existing registers directly,
they also represent sensitive gates since faults always propagate through them. However, cluster
c4 consists of gate g4 and g2 where only g4 is considered in a verification approach where
Algorithm 10 is applied. To summarize, with the presented reduction approach it is enough to
cover Λred = {regs, g1, g4, g5, g6, g7} instead of Λ = {regs, g0, . . . , g7}.

10.4 The Tool
In this section, we present our fault verification tool FIVER (Fault Injection VERification)
which realizes the approaches and concepts from Section 10.3. For this, we briefly introduce the

139



Chapter 10 Formal Verification of Countermeasures against Fault-Injection Attacks

Algorithm 10 Complexity Reduction.
Require: Golden circuit model D, set of valid fault location (nodes) Λ
Ensure: Set of reduced fault locations Λred

1: Σ← ∅, Λred ← ∅
2: for ∀d ∈ D do
3: if type (d) = reg or type (d) = out then
4: Σ← Σ ∪ d
5: if d ∈ Λ then
6: Λred ← Λred ∪ d
7: end if
8: end if
9: end for

10: for σ ∈ Σ do
11: Λred ← Λred ∪ node in(σ)
12: Φ← σ
13:
14: while Φ ̸= ∅ do
15: α← Φ[0], delete(Φ[0])
16: for ∀n ∈ node in(σ) do
17: if type (n) ̸= reg and type (n) ̸= in then
18: Φ← Φ ∪ n
19: end if
20: if out degree(α) > 1 and α ∈ Λ and α ̸∈ Λred then
21: Λred ← Λred ∪ α
22: end if
23: end for
24: end while
25: end for

applied BDD library and explain the general tool flow. Finally, we present some optimization
strategies to improve the overall performance of our tool.

10.4.1 Colorado University Decision Diagram Package

The Colorado University Decision Diagram (CUDD) package is a BDD library developed by
Fabio Somenzi at the University of Colorado [Som18]. The library is written in C but provides
an interface to C++, used by our tool. Besides a large set of BDD operations offered by
CUDD, it provides a large assortment of variable reordering methods. These methods allow
reordering BDD variables such that the size of the underlying BDD is optimized. This is
especially beneficial when the size of the evaluated circuit increases.

10.4.2 Tool Flow

In this section, we introduce our fault verification tool in more detail. To start the analysis of a
target design, a configuration file needs to be provided first. Afterwards, the internal toolchain

140



10.4 The Tool

is evoked and executed. At the end of the toolchain, an evaluation function is called in order
to determine the number of effective, ineffective, and detected faults and generate the final
evaluation report.

Configuration. Our fault verification tool uses a configuration file to specify and execute the
desired analysis. This configuration file includes and sets parameters controlling the execution
environment and host resources (e.g., CPU cores or memory) as well as the fault model param-
eters, including the number of fault injections n, the number of simultaneous fault injections v
in temporal dimension (e.g., univariate, bivariate, etc.), the location parameter l, and whether
the complexity reduction approach should be applied or not. Furthermore, the definition of
the fault mapping τ needs to be provided allowing the software to consider custom fault map-
pings for evaluation and diagnosis. However, along with the software on GitHub2, we provide
template definitions for common fault mappings (e.g., bit-flip, set, reset). Finally, a reference
to a blacklist of entity names can be provided, excluding all matching modules from the fault
injection process during the evaluation phase.

Toolchain. The toolchain is guided by the verification approach introduced in Figure 10.2.
Hence, the Verilog netlist of the target design is parsed first. The outcome is an intermediate
representation of the circuit containing the gate type, the list of input nodes, and additional
annotations. Based on this intermediate representation, the DAG D of the golden model is
generated. Besides, as this function already processes the intermediate representation, the
annotations are used to identify the blacklisted entities. Afterwards, the CUDD library is used
to process a topologically sorted representation of the DAG D and creates a BDD for each node
d ∈ D based on the associated type. Further, if the configuration file enables the complexity
reduction, Algorithm 10 is evoked, while the initialization phase is concluded by extracting all
related graph properties including the number of logic stages, propagation paths, and nodes
that need to be considered during the analysis.

During the subsequent evaluation phase, a fault verification function is called by passing the
fault model parameters, the list of valid nodes, the golden model, and a BDD manager required
for the CUDD library. Altogether, this function handles the most workload by iterating over
four nested loops considering the number of fault injections n, the distinction in the temporal
dimension, over all valid nodes, and finally on the lowest level over the defined fault mappings in
τ . Note that n only determines the upper bound for the number of simultaneous fault injections,
i.e., fault injections smaller than n are considered in the analysis as well. This procedure is very
common in the evaluation of countermeasures against fault injections and is done in the same
way in Chapter 6 and in related work [SMG16]. However, on the lowest level, the tool performs
the actual fault injection by replacing the types of the target nodes resulting in the faulty model
D′.

Evaluation. During evaluation and fault diagnosis, the faulty model D′ is compared to the
golden model D. More precisely, the verification tool creates a new BDD for each output node
in D and D′. Specifically, let us denote the associated BDDs by BD

i and BD′
i for 0 ≤ i < o and

for the golden and faulty model, respectively.
2https://github.com/Chair-for-Security-Engineering/FIVER
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Then, the evaluation BDDs Bi are generated such that Bi = BD
i ⊕ BD′

i , i.e., all output BDD
pairs of the golden and faulty model are combined by an exclusive-or. This procedure allows
to identify all input assignments under which the BDDs of the output nodes differ, i.e., a
fault occurred and is visible at the output. In order to track occurring faults over the entire
model, all Bi are further combined by an OR-operation leading to a single BDD B. However,
as in most detection-based countermeasures, an additional error flag indicates if a fault was
detected, this information can be used to distinguish effective and detected faults. Particularly,
if the BDD E of the error flag produces a zero while B generates a one, a fault injection leads
to an effective (undetected) fault. Consequently, in case E and B leading both to a one, a
fault was successfully detected by the design. As already introduced in Section 10.3, the data-
structure of BDDs naturally covers all combinations for the given BDD variables. The number
of combinations leading to a true assignment in a given BDD can efficiently be determined by a
function counting the minterms which is also provided as part of the CUDD library. Hence, the
number of effective faults is determined as countMinterms(B · E) while the number of detected
fault is obtained by countMinterms(B · E). Knowing the total number of fault events, the
number of ineffective faults can be easily calculated by subtracting the number of effective and
detected faults.

Note, that if countermeasures without an error flag should be analyzed, the evaluation func-
tion, i.e., the function that combines the output BDDs, needs to be adapted. However, this is
easily possible without any deeper knowledge of the applied BDD library.

Report. As a final step, the tool reports all verification results in a text file. This includes a
summary of the number of effective, ineffective, and detected faults, as well as the total number
of fault scenarios that were tested3.

Besides, for each detected effective fault, a clear description of the fault is added to the report.
More precisely, all faulted gates leading to effective faults are listed as well as the function used
to model the fault injection. This allows the designer to accurately determine the cause of the
effective fault event in order to fix the flaw in the evaluated countermeasure.

10.4.3 Optimizations

In Section 10.3.2, we already introduced two optimization strategies based on determining the
propagation paths of all nodes in D and on the reduction of the number of target nodes that
need to be faulted, which we called complexity reduction. Besides those two approaches, we
applied further optimizations which are directly related to the tool.

Incremental Faulting. The first approach optimizes the application of replacing the Boolean
functions defined in a given fault mapping τ . It is only effective for analysis with n > 1 and for
nodes with |τ(d)| > 1, i.e., for nodes that are changed to more than one function modeling a
fault injection. Therefore, let us consider a current state of the faulty model D′ where n nodes
are faulted. The tool would step on to the next valid set of fault mappings. But instead of
just starting from a new golden model, the tool computes the difference between the previously
applied fault mappings and the new fault mappings. Hence, if for example only the fault

3All numbers are reported on a logarithmic scale to avoid overflows in counting the statistics.
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mapping for one single node changes, only the type of this node is adapted (triggering a re-
evaluation of related BDDs) and not all BDDs associated with the remaining n− 1 need to be
re-evaluated. This incremental faulting approach can notably reduce computational time since
the number of evaluations can be reduced and the same fault events are not performed multiple
times.

Resetting Faulty Model. The next optimization approach addresses the resetting of the faulty
circuit. More precisely, after a set of valid nodes γ′ ∈ Γi was faulted and analyzed, the tool
proceeds with the next valid set γ′′ ∈ Γi. Therefore, the functions from the nodes γ′ in D′ need
to be restored to the original functions defined in the golden model D. In a straightforward
approach, the golden model D could just be copied to the faulty model D′ such that D′ is
fault free and the fault injections into the nodes defined in γ′′ could be performed. However,
this process can be very time-intensive especially for larger models D and therefore for larger
circuits C. Instead, we only change the types of the nodes defined in γ′ to the original types
from the golden model D. Even though this procedure triggers a re-evaluation of all BDDs
placed in the propagation paths of the nodes in γ′, it turns out that this process increases the
performance notably.

Multithreading. Finally, we parallelized the execution of our tool by using OpenMP4. The
given problem is perfectly suited for parallelization since each set of valid nodes in Γi can
be evaluated independently. Therefore, the loop that iterates over the sets defined in Γi is
parallelized into the number of threads set up in the configuration file.

10.5 Case Studies

In this section, we apply the tool proposed in Section 10.4 to various cryptographic hardware
implementations. More precisely, we evaluated detection-based and correction-based counter-
measures against fault injection attacks attached to the lightweight ciphers CRAFT and LED-
64 as well as the full block cipher AES. All designs were taken from [AMR+20, SRM20]5 while
we unrolled the designs and only evaluated one or two rounds of the given circuit (for sake of
complexity). Further, to obtain the Verilog gate-level netlists, we used the Synopsys design
compiler with version E-2010.12-SP2.

In the next two subsections, we first present the evaluation results of the considered case
studies, before discussing the limitations of our tool with respect to the size of a given circuit
and the applied fault models.

10.5.1 Evaluation Results

We start our experiments by evaluating the counterexample from Section 10.2.2. Due to the
symbolic fault injection approach, our tool is able to detect the existing flaws in the design
and reports the corresponding gates leading to effective fault injections. However, we proceed
our analyses with the lightweight cipher CRAFT [BLMR19] since it is built upon a simple

4https://www.openmp.org/
5The HDL code can be accessed at https://github.com/emsec/ImpeccableCircuits
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structure leading to a small hardware footprint (i.e., a reasonable number of logic gates). As
a next step, we decided to analyze LED-64 which is also a lightweight cipher but has a more
complex structure [GPPR11]. Eventually, we challenge our tool by evaluating an AES-128 as
it is roughly 14 times larger than the LED-64 design. All results are summarized in Table 10.1
obtained from a system running Ubuntu 18.04.2 with an Intel Xeon E5-1660 CPU with 3.2 GHz
and 128 GB RAM. For all upcoming results, we fixed the number of threads used by our tool to
eight while each thread could use up to 8 GB RAM (this is sufficient for most analyses considered
in this chapter). More details about the performance with respect to the number of used cores
and amount of memory can be found in Appendix 15.2 in Figure 15.1 and Figure 15.2.

CRAFT. For CRAFT, we consider detection-based countermeasures for a single-round design
(protected against 1-bit, 2-bit, and 3-bit fault injections), a two-rounds design (with the same
protection levels), and a two-rounds design which is protected against multivariate 1-bit and
2-bit attacks. Additionally, we provide evaluation results for correction-based countermeasures
for single-round designs protected against 1-bit and 2-bit fault injections. For the analysis of
single-round designs protected by a detection-based countermeasure, we instantiate the fault
model as ζ(n, τbf , cs), i.e., we consider bit-flip faults in combinational and sequential gates. The
number of injected faults n is adjusted to the countermeasure meaning that it is set to the
maximum protection level of the considered design. The evaluations for the 1-bit and 2-bit
designs are executed within 0.021 s and 1.496 s, respectively. However, the evaluation of the
3-bit design is more challenging because more than 90 million combinations need to be tested.
Without any complexity reduction, this evaluation takes roughly 50 min while the application
of Algorithm 10 decreases the evaluation time to only six minutes. Note, that all these analyses
are performed under all input combinations for plaintext and key, i.e., 2128 valid inputs.

To demonstrate the functionality of FIVER, we also analyzed a subset of the provided coun-
termeasures with fault models instantiated such that they describe fault injections exceeding the
capabilities of our tool. The corresponding experiments are marked by red crosses in Table 10.1.
As expected, the reports contain detailed lists of gates leading to effective fault injections.

The analysis of the two-round design gets more complex because each output depends on more
primary inputs. While the BDD generations for the 1-bit and 2-bit design could be accomplished
by the CUDD library and an evaluation could be executed without any complications, the
structure of the 3-bit protected design is too complex such that the parsing and BDD generation
process fails.

Next, we analyze the two-rounds design protected against multivariate attacks which consists
of two register stages and therefore three logic stages. For the 1-bit protected design, we per-
form a bivariate (v = 2) and a multivariate (v = 3) evaluation, where the multivariate analysis
takes roughly 7.5 h due to the increased number of combinations (even though we enabled the
complexity reduction) as explained in Section 10.3.2. However, a bivariate analysis for the 2-
bit protected design with ζ(2, τbf , cs) is out of scope since the number of combinations is too
large (over 200 billion). Nevertheless, switching to the fault model ζ(2, τsr, s) which can be
used to model fault injections caused by electromagnetic pulses (cf. Chapter 8), could reduce
the number of combinations such that the analysis finishes within 23 h. Note that applying
Algorithm 10 would not reduce the complexity since ζ(2, τsr, s) only considers nodes associated
with register anyways and they would also be added to Λred.
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Table 10.1: Evaluation results for various ciphers protected against different levels of fault in-
jections. A red cross in the last column indicates that the tool found effective faults
which, however, is expected since the capabilities of the countermeasures were ex-
ceeded for these experiments. Experiments with simulation times marked by ∞
were not finished in a reasonable time such that we only report the number of com-
binations.

Redundancy
(Capability*)

Verification Parameter Design Properties Analysis Results

ζ(n, t, l) Variate Complexity Comb. Seq. Logic Combinations Time Security
[bits] Reduction Gates Gates Stages [s]

CRAFT – 1 round (detection)
1 (1) ζ(1, τbf , cs) univariate no 845 80 2 766 0.021 ✓

1 (1) ζ(2, τbf , cs) univariate no 845 80 2 151 561 0.769 ✗

3 (2) ζ(2, τbf , cs) univariate no 1 410 112 2 329 730 1.496 ✓

3 (2) ζ(3, τbf , cs) univariate no 1 410 112 2 64 320 469 441 ✗

4 (3) ζ(3, τbf , cs) univariate no 1 679 128 2 91 737 144 2 937 ✓

yes 1 679 128 2 4 665 200 360 ✓

CRAFT – 2 rounds (detection)
1 (1) ζ(1, τbf , cs) univariate no 1 571 160 3 1 491 0.378 ✓

1 (1) ζ(2, τbf , cs) univariate no 1 571 160 3 417 882 62 ✗

3 (2) ζ(2, τbf , cs) univariate no 2 526 224 3 868 500 157 ✓

3 (2) ζ(3, τbf , cs) univariate no 2 526 224 3 250 984 950 ∞ –
yes 2 526 224 3 7 364 279 408 ✗

CRAFT – 2 rounds – multivariate (detection)
1 (1) ζ(1, τbf , cs) bivariate no 1 720 160 3 682 832 140 ✓

1 (1) ζ(1, τbf , cs) trivariate yes 1 720 160 3 99 542 528 26 955 ✓

3 (2) ζ(2, τsr, s) bivariate no 2 915 224 3 38 651 200 81 897 ✓

CRAFT – 1 round (correction)
3 (1) ζ(1, τbf , cs) univariate no 2 868 112 2 2 788 0.081 ✓

3 (1) ζ(2, τbf , cs) univariate no 2 868 112 2 3 201 690 22 ✗

7 (2) ζ(2, τbf , cs) univariate no 17 460 176 2 129 651 034 3 543 ✓

yes 17 460 176 2 10 923 888 130 ✓

LED-64 – 1 round (detection)
1 (1) ζ(1, τbf , cs) univariate no 1 541 0 1 1 301 0.064 ✓

1 (1) ζ(2, τbf , cs) univariate no 1 541 0 1 846 951 9.558 ✗

3 (2) ζ(2, τbf , cs) univariate no 2 435 0 1 1 730 730 27 ✓

3 (2) ζ(3, τbf , cs) univariate no 2 435 0 1 1 072 477 550 12 722 ✗

4 (3) ζ(3, τbf , cs) univariate no 2 916 0 1 1 654 087 449 17 348 ✓

yes 2 916 0 1 3 983 413 94 ✓

AES-128 – 1 round (detection)
1 (1) ζ(1, τbf , cs) univariate no 24 864 0 1 24 432 22 ✓

4 (2) ζ(2, τbf , cs) univariate no 34 159 0 1 298 473 528 ∞ –
yes 34 159 0 1 56 632 584 471 281 ✓

* The capability determines the maximum number of faults that can be detected or corrected by the correspond-
ing countermeasure.

Eventually, we analyze the single-round CRAFT designs protected by correction-based coun-
termeasures against 1-bit and 2-bit fault injections. To do so, we first slightly adapted the
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fault diagnosis function such that we count the effective faults by countMinterms (B) (cf. Sec-
tion 10.4.2) as correction-based countermeasures do not provide an error flag. Therefore, we
only count effective and ineffective faults but we cannot distinguish the number of corrected
faults. However, the analysis of the 1-bit protected design is performed without reducing the
set of target nodes and within 0.081 s. Switching to a 2-bit protected design requires seven
bits of redundancy resulting in an increased number of target gates. Nevertheless, our tool can
analyze the 130 million fault combinations in under 1 h and validates the security of the design.
Again, applying the proposed approach to reduce the complexity (i.e., Algorithm 10), reduces
the number of fault combinations to roughly 10 million while the simulation time is decreased
to only 130 s.

LED. In our next case study, we analyze a single-round design of LED-64 protected by
detection-based countermeasures against 1-bit, 2-bit, and 3-bit fault injections. For all three
designs, we selected ζ(n, τbf , cs) as fault model to allow a fair comparison to the CRAFT case
study. As for CRAFT, the 1-bit and 2-bit countermeasures can be analyzed in a few sec-
onds although the evaluation time increases compared to the analyses for the CRAFT design.
Switching to the 3-bit protected design results in over 1.6 billion combinations that need to
be tested. Nevertheless, our tool is able to perform this evaluation in under 5 h without any
complexity reduction applied. Enabling the complexity reduction reduces the evaluation time
roughly by a factor of 185. We also tried to analyze a two-round design of LED-64 but due to
the increased dependencies of the outputs on the primary inputs, we are not able to parse the
circuit into BDDs.

AES. In our last case study, we analyzed AES-128 protected by detection-based countermea-
sures against 1-bit and 2-bit fault injections. While the analysis for the 1-bit protected design
can easily be managed by our tool (in only 22.5 s), the 2-bit protected design is more challenging.
Hence, due to the enormous amount of gates (over 34 000), the number of combinations dras-
tically increases. Therefore, we are only able to analyze the design by applying Algorithm 10
to reduce the complexity. Even then, the evaluation takes roughly 5.5 d but, nevertheless, it is
manageable by our tool.

10.5.2 Limitations

Given the results of the three case studies, we now identify limitations of our tool with respect
to circuit sizes and fault models.

Circuit Size. In two cases (CRAFT two rounds, LED-64 two rounds) our tool is not able
to parse the circuit into the proposed data structures, i.e., the construction of the BDDs does
not terminate. These problems occur because the outputs of the given circuit and therefore
the BDDs of the output nodes in D depend on too many inputs, i.e., the depth of the BDDs
increases. More precisely, the two-round CRAFT design (equipped with 3-bit protection)
only consists of 3 739 gates which is clearly not the limiting factor since larger designs (e.g.,
CRAFT correction, AES) can be processed by our tool. This leads to the conclusion, that
the circuit structure (i.e., the realized Boolean function) instead of circuit size prevents the
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parsing into BDDs. For the two round LED-64 design, each output BDD depends on all 64-
bit plaintext variables and on all 64-bit key variables. Hence, circuits with similar structures
and dependencies are out of scope for our tool which, however, is expectable since otherwise
common block ciphers could probably be broken. More precisely, if our tool could successfully
parse a two-round LED-64 design, parsing an entire unrolled implementation of LED-64 would
probably also be possible since the dependencies in the cipher would not increase. Therefore, the
whole cipher could be analyzed over all possible combinations of input variables, i.e., considering
all valid plaintexts and keys.

Fault Model. Limitations with respect to the fault model naturally occur when the number
of simultaneous fault injections n increases or multivariate fault injections should be analyzed.
One of these limitations appears for the multivariate 2-bit protected CRAFT design under the
model ζ(2, τbf , cs) for v = 2. Evaluating this design without any complexity reduction would
require to test more than 200 billion different fault combinations. For the given circuit size
(i.e., 3 396 gates), this exceeds the capabilities of our tool. However, as already pointed out in
Section 10.3, such a limitation naturally occurs due to the growth of the binomial coefficient.
With the introduction of Algorithm 10, we can counteract this growth, but further improvement
still remains an open research challenge.

Circuit Structure. As already indicated in Section 5.1, our tool is limited to unrolled digital
logic circuits. This is mainly due to the underlying data structure of DAGs that does not allow
any loops in our model. Therefore, a designer of a countermeasure has to unroll a target design
before it can be processed by our verification tool.

Iterative Block Ciphers. Although our tool is mostly limited to the analyses of single-round
or two-round implementations, we do not see major obstacles with respect to the verification
of common countermeasures and the corresponding assertions. Particularly, when considering
countermeasures based on linear error codes [AMR+20, SRM20], the underlying scheme usually
protects each round with the same mechanism. Hence, an evaluation of a single round (univari-
ate) or two rounds (multivariate) would be sufficient to verify the correctness of a protection
mechanism. Similarly, countermeasures that are based on duplication are often equipped with
detection or majority voting modules positioned at the end of a cipher execution. Again, these
schemes could be seamlessly verified by our framework, focusing the analysis on the last round
of the target scheme.

10.6 Conclusion
In this chapter, we present a framework to verify the security of countermeasures against fault-
injection attacks designed for ICs. Given a Verilog gate-level netlist, our tool relies on BDDs to
model the underlying Boolean function of the digital logic circuit and uses symbolic simulation
to avoid false positive results while covering all possible input combinations. Further, assuming
different fault models under consideration, our framework automatically identifies potential
fault locations and performs a full analysis under all given models. Since the complexity of
evaluations of digital logic circuits increases with circuit size, we propose various performance
optimization strategies, ranging from algorithmic to programming-specific techniques.
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Eventually, we conduct several case studies to demonstrate the application on real-world digi-
tal logic circuits implementing well-established countermeasures against fault-injection attacks.
More precisely, we successfully analyze implementations of the lightweight ciphers CRAFT
and LED-64 as well as the widespread AES. In fact, our tool is able to analyze more than
90 million fault injections for a single round of CRAFT in under 50 min while still testing all
2128 assignments of the primary inputs.
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Chapter 11

Verification of Combined Attacks

Side-Channel Analysis and FIA are well known and research provides many special-
ized countermeasures to protect cryptographic implementations against them. Still,
only a limited number of combined countermeasures, i.e., countermeasures that pro-
tect implementations against multiple attacks simultaneously, were proposed in the
past. Due to increasing complexity and reciprocal effects, the design of efficient
and reliable combined countermeasures requires longstanding expertise in hardware
design and security. With the help of formal security specifications and adversary
models, automated verification can streamline development cycles, increase quality,
and facilitate the development of robust cryptographic implementations.
In this chapter, we present the first automated verification framework that can ver-
ify physical security properties of hardware circuits with respect to combined physical
attacks. To this end, we conduct several case studies to demonstrate the capabil-
ities and advantages of our framework, analyzing secure building blocks (gadgets),
S-boxes build from Toffoli gates, and the ParTI scheme. For the first time, we re-
veal security flaws in analyzed structures due to reciprocal effects, highlighting the
importance of continuously integrating security verification into modern design and
development cycles. Moreover, we demonstrate by practical measurements that pre-
cisely injected faults can lead to decreased side-channel protection in cryptographic
algorithms protected by CINI gadgets. The contributions and results of this chapter
are extracted from collaborations with Jakob Feldtkeller, Pascal Sasdrich, and Tim
Güneysu [RFSG22, FRSG22]. Please note, any proofs that were presented in the
original works are omitted in this chapter since they are not part of the contribution
of the author of this thesis.
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11.1 Introduction

Although SCA and FIA are well-known and well-studied threats to secure implementations of
cryptographic algorithms, both threats and potential security mechanisms are mostly addressed
and evaluated in isolation. More precisely, while masking and redundancy provide strong secu-
rity guarantees against SCA and FIA, respectively, the impact and threat of combining FIA and
SCA has long been neglected and underestimated, hence, only a limited number of combined
countermeasures can be found in the literature.

