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ABSTRACT. In this paper, we discuss J. Michael Dunn’s foundational work on the
semantics for First Degree Entailment logic (FDE), also known as Belnap–Dunn
logic (or Sanjaya–Belnap–Smiley–Dunn Four-valued Logic, as suggested by Dunn
himself). More specifically, by building on the framework due to Dunn, we sketch a
broad picture towards a systematic understanding of contra-classicality. Our focus
will be on a simple propositional language with negation, conjunction, and disjunc-
tion, and we will systematically explore variants of FDE, K3, and LP by tweaking
the falsity condition for negation.
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1. INTRODUCTION

Let us begin with a brief explanation of the three key notions included in the title
of our paper, namely, Dunn semantics, contra-classicality and negation.
Dunn semantics. The logic of first-degree entailment FDE, also known as Belnap–
Dunn logic (or Sanjaya–Belnap–Smiley–Dunn Four-valued Logic, as suggested by
Dunn himself in [17, p. 95]), is a basic paraconsistent and paracomplete logic that has
found many applications in philosophy and different areas of computer science, in-
cluding the semantics of logic programs and inconsistency-tolerant description logics.
The seminal papers [12; 4; 5] on FDE from the 1970s have been re-printed in [33],
together with some recent essays devoted to Belnap–Dunn Logic.

The system FDE has various equivalent semantical presentations, cf. [31]. There
exists a four-valued semantics, a so-called “star” semantics, an algebraic semantics,
and a two-valued relational semantics due to Dunn [12]. (Note that the results pub-
lished in [12] were already established and included in [11].) This semantics not
only justifies the intuitive reading of the four truth values in the four-valued semantics
but also enables a tweaking of the falsity condition of negation so as to obtain cer-
tain variants of FDE, the paracomplete three-valued strong Kleene logic K3, and the
paraconsistent three-valued logic of paradox, LP. The four-valued semantics and the
relational Dunn semantics are very closely related, and there exists a mechanical pro-
cedure to turn the many-valued truth tables into pairs of truth and falsity conditions,
and vice versa, see [30].
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Contra-classicality. The notion of a contra-classical logic has been coined by Lloyd
Humberstone [26]. The most prominent non-classical logics such as, for example,
minimal logic, intuitionistic logic, and the relevance logics E and R are subclassical.
If they are presented in the vocabulary of classical logic, their consequence relations
are subsets of the consequence relation of classical logic. In contrast to this, a contra-
classical logic validates consequences that are not valid in classical logic. Various
contra-classical logics have been studied in the literature. Examples include Abelian
logic (cf. [29], [34]), systems with demi-negation (cf. [25; 26; 35]), certain systems of
connexive logic (cf. [47], [49]), and the second-order Logic of Paradox (cf. [23]).

Some of the known contra-classical logic are contra-classical in a way that radically
differs from logical orthodoxy insofar as they are non-trivial but negation inconsistent.
These logics contain provable contradictions, i.e., they contain formulas A such that
both A and the negation ∼A of A are theorems. Whilst FDE, K3, and LP are subclas-
sical logics, we will see that a tweaking of the falsity condition for negation in these
logics can give rise to contra-classical systems. Some of the contra-classical vari-
ants of FDE, K3, and LP turn out to be negation inconsistent and some are negation
incomplete.
Negation. There exists an extensive literature on the notion of negation and on
which properties a genuine negation connective minimally ought to possess, see, for
example, [22; 24; 50; 46; 7; 8; 10]. Although Michael Dunn has made substantial
contributions to the study of negation as a modal operator of impossibility or “un-
necessity” [13; 14; 15; 18], he clearly had a broader understanding of the concept
of negation and even voiced the conviction that negation flip-flops between truth and
falsity. Here is a quote from [15, p. 49] (notation adjusted):

Tim Smiley once good-naturedly accused me of being a kind of lawyer for
various non-classical logics. He flattered me with his suggestion that I could
make a case for anyone of them, and in particular provide it with a seman-
tics, no matter what the merits of the case [. . . ] But I must say that my own
favourite is the 4-valued semantics. I am persuaded that ‘∼A is true iff A is
false’, and that ‘∼A is false iff A is true’. And now to paraphrase Pontius Pi-
late, we need to know more about ‘What are truth and falsity?’. It is of course
the common view that they divide up the states into two exclusive kingdoms.
But there are lots of reasons, motivated by applications, for thinking that this
is too simple-minded.

In the present paper, we will study variants of logics in which negation flip-flops
between truth and falsity, namely, variants of FDE, K3, and LP. A very weak require-
ment imposed on a unary connective in a logical system to deserve the classification as
a negation connective is that for some formulas A and B, neither A ` ∼A nor ∼B ` B,
cf. [2; 28]. We will consider one-place connectives that not only satisfy this weak
condition but also share the above truth condition for negation: ∼A is true (under a
given interpretation) iff A is false (under that interpretation). Classically falsity means
untruth, so that the truth condition already fixes the falsity condition, but this is not the
case in general, and in particular, it is not the case in FDE, K3, and LP, where truth
and falsity are two primitive concepts that are on a par. A discussion of semantical
opposition understood as an opposition between on the one hand truth and falsity, and
on the other hand between truth and untruth can be found in [32], where it is observed
that in the four-valued setting of FDE, the above truth condition for ∼A together with
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the understanding of falsity of ∼A as untruth of A results in the “demi-negation” of
the system CP from [27].

According to Arnon Avron, the requirement that∼A is true iff A is false represents
“the idea of falsehood within the language” [1, p. 160]. We shall keep this truth
condition for negated formulas but abandon the classical understanding of falsity as
untruth and instead treat truth and falsity as two separate primitive semantical notions
of equal importance. There is thus a clear sense in which the unary connectives in this
paper written as ∼, sometimes with a subscript, can be seen as negations. However,
there is now room for tweaking the falsity condition for negation. We will consider all
combinations that are possible for FDE, K3, and LP in a classical metatheory. This
gives us sixteen variants of FDE, four variants of K3, and four variants of LP. By
considering these logics, we are applying what Luis Estrada-González [19; 20] has
called “the Bochum Plan.”1

The themes dealt with in the present paper are among the topics addressed in nine
questions we had posed to Prof. J. Michael Dunn in March 2021 together with Grig-
ory Olkhovikov (the notion of negation, the tweaking of falsity conditions, negation
inconsistency, bilateralism, contraposition), see [51]. Unfortunately, Mike was no
longer able to answer these questions. He passed away on 5 April 2021, a few weeks
after he informed us that he is willing to answer our questions.

Before moving further, let us recall some well known results related to FDE, K3,
and LP. The language L consists of a set {∼,∧,∨} of propositional connectives and
a countable set Prop of propositional variables which we denote by p,q, . . . . Further-
more, we denote by Form the set of formulas defined as usual in L. We denote a
formula of L by A,B,C, . . . and a set of formulas of L by Γ ,∆ ,Σ , . . . .

We begin with the many-valued representations of FDE, K3 and LP.

Definition 1. A four-valued FDE-interpretation of L is a function v4 : Prop −→
{t,b,n, f}. Given a four-valued interpretation v4, this is extended to a function I4
that assigns every formula a truth value by truth functions depicted in the form of
truth tables as follows:

∼
t f
b b
n n
f t

∧ t b n f
t t b n f
b b b f f
n n f n f
f f f f f

∨ t b n f
t t t t t
b t b t b
n t t n n
f t b n f

Then, the semantic consequence relation for FDE (�FDE) is defined as follows.

Definition 2. For all Γ ∪{A}⊆Form, Γ �FDE A iff for all four-valued FDE-interpreta-
tions v4, I4(A) ∈ D if I4(B) ∈ D for all B ∈ Γ , where D = {t,b}.

Now, if we eliminate the value b from the semantics for FDE, then we obtain the
three-valued semantics for K3, as follows.

Definition 3. A three-valued K3-interpretation of L is a function v3 : Prop −→
{t,n, f}. Given a three-valued interpretation v3, this is extended to a function I3 that

1Note that the Bochum Plan in general does not privilege truth over falsity, so that we could also keep
the standard falsity condition for negation and systematically tweak the truth condition.
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assigns every formula a truth value by truth functions depicted in the form of truth
tables as follows:

∼
t f
n n
f t

∧ t b f
t t n f
n n n f
f f f f

∨ t b f
t t t t
n t n n
f t n f

Then, the semantic consequence relation for K3 (�K3) is defined as follows.

Definition 4. For all Γ ∪{A} ⊆ Form, Γ �K3 A iff for all three-valued interpretations
v3, I3(A) ∈ D if I3(B) ∈ D for all B ∈ Γ , where D = {t}.

Moreover, if we eliminate the value n from the semantics for FDE, then we obtain
the three-valued semantics for LP, as follows.

Definition 5. A three-valued LP-interpretation ofL is a function v3 : Prop−→{t,b, f}.
Given a three-valued interpretation v3, this is extended to a function I3 that assigns ev-
ery formula a truth value by truth functions depicted in the form of truth tables as
follows:

∼
t f
b b
f t

∧ t b f
t t b f
b b b f
f f f f

∨ t b f
t t t t
b t b b
f t b f

Then, the semantic consequence relation for LP (�LP) is defined as follows.

