
43

Challenges and Opportunities of Security-Aware EDA

JAKOB FELDTKELLER and PASCAL SASDRICH, Ruhr University Bochum, Germany

TIM GÜNEYSU, Ruhr University Bochum, Germany and DFKI, Cyber-Physical Systems, Germany

The foundation of every digital system is based on hardware in which security, as a core service of many appli-
cations, should be deeply embedded. Unfortunately, the knowledge of system security and efficient hardware
design is spread over different communities and, due to the complex and ever-evolving nature of hardware-
based system security, state-of-the-art security is not always implemented in state-of-the-art hardware. How-
ever, automated security-aware hardware design seems to be a promising solution to bridge the gap between
the different communities.

In this work, we systematize state-of-the-art research with respect to security-aware Electronic Design
Automation (EDA) and identify a modern security-aware EDA framework. As part of this work, we consider
threats in the form of information flow, timing and power side channels, and fault injection, which are the
fundamental building blocks of more complex hardware-based attacks. Based on the existing research, we
provide important observations and research questions to guide future research in support of modern, holistic,
and security-aware hardware design infrastructures.

CCS Concepts: • Hardware → Electronic design automation; • Security and privacy → Hardware

attacks and countermeasures;

Additional Key Words and Phrases: Hardware design, electronic design automation, computer aided design,
Information Flow Analysis, Side-Channel Analysis, Fault Injection Analysis

ACM Reference format:

Jakob Feldtkeller, Pascal Sasdrich, and Tim Güneysu. 2023. Challenges and Opportunities of Security-Aware
EDA. ACM Trans. Embedd. Comput. Syst. 22, 3, Article 43 (April 2023), 34 pages.
https://doi.org/10.1145/3576199

1 INTRODUCTION

Security of digital systems can only be achieved when restricting the systems to benign behavior
only. Ultimately, this requires limits to the possible states and transitions of the underlying hard-
ware, which in turn is configured by software. Hence, the structure and design of hardware play
a significant role in system security.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972. The work described in this paper has been supported by the German Federal Ministry
of Education and Research BMBF through the project FlexKI (01IS22086I), 6GEM (16KISK038), and VE-HEP (16KIS1345).
The work was also supported by the European Commission through the project CONVOLVE (101070374).
Authors’ addresses: J. Feldtkeller and P. Sasdrich, Ruhr University Bochum, Horst Görtz Institute for IT Security, Uni-
versitätsstraße 140, Bochum, Nordrhein-Westfalen, 44801, Germany; emails: {jakob.feldtkeller, pascal.sasdrich}@rub.de;
T. Güneysu, Ruhr University Bochum, Horst Görtz Institute for IT Security, Universitätsstraße 140, Bochum, Nordrhein-
Westfalen, 44801, Germany and DFKI, Cyber-Physical Systems, Bibliothekstraße 5, Bremen, Bremen, 28359, Germany; email:
tim.gueneysu@rub.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1539-9087/2023/04-ART43 $15.00
https://doi.org/10.1145/3576199

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-3293-4989
https://doi.org/10.1145/3576199
https://doi.org/10.1145/3576199
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576199&domain=pdf&date_stamp=2023-04-19

43:2 J. Feldtkeller et al.

Unfortunately, during the last decades, research has shown that physical properties of hardware
systems can leak sensitive information (side-channel attacks) [87, 88] or be manipulated to under-
mine security (fault injection attacks) [22, 24]. Even worse, hardware-based attacks can also be
executed from software and thus remotely [20, 79, 132]. Only recently, the aspect of hardware-
oriented security again received considerable attention with the discovery of microarchitectural

attacks [52, 58, 86, 95, 122, 131]. Those attacks exploit vulnerabilities at the microarchitectural
level to violate the security guarantees of otherwise secure software.

Once fabricated, vulnerabilities within hardware are hardly rectifiable while a single success-
ful attack may suffice to overcome all remaining security measures. Hence, hardware should be
considered as Root-of-Trust with fundamental importance in system security. Failing to do so can
have severe consequences and eliminate security measures of the entire system. As a consequence,
security must become a first-class design constraint for hardware, already considered during the
initial stages of the design cycle.

However, system and hardware security are complex and fast-evolving areas where even se-
curity experts have hard times keeping up with the pace of new developments, attacks, and
countermeasures. Hence, simple education of hardware and computer architects cannot lead to
a large-scale shift towards hardware security, as it is urgently needed by the community. As a
consequence, we see the integration of security awareness into the hardware design flow as the
most promising approach to transfer the required knowledge from security experts to hardware
architects. More specifically, we understand security-aware EDA as a framework, where transfor-
mations are already done, with security implications in mind, thus, security becoming a fourth
design constraint, alongside speed, area, and power [111]. As such, security-aware EDA provides
the opportunity to bundle security knowledge into tools that can be used to automatically test
or enhance hardware designs with state-of-the-art security features. Ideally, it provides an in-
terface between hardware designers and security experts to drive and fuel innovations within
both communities. Most importantly, it may lead to widespread adoption of security by design

methodologies.
While many EDA tools are historically grown and mostly optimize for speed, area, and power,

they hardly respect security as a fundamental design constraint, which requires a holistic view
of the system. Further, with each transformation, including pre- or post-processing for different
EDA tools, translation to other design levels, or optimization for speed, area, or power, the risk of
introducing security vulnerabilities increases. For this, current security analysis is a downstream
process in the design cycle, even though an exhaustive analysis is hardly possible at this time, and
rectification of vulnerabilities is most expensive due to complexity and analysis limitations.