As one of the first attempts, ParTI [SMG16], a first-order secure TI of LED-64, was protected
against FIA based on a detection scheme using linear error codes for information redundancy.
Based on the concepts presented in [SRM20], this TI can be extended to also provide correction-
based protection instead of only detecting faults. Subsequently, different approaches have been
investigated, e.g., using concepts of MPC [RMB+18], MACs [MAN+19], orthogonal error cor-
rection [RSBG20], or transformation and encoding [SJR+20], to build robust countermeasures
against combined attacks. However, as it is well known, secure design and implementation of
cryptographic algorithms require long-standing expertise and experience in the fields of hard-
ware design and security, as the complexity, effort, and cost of these tasks increase dramatically
with design complexity. For this, most recent approaches focus on the design and implementa-
tion of smaller building blocks, e.g., based on Toffoli gates [DDE+20] or masked multiplication
gadgets [DN20], to compose larger designs from provably secure components.

Due to the ever-increasing and growing design complexity, formal verification nowadays is a
fundamental part of VLSI design cycles in industry [BK18]. Regardless of this, existing formal
verification mostly focuses on functional correctness (e.g., in form of model checking [CCGR99])
and is applied for example to entire CPUs as shown in [SSR+18] for RISC-V processors. Addi-
tionally, a widespread application of formal verification can be found in safety-critical environ-
ments, e.g., in the automotive industry [GLH18]. However, verification of secure implementa-
tion is often not considered. In light of this, recent hardware security research also stimulates
progress and innovation for formal models of active and passive adversaries and the physical
execution environments of modern electronic devices. Ideally, sound and accurate formal models
can simplify and assist in the verification of security and functional correctness of cryptographic
implementations to shorten and streamline hardware development cycles. For this, in the con-
text of masking, formal security verification is commonly performed in the abstract and elegant
Ishai-Sahai-Wagner (ISW) threshold d-probing model [ISW03], modeling side-channel leakage
in terms of d adversarial probes, providing access to intermediate values of a digital logic circuit
during operation. Inspired by the sophistication of this formal security model, we present a con-
solidated fault adversary model in Chapter 8. However, as mentioned before, the complexity of
verification increases dramatically with increasing design size and model complexity, rendering
manual security verification nearly infeasible.

These challenges inevitably led to the research and development of automated security rea-
soning and computer-aided security verification tools. In connection with SCA and the d-
probing model, existing verification tools either focus on specific countermeasures [ANR18],
direct security reasoning [BGI+18, BBC+19b, KSM20, GHP+21, HB21, BMRT21], or assume
securely masked gadgets and verify the correct composition under secure composability no-
tions [BGR18, BDM+20, CGLS21]. In the context of FIA and active information tampering,
state-of-the-art verification tools evaluate specific countermeasures [HPB21], algebraic vulner-
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abilities [KRH17], or use simulation to ensure the robustness of redundancy-based hardware
countermeasures [AWMN20]. Additionally, we presented FIVER, which is based on formal ver-
ification, in the previous chapter. As mentioned before, security threats from SCA and FIA are
mainly considered in isolation and none of the existing security verification tools allow security
reasoning under CA.

11.1.1 Contributions

Based on the formal definitions of combined security and composability notions presented in
Chapter 9, we present the first automated framework for formal security verification of hard-
ware circuits under CA, reconciling and uniting previous concepts that only addressed each
physical attack in isolation. More specifically, this framework automatically verifies security
of digital logic circuits and secure composability of fundamental building blocks (gadgets) in
the presence of combined attacks. In light of this, we show that, due to unnoticed reciprocal
effects, combined verification requires concepts and techniques beyond simple combination of
SCA and FIA verification. Using these features, we conduct several case studies, i.e., analyz-
ing the gadgets proposed in [DN20], the gadgets we proposed in Section 9.5, Section 9.9, and
Section 9.10, dedicated SIFA countermeasure recently proposed in [DDE+20], and the ParTI
protection scheme [SMG16]. In particular, these case studies helped to reveal unknown security
flaws in [DN20] which impact software and hardware implementations, likewise. Consequently,
the automated verification framework is able to perform stand-alone SCA or FIA verification as
well as CA and is publicly available on GitHub1. We believe that our open-source tool VERICA
sparks and supports new research on combined attacks and countermeasures.

Additional to the verification results, we demonstrate that precisely injected faults in a CINI
gadget can reduce the side-channel security by performing practical experiments. Hence, we
confirm the verification results reported by VERICA with side-channel measurements on a
FPGA evaluation platform.

11.2 Side-Channel Analysis Verification

The analysis and verification of resistance against SCA of a target circuit C closely follow
the realization of SILVER originally presented in [KSM20]. SILVER is a formal verification
framework that utilizes BDDs to verify the probing security and composability of digital logic
circuits given as (Verilog) gate-level netlist. Due to the data structure of BDDs, the tool can
efficiently check the statistical independence of two Boolean functions.

Hence, as introduced in Chapter 9, this perfectly enables verification in the glitch-extended
d-probing model. Additionally, for gadgets solely designed against a SCA attacker, we consider
the PNI and PSNI composability notions as recapitulated in Definition 6 and Definition 7,
respectively. Besides, our composability verification approach also covers the analysis of the
recently introduced PINI notation [CS20], closely following the approach of [KSM20].

1https://github.com/Chair-for-Security-Engineering/VERICA
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Figure 11.1: Evaluation strategies for detection- and correction-based countermeasures.

11.3 Fault-Injection Analysis Verification

Our verification for resistance against (stand-alone) FIA primarily adapts the concepts of our
consolidated fault model introduced in Chapter 8 and our fault verification tool FIVER (see
Chapter 10). We adopt the features from FIVER and further introduce extended verification
methods in the following section. More specifically, we discuss fault diagnosis strategies to
analyze detection or correction countermeasures (slightly adapted compared to the strategies
from FIVER in order to cover shared circuits as well), approaches to evaluate resistance against
statistical (ineffective) fault attacks, as well as composability of gadgets according to FNI and
FSNI, as defined in Definition 35 and Definition 36, respectively.

(Share-wise) Detection. Even though the primary goal of this work is the verification of com-
bined countermeasures, our framework still supports stand-alone FIA verification for detection-
based countermeasures.

Given a faulty circuit model D′, fault-free operation is indicated by E = ∏s−1
i=0 E′

i, assum-
ing that each (share-wise) error flag E′

i = 1 indicates a correct operation (see Figure 11.1a).
Additionally, given the same input assignments, mismatching circuit outputs are derived as
B = ∑ns−1

i=0 (Yi ⊕ Y′
i). Eventually, the number of effective faults, i.e., undetected faults visible

at the circuit’s output, is derived by counting satisfying assignments of U = E · B

(Share-wise) Correction. For pure correction-based countermeasures, usually coming without
dedicated error detection flags, this procedure is simplified to only counting satisfying assign-
ments of B = ∑ns−1

i=0 (Yi ⊕ Y′
i) (see Figure 11.1b).

Statistical Ineffective Fault Analysis. SIFA exploits statistical dependencies between fault
injections and input values that alter the output distribution of the correct unshared
data [DEK+18, DEG+18, DDE+20]. According to Hadžić et al. [HPB21], absence of vulner-
abilities against SIFA can be proven through statistical independence of detection values and
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processed secrets. In [HPB21], this is verified indirectly via Boolean dependency analysis, factor-
ization, and properties of masked computations. However, as our framework naturally supports
verification of statistical independence (due to the integration of analysis techniques provided
by SILVER [KSM20]) and injections of faults in all available gates (features from FIVER), we
opted to implement direct verification of SIFA.

Consequently, the fundamental step of the verification procedure is the derivation of the
fault detection values. While for detection-based countermeasures this is implicitly given as
E = ∏s−1

i=0 E′
i, for correction-based countermeasures this has to be explicitly constructed accord-

ing to E = ∏ns−1
i=0 (Yi ⊕ Y′

i). Eventually, in both cases, we verify statistical independence of E
and the processed secrets to reason about resistance against SIFA2.

Composability Notions. For secure composition of detection-based or correction-based gad-
gets, we specifically verify the notions of FNI (see Definition 35), FSNI (see Definition 36), and
FINI (see Definition 38). For FNI and FSNI, we ensure that at most k or k2 = k − k1 circuit
outputs differ, i.e., Yi ⊕ Y′

i = 1, for all input assignments in case of FNI or FSNI, respectively.
For each verification that analyzes the FNI and FSNI notions, we additionally consider faults

in primary gadget inputs and randomness gates g ∈ Grand. This is independent of the location
parameter l of the fault model ζ(f, t, l). Further, considering the effects of faulty randomness,
as discussed in Theorem 3 and Theorem 4, we adjust the golden circuit model according to
Definition 34 and proceed with the fault diagnosis as before. More precisely, a fault injection in
a randomness gate g ∈ Grand could lead to more than k errors at the output of the target gadget G
if the outputs are plainly compared to the fault-free gadget. We address these special cases in our
verification process by tracking if a current fault injection includes faults in randomness gates.
In case there is at least one randomness gate faulted, we apply the corresponding modification
to the golden circuit model as well (i.e., altering the randomness gates in the golden circuit
model according to the faulty circuit model), and compare the adapted golden circuit model
with the faulty circuit model (cf. Figure 9.1d to 9.1f). This allows us to apply the same strategy
of counting the satisfied BDDs Bi as explained above and compare the result to the threshold
k or k2 for FNI or FSNI, respectively. The influence of this procedure on the side-channel
verification is discussed in the next section.

In order to support the verification under the FINI notion, the inputs and outputs require
an additional annotation to identify the different redundancy domains (cf.Definition 37). This
information is used to track the redundancy domains of erroneous outputs and faulted inputs
of a design under test. Based on Definition 38, we remove all input redundancy domains from
the set of output redundancy domains and check if the cardinality of the resulting set exceeds
the number of internal faults (if not, the design is FINI).

11.4 Combined Verification

After the introduction of stand-alone side-channel verification and fault injection verification,
we now introduce our approach to perform combined verification. For this, we again rely
on the glitch-extended d-probing model, now combined with the ζ(n, t, l) fault model. More
specifically, our combined framework enables to verify (d, k, t, l)-combined security as well as

2For verification of SFA, the same concepts can be applied.
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Figure 11.2: Concept of our combined verification approach.

secure composition under the CNI, CSNI, and ICSNI notions. Figure 11.2 visualizes the general
verification concept, allowing to perform (stand-alone) SCA and FIA, as well as CA verification.

(d, k)-Combined Security Verification. Combined security verification always starts with ver-
ification of glitch-extended d-probing security, ensuring the secure implementation of the coun-
termeasure in the absence of any faults. Afterwards, symbolic fault injection, fault diagnosis,
and passive security verification are performed in an incremental active-then-passive approach,
i.e., continuously increasing the number of faults while in turn performing fault diagnosis and
SCA verification on the faulty circuit model. Hence, combined verification requires that the
statistical independence checks for the SCA verification can also be checked on the faulty circuit
model and not just on the golden circuit model. However, in a purely combined security verifi-
cation scenario, the current state of the fault injection verification does not influence the checks
for the probing security. More precisely, both verification techniques are applied independently
and the number of faults does not reduce the number of probes.

Composability Verification. Verification of combined composability notions, i.e., CNI, CSNI,
ICSNI, CINI, and ICINI again starts with verification in the absence of faults, hence is reduced
to verification of PNI or PSNI.

In the presence of faults, verification of (d, k)-CNI and (d, k)-CSNI requires the reduction of
available adversarial probes to d′ = d− k1 − k2 as introduced in Section 9.6 and Section 9.7,
respectively. Additionally, the attacker is allowed to learn d− k + k1 = d− k2 shares, given k1
input faults, assuming that input faults provide additional probes. This interaction between
the FIA verification and the SCA verification is highlighted in Figure 11.2 by the gray arrow
and is very important for the combined verification of combined composability notions. Next,
our framework checks PNI and FNI or PSNI and FSNI (under these modifications) for CNI
or CSNI verification, respectively. As discussed in Chapter 9, we apply Definition 34 (i.e.,
adapt the golden circuit model in case randomness gates are faulted) in order to verify the FNI
and FSNI notions. Note, this modification ensures that the detection or correction capabilities
of the gadget under test are not exceeded. However, we do not automatically assume that
such a fault does not influence the side-channel security. This is separately verified by the
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SCA verification and therefore ensures that faults in randomness gates do not violate the SCA
security assumptions.

For the verification of ICSNI, the FSNI and PSNI properties are verified independently with-
out any modifications on probes and shares.

In order to check the correctness of the CINI notion, we implemented a similar strategy as for
FINI but instead of relying on redundancy domains, we use SRDs as defined in Definition 42.
Note that all faults on randomness are treated as internal faults, as discussed before. To verify
the privacy, we modify the PINI strategy such that the number of allowed probes depends on
the number of injected faults (cf. Definition 43).

For the integration of the ICINI notion, we independently inject faults and subsequently
check the composability in the PINI model. The composability with respect to fault injections
is accomplished by applying the same checks as for CINI (i.e., determining the number of faults
in different SRDs).

Optimizations. Adopting reduction strategies from FIVER, we reduce the combined verifica-
tion complexity through incremental probing-security verification. Particularly, we only consider
altered probe combinations, i.e., probing the fault propagation path, during combined verifica-
tion. In more detail, we compute all probe combinations that include at least one gate that
was either altered by the fault injection or lies in one of the propagation paths of the altered
gates. Hence, all probe combinations that can solely be created by gates that were not affected
by the preceding fault injection can be neglected in the probing verification process leading to
an increased verification performance.

Soundness of our Verification Approach. In this paragraph, we briefly discuss our verification
approach and its soundness. All verification techniques utilized for our strategies are based on
the d-probing model [ISW03] and the fault model presented in Chapter 8. Hence, our verification
can at most be as precise as the abstractions made by these two models.

Nevertheless, we verify a circuit under test against these models in an active-then-passive
approach as explained above. Since we always verify stand-alone SCA security on a fault-free
model first, following an active-then-passive approach can be justified by Theorem 18.

Theorem 18. Let C be an arbitrary circuit and GD a gadget realizing a decoding function D,
such that, given an input with at most k faults and an abort signal, GD either aborts or outputs
a corrected result. Then C is combined secure iff the active-then-passive verification approach
with preceding passive verification of GD(C(·)), such that no fault or probe targets GD, does not
find an attack.

11.5 Verification of Combined Gadgets

After the introduction of our verification concept, we now use our proposed framework VERICA
to analyze the security of combined gadgets. Therefore, we first evaluate gadgets presented for
software implementations from [DN20]. Afterwards, we verify the security of our FINI, CINI
and ICINI gadgets presented in Chapter 9.
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11.5.1 Verification of Gadgets from [DN20]

We start our case study by evaluating designs extracted from the gadget descriptions provided
in [DN20]. The algorithms are originally designed for software implementations such that we
added register stages at critical locations to stop glitches. Gruber et al. [GPK+21] presented
a similar approach where they combined DOM gadgets with repetition codes. However, their
work does not target the protection of gadgets but rather the protection of an entire cipher.

Designs. Before we present and discuss evaluation results, we briefly summarize and explain
the different gadget variants and their design and security properties. Here, we adapt the
naming NINA, SNINA, and SININA from [DN20] to describe the different gadget types.

(d, k)-NINA: NINA corresponds to our CNI security definition from Definition 39. We can
construct a (d, k)-NINA gadget by implementing a shared xor gate which is d-order secure
with respect to the threshold d-probing model. In order to fulfill the FNI security notion,
the shared xor gate is replicated k times such that no additional detection or correction
mechanisms are required.

(d, k)-SNINA. [DN20, Algorithm 2] presents a detection-based design for the protected mul-
tiplication of duplicated shared values. As mentioned above, we opted to implement
the gadgets in hardware while adding necessary registers on intermediate multiplication
results (i.e., ui,j,l) to ensure security in the glitch-extended d-probing model.

(d, k)-SININA. [DN20, Algorithm 5] constructs a protected multiplication gadget for duplicated
shared values, relying on error correction instead of error detection. Again, we opted to
implement Algorithm 5 in hardware and inserted additional registers where necessary to
stop propagation of glitches.

All the different gadget variants, implemented in Verilog, are provided at GitHub and have
been synthesized using Synopsys Design Compiler using a subset of cells in the NanGate 45 nm
Open Cell Library (OCL). In addition, each detection-based gadget has been modified to
provide a separate error detection flag per output share instead of returning a null output, as
suggested in [DN20].

Verification. Combined verification of the gadgets is performed for an adversary who is able
to precisely inject (at most) two independent set/reset faults into arbitrary gates of the circuits.
As noted in [IPSW06], this fault model is more powerful for CA than the commonly employed
bit-flip fault model. More specifically, each fault in the set/reset model can be modeled as an
additional probe since an adversary is able to precisely inject values into the circuit, hence
learning information on the processed data. In contrast to this, the commonly-used bit-flip
model certainly maximizes the number of effective faults, however, an injected fault does not
reveal information on processed data of the circuit and, hence, cannot be modeled as additional
probe. Further, for CA, each gadget instance has been analyzed with respect to composability
under the stand-alone PNI, PSNI, FNI, and FSNI security notions, first. Afterwards, we verify
combined composability notions, i.e., CNI, CSNI, or ICSNI.

156

https://github.com/Chair-for-Security-Engineering/VERICA


11.5 Verification of Combined Gadgets

Table 11.1: Combined verification results for different gadget variants according to [DN20].
Gadget Design SCA FIA Combined

d k rand. comb. memory PNI PSNI Time FNI FSNI Time (d, k) Time

NINA 1 1 0 4 0 1✓ – 0.460 s 1✓ – 0.429 s

C
N

I

(1, 1)✓ 0.430 s
NINA 1 2 0 6 0 1✓ – 0.455 s 2✓ – 0.445 s (1, 2)✓ 0.492 s
NINA 2 1 0 6 0 2✓ – 0.471 s 1✓ – 0.451 s (2,1)✓ 0.436 s
NINA 2 2 0 9 0 2✓ – 0.442 s 2✓ – 0.444 s (2,2)✓ 0.442 s
SNINA 1 1 1 22 16 – 1✓ 0.476 s – 1✓ 0.449 s

C
SN

I

(1,1)✓ 0.473 s
SNINA 1 2 1 38 26 – 1✓ 0.451 s – 2✓ 0.500 s (1, 2)✓ 0.519 s
SNINA 2 1 3 57 33 – 2✓ 0.566 s – 1✓ 0.456 s (2,1)✗/(1,1)✓ 0.592 s
SNINA 2 2 3 96 54 – 2✓ 0.821 s – 2✓ 0.673 s (2,2)✗/(1,1)✓ 1.062 s
SININA 1 1 2 90 30 – 1✓ 0.450 s – 1✓ 0.461 s

IC
SN

I

(1,1)✗/(0,0)✓ 0.456 s
SININA 1 2 3 360 50 – 1✓ 0.555 s – 2✓ 1.395 s (1,2)✗/(0,0)✓ 17.985 s
SININA 2 1 6 207 63 – 2✓ 1.334 s – 1✓ 0.511 s (2,1)✗/(0,0)✓ 73.574 s
SININA∗ 2 2 9 825 105 – 2✓ 76.030 s – 2✓ 5.300 s (2,2)✗/(0,0)✓ >2.7 h
∗ Due to the high verification complexity, we interrupted the combined analysis after testing (2, 1)-SININA where VERICA already reported

a failure.

Results. All verification results provided in Table 11.3 were generated under a 64-bit Linux
Operating System (OS) environment on an Intel Xeon E5-1660v4 CPU with 16 cores, a clock
frequency of 3.20 GHz, and 128 GB of RAM. More precisely, each gadget variant has been
instantiated for all combinations of d ∈ {1, 2} and k ∈ {1, 2}.

Starting with the combined analysis of the proposed NINA gadgets, Table 11.3 reports the
expected security under the CNI notion for all four gadgets. Note, however, according to
Definition 39, the number of fault injections is limited by the side-channel security order d.
Nevertheless, we can construct gadgets achieving higher protection against faults (by introduc-
ing more duplications) than against probes as shown for the (1, 2)-NINA gadget in Table 11.3.
Hence, once the number of fault injections is equal to or greater d, the gadget does not provide
any protection against SCA but is still protected against fault injections. VERICA can handle
these cases and therefore verifies (1, 2)-CNI security.

The analysis of the SNINA gadgets shows that the (1, 1) and (1, 2) gadgets are secure under
the CSNI notion. However, the remaining two gadgets are vulnerable to combined attacks.
For example, the definition of the (2, 1)-SNINA gadget allows to inject one single-bit fault while
providing probing security up to the first order. However, injecting one precise fault at the input
of this gadget leads to information leakage at the corresponding error flag. This is visualized
in Figure 11.3 for the detection path of output c2. It is assumed that the attacker injects a
set/reset fault at input a1

2 which is the third share of a belonging to the second duplicate of the
and gate. Without any loss of generality, we assume the attacker injects a set fault which leads
to a propagation of the random input r1 to gate g2. The second input of g2 provides the same
multiplication result but from the second instantiation. Hence, the randomness r1 is canceled
out in g2 and only a2b0 is sampled in the subsequent register. Since all other data paths are
fault-free, the remaining registers only store a logical 0 which eventually leads to leakage of
the shares a2 and b0 at the output of the gadget which violates the PSNI property. Note, that
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Figure 11.3: Combined attack for the (2, 1)-SNINA gadget proposed in [DN20] considering a
set/reset fault F0.

this phenomenon is due to the difficulties to implement appropriate error detection signals in
hardware (it is not caused by flaws in the definitions of [DN20, Algorithm 2] and does not occur
in software implementations). Since the same data is processed in the different duplications and
this data is merged in the detection paths, a violation of the CSNI property is expected and
hard to prevent.

Eventually, all SININA gadgets are insecure under the ICSNI security notions. Figure 11.4
shows a schematic of a (1, 1)-SININA gadget as suggested in [DN20] with the required modifica-
tions to secure it against hardware glitches. By Definition 41, a (d, k) gadget should be secure
even if an attacker injects up to k faults and uses d probes. However, in case an attacker injects
a fault F0 in one of the registers containing the partial products that were refreshed in the mul-
tiplication module (the most left modules in Figure 11.4), the probe P0 can be used to observe
the corresponding output after the compression step (xor gates in Figure 11.4). It can clearly be
seen that the attacker is able to learn one share of a and one share of b which violates the PSNI
property (cf. Definition 7). Hence, simultaneous protection against side-channel attacks and
fault injection attacks is not guaranteed. Even though we slightly adapted the ICSNI definition
and the gadget implementation (i.e., we explicitly consider faults in randomness gates in the
security notion and add registers to the hardware implementation) compared to the original
proposals from [DN20], the same flaws occur and can be transferred to the original work (i.e.,
the flaws also occur for software implementations). Hence, using VERICA, we were able to
detect flaws in [DN20, Algorithm 5] which does not provide security against combined attacks.

Note, VERICA is not able to finish the verification of the (2, 2)-SININA gadget since the design
is complex to be analyzed by the proposed algorithms. However, within 2.7 h VERICA already
failed checking the properties of (2, 1)-SININA, such that (2, 2)-ICSNI cannot be fulfilled.
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Figure 11.4: Combined attack for the (1, 1)-SININA gadget proposed in [DN20] considering a
set/reset fault F0.

11.5.2 Verification of FINI, CINI, and ICINI Gadgets

In our second case study, we first describe the implementations of our FINI, CINI, and ICINI
introduced in Chapter 9 in more detail. Afterwards, we conduct a formal verification to prove
the claimed security using VERICA.

Implementations. We construct FINI gadgets according to Section 9.5, i.e., the target design
is instantiated k + 1 times for detection-based and 2k + 1 times for correction-based implemen-
tations. In addition, detection and correction gadgets follow the independence property with
respect to redundancy domains by replicating the respective logic as well (cf. Algorithm 6).

For CINI and ICINI linear functions are constructed by instantiating the function (d+1)(2k+
1) times, i.e., for each SRD one instance, while multiplications are implemented according to
Algorithm 7, Algorithm 8, and Algorithm 9. Please note, that an implementation has to adhere
to Remark 4 and Remark 5. In Table 11.2 we provide the number of logic elements, dependent
on the order of fault and probing security, required to instantiate the multiplication gadgets
HPCC

1 and HPCI
1. Those numbers are without considering the implementation of the majority

function, as there is no closed formula for the related implementation cost. Please note that the
gadgets have the same implementation cost except for required randomness and the number of
xor gates.

Verification Results. The implementations and verification results are shown in Table 11.3.
We instantiated and analyzed a FINI and gadget equipped with a detection and a correction
gadget for k ∈ {1, 2, 3, 4}, respectively. All designs fulfill the FINI security notion while the
evaluation of the correction gadget for k = 4 requires a notable verification time of 6.24 h.

Next, we analyze the introduced CINI gadget from Algorithm 7 for d ∈ {1, 2, 3} and
k ∈ {1, 2, 3} and report the required resources. We could verify the security for all gadgets
except for the (3, 3)-CINI gadget, as VERICA was not able to finish the analysis in a reason-
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Table 11.2: Number of elements (without implementation of maj).

HPCC
1 HPCI

1

and (2k + 1)(d + 1)2 (2k + 1)(d + 1)2

xor 3(2k + 1)d(d + 1) (2k + 1)2d(d + 1)
reg (2k + 1)(d + 1)2 (2k + 1)(d + 1)2

maj (2k + 1)(d + 1)2 [input size: 2k + 1] (2k + 1)(d + 1)2 [input size: 2k + 1]
rand d(d + 1) d(d + 1)k

able time. As already discussed in Section 9.9.2, we can construct for some parameters d and k a
more tight CINI gadget applying Algorithm 8. Table 11.3 verifies the security for d ∈ {1, 2} and
k ∈ {1, 2} while it reveals security flaws for a (3, 1) configuration. We confirm in Section 11.7 by
a practical evaluation that well-placed faults can lead to a reduced side-channel security order.