Definition 6. For all Γ ∪{A} ⊆ Form, Γ �LP A iff for all three-valued interpretations
v3, I3(A) ∈ D if I3(B) ∈ D for all B ∈ Γ , where D = {t,b}.

Finally, let us recall the Dunn semantics for FDE.

Definition 7. A Dunn-interpretation of L is a relation, r, between propositional vari-
ables and the values 1 and 0, namely, r ⊆ Prop×{1,0}. Given an interpretation, r,
this is extended to a relation between all formulas and truth values by the following
clauses:

∼Ar1 iff Ar0, A∧Br1 iff Ar1 and Br1, A∨Br1 iff Ar1 or Br1,
∼Ar0 iff Ar1, A∧Br0 iff Ar0 or Br0, A∨Br0 iff Ar0 and Br0.

Definition 8. A formula A is a two-valued semantic consequence of Γ (Γ �2 A) iff for
all Dunn-interpretations r, if Br1 for all B ∈ Γ then Ar1.

Remark 9. We obtain the Dunn semantics for K3 and LP by adding the following
constraints, respectively, to r: (no-gap) for no p, pr1 and pr0; (no-glut) for all p,
pr1 or pr0. Of course, if we add both constraints, then we obtain the semantics for
classical logic.

Given our assumption concerning negation, we will systematically consider the
variants of FDE, K3 and LP by changing the falsity condition for negation, and ex-
plore their basic properties.2

2Note that in a recent article [21], Estrada-González considers the Bochum plan and suggests systematic
changes in the evaluation conditions not only for negation, but also for other connectives. By doing so, he
emphasized the tweaking of the evaluation clauses as a source of contra-classicality.
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2. SEMANTICS

Let us now present the semantics for the variations of FDE, K3 and LP we consider
in the rest of paper. We begin with the variations of FDE.

By simple combinatorial considerations, the following sixteen operations exhaust
the space of possible connectives that share the truth condition for negation.

A ∼1 A ∼2 A ∼3 A ∼4 A ∼5 A ∼6 A ∼7 A ∼8 A
t f f f f f f f f
b b b b b t t t t
n n n f f n n f f
f t b t b t b t b

A ∼9 A ∼10 A ∼11 A ∼12 A ∼13 A ∼14 A ∼15 A ∼16 A
t n n n n n n n n
b b b b b t t t t
n n n f f n n f f
f t b t b t b t b

In view of the mechanical procedure described in [30, §2], we obtain falsity conditions
for the above operators. We leave the details to interested readers as an easy exercise
(the same applies to the variants of K3 and LP, introduced below). Then, we define
the semantic consequence relations for the variants with ∼i instead of ∼ (notation:
�i

FDE) as in Definition 1.

Remark 10. As one may easily observe,∼1 is the original negation included in FDE.
Moreover, ∼16 is the connective we discussed in [32]. The other fourteen operations
are, to the best of our knowledge, not discussed in the literature.3 Note that only three
of the fourteen operations are subclassical. Further details of the operations will be
explored in §5.

We now turn to variations of K3. By another simple combinatorial consideration,
or by eliminating some cases starting from the above considerations for FDE, the
following four operations exhaust the space of possible connectives that share the
truth condition for negation.

A ∼1 A ∼2 A ∼3 A ∼4 A
t f f n n
n n f n f
f t t t t

Note here that ∼2 is the connective discussed in [41]. Then, we define the semantic
consequence relations for the variants with ∼i instead of ∼ (notation: �i

K3) as in
Definition 3.

Finally, we consider the variations of LP. By another simple combinatorial con-
sideration, or again by eliminating some cases starting from the above considerations
for FDE, the following four operations exhaust the space of possible connectives that
share the truth condition for negation.

3A referee directed our attention to [36] as a reference that covers the connectives that we are discussing
in this paper. This, however, is not the case. Note also that there is a crucial difference between [36] and the
present paper insofar as we are not expanding the language of FDE, but only changing the interpretation of
negation.
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A ∼1 A ∼2 A ∼3 A ∼4 A
t f f f f
b b b t t
f t b t b

Note here that ∼2 is the connective discussed in [40]. We define the semantic con-
sequence relations for the variants with ∼i instead of ∼ (notation: �i

LP) as in Defi-
nition 5.

3. PROOF SYSTEMS

3.1. Unilateral Natural Deduction. Let us first recall the natural deduction system
for FDE, K3 and LP. Our presentation below follows the one due to Dag Prawitz
in [37, Appendix B], where he considers a certain expansion of FDE suggested by
David Nelson, namely a logic that can be seen as an expansion of intuitionistic logic
by a “strong” negation.4

Definition 11. The natural deduction rulesRFDE for FDE are all the following rules:

A B
A∧B

A∧B
A

A∧B
B

A
A∨B

B
A∨B

∼∼A
A

(∼∼1) A
∼∼A

(∼∼2) A∨B

[A]....
C

[B]....
C

C
∼(A∧B)

[∼A]....
C

[∼B]....
C

C
∼B

∼(A∧B)
∼A

∼(A∧B)
∼(A∨B)
∼B

∼(A∨B)
∼A

∼A ∼B
∼(A∨B)

Moreover, for the natural deduction rulesRK3 andRLP for K3 and LP, respectively,
we add the ECQ and the Law of the Excluded Middle, respectively:

A ∼A
B

(ECQ)
A∨∼A

(LEM)
.

Then, given any set Σ ∪{A} of formulas, Σ `FDE A iff for some finite Σ ′ ⊆ Σ , there is
a derivation of A from Σ ′ in the calculus whose rule set isRFDE. In the same way, we
define `K3 and `LP.

We now turn to introduce the natural deduction systems for the variants of our basic
systems.

Definition 12. The natural deduction rulesRi
FDE for FDEi are all the rulesRFDE for

FDE except that we replace (∼∼1) and (∼∼2) by the following rules.
∼1∼1 A

A
(∼1∼1 1) A

∼1∼1 A
(∼1∼1 2)

∼2∼2 A
A∨∼2 A

(∼2∼2 1) A
∼2∼2 A

(∼2∼2 2)
∼2 A
∼2∼2 A

(∼2∼2 3)

∼3∼3 A ∼3 A
A

(∼3∼3 1) A
∼3∼3 A

(∼3∼3 2) ∼3 A∨∼3∼3 A
(∼3∼3 3)

∼4∼4 A
(∼4∼4)

4One can also present the system as in [38, p. 304] using two-way rules with double lines. However, for
the purpose of making the connection more smooth to bilateral natural deduction systems, we will adopt
the presentation by Prawitz.
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∼5 A ∼5∼5 A
B

(∼5∼5 1)
∼5∼5 A

A
(∼5∼5 2) A

∼5 A∨∼5∼5 A
(∼5∼5 3)

A ∼6 A ∼6∼6 A
B

(∼6∼6 1)
∼6∼6 A
A∨∼6 A

(∼6∼6 2) A
∼6 A∨∼6∼6 A

(∼6∼6 3)

∼6 A
A∨∼6∼6 A

(∼6∼6 4)
∼7 A ∼7∼7 A

B
(∼7∼7 1) ∼7 A∨∼7∼7 A

(∼7∼7 2)

A ∼8 A ∼8∼8 A
B

(∼8∼8 1)
A∨∼8∼8 A

(∼8∼8 2) ∼8 A∨∼8∼8 A
(∼8∼8 3)

∼9∼9 A
A

(∼9∼9 1)
∼9∼9 A
∼9 A

(∼9∼9 2)
A ∼9 A
∼9∼9 A

(∼9∼9 3)

∼10∼10 A
∼10 A

(∼10∼10 1)
∼10 A
∼10∼10 A

(∼10∼10 2)

A ∼11∼11 A
∼11 A

(∼11∼11 1)
∼11 A ∼11∼11 A

A
(∼11∼11 2)

A∨∼11 A∨∼11∼11 A
(∼11∼11 3)

A ∼11 A
∼11∼11 A

(∼11∼11 4)

A ∼12∼12 A
∼12 A

(∼12∼12 1)
A∨∼12∼12 A

(∼12∼12 2)
∼12 A
∼12∼12 A

(∼12∼12 3)

∼13∼13 A
B

(∼13∼13)

A ∼14∼14 A
B

(∼14∼14 1)
∼14∼14 A
∼14 A

(∼14∼14 2)
∼14 A

A∨∼14∼14 A
(∼14∼14 3)

A ∼15∼15 A
B

(∼15∼15 1)
∼15 A ∼15∼15 A

B
(∼15∼15 2)

A∨∼15 A∨∼15∼15 A
(∼15∼15 3)

A ∼16∼16 A
B

(∼16∼16 1)
A∨∼16∼16 A

(∼16∼16 2)

Based on these, given any set Σ ∪ {A} of formulas, Σ `i
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRFDEi .

Definition 13. The natural deduction rules Ri
K3 for K3i are all the rules RK3 for K3

but replacing (∼∼1) and (∼∼2) by the following rules.
∼1∼1 A

A
(∼1∼1 1) A

∼1∼1 A
(∼1∼1 2) ∼2 A∨∼2∼2 A

(∼2∼2)

∼3∼3 A
B

(∼3∼3)
A ∼4∼4 A

B
(∼4∼4 1)

A∨∼4 A∨∼4∼4 A
(∼4∼4 2)

Based on these, given any set Σ ∪{A} of formulas, Σ `i
K3 A iff for some finite Σ ′ ⊆ Σ ,

there is a derivation of A from Σ ′ in the calculus whose rule set isRK3i .