Contribution: In this work, we aim at the integration of security as an integral part of the hard-
ware design flow. For this, we provide an extensive overview and systematization with respect to
state-of-the-art research in the field of security-aware EDA. Hence, we consider tools that perform
automated security analysis or design protection and their integration into the EDA context. Build-
ing upon our systematization, we summarize important observations and conclude research chal-
lenges to indicate the direction for future research. Eventually, we identify a modern and holistic
security-aware EDA framework developed around the concept of a unified Intermediate Represen-
tation (IR), i.e., a single way of representing the design internally within the entire EDA framework,
and argue for its benefits from a security perspective.

Although this is not the first proposal for the integration of security-awareness into hardware
design, e.g., [28, 62, 80, 85, 111, 140], none of those works provide an extensive review of existing
research in security-aware EDA, nor do the authors consider a hardware design framework with
unified IR based on the principle of integration. For this, we like to emphasize the high demand
for a systematic and holistic approach that we aim to provide with this work.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:3

Outline: In the following, we first provide some core concepts used throughout the paper in
Section 2. Then we give an overview and discussion of security-aware EDA tools in four different
threat domains: information flow in Section 3, timing side channels in Section 4, power side chan-
nels in Section 5, and fault injection in Section 6. In Section 7, we then discuss general observations
and directions and outline a framework for security-aware EDA before we conclude in Section 8.

2 PRELIMINARIES

We first introduce the considered adversary model and the taxonomy used throughout the paper.

2.1 Adversary Model

In this work, we consider a design process with trusted EDA tools and fabrication environments,
excluding the threat of Hardware Trojans, as those are maliciously introduced during design or
fabrication. Further and in accordance with Kerckhoff’s Principle [72], the adversary is granted full
knowledge of the design specification, structure, and layout however, excluding device internals
such as secret and sensitive data. By providing the adversary with the circuit structure the threat
of Intellectual Property (IP) Piracy is omitted, since the adversary has trivial knowledge of the IP
anyway. Nevertheless, the adversary may be able to manipulate and monitor the device physically
or virtually to target secret or sensitive data after fabrication has been completed. We emphasize
that Hardware Trojans and IP Piracy are real-world concerns when fabrication is not trusted or
the adversary has no full knowledge of the circuitry. Note that we restrict our focus in this work
to synchronous hardware devices only, as this is the most common design paradigm today.

In particular, we consider attacks based on information flow (Section 3), timing side channels
(Section 4), power side channels (Section 5), or fault injections (Section 6). Those attack vectors
are most common and well-researched while more complicated attacks often can be modeled as a
combination of these basic attack vectors.

2.2 Taxonomy

Chinnery et al. [35] divide the history of EDA tool development into the Age of Invention, the Age

of Implementation, and the Age of Integration, each with the following characteristics.

Age of Invention. During the first age, the basic algorithms for various EDA tasks are invented,
which are feasible as long as only small circuits are processed.

Age of Implementation. In the second age, abstraction methods and sophisticated data structures
are used to create advanced and efficient algorithms, to enhance scalability. Each algorithm works
independently and a complete synthesis flow consists of multiple algorithms executed one after
another.

Age of Integration. During the third age, common messaging protocols and agreed-upon semantic
design structures are used to create highly integrated EDA environments, where different tools
can interact with each other. This helps to solve complicated optimization problems, where design
decisions can have severe and unpredictable consequences later in the synthesis flow. In order to
fit into an integrated EDA environment, a tool must adhere to four design principles. First, the tool
is required to communicate with other tools through a defined interface and operate on a shared
design structure. Second, the tool should be modular, i.e., constructed out of independent parts, to
reduce side effects and facilitate reuse. Third, the tool should operate incrementally, i.e., update
local changes without the need to reprocess the entire design. And lastly, the tool should sparsely
access data to reduce the memory footprint.

In this work, we aim to categorize existing security-aware EDA tools into those three ages, to
analyze the current state of security-aware EDA, and to provide future directions for the research

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:4 J. Feldtkeller et al.

Table 1. Taxonomy for Ages of Security-Aware EDA

Taxonomy Description Aspect

A
g

e
o

f
Im

p
le

m
e
n

ta
ti

o
n

Coverage of Application Scalability

Building Block Only considers building blocks and specific kinds of logic

implementation.

Entire Design Considers full designs as combinations of building blocks.

Purpose of Application Scalability

Cryptographic Focuses on cryptographic applications only.

CPU Focuses on classical software processing entities.

General Processes arbitrary designs.

Method of Abstraction Abstraction

Libraries Usage of libraries as simple method of abstraction.

Design level Design level as simple indication for the level of abstraction.

A
g

e
o

f
In

te
g

ra
ti

o
n

Channel of Communication Interoperability

Database A dedicated database is used.

Messaging An interface and protocol definition exist.

Files Additional information are written to a file.

Annotation Additional information are written as annotations into the design

file itself.

Intermediate Representation Representation

Dedicated IR The tool uses a dedicated intermediate representation.

Modular Design Modularity

Monolithic Tool is designed as one monolithic block.

Front-/Backend Tool provides a separate frontend for translation into an internal

representation.

Modular Tool consist of separate modules that can be used individually.

Processing Locality

Incremental Local and incremental processing without reprocessing of the

entire design.

S
e
cu

ri
ty

-A
w

a
re

Security Features Scalability

Custom Defined individually for each application in subsequent sections.

Security Metric Prediction

Secure/Insecure Binary metric.

Security Levels Discrete metric with defined interpretation.

Quantitative Continues metric with space for interpretation.

community. By comparing security-aware EDA tools with best practices from the general EDA
community, we can identify obstacles that prevent a tight integration of security into the hardware
design flow. While the main drivers in traditional EDA are scalability and advances in technology,
security-aware EDA tools are additionally driven by advances in security modeling. Hence, we
expect security models to mature within a security domain during the Age of Implementation and
across security domains in the Age of Integration.