Eventually, we instantiated and verified the ICINI gadgets for d ∈ {1, 2, 3} and k ∈ {1, 2, 3}
(cf. Algorithm 9). The verification of these gadgets is more challenging since the number of
faults does not reduce the number of probes. Therefore, VERICA is not able to verify several
designs in a reasonable time (marked by ∞).

11.6 Verifcation of Cryptographic Primitives
In this section, we analyze entire cryptographic primitives. We start by demonstrating that
our framework is able to validate protection against SIFA checking directly the independence
of the secrets and the error detection flag as introduced in Section 11.3. This strategy is not
supported by FIVER and is an additional feature provided by VERICA.

Afterwards, VERICA verifies a 4-bit S-box protected by the ParTI scheme which is one
of the first countermeasures providing protection against SCA and FIA independently. Even
though ParTI does not claim protection against combined attacks, we use the scheme to demon-
strate that VERICA is able to check (d, k)-combined security (cf. Section 11.4) and that the
mere combination of SCA and FIA countermeasures does not automatically result in combined
security.

11.6.1 SIFA Constructions

While most countermeasures against SIFA are based on correction mechanisms [SJR+20,
GPK+21], Daemen et al. proposed to use incomplete sub-circuits to avoid that effective faults
become ineffective [DDE+20]. More precisely, the protected circuits are constructed from three
basic circuits, i.e., a Toffoli gate pT (a, b, c) 7→ {a ⊕ b ⊙ c, b, c} [Tof80], a modified Toffoli gate
pχ(a, b, c) 7→ {ā⊕ b⊙ c, b, c}, and a simple xor-gate.

To achieve the desired security, the basic circuits are masked and used as building blocks to
construct cryptographic primitives. The masked circuits are given by

pT S(a0, a1, b0, b1, c0, c1) 7→ {a0 ⊕ (b0 · c1) ⊕ (b0 · c0), a1 ⊕ (b1 · c1) ⊕ (b1 · c0), b0, b1, c0, c1}
pχS(a0, a1, b0, b1, c0, c1) 7→ {a0 ⊕ (b0 · c1) ⊕ (b0 · c0), a1 ⊕ (b1 · c1) ⊕ (b1 · c0), b0, b1, c0, c1}
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Table 11.3: Implementation and verification results for FINI, CINI, and ICINI gadgets synthe-
sized with the 45 nm Open Cell Library.

Gadget Design Verification
d k rand. comb. reg. area [GE] Def. (d, k) Time

D
et

ec
t – 1 0 3 0 4.7

FI
N

I

(0, 1)✓ 0.387 s
– 2 0 6 0 9 (0, 2)✓ 0.397 s
– 3 0 13 0 15 (0, 3)✓ 0.429 s
– 4 0 18 0 19.7 (0, 4)✓ 1.280 s

Co
rre

ct

– 1 0 15 0 17

FI
N

I

(0, 1)✓ 0.383 s
– 2 0 75 0 98.3 (0, 2)✓ 0.445 s
– 3 0 147 0 194.3 (0, 3)✓ 16.501 s
– 4 0 297 0 390 (0, 4)✓ 6.24 h

H
PC

C 1

1 1 2 78 24 238

C
IN

I

(1, 1)✓ 0.409 s
2 1 6 189 54 567 (2, 1)✓ 0.485 s
3 1 12 356 96 1 032 (3, 1)✓ 39.544 s
1 2 2 340 40 685 (1, 2)✓ 1.490 s
2 2 6 795 90 1 595 (2, 2)✓ 6.321 s
3 2 12 1420 160 2 860 (3, 2)✓ 4.662 min
1 3 2 590 56 1 087 (1, 3)✓ 16.817 min
2 3 6 1362 126 2 502 (2, 3)✓ 3.897 h
3 3 12 2456 224 4 509 * ∞

H
PC

C 2

1 1 1 66 36 294

C
IN

I

(1, 1)✓ 0.389 s
2 1 3 189 90 768 (2, 1)✓ 0.775 s
1 2 1 210 60 640 (1, 2)✓ 0.804 s
2 2 3 615 150 1 730 (2, 2)✓ 5.643 s
3 1 6 372 168 1 460 (3,1)✗/(2,1)✓ 18.386 h

H
PC

I 1

1 1 2 78 24 240

IC
IN

I

(1, 1)✓ 0.397 s
2 1 6 189 54 573 (2, 1)✓ 4.329 s
3 1 12 356 96 1 044 * ∞
1 2 4 360 40 728 (1, 2)✓ 7.153 s
2 2 12 855 90 1 725 * ∞
3 2 24 1540 160 3 120 * ∞
1 3 6 646 56 1 203 (1, 3)✓ 4.743 h
2 3 18 1530 126 2 852 * ∞
3 3 36 2792 224 5 209 * ∞

* Due to the extensive amount of combinations, these gadgets could not be
verified with VERICA.

while necessary registers are added to achieve glitch-extended probing security. In the following,
we first analyze these building blocks, before proceeding with the 3-bit permutation in Xoodoo
[DHAK18], the 5-bit S-box in Keccak [BDPA13], and the AES S-box presented in [HPB21].
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Table 11.4: Verification results for designs based on Toffoli gates [DDE+20, HPB21].
Design ζ(0, τsr, mc∞) ζ(1, τsr, mc∞) ζ(2, τsr, mc∞)

Implementation comb. mem. SIFA Prob. SIFA Prob. SIFA Prob.

pT S 8 6 – 1✓[0.47 s] 1✓[0.45 s] 1✓[0.45 s] 1✗[0.46 s] 1✓[0.44 s]
pχS 10 6 – 1✓[0.45 s] 1✓[0.44 s] 1✓[0.45 s] 1✗[0.46 s] 1✓[0.45 s]

χ3 30 30 – 1✓[0.43 s] 1✓[0.46 s] 0✗[0.46 s] 1✗[0.46 s] 0✗[0.49 s]

χ5 52 42 – 1✓[0.44 s] 1✓[0.48 s] 0✗[0.44 s] 1✗[0.48 s] 0✗[0.54 s]

AES S-box, g104 [HPB21] 631 0 – 0✗[13.80 s] 0✗[194.89 s] 0✗[191.93 s] [∞] [∞]
AES S-box, full [HPB21] 634 0 – 0✗[13.90 s] 1✓[194.58 s] 0✗[194.70 s] [∞] [∞]

This case study should demonstrate the functionality of the SIFA extension introduced in Sec-
tion 11.3. Due to the combination of statistical independence checking (as presented in SILVER)
and fault injection (as presented in FIVER), the verification support of SIFA-based counter-
measures can be realized by checking the statistical independence of the secrets and the error
detection flag.

Masked Toffoli Gates. The masked Toffoli gate pT S consists of four simple Toffoli gates that
process the two shares of the masked input data. We first verify the security against side-channel
attacks in the glitch-extended d-probing model and no fault injections, i.e., ζ(0, τsr, mc∞). As
expected and shown in Table 11.4, the design is secure against first-order side-channel attacks.
Next, we perform an analysis with enabled fault injections using ζ(1, τsr, mc∞) as fault model
and the SIFA strategy presented in Section 11.3. As claimed by the authors, the fault detec-
tion value is independent of the secret input values, i.e., the unshared input data a = a0 ⊕ a1,
b = b0 ⊕ b1, and c = c0 ⊕ c1. Hence, the design is secure against single-bit SIFA attacks. In-
terestingly, the design is still first-order secure in the glitch-extended d-probing model even in
the presence of single-bit faults. Eventually, we also evaluate the masked Toffoli gate under the
fault model ζ(2, τsr, mc∞). The design is still first-order secure (with the same argument as
above), however, the tool reports only SIFA security under single-bit faults (which is expected).

We performed the same experiment for the adapted Toffoli gate pχS . The verification results
are similar to the results for pT S .

Xoodoo 3-bit S-box. VERICA confirms the first-order probing security of the 3-bit S-box
used on Xoodoo, implemented with the masked Toffoli gates pT S and pχS . However, as the
countermeasure was not designed to provide (1, 1)-combined security, single-bit faults lead to
successful first-order probing attacks.

Keccak 5-bit S-box. Similarly, the 5-bit S-box used in Keccak, again implemented with
Toffoli gates, is probing secure in the glitch-extended d-probing model but does not provide
(d, k)-combined security.
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AES S-box. Eventually, we examine two different implementations of the AES S-box presented
in [HPB21]3 which is also built from Toffoli gates. The first implementation is automatically
optimized to reuse the intermediate results g104 in order to demonstrate a flaw in the SIFA
protection [HPB21], which is confirmed by VERICA. In contrast to this, the (non-optimized)
full AES S-box design in [HPB21] is secure against single-bit SIFA attacks. Interestingly, both
designs are not secure in the glitch-extended d-probing model, since no register stages have been
added to stop potential glitches. Unfortunately, due to the increasing complexity and number
of fault combinations, VERICA is not able to analyze the S-boxes for two simultaneous injected
faults.

11.6.2 ParTI Verification

In 2016, ParTI presented a first-order secure TI with linear ECCs to provide protection against
SCA and FIA [SMG16]. As a case study, the authors applied their approach to the lightweight
cipher LED-64 [GPPR11]. Even though the design is not secure against combined attacks, we
implemented the scheme to demonstrate that VERICA is able to check (d, k)-combined security
(cf. Section 11.4).

Designs. In this work, we implement a first-order secure LED-64 S-box based on the TI
scheme. We create two designs that are additionally protected against FIA by applying ECCs.
The first design uses the error detection capabilities of the [8, 4, 4]-code as was done for ParTI.
Hence, this design is expected to be secure against first-order SCA and up to 3-bit faults should
be detectable (Hamming distance of the code is four). In the second design, we utilized the
error-correcting capabilities of the linear code such that the implementation is able to correct
single-bit faults (and, again, secure against first-order SCA without fault injections). For both
implementations, we satisfy the independent property introduced in [AMR+20, SRM20]. In the
following, we present the verification results provided by VERICA.

Verification. Table 11.5 shows the verification results for both S-boxes. As expected, the first
design provides the claimed probing security (during fault-free operation). Similarly, all faults
in the ζ(1, τsr, mc∞) model are detected by the linear ECC. As expected, the design is not
(1, 1)-combined secure which was also not claimed in [SMG16] For verification of correction
capabilities, we excluded the final correction stage from the analysis since injected faults cannot
be detected or corrected there. Nevertheless, the verification results are similar to the design that
only uses detection. However, due to the increased number of gates, the verification complexity
increases significantly.

11.7 Practical Evaluation

Besides verifying our CINI-designs with VERICA, we additionally perform practical measure-
ments. More precisely, we synthesized a pipelined (2, 2)-CINI PRESENT S-box for the Sakura-G
side-channel evaluation board which is equipped with a Xilinx Spartan 6 FPGA. We focus our
practical evaluation on HPCC

2 gadgets since they tightly fulfill Definition 43. The design requires
3The source files are publicly available at https://extgit.iaik.tugraz.at/scos/danira
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Table 11.5: Verification results of a LED-64 S-box protected by a combination of TI and error
detection or correction+[SMG16].

Design ζ(0, τsr, mc∞) ζ(1, τsr, mc∞)
Implementation comb. memory Det./Corr. Prob. Det./Corr. Prob.

ParTI S-box (Detection) 678 78 – 1✓[0.866 s] 1✓[1.010 s] 0✗[1.950 s]

ParTI S-box (Correction) 2063 72 – 1✓[4.103 s] 1✓[3.677 s] 0✗[336.239 s]

twelve bits of fresh randomness which is provided by a Keccak core instantiated as PRNG.
The FPGA is supplied with a 4 MHz clock and the current is measured indirectly via the voltage
drop over a shunt in the supply path. To acquire suitable power traces, we use a ZFL-2000GH+
LNA configured with a 25.5 dB gain and a Spectrum M4 oscilloscope (8 bit resolution) with a
sample rate of 2.5 GS/s.

For the first experiment, we instantiate a fault-free design on the FPGA and evaluate the
first three statistical moments using a univariate Welch’s t-test as described in Section 2.1.3.

Figure 11.5 depicts the corresponding results while Figure 11.5a shows a sample trace of the
S-box evaluation. As expected, the t-test only indicates leakage in the third statistical moment.

For the second experiment, we inject a persistent stuck-at-zero fault into one of the ran-
domness gates. The corresponding measurement is shown in Figure 11.6. As formally noted
in Definition 43, and confirmed by our measurements shown in Figure 11.6c, the one-bit fault
reduces the side-channel security by one order.

Eventually, for our last experiment, we inject two persistent faults in the randomness gates.
We expect that the two injected faults reduce the side-channel security by two orders which is
confirmed in Figure 11.7.

11.8 Conclusion
In this chapter, we introduce and present the first formal verification framework that can validate
side-channel security and fault injection resistance as well as the protection against combined
attacks. We demonstrate the functionality and advantages of VERICA in three extensive case
studies where we analyze combined gadgets, protection mechanisms against SIFA based on
Toffoli gates, and entire S-box implementations according to the ParTI protection scheme.

Additionally, we confirm by practical side-channel measurements that precisely injected faults
can decrease the order of the side-channel security. For this, we generate a PRESENT S-box
constructed from (2, 2)-CINI gadgets and inject persistent faults in random inputs. To determine
the security order with respect to the side-channel protection, we perform an evaluation based
on the well-established TVLA.

Limitations. However, even though VERICA can assist the designer in creating secure hard-
ware implementations of cryptographic primitives, it has some limitations. As shown in our
case studies, CA becomes more difficult with an increasing number of gates in the design under
test. This is naturally expected since the number of valid fault injections drastically increases
(especially for multi-bit fault injections) while for each valid fault injection a separate verifica-
tion of the side-channel security is conducted (for which the complexity also increases with the
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Figure 11.5: Measurement results of a fault free PRESENT S-box generated from (2, 2)-
CINI gadgets (100 million traces).

number of gates and security order). Note, even more powerful computers (i.e., using more cores
and more memory) could not analyze these large circuits since the problem gets too complex.
More precisely, the number of valid fault combinations and valid probe combinations increases
exponentially with the number of gates and the corresponding order (i.e., with the number of
simultaneously injected faults and the probing threshold, respectively).

Correctness of VERICA. VERICA relies on the theoretical foundation of the security notions
and their corresponding proofs presented in Chapter 9. We transferred these notions to software

165



Chapter 11 Verification of Combined Attacks

sample points

sc
op

e
co

un
t

0 500 1,000 1,500 2,000 2,500 3,000 3,500

−80

0

80

(a) Sample trace.

sample points

t-
va

lu
e

0 500 1,000 1,500 2,000 2,500 3,000 3,500

−4.5

0

4.5

(b) First-order t-test results.

sample points

t-
va

lu
e

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−5

0

5

10

(c) Second-order t-test results.

sample points

t-
va

lu
e

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−20

0
20
40
60

(d) Third-order t-test results.

Figure 11.6: Measurement results of a PRESENT S-box generated from (2, 2)-
CINI gadgets with 1-bit fault injection (100 million traces).

and verified them by (smaller) hand-verified examples. These hand-verified examples are further
used in test strategies to ensure the correct functionality of different methods used in VERICA.
However, we cannot fully guarantee the correctness of our source code due to the huge size of
the project. Therefore, we additionally rely on the scrutiny of the community by releasing the
source code and results of the case studies to ensure correct functionality and implementations.
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Figure 11.7: Measurement results of a PRESENT S-box generated from (2, 2)-
CINI gadgets with 2-bit fault injection (1 million traces).

Future Work. In our case studies, we reveal some security flaws in the hardware implemen-
tations of combined gadgets. Hence, an interesting question is how these gadgets need to be
adapted and implemented on hardware such that they resist combined attacks.

Eventually, VERICA reports that the shared implementations of the Toffoli gates from Sec-
tion 11.6.1 are even first-order secure against SCA in the presence of single-bit and two-bit
faults. However, using the shared Toffoli gates to construct larger circuits (e.g., S-boxes), leads
to implementations that are not protected against SCA in the presence of faults. This ob-
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servation could be used in the future to formulate composability notions for gadgets that are
protected against SIFA.
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Chapter 12

Folding BIKE – Scalable Hardware
Implementation for FPGAs

In this chapter, we investigate different strategies to efficiently implement the BIKE
algorithm on FPGAs. To this extent, we improve already existing polynomial mul-
tipliers, propose efficient strategies to realize polynomial inversions, and implement
the Black-Gray-Flip decoder for the first time. Additionally, our implementation is
designed to be scalable and generic with the BIKE specific parameters. Altogether,
the fastest designs achieve latencies of 2.69 ms for the key generation, 0.1 ms for
the encapsulation, and 1.89 ms for the decapsulation considering the lowest security
level. This chapter is based on a joint work with Johannes Mono and Tim Güneysu
originally presented in [RMG22].

Contents of this Chapter

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.2 Efficient Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 173
12.3 Implementation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

12.1 Introduction
Since the introduction of Shor’s algorithms [Sho99], there is extensive research to find new
schemes which are secure even in the presence of quantum adversaries. One such promising
research area is code-based cryptography where hard problems from coding theory are used to
create cryptographic schemes. The first scheme based on linear error codes was proposed by
McEliece in 1978 [McE78]. Even though the McEliece cryptosystem is assumed to be secure
against classical and quantum-based attacks, one disadvantage is its large public key. In order
to decrease the key size (and the corresponding memory requirements and transmission band-
width), a new class of linear codes was designed, so-called QC-MDPC codes. They were first
presented in [MTSB13] and gained more and more attention in recent years due to performance
and security features.

In 2017, the NIST announced the Post-Quantum Cryptography Standardization Project aim-
ing to find and standardize suitable PQC schemes. One of the submissions is the BIKE scheme
built upon QC-MDPC codes. With the advancement of the submission to the third round, the
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BIKE team reduced the number of algorithms proposed in earlier specifications [ABB+19] to
one single algorithm, now just called BIKE. The remaining algorithm (called BIKE-2 in earlier
submissions) is based on the Niederreiter framework [Nie86] including some tweaks [ABB+20b].
Recently, NIST announced that BIKE proceeds to the fourth round which means that the
algorithm is still considered for standardization [oST22].

After the announcement of the PQC Standardization Project, NIST published a list of selec-
tion criteria including security, cost and performance as well as algorithm and implementation
characteristics on various platforms [AASA+19]. Currently, there is a software reference imple-
mentation of BIKE, an optimized software implementation for Intel CPUs [DGK20a], and an
efficient microcontroller implementation [BOG19].

12.1.1 Related Work

After the introduction of QC-MDPC codes by Misoczki et al., the authors of [HvMG13] were the
first researchers who implemented the McEliece cryptosystem with QC-MDPC codes on FPGAs.
Besides an exploration of different decoders suited for efficient hardware implementations, they
decided to follow a design strategy targeting a high-speed implementation. To this end, they
stored all keys and intermediate results directly in the FPGA logic and did not use any external
or internal memories.

One year later, von Maurich and Güneysu presented a lightweight implementation of McEliece
using QC-MDPC codes [vMG14]. They divided each vector into chunks of 32 bit and processed
them separately. This approach incorporated the internal memory of the FPGA to keep the
amount of registers as low as possible.

The authors of [HC17] proposed an area time efficient hardware implementation for
QC-MDPC codes outperforming the results from [HvMG13]. The improvements were mainly
gained by a custom-designed decoder equipped with a hardware module estimating the Ham-
ming weight of larger vectors.

With the submission to the second round, the BIKE team presented an FPGA implementation
of one of the discarded algorithms called BIKE-1 including the key generation and encapsulation
[ABB+19]. Their design strategy was very similar to the one presented in [vMG14] but included
two optimization levels which parallelized the encoding process.

Recently, Reinders et al. proposed an efficient hardware design with a constant-time decoder,
also designed for the older BIKE-1 algorithm [RMGS20]. However, the proposed decoder differs
from the introduced decoder of the current BIKE specification. Additionally, as they opted for
BIKE-1, they did not implement any polynomial inversion.

An efficient algorithm to accomplish polynomial inversions was presented in [HGWC15] and
is based on the classic Itoh-Tsujii Algorithm (ITA) [IT88]. Here and in many other parts
of BIKE, polynomial multiplications are an essential building block that can be realized by
different design strategies. Two of them – i.e., a row-by-row strategy and a strategy dividing
the vectors into chunks – were described in the above-mentioned works [HvMG13] and [vMG14],
respectively. Another strategy was recently introduced by Hu et al. in [HWCW19] where the
authors decomposed the quasi-cyclic matrix (constructed from one of the polynomials) into
sub-matrices achieving an enhanced area-time product.
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12.1.2 Contribution

We present the first hardware implementation of the entire BIKE algorithm proceeded to the
fourth round in the NIST PQC standardization process. The first challenging part is the imple-
mentation of the polynomial inversion required for the key generation. We investigate different
optimization strategies for hardware platforms which eventually leads to a highly optimized de-
sign. The inversion module as well as other parts of BIKE require a polynomial multiplier. We
slightly improve the multiplier proposed in [HWCW19] and reduce the overall latency. Addi-
tionally, we provide the first hardware implementation of the BGF decoder originally proposed
in [DGK20c]. The implementation is constant-time with respect to the processing of secret
values (i.e., the operation times of all modules are independent of any secret values) and is thus
secure against timing attacks.

By implementing a parameterized design, we can scale our approach down to small devices
(resulting in higher latency) or scale it up for low-latency applications (resulting in a bigger
implementation). Additionally, we wrote SageMath scripts to achieve a design which is com-
pletely generic with respect to all parameters used in BIKE. All HDL files are available at
https://github.com/Chair-for-Security-Engineering/BIKE.

12.2 Efficient Hardware Implementation

In this section, we first state and discuss our design considerations. Afterwards, we present our
design strategies for each required submodule to assemble BIKE and discuss our approaches in
more detail.

12.2.1 Design Considerations

In general, our implementation tries to keep the footprint as small as possible while providing
a reasonable throughput. This goal is achieved by storing all polynomials in BRAMs instead
of using registers even if that means forgoing the possibility to access all bits of a polynomial
at the same time. This strategy drastically reduces the amount of required registers (and
consequently slices) because otherwise each polynomial (e.g., the error vectors, the public key,
private key, ciphertext) would consume r registers resulting in exploding implementation costs.
Nevertheless, we decided to use registers whenever values of ℓ bits (e.g., m or c1) need to be
stored as spending an entire BRAM would waste hardware resources.

Besides these trade-offs, our implementation is developed to be generic with the BIKE spe-
cific parameters in case they need to be adapted (e.g., for security reasons). Additionally, we
introduce a scaling parameter b to define the internally applied data bus width affecting the
bus width of all BRAMs and the level of parallelization of several submodules. Therefore, all
polynomials are divided into chunks of b bits which will be further processed by the required
submodules (e. g., multiplier or inversion). By writing a[i], we denote b bits of the polynomial
a which are stored at address i where the Least Significant Bit (LSB) a0 of a is stored in the
LSB of a[0]. In our evaluation, we consider b ∈ B = {32, 64, 128} as these values are common
bus widths and larger values would exceed the available hardware resources on Xilinx’s Artix-7
FPGAs1.

1Note that the NIST recommended to use Artix-7 FPGAs.
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The generations of (h0, h1), σ, and m require a source of randomness. In our design, we assume
that the target device is equipped with an appropriate Random Number Generator (RNG)
since the implementation of a secure RNG is out of scope of this work. All modules requiring
such randomness have implemented ports which could be connected to an available source of
randomness.

Our goal is to comply with the BIKE specification. Thus, we can generate and extract
testvectors from the reference implementation and can validate the output of our design.

12.2.2 Sampler

With Predefined Hamming Weight. The first step in the key generation (cf. Algorithm 2)
is to sample the polynomials (h0, h1) representing the first part of the secret key. Since both
polynomials are defined to have a Hamming weight of w/2, they can be sampled in parallel.

The samplers are realized by rejection sampling [DG19] and both expect a ⌈log2(r)⌉-bit input
xrand,i of fresh randomness every two clock cycles with i ∈ {0, 1}. The input xrand,i determines
the non-zero positions in the polynomial hi. For the sampler, we decided to fix b to 32 bits.
Increasing b would not improve the throughput because for each random input xrand,i only one
bit in the target polynomial needs to be adjusted. Hence, working on larger values of b would
increase the required hardware resources in terms of reading larger chunks from the memory
which need to be processed by the sampler (more details below).

The sampler divides the random input xrand,i into two parts consisting of the lower five bits
xpos,i and the remaining upper bits xaddr,i. Within the first clock cycle of sampling one single
bit, the sampler reads the 32-bit chunk of the polynomial hi[xaddr,i]. The lower five random bits
xpos,i are buffered in registers. In the next clock cycle, these bits are used to create a bit vector
determined by 2xpos,i (target bit position is set to one). The vector is added (xored) to hi[xaddr,i]
and the result is written back to the memory. If a bit is set and xrand,i < r, a counter, which
monitors the Hamming weight of the sampled polynomial, is enabled. Given that, increasing
b would not improve the throughput but instead, more hardware resources would be necessary
(more xor-gates) to adjust a single bit in hi.