Definition 14. The natural deduction rules Ri
LP for LPi are all the rules RLP for LP

but replacing (∼∼1) and (∼∼2) by the following rules.
∼1∼1 A

A
(∼1∼1 1) A

∼1∼1 A
(∼1∼1 2) ∼2∼2 A

(∼2∼2)
∼3 A ∼3∼3 A

B
(∼3∼3)

A ∼4 A ∼4∼4 A
B

(∼4∼4 1)
A∨∼4∼4 A

(∼4∼4 2)

Based on these, given any set Σ ∪{A} of formulas, Σ `i
LP A iff for some finite Σ ′ ⊆ Σ ,

there is a derivation of A from Σ ′ in the calculus whose rule set isRLPi .
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3.2. Bilateral Natural Deduction. We will present bilateral natural deduction sys-
tems for the consequence relations �i

FDE (i ∈ {1, . . . ,16}), �i
K3 (i ∈ {1, . . . ,4}), and

�i
LP (i ∈ {1, . . . ,4}) along the lines of [48]. These calculi make use of pure (sepa-

rated) introduction and elimination rules, i.e., rules that introduce into the conclusion
or eliminate from the premises only a single connective as the main connective of a
compound formula. The systems are, therefore, interesting from the point of view of
proof-theoretic semantics, because their rules can be seen as laying down the meaning
of the connectives inferentially. We will present the bilateral rules in the style of the
natural deduction rules from §3.1, but now with a distinction drawn between proofs
and disproofs (refutations) from assumptions that are taken to be true and counter-
assumptions that are taken to be definitely false. We use single lines in the notation
for proofs and double lines in the notation for refutations. Thus, in this section, double
lines indicate disproofs. In particular, we write A to denote a proof of A from A as an

assumption, and A to denote a refutation of A from A as a counterassumption. This
gives the inductive base for a definition of the set of proofs and refutations in any of
the systems we will consider. A permitted discharge of assumptions is indicated by
square brackets, [ ], and a permitted discharge of counterassumptions is indicated by
double square brackets, J K. We will simplify the notation by writing [A] instead of [A]
and JAK instead of JAK. Moreover, if Σ is a set of formulas, then Σ+ is defined as the
set {A : A ∈ Σ} and Σ− as {A : A ∈ Σ}.

The introduction and elimination rules for conjunctions and disjunctions from §3.1
then take the following form:5

A B
A∧B

A∧B
A

A∧B
B

A
A∨B

B
A∨B

A∨B

[A]....
C

[B]....
C

C

In the present setup, the dotted lines indicate derivations that may be built up from
both refutations and proofs. Instead of rules for introducing and eliminating negated
conjunctions, disjunctions, and negations into and from proofs, we have rules for in-
troducing and removing disjunctions, conjunctions, and negations into and from dis-
proofs.

Definition 15. The set of natural deduction rules RFDE for FDE consists of the above
rules for ∧ and ∨ together with:

A B
A∨B

A∨B
A

A∨B
B

A
A∧B

B
A∧B

A∧B

JAK....

C

JBK....

C
C

and the following rules for introducing and eliminating negations into and from proofs
and refutations:

A
∼A

∼A
A

A
∼A

(∼∼1) ∼A
A

(∼∼2)

5This is the way how these rules are presented in [44], though without abbreviating [A] as [A].



Hitoshi Omori and Heinrich Wansing: Varieties of Negation 317

Moreover, for the sets of natural deduction rules RK3 and RLP for K3 and LP,
respectively, we add the rule ECQ and the dilemma rule DIL, respectively, which
express a certain interaction between proofs and disproofs:

A A
B

(ECQ)

[A]....
B

JAK....
B

B
(DIL)

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+∪Γ− `+RFDE A (Σ+∪Γ− `−RFDE A)
iff for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from
Σ ′+ ∪Γ ′− in the calculus whose rule set is RFDE. In the same way, we define the
relations `+RK3, `−RK3, `+RLP, and `−RLP.

Definition 16. The set of rules Ri
FDE for FDEi, with i∈ {1, . . . ,16}, consists of all the

rules of RFDE for FDE, but the rules for ∼ are replaced by the following introduction
and elimination rules:

A
∼i A

∼i A
A

A
∼1 A

∼1 A
A

∼2 A

[A]....
B

JAK....
B

B
A
∼2 A

A
∼2 A

∼3 A A
A

A
∼3 A

JAK....
B

J∼3 AK....
B

B

∼4 A
A ∼5 A

B
∼5 A

A
A

JAK....
B

J∼5 AK....
B

B

A A ∼6 A
B

∼6 A

[A]....
B

JAK....
B

B
A

JAK....
B

J∼6 AK....
B

B
A

[A]....
B

J∼6 AK....
B

B

A ∼7 A
B

JAK....
B

J∼7 AK....
B

B
A A ∼8 A

B

[A]....
B

J∼8 AK....
B

B

JAK....
B

J∼8 AK....
B

B

∼9 A
A

∼9 A

A
A A
∼9 A

A
∼10 A

∼10 A

A

A ∼11 A

A
A ∼11 A

A

[A]....
B

JAK....
B

J∼11 AK....
B

B
A A
∼11 A

A ∼12 A

A

JAK....
B

J∼12 AK....
B

B
A
∼12 A

∼13 A
B
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A ∼14 A
B

∼14 A

A
A

[A]....
B

J∼14 AK....
B

B

A ∼15 A
B

A ∼15 A
B

[A]....
B

JAK....
B

J∼15 AK....
B

B
A ∼16 A

B

[A]....
B

J∼16 AK....
B

B

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+∪Γ− `i+
RFDE A (Σ+∪Γ− `i−

RFDE A)
iff for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from Σ ′+
∪ Γ ′− in the calculus whose rule set is Ri

FDE.

Definition 17. For i ∈ {1,2,3,4}, the set of natural deduction rules Ri
K3 for K3i

consists all the rules RK3 for K3, but the rules for ∼ are replaced by the following
rules:

A
∼i A

∼i A
A

A
∼1 A

∼1 A
A

JAK....
B

J∼2 AK....
B

B

∼3 A
B

A ∼4 A
B

[A]....
B

JAK....
B

J∼4 AK....
B

B

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+∪Γ− `i+
RK3 A (Σ+∪Γ− `i−

RK3 A) iff
for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from Σ ′+ ∪
Γ ′− in the calculus whose rule set is Ri

K3.

Definition 18. For i ∈ {1,2,3,4}, the set of rules Ri
LP for LPi comprises all the rules

RLP for LP, but the rules for ∼ are replaced by the following rules:

A
∼i A

∼i A
A

A
∼1 A

∼1 A
A ∼2 A

A ∼3 A
B

A A ∼4 A
B

[A]....
B

J∼4 AK....
B

B

Let Σ ∪Γ ∪{A} be a set of formulas. Then Σ+ ∪Γ− `i+
RLP A (Σ+ ∪Γ− `i−

RLP A)
iff for some finite Σ ′ ⊆ Σ and finite Γ ′ ⊆ Γ , there is a proof (disproof) of A from
Σ ′+∪Γ ′− in the calculus whose rule set is Ri

LP.

We show the bilateral systems to be equivalent with their unilateral counterparts.

Theorem 19. Let τ(∆−) = {∼A : A ∈ ∆−}. Then (1) Σ+ ∪Γ− `i+
RFDE A iff Σ ∪

τ(Γ−) `i
RFDE A and (2) Σ+∪Γ− `i−

RFDE A iff Σ ∪ τ(Γ−) `i
RFDE ∼A.

Proof. By induction on derivations in Ri
FDE and Ri

FDE. The cases of the rules for
introducing and eliminating conjunctions and disjunctions into and from proofs are
obvious. We present some of the remaining cases. Direction from left to right, claim
(1). By applying the definition of derivations, the induction hypothesis, and rules of
Ri

FDE, for the derivations on the left we obtain the derivations on the right:
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A A

∼9 A
A

∼2 A

[A]....
B

JAK....
B

B

∼2∼2 A
A∨∼2 A

[A]....
B

[∼2 A]....
B

B

[A]....
B

JAK....
B

J∼11 AK....
B

B

∼9∼9 A
A

A∨ (∼11 A∨∼11∼11 A)

[A]....
B

[∼11 A∨∼11∼11 A]

[∼11 A]....
B

[∼11∼11 A]....
B

B
B

Direction from left to right, claim (2). By applying the definition of derivations, the
induction hypothesis, and rules ofRi

FDE, for the first derivations we obtain the second
derivations with the same subscript:

A ∼A

A A
∼9 A

A ∼9 A
∼9∼9 A

A∧B

JAK....

C

JBK....