To capture the evolution of security-aware EDA tools we propose the taxonomy outlined in
Table 1. The different categories are selected in order to highlight features related to the Age of

Implementation, measuring supported complexity, and the Age of Integration, by measuring the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:5

ability for cooperation. In addition, we introduce categories to capture advances in security aware-
ness by analyzing the underlying security modeling. Traditional metrics of scale are explicitly not
considered, as those need additional interpretation. Further, we report for every tool whether it
is dynamic (using data from simulation or execution) or static, and whether it provides a security
analysis (A) or transformation (T) pass.

Within each security domain, we group the tools by the taken approach, order each group by
publication year and assign the Age of Invention to the primal tool. Subsequent tools within a
group are considered in the Age of Implementation if they extend the approach in the direction
of complexity or security awareness. To qualify for the Age of Integration a tool must follow the
above-stated design principles and hence operate on a dedicated IR, have some interface for com-
munication, and adhere to the modular and incremental design principle. The reported analysis is
based on the referenced papers, as most of the tools do not provide open-source code.

3 INFORMATION FLOW ANALYSIS

The state of a digital system is defined by the information it stores and manipulates, while the flow
of information transfers the system from one possible state to another. Hence, system security
needs to protect access to sensitive information as well as the system itself from manipulation
through information originating from potentially malicious entities. To distinguish information
in need of protection from potentially malicious information usually security classes are defined
based on source, meaning, and objective of the processed information. Hence, a security class
groups information with equal security demands (mainly in terms of security levels) and defines
the related security properties (e.g., a high-security level for cryptographic keys that should remain
secret).

While from a functional point of view, any additional flow of information within the system
is permitted as long as functional correctness is ensured, from a security perspective, informa-
tion flow must be limited to a strictly necessary minimum. In particular, as information flow can
transform the state, data, and behavior of the system untrusted, unauthorized, or unintended in-
formation flow might violate established security goals.

For this, permitted and prohibited information flow is specified by a security policy, including
definitions of security classes and the allowed information flow between them. In this regard, con-

fidentiality, and integrity are common security goals that are expressed in security policies. While
confidentiality requires only authorized access to information, thus prohibiting flows to endpoints
of less restrictive security classes (i.e., classes where a superset has access to), integrity requires
only authorized manipulation of information, thus prohibiting flows to endpoints of more restric-
tive security classes (i.e., classes that a subset are allowed to manipulate).

Given this, Information Flow Analysis (IFA) verifies the compliance of implementations with
an established security policy, through mostly manual labeling of information in accordance with
security classes while tracking and checking the flow and propagation of labels through the system.
The precision of IFA, given in terms of false positives [65], is mostly determined by the label
propagation scheme and granularity of building blocks [4]. Through isolation of system parts,
which handle information of different security classes and analysis of the interaction between
system parts, non-interference [54] ensures absence of information flows that are not explicitly
allowed by the security policy.

3.1 Domain-Specific Taxonomy

In accordance with the general taxonomy we introduce the following IFA-specific security features.
Arbitrary Security Policy is supported if the policy is not predefined or restricted by the tool.
Variable Granularity of labels allows information bundling of different sizes by a label.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:6 J. Feldtkeller et al.

Table 2. Information Flow Analysis Methods for Hardware in Literature

Symbols indicate whether the method has the property (), has the property partially (), or does not have the
property ().

Label Propagation is supported if (some) labels are inferred automatically.
Dependent Types support labels depending on variables that do not affect labeled

information.
Downgrading enables explicit ways to defined security policy violations that are accepted.

3.2 Current Research

Table 2 lists modern and state-of-the-art IFA methodologies for EDA, grouped based on methods
that add a shadow logic to the design, those that introduce a domain-specific language, those
using quantitative metrics, those that provide constructive IFA through program synthesis, and
those that use black-box analysis.

3.2.1 Shadow Logic. At runtime, security labels can be propagated dynamically in parallel to
functional information, by inserting additional shadow logic and shadow registers into the design.
This approach was first used by Gate Level Information Flow Tracking (GLIFT) [134] based on
gate-level information and a simple two-class policy with uni-directional information flow. By ob-
serving that all types of information flow have the same appearance at gate level, GLIFT tracks
all flows using the same shadow logic components, which operate on both security labels and
processed information to increase precision. The additional logic and registers can be created au-
tomatically using various algorithms with different complexity and precision trade-offs [14, 64, 65],
but in any case significantly increases the circuit size [64]. To decrease the area footprint of the
label propagation logic other methods move the shadow logic creation to the Register Transfer
Level (RTL). While Register Transfer Level Information Flow Tracking (RTLIFT) [4] uses RTL
information only, to distinguish between explicit and implicit information flows, TaintHLS also
includes information from High-Level Synthesis (HLS) to treat data path and control logic differ-
ently. In general, HLS means transferring a non-hardware-specific into a hardware-specific design

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:7

description. This includes introducing a notion of time and parallelism inherent to hardware. Both,
RTLIFT and TaintHLS, use a library of label-propagation elements for efficient logic insertion and
can assign a label to more complicated data structures than a single bit. Although GLIFT, RTLIFT,
and TaintHLS can create shadow logic from an unmodified system description at the respective
level, the specific labeling is provided at run time and is restricted to two-class policies. In general,
more complex policies are possible but only with a significant increase in complexity [63]. While
shadow logic, like all dynamic IFA, can only verify policy conformity for a specific execution, Star-
Logic [133] provides a framework to get static assurances from those methods through exhaustive
simulation. Similarly, formal theorem provers can work on formal models automatically derived
from GLIFT circuits for policy verification [108].