Although rejection sampling avoids biased values obtained by e.g., reducing xrand,i modulo r,
it does not finish in constant time. Therefore, we will briefly discuss its (timing) side-channel
security and its average latency. Each time xrand,i is larger than r the randomness is rejected
and not used to set a bit in hi. This, however, does not create an attack surface because
the algorithm finishes in constant time with respect to the set bit positions in the polynomial.
An attacker observing the sampling process would not gain any information about the actual
sampled bit position in hi and no confidential information is revealed [DG19].

However, just recently, Guo et al. presented an attack that targets the non-constant time
behavior of rejection sampling [GHJ+22]. This attack does not exploit information of the
rejection sampling in the key generation but targets a sampling routine used in the encapsulation
and decapsulation. To this end, the corresponding sample routines were adapted in the latest
specifications of BIKE [ABB+22].

The probability of not getting rejected, i.e., the success probability is s = r
2⌈log(r)⌉ . However,

this term needs to be adjusted as collisions get more likely with an increased number of bits
already set in hi which is done by (1− j−1

r ) where j indicates the number of bits that already
have been set. Finally, Equation 12.1 is used to calculate the average clock cycles Nsample,avg
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Figure 12.1: Exemplary decomposition of the partial products for a multiplication with r = 10
and b = 3.

required to finish the sampling process for the polynomials hi. The leading factor of two is due
to the read and write accesses to the BRAM mentioned above.

Nsample,avg = 2 ·
w/2∑
j=1

1
s · (1− j−1

r )
(12.1)

For the lowest security level Nsample,avg = 189.34.

Uniform Sampler. The sampling process of the secret key σ and m is done in a straightforward
way by using a 32-bit input providing fresh randomness. The 256 random bits are stored in
registers as explained in Section 12.2.1.

12.2.3 Multiplication

Polynomial multiplication is a basic building block for each of the three algorithms involved in
BIKE. Our multiplier focuses on minimal BRAM usage as well as a good area-time product
and is formally defined in the appendix in Algorithm 15 using the vector-matrix representa-
tion. Although the runtime of our multiplication is O(⌈r/b⌉2), we benefit from carry-less and
reduction-less multiplication in F2.

We also considered using Karatsuba multiplication and reviewed the literature for implemen-
tations. The authors in [ZGF20] provide one such implementation but due to the high area
costs (cf. Section 12.3.3 for more details) we do not follow their approach. Instead, we compute
columns block-wise which fits well with our design philosophy of processing b bits in parallel
and integrates well with other components.

A multiplication c = m · h requires the constant overhang O = r mod b (cf. Algorithm 15),
that is the number of bits in the polynomial’s most significant word. The multiplier reads b bits
of m and b bits of h such that b · b partial products are computed at the same time. This leads
to the previously mentioned column-wise multiplication, i.e., all partial products including the
message’s bits m[i] are calculated before the next b bits of m are read from the BRAM.

As an example, we graphically depict the multiplication process for r = 10 and b = 3 in
Figure 12.1. For every column consisting of r · b partial products, there are two initial steps:
the first step computes the partial products of the upper triangle (in our example m2 · h8), the
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Algorithm 11 Inversion based on the classic ITA [IT88, HGWC15].
Require: r − 2 = (rq−1, ..., r0) with ri ∈ 0, 1 and a ∈ R∗

Ensure: a−1

1: f ← a, t← 1
2: for i← q − 2 to 0 do
3: g ← f2t

4: f ← f · g
5: t← 2t
6: if ri = 1 then g ← f2 f ← a · g t← t + 1
7: end if
8: end for
9: return f2

second step computes all partial products that include the current most O significant bits of h
and all bits from m[i] excluding the first bit (in our example m1 · h9 and m2 · h9).

Afterwards, the algorithm proceeds with a regular flow. In each clock cycle, the multiplier
reads h[j] and c[j] from the BRAMs and computes the related partial products in the next clock
cycle (illustrated by connected background colors). The lower b bits of the result are added to
the intermediate result which was gained by the upper b− 1 bits of the previous multiplication’s
result. These intermediate results are stored in registers in order to have direct access.

As the authors in [vMG14], we also use the read-first setting of the BRAMs enabling to read
a result and write a new value to a specific address in one clock cycles. Hence, new results from
the multiplication engine, which are added to the current intermediate result c[j], are stored
in the BRAM at position (j + 1) mod r. Since there are ⌈r/b⌉ columns, the final result c is
stored in the correct layout, i.e., c[0] contains the LSBs of the final polynomial. The polynomial
h is also rotated in the BRAM. This is tracked in the implementation including special cases
such as determining h[0] as it consists partly of h[r − 1] and partly of h[r − 2] (in our example
h[0] = (h7, h8, h9) for the second column).

The multiplier performs a multiplication within ⌈r/b⌉ · (⌈r/b⌉+ 3) + 1 clock cycles. The
additional three clock cycles in every column originate from the two initial steps described
above and one additional clock cycle to read h[0]. The last clock cycle is required to switch to
a DONE state.

12.2.4 Inversion
With the decision of the BIKE team to only rely on the BIKE version being built upon the
Niederreiter framework, a new challenge of implementing a polynomial inversion in hardware
arose. Since BIKE is also designed to work with ephemeral keys, an efficient implementation of
an inversion algorithm is even more critical to achieve reasonable throughput. To this end, we
decided to implement the inversion of a polynomial a in R using Fermat’s Little Theorem as

a−1 = a2r−1−2 (12.2)

holds for every a ∈ R∗ with ord(a) | 2r−1 − 2.
To exponentiate a target polynomial a with 2r−1 − 2, we first rewrite the exponent as

2
(
2r−2 − 1

)
. Eventually, the exponentiation is accomplished by Algorithm 11 which is based
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Table 12.1: Comparison between Algorithm 11 and Algorithm 2 from [DGK20b] indicating the
amount of squaring operations.

K k = 1 k = 2 k = 3 k = 4 Sum

Algorithm 2 from [DGK20b]
{1} 12 355 0 0 0 12 355
{1, 2} 5 6 175 0 0 6 180
{1, 2, 3} 10 6 4 111 0 4 127
{1, 2, 3, 4} 5 1 0 3 087 3 093

Algorithm 11 (used in this chapter)
{1} 12 321 0 0 0 12 321
{1, 2} 7 6 157 0 0 6 164
{1, 2, 3} 8 2 4 103 0 4 113
{1, 2, 3, 4} 6 2 1 3 077 3 086

on the classic ITA [IT88] and a slightly adapted version of Algorithm 1 defined in [HGWC15].
Note that we do not follow the recently proposed algorithm by Drucker et al. [DGK20b] (which
is used in the additional software implementation of BIKE [DGK20a]) as it performs slightly
worse in hardware. The number of required multiplications is the same for both algorithms but
the number of squarings differs. Assuming that an exponentiation f2t is divided into a chain
of operations of the form f2k with k ∈ K and k ≤ t where each operation has the same runtime
(more details are given below), Algorithm 11 requires less of these operations than Algorithm
2 from [DGK20b] as shown in Table 12.1 for different sets of K. Additionally, the proposed al-
gorithm by Drucker et al. would require one additional BRAM to hold the intermediate results
res (cf. Algorithm 2, line 8 in [DGK20b]).

However, Algorithm 11 executes the exponentiation of
(
2r−2 − 1

)
described by lines 2-11

first and eventually the final squaring from line 12. To this end, the inversion consists of
exponentiations of the form f2t , of polynomial squarings, and of polynomial multiplications.
The latter operation is realized by using the multiplier described in Section 12.2.3. The strategies
to implement a squaring module and to realize the exponentiation with 2t are described in the
following.

Squaring Module for Fixed k. An exponentiation of a polynomial f with 2t for arbitrary t
can always be accomplished by dividing the exponentiation into a chain of t squarings. One
possibility to speed up the calculation is to implement a module which performs k < t squarings
within the same time as a single squaring. A squaring chain would consist of ⌊t/k⌋ k-squarings
and t mod k single squarings.

The strategy implementing squaring modules with fixed k pursues our global design consid-
eration to achieve submodules which scales with b. A polynomial squaring g = f2k for arbitrary
k can be realized by a simple bit-permutation and is mathematically described by

gi = fi·2−k mod r (12.3)
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0 8 16 24 32 40 48 56

0 8 16 24 32 40 48 56

Source Polynomial

Target Polynomial

Figure 12.2: Exemplary permutation for a squaring module with k = 1, r = 59, and b = 8.

where i denotes the i-th element in the target polynomial. Equation 12.3 indicates that for
each b bits of the target polynomial g, bits from at least 2k different addresses of the source
polynomial f are required where the maximum number of different addresses is bounded to
2 · 2k − 1. As an example, Figure 12.2 shows a draft of the permutation and corresponding
memory pattern for a squaring with k = 1, b = 8, and r = 59. It is shown that bits from three
different addresses are required in order to combine them to the correct result written to the
first address implying that all necessary bits from f need to be loaded from the BRAM first.
This is done in an initial phase which is automatically calculated to be optimal by our scripts.
Additionally, the scripts ensure that all upcoming results can be directly written to the BRAM
containing the target polynomial by determining an optimal read sequence of bits from the
source polynomial. The amount of clock cycles required for the initial phase also determines
the number of b-bit registers holding the already read parts from the source polynomial. Note,
after the initial phase, which depends on k and r, the squaring finishes within ⌈r/b⌉ clock cycles.

Squaring Module for Arbitrary k. Besides the above described strategy, we explore another
approach implementing a squaring module which can accomplish a k-squaring (i.e., g = f2k) for
arbitrary k within r clock cycles. For Algorithm 11, this approach is especially interesting for
larger t as the exponentiation has not to be decomposed into a squaring chain but rather can
directly be carried out. Figure 12.3 shows a schematic drawing of the hardware implementation
and the corresponding operations required to compute the addresses of the source and target
polynomial and the output data for the target polynomial g. The bits of the target polynomial
are determined in an ascending order so that the corresponding bits from the source polynomial
need to be computed by the implementation. Therefore, the module requires an input INC
which needs to be assigned to 2−k mod r. Starting with 0, the implementation adds (modulo
r) every clock cycle INC to the current value where the upper bits determine the address and
the lower log(b) bits are used as a selection signal for a b-to-1 multiplexer. The input of the
multiplexer is the current b-bit chunk of the source polynomial. After selecting the desired bit
from the input, a barrel shifter is used to shift the desired bit to the correct position. The
resulting b bits are then added (xored) to the current intermediate result destined for the target
polynomial. After every b bits for a target address of g are collected and shifted to the correct
position, the implementation writes the result to the BRAM.
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Figure 12.3: Schematic drawing of a k-squaring module for arbitrary k in r clock cycles.
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Figure 12.4: Different strategies to implement g = f2t required for the polynomial inversion.

Squaring Strategies. Given the two different modules to compute a k-squaring, we investigate
three optimization strategies to implement the exponentiation g = f2t in Algorithm 11, line 3.
The three approaches are depicted in flow charts in Figure 12.4. The first strategy only utilizes
a squaring module for a fixed k = 1. In this case, all exponentiations are carried out by chains
of simple squarings. The second strategy implements two different but fixed squaring modules:
one with k = 1 and the other one with k = 4. Hence, as long as t and the remaining exponent of
the squaring chain is larger or equal to four, the faster module is used. If the remaining exponent
is smaller the squaring module with k = 1 is applied. The last strategy uses a combination of a
fixed squaring module with k = 1 and the module being able to perform arbitrary k-squarings.
In this way, all k-squarings with k ≥ b are executed by the latter module.

Note that all strategies have implemented a fixed squaring module with k = 1 because of two
reasons: (1) simple squarings are always needed in the inversion process (cf. Algorithm 11, line 7
and line 12), and (2) it consumes just a few hardware resources and speeds up the computation
notably (more information will be given in Section 12.3.1).

Independently of the strategy, the inversion process requires four BRAMs. One BRAM stores
the private key, i.e., (h0, h1). The other three BRAM modules are interchangeably used to
perform a squaring chain (two BRAMs are used in alternation as source and target polynomial)
and a subsequent multiplication by the squaring chain’s input polynomial (cf. Algorithm 11,
line 3 and line 4).
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Figure 12.5: Hamming weight computation of a polynomial g divided into b-bit chunks a. In
each stage, as many as possible additions are carried out by one DSP.

12.2.5 Decoder
The BGF decoder mainly consists of three submodules. The first module is the threshold
function described in Equation 4.1. Its argument |(s+eHT)| is computed by the second module.
The third module flips the bits of the error vector e and generates the black and gray lists. In
the following, we describe our implementations of these three modules.

Threshold Function. The threshold for flipping a bit in the error vector is calculated with a
multiplication followed by an addition with a constant term. We use Digital Signal Processors
(DSPs) instantiated with an output register stage as a straightforward implementation choice.
In order to ensure that the bus widths of the input ports are used as optimally as possible,
the corresponding VHDL-code is generated by a Sage script producing binary representations
of the constants f0 and f1. The floor function is realized by omitting all fractional digits from
the result. As this procedure sustains a loss of precision, the script also checks that the result
is still correct for all possible inputs x.

Hamming Weight. The implementation of the Hamming weight module follows our design
strategy to scale submodules with the parameter b. Again, we utilize DSPs with one register
stage to add up all non-zero bits. To do so, each b-bit chunk a = g[i] of a target polynomial g is
separately fed into the module depicted in Figure 12.5. In log(b) stages, all bits are accumulated
where each stage consists of

⌈
b/2j ·(j+1)

bDSP

⌉
DSPs where bDSP denotes the input bit width of the

applied DSP and 1 ≤ j ≤ log(b). Hence, for each stage, the full width of each DSP is utilized.
In total, the Hamming weight computation requires

1 +
log(b)∑
j=1

⌈
b/2j · (j + 1)

bDSP

⌉
(12.4)

DSPs where the additional DSP is used to accumulate all intermediate results at the end.

Bit-Flipping. The last module of the decoder is responsible for the bit-flipping of the error
vector’s bits, i.e., the functions BFIter and BFMIter from Algorithm 5. In our implementation,
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we realize both functions in one module and select the modes of operations (i.e., BFIter produc-
ing the black and gray lists, BFIter without producing the lists, BFMIter processing the black
mask, and BFMIter processing the gray mask) with a control signal MODE. The most interesting
part is the process of counting the UPC equations which is depicted in Figure 12.6. We follow
our design strategy and instantiate b counters in parallel where the ENABLE (EN) signals depend
on the current part of the syndrome and the secret key. For storing the secret key, we decided
to rely on a compact representation, i.e., only the positions of non-zero bits are stored instead
of the entire polynomial. Hence, to determine the enable signals of all b counters in the same
clock cycle, we compute the positions of the currently considered non-zero bit for the next b− 1
columns (considering the secret key in its matrix representation) by adding the corresponding
offsets (white adders) which would be gained when shifting the polynomial to the right. The
position of the non-zero bit of the secret key is also used to read the corresponding chunk of
the syndrome (depicted at the top in Figure 12.6). Here, we decide to duplicate the syndrome
s and store a copy in a separate BRAM. This is necessary since we need b successive bits from
s starting at the bit position determined by the current non-zero bit of the secret key which is
not aligned with the layout of the BRAMs. For r = 17 and b = 4 this behavior is shown in the
following example.

s2 s1 s0 s16 | s15 s14 s13 s12 | s11 s10 s9 s8 | s7
↓
s6 s5 s4 | s3 s2 s1 s0

The arrow indicates the position of the current non-zero bit of the secret key and the underlined
bits are required to determine the enable signals of the b counters. As we can only read one
chunk within one clock cycle, we decided to create the aforementioned copy of the BRAM
storing the syndrome to achieve a lower latency and read both chunks within one clock cycle
from two different memories. The careful reader may notice that the least significant bits of the
syndrome in the example are also stored in the most significant chunk such that the chunk is
completely filled with data. The least significant bits from s are copied to the most significant
chunk in an initial phase each time the BFIter module is evoked. This is necessary in case the
non-zero bit of the secret key (the arrow in the example) would point for example to s15.

After a non-zero bit position is read from the BRAM, b is added and the result is written
back to the memory for the next iteration, i.e., the next b columns. At the end of each BFIter
execution, the original secret key is restored from a copy as it is required for the next execution.

However, after each non-zero bit position is read once from the BRAM, the counter values
can be evaluated and compared to the threshold T . In case a counter value exceeds T the
corresponding bit is set. The resulting b bit vector is added to the current chunk of the error
vector or is used to set the bits in the black list. The same procedure is applied for the gray
list but with a threshold reduced by τ .

The BFIter function finishes in constant time and only depends on r, w, and b as shown in
Equation 12.5.

NBFIter = w

2 · 2 ·
⌈

r

b

⌉
+ 6 · 2 ·

⌈
r

b

⌉
+ 5 (12.5)

12.2.6 Random Oracles
The BIKE specification defines the three functions H, K, and L as random oracles [ABB+20b].
K and L rely on a standard SHA384 core hashing m concatenated with C and hashing (e0, e1),
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Figure 12.6: Extract of the bit-flipping module.

respectively. It is assumed that all data is stored in byte arrays so that the input size to the
SHA function is a multiple of eight. For our hardware design, we implemented the SHA core in
a straightforward way, i.e., as a round-based approach including retiming.

The H function relies on an AES256 core (instantiated in counter mode) where the input
to H serves as 256-bit key. After one execution of AES, the resulting ciphertext is used as
randomness generating the error vectors. More precisely, the 128-bit output is divided into four
32-bit words which serve as inputs to the sampler described in Section 12.2.2.

12.3 Implementation and Analysis
Before we cover the composition of the key generation, encapsulation, and decapsulation, we
provide analyses of the above described submodules. Finally, we compare our approaches to
related work.

12.3.1 Analysis of Submodules
Sampler. In order to verify our hardware implementation of the rejection sampler, we per-
formed 100 000 simulations setting r = 12 323. Figure 12.7 shows a histogram of the required
clock cycles to finish the sampling process. The results confirm the correct functionality of our
implemented sampler and show the expected average number of clock cycles which we deduced
in Equation 12.1.

One sampler generating a single polynomial consumes 25 slices partitioned into 66 LUTs and
19 registers. For r = 12 323 a half (i.e., a 18 KB) BRAM tile is required to store the polynomial.
Our final implementation instantiates two samplers to generate (h0, h1) in parallel.

Multiplier. Here, we just report the implementation results for the multiplier setting b = 32
and r = 12 323 which are summarized in Table 12.2. A more detailed analysis and a comparison
to related work are presented in Section 12.3.3.

Squaring Modules. In Section 12.2.4 we introduced two different squaring modules. The first
module was designed to perform the operation f2k for a fixed k and a target polynomial f in
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Figure 12.7: Distribution of required clock cycles to sample one polynomial of the secret key for
r = 12 323 and w = 142 based on 100 000 simulations.

approximately ⌈r/b⌉ clock cycles. The implementation results for k = 1 and k = 4 are shown
in Table 12.2. Increasing k significantly increases the amount of required hardware resources
which can be explained by more complex control logic and more intermediate values that need
to be buffered in registers. Note that the gain in terms of throughput only increases linearly.

Due to these exploding implementation costs, we investigated a second squaring strategy
which performs squarings of arbitrary k in approximately r clock cycles. For r = 12 323 and
b = 32 this approach requires just 45 slices partitioned into 96 LUTs and 80 registers. The
utilization is very similar to that of the squaring module working with a fixed k = 1 which
makes it especially beneficial for larger k.

However, both modules require two 18 KB BRAM tiles which hold the source and the target
polynomial.

Decoder. The decoder can be divided into three parts: the threshold computation, the Ham-
ming weight module, and the BFIter function. The threshold computation is realized by one
DSP configured as a multiplier with a subsequent addition. Therefore, it consumes one DSP
(independent of the security level and b) and a few LUTs for control logic.

The Hamming weight module also uses DSPs as described in Section 12.2.5 while the number
of required DSPs depends on b (cf. Equation 12.4). Note, for Artix-7 FPGAs bDSP = 28. No
additional logic is required.

The hardware utilization for the BFIter function for r = 12 323 and b = 32 adds up to 355
slices composed of 280 registers and 1 125 LUTs. Altogether, the module needs to be connected
to 4.5 BRAMs to store two times the syndrome, the compact representation of the secret key
(a half memory is sufficient), the error vectors, and the black and gray lists.

Random Oracles. Both, K and L, use a SHA384 which consumes 1 171 slices (3 636 LUTs and
2 110 registers). The wrapper to realize K consumes additional 114 slices while the wrapper for
L only requires 45 additional slices.

The realization of H utilizes additional 614 slices which includes the AES256 and the wrapper
logic.
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Table 12.2: Implementation results of the required submodules to assemble the BIKE algorithms
(r = 12 323, b = 32).

Logic Memory Area
LUT DSP FF BRAM Slices

Sampler 66 0 19 0.5 25
Multiplier 886 0 119 1.5 274

Squaring k = 1 81 0 105 1 38
Squaring k = 4 4 070 0 820 1 1 124

Squaring arbitrary 96 0 80 1 45
Threshold Function 6 1 0 0 5

Hamming Weight 0 6 0 0 0
Bit-Flipping 1 125 0 280 4.5 355

SHA384 3 636 0 2 110 0 1 171
Wrapper for K 220 0 29 0 114
Wrapper for L 45 0 22 0 45

H Function 1 879 0 457 0 614

Comparing these implementation results with those of the other submodules in Table 12.2,
it can clearly be seen that the hardware resources to realize the three random oracles dominate
the total utilization costs (especially for b = 32). Hence, from the hardware implementation’s
point of view switching to another cryptographic primitive like Keccak (used as SHAKE and
SHA-3) could reduce this overhead.

12.3.2 Composed Key Encapsulation Mechanism

Now, we present implementation results of the composed designs of the three algorithms involved
in BIKE.

Key Generation. Given all the submodules, we now describe the assembly of the key generation
module. On the top level, it consists of two samplers generating the private key (h0, h1). The
resulting key is written to a generic BRAM module which automatically picks and connects
the minimum number of required BRAM tiles based on the selected parameters r and b. The
private key σ is generated by the sampler described in Section 12.2.2 and is stored in a 256-bit
register. In order to generate the public key h = h1h−1

0 , one of the above introduced inversion
modules is instantiated. The multiplication is also performed inside the inversion module as it
already contains a multiplication engine.

Table 12.3 summarizes the implementation results for the key generation for all three intro-
duced design strategies. Starting with Strategy 1, which utilizes only one squaring module, the
implementation requires in average for b = 32 7.37 million clock cycles2 which corresponds to a

2The average number of clock cycles was determined by performing a simulation and applying Equation 12.1.
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Table 12.3: Implementation results for Level 1 (r = 12 323).

Resources Performance
Logic Memory Area Cycles Freq. Latency

LUT DSP FF BRAM Slices Cycles MHz ms

Key Generation
Strategy 1

32 bit 2 092 0 589 4 669 7 370 429 129.87 56.75
64 bit 3 607 0 631 5 1 046 3 070 613 125 24.56

128 bit 11 838 0 861 10 3 354 1 409 621 104 13.53
Strategy 2

32 bit 6 982 0 1 396 4 1 986 3 804 192 131.58 28.91
64 bit 9 140 0 2 303 5 2 570 1 295 190 123.46 10.49

128 bit 23 801 0 4 567 10 6 742 520 374 106.38 4.89
Strategy 3

32 bit 2 074 0 659 4 649 2 671 076 131.58 20.30
64 bit 4 432 0 735 5 1 285 748 964 113.64 6.59

128 bit 12 654 0 1 044 10 3 554 258 750 96.15 2.69

Encapsulation
32 bit 6 730 0 3 298 3 2 143 152 694 121.95 1.25
64 bit 8 253 0 3 327 5 2 538 40 368 121.95 0.33

128 bit 14 829 0 3 471 10 4 540 12 240 121.95 0.10

Decapsulation
32 bit 9 380 7 3 943 10 2 971 1 626 674 125 13.01
64 bit 16 140 9 4 307 15 4 942 518 105 116.28 4.46

128 bit 30 430 13 5 063 29 8 785 188 646 100 1.89

latency of 56.75 ms for a maximum possible frequency of 129.87 MHz. The latency can roughly
be decreased by a factor of four setting b = 128. However, the hardware utilization scales with
a factor of five resulting in an area footprint of 3 354 slices. A better ratio between latency
and resource utilization is achieved with Strategy 3. The utilization is very similar to the first
strategy but the latency is notably decreased so that the implementation for b = 128 requires
just 2.69 ms to finish one key generation by consuming 3 554 slices and 10 BRAMs. Hence, a
distinct superiority is clearly visible.

Encapsulation. Figure 12.8 shows a schematic of the encapsulation. To sample and store m,
an uniform sampler and a 256-bit register is instantiated. The message m is used as input to
H generating the error vector e = (e0, e1). Afterwards, c0 = e0 + e1h and c1 = m⊕ L(e0, e1)
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Figure 12.8: Top level view of the encapsulation module.

are computed in parallel. A parallel computation is only possible due to an additional BRAM
which is placed in the conversion module and stores a copy of e serving as input to L. The final
result of the multiplication is stored in the part of the BRAM which initially holds e0. The
cryptogram and the message m are fed into a conversion module Conv to generate the input to
the SHA core realizing K.