C
C

∼i(A∧B)
∼i A∨∼i B

[∼i A]....
∼i C

[∼i B]....
∼i C

∼i C

Direction from right to left, claim (1). By applying the definition of derivations, the
induction hypothesis, and rules of Ri

FDE, for the first derivations we obtain the second
derivations with the same subscript:

A A
∼9∼9 A

A
∼9 A

A
∼13∼13 A

B
∼13 A

B

Direction from right to left, claim (2). By applying the definition of derivations, the
induction hypothesis, and rules of Ri

FDE, for the first derivations we obtain the second
derivations with the same subscript:

∼A A
∼i A∧∼i B
∼i(A∨B)

∼i A∧∼i B
∼i A

A

∼i A∧∼i B
∼i B

B
A∨B

A ∼9 A
∼9∼9 A

A A
∼9 A /

Theorem 20. Let τ(∆−) = {∼A : A ∈ ∆−}. Then (1) Σ+ ∪Γ− `i+
RK3 A iff Σ ∪

τ(Γ−) `i
RK3 A and (2) Σ+∪Γ− `i−

RK3 A iff Σ ∪ τ(Γ−) `i
RK3 ∼A.

Proof. By induction on derivations in Ri
K3 and Ri

K3. We present only one more in-
teresting case for the direction from right to left, claim (1). By applying the definition
of derivations, the induction hypothesis, and a rule of R4

K3, for the first derivations we
obtain the second derivations with the same subscript:

A∨ (∼4 A∨∼4∼4 A)

[A]
A∨ (∼4 A∨∼4∼4 A)

JAK
∼4 A

∼4 A∨∼4∼4 A
A∨ (∼4 A∨∼4∼4 A)

J∼4 AK
∼4∼4 A

∼4 A∨∼4∼4 A
A∨ (∼4 A∨∼4∼4 A)

A∨ (∼4 A∨∼4∼4 A) /
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Theorem 21. Let τ(∆−) = {∼A : A ∈ ∆−}. Then (1) Σ+ ∪Γ− `i+
RLP A iff Σ ∪

τ(Γ−) `i
RLP A and (2) Σ+∪Γ− `i−

RLP A iff Σ ∪ τ(Γ−) `i
RLP ∼A.

Proof. By induction on derivations in Ri
LP and Ri

LP. We present only the more in-
teresting cases. Direction from left to right, claim (1). By applying the induction
hypothesis and the rule for eliminating disjunctions from proofs in Ri

LP, for the first
derivations we obtain the second derivations with the same subscript:

[A]....
B

JAK....
B

B
(DIL)

A∨∼i A

[A]....
B

[∼i A]....
B

B

Direction from right to left, claim (1). By applying rules from Ri
LP, for the first

derivations we obtain the second derivations with the same subscript:

A∨∼i A

[A]
A∨∼i A

JAK
∼i A

A∨∼i A
A∨∼i A

(DIL)

4. SOUNDNESS AND COMPLETENESS

Theorem 22 (Soundness). For all Γ ∪{A} ⊆ Form, (1) Γ `i
FDE A only if Γ �i

FDE A,
(2) Γ `i

K3 A only if Γ �i
K3 A, and (3) Γ `i

LP A only if Γ �i
LP A.

Proof. Tedious, but standard. /

For the completeness direction, we prepare some well known notions and lemmas.

Definition 23. Let Σ be a set of formulas. Then, Σ is a theory iff Σ ` A implies A∈ Σ ,
and Σ is prime iff A∨B ∈ Σ implies A ∈ Σ or B ∈ Σ .

Lemma 24 (Lindenbaum). If Σ 0 A, then there is Σ ′ ⊇ Σ such that Σ ′ 0 A and Σ ′ is
a prime theory.

We now define the canonical valuation in the usual manner.

Definition 25. For any Σ ⊆ Form, let vi
Σ from Prop to {t,b,n, f} be defined as follows:

vi
Σ (p) :=





t iff Σ `i
FDE p and Σ 0i

FDE ∼ p;
b iff Σ `i

FDE p and Σ `i
FDE ∼ p;

n iff Σ 0i
FDE p and Σ 0i

FDE ∼ p;
f iff Σ 0i

FDE p and Σ `i
FDE ∼ p.

The following lemma is the key for the completeness result.

Lemma 26. If Σ is a prime theory, then the following hold for all B ∈ Form.

vi
Σ (B) =





t iff Σ `i
FDE B and Σ 0i

FDE ∼B;
b iff Σ `i

FDE B and Σ `i
FDE ∼B;

n iff Σ 0i
FDE B and Σ 0i

FDE ∼B;
f iff Σ 0i

FDE B and Σ `i
FDE ∼B.
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Proof. Note first that it is obvious that vΣ well defined. Then the desired result is
proved by induction on the construction of B. The base case, for atomic formulas,
is obvious by the definition. For the induction step, the cases are split based on the
connectives. We will here only deal with the case for negation of FDE16.

v16
Σ (∼16 B) = t iff v16

Σ (B) = b (by the definition of v16
Σ ) iff Σ `16

FDE B and Σ `16
FDE

∼16 B (by IH) iff Σ `16
FDE ∼16 B and Σ 016

FDE ∼16∼16 B (by (∼15∼15 1) for the left-to-
right direction and (∼16∼16 2) for the other direction).

v16
Σ (∼16 B) = b iff v16

Σ (B) = f (by the definition of v16
Σ ) iff Σ 016

FDE B and Σ `16
FDE

∼16 B (by IH) iff Σ `16
FDE ∼16 B and Σ `16

FDE ∼16∼16 B (by (∼15∼15 2) for the left-to-
right direction and (∼16∼16 1) for the other direction).

v16
Σ (∼16 B) = n iff v16

Σ (B) = t (by the definition of v16
Σ ) iff Σ `16

FDE B and Σ 016
FDE

∼16 B (by IH) iff Σ 016
FDE ∼16 B and Σ 016

FDE ∼16∼16 B (by (∼16∼16 1) for the left-to-
right direction and (∼16∼16 2) for the other direction).

v16
Σ (∼16 B) = f iff v16

Σ (B) = n (by the definition of v16
Σ ) iff Σ 016

FDE B and Σ 016
FDE

∼16 B (by IH) iff Σ 016
FDE ∼16 B and Σ `16

FDE ∼16∼16 B (by (∼16∼16 2) for the left-to-
right direction and (∼16∼16 1) for the other direction).
The other cases are left to the interested readers to be written out in detail. /

For the variations of K3 and LP, we need to eliminate the values b and n, res-
pectively.

We are now ready to prove the completeness result.

Theorem 27 (Completeness). For all Γ ∪{A} ⊆ Form, (1) Γ �i
FDE A only if Γ `i

FDE
A, (2) Γ �i

K3 A only if Γ `i
K3 A, and (3) Γ �i

LP A only if Γ `i
LP A.

Proof. We only deal with the case for FDEi since other cases can be established in
the same manner. Assume Γ 0i

FDE A. Then, by Lemma 24, there is a Σ ⊇ Γ such that
Σ is a prime theory and A /∈ Σ , and by Lemma 26, a four-valued valuation vΣ can be
defined with IΣ (B)∈D for every B∈Γ and IΣ (A) /∈D. Thus it follows that Γ 2i

FDE A,
as desired. /

5. BASIC RESULTS

5.1. Negation Inconsistency and Negation Incompleteness. As one may easily ob-
serve, all variants of FDE are both paraconsistent and paracomplete, all variants of K3
are paracomplete, but not paraconsistent, and all variants of LP are paraconsistent, but
not paracomplete. However, for some of the variants, some stronger properties than
paraconsistency and paracompleteness hold. The stronger properties we have in mind
are the following.

Definition 28. A logic L is negation inconsistent if for some A, we have both B �L A
and B �L ∼A for all B. Moreover, a logic L is negation incomplete if for some A, both
A �L B and ∼A �L B for all B.

Then, we obtain the following results.

Theorem 29. LP2, LP4, FDE4, FDE8, FDE12 and FDE16 are negation inconsistent.

Proof. We prove the result by showing the specific instances of inconsistency. For
LP2, we have B �2

LP ∼2∼2 A and B �2
LP ∼2∼2∼2 A. For LP4, we have B �4

LP ∼4(A∧
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∼4 A∧∼4∼4 A) and B �4
LP ∼4∼4(A∧∼4 A∧∼4∼4 A). For FDE4, we have B �4

FDE
∼4∼4 A and B �4

FDE ∼4∼4∼4 A. For FDE8, we have B �8
FDE ∼8(A∧∼8 A∧∼8∼8 A)

and B �8
FDE ∼8∼8(A∧∼8 A∧∼8∼8 A). For FDE12, we have B �12

FDE ∼12∼12∼12 A
and B �12

FDE ∼12∼12∼12∼12 A. Finally, for FDE16, we have B �16
FDE ∼16(A∧∼16∼16

A) and B �16
FDE ∼16∼16(A∧∼16∼16 A). /

Remark 30. The other variants of FDE, K3 and LP are not negation inconsistent.
Indeed, for the variants of K3, this is obvious since they are all explosive. For the
other variants of FDE and LP, note that negation inconsistency implies that there is a
formula that receives the value b for all interpretations. But it is easy to see that this
cannot be the case with these variants. For example, the subclassical variants have the
set {t, f} being closed under all three connectives. Similar arguments by looking at
sets {t,n, f} or {n} will establish the desired results.

Theorem 31. K33, K34, FDE13, FDE14, FDE15 and FDE16 are negation incomplete.