3.2.2 Language-Based IFA. Static IFA, as design-time analysis with respect to information flow,
allows verification against arbitrary security policies and enables early feedback in the design flow
with minimal overhead for the final design. In general, most existing approaches introduce new
security-typed Hardware Description Languages (HDLs), where variables are extended with se-
curity labels. However, this enforces the usage of a domain-specific language and might require a
more complex design to comply with a security policy statically. Caisson [94] was the first security-
typed HDL and explicitly models hardware as Finite State Machine (FSM). A designer has to pro-
vide a security label for all registers and states of the FSM, where dependent types are allowed
for states only and sharing of registers between security classes is not supported. This approach
was extended by Sapper [93], which uses the concept of shadow logic to add label propagation
and error handling to the design, to statically enforce the defined policy. SecVerilog [142], Chi-
selFlow [46, 47], and SecChisel [37] extend language-based IFA to RTL designs in general. Such
analysis at RTL is accurate, as long as the operational semantic is equal to the semantic of RTL
simulation [142]. Similar to Caisson, SecVerilog does not support label propagation. ChiselFlow
can propagate labels within a single module, and SecChisel can automatically infer all internal
labels from the labels of the top-module inputs and outputs. Similarly, ASSURE [71] operates on
a behavioral description extended with security labels to identify information flows during HLS.
This allows to remove vulnerabilities more easily and with lower costs compared to IFA at RTL.

3.2.3 Quantitative IFA. QIF-Verilog [59] introduces language-based IFA using quantitative met-
rics of information flow of a simple two-class security policy. In contrast to non-interference,
quantitative IFA [128] allows verifying that forbidden flows do not exceed a certain threshold.
QFlow [112] improves QIF-Verilog by using a more tight quantitative metric based on the Posterior
Bayes Vulnerability [2, 34] and Markov chains, however, at the cost of more restrictive assumptions
(e.g., independent inputs).

3.2.4 Program Synthesis for Constructive IFA. VeriSketch [5] also introduces a new domain-
specific language, but in contrast to other languages, uses counterexample-guided program syn-
thesis [129] to construct information flow secure logic for a not entirely defined RTL sketch.
Particularly, sketches only contain structural information provided by the designer, while
VeriSketch instantiates the concrete logic satisfying the given security policy.

3.2.5 Black-Box Analysis for IFA. Transynther [100] uses fuzzing as a popular black-box analy-
sis method to find information flows that can be exploited in a Meltdown-type manner [95]. Like
all black-box methods, Transynther requires an executable design format and is, therefore, only
applicable during later design stages. For fuzzing, new potential exploit programs are created by
reusing building blocks form existing Meltdown-type attacks, and used as input. Then the effec-
tiveness of the exploit is evaluated using a timing side channel (as discussed in Section 4). This
timing side channel requires the existence of a vulnerable cache and is used only for evaluation. As

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:8 J. Feldtkeller et al.

fuzzing is based on random choices, Transynther cannot guarantee the absence of any Meltdown-
type vulnerability.

3.3 Observations and Research Challenges

Comparing state-of-the-art research in security-aware EDA with respect to IFA, we discuss essen-
tial observations and outline possible directions for extensions and future work.

3.3.1 Security Model. We observe that IFA in EDA is a homogeneous field, where different tools
provide similar features building upon each other. We explain this by the simple and uncontrover-
sial underlying security model, i.e., non-interference.

3.3.2 Security Analysis. IFA is a well-matured field of research, and plenty of EDA tools exist
for static and dynamic analysis of hardware designs. In general, all presented methods require the
designer to specify a security policy and appropriate initial labeling of at least top-module in- and
output ports. It is unlikely that this process can be fully automated, as a deep understanding of
the system context is required and weak policies and wrong labeling can invalidate any security
assurances. Hence, the community should work with experts from other fields to find a practical
and secure way of representing security policies and initial labeling. Ideally, that information is
intelligible for designers while allowing automatic transformation into machine-readable formats.

3.3.3 Secure-Design Generation. The state of the art offers two different approaches for gen-
eration of IFA-secure hardware. Either by adding extra shadow logic to enforce a defined policy
dynamically [93] or via program synthesis [5]. The latter results in a more efficient logic but has to
overcome the problem of scalability. Even more challenging and without current support is the au-
tomatic transformation of a design with security flaws into a secure design without an additional
monitor for dynamic verification. Ideally, this allows low-level control over the resulting logic.

3.3.4 Security-Aware Optimization. Currently, no optimization passes explicitly respect the con-
straints defined by a given security policy, i.e., no information-flow-aware optimization meth-
ods. However, as the information flow is deeply embedded in the behavioral structure of the
design, most performed optimization should be fine even without special treatment. Nevertheless,
a formal analysis that could provide security guarantees is missing. This is especially important
since some optimization can violate the separation of information flow, e.g., removing redundant
structures.

3.3.5 Security-Oriented EDA Tool-Flow. The last changes to the logical structure of a design are
done during technology mapping. Hence, security guarantees need to span from the check of a
security policy to technology mapping. There is a trend towards IFA at higher levels of abstraction,
which result in more efficient methods but also requires more efforts in security-aware optimiza-
tion and transformation. A state-of-the-art EDA tool-flow loses any guarantees of the information
flow as soon as some logical transformation is performed after IFA. Hence, formal guarantees are
required but missing for the entire design flow.