Again, Table 12.3 summarizes the implementation results for the encapsulation module for
b ∈ B. Since the main part of the encapsulation is the multiplication to generate c0, the im-
plementation perfectly scales with b. For b = 32 the design requires 3 BRAMs and 2 133 slices
while performing one encapsulation within 1.25 ms. Switching to b = 128, increases the hard-
ware utilization roughly by a factor of two while the latency is decreased by a factor of twelve.
The small increase of the hardware utilization originates from the relatively large footprints of
the SHA384 and the AES256 which stay constant for each b. Both modules consume together
roughly 1 800 slices (cf. Table 12.2) which are 83 % of the whole design when setting b = 32.

Decapsulation. The decapsulation uses most of the submodules including two multipliers,
the decoder, and all three random oracles (see Figure 12.9). After transmitting the private
key (h0, h1, σ) and the ciphertext C = (c0, c1), the decapsulation is started by computing the
syndrome s = c0h0. Afterwards, the algorithm invokes the decoder enabling the BFIter module
which forms the center of the decapsulation. After each iteration, the two multipliers compute
the updated syndrome by s′ = e′′

0 · h0 + e′′
1 · h1 + s where s is the initial syndrome determined

in the first step. Next, the content of e′′ is converted, forwarded to the SHA core, and added
to c1. The resulting message m′ serves as key for the AES256 core generating an error vector
which is stored in e′ and compared to the content in e′′. In case the polynomials are equal, the
implementation forwards m′ to K determining the shared key k. Otherwise, σ is used as input
to K.

Again, Table 12.3 summarizes the implementation results for the decapsulation. The main
parts, i.e., the multipliers and the bit-flipping module, perfectly scale with the parameter b.
Hence, increasing b from 32 bits to 128 bits lowers the latency from 13.02 ms to 1.89 ms by
spending roughly three times more hardware recourses.

The presented results for the key generation, encapsulation, and decapsulation are for
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Figure 12.9: Top level view of the decapsulation module.

the level 1 security level, i.e., for a polynomial length of r = 12 323. Additionally, we present
implementation results for the third security level (r = 24 659) in Table 12.4.

12.3.3 Comparison to Related Work and Discussion

In all three algorithms, the multiplier represents an important part. Therefore, we first compare
our multiplier to designs from the literature. Afterwards, we provide a comparison to other
code-based PQC schemes and briefly discuss the advantages and disadvantages of BIKE.

Multiplier. In Table 12.5, we first compare our approach for the multiplication with the Karat-
suba implementation from [ZGF20] to reason the choice of our design. Note that the correspond-
ing results are generated for r = 24 533 as it is a valid polynomial size for LEDAcrypt used as
case study in [ZGF20] and is very similar to the parameter set for the third security level of
BIKE. Hence, we synthesized our multiplier for the same r in order to allow a fair comparison.
Our design achieves a better time-area product while consuming considerably less BRAMs. As
one design target of our work is to implement BIKE also for low-cost FPGAs, we decided to
use the multiplier design presented in Section 12.2.3.

In the second part of Table 12.5, we compare our multiplier to the recently proposed design by
Hu et al. [HWCW19] whose implementation conducts a multiplication within ⌈ r

b⌉
2 + 18⌈ r

b⌉ − 9
clock cycles. Our multiplier achieves a latency of ⌈ r

b⌉
2 + 3⌈ r

b⌉+ 1 clock cycles with a slightly
decreased linear part. Additionally, we included the design from the Round-2 submission of the
BIKE specifications [ABB+19].

These results were generated for r = 10 163 since Hu et al. reported their results for the
parameter set of the second round submission of BIKE. While our implementation consumes
slightly more hardware resources, the latency clearly decreases. However, the area-time product
only shows better results for b = 32 and b = 64. We cannot explain the difference in the uti-
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Table 12.4: Implementation results for Level 3 (r = 24 659).

Resources Performance
Logic Memory Area Cycles Freq. Latency

LUT DSP FF BRAM Slices Cycles MHz ms

Key Generation (Strategy 3)
32 bit 1 757 0 628 5 561 11 600 207 135.14 85.84
64 bit 4 580 0 801 5 1 303 3 089 329 111.11 27.80

128 bit 12 193 0 970 10 3 491 930 179 96.15 9.67

Encapsulation
32 bit 6 436 0 3 305 5 1 982 601 099 121.95 4.93
64 bit 8 329 0 3 366 5 2 508 154 499 119.05 1.30

128 bit 15 004 0 3 441 10 4 376 42 173 125 0.34

Decapsulation
32 bit 8 515 7 3 978 16 2 912 5 969 105 125 47.75
64 bit 13 424 9 4 359 16 4 324 1 804 958 116.28 15.52

128 bit 30 635 13 5 127 30 9 727 609 915 96.15 6.34

lization of slices for b = 128. As Hu et al. mentioned in their work, the required area increases
quadratically with the scaling parameter b [HWCW19, Table IV]. This roughly holds for our
design but we cannot explain why Hu et al. achieve much better results.

Complete BIKE Design. In this paragraph, we compare the complete hardware implemen-
tation of BIKE to related works that present hardware designs of code-based cryptography.
Recently, Dang et al. published a paper comparing round 2 candidates of the NIST PQC stan-
dardization process [DFA+20]. The only code-based scheme reported in their work is the Classic
McEliece Public-Key Encryption (PKE) scheme whose hardware implementation was originally
proposed in [WSN18]. Their design can also be configured and instantiated as a lightweight or
high-speed implementation. The corresponding implementation results are listed in Table 12.6
while also showing estimations of a composed BIKE design using our introduced modules. Here,
we assume that the AES and SHA cores are only instantiated once on the chip such that the
encapsulation and decapsulation share them. Note, that this, however, still results in a very
conservative estimation since memory, registers, and the multiplier could be shared as well.
Nevertheless, in terms of latency, the Classic McEliece scheme clearly outperforms BIKE for all
three operations and for both implementation strategies (lightweight and high-speed). In re-
turn, the resource utilization is considerably higher than for BIKE so that the Classic McEliece
scheme is not particularly suitable for implementations on low-cost devices. Considering the
Artix-7 device family from Xilinx (recommended by the NIST), Classic McEliece could only
be implemented on the largest FPGAs (i.e., on XC7A200T devices) due to the high amount
of required BRAMs. Even if the huge amount of BRAM is neglected, the design would still
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Table 12.5: Comparison between different multipliers on Artix-7 FPGAs.

Resources Performance
Logic Memory Area Cycles Freq. Latency Area-Time

b [bit] LUT FF BRAM Slices Cycles MHz ms Slices × ms

Karatsuba [ZGF20] a

64 67 300 13 440 165 16 825 5 715 143 0.04 673
This work a

64 2 377 152 3 704 148 609 163 0.565 397.76

Round-2 Implementation [ABB+19] b

32 87 53 3 40 3 252 161 416 7.818 312.72
Multiplier by Hu et al. [HWCW19] b

32 N/A N/A 2.5 219 106 839 205 0.521 114.099
64 N/A N/A 5 654 28 134 180 0.156 102.024

128 N/A N/A 7.5 1 596 7 831 150 0.052 82.992
This work b

32 886 90 1.5 274 102 079 312 0.327 89.598
64 2 384 119 3 740 25 759 277 0.093 68.82

128 8 864 248 6 2 519 6 641 147 0.045 113.355
a r = 24 533 b r = 10 163

require a XC7A50T or XC7A200T for the lightweight and high-speed versions, respectively. In
comparison, our lightweight design can be instantiated on a low-cost XC7A35T device while the
high-speed design requires a XC7A100T FPGA. At the time of writing this article, a XC7A200T
FPGA costs around 196 $ while a low-cost XC7A35T device can be purchased for roughly 35 $.
This makes our design also suitable for low-cost applications.

In Table 12.6 we additionally compare our design to the key generation approach from
[HWCW19] which was designed for an old parameter set with r = 10 163. Even though our
design uses a slightly larger r, it clearly outperforms the implementation by Hu et al.. Setting
b = 64, our key generation implementation consumes roughly the same amount of slices but is
as twice as fast (cf. Table 12.3).

Note, that we do not compare our hardware design to the implementation reported in the
Round-2 submission of BIKE as it was based on the older algorithm BIKE-1.

12.3.4 Discussion

In case a hardware implementation of BIKE does not have to perform the key generation,
encapsulation, and decapsulation in parallel, a composed design could further be optimized.
Besides instantiating the AES and SHA core only once, a shared multiplier, shared register
banks and shared BRAMs could be used as well.

189



Chapter 12 Folding BIKE – Scalable Hardware Implementation for FPGAs

Table 12.6: Comparison to other code-based schemes.
KeyGen Enc. Dec.

Design LUT FF Slices DSP BRAM Freq.* cycles† µs cycles† µs cycles† µs

mceliece348864pke (LW) [WSN18] 25 327 49 383 6 332a 0 168 108 1 600 14 800 2.7 25.2 18.3 169.8
mceliece348864pke (HS) [WSN18] 81 339 132 190 16 524a 0 236 106 202.7 1 920.3 2.7 25.8 12.7 120.7

BIKE-2 [HWCW19] 3 874 2 141 1 312 0 10 160 2 150 13 437 – – – –

This work (LW) 12 868 5 354 4 078 7 17 121 2 671 21 903 153 1 252 1 628 13 349
This work (HS) 52 967 7 035 15 187 13 49 96 259 2 691 12 127 189 1 972
pke Results are only for the PKE and not for the KEM. LW Lightweight implementation.
HS High-speed implementation.
* in MHz. † in thousand. a Estimation (assuming all slices are completely utilized).

In Section 12.3.1 we already discussed the huge footprints of the random oracles. Hence,
the choice of using AES and SHA as underlying building blocks appears not to be optimal for
hardware implementations. To this end, we would suggest using other standardized cores like
Keccak which could be used as hash function (for K and L) and as random number generator
(for H). This should reduce the overall footprint of a BIKE hardware implementation.

12.4 Conclusion
In this section, we present a complete hardware implementation of BIKE selected as an al-
ternate candidate in the NIST PQC standardization process. Our implementation is scalable
with respect to the used hardware resources and the corresponding latency while performing
all operations in constant time (i.e., there is no dependency on secret values). As polynomial
multiplications mainly determine the speed of the key generation and encapsulation, we use
carry-less vector-matrix-multiplication with a short feedback path. For the key generation, we
investigate three different implementation strategies resulting in one outstanding design. Ad-
ditionally, we propose the first hardware implementation of the BGF decoder required in the
decapsulation. With all these improvements and optimizations we are able to implement a
key generation that only takes 2.69 ms, an encapsulation that can be accomplished in 0.1 ms,
and a decapsulation that finishes in 1.89 ms. Since multiplication is the most important oper-
ation with respect to performance, we suggest to investigate other approaches for high-speed
implementations in future work.
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Racing BIKE – Optimized Hardware Design

This chapter presents a new and improved FPGA implementation of BIKE. We
optimize two key arithmetic operations, which are the sparse polynomial multiplica-
tion and the polynomial inversion. Our sparse multiplier achieves time-constancy
for sparse polynomials of indefinite Hamming weight used in BIKE’s encapsulation.
The polynomial inversion is based on the extended Euclidean algorithm, which is
unprecedented in current BIKE implementations. Our optimized design results in a
5.5 times faster key generation compared to our previous implementations based on
Fermat’s little theorem.
Besides the arithmetic optimizations, we present a united hardware design of BIKE
with shared resources and shared sub-modules among KEM functionalities. On Xil-
inx Artix-7 FPGAs, our lightweight implementation consumes only 3 777 slices and
performs a key generation, encapsulation, and decapsulation in 3 797 µs, 443 µs, and
6 896 µs, respectively. Our high-speed design requires 7 332 slices and performs the
three KEM operations in 1 672 µs, 132 µs, and 1 892 µs, respectively. The results pre-
sented in this chapter emerged from a collaboration with Ming-Shing Chen, Santosh
Ghosh, and Tim Güneysu [RCGG22].

Contents of this Chapter

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.2 Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
13.3 Optimization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.4 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
13.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

13.1 Introduction
In this chapter, we target to improve the efficiency of the KEM functionalities of BIKE by an
FPGA hardware design. Since NIST announced that performance plays an important role in
their PQC standardization efforts [NIS20], researchers presented several optimization techniques
for BIKE on the suggested platforms including the AVX2 instruction set on x86, embedded
microprocessors, and FPGAs. For example, Drucker et al. [DGK20a] optimized BIKE for
x86 CPUs. Chen et al. [CCK21] presented optimization techniques for x86 and Arm Cortex
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M4. In the previous chapter, we proposed an optimized scalable hardware implementation
for reconfigurable devices. Now, we present new optimization techniques for efficient FPGA
implementations of BIKE and report significant improvements compared to previous works.

13.1.1 Related Work

Although there were several early works implementing QC-MDPC codes on hardware devices
for variants of the McEliece cryptosystem [vMG14, HvMG13] and for the Niederreiter frame-
work [HC17], the first hardware implementation of BIKE was presented with the round-two
submission of NIST’s PQC standardization process [ABB+19]. The implementation was de-
signed for an older version of BIKE (called BIKE-1) and only supported the key generation and
encapsulation.

In 2020, Reinders et al. [RMGS20] proposed a complete hardware design which, however,
targets the older parameters of BIKE. Besides, they presented an efficient hardware implemen-
tation for a novel constant-time decoder.

In Chapter 12, we presented the first complete hardware design of the BIKE version submitted
to the third round of the NIST standardization process [ABB+20a]. We implemented for the
first time the BGF decoder on hardware, introduced an optimized polynomial inversion module
(based on Fermat’s little theorem), and proposed a scalable multiplier.

In further detail, BIKE poses several challenges on the arithmetic level. For improving the
polynomial multipliers in code-based schemes, Hu et al. [HWCW19] presented two different
approaches. While the first design is based on a schoolbook multiplication, the second multiplier
improves multiplications by exploiting the sparseness of the polynomials used in QC-MDPC
codes. Additionally, they instantiated their designs to create a key generation module based on
previous parameter sets of BIKE.

Barenghi et al. [BFG+19] presented similar approaches to implement polynomial multiplica-
tions for the code-based scheme LEDAcrypt [BBC+19a]. They explored different configurations
of schoolbook and sparse multipliers for Xilinx FPGAs.

13.1.2 Contribution

In this chapter, we revise previous concepts and identify significant improvements and sys-
tematic explorations of the hardware implementation of BIKE on FPGAs. Specifically, we
introduce an optimized polynomial multiplier that exploits the sparseness of QC-MDPC codes
while performing all multiplications applied in BIKE in constant time. In addition to that, we
present a novel component for polynomial inversion based on the Extended Euclidean Algo-
rithm (extGCD) accelerating the key generation in hardware. For that we adapt the extGCD
from the constant-time algorithm recently proposed by Bernstein and Yang [BY19], and demon-
strate that this approach clearly outperforms previous implementations based on Fermat’s little
theorem in the specific case of BIKE. As a design constraint, our implementation is highly
scalable to instantiate specifically tailored cryptographic components for any use case.

Besides these major arithmetic-oriented optimizations, we also substitute symmetric cryp-
tography from encapsulation and decapsulation implementations presented in Chapter 12 with
a single Keccak core to demonstrate our assertion of achieving a lower footprint by applying
this modification. Additionally, we present a combined hardware implementation of BIKE that
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consolidates all three KEM algorithms in one single, united design. This approach enables re-
source and module sharing between the KEM algorithms achieving a design that reduces the
overall implementation costs.

Our implementations are written in Verilog and are publicly available at https://github.
com/Chair-for-Security-Engineering/RacingBIKE.

13.2 Arithmetic Operations

In this section, we summarize important polynomial arithmetic. More precisely, we briefly
explain the multiplication of spares polynomials and introduce the polynomial inversion by
using the extended euclidean algorithm.

13.2.1 Sparse Polynomial Multiplication

In BIKE, all multiplications in R comprise a sparse operand f ∈ R with |f | ≪ r. For the key
generation, h1 is the sparse polynomial in the multiplication h1 · h−1

0 . For the encapsulation,
e1 is sparse in e1 · h. For the decapsulation, h0 is sparse in c0 · h0. The decoder contains some
additional multiplications by the sparse polynomials (h0, h1) which are part of the private key.

We represent a sparse polynomial as a set of indexes corresponding to its non-zero terms.
For example, the set If = {i1, . . . , it} represents the sparse polynomial f = Xi1 + · · · + Xit

with the Hamming weight |f | = t. Multiplying a dense polynomial g by the sparse polynomial
f simply accumulates t products of multiplications g ·Xi for i ∈ If . Since g is represented as a
bit sequence, multiplication by Xi shifts the bit sequence i-bit to the left and modulo by Xr−1
moves the shifted bit segment exceeding the r-th bit to the empty bit segment starting from the
0-th bit. In other words, the multiplication simply accumulates t rotated g by i1, . . . , it bits.

13.2.2 Polynomial Inversion with the Extended Euclidean Algorithm

The key generation (cf. Algorithm 2) computes the multiplicative inverse of a secret polynomial
h0 ∈ R. Previous works, e.g., our implementation from Chapter 12 and [ABB+20a, HWCW19],
computed the inversion by raising h0 to the power of 2r−1 − 2 (Fermat’s little theorem).

In this chapter, we compute the inversion with the extGCD which takes two input polynomials
(f, g) and outputs three polynomials (gcd (f, g), u, v), where gcd (f, g) is the greatest common
divisor of f and g and gcd (f, g) = u · f − v · g. All polynomials are in F2[X] in the context of
BIKE.

In a nutshell, we compute extGCD(Xr − 1, h0) for the inverse h−1
0 . Under the parameters of

BIKE, the polynomial Xr − 1 has two factors Xr − 1 = (X − 1)(∑r−1
i=0 Xi). Since |h0| = w/2

is an odd number, h0 is not a multiple of X − 1. Since |h0| ≠ r, h0 is also not the polynomial∑r−1
i=0 Xi. Hence, the extGCD(Xr − 1, h0) outputs (1, u, v) s.t. 1 = u · (Xr − 1)− v · h0, and v

is the inverse h−1
0 since v · h0 ≡ 1 mod (Xr − 1).

However, a traditional extGCD is unsuitable for cryptographic applications because it usually
contains branches that depend on the inputs. While the inputs are secret, an attacker can
collect information about the inputs through running-time differences. Hence, we have to apply
a constant-time extGCD to prevent the leakage of timing side-channel information.
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In this chapter, we adopt the constant-time version of the extGCD proposed by Bernstein
and Yang [BY19]. In contrast to the traditional extGCD that eliminates the head coefficients
of polynomials at any degree, the constant-time extGCD in [BY19] always eliminates the 0-th
bit of polynomials. This leads to extra coefficient reversal processes for inputs to move its
head coefficient to the 0-th bit position and before output for recovering the polynomial to
its original coefficient order.1 Considering for example an input polynomial f , the coefficient
process is equivalent to perform the f ′ ← f(1/X) ·Xdeg(f) operation. This operation moves the
original head coefficients of f to a new position of degree 0, which is accessed by f ′[0]. Thus
the extGCD always eliminates the head coefficients at the 0-th bit.

Division Steps and Transition Matrix. In this chapter, we simplify the extGCD in [BY19]
regarding F2[X] for the BIKE application. The algorithm consists of a constant number of simple
division steps (divsteps) for the two input polynomials. Define divstep : Z×F2[X]×F2[X]→
Z× F2[X]× F2[X] as

divstep(δ, f, g) =
{

(1− δ, g, (g(0)f − f(0)g)/X) if δ > 0 and g(0) ̸= 0,

(1 + δ, f, (f(0)g − g(0)f)/X) otherwise.

Here, δ means the degree difference between f and g. The divstep outputs two polynomials.
The first polynomial aims for the polynomial of the higher degree among two input polynomials.
The other is the result of the subtraction of two polynomials for eliminating one head term,
and it adjusts the new head term to the degree-0 coefficient by the division of X.

Since the division of X causes negative degrees, we adjust the representation of polynomials
to prevent negative degrees. If the polynomial f contains a monomial of negative degree, e.g.,
1/Xi, we will store f as an alternative polynomial f ′ s.t. f = f ′ · (1/X)i and degrees of all
monomials of f ′ are non-negative. For applying divstep multiple times, define (δn, fn, gn) =
divstepn(δ, f, g), i.e., applying the divstep to inputs (δ, f, g) for n times.

Bernstein and Yang describe the transition of the two polynomials (f, g) under the divstep
operation as a matrix-vector multiplication. Let T (δ, f, g) be a 2 × 2 transition matrix which
performs the transition (f, g)→ (f1, g1) as matrix multiplication:

(
f1
g1

)
= T (δ, f, g)

(
f
g

)
, where T (δ, f, g) =



(
0 1

g(0)
X

−f(0)
X

)
if δ > 0 and g(0) ̸= 0,(

1 0
−g(0)

X
f(0)
X

)
otherwise.

Define the transition matrix of i-th step as Ti = T (δi, fi, gi). After n steps, the input polynomials
(f, g) become (

fn

gn

)
= Tn−1 · · ·T0 ·

(
f
g

)
=
(

un vn

qn wn

)(
f
g

)
.

Note that we use w instead of the original r in [BY19] to avoid the symbol conflict.
1See [BY19, Section 6.5] for an alternative method of skipping the reversal. It requests a post-process for

polynomials before output.
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Since we aim for the polynomial inversion in BIKE, we keep only two vectors (f, g) and (v, w)
in our storage space for storing all (fi, gi) and (vi, wi) for i in 0, . . . n, instead of tracking full
transition matrices. The polynomials (f, g) and (v, w) are stored in different formats. Since
(vi, wi)T is part of the transition matrix, they are polynomials with monomials of negative
degrees. Hence, we store the vector (vi, wi) in a form of (v′

i, w′
i) · (1/X)i and i increases with

steps to keep the polynomials (v′
i, w′

i) with non-negative degrees. Since (fi, gi)T and (vi, wi)T

are multiplied by the same transition matrix, we update the two vectors with similar operations
except for the degree adjustment. We remove the coefficient of the constant term of g for
the division by X but increase the coefficients of v by one degree to keep the correct form of
(v′

i, w′
i) · (1/X)i.

Last, we describe the overall algorithm for the polynomial inversion in BIKE. We initialize
the two input polynomials f = Xr − 1, g = h0(1/X) · Xr, and their degree difference δ = 1.
Note that g is initialized as a bit-reversal form. The (v, w) polynomials are initialized to (0, 1)
as the right column of an identity matrix. Then we perform 2r− 1 divsteps to update (δ, f, g)
and (v, w) as well. After divsteps, we reverse the coefficients of the polynomial v and output
it as the inverse h−1

0 .

13.3 Optimization Strategies

In this section, we propose several optimization strategies to improve the hardware implemen-
tation of BIKE. We start by describing the exchange of the symmetric cryptographic building
blocks, i.e., AES-256 and SHA2-384 with a single Keccak core. Then, we introduce a new
design of a multiplier exploiting the sparseness of QC-MDPC polynomials. Afterwards, we
present an improved inversion module based on the algorithm proposed by Bernstein and Yang
[BY19]. We conclude this section with an united hardware design that consolidates all three
KEM algorithms of BIKE in one implementation.

13.3.1 Design Considerations

We start with our design considerations. First, our implementations utilize the framework
presented in Chapter 12 while we modify and optimize several hardware modules described in
the following sections. Besides these modifications, the main structure is based on the original
implementation. However, we translate all modules to Verilog.

Second, we keep the same bandwidth parameter b in our modified modules as proposed in
our implementations from Chapter 12. Hence, our design is scalable with b as well, and we
benchmark our designs with the same instantiations of b ∈ B = {32, 64, 128}. Larger b generally
improve the latency of the corresponding computation since b-bit chunks of polynomials can be
accessed and processed in parallel.

13.3.2 Random Oracles

The BIKE team updated the random oracles H, K, and L with the version 4.3 specifica-
tions [ABB+21]. They adapted the core components of these functions from AES256 and
SHA2-384 to SHAKE256 and SHA3-384 with an unified Keccak core, respectively. While
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we already suggested a unified symmetric core would be beneficial for a hardware implemen-
tation in Chapter 12, we, however, did not validate our suggestions with a concrete hardware
implementation.

In this chapter, we modify the implementations presented in Chapter 12 to the updated
specification of hash functions and report the comparisons in Section 13.4.1. Therefore, we
implement a simple Keccak core which only contains the round function and a controlling
interface. In the following, we describe the implementations of wrappers that are connected to
the Keccak core and form the random oracles.

First, for the H function, we instantiate a SHAKE256 from the Keccak’s round function.
As in Algorithm 3, H uses a 256-bit message m as seed for SHAKE256 which is requested by
a dedicated interface in our implementation. Then, with correct padding and controlling of the
Keccak core, the wrapper divides the 1 088 output bits into 32-bit chunks. The integrated
sampler uses the chunks to generate the indexes of error polynomials (e0, e1) and rejects illegal
samplings. If the sampler has consumed all randomness, the wrapper initiates an additional
squeezing phase of SHAKE256.

Second, for generating the private key (h0, h1) in the key generation (cf. Algorithm 2), our
wrapper operates similarly to the H function besides different Hamming weights.

Third, for the L function, the wrapper uses the error polynomials (e0, e1) and provides them
in the absorbing phases to the Keccak core. In this case, it performs a SHA3-384 hashing op-
eration. Besides the correct padding, the wrapper ensures to concatenate the error polynomials
by eight-bit blocks. Last, it truncates the 384-bit hash value to a 256-bit value and adds it to
m.