Proof. We prove the result by showing the specific instances of incompleteness. For
K33, we have ∼3∼3 A �3

K3 B and ∼3∼3∼3 A �3
K3 B. For K34, we have ∼4∼4(A∧

∼4 A∧∼4∼4 A) �3
K3 B and∼4∼4∼4(A∧∼4 A∧∼4∼4 A) �4

K3 B. For FDE13, we have
∼13∼13 A�13

FDE B and∼13∼13∼13 A�13
FDE B. For FDE14, we have∼14∼14∼14 A�14

FDE
B and∼14∼14∼14∼14 A�14

FDE B. For FDE15, we have∼15∼15(A∧∼15 A∧∼15∼15 A)
�15

FDE B and∼15∼15∼15(A∧∼15 A∧∼15∼15 A) �15
FDE B. Finally, for FDE16, we have

∼16(A∨∼16∼16 A) �16
FDE B and ∼16∼16(A∨∼16∼16 A) �16

FDE B. /

Remark 32. The other variants of FDE, K3 and LP are not negation incomplete.
Indeed, for the variants of LP, this is obvious since they all have (LEM). For the other
variants of FDE and K3, note that negation incompleteness implies that there is a
formula that receives the value n for all interpretations. But it is easy so see that this
cannot be the case by similar considerations we sketched above for the cases with
negation inconsistency.

5.2. Functional Completeness. We now turn to show that the matrices that char-
acterize some of the contra-classical variants of FDE, K3 and LP are functionally
complete as a corollary of a general characterization of functional completeness. To
this end, we first introduce some related notions.

Definition 33 (Functional completeness). An algebra A = 〈A, f1, . . . , fn〉, is said to
be functionally complete provided that every finitary function f : Am→ A is definable
by compositions of the functions f1, . . . , fn alone. A matrix 〈A,D〉 is functionally
complete if A is functionally complete.

Definition 34 (Definitional completeness). A logic L is definitionally complete if
there exists a functionally complete matrix that is strongly adequate for L.

For the characterization of the functional completeness, the following theorem of
Jerzy Słupecki is elegant and useful. In order to state the result, we need the following
definition.

Definition 35. Let A = 〈A, f1, . . . , fn〉 be an algebra, and f be a binary operation
defined in A. Then, f is unary reducible iff for some unary operation g definable in
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A, f (x,y) = g(x) for all x,y ∈ A or f (x,y) = g(y) for all x,y ∈ A. And f is essentially
binary if f is not unary reducible.

Theorem 36 (Słupecki, [42]). A= 〈〈V, f1, . . . , fn〉,D〉 (|V| ≥ 3) is functionally com-
plete iff in 〈V, f1, . . . , fn〉 (1) all unary functions on V are definable, and (2) at least
one surjective and essentially binary function on V is definable.

Based on this elegant characterization by Słupecki, the desired result is obtained as
follows. In case of expansions of the algebra related to FDE, we can simplify even
further, as we observed in [32, Theorem 4.8].

Theorem 37. Given any expansion F of the algebra 〈{t,b,n, f},∧,∨〉 the following
(1) and (2) are equivalent: (1) F is functionally complete; (2) all of the δa’s as well
as Ca’s (a ∈ {t,b,n, f}) are definable, where δa(b) = t, if a = b, otherwise δa(b) = f;
and Ca(b) = a, for all a,b ∈ V .

Similarly, we obtain the next result for the three-element cases, where i ∈ {b,n}.
Theorem 38. Given any expansion F of the algebra 〈{t, i, f},∧,∨〉 the following (1)
and (2) are equivalent: (1) F is functionally complete; (2) all of the δa’s as well as
Ca’s (a ∈ {t, i, f}) are definable, where δa and Ca are defined as in Theorem 37.

Building on these results, we obtain the following.

Theorem 39. FDE16, K34 and LP4 are definitionally complete.

Proof. For FDE16, in view of the above theorem, it suffices to prove that all of
the δas as well as Ca’s (a ∈ {t,b,n, f}) are definable in 〈{t,b,n, f},∼16,∧,∨〉, and
this can be done as follows: δt(x) := ¬(∼16 x ∨∼16∼16 x), δb(x) := ¬(¬∼16 x ∨
∼16∼16 x), δn(x) := ¬(¬∼16∼16 x∨∼16 x), δf(x) := ¬¬(∼16 x∧∼16∼16 x), Ct(x) :=
x∨∼16∼16 x, Cb(x) :=∼16(x∧∼16∼16 x), Cn(x) :=∼16(x∨∼16∼16 x), and Cf(x) :=
x∧∼16∼16 x, where ¬x :=∼16(∼16∼16((x∧∼16 x)∧∼16(x∧∼16 x))∧ ((x∧∼16 x)∨
∼16(x∧∼16 x))).

For K34, in view of the above theorem, it suffices to prove that all of the δa’s as
well as Ca’s (a ∈ {t,n, f}) are definable in 〈{t,n, f},∼4,∧,∨〉, and this can be done as
follows: δt(x) := x∧∼4(x∧∼4∼4 x), δn(x) := ∼4∼4(x∨∼4 x), δf(x) := ∼4∼4(x∨
∼4∼4 x), Ct(x) := ∼4(x∧∼4 x∧∼4∼4 x), Cn(x) := ∼4∼4(x∧∼4 x∧∼4∼4 x), and
Cf(x) := x∧∼4 x∧∼4∼4 x.

Similarly, for LP4, in view of the above theorem, it suffices to prove that all of
the δa’s as well as Ca’s (a ∈ {t,b, f}) are definable in 〈{t,b, f},∼4,∧,∨〉, and this can
be done as follows: δt(x) := x∧∼4∼4(x∧∼4 x), δb(x) := ∼4(x∨∼4∼4 x), δf(x) :=
∼4(x∨∼4 x), Ct(x) := ∼4∼4(x∧∼4 x∧∼4∼4 x), Cb(x) := ∼4(x∧∼4 x∧∼4∼4 x),
and Cf(x) := x∧∼4 x∧∼4∼4 x. This completes the proof. /

Remark 40. Note that it is not difficult to see that other variants are not functionally
complete.

Finally, we add a brief remark on the Post completeness.

Definition 41. The logic L is Post complete iff for every formula A such that 0 A, the
extension of L by A becomes trivial, i.e., `L∪{A} B for any B.
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Theorem 42 (Tokarz, [45]). Definitionally complete logics are Post complete.

In view of Theorems 39 and 42, we obtain the following result.

Corollary 43. FDE16, K34 and LP4 are Post complete.

Remark 44. Note that the converse of Theorem 42 does not hold, i.e., there are logics
that are Post complete without being definitionally complete, such as the negation-
free fragment of classical propositional logic. Therefore, one may ask if other variants
of FDE, LP and K3 are Post complete. The answer is that in our case, none of
the variants other than FDE16, K34 and LP4 are Post complete, as observed in the
following proposition.

Proposition 45. None of the variants other than FDE16, K34 and LP4 are Post
complete.

Proof. The results hold by considering extensions by (ECQ) or (LEM). /

5.3. Variable Sharing Property and Admissibility of Contraposition. Let us now
turn our attention to two more properties that FDE is well known for enjoying, namely,
the variable sharing property and the admissibility of the rule of contraposition. We
will first deal with the variable sharing property, by recalling the definition.

Definition 46. A logic L satisfies the variable sharing property iff for all A,B∈ Form,
A `L B implies that A and B share at least one propositional variable.

Remark 47. Usually, the variable sharing property is stated with respect to the con-
ditional included in the object language, but since we do not have conditionals in the
language, we will consider the version above.6

Then, we obtain the following result.

Theorem 48. FDE1, FDE2, FDE9 and FDE10 satisfy the variable sharing property.
The other systems, including the variants of K3 and LP, do not satisfy the variable
sharing property.

Proof. Suppose A `i
FDE B (i ∈ {1,2,9,10}), but that A and B do not share any propo-

sitional variables. Then, if we consider a valuation v that assigns the value b to all
the variables in A and the value n to all the variables in B, then we obtain v(A) = b
and v(B) = n. Indeed, by a simple inductive proof, we may observe that both val-
ues b and n are closed under the set of operations {∼i,∧,∨}, where i ∈ {1,2,9,10}.
Then the above valuation is a counter-model for A `i

FDE B, an absurdity in view of our
assumption.

For the latter half, it easy to check that one of the rules of the unilateral natural
deduction system serves as a counterexample of the variable sharing property. /

Remark 49. Our result shows that there are no sub-classical variants of FDE with
the variable sharing property (VSP), but there are three other systems if we widen our
scope beyond sub-classicality.

6As a referee pointed out, there is a system with the variable sharing property in the original form, but
not in the above form. Such examples include the logic determined by the matrix M0 presented by Nuel
Belnap in [6].
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Let us now turn to the status of the rule of contraposition, which is seen as cru-
cial for the understanding of negation by, for example, the advocates of the so-called
Australian plan for negation.7 We first clarify the form of contraposition we have
in mind.

Definition 50. A logic L admits the rule of contraposition iff for all A,B ∈ Form,

(Contra) A `L B implies ∼B `L ∼A.

Then, as is well known, FDE admits the rule of contraposition. The easiest way to
see this is from the perspective of the star semantics, defined as follows.