3.3.6 Required Information and Modules. Tools with different complexity/precision trade-offs
collect various data during label propagation. Over-approximating methods require security labels
of circuit inputs to derive security labels of circuit outputs. In contrast, more precise methods also
consider the operation and input values themself. Besides, the abstraction level of the analysis
influences the precision. While information flow has a uniform appearance at gate level, one can
distinguish explicit (e.g., direct assignments) and implicit (e.g., indirect control of assignments)
flows at RTL and different functional units during HLS. In the context of static IFA, tools need
to propagate security labels (either directly or symbolically) and then check for policy violations

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:9

by direct label comparison or an Satisfiability Modulo Theories (SMT) solver. An SMT solver gets
as input some mathematical formula with constraints to variables and will output whether there
exists a valid solution. In that, SMT is a generalization of the satisfiability problem of Boolean
functions. Dynamic IFA tools create shadow registers for sequential circuits and shadow logic for
combinational parts. Then the concrete policy verification is done during runtime or design time
using simulation.

3.3.7 Downgrading. An interesting feature of today’s tools is downgrading, which allows cer-
tain policy violations if they are secure (e.g., information flow from key to the ciphertext in en-
cryption) and is often required to be specified explicitly by the designer. This poses the question
of automatic identification of downgrade opportunities. One way for automation is quantitative
IFA [128], where the design of meaningful metrics is challenging. Hence, we expect future tools
to explore different ways of automatic downgrading, with and without quantitative IFA.

4 TIMING SIDE-CHANNEL ANALYSIS

For correct manipulation of information, any practical system requires some notion of time, either
implicit, e.g., by order of instructions, or explicit, e.g., in terms of clock signals. However, as the pro-
cessed information determines the sequence of system transformations, the timing behavior might
be correlated. In such cases, data-depended timing variance might reveal (partial) information of
the system [87], opening a side channel to observe and infer sensitive information. In contrast
to other side channels, timing side channels are also accessible from the software layer and even
remotely.

Removing existing correlation between information and timing behavior successfully protects
against timing-side-channel attacks, however, at the cost of always taking a constant and worst-
case amount of time when processing confidential information. Hence, Timing Side-Channel Anal-
ysis (TSCA) looks for data-dependent timing variances by analyzing secret-dependent execution
paths and their timing behavior. Naturally, TSCA can be performed through IFA, as system timing
is also related to control and implicit information flow. However, adding the notion of time to IFA
requires additional timing models, while direct analysis of timing behavior is possible in low-level
design descriptions where the timing behavior is explicit.

4.1 Domain-Specific Taxonomy

In accordance with the general taxonomy we introduce the following TSCA-specific security
features.

Flow Type Discrimination supports distinguishing timing from other information flows.
Time Blocking Detection enables detection of measures that prevent timing flow

propagation.

4.2 Current Research

Table 3 lists state-of-the-art TSCA methodologies for hardware design, grouped based on methods
that rely on traditional IFA, those that add a shadow logic to trace timing flows explicitly, those
that use static IFA techniques to analyze timing directly, those that use unique program execution,
those that use timing constraints to construct constant-time hardware, and those that use black-
box analysis for TSCA.

4.2.1 Traditional IFA. As timing variances originate from information-dependent control flow,
i.e., implicit information flow, IFA is generally able to detect timing side channels but cannot dis-
criminate between functional and timing-based flows [134]. As a result, a timing model is used,
assuming that any secret-dependent implicit information flow results in timing leakage. This

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:10 J. Feldtkeller et al.

Table 3. Timing Side-Channel Analysis Methods for Hardware in Literature

Symbols indicate whether the method has the property (), has the property partially () or does not have the
property (). An entry with *, indicates that the method uses the reduction to the indicated design level.

approach allows traditional IFA methods (listed in Table 2) to ensure timing-sensitive non-

interference. Oberg et al. use different pairs of input traces to conclude the absence of functional
information flow through system simulation and report a timing flow if traditional IFA still reports
an existing flow [103, 104]. Hence, the tool can identify timing flows in the absence of functional
flows but cannot distinguish between them if both coexist.

4.2.2 Shadow Logic. The idea of shadow logic, i.e., a parallel logic dedicated to information
flow tracking, can also be applied to track timing flows explicitly. Clepsydra [3] identifies timing
variances through register updates that are controlled by sensitive signals and traces their flow
through the system by introducing a dedicated shadow logic. The tool stops the propagation of
timing flows when a register fully controlled by non-sensitive signals is reached. VeriSketch [5]
extends this approach to create functional logic providing timing-sensitive non-interference out of
not entirely specified RTL sketches, using program synthesis. Qin et al. provide another extension
of the idea by directly forwarding the number of cycles required to compute a value through
the shadow logic [109]. Thereby, registers increase the value propagating through the shadow
logic while combinatorial logic forwards those values and selects the most significant. Naturally,
addition of shadow logic adds some overhead in terms of area and power consumption. Hence,
this method is of limited use for constrained devices.

4.2.3 Static TSCA. Like shadow logic for dynamic timing analysis, techniques inspired by static
IFA can also be used to do static analysis of the system timing behavior. The first approach in
this direction was Iodine [53], which marks wires and registers as live whenever their value is

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:11

determined by the current cycle. Then, widely adopted formal verification tools for assertion check-
ing are used to verify that all possible executions, under specified assumptions, run in constant
time. Similarly, PASCAL [89] enumerates all possible paths from a sensitive variable to an output
and uses formal methods to check that all paths are balanced. If paths are unbalanced, PASCAL
proposes to add a cycle counter for affected registers. XENON [78] uses the analysis technique of
Iodine and extends it in two ways. First, it enhances scalability by analyzing the timing behavior
for each submodule individually and concludes the overall timing behavior based on the results.
Second, it improves usability by providing counterexamples and suggestions for variables that
could be labeled non-sensitive when XENON fails to prove constant-time security. In general, the
use of formal methods is limited in the design size they can handle, making those approaches hard
to scale.