Fourth, our wrapper for the K function is realized similarly to the L function. However, the
input to the SHA3-384 slightly differs since a 256-bit string needs to be concatenated with an
r-bit polynomial and with another 256-bit string. Nevertheless, it truncates the 384-bit output
to 256 bits in the same way.

13.3.3 Sparse Polynomial Multiplier

In this section, we present the hardware design of the sparse polynomial multiplier for BIKE.
In 2019, Hu et al. [HWCW19] already applied the approach of sparse multiplications to BIKE.
However, compared to their design, our optimized implementation achieves a better area-time
product and reduces the latency (for detailed information see Section 13.4.2). Additionally,
our design keeps the time-constancy for the encapsulation while computing e0 + e1 · h with the
indefinite Hamming weight of e1.

As in Section 13.2.1, given a multiplication pres = psparse · parb. where psparse, parb. ∈ R and
|psparse| ≪ r. Further, the polynomial psparse is represented as a set of indexes of non-zero terms
and parb. is a r-bit sequence divided into

⌈
r
b

⌉
chunks. Then, we conduct the multiplication by

reading the non-zero indexes of psparse, rotating parb. by the indexes to the left, and accumulating
the rotated results to the product pres.

General Sparse Multiplier. Figure 13.1 shows a simplified architecture of the general sparse
multiplier which iterates over the indexes of the sparse polynomial psparse. Each iteration is
initiated by reading a non-zero index from psparse. Meanwhile, it starts to access the values of
the polynomial parb. in an ascending order starting at the second uppermost address, proceeding
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Figure 13.1: Schematic architecture of the general sparse multiplier.

with the uppermost, and then keep going from address zero. This procedure simplifies to deal
with the most-significant bits in parb. since r mod b ̸= 0 (r is always prime). Figure 13.1 neglects
the hardware to deal with this exception (mostly multiplexers) for clarity.

While processing a particular index from psparse, the lower log b bits of the index determine
the number of bits to shift the input from parb. to the left. The shifted output is added to
the current intermediate result depicted by the xor-gates in Figure 13.1. We instantiate two
memories to store the intermediate results of the multiplication. This allows us to read the
current intermediate result from one memory and write the new result to the other one in the
same clock cycle.

The upper part of the schematic in Figure 13.1 determines the addresses for both memories.
When an index of the sparse polynomial is read, the upper bits are sampled in a register used
as initial value for a counter. To handle the jump from the highest address (i.e.,

⌊
r
b

⌋
) to zero,

our final design contains slightly more logic. Again, Figure 13.1 neglects this logic for the sake
of clarity. However, the output of the counter is subtracted by one, and two multiplexers decide
which of the address values are used to access which of the memories. The decision signal sel
is determined based on the LSB from the address counter used to read out the indexes of the
sparse polynomial.

For each index of the sparse polynomial, our multiplier spends
⌈

r
b

⌉
+ 4 clock cycles for shifting

and accumulating the intermediate results. The total latency is given by

Lmult(th) =
(⌈

r

b

⌉
+ 4

)
· th + 1 (13.1)

where th denotes the weight of the sparse polynomial (e.g., for the key generation in BIKE
th = w

2 ). The circuit switches to the DONE state in the additional clock cycle.
This design iterates over a fixed number of indexes of the sparse polynomial. While this

approach is capable of processing the secret polynomials (h0, h1), it cannot process the multi-
plication e1 · h in the encapsulation with a constant latency since the Hamming weight of e1
is unknown. Therefore, we modify the design of the general sparse multiplier into a dedicated
multiplier for BIKE in the next paragraph.
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parb. in: 1111 0101 1001 1111 0101

regrot in: 0001 0000 1011 0000 1001 1011 1111 1001 0101 1111

regrot out: 0000 0000 0001 0000 1011 0000 1001 1011 1111 1001 0101 1111

shifted: 0000 0000 1000 0000 1000 0000 1101 1000 1100 1000 1111 1000

pint in: 1001 0010 0110

result out: 0100 0110 1001

index of the sparse polynomial: 0 0111 write to
addr 0x01

write to
addr 0x02

write to
addr 0x00

Figure 13.2: Example for a multiplication with an index from e1.

Tailored Constant-time Multiplier for BIKE. To deal with the indefinite weight of e1 in the
encapsulation, we utilize the relation |e0|+ |e1| = t defined by BIKE. It allows to rephrase the
encoding operation as an addition of two multiplications

c0 = e0 · 1 + e1 · h. (13.2)

For computing c0, we modify the general sparse multiplier introduced above and add a multi-
plexer choosing h or 1 as input for parb. depending on e0 or e1. To indicate whether e0 or e1
is processed, we add an additional leading bit to the indexes and set the MSB of the indexes
belonging to e0 to ’1’. We embed this operation directly into the sampling function H. Hence,
the multiplexer selects its output according to the MSB of the indexes of the sparse polynomial.

In order to illustrate the two modes of the multiplication engine, we provide a small example
for r = 11, b = 4, and parb. = X10 + X8 + X7 + X6 + X5 + X4 + X3 + 1 = 101 1111 1001
(corresponds to h in Equation 13.2). For the error polynomials, we exemplary assume e0 = X5

and e1 = X7 and their corresponding indexes e0,idx = 1 0101 and e1,idx = 0 0111, respectively.
For both modes, we assume that the current intermediate result is pint = 010 1001 0110.

Figure 13.2 visualizes the multiplication e1 · parb. where each dashed line separates the data
flow between the clock cycles. In this case, the expected result is

X7 · 101 1111 1001⊕ 010 1001 0110 = 100 1101 1111⊕ 010 1001 0110 = 110 0100 1001.

As described above, the module first reads the second uppermost chunk from the input poly-
nomial which is 1111 in our example. Since r = 11 and b = 4, only the most significant bit
from this chunk is required and stored in the register regrot (cf. Figure 13.1). The remaining
three bits are taken from the uppermost chunk. Afterwards, the process proceeds in a regular
pattern by reading a new chunk and moving the old chunk to the lower part of regrot. The
multiplier determines the starting address to read the first chunk from the intermediate result
by the upper bits of the error index, i.e., 0x01 in our example. This describes the required
shift on word level. The output of the register is shifted to the left by 3 bit which are the least
log(b) bits from index e1,idx and describe the required shift on bit level. Hence, the first chunk
of the new intermediate result is written to address 0x01. Note, when the multiplier writes the

198



13.3 Optimization Strategies

pone in: 0000 0000 0001 0000 0000

regrot in: 0000 0000 0000 0000 0001 0000 0000 0001 0000 0000

regrot out: 0000 0000 0000 0000 0000 0000 0001 0000 0000 0001 0000 0000

shifted: 0000 0000 0000 0000 0000 0000 0010 0000 0000 0010 0000 0000

pint in: 1001 0010 0110

result out: 1011 0010 0110

index of the sparse polynomial: 1 0101 write to
addr 0x01

write to
addr 0x02

write to
addr 0x00

Figure 13.3: Example for a multiplication with an index from e0.
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Figure 13.4: Modifications to the input operand of the tailored multiplier.

result to address 0x02, the most significant bit is set to 0 since it does not belong to a valid
polynomial of size r = 11.

The procedure for a multiplication with the index e0,idx is similar. Instead of providing the
polynomial parb. to the multiplier, the polynomial pone = 1 = 000 0000 0001 is selected by the
most signification bit of e0,idx. The corresponding data flow is visualized in Figure 13.3. It is
clearly visible that the multiplication with an index from e0 requires the same amount of clock
cycles such that a constant-time operation is guaranteed.

To this end, Figure 13.4 shows the adjustment for processing the operand parb. in the mul-
tiplier. Note, the polynomial of one does not require extra memory but is generated on the
fly. While accessing the 0-th chunk of parb., the circuit feeds a b-bit chunk of 0...01 to the
multiplexer. Otherwise, the multiplexer always gets a zero b-bit chunk. Hence, the multiplier
always finishes the multiplication from Equation 13.2 in Lmult(t) clock cycles.

Last, we add an additional input to the multiplier design determining the number of non-
zero indexes of the sparse polynomial for the two possible weights (t, w/2) of the sparse input
polynomials.

13.3.4 Polynomial Inversion

We present our hardware design and optimization for the polynomial inversion in this section.
In 2020, Marotzke [Mar20] reported an implementation for the polynomial inversion required
in NTRU Prime, a post-quantum KEM. The inversion module utilizes Bernstein and Yang’s
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extGCD algorithm [BY19] optimized to perform inversions of polynomials of degree 760 with
coefficients in prime fields, where the arithmetic takes place in DSP units. Since our design
targets to invert polynomials in R with large degrees (i.e., ≥ 12 323), the two implementations
pursue different purposes and are not directly comparable.

In the following, we first divide the computation of divstep into two subroutines. Then,
we introduce the main framework of the inversion and the two subroutines followed by our
hardware designs.

Performing the divstep. Recalling Section 13.2.2, an extGCD for polynomial inversion com-
putes 2r − 1 divsteps. In [BY19], based on the shape of the transition matrix, Bernstein and
Yang optimized the multiplication by the transition matrix in a single divstep as two simple
functions:

(1) a conditional swap: replacing (δ, f, g) with (−δ, g, f) if δ > 0 and g(0) ̸= 0.

(2) an elimination: replacing (δ, f, g) with (1 + δ, f, (f(0)g − g(0)f)/X).
Since the head coefficient f(0) is always one for computing the inversion in BIKE, we need only
two information bits deduced from (δ, g(0)) in each divstep as instructions for updating (f, g)
and (v, w). The first bit indicates the swap operation and the second bit is g(0) used in the
elimination operation. We refer to the two information bits as control bits of one divstep in
this paper. Furthermore, we split one divstep into two operations:

(1) get control bits(): calculates the control bits based on the values of δ and the necessary
coefficients of the polynomials (f, g), and

(2) update fg or vw(): updates the polynomials (f, g) and (v, w) based on the computed
control bits.

Main Framework. Algorithm 12 describes the main framework of the polynomial inversion. As
introduced above, the algorithm uses four temporary polynomials f , g, v, and w while g is ini-
tialized with the bit-reversed input polynomial gin. The main parts of the algorithm are 2r − 1
divsteps, which are decoupled into series of get control bits() and update fg or vw() sub-
routines. Last, the algorithm shifts v one bit to the right, reverses its coefficients, and returns
v as the inverse of the input polynomial.

In the algorithm, we introduce a parameter s to control the step size, allowing to pro-
ceed s divsteps in each iteration in parallel (cf. line 7). The get control bits() and the
update fg or vw() take the parameter as well and proceed s steps accordingly. Therefore, the
subroutine get control bits() determines 2s control bits and updates δ based on the state of
(δ, f [0], g[0]). Afterwards, a loop iterates over all four polynomials f , g, v, and w and updates
them by update fg or vw() for s steps in each call. Starting from line 21, the algorithm covers
the remaining steps and updates only (v, w) accordingly.

Besides the step size s, the execution time of Algorithm 12 scales with the bandwidth param-
eter b as well. Enlarging b decreases the number of chunks N and therefore, less iterations are
executed in the inner loop since update fg or vw() updates one chunk in each execution. In
our design, the choice for s is also limited by s ≤ b since get control bits() takes inputs of one
polynomial chunk only. We describe the details of get control bits() and update fg or vw()
in the following paragraphs.
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Algorithm 12 Main framework for the polynomial inversion.
Require: Input polynomial gin and step size s.
Ensure: Inverted polynomial gout = g−1

in
1: N ←

⌈
r
b

⌉
2: f [N ], g [N ], v [N ], w [N ]← 0 ▷ Initialize polynomials (arrays)
3: w[0] = 1; f [0] = 1; f [N − 1]← 2r mod b

4: g ← bitreverse (gin) ▷ Reverse the bits of the input polynomial
5: δ ← 1 ▷ Degree difference of polynomials f and g
6: τ ← 2r − 1 ▷ Number of divsteps to be executed
7: while τ ≥ s do δ, c← get control bits(δ, f [0], g[0], s)
8: for j = 0 to N do
9: f0, f1 ← f [j], ((j + 1) > N ? 0 : f [j + 1])

10: g0, g1 ← g[j], ((j + 1) > N ? 0 : g[j + 1])
11: f [j], g[j]← update fg or vw(c, f1, f0, g1, g0, s, 1)
12: end for
13: for j = N to 0 do
14: v0, v1 ← (j == 0 ? 0 : v[j − 1]), v[j]
15: w0, w1 ← (j == 0 ? 0 : w[j − 1]), w[j]
16: v[j], w[j]← update fg or vw(c, v1, v0, w1, w0, s, 0)
17: end for
18: τ ← τ − s
19: end while
20: if τ > 0 then
21: δ, c← get control bits(δ, f [0], g[0], τ)
22: for j = N to 0 do
23: v0, v1 ← (j == 0 ? 0 : v[j − 1]), v[j]
24: w0, w1 ← (j == 0 ? 0 : w[j − 1]), w[j]
25: v[j], w[j]← update fg or vw(c, v1, v0, w1, w0, s, 0)
26: end for
27: end if
28: v ← shift right(v) ▷ Shift one bit to the right
29: return bitreverse (v)

Determining Control Bits. Algorithm 13 details the process of get control bits(). The
algorithm takes four inputs, which are the degree difference δ, two b-bit chunks (f [0], g[0]) from
the polynomials (f, g), and the step size s. The algorithm outputs the updated δ and 2s control
bits c for s divsteps. For generating the control bits for the s divsteps, the algorithm uses only
s bits from each input polynomial instead of the full coefficients. Note, however, the algorithm
is a sequential process where the control bits of iteration i depend on the results of the previous
iterations.

Our hardware design for get control bits() incorporates this characteristic such that we
aim to fully utilize the computational capacity and hence execute d iterations of the loop shown
in Algorithm 13 in one clock cycle. Therefore, Figure 13.5 shows a schematic draft of this
approach where one iteration is highlighted by the red dashed border. For larger step sizes s,
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Algorithm 13 Compute control bits.
Require: Current δ, f [0], g[0], and the step size s.
Ensure: Updated δ and an array of control bits c[2s]

f, g ← f [0], g[0]
for i = 0 to s− 1 do

swap← ((−δ < 0) ? 1 : 0) & (g ∧ 1)
α← g ∧ 1
c[i · 2]← swap
c[i · 2 + 1]← α
δ ← swap ? − δ + 1 : δ + 1
f, g ← (swap ? g : f), (g ⊕ (f · α))/2

end for
return δ, c
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Figure 13.5: Hardware design for the computation of the control bits.

however, unrolling the whole loop in a hardware implementation would result in a long critical
path. Hence, we introduce a round-based circuit that is executed

⌈
s
d

⌉
times since d ·

⌈
s
d

⌉
≥ s.

We store the generated control bits in registers to use them immediately for updating the
polynomials (f, g) and (v, w) by update fg or vw().

Updating Polynomials. We summarize the details of update fg or vw() in Algorithm 14.
The algorithm expects as inputs the control bits c, two 2b-bit chunks of the polynomials (f, g)
or (v, w), the step size s, and one bit specifying whether the input chunks originating from the
pairs (f, g) or (v, w). The algorithm updates the given chunks for s divsteps according to the
control bits c. Since (f, g) and (v, w) are multiplied by the same transition matrix in the same
divstep, the arithmetic for updating the polynomials is identical. The different formats of
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Algorithm 14 update fg or vw()
Require: Control bits c, two 2b-bit chunks of f and g, and the step size s .
Ensure: Updated b-bit chunks r0 and r1

for i = 0 to s− 1 do
f, g ← (c[i · 2] ? g : f), (c[i · 2 + 1] ? g ⊕ f : g)
if is updating fg then

g ← g/2 ▷ Shift right, i.e., dividing by X
else

f ← f · 2 ▷ Shift left, i.e., multiplying by X
end if

end for
if is updating fg then

r0, r1 ← f [0 : b], g[0 : b] ▷ lower b bits
else

r0, r1 ← f [b : 2b], g[b : 2b] ▷ higher b bits
end if
return r0, r1

storing polynomials (see Section 13.2.2) cause the difference between the two operating modes,
which shift polynomials in different directions and output different chunks of polynomials.

Figure 13.6 shows our hardware design for updating the polynomials (f, g). The basic block
(highlighted by the red dashed border) updates the polynomials for one divstep, consisting of
simple shifts, an addition (xor), and multiplexing operations. The whole submodule can finish
the computation with s consecutive basic blocks which, however, would result in a long critical
path without any further modifications. Therefore, to control the length of the critical path,
we introduce pipeline registers after u basic blocks. Hence, there are

⌊
s
u

⌋
pipeline stages in the

module. Note, we implement a similar module to update (v, w).
Although, Figure 13.6 depicts two full b-bit chunks for each input associated with the different

polynomials, the algorithm actually only requires b + s bits of data from the input polynomials.
The algorithm inputs the 2b-bit chunks because it accesses polynomials in chunks of b bits from
the memory. However, the module only instantiates logic for processing s + b data such that
no area overhead occurs.

Overall Design of the Polynomial Inversion. The entire polynomial inversion module consists
of two counters controlling the reversion of the bits and the final right shift (cf. Algorithm 12).
Additionally, we instantiate get control bits() and two versions of update fg or vw() (up-
dating (f, g) and (u, w) in parallel) as described above. Since the algorithm works on four
temporary polynomials, the inversion module utilizes eight BRAMs allowing to read and write
the intermediate results in the same clock cycle. Nevertheless, the latency of the proposed
design depends on several parameters, i.e., r, b, s, d, and u. It is determined by

Linv(s, d, u) = λ ·
(

3 +
⌈

s

d

⌉
+
⌈

s

u

⌉
+
⌈

r

b

⌉)
︸ ︷︷ ︸

main computation

+ ρ +
⌈

s

d

⌉
+
⌈

r

b

⌉
︸ ︷︷ ︸

remainder

+ 3 ·
⌈

r

b

⌉
+ 13︸ ︷︷ ︸

bitreverse & shift

(13.3)
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Figure 13.6: Hardware implementation of the update process for the f and g polynomial.

where λ =
⌊

2·r−1
s

⌋
and ρ =

⌈
2·r−1−λ·s

u

⌉
. Note, our design for s = 1 does not follow Equation 13.3

since it is a handcrafted and optimized design which achieves a slightly smaller latency and
requires only seven BRAMs instead of eight.

13.3.5 United Hardware Design

Given the optimized modules for the polynomial arithmetic and the modifications for the random
oracles, we now present an united hardware design of BIKE consolidating the key generation,
encapsulation and decapsulation in one module. Such a design allows to share resources between
the different KEM operations. For example, we only instantiate one single multiplier, one
Keccak core with the corresponding wrappers described in Section 13.3.2, and a limited number
of BRAM modules. The number of required BRAMs is given by the decapsulation since its
implementation utilizes the most memories (cf. Chapter 12). However, this design decision
implies that only one of the three KEM algorithms of BIKE can be executed at the same
time. Therefore, we implement a control interface that allows to enable the desired algorithm
by a three-bit instruction, load and read data (polynomials and 256-bit strings), and request
randomness used as seed for the PRNG. A top-level draft of this implementation is shown in
Figure 13.7. While all building blocks that are used by more than one KEM algorithms are
marked by a green border, the black modules are only required for a single KEM operation
(the inversion module and sampler are used only in the key generation, and the BFIter module
together with the Hamming weight and threshold computation only in the decapsulation).

The FSM on the right side manages all input/output operations and the control flow of the
three KEM algorithms. The input interface expects a six-bit instruction identifying which data
should be loaded. For the key generation, no initial data is required. The encapsulation requires
the public key h which needs to be loaded to a BRAM before the computation can be started.
To perform a decapsulation, the implementation assumes that the user load the two parts of
the cryptogram (c0, c1), the two polynomials of the private key (h0, h1), and σ. The output
interface returns the same data and additionally the shared key K. After the required data has
been accessed, all memories are reset by overwriting the content with zero.
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Figure 13.7: Top-level view of the united hardware design.

13.4 Implementation Results
In this chapter, we evaluate the proposed optimizations and modifications for a hardware imple-
mentation of BIKE. First, we show that the modifications of the random oracles are beneficial
for a hardware design of BIKE. Second, we report implementation results for the proposed
sparse multipliers and compare them to designs from the literature. Third, we demonstrate
the scalability of our inversion module by presenting implementation results for different con-
figurations. Fourth, since both – the multiplication and inversion – influence the footprint and
performance of the key generation, we provide dedicated implementation results for a stand-
alone key generation design. Fifth, we present the implementation results of the united hardware
design and compare it to other implementations of code-based PQC schemes. We generate all
results for an Artix-7 XC7A200T FPGA manufactured by Xilinx.

13.4.1 New Random Oracles
As described in Section 13.3.2, BIKE’s new specification [ABB+21] updates the random ora-
cles from AES-256 and SHA2 to an unified Keccak core. To test how the design choice of
cryptographic primitives affects the performance of hardware implementations, we compare the
implementations of the original VHDL code2 from Chapter 12 with our adapted version apply-
ing the new specification with a replaced Keccak core. We performed no other optimizations
for a fair comparison.

Table 13.1 reports the comparisons for the encapsulation and decapsulation. For both KEM
algorithms and all hardware configurations, the adapted versions achieve slightly better re-
sults in terms of area and latency. Especially the number of required registers decreases by
roughly 880 in the adapted implementation for all designs. To this end, these implementation
results show that the modifications of the random oracles are indeed beneficial for hardware
implementations of BIKE.

2The authors published their code at https://github.com/Chair-for-Security-Engineering/BIKE/
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Table 13.1: Comparison of KEM functions w.r.t. different random oracle settings (r = 12 323).
Resources Performance

Logic Memory Area Cycles Freq. Latency
b LUT DSP FF BRAM Slices Cycles MHz ms

Encapsulation with adapted random oracles
32 bit 6 604 0 2 409 3 1 906 151 587 121.95 1.24
64 bit 8 388 0 2 444 5 2 408 39 264 121.95 0.32

128 bit 15 135 0 2 625 10 4 268 11 136 119.05 0.094
Encapsulation of the previous specification from Chapter 12

32 bit 6 730 0 3 298 3 2 143 152 694 121.95 1.25
64 bit 8 253 0 3 327 5 2 538 40 368 121.95 0.33

128 bit 14 829 0 3 471 10 4 540 12 240 121.95 0.10

Decapsulation with adapted random oracles
32 bit 9 070 7 3 055 10 2 570 1 624 402 125 13
64 bit 14 011 9 3 415 15 3 933 515 823 116.28 4.44

128 bit 29 697 13 4 170 29 8 234 186 364 100 1.86
Decapsulation of the previous specification from Chapter 12

32 bit 9 380 7 3 943 10 2 971 1 626 674 125 13.01
64 bit 16 140 9 4 307 15 4 942 518 105 116.28 4.46

128 bit 30 430 13 5 063 29 8 785 188 646 100 1.89

13.4.2 Multiplier

Table 13.2 shows the implementation results for our two multiplier designs configured for the
lowest security level of BIKE, i.e., for r = 12 323. The first design is the general sparse multiplier
where the sparse polynomial always has a fixed Hamming weight, i.e., the Hamming weight is
determined before synthesis. In BIKE, such cases occur in the key generation and decapsulation
where |psparse| = w/2. The second design reads the Hamming weight of the sparse polynomial via
an input interface. Hence, it can be used for all multiplications required in BIKE. Additionally,
the design performs the encoding in the encapsulation in constant time. To this end, the
hardware utilization is slightly higher than for the general sparse multiplier. Note, for the
second multiplier design, we report performance numbers for the multiplication performed in
the encapsulation, i.e., |psparse| = t = 134. The number of clock cycles for different Hamming
weights follows Equation 13.1.

Table 13.2 also lists the results of the schoolbook-based (dense) multiplier from Chapter 12 and
of the sparse multiplier design from [HWCW19]. Since we only reported implementation results
for r = 10 163 in Chapter 12, we synthesized the design for r = 12 323, again. As expected, the
sparse multiplier clearly outperforms the schoolbook-based design with respect to area. For
a fixed Hamming weight of 71, the sparse multiplier also achieves better performance results.
However, for b = 128, the schoolbook multiplier achieves slightly better performance results
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Table 13.2: Comparison of sparse polynomial multipliers for r = 12 323.
Resources Performance

Logic Memory Area Cycles Frequency Latency
b LUT FF BRAM Slices Cycles MHz µs

General sparse multiplier (|psparse| = w/2 = 71)
32 319 127 2 132 27 691 234.36 118.16
64 549 190 4 197 13 988 222.22 62.94

128 1 136 381 8 378 7 172 184.95 38.78
Tailored sparse multiplier for BIKE (|psparse| = t = 134)

32 349 135 2 151 52 261 238.15 219.5
64 629 204 4 245 26 399 222.52 118.8

128 1 249 386 8 437 13 535 184.3 73.44
Sparse multiplier from [HWCW19] (r = 10 163, |psparse| = 71)

32 – – 2 100 158 614 240 660.89
64 – – 3 157 90 880 220 413.09

128 – – 5 292 51 688 210 246.13

Dense polynomial multiplier from Chapter 12
32 697 105 1.5 220 150 155 201.37 745.67
64 2 595 137 3 864 37 829 173.82 230.91

128 9 539 293 6 3 332 9 701 183.66 52.82

than the tailored sparse multiplier which it trades with a huge area footprint. Therefore, the
sparse multiplier is clearly superior with respect to the Area-Time (AT) product.