Definition 51. A Routley interpretation is a structure 〈W,∗,v〉, where W is a set of
worlds, ∗ : W −→W is a function with w∗∗ = w, and v : W ×Prop −→ {0,1}. The
function v is extended to an assignment I of truth values for all pairs of worlds and
formulas by the conditions:
(1) I(w, p)=v(w, p), (3) I(w,A∧B)=1 iff I(w,A)=1 and I(w,B)=1,
(2) I(w,∼A)=1 iff I(w∗,A) 6= 1, (4) I(w,A∨B)=1 iff I(w,A)=1 or I(w,B)=1.

Definition 52. A formula A is a star semantic consequence of Γ (Γ �∗FDE A) iff for
all Routley interpretations 〈W,∗,v〉 and for all w ∈W , if I(w,B) = 1 for all B ∈Γ then
I(w,A) = 1.

Then, the following result is well known, due to Richard Routley and Valerie Rout-
ley (cf. [39]).8

Theorem 53 (Routley & Routley). For all Γ ∪{A} ⊆ Form, Γ `FDE A iff Γ �∗FDE A.

As a corollary, we obtain that FDE satisfies the rule of contraposition. Now, the
question is that if there are other systems within the variations we are considering
that satisfy the rule of contraposition. The answer is yes, since FDE7 also admits
(Contra), and for the purpose of establishing this result, we introduce a variation of
Routley interpretations as follows.

Definition 54. Let one-step Routley interpretation be a structure 〈W,∗,v〉 as in Rout-
ley interpretation, except that w∗∗ = w is replaced by w∗ = w∗∗.

Remark 55. One-step here means that it starts to “loop” after one application of the
star operator. We can also consider n-step Routley interpretations in general, but we
will not consider them in this paper.

Definition 56. A formula A is a one step star semantic consequence of Γ (Γ �∗1FDE A)
iff for all one step Routley interpretations 〈W,∗,v〉 and for all w ∈W , if I(w,B) = 1
for all B ∈ Γ then I(w,A) = 1.

Then, we obtain the following result.

Theorem 57. For all Γ ∪{A} ⊆ Form, Γ `7
FDE A iff Γ �∗1FDE A.

7For one of the most recent discussions on this topic, see [7; 8]. Note also that the Dunn semantics
offers the key insight for the so-called American plan for negation.

8Or, more precisely as Dunn writes in [16, p. 440], the star semantics was “actually mathematically in
1957 anticipated by A. Białynicki-Birula and H. Rasiowa, and shown equivalent by Dunn in 1966.”
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Proof. For the soundness direction, we establish the result by a straightforward ver-
ification that each rule is truth-preserving. We only deal with (∼7∼7 1) and (∼7∼7 2).
To this end, it suffices to observe that I(w,∼7 A)= 1 iff I(w∗,A) 6= 1 and that I(w,∼7∼7
A) = 1 iff I(w∗,∼7 A) 6= 1 iff I(w∗∗,A) = 1 iff I(w∗,A) = 1 (by w∗ = w∗∗), and
thus for all A ∈ Form and for all w ∈W , we obtain I(w,∼7 A∨∼7∼7 A) = 1 and
I(w,∼7 A∧∼7∼7 A) 6= 1.

For the completeness direction, we make use of the completeness result with re-
spect to the four-valued semantics (cf. Theorem 27), and establish that if Γ 27

FDE A
then Γ 2∗1FDE A. So, assume that Γ 27

FDE A. Then, there is a four-valued FDE7 inter-
pretation v0 such that v0(B) ∈ D for all B ∈ Γ , and v0(A) /∈ D. Given v0, we define a
one-step Routley interpretation as follows: W := {a,b}, a∗ = b and b∗ = b, and

v(a, p) = 1 iff v0(p) ∈ {t,b}, v(b, p) = 1 iff v0(p) ∈ {t,n}.
Then, once we show that the above condition holds for all A ∈ Form, we obtain the
desired result. That the above condition holds for all A ∈ Form can be proved by
induction on the construction of A. The base case, for atomic formulas, is obvious
by the definition. For the induction step, the cases are split based on the connectives.
Since the cases for conjunction and disjunction can be done in exactly the same way
as we do for FDE, we will focus on the case for negation, namely, the case when A is
of the form ∼7 B. Then,
(1) v(a,∼7 B) = 1 iff v(a∗,B) 6= 1 iff v(b,B) 6= 1 iff v0(B) /∈ {t,n} (by IH) iff v0(∼7 B)

= t (by the truth table) iff v0(∼7 B)∈ {t,b} (since v0(∼7 B) is never b by the truth
table).

(2) v(b,∼7 B) = 1 iff v(b∗,B) 6= 1 iff v(b,B) 6= 1 iff v0(B) /∈ {t,n} (by IH) iff v0(∼7 B)
= t (by the truth table) iff v0(∼7 B)∈ {t,n} (since v0(∼7 B) is never n by the truth
table).

This completes the proof. /

As an immediate corollary, we obtain the following.

Corollary 58. FDE7 admits (Contra).

Remark 59. Note that (Contra) is not admissible for the other systems. First, for K3
and LP, this is immediate since (ECQ) and (Contra) will establish (LEM), and (LEM)
and (Contra) will establish (ECQ). Second, for the variants of FDE that are negation
inconsistent or negation incomplete, it is not difficult to prove the desired results.
Indeed, assume (Contra) and take B to be an instance of the negation inconsistent
formula. Then, we obtain p ` B holds, and thus by (Contra), we obtain ∼B ` ∼ p.
But, since B is an instance of the negation inconsistent formula, we obtain ` ∼ p, but
this is absurd. The proof is similar for the negation incomplete case. Finally, for the
rest of systems, we show specific counterexamples.
1. For FDE2: p `2

FDE ∼2∼2 p but ∼2∼2∼2 p 02
FDE ∼2 p.

2. For FDE3: q `3
FDE ∼3 p∨∼3∼3 p but ∼3(∼3 p∨∼3∼3 p) 03

FDE ∼3 q.
3. For FDE5: q `5

FDE ∼5(p ∧ ∼5 p ∧ ∼5∼5 p) but ∼5∼5(p ∧ ∼5 p ∧ ∼5∼5 p)
05

FDE ∼5 q.
4. For FDE6: p∧∼6 p∧∼6∼6 p `6

FDE q but ∼6 q 05
FDE ∼6(p∧∼6 p∧∼6∼6 p).
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5. For FDE9: ∼9∼9 p `9
FDE p but ∼9 p 09

FDE ∼9∼9∼9 p.
6. For FDE10: ∼10 p∨∼10 q `10

FDE ∼10(p∧ q) but ∼10∼10(p∧ q) 010
FDE ∼10(∼10 p

∨∼10 q).
7. For FDE11: q `11

FDE p ∨ ∼11 p ∨ ∼11∼11 p but ∼11(p ∨ ∼11 p ∨ ∼11∼11 p)
011

FDE ∼11 q.

Remark 60. In view of the above result, none of the contra-classical variants can be
captured by the Australian plan with the local consequence relation. In other words, if
one is in deep favor of (Contra), then the contra-classical variants cannot be captured.
However, one may still work with the Australian plan, but take pointed models and
define the semantic consequence relation in terms of truth preservation at the distin-
guished point. Whether this way will allow the Australian plan advocates to capture
any of the contra-classical variants or not is an interesting question that we will leave
to interested readers.

6. REFLECTIONS: TOO MANY VARIETIES?

Given all the variants, one may conclude that there are far too many options, and
wonder about the implications of all this. This, of course, is a natural and even a
pressing question. For the purpose of addressing the question, at least partially, we
will make use of non-deterministic semantics. More specifically, we will consider
some family of negations under certain classification, put them together along the
framework of non-deterministic semantics, and explore the shared property for those
negations. Let us first recall the basic definition of non-deterministic semantics (cf.
[3] for an overview).

Definition 61. A non-deterministic matrix (Nmatrix for short) for L is a tuple M =
〈V,D,O〉, where V is a non-empty set of truth values, D is a non-empty proper subset
of V , and for every n-ary connective ∗ of L,O includes a corresponding n-ary function
∗̃ from Vn to 2V \ { /0}. We say that M is (in)finite if so is V . A legal valuation in an
Nmatrix M is a function v : Form→V that satisfies the following condition for every
n-ary connective ∗ of L and A1, . . . ,An ∈ Form:

(gHom) v(∗(A1, . . . ,An)) ∈ ∗̃(v(A1), . . . ,v(An)).

The condition (gHom) can be interpreted as a generalized homomorphism condition.

Let us now consider four kinds of non-deterministic matrices. The first one is ob-
tained by putting together the truth table for subclassical negations, with a motivation
to explore the common core of subclassical variants of FDE.

Definition 62. A four-valued subclassical FDE-Nmatrix for L is a tuple M = 〈V,D,
O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗ of L, O in-
cludes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0} as follows (we omit the
braces for sets):

A ∼̃A
t f
b t,b
n n, f
f t

A∧̃B t b n f
t t b n f
b b b f f
n n f n f
f f f f f

A∨̃B t b n f
t t t t t
b t b t b
n t t n n
f t b n f
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A four-valued subclassical FDE-valuation in a four-valued subclassical FDE-Nmatrix
M is a function v : Form→ V that satisfies (gHom). Finally, A is a four-valued sub-
classical FDE-consequence of Γ (Γ �4s A) iff for every four-valued subclassical FDE-
valuation v, if v(B) ∈ D for every B ∈ Γ then v(A) ∈ D.