4.2.4 Unique Program Execution. For some systems, it is sufficient to ensure that executed soft-
ware always observes constant-time behavior. Unique Program Execution Checking (UPEC) [41]
formally verifies that the content of a secret memory location is not able to alter the observation
at the architectural level (defined by the Instruction Set Architecture (ISA)) of the processor in
a given time window or provides a counterexample. For efficiency, the tool also reports timing
differences at the microarchitectural level (not observable by software), as those are always a
precondition of observable leakage. The separation of microarchitectural and architectural state
variables in the input RTL design has to be specified by the user. Internally, interval property
checking, which is a type of bounded model checking, is used in combination with appropriate
constraints. Fadiheh et al. [40] extend this method for more complex scenarios by transforming
UPEC to a trace property and adding some more constraints, without restricting generality. Specif-
ically, this allows the analysis of out-of-order execution. The analysis based on unique program
execution is specific to the analyzed software and does not provide any general guarantees.

4.2.5 Timing Constraints. During HLS a scheduler is used to assign operations to specific
clock cycles. Peter and Givargis add additional constraints to this scheduler to balance execution
time [105], resulting in additional idle states for short basic blocks of the Control-Flow Graph (CFG).
ASSURE [71] extends this approach by creating two different controller FSMs, i.e., state machines
that control the behavior of the circuit, distinguishing outputs observable by authorized and unau-
thorized entities. While outputs observable by unauthorized entities are forced to be constant in
time, other outputs may have a variable-time behavior, and responsibilities are delegated to subse-
quent processes handling this data.

4.2.6 Black-Box Analysis for TSCA. In later design stages an executable model of the design
is usually available, making black-box analysis methods viable options. A simple analysis for
contention-based timing side channels of multi-scalar or hyper-threading processors is Covert
Shotgun [48], which uses a brute-force-like method to compare the execution time of different
instruction pairs. This approach was refined by ABSynth [57], which first creates a leakage map of
different instruction pairs at the target hardware and then uses an evolutionary search algorithm
to find the best attack code for a given victim software. As for Covert Shotgun, contention-based
timing side channels can be detected only. A similar approach is implemented by the fuzzing-
based tool Osiris [139], which is able to find timing side channels, which are not based on resource
contention. For this, a machine-readable ISA definition is utilized to create an attack sequence
consisting of a reset, a trigger, and a measurement instruction. Afterwards, the attack sequence is
executed with and without the trigger instruction, while the execution time is measured. If a timing
difference is detected, the side channels are validated and clustered based on heuristics. However,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:12 J. Feldtkeller et al.

as no design internals are used, these methods can not report any root causes for existing timing
vulnerabilities.

4.3 Observations and Research Challenges

Comparing state-of-the-art research in security-aware EDA with respect to TSCA, we discuss es-
sential observations and outline possible directions for extensions and future work.

4.3.1 Security Model. As in the domain of IFA, there is a simple and clear security model for
TSCA, namely constant-time execution. This results in tools with similar features even as different
approaches are explored. Due to the similarity with general IFA, most methods seem to be inspired
by methods from this domain.

4.3.2 Security Analysis. Similar to IFA, the analysis of timing side channels is a well-matured
field with approaches doing IFA and approaches specifically tailored to TSCA. For the identification
of timing side-channels, it is sufficient to analyze the behavior of registers. While only unbalanced
register updates, i.e., a register update that is optional and depends on a (sensitive) control signal,
can cause timing leakage, registers that are fully controlled by (non-sensitive) signals block the
propagation of timing variances [3]. Hence, RTL is the natural abstraction for analysis passes.
However, current analysis methods are limited to designs with a single clock domain. Hence,
a natural and interesting extension are methods that consider multiple clock signals and their
interaction.

4.3.3 Secure-Design Generation. The construction of TSCA-secure logic follows three differ-
ent approaches: (i) the construction of additional logic to balance the timing behavior of different
paths [89], (ii) the construction of secure logic using program synthesis [5], and (iii) the construc-
tion of secure logic during HLS [71, 105]. Especially the last approach is simple and efficient, as
timing is introduced during HLS via a scheduler by construction and analysis of a CFG. Again, an
interesting extension of existing methods is the generation of designs with multiple clock domains.

4.3.4 Security-Aware Optimization. For functional correctness, retiming optimization, i.e., mov-
ing logical gates across register boundaries within modules, is usually viable as long as timing
behavior at module boundaries remains intact [125]. Depending on the adversarial observation
or manipulation capabilities, such optimization might introduce subtle but exploitable timing vari-
ances. Otherwise, optimization techniques trivially maintain established timing properties at cycle
granularity and require no additional consideration.

4.3.5 Security-Oriented EDA Tool-Flow. As transformation and optimization are viable in the
context of TSCA, with the only exception being retiming, a complete tool flow can be constructed
from existing EDA tools with disabled retiming.

4.3.6 Required Information and Modules. Most presented methods discriminate between tim-
ing variances caused by sensitive or non-sensitive information and, thus, require some prior IFA
with variable labeling. Afterwards, we divide TSCA into detecting sources of timing variances and
the propagation of existing flows with integrated detection of timing flow blocking. In an addi-
tional step, formal verification methods guarantee the absence of timing side channels at arbitrary
execution.