Compared to the multiplier from [HWCW19], our design achieves a considerably lower latency
albeit our results were generated for a larger parameter set. Our design mainly differentiates
from their implementation in two parts. First, we decided to instantiate two memories to
store the intermediate results of the multiplication’s product. This allows us to perform a read
and write access in the same clock cycle while the implementation by Hu et al. requires two
clock cycles. Note, for Xilinx FPGAs one could exploit the read-then-write option allowing
to perform a read and write access in the same clock cycle to the same address reducing the
amount of required BRAM modules. However, we decided not to use this option but rather
instantiate two memories since it is a more generic approach that is universally applicable to
other hardware devices as well. Second, our rotation unit performs the whole rotation within
one clock cycle while the design by [HWCW19] requires ⌈log b⌉ clock cycles. Even though our
multiplier architectures consume slightly more slices, it clearly improves the AT product.

We also tried to compare our results to the design proposed in [BFG+19] but we were not
able to figure out which value the authors applied for the parameter BW (corresponds to our
bandwidth parameter b) so that a fair comparison is difficult. However, we assume that their
design is similar to our multiplier design which uses fixed Hamming weights.
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13.4.3 Inversion Module

In this section, we first evaluate the polynomial inversion module described in Section 13.3.4
for b ∈ B and for r = 12 323 and compare our approach afterwards to the design presented in
Chapter 12 which is based on Fermat’s little theorem. Note, in all experiments, we fix the max-
imum number of basic blocks instantiated between two register stages for the updating process
of (f, g), and (v, w) to u = 8 achieving a critical path that is smaller than 10 ns. Additionally,
we generate all results in this subsection for a target frequency of 100 MHz.

Detailed Evaluation of the Inversion Module. Figure 13.8a shows the number of required
slices and the latency in clock cycles for b = 32, 1 ≤ s ≤ 32, and d = 2. The area footprint
linearly increases with the step size parameter s while the number of clock cycles follows Equa-
tion 13.3. Moreover, we include the configuration for the best AT product (slices× cycles/106)
visualized by the green dashed line. The configuration for s = 23 achieves the best result with
an AT product of 432. A more detailed evaluation of the implementations can be found in the
appendix in Table 15.2.

Figure 13.8b shows the implementation results for different step sizes s for b = 64. The trends
for the required clock cycles and for the area utilization are very similar to the configurations
for b = 32. The smallest configuration requires 4 880 299 clock cycles but only consumes 377
slices while the fastest design performs one inversion within 91 678 clock cycles by consuming
5 457 slices. The design with the best AT product is obtained for s = 31 (a detailed evaluation
can be found in the appendix in Table 15.3).

The implementation results for b = 128 are plotted in Figure 13.8c where the best AT product
is obtained for s = 16. To achieve reasonable critical paths (maximum possible frequency larger
than 100 MHz), we reduce the number of unrolled rounds to compute the control bits c to d = 1.
With s = 128 we can instantiate our fastest inversion module which finishes one polynomial
inversion in only 47 386 clock cycles. However, the implementation costs drastically increase to
21 435 slices. Again, a detailed evaluation is given in the appendix in Table 15.4 and Table 15.5.

Comparison to Related Work. We compare our inversion module to the approach presented
in Chapter 12 which is based on Fermat’s little theorem in Table 13.3. The corresponding
numbers are extracted from their implementation of the key generation.

With Fermat’s little theorem, given a g ∈ R, we compute the inverse as g2r−1−1 in Chapter 12.
To efficiently raise the degree of g, we used a square-and-multiply chain from the ITA [IT88]
achieving a latency of

Linv-Fermat ≈ log(r) · (r + Lschool) + |rbin| ·
(⌈

r

b

⌉
+ Lschool

)
(13.4)

where rbin = r − 2 and Lschool =
⌈

r
b

⌉
· (
⌈

r
b

⌉
+ 3) + 1. Note, Equation 13.4 describes just an ap-

proximation of the required clock cycles since the implementation from Chapter 12 is highly
optimized to the use-case of BIKE. However, compared to the dominant term

⌊
2·r−1

s

⌋
·
⌈

r
b

⌉
from Equation 13.3, our inversion module has an extra parameter s, allowing to achieve more
optimized configurations.

In Table 13.3, we present results for the lightweight (s = 1) and high-speed (s = b) config-
uration as well as the design with the best area-time product. For comparison with the area
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(b) Implementation results for b = 64 and d = 2.
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(c) Implementation results for b = 128 and d = 1.

Figure 13.8: Implementation results for the polynomial inversion for a Xilinx Artix-7 FPGA and
a target frequency of 100 MHz setting r = 12 323. The green dashed lines indicate
the configurations with the best area-time product.

cost, we report a configuration targeting the number of clock cycles of the approach from Chap-
ter 12. While finishing the inversion with the same amount of clock cycles, Table 13.3 shows
that the inversion module based on the extGCD achieves a smaller footprint. This implies that
the extGCD implementation results in a better area-time product. We note that the inversion
based on Fermat’s little theorem always requires a dense polynomial multiplier, which increases
the area cost notably. For the design with the best area-time product, our approach consumes
roughly twice the amount of logic but finishes the inversion with only one sixth clock cycles
setting b = 32.

Recently, Deshpande et al. [DPM+21] presented a hardware implementation of Bernstein and
Yang’s inversion algorithm for computing the modular inverse for integers. Their implemen-
tation targets integer sizes of 255 bits to 2 048 bits which requires units for integer additions
with carry logic. Since we compute the inverse of bit polynomials of at least 12 323 bits and
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Table 13.3: Comparison of our inversion module to related work for r = 12 323.
Resources Performance

Logic Memory Area Cycles Frequency Latency
b LUT FF BRAM Slices Cycles MHz µs

Our lightweight designs (s = 1)
32 580 117 7 196 9 637 363 100 96 637
64 1 020 183 7 377 4 880 299 100 48 803

128 1 805 247 14 671 2 514 091 100 25 141
Our high-speed design (s = b)

32 5 038 943 8 1 473 316 504 100 3 165
64 18 610 3 563 8 5 457 91 678 100 917

128 75 269 14 028 16 21 435 47 386 100 474
Our design with the best area-time product (s = 23, s = 31, s = 16)

32 3 359 643 8 995 434 255 100 4 343
64 7 801 1 473 8 2 269 172 522 100 1 725

128 8 322 1 245 16 2 560 182 138 100 1 821
Our design targeting the clock cycles Chapter 12 (s = 4, s = 7, s = 11)

32 905 179 8 313 2 416 672 100 24 167
64 2 391 334 8 786 708 310 100 7 083

128 5 615 1 157 16 1 807 253 533 100 2 535
Inversion Module used in Chapter 12

32 1 721 343 5 495 2 670 881 131.58 20 299
64 3 597 419 5 994 748 769 113.64 6 589

128 11 878 722 10 3 352 258 555 96.15 2 689

perform carry-less additions, i.e., the XOR operation, the two implementations target different
applications, and a comparison of performance numbers would be misleading.

Additionally, referring to the sequential design of [DPM+21], they always compute the control
bits for only one divstep and update the integers with one divstep. This corresponds to the
configuration of s = 1 in our design introduced in Section 13.3.4. Hence, our inversion module
provides more configurations allowing to finely adapt to various circumstances.

13.4.4 Key Generation

We report implementation results for stand-alone key generation modules in Table 13.4 and
compare them to the key generation module from Chapter 12. We evaluate our designs only
on the key generation because the polynomial inversion module is used solely in this KEM
operation. Because our design is based on the extGCD instead on Fermat’s little theorem, we
do not install a dense polynomial multiplier that is required for the inversion with Fermat’s
little theorem. Instead, we use a sparse multiplier which is far more efficient (in both area and
latency) than the dense multiplier in the key generation (cf. Table 13.2). Although the module
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of key generation consists of various components, including the main operations occur in the
inversion module and the multiplier.

As described before, both designs perfectly scale with the bandwidth parameter b while the
inversion module provides an additional configuration via the step size s. Nevertheless, for each
b ∈ B, we only pick two configurations for the inversion: (1) setting s = b which results in the
fastest configurations we can achieve, and (2) instantiating the inversion module with the lowest
AT product determined in Section 13.4.3.

The fastest key generation, that we can implement with our approaches, is obtained for
b = s = 128. The key generation only takes 484 µs but requires over 25 000 slices. The maximum
frequencies for the designs with b = 128 are slightly higher than for b = 64 because the parameter
d is decreased to d = 1. We decided to synthesize these designs for d = 1 since otherwise the
critical path for the computation of the control bits would drastically increase. Note, the results
for b = 64 and b = 128 for the designs adjusted to the best AT product achieve roughly the same
performance because b is doubled while s is halved. Therefore, the design for b = 64 is more
efficient due to the lower footprint.

Since our proposed inversion module is highly scalable, there are many other possible con-
figurations. An estimation of the expected footprint and clock cycles can be obtained by using
the results provided in the appendix (see Section 15.4).

In Chapter 12 we did not implement a PRNG to provide randomness to the sampler which
makes a comparison in this chapter more difficult. Therefore, we determined the hardware
utilization of our Keccak core which consumes roughly 800 slices. Considering these additional
costs, our design adjusted to the AT products of the inversion modules is roughly 5.5 times faster
while it only consumes 3.6 more slices for b = 32.

13.4.5 United Design

We present the implementation results of the united hardware design of BIKE, introduced in
Section 13.3.5, in Table 13.5 for the lowest security level. Results for Level 3 and Level 5 can
be found in the appendix in Table 15.6. We created three different implementations where the
first one is a lightweight design (b = 32), the second one is a design with a trade-off between
hardware resources and performance (b = 64), and the last one is a high-speed design with
b = 128. The instantiations of the inversion module are the designs with the best AT product
identified in Section 13.4.3.

Table 13.5 also contains the estimated implementation results for a united hardware design
of BIKE from Chapter 12. For the lightweight configuration, our design clearly outperforms
the previous design with respect to hardware resources and performance. This improvement is
mainly due to the new multiplier design and inversion module.

For the high-speed design, our proposed implementation consumes only half the amount of
slices while achieving comparable performance results. Particularly, the latency of the key
generation is significantly improved due to the inversion module. However, the number of clock
cycles for the encapsulation and decapsulation slightly increased. This slight increase is due to
the sparse polynomial multiplier.

Since the latency of the sparse multiplier is proportional to the Hamming weight of the sparse
polynomial (cf. Equation 13.1), the schoolbook multiplier achieves a better performance when
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Table 13.4: Comparison of stand-alone key generation modules for r = 12 323.
Utilization Performance

Configuration Logic Memory Area Cycles Frequency Latency
b s d PRNG* LUT FF BRAM Slices Cycles MHz ms

This work – High Speed (s = b)
32 32 2 ✓ 9 880 3 321 5 3 070 344 777 130.91 2.63
64 64 2 ✓ 24 564 6 255 10 7 776 106 243 104.65 1.02
128 128 1 ✓ 82 457 17 510 19 25 009 55 135 113.95 0.484

This work – Best AT product for inversion
32 23 2 ✓ 7 791 3 004 5 2 179 462 533 125 3.7
64 31 2 ✓ 12 741 4 169 10 3 694 187 097 98.04 1.91
128 16 1 ✓ 14 705 4 709 19 4 121 189 897 113.64 1.67

KeyGen from Chapter 12
32 – – ✗ 2 074 659 4 649 2 671 076 131.58 20.30
64 – – ✗ 4 432 1 285 5 1 285 748 964 113.64 6.59
128 – – ✗ 12 654 3 554 10 3 554 258 750 96.15 2.69

* The PRNG (Keccak) is used to sample (h0, h1) (the core consumes roughly 800
slices).

the Hamming weight of the sparse polynomial exceeds a certain value. More precisely, the
latency of the schoolbook multiplier introduced in Chapter 12 is defined by

Lschool =
⌈

r

b

⌉2
+ 3 ·

⌈
r

b

⌉
+ 1. (13.5)

In case Lmult(th) results in a larger latency than Lschool for a Hamming weight th and a fixed
⌈r/b⌉, the schoolbook multiplier finishes the corresponding multiplication in fewer clock cycles.
In BIKE, this phenomenon only appears for b = 128 and for the parameter sets of the security
levels 1 and 3. However, especially for b = 128 the sparse multiplier achieves a considerably
better AT product as shown in Table 13.2.

Besides implementation results for BIKE, Table 13.5 also provides implementation costs and
performance values for other code-based cryptographic schemes submitted to the NIST stan-
dardization process. As already pointed out in Chapter 12, the comparison to the Classic
McEliece implementation is difficult. On the one hand, the reported numbers are only for the
PKE scheme and not for the KEM. On the other hand, the Classic McEliece design consumes
a huge amount of BRAMs which requires to use larger and more expensive FPGAs.

The hardware design for HQC was recently presented in the latest specification [MAB+21]
and is based on a high-level synthesis. While our hardware design of BIKE achieves similar
performance results for the encapsulation and decapsulation, HQC has a faster key generation
since no polynomial inversion is required.

Eventually, the last part of Table 13.5 reports recent hardware implementation results from
other post-quantum schemes which were selected as finalists in the NIST standardization pro-
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Table 13.5: Comparison of hardware implementations of post-quantum schemes.
Utilization Performance

Logic Memory Area Freq. Key Gen Encaps Decaps
Design LUT DSP FF BRAM Slices MHz cycles† µs cycles† µs cycles† µs

This work, united design
Light weight 12 319 7 3 896 9 3 777 121 463 3 797 54 443 841 6 896
Trade-off 19 607 9 5 008 17 5 617 100 187 1 870 28 280 421 4 210
High speed 25 549 13 5 462 34 7 332 113 190 1 672 15 132 215 1 892

Chapter 12
Light weight 12 868 7 5 354 17 4 078 121 2 671 21 903 153 1 252 1 628 13 349
High speed 52 967 13 7 035 49 15 187 96 259 2 691 12 127 189 1 972

HQC [MAB+21]
Light weight 8 900 0 6 400 14 3 100 132 630 4 773 1 500 11 364 2 100 15 909
High speed 20 000 0 16 000 12.5 6 600 148 40 270 89 601 190 1 284

mceliece348864pke [WSN18]
Light weight 25 327 0 49 383 168 – 108 1 600 14 800 2.7 25.2 18.3 169.8
High speed 81 339 0 132 190 236 – 106 203 1 920 2.7 25.8 12.7 120.7

CRYSTALS-KYBER
[XL21] 7 412 2 4 644 3 2 126 161 3.8 23.4 5.1 30.5 6.7 41.3
[DMG21] 9 457 4 8 543 4.5 – 220 2.2 10 3.2 14.7 4.5 20.5

LightSaber [DFA+20]
Light weight 24 688 0 14 785 1.5 – 370 1.6 4.3 2.2 5.8 2.8 7.6
High speed 65 890 0 28 230 1.5 – 310 0.9 2.9 1 3.3 1.3 4.2

NTRU Prime [Mar20]
– 9 538 19 7 803 14 1 841 271 1 305 4 815 142 524 260 958

pke Results are only for the PKE and not for the KEM. † in thousand.

cess. We list the corresponding implementation costs and performance numbers from lattice-
based schemes including CRYSTALS-KYBER, LightSaber, and NTRU Prime. In general, the
comparison shows that lattice-based schemes cost less area and achieve lower latencies than the
code-based KEM operations.

13.5 Discussion

In this section, we briefly discuss the resistance of our implementations against side-channel
attacks and address the transferability of our optimization approaches to software implementa-
tions.
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13.5.1 Resistance against Side Channels

In this chapter, we present a constant-time hardware implementation of BIKE which prevents
the timing side-channel leakage. However, we did not apply any specific countermeasure against
power SCA. In [RMGS20], the authors briefly discussed the resistance of their BIKE hardware
implementation against power side channels. They suggested that a parallel processing of
b = 128 bit chunks makes it hard to identify single-bit dependencies in the power trace. Since
our implementation also supports a 128 bit bandwidth, it follows the same argumentation.
Additionally, using BIKE with ephemeral keys (suggested as one operation mode in the BIKE
specification [ABB+21]), makes a side-channel attack even harder since the attacker can only
use single traces.

Nevertheless, this is not a guarantee for resisting power side-channel attacks. For example,
analyzing a power trace of our proposed multiplication engine from Section 13.3.3 would prob-
ably reveal if an index of e0 or e1 is processed due to the Hamming weight difference of |1| and
|h|. The multiplication with an index from e0 probably generates different power traces than
a multiplication with e1 such that the Hamming weights of |e0| and |e1| are leaked. It requires
further research to investigate the effect with respect to security from leaking |e0| and |e1|. The
leakage can be avoided by using two sparse multipliers, where one is dedicated to e1 · 1 and the
other is dedicated to e2 · h running in parallel.

13.5.2 Transferability to Software

In this section, we discuss the possibility of transferring the presented approaches to software im-
plementations for polynomial inversions and spare polynomial multiplications targeting various
platforms.

When considering the inversion algorithms for the key generation, given the latency of
extGCD inversion (Equation 13.3) and Fermat’s inversion (Equation 13.4), the key issue is
the latency of the exponentiation and multiplication (Lschool) operations in the ITA algorithm
on the target platforms. Although the multiplication involves complicated hardware circuits, it
is a sunk cost in software when the underlying platform supports related instructions. There-
fore, for platforms with native instructions of bit-polynomial multiplication, e.g., the pclmulqdq
instruction in x86, we believe Linv-Fermat is smaller than Linv. For platforms without instructions
for bit-polynomial multiplication, Linv is likely to be smaller than Linv-Fermat. However, besides
the platform, the latency of the multiplication also depends on the implemented algorithms.
Recently, Chen et al. [CCK21] reported an efficient FFT-based bit-polynomial multiplication
on the 32-bit Arm Cortex-M4 platform. Hence, we expect extGCD based inversion outperforms
Fermat’s inversion in even smaller platforms without efficient multiplication implementations,
e.g., 8-bit AVR microcontrollers.

Regarding the sparse polynomial multiplication in BIKE, we mainly consider the side-channel
leakage of the degrees of sparse terms. If a software implements the sparse-dense multiplication
by accumulating the shifted dense polynomial with the degrees of sparse terms, then it might
leak the degrees of sparse terms through a cache-time attack. This is a reason that recent soft-
ware implementations, e.g., [CCK21, DGK20a], implemented the multiplication with algorithms
for dense polynomial multiplication. Thus, we believe that the spare polynomial multiplication
will be useful for small microcontrollers without data cache.
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13.6 Conclusion
In this chapter, we propose various optimization strategies and present an improved hardware
design for BIKE, one of the NIST’s alternate KEM candidates.

For arithmetic optimizations, we implement a constant-time sparse polynomial multiplier for
all three KEM algorithms of BIKE. Compared to a schoolbook implementation, our design
improves the area-time product by at least five times for all design parameters. Our imple-
mentation also achieves a better latency except for the high-speed design (i.e., b = 128) for the
encapsulation and the decapsulation. Additionally, we propose a hardware implementation of
the polynomial inversion based on the extended Euclidean algorithm. Compared to previous re-
sults based on Fermat’s little theorem, our new design not only achieves better latency but also
provides smaller area-time products for the key generation in BIKE. Moreover, due to its scal-
able design, the instantiation of the inversion module can be tailored to various circumstances
providing higher throughput or smaller area footprints.

Besides these arithmetic optimizations, we show that the random oracles of a unified Keccak
core in the new specification of BIKE indeed result in a more efficient hardware design compared
to the design using versions of both AES256 and SHA2. Based on our improvements, we
developed a united hardware design with shared resources and sub-modules, achieving a better
latency with less area compared to previous BIKE implementations. Altogether, our high-
speed implementation performs a key generation in 1 672 µs, an encapsulation in 132 µs, and a
decapsulation in 1 802 µs on Xilinx Artix-7 FPGAs.
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Chapter 14

Conclusion and Future Work

In this chapter, we briefly summarize our research contributions and conclude this
work. Additionally, we discuss future research directions with respect to combined
countermeasures, combined gadgets, formal verification, and protected implementa-
tions of BIKE.

Contents of this Chapter

14.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
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14.1 Conclusion
In this thesis, we present in the first part countermeasures improving the protection against
physical attacks. More precisely, we combine existing countermeasures against SCA with pro-
tection mechanisms against FIA. To this end, we first introduce a novel layout of linear ECCs
that is adjusted orthogonal to the state-matrix of AES. Additionally, we increase the protec-
tion of our approach against SCA by adding LMDPL as state-of-the-art countermeasure. In the
second chapter, we utilize the inherent structure of linear ECCs as an opportunity to introduce
noise to a cipher’s hardware implementation in order to achieve increased protection against
SCA. Hence, we attach linear ECCs to a first-order protected TI and dynamically exchange the
generator matrices of the underlying codes. Therefore, we increase the protection level given
by the first-order TI to higher orders.

In the second part, we introduce adversary models and security notions abstracting and
describing physical attacks. We start by revisiting existing fault-injection mechanisms to elabo-
rate underlying physical behavior. Afterwards, we introduce a simple, generic, and consolidated
fault-injection adversary model that is perfectly tailored to the physical behavior. Moreover,
we revisit composability notions for gadgets against FIA and present a new security notion
inspired by the SCA notion PINI. Using existing SCA and FIA composability notions as base-
line, we transfer existing composability notions for combined attacks from software to hardware
implementations and introduce CINI and ICINI as new combined security notions.

These theoretical considerations are used as fundamental foundation to design computer-
aided verification frameworks analyzing the security of countermeasures against physical attacks.
Therefore, we first introduce FIVER capable of evaluating countermeasures against FIA. Due
to the underlying data structure of BDDs, we can use symbolic simulation while covering all
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possible assignments of input variables avoiding false positives. In several case studies, we
demonstrate the application of FIVER on real-world designs implementing well-established
countermeasures against FIA. Additionally, we introduce the first verification framework that
can validate side-channel security, fault-injection resistance, and protection against combined
attacks. In extensive case studies, we demonstrate that VERICA can assist a designer of
countermeasures by revealing flaws in existing countermeasures from the literature. Moreover,
we confirm by practical side-channel measurements that precisely injected faults can decrease
the order of the side-channel security of cryptographic primitives constructed from CINI gadgets.

Eventually, we present efficient hardware implementations of the PQC scheme BIKE. We
start by presenting the first complete hardware design of BIKE including cores for the key
generation, encapsulation, and decapsulation. To this end, we explore different strategies to
implement the polynomial inversion based on Fermat’s little theorem, introduce an improved
polynomial multiplication, and implement the BGF decoder for the first time on hardware. In
the subsequent chapter, we improve our previous results and present an optimized polynomial
multiplication utilizing the sparseness of one operand and propose a polynomial inversion unit
based on the extended Euclidean algorithm.

14.2 Future Research Directions

Eventually, we discuss future research directions built upon the findings and contributions
of this thesis. Hence, we first present further ideas with respect to countermeasures against
physical attacks. Afterwards, we discuss improvements and extensions for our formal verification
frameworks. Finally, we briefly explore future work with respect to secure implementations of
PQC schemes.

14.2.1 Countermeasures against Physical Attacks

In Part II, we discuss two countermeasures that provide protection against SCA and FIA. In
this section, we briefly discuss future work addressing similar research directions.

Combining Provable Secure Masking Schemes with Hiding Techniques for Combined Pro-
tection. In Chapter 7, we present a countermeasure that dynamically exchanges the generator
matrices of linear ECCs to achieve higher-order protection against SCA based on a first-order
provable secure TI. Implementing provable higher-order countermeasure against SCA is gener-
ally connected to a huge overhead with respect to area, latency, and power consumption. Addi-
tionally, modern cryptographic implementations should not only be protected against SCA but
also against FIA which introduces additional costs. To this end, future work could further focus
on combined countermeasures based on provable first-order schemes that provide higher-order
protection by dynamic reconfiguration. Here, interesting research directions appear with respect
to the quality of the required randomness. For example, for many schemes smaller PRNGs pro-
ducing randomness of less quality may be good enough to provide the desired protection against
SCA.
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14.2.2 Design of Composable Gadgets

Here, we briefly introduce ideas for new composable gadgets based on findings from Chapter 9
and Chapter 11.

SIFA Secure Gadgets. With the introduction of VERICA, we present several case studies
where one experiment is dedicated to the analysis of SIFA protected implementations. The
resistance in these implementations is achieved by using shared Toffoli gates. However, as
pointed out in [HPB21], the generation of protected circuits using shared Toffoli gates is very
challenging for larger and more complex designs, e.g., AES S-boxes. To this end, future research
could focus on the design of gadgets applying the underlying ideas of the shared Toffoli gates to
protect arbitrary circuits against SIFA-based attacks. Please note, our CINI and ICINI gadgets
introduced in Chapter 9 also provide protection against SIFA (they correct faults inside the
gadget), however, they introduce a huge overhead.

Improved Combined Gadgets. Especially this larger overhead introduced by combined gad-
gets, in general, can serve as a foundation for further future research. In order to be applicable
to real-world hardware, gadgets providing protection against combined attacks need further
improvements with respect to their required hardware resources.

14.2.3 Formal Verification of Hardware Circuits

In this paragraph, we discuss further features and improvements for our formal verification
frameworks presented in Part IV.