The corresponding (unilateral) natural deduction system is introduced as follows.

Definition 63. The natural deduction rulesRsub
FDE for sub-FDE are all the rulesRFDE

for FDE but replacing (∼∼1) and (∼∼2) by the following rules.
∼A ∼∼A

A
(∼∼1) A

∼A∨∼∼A
(∼∼2)

Based on these, given any set Σ ∪ {A} of formulas, Σ `sub
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRsub
FDE.

Remark 64. One can also devise a bilateral natural deduction for sub-FDE replacing
(∼∼1) and (∼∼2) by the following rules to the bilateral presentation of FDE.

A ∼A
A

A

JAK....
B

J∼AK....
B

B

The further details are left for the interested readers.

Then, we may establish soundness and completeness results. The soundness is
again tedious but not difficult.

Theorem 65. For all Γ ∪{A} ⊆ Form, if Γ `sub
FDE A then Γ �4s A.

Proof. It can be shown by a straightforward verification that each rule preserves des-
ignated values. Here we only spell out the details for the validity of (∼∼1) and
(∼∼2).

Ad (∼∼1): Suppose, for reductio, that there is a four-valued subclassical FDE-
valuation v0 such that v0(∼A) ∈ D, v0(∼∼A) ∈ D, but v0(A) /∈ D. Then, the first
and the third assumption together with the Nmatrices imply that v0(A) = f, and thus
v0(∼∼A) = f. But, this is absurd in view of the second assumption.

Ad (∼∼2): Suppose, for reductio, that there is a four-valued subclassical FDE-
valuation v0 such that v0(A) ∈ D, but v0(∼A∨∼∼A) /∈ D. Then, the second as-
sumption together with the Nmatrices imply that v0(∼A) /∈D and v0(∼∼A) /∈D. By
v0(A) ∈ D and v0(∼A) /∈ D, we obtain that v0(A) = t, and thus v0(∼∼A) = t. But,
this is absurd in view of v0(∼∼A) /∈ D. /

For completeness, we prepare a definition and a lemma.

Definition 66. For any Σ ⊆ Form, let vsub
Σ from Form to {t,b,n, f} be defined as

follows:

vsub
Σ (A) :=





t iff Σ `sub
FDE A and Σ 0sub

FDE ∼A;
b iff Σ `sub

FDE A and Σ `sub
FDE ∼A;

n iff Σ 0sub
FDE A and Σ 0sub

FDE ∼A;
f iff Σ 0sub

FDE A and Σ `sub
FDE ∼A.
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Note that we are defining the canonical valuation in a different manner compared
to Definition 25, reflecting the difference of how deterministic and non-deterministic
semantics are introduced.

Lemma 67. If Σ is a prime theory, then vsub
Σ is a well-defined four-valued subclassical

FDE-valuation.

Proof. Note first that the well-definedness of vsub
Σ is obvious. Then the desired result

is proved by induction on the number n of connectives. Base case: For atomic for-
mulas, it is obvious by the definition. Induction step: We split the cases based on the
connectives. Here we only deal with ∼. If A =∼B, then we have the following cases.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `sub

FDE B and Σ 0sub
FDE ∼B f Σ 0sub

FDE ∼B and Σ `sub
FDE ∼∼B

(ii) b Σ `sub
FDE B and Σ `sub

FDE ∼B t,b Σ `sub
FDE ∼B

(iii) n Σ 0sub
FDE B and Σ 0sub

FDE ∼B n, f Σ 0sub
FDE ∼B

(iv) f Σ 0sub
FDE B and Σ `sub

FDE ∼B t Σ `sub
FDE ∼B and Σ 0sub

FDE ∼∼B

By induction hypothesis, we have the conditions for B, for cases (ii) and (iii), it is
easy to see that the conditions for A i.e., ∼B are provable. For (i) and (iv), we can use
(∼∼2) and (∼∼1), respectively. /

We are now ready to establish the completeness result.

Theorem 68. For all Γ ∪{A} ⊆ Form, if Γ �4s A then Γ `sub
FDE A.

Proof. Assume Γ 0sub
FDE A. Then, by Lemma 24, there is a Σ ⊇ Γ such that Σ is a

prime theory and A /∈ Σ , and by Lemma 67, a four-valued subclassical valuation vsub
Σ

can be defined with vsub
Σ (B) ∈D for every B ∈Γ and vsub

Σ (A) /∈D. Thus it follows that
Γ 2sub

FDE A, as desired. /

Let us now turn to the second kind of non-deterministic matrices, which is obtained
by combining the negations that produce negation inconsistency.

Definition 69. A four-valued negation inconsistent FDE-Nmatrix for L is a tuple
M = 〈V,D,O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗
of L, O includes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0}. Definition 62
gives ∧̃ and ∨̃; ∼̃ is

A t b n f
∼̃A n, f t,b f b

A four-valued negation inconsistent FDE-valuation in a four-valued negation incon-
sistent FDE-Nmatrix M is a function v : Form→ V that satisfies (gHom). Finally, A
is a four-valued negation inconsistent FDE-consequence of Γ (Γ �4b A) iff for every
four-valued negation inconsistent FDE-valuation v, if v(B) ∈ D for every B ∈ Γ then
v(A) ∈ D.

The corresponding (unilateral) natural deduction system is introduced as follows.

Definition 70. The natural deduction rules Rb
FDE for b-FDE are all the rules RFDE

for FDE but replacing (∼∼1) and (∼∼2) by the following rule.

A∨∼∼A
(∼∼)
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Based on these, given any set Σ ∪ {A} of formulas, Σ `b
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRb
FDE.

Remark 71. One can also devise a bilateral natural deduction for b-FDE by replacing
(∼∼1) and (∼∼2) by the following rule to the bilateral presentation of FDE.

[A]....
B

J∼AK....
B

B

The further details are left for the interested readers.

Then, we may establish the following result.

Theorem 72. For all Γ ∪{A} ⊆ Form, Γ `b
FDE A iff Γ �4b A.

Proof. For the soundness direction, we establish the result by a straightforward veri-
fication that each rule preserves designated values. Here we only spell out the details
for the validity of (∼∼).

Suppose, for reductio, that there is a four-valued negation inconsistent FDE-valua-
tion v0 such that v0(A∨∼∼A) /∈ D. Then, together with the Nmatrices, the assump-
tion implies that v0(A) /∈ D and v0(∼∼A) /∈ D. By v0(A) /∈ D, there are two cases. If
v0(A)= n, then v0(∼∼A)= b, which is absurd in view of v0(∼∼A) /∈D. If v0(A)= f,
then v0(∼∼A) ∈ D which is absurd in view of v0(∼∼A) /∈ D.

For the completeness direction, we need to define vb
Σ as in Definition 66 with an

obvious modification, and establish the analogue of Lemma 67. In particular, we need
to check the following.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `b

FDE B and Σ 0b
FDE ∼B n, f Σ 0b

FDE ∼B
(ii) b Σ `b

FDE B and Σ `b
FDE ∼B t,b Σ `b

FDE ∼B
(iii) n Σ 0b

FDE B and Σ 0b
FDE ∼B f Σ 0b

FDE ∼B and Σ `b
FDE ∼∼B

(iv) f Σ 0b
FDE B and Σ `b

FDE ∼B b Σ `b
FDE ∼B and Σ `b

FDE ∼∼B

By induction hypothesis, we have the conditions for B, for cases (i) and (ii), it is
easy to see that the conditions for A i.e., ∼B are provable. For (iii) and (iv), we can
use (∼∼). /

Remark 73. Note that although we combined the negations that produce negation in-
consistency, and thus named the Nmatrix including the phrase “negation inconsistent,”
it is not clear to us at the time of writing if the resulting system b-FDE is negation
inconsistent or not.

The third one now is obtained by combining the negations that produce negation
incompleteness.

Definition 74. A four-valued negation incomplete FDE-Nmatrix for L is a tuple M =
〈V,D,O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗ of L,
O includes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0}. Definition 62 gives
∧̃ and ∨̃; ∼̃ is
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A t b n f
∼̃A n t n, f t,b

A four-valued negation incomplete FDE-valuation in a four-valued negation incom-
plete FDE-Nmatrix M is a function v : Form→ V that satisfies (gHom). Finally, A
is a four-valued negation incomplete FDE-consequence of Γ (Γ �4n A) iff for every
four-valued negation inconsistent FDE-valuation v, if v(B) ∈ D for every B ∈ Γ then
v(A) ∈ D.

The corresponding (unilateral) natural deduction system is as follows.

Definition 75. The natural deduction rules Rn
FDE for n-FDE are all the rules RFDE

for FDE but replacing (∼∼1) and (∼∼2) by the following rule.

A ∼∼A
B

(∼∼)

Based on these, given any set Σ ∪ {A} of formulas, Σ `n
FDE A iff for some finite

Σ ′ ⊆ Σ , there is a derivation of A from Σ ′ in the calculus whose rule set isRn
FDE.

Remark 76. One can also devise a bilateral natural deduction for n-FDE by replacing
(∼∼1) and (∼∼2) by the following rules to the bilateral presentation of FDE.

A ∼A
B

The further details are left for the interested readers.

Then, we may establish the following result.