5 POWER-SIDE-CHANNEL ANALYSIS

Other physical characteristics than timing can also correlate with the processed information
and hence form a side channel. In general, Side-Channel Analysis (SCA) exploits such secret-
dependent leakage of physical systems by observing a physical source that correlates with

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:13

sensitive internal information [49, 67, 87, 88]. In this section, we focus on Power-Side-Channel
Analysis (PSCA) as the most prominent and well-studied example of SCA. A similar survey of
tools for side-channel evaluation is given by Buhan et al. [25]. However, while they focus on tools
for leakage assessment of mostly software-executing systems, we survey tools for analysis and
transformation within an EDA tool-flow.

Over time, many PSCA countermeasures have been presented, where Boolean masking (based
on secret sharing) is the most promising approach due to its formal and sound security founda-
tion [33]. Unfortunately, due to design flaws, inaccurate models, or violated assumptions, many
proposals were insecure and had to be withdrawn. As a consequence, research started to focus
on the development of more accurate formal models for adversaries, security notions, and physi-
cal execution environments to facilitate the formal verification of countermeasures, designs, and
implementations [11–13, 31, 38, 42, 69].

5.1 Domain-Specific Taxonomy

In accordance with the general taxonomy we introduce the following PSCA-specific security
features.

Uniform Sharing ensures that valid sharings for each unshared value occur equiprobable.
Physical Defaults considers and models the presence of unintentional physical effects such as

Glitches, Transitions, and Cross-Talk.
Composability analyzes or uses the ability to compose masked gadgets securely through Non-

Interference (NI) [11], Strong Non-Interference (SNI) [12], or Probe-Isolating Non-Interference

(PINI) [31].

5.2 Current Research

Table 4 lists modern and state-of-the-art PSCA research on security-aware EDA, grouped based
on the analysis and construction methods that target rather specific countermeasures, those that
do probing-security analysis, those that provide composition-based probing security, those based
on leakage analysis, and those based on power simulation.

5.2.1 Specific Countermeasures. Among the candidates in Table 4, VerMI [6] is a limited case as
the tool only focuses on verification of Boolean masking in terms of Threshold Implementations
(TIs) and their fundamental properties non-completeness and uniformity. Further, uniformity is
checked through simulation, hence, limited by circuit complexity and number of primary inputs.

5.2.2 Probing Security. The candidates for probing security perform analysis of masked circuits
against the commonly used, simple, and abstractd-probing model. In this model, an adversary gets
access to a circuit that can be executed multiple times, while prior to each invocation, the adversary
selects up to d wires of which the carried values are leaked on execution. As a seminal work, RE-
BECCA [23] verifies masked circuits based on the estimation of Fourier coefficients, which allows
characterization of statistical dependencies between gates and inputs and can predict potential
leakage. In contrast to this, maskVerif [10] uses a more efficient language-based probabilistic IFA
but can result in false negatives due to overly conservative transformations. Besides improved per-
formance, the latest version of maskVerif supports a wider range of security notions, including
verification of NI and SNI properties for masked gadgets. As an alternative solution, SILVER [83] is
based on Reduced Ordered Binary Decision Diagrams (ROBDDs) to verify d-probing security, NI,
SNI, PINI, and uniformity of a masked gadget checking statistical independence of binary random
variables. VRAPS [16] adapted the random probing model asd-probing model extension to capture
leakages from multiple successive manipulations of the same sensitive information. Most recently,
IronMask [19] used arithmetic characterization and Gaussian elimination to significantly speed

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:14 J. Feldtkeller et al.

Table 4. Power-Side-Channel Analysis Methods for Hardware in Literature

Symbols indicate whether the method has the property (), has the property partially (), or does not have the property ().

up the verification of arithmetic gadgets in the d-probing and random probing model. Another
approach to speed up checks for probing security is taken by PROLEAD [101], which does not
perform a rigorous formal verification but instead uses a statistical independence test (G-Test [98])
to check for the independence of secrets and probed values. Here the confidence level, i.e., the
probability of false negatives, can be adjusted to the needs of the user and controls the number
of performed simulations. In general, a higher confidence level requires more time and provides
a higher assurance, nevertheless without providing proof of security. The reason is that it cannot
be guaranteed that all possible test vectors are indeed tested.

5.2.3 Composition-Based Probing Security. The tools tightPROVE [17] and tightPROVE+ [18]
analyze a circuit, assuming securely implemented AND, XOR, NOT, and special share-refreshing REF
gadgets (for masking, refreshing random masks is required to prevent leakage from dependencies
between intermediate values). Given this, verification of the composition of such gates eventu-
ally either results in a security proof for the d-probing model or discovers a security flaw, which
directly relates to a successful set of probes. However, as share-refreshing at carefully selected po-
sitions in the circuit can fix the security flaws, TORNADO [18] can produce secure masked bit-slice

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:15

implementations in order to achieve the desired level of d-probing security. Similarly, the
fullVerif verification framework [29] analyzes correct implementation of masked implemen-
tations based on the composition of glitch-robust and trivially composable gadgets (under the
PINI security notion). Generating a hierarchy-preserving, pre-synthesized netlist composed of the
masked gadgets, the tool extracts the data-flow graph through simulation and verifies it for secure
composition (based on internal annotation propagation and composition rules). Based on Mealy
machines [99], AGEMA [82] generates masked circuits out of arbitrary unprotected netlists. Lever-
aging IFA only the required part of the circuit is masked using a variety of PINI gadgets [29, 81, 84].
One step further goes SAIREDA [44], which optimizes the amount of randomness used for mask-
refreshing after achieving side-channel security via gadget insertion. Specifically, the tool groups
gadgets into different clusters such that gadgets within a cluster can share randomness while main-
taining probing security. However, this process does not include the evaluation and verification
of the masked gadgets, which still has to rely on additional checks using one of the direct probing

security verification tools in Table 4.