Transitional Leakage. As discussed in Chapter 11, VERICA only supports verifications in the
glitch-extended d-probing model. However, on hardware devices exist more physical defects like
transitions and couplings (cf. Section 2.1.2). Hence, future research could investigate how coun-
termeasures in the transition-extended d-probing model could be verified. Therefore, VERICA
has to be extended such that round-based designs can be supported which includes to define a
new circuit model that is not based on a DAG structure.

Considering Annotations from Physical Properties. In order to support verifications con-
sidering couplings, VERICA requires more information from the user. Couplings are highly
connected to the physical layout of the target design such that routing and layout informa-
tion are required to perform an appropriate verification. Hence, extending VERICA with the
possibility to parse annotated netlist files containing information about the routing or timing,
could further improve the verification results with respect to the abstraction of the real-world
behavior.

Apply Concept to Software Designs. In Chapter 10 and Chapter 11, we present two veri-
fication concepts for fault-injection countermeasures and combined countermeasures targeting
hardware implementations. A next step could identify how these concepts can be transferred
to countermeasures implemented in software targeting microcontroller designs.

221



Chapter 14 Conclusion and Future Work

Performance Optimization. Eventually, as discussed in our case studies, our formal verifica-
tion frameworks are currently limited with respect to circuit sizes and higher-order verifications
(for SCA, FIA, and combined analyses). Therefore, interesting directions for further research are
the optimization of our concepts allowing to verify larger and more complex circuits. We already
started to increase the performance of VERICA by applying a new approach for SCA verifica-
tion based on indistinguishability analyses. This work shifts the complexity to the breadth of
the target design instead of being limited by the depths of the circuit. The corresponding paper
is currently under review [FGG+22].

14.2.4 Protected PQC Implementations
Finally, we address future research in the area of secure and protected PQC implementations
with respect to physical attacks.

Protecting BIKE against SCA. In Part V, we present optimized hardware implementations
of BIKE. However, we do not cover the protection against SCA. Hence, future research should
address countermeasures against SCA for BIKE. This includes hardware and software imple-
mentations likewise. With respect to secure software implementations, we already investigated
efficient masked polynomial inversion [KLRG22b] and secure fixed-weight sampling [KLRG22a].
Nevertheless, masking remaining parts of BIKE is still an open challenge.

Fault-injection Attacks on BIKE. So far, no work addresses fault-injection attacks on BIKE.
Hence, investigating how faults can be used to reveal secret key material in BIKE is still an
open research question. In case a successful attack is discovered, corresponding protection
mechanisms need to be identified and implemented.
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Chapter 15

Supplementary Material

15.1 Detailed Reports from VerFI Case Study

Table 15.1: Detailed results of the VerFI case study.

Fault Model Detected Non-detected Ineffective Scenarios (sum)

ζ(1, τbf , mc∞) 40 0 0 40
ζ(2, τbf , mc∞) 772 0 48 820
ζ(3, τbf , mc∞) 10 652 0 48 10 700
ζ(4, τbf , mc∞) 97 428 3 598 1 064 102 090

ζ(1, τs, mc∞) 24 0 16 40
ζ(2, τs, mc∞) 666 0 154 820
ζ(3, τs, mc∞) 9 710 0 990 10 700
ζ(4, τs, mc∞) 96 660 497 4 933 102 090

ζ(1, τr, mc∞) 16 0 24 40
ζ(2, τr, mc∞) 514 0 306 820
ζ(3, τr, mc∞) 8 230 0 2 470 10 700
ζ(4, τr, mc∞) 87 372 49 14 669 102 090

ζ(1, τsr, c7) 8 0 8 16
ζ(2, τsr, c7) 92 0 36 128
ζ(3, τsr, c7) 484 0 92 576
ζ(4, τsr, c7) 1 520 14 162 1 696

ζ(1, τsr, m) 8 0 8 16
ζ(2, τsr, m) 92 0 36 128
ζ(3, τsr, m) 484 0 92 576
ζ(4, τsr, m) 1 520 14 162 1 696

ζ(1, τnang15, mc∞) 76 0 68 144
ζ(2, τnang15, mc∞) 7 720 0 2 520 10 240
ζ(3, τnang15, mc∞) 405 616 0 63 824 469 440
ζ(4, τnang15, mc∞) 14 383 842 72 462 1 245 232 15 701 536
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15.2 Performance Results of FIVER

Figure 15.1 shows the evaluation times for different number of cores used by our tool. The
results were obtained for a single-round CRAFT design with four bit redundancy under the
fault model ζ(3, τbf , cs) and enabled complexity reduction. The memory limit for each CUDD
manager was set to 8 GB.
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Figure 15.1: Multithreading performance for a single-round CRAFT design with four bit re-
dundancy.

Figure 15.2 shows the evaluation performances for different settings of the memory limit for
each BDD manager. The results were obtained for the same design and same fault model as in
Figure 15.1 while in this case the number of threads was fixed to eight.
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Figure 15.2: Dependency of the memory limit on the performance for an single-round CRAFT
design with four bit redundancy.
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15.3 Multiplication Algorithm for Folding BIKE

Algorithm 15 formally describes our approach to implement the polynomial multiplication. The
two initialization phases require each one clock cycle. Everything inside the for-loop iterating
over j is executed in parallel.

Algorithm 15 Polynomial Multiplication.
Require: Input polynomials h, m ∈ R.
Ensure: Product c = m · h ∈ R which is written to a BRAM.

1: O ← r mod b, mask ← (2b − 1), addr ← ⌈r/b⌉
2: for i← 0 to addr − 1 do
3: temp← 0
4: for u← O + 1 to b− 1 do ▷ Initialization Phase 1
5: temp← temp⊕ ((m[i] >> u) & 1) · (h[addr − 2] >> (b + O − u))
6: end for
7: t← (h[addr − 1] & (2O − 1)) << (b−O − 1); ▷ Initialization Phase 2
8: for u← 1 to b− 1 do
9: temp← temp⊕ ((m[i] >> u) & 1) · (t >> (b− 1− u))

10: end for
11: h′ ← h[0], tmp c add← c[i] ▷ Regular Flow
12: for j ← 0 to addr − 1 do
13: temp2← temp ▷ Parallel execution.
14: temp← 0
15: for u← 0 to b− 1 do
16: p← (((m[i] >> u) & 1) · h′) << u
17: temp2← temp2⊕ (p & mask)
18: temp← temp⊕ ((p >> b) & mask)
19: end for
20: tmp c← c[(j + i + 1) mod addr]
21: if j = (addr − 1) then
22: c[(j + i + 1) mod addr]← tmp c add⊕

(
temp2 &

(
2O − 1

))
23: h[0]← ((h′ << (b−O)) | (h[j] >> O)) & mask
24: else
25: c[(j + i + 1) mod addr]← tmp c add⊕ temp2
26: tmp h← h′

27: h′ ← h[j + 1]
28: h[j + 1]← tmp h
29: end if
30: tmp c add← tmp c
31: end for
32: end for
33: return c
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15.4 Additional Implementation Results for Racing BIKE

Table 15.2: Implementation results for the polynomial inversion for r = 12 323, b = 32, and
d = 2. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T
FPGA as target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time

s = 1 580 117 196 9 637 363 96.37 1 888.92
s = 2 732 168 254 4 819 461 48.19 1 224.14
s = 3 852 175 296 3 221 840 32.22 953.66
s = 4 905 179 313 2 416 672 24.17 756.42
s = 5 1 131 187 369 1 938 658 19.39 715.36
s = 6 1 166 193 375 1 615 612 16.16 605.85
s = 7 1 389 199 458 1 388 442 13.88 635.91
s = 8 1 493 206 491 1 215 082 12.15 596.61
s = 9 1 697 346 547 1 085 811 10.86 593.94

s = 10 1 788 355 576 977 307 9.77 562.93
s = 11 1 929 366 601 890 844 8.91 535.40
s = 12 1 808 373 578 816 606 8.17 472.00
s = 13 1 977 383 613 755 776 7.56 463.29
s = 14 2 063 393 639 702 045 7.02 448.61
s = 15 2 245 403 685 657 123 6.57 450.13
s = 16 2 479 414 759 616 026 6.16 467.56
s = 17 2 526 557 767 582 617 5.83 446.87
s = 18 2 619 570 823 550 536 5.51 453.09
s = 19 2 765 585 847 522 962 5.23 442.95
s = 20 2 905 601 893 496 832 4.97 443.67
s = 21 3 068 613 934 474 289 4.74 442.99
s = 22 3 232 631 999 452 929 4.53 452.48
s = 23 3 359 643 995 434 255 4.34 432.08
s = 24 3 679 655 1 105 416 076 4.16 459.76
s = 25 3 705 802 1 096 401 483 4.01 440.03
s = 26 3 869 819 1 191 386 055 3.86 459.79
s = 27 3 998 840 1 177 372 758 3.73 438.74
s = 28 4 149 865 1 287 359 732 3.60 462.98
s = 29 4 411 877 1 342 347 967 3.48 466.97
s = 30 4 549 900 1 350 336 542 3.37 454.33
s = 31 4 735 921 1 410 326 729 3.27 460.69
s = 32 5 038 943 1 473 316 504 3.17 466.21
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Table 15.3: Implementation results for the polynomial inversion for r = 12 323, b = 64, and
d = 2. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T
FPGA as target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time
s = 1 1 020 183 377 4 880 299 48.80 3 679.75
s = 2 1 245 296 425 2 440 543 24.41 1 037.23
s = 3 1 662 306 566 1 635 573 16.36 925.73
s = 4 1 540 312 515 1 226 827 12.27 631.82
s = 5 1 890 322 618 986 589 9.87 609.71
s = 6 1 947 327 676 822 189 8.22 555.80
s = 7 2 391 334 786 708 310 7.08 556.73
s = 8 2 637 348 893 619 870 6.20 553.54
s = 9 2 633 613 878 556 605 5.57 488.70

s = 10 2 865 629 922 500 983 5.01 461.91
s = 11 3 045 632 1 015 457 752 4.58 464.62
s = 12 3 208 645 1 021 419 605 4.20 428.42
s = 13 3 444 658 1 122 389 269 3.89 436.76
s = 14 3 623 665 1 201 361 593 3.62 434.27
s = 15 3 964 685 1 245 339 252 3.39 422.37
s = 16 4 506 704 1 422 318 034 3.18 452.24
s = 17 4 429 969 1 369 302 188 3.02 413.70
s = 18 4 537 985 1 417 285 547 2.86 404.62
s = 19 4 697 992 1 440 271 869 2.72 391.49
s = 20 4 975 1 010 1 566 258 284 2.58 404.47
s = 21 5 439 1 030 1 657 247 128 2.47 409.49
s = 22 5 476 1 046 1 758 235 997 2.36 414.88
s = 23 5 804 1 064 1 766 226 780 2.27 400.49
s = 24 6 323 1 095 1 892 217 286 2.17 411.11
s = 25 6 280 1 353 1 928 210 606 2.11 406.05
s = 26 6 724 1 383 2 064 202 512 2.03 417.98
s = 27 6 769 1 390 2 034 195 970 1.96 398.60
s = 28 6 862 1 407 2 080 189 120 1.89 393.37
s = 29 7 517 1 442 2 197 183 338 1.83 402.79
s = 30 7 733 1 462 2 281 177 317 1.77 404.46
s = 31 7 801 1 473 2 269 172 522 1.73 391.45
s = 32 8 379 1 500 2 560 167 122 1.67 427.83
s = 33 8 324 1 772 2 425 163 434 1.63 396.33
s = 34 8 339 1 799 2 480 158 638 1.59 393.42
s = 35 8 687 1 814 2 621 154 980 1.55 406.20
s = 36 9 016 1 836 2 692 150 602 1.51 405.42
s = 37 9 288 1 860 2 735 147 325 1.47 402.93
s = 38 9 552 1 882 2 871 143 367 1.43 411.61
s = 39 9 909 1 911 2 851 140 261 1.40 399.88
s = 40 10 426 1 945 3 090 136 942 1.37 423.15
s = 41 10 374 2 227 3 092 134 830 1.35 416.89
s = 42 10 751 2 260 3 202 131 489 1.31 421.03
s = 43 10 989 2 282 3 247 129 160 1.29 419.38
s = 44 11 233 2 310 3 315 126 248 1.26 418.51
s = 45 11 737 2 357 3 417 123 887 1.24 423.32
s = 46 11 853 2 379 3 419 121 188 1.21 414.34
s = 47 12 516 2 430 3 694 119 236 1.19 440.46
s = 48 12 758 2 459 3 623 116 750 1.17 422.99
s = 49 12 960 2 740 3 673 115 272 1.15 423.39
s = 50 13 305 2 777 3 873 112 992 1.13 437.62
s = 51 14 176 2 818 4 211 111 420 1.11 469.19
s = 52 13 762 2 837 3 973 109 135 1.09 433.59
s = 53 15 295 2 882 4 397 107 763 1.08 473.83
s = 54 14 616 2 903 4 200 105 695 1.06 443.92
s = 55 16 613 2 975 4 825 104 302 1.04 503.26
s = 56 16 031 3 002 4 701 102 454 1.02 481.64
s = 57 15 994 3 289 4 618 101 473 1.01 468.60
s = 58 16 445 3 326 4 780 99 613 1.00 476.15
s = 59 16 491 3 345 4 697 98 399 0.98 462.18
s = 60 17 232 3 397 5 005 96 761 0.97 484.29
s = 61 17 711 3 435 5 116 95 757 0.96 489.89
s = 62 17 171 3 462 4 984 94 115 0.94 469.07
s = 63 18 103 3 510 5 318 93 095 0.93 494.15
s = 64 18 610 3 563 5 457 91 678 0.92 500.29
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Table 15.4: Implementation results for the polynomial inversion for r = 12 323, b = 128, and
d = 1. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T
FPGA as target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time
s = 1 1 805 247 671 2 514 091 25.14 16 869.55
s = 2 2 134 517 801 1 269 570 12.70 1 016.93
s = 3 2 519 527 944 854 765 8.55 806.90
s = 4 2 880 542 1 030 647 311 6.47 666.73
s = 5 3 257 553 1 158 522 881 5.23 605.50
s = 6 3 616 565 1 224 439 857 4.40 538.38
s = 7 4 239 578 1 393 380 569 3.81 530.13
s = 8 4 496 587 1 498 336 130 3.36 503.52
s = 9 4 857 1 117 1 618 304 329 3.04 492.40

s = 10 5 315 1 139 1 689 276 380 2.76 466.81
s = 11 5 615 1 157 1 807 253 533 2.54 458.13
s = 12 6 083 1 170 1 936 234 457 2.34 453.91
s = 13 6 286 1 183 2 001 218 341 2.18 436.90
s = 14 6 866 1 202 2 211 204 576 2.05 452.32
s = 15 7 284 1 215 2 299 192 648 1.93 442.90
s = 16 8 322 1 245 2 560 182 138 1.82 466.27
s = 17 7 860 1 758 2 407 174 300 1.74 419.54
s = 18 8 398 1 787 2 561 166 069 1.66 425.30
s = 19 8 553 1 792 2 623 158 655 1.59 416.15
s = 20 9 161 1 824 2 903 151 958 1.52 441.13
s = 21 9 392 1 834 2 877 145 876 1.46 419.69
s = 22 10 000 1 866 3 197 140 424 1.40 448.94
s = 23 10 510 1 881 3 174 135 372 1.35 429.67
s = 24 11 576 1 930 3 487 130 730 1.31 455.86
s = 25 11 088 2 427 3 370 127 494 1.27 429.65
s = 26 11 836 2 471 3 569 123 540 1.24 440.91
s = 27 12 205 2 488 3 742 119 903 1.20 448.68
s = 28 12 346 2 507 3 816 116 590 1.17 444.91
s = 29 13 172 2 550 3 999 113 350 1.13 453.29
s = 30 13 565 2 567 4 046 110 447 1.10 446.87
s = 31 14 739 2 612 4 512 107 758 1.08 486.20
s = 32 14 632 2 624 4 334 105 154 1.05 455.74
s = 33 14 854 3 162 4 382 103 386 1.03 453.04
s = 34 15 394 3 201 4 547 101 075 1.01 459.59
s = 35 17 161 3 249 5 225 98 997 0.99 517.26
s = 36 16 025 3 238 4 864 96 884 0.97 471.24
s = 37 17 789 3 314 5 295 95 011 0.95 503.08
s = 38 17 007 3 295 5 113 93 106 0.93 476.05
s = 39 18 682 3 365 5 590 91 309 0.91 510.42
s = 40 18 997 3 386 5 560 89 762 0.90 499.08
s = 41 20 059 3 956 5 853 88 790 0.89 519.69
s = 42 19 581 3 953 5 776 87 176 0.87 503.53
s = 43 20 206 4 000 5 901 85 822 0.86 506.44
s = 44 20 562 4 037 6 044 84 446 0.84 510.39
s = 45 21 092 4 052 6 158 83 047 0.83 511.40
s = 46 21 587 4 076 6 390 81 772 0.82 522.52
s = 47 23 411 4 157 6 754 80 623 0.81 544.53
s = 48 23 283 4 189 6 851 79 454 0.79 544.34
s = 49 22 459 4 701 6 597 78 768 0.79 519.63
s = 50 23 571 4 742 6 772 77 701 0.78 526.19
s = 51 24 722 4 799 7 379 76 768 0.77 566.47
s = 52 24 364 4 821 7 173 75 667 0.76 542.76
s = 53 25 137 4 864 7 296 74 855 0.75 546.14
s = 54 25 516 4 887 7 366 73 874 0.74 544.16
s = 55 26 330 4 932 7 765 73 033 0.73 567.10
s = 56 27 413 4 995 8 144 72 178 0.72 587.82
s = 57 28 143 5 522 8 223 71 741 0.72 589.93
s = 58 28 594 5 594 8 151 70 850 0.71 577.50
s = 59 28 171 5 587 8 310 70 105 0.70 582.57
s = 60 28 393 5 640 8 209 69 347 0.69 569.27
s = 61 29 925 5 696 8 545 68 739 0.69 587.37
s = 62 30 319 5 734 8 769 67 957 0.68 595.91
s = 63 30 852 5 775 8 847 67 327 0.67 595.64
s = 64 32 695 5 864 9 527 66 686 0.67 635.32
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Table 15.5: Implementation results for the polynomial inversion for r = 12 323, b = 128, and
d = 1. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T
FPGA as target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time
s = 65 31 221 6 352 8 847 66 414 0.66 587.56
s = 66 31 436 6 389 9 158 65 746 0.66 602.10
s = 67 30 577 6 397 8 972 65 067 0.65 583.78
s = 68 32 594 6 503 9 607 64 547 0.65 620.10
s = 69 35 630 6 620 10 104 64 018 0.64 646.84
s = 70 33 656 6 572 9 761 63 480 0.63 619.63
s = 71 35 061 6 638 10 077 62 933 0.63 634.18
s = 72 36 133 6 719 10 485 62 378 0.62 654.03
s = 73 36 613 7 276 10 416 62 151 0.62 647.36
s = 74 38 766 7 388 11 314 61 748 0.62 698.62
s = 75 38 813 7 410 11 239 61 162 0.61 687.40
s = 76 37 402 7 400 10 770 60 744 0.61 654.21
s = 77 39 655 7 480 11 572 60 319 0.60 698.01
s = 78 38 221 7 473 11 045 59 709 0.60 659.49
s = 79 39 225 7 561 11 016 59 269 0.59 652.91
s = 80 41 260 7 653 11 871 59 002 0.59 700.41
s = 81 41 334 8 206 11 838 58 853 0.59 696.70
s = 82 40 519 8 219 11 344 58 389 0.58 662.36
s = 83 41 921 8 315 11 794 57 918 0.58 683.08
s = 84 42 303 8 364 12 025 57 625 0.58 692.94
s = 85 43 112 8 427 12 378 57 140 0.57 707.28
s = 86 44 150 8 471 12 741 56 836 0.57 724.15
s = 87 45 026 8 552 13 084 56 525 0.57 739.57
s = 88 46 817 8 654 13 632 56 210 0.56 766.25
s = 89 46 236 9 187 13 206 55 977 0.56 739.23
s = 90 46 659 9 248 13 038 55 647 0.56 725.53
s = 91 48 035 9 326 13 776 55 312 0.55 761.98
s = 92 46 928 9 348 13 154 54 972 0.55 723.10
s = 93 49 552 9 461 14 406 54 820 0.55 789.74
s = 94 51 236 9 514 14 461 54 470 0.54 787.69
s = 95 48 958 9 518 13 927 54 114 0.54 753.65
s = 96 51 575 9 644 14 776 53 754 0.54 794.27
s = 97 52 032 10 221 14 911 53 839 0.54 802.79
s = 98 52 507 10 290 14 760 53 466 0.53 789.16
s = 99 54 072 10 373 15 308 53 088 0.53 812.67

s = 100 52 470 10 375 14 946 52 905 0.53 790.72
s = 101 54 968 10 517 15 569 52 719 0.53 820.78
s = 102 54 428 10 506 15 225 52 326 0.52 796.66
s = 103 57 494 10 651 16 235 52 132 0.52 846.36
s = 104 58 278 10 710 16 475 51 730 0.52 852.25
s = 105 57 104 11 241 15 935 51 762 0.52 824.83
s = 106 57 155 11 314 16 171 51 554 0.52 833.68
s = 107 58 343 11 416 16 257 51 343 0.51 834.68
s = 108 58 391 11 443 16 525 51 128 0.51 844.89
s = 109 59 464 11 547 16 778 50 910 0.51 854.17
s = 110 59 938 11 563 16 937 50 688 0.51 858.50
s = 111 60 228 11 677 16 895 50 463 0.50 852.57
s = 112 63 192 11 787 17 473 50 234 0.50 877.74
s = 113 60 735 12 262 16 590 50 220 0.50 833.15
s = 114 61 661 12 364 17 550 49 982 0.50 877.18
s = 115 64 408 12 476 18 190 49 741 0.50 904.79
s = 116 63 069 12 475 17 966 49 496 0.49 889.25
s = 117 63 678 12 579 17 887 49 248 0.49 880.90
s = 118 67 589 12 727 18 588 48 996 0.49 910.74
s = 119 64 989 12 706 18 025 48 960 0.49 882.50
s = 120 66 836 12 784 18 754 48 702 0.49 913.36
s = 121 69 566 13 467 19 483 48 644 0.49 947.73
s = 122 67 738 13 479 18 871 48 600 0.49 917.13
s = 123 72 170 13 641 20 145 48 330 0.48 973.61
s = 124 71 966 13 736 20 013 48 057 0.48 961.76
s = 125 73 447 13 795 20 338 48 006 0.48 976.35
s = 126 72 494 13 814 19 953 47 727 0.48 952.30
s = 127 72 596 13 900 20 096 47 671 0.48 958.00
s = 128 75 269 14 028 21 435 47 386 0.47 1 015.72
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Table 15.6: Implementation results of the united hardware design presented in Chapter 13 for
Level 3 and Level 5.

Utilization Performance

Logic Memory Area Frequency Key Gen Encaps Decaps
Design LUT DSP FF BRAM Slices MHz cycles† µs cycles† µs cycles† µs

United design for r = 24 659
Low weight 13 850 7 4 010 15 4 152 116 1 775 15 268 157 1 348 2 381 20 479
Trade-off 20 049 9 5 039 17 5 688 100 693 6 929 80 801 1 198 11 982
High speed 25 811 13 5 460 34 7 242 113 681 5 997 42 367 605 5 325

United design for r = 40 973
Low weight 13 973 7 4 002 34 4 192 113 4 809 42 324 343 3 020 5 217 45 911
Trade-off 21 373 9 5 160 34 6 145 94 1 847 19 580 174 1 847 2 620 27 770
High speed 26 441 13 5 601 34 7 288 111 1 798 16 186 90 808 1 321 11 885

† in thousand.
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[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert.
Hardware Private Circuits: From Trivial Composition to Full Verification. IEEE
Trans. Computers, 70(10):1677–1690, 2021.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

[Cla07] Christophe Clavier. Secret External Encodings Do Not Prevent Transient Fault
Analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in
Computer Science, pages 181–194. Springer, 2007.

[CLFT14] Franck Courbon, Philippe Loubet-Moundi, Jacques J. A. Fournier, and Assia Tria.
Adjusting Laser Injections for Fully Controlled Faults. In Emmanuel Prouff, editor,
Constructive Side-Channel Analysis and Secure Design - 5th International Work-
shop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers,
volume 8622 of Lecture Notes in Computer Science, pages 229–242. Springer, 2014.

[CMD+19] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain Moëllic, Jean-
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nis Sourdis, editors, 30th International Conference on Field-Programmable Logic
and Applications, FPL 2020, Gothenburg, Sweden, August 31 - September 4, 2020,
pages 200–207. IEEE, 2020.

[HFL+20] Benjamin Hettwer, Daniel Fennes, Sebastien Leger, Jan Richter-Brockmann, Stefan
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Cryptography: QC-MDPC McEliece Implementations on Embedded Devices. In
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■ Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Jan Richter-Brockmann, and Pascal Sas-
drich. INDIANA - Verifying Probing Security through Indistinguishability Analysis. In
submission, 2022

Technical Reports

■ Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, France Worldline, Löıc Bidoux, Olivier
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