Theorem 77. For all Γ ∪{A} ⊆ Form, Γ `n
FDE A iff Γ �4n A.

Proof. For the soundness direction, we establish the result by a straightforward veri-
fication that each rule preserves designated values. Here we only spell out the details
for the validity of (∼∼).

Suppose, for reductio, that there is a four-valued negation inconsistent FDE-valua-
tion v0 such that v0(A)∈D and v0(∼∼A)∈D, but v0(B) /∈D. Then, the first assump-
tion together with the Nmatrices imply that v0(∼∼A) /∈ D. But this is absurd in view
of the second assumption.

For the completeness direction, we again need to define vn
Σ as in Definition 66 with

an obvious modification, and establish the analogue of Lemma 67. In particular, we
need to check the following.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `n

FDE B and Σ 0n
FDE ∼B n Σ 0n

FDE ∼B and Σ 0n
FDE ∼∼B

(ii) b Σ `n
FDE B and Σ `n

FDE ∼B t Σ `n
FDE ∼B and Σ 0n

FDE ∼∼B
(iii) n Σ 0n

FDE B and Σ 0n
FDE ∼B n, f Σ 0n

FDE ∼B
(iv) f Σ 0n

FDE B and Σ `n
FDE ∼B t,b Σ `n

FDE ∼B

By induction hypothesis, we have the conditions for B, for cases (iii) and (iv), it is
easy to see that the conditions for A i.e., ∼B are provable. For (i) and (ii), we can
use (∼∼). /



332 Hitoshi Omori and Heinrich Wansing: Varieties of Negation

Remark 78. Similarly to the case with b-FDE, although we combined the nega-
tions that produce negation incompleteness, and thus named the Nmatrix including
the phrase “negation incomplete,” it is not clear to us at the time of writing if the
resulting system n-FDE is negation incomplete or not.

Finally, let us consider the fully contra-classical kind, by combining all the contra-
classical negations.

Definition 79. A four-valued contra-classical FDE-Nmatrix for L is a tuple M =
〈V,D,O〉, where V = {t,b,n, f}, D = {t,b}, and for every n-ary connective ∗ of L,
O includes a corresponding n-ary function ∗̃ from Vn to 2V \{ /0}. Definition 62 gives
∧̃ and ∨̃; ∼̃ is A t b n f

∼̃A n, f t,b n, f t,b
A four-valued contra-classical FDE-valuation in a four-valued contra-classical FDE-
Nmatrix M is a function v : Form→ V that satisfies (gHom). Finally, A is a four-
valued contra-classical FDE-consequence of Γ (Γ �4c A) iff for every four-valued
contra-classical FDE-valuation v, if v(B) ∈ D for every B ∈ Γ then v(A) ∈ D.

The corresponding (unilateral) natural deduction system is introduced as follows.

Definition 80. The natural deduction rulesRcon
FDE for con-FDE are all the rulesRFDE

for FDE but eliminating the rules (∼∼1) and (∼∼2). Based on this, given any set
Σ ∪{A} of formulas, Σ `con

FDE A iff for some finite Σ ′ ⊆ Σ , there is a derivation of A
from Σ ′ in the calculus whose rule set isRcon

FDE.

Remark 81. One can also devise a bilateral natural deduction for con-FDE by elimi-
nating (∼∼1) and (∼∼2). The further details are left for the interested readers.

Then, we may establish the following result.

Theorem 82. For all Γ ∪{A} ⊆ Form, Γ `con
FDE A iff Γ �4c A.

Proof. For the soundness direction, we having nothing specific to do for rules solely
involving negation since we do not have any after eliminating the double negation
introduction/elimination rules.

For the completeness, we again need to define vcon
Σ as in Definition 66 with an

obvious modification, and establish the analogue of Lemma 67. In particular, we need
to check the following.

Cases vΣ (B) condition for B vΣ (A) condition for A i.e., ∼B
(i) t Σ `con

FDE B and Σ 0con
FDE ∼B n, f Σ 0con

FDE ∼B
(ii) b Σ `con

FDE B and Σ `con
FDE ∼B t,b Σ `con

FDE ∼B
(iii) n Σ 0con

FDE B and Σ 0con
FDE ∼B n, f Σ 0con

FDE ∼B
(iv) f Σ 0con

FDE B and Σ `con
FDE ∼B t,b Σ `con

FDE ∼B

By induction hypothesis, we have the conditions for B, for all the cases, and it is easy
to see that the conditions for A i.e., ∼B are provable without any additional rules. /

Remark 83. Somewhat surprisingly, the contra-classicality vanishes in the resulting
system that is obtained by combining, with the help of non-deterministic semantics,
all the contra-classical variants of FDE with respect to negation. In particular, we
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end up in a subsystem of FDE, which is obtained by removing the falsity condition
for negation. This is in sharp contrast with the case in which we combined the sub-
classical variants of FDE. Of course, if we take the combination of all variants of
FDE, both sub-classical and contra-classical, then the result will be the same as with
the case of focusing on contra-classical variants.

Remark 84. Given that the corresponding Dunn semantics will be to simply leave the
falsity condition for negation unspecified, this system can be also seen as reflecting
the position that there is nothing more to negation than expressing falsity. A similar
consideration for classical negation in the context of expansions of FDE, in which
there are again 16 candidates as explored in [9], can be found in [43].

7. CONCLUDING REMARKS

By building on the framework of Dunn semantics, we explored variants of FDE,
K3, and LP by fixing the truth condition for negation, but making changes in the fal-
sity condition. We also offered proof systems in the style of natural deduction, both in
the unilateral and in the bilateral manner, and established soundness and completeness
results for all systems. This was followed by an investigation into the basic properties
of the given variants. Our results, for the variants of FDE, are summarized in the
following table.

FDE1 FDE2 FDE3 FDE4 FDE5 FDE6 FDE7 FDE8

Subclassical X × X × X × X ×
Contra-classical × X × X × X × X
Neg. inconsistent × × × X × × × X
Neg. incomplete × × × × × × × ×
Func. complete × × × × × × × ×
Post complete × × × × × × × ×

Adm. of (Contra) X × × × × × X ×
VSP X X × × × × × ×

FDE9 FDE10 FDE11 FDE12 FDE13 FDE14 FDE15 FDE16

Subclassical × × × × × × × ×
Contra-classical X X X X X X X X
Neg. inconsistent × × × X × × × X
Neg. incomplete × × × × X X X X
Func. complete × × × × × × × X
Post complete × × × × × × × X

Adm. of (Contra) × × × × × × × ×
VSP X X × × × × × ×

This may seem to be too many variations. With that possible objection in mind, we
also explored four combinations of systems, by putting together (i) sub-classical sys-
tems, (ii) negation inconsistent systems, (iii) negation incomplete systems, and (iv)
contra-classical systems. The resulting systems are semantically described in terms of
non-deterministic semantics, and we also offered unilateral and bilateral proof systems
that are sound and complete.

Moreover, our results, for the variants of K3 and LP, are summarized in the fol-
lowing table.
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K31 K32 K33 K34 LP1 LP2 LP3 LP4

Subclassical X X × × X × X ×
Contra-classical × × X X × X × X

Negation inconsistent × × × × × X × X
Negation incomplete × × X X × × × ×

Functionally complete × × × X × × × X
Post complete × × × X × × × X

Admissibility of (Contra) × × × × × × × ×
Variable sharing property × × × × × × × ×

Unsurprisingly, the variants of K3 and LP do not enjoy the variable sharing property
and thus fail to be relevance logics. The tweaking of the falsity condition of negation
in K3 may lead to negation incomplete systems, whereas the tweaking of the falsity
condition of negation in LP may give one a negation inconsistent logic.

There are a number of different directions to pursue for further investigation. Be-
side those already mentioned in passing, we will note a few more questions. First, let
us briefly note that if one emphasizes the symmetry of truth and falsity, and make that
carry over for various properties, then among the contra-classical variations, the one
with both negation inconsistency and negation incompleteness might be seen as the
most favorable, not only satisfying one of them, and that will single out FDE16 as the
plausible variant of FDE. Given that FDE16 also enjoys the functional completeness,
the system, at least from a purely technical perspective, seems worth investigating
further.

Second, a related direction to the previous one, is to explore if we can specify fur-
ther properties, beside the very basic ones we discussed in this paper, so that each of
the variants can be singled out by different desiderata. A full answer to this prob-
lem seems to contribute substantially to our systematic understanding of both sub-
classicality and contra-classicality.

Third, given the origin of FDE as the first-degree entailment of relevance logics
R and E, we may ask, especially with those having the variable sharing property, if
there are variants of relevance logics that will have our variants as their first degree
entailment.

Fourth, our variations mainly focused on deterministic ones, and only explored
four non-deterministic ones. However, for the case with FDE, from a purely com-
binatorial perspective assuming the framework of non-deterministic semantics, there
are 81 possibilities, and we have only covered 20 of them (16 deterministic and 4 non-
deterministic cases). What can be learnt from the other 41 cases is also a problem that
seems to be worth addressing.

Finally, but not the least, we focused on a simple propositional language in this
paper, but there are a lot of motivations to expand the language both with further
propositional connectives (conditionals, modalities, etc.) as well as quantifiers. What
kind of insight we gain in these various expansions is yet another direction that is
natural and important.
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