5.2.4 Leakage Analysis. Due to missing physical and layout information, verification of secu-
rity on HDL representations follows the approach of leakage simulation and assessment. For this,
designs are simulated under various inputs and leakage is modeled through a leakage function and
operation noise. For this, the AMASIVE [66, 143] framework uses graph-based circuit modeling in
combination with Hamming-weight and Hamming-distance power models for leakage prediction
while security analysis is performed using a correlation-based distinguisher. In contrast to this,
RTL-PSC [60] uses simulation-based generation of the switching activity information to estimate
the power leakage distribution. Eventually, using the Kullback-Leibler divergence and success rate
based on the estimated power-leakage distribution, vulnerable design blocks are identified and re-
ported. Later, RTL-PAT [107] optimized this approach using state-of-the-art RTL simulation result-
ing in Value Change Dump (VCD) files, making the evaluation faster and the tool more modular.
Recently, FORTIFY [90] proposed an analytic way of leakage estimation based on IFA and condi-
tional probabilities between intermediate values and secrets. However, for efficient analysis, FOR-
TIFY assumes that all input signals to a logical gate are independent of each other, which is usually
not true in reality. Hence, the resulting leakage assessment must be seen as an approximation.

5.2.5 Power Simulation. At lower levels, power simulation can be performed to locate the
source of power side-channel leakage [75]. In this regard, Karna [141] divides a circuit with place-
ment information into regions and evaluates the security of each region based on a Test Vector
Leakage Assessment (TVLA) [55] with simulated power traces. For regions where the leakage sur-
passes a specified threshold the leakage is reduced by reconfiguring the affected gates with respect
to Vdd , Vt , and size . Similarly, PACA [141] determines occurring leakage by power simulation in
combination with a specific leakage model (e.g., Hamming-weight). Then the correlation between
the toggle count of a single gate and the occurring leakage is computed to identify the gates that
contribute most to the leakage. ACA [77] extends PACA by using non-specific TVLA instead of
a specific leakage model and increases efficiency by averaging the simulation values within spec-
ified time windows, as proposed by Kiaei et al. [76]. Building upon the vulnerability ranking of
individual gates, PathFinder [96] identifies leaking paths by clustering vulnerable gates from the
same computation path using static graph analysis. Afterwards, the vulnerable parts are protected
by a combination of masking and random pre-charging. Similar to the presented techniques for
power simulation, there also exists preliminary work for pre-silicon evaluation in the context of
EM side channels [137], however, not yet in a fully automatic way. The effectivity of methods in
this category is normally analyzed empirically, without formal models.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:16 J. Feldtkeller et al.

5.3 Observations and Research Questions

Comparing state-of-the-art research in security-aware EDA with respect to PSCA, we discuss es-
sential observations and outline possible directions for extensions and future work.

5.3.1 Security Model. Endeavoring a comprehensive analysis of cryptographic implementa-
tions most methods employ a variant of the probing adversary model to prove the absence of
side-channel leakage. Despite being of simple and tangible nature, this model limits the analysis
to atomic building blocks due to an exponential increase in complexity with each additional probe.
This motivates auxiliary properties, used to verify entire designs through a composition of secure
building blocks. Other methods model side-channel leakage as correlated to some function of in-
termediate values (e.g., Hamming weight or distance). While often fast and easy to evaluate, this
approach is rather attack specific and captures only parts of existing leakage.

5.3.2 Security Analysis. The analysis and verification of security for PSCA are challenging for
scalability, both in design complexity and security order. A significant speed-up is achieved by
reducing the analysis to gadgets of a specific form or verifying the secure composition of abstract
gadgets. However, this lacks the ability of general analysis and, thus, imposes some overhead only
for the sake of verification. In addition, identification and detection of (power) side channels are
challenging tasks at design time due to their inherent physical character and uncertain manifesta-
tion. For this, accurate modeling of leakage behavior requires detailed information on the physical
implementation and execution environment, which only becomes available at lower levels such
as RTL and gate-level. As long as the information is not available with sufficient accuracy, hypo-
thetical power and leakage models are considered. For this, all presented approaches are located at
RTL or gate-level and consider dedicated adversary, leakage, or power models. Please note there is
extensive research on evaluation of side-channel security after fabrication (e.g., [8, 50, 97]). While
valuable, they are not part of the EDA landscape, and we leave their discussion here.

5.3.3 Secure-Design Generation. The construction of provable secure circuits in the abstract
probing model is well established via the composition of secure gadgets [18, 82]. While simple,
this approach suffers from a local, unnecessary overhead to achieve global security in the context
of PSCA. This directly poses the question of other constructive methods based on masking that are
more efficient than the composition of gadgets. constructive methods based on hiding are much
more efficient [127] however validated experimentally only. An important direction for future
research is the generation of circuits that account for leakage from transitions (switching activity
between clock cycles) into account. Preliminary work in this direction was done by Cassiers and
Standaert [32], however, without tool support.

5.3.4 Security-Aware Optimization. There exist some work in the reduction of required gadgets
(e.g., [17, 18, 29]) that has influenced the existing methods for secure-design generation. Other
works optimize the randomness consumption of masked software implementations [15, 30, 36, 43,
56, 68, 138]. Nevertheless, we do not cover those works here as the transformation to hardware is
not always trivial, and they do not offer automatic optimization passes (except for SAIREDA [44]).
In general, the glitch-extended probing model [42] has to be considered for hardware. In this model,
the adversary gains insights into the values at the last synchronization point, i.e., the last depen-
dent register stage. Therefore, the implemented function does not impact the leakage and opti-
mization that respects register boundaries (hence, without retiming) preserve established security
properties.

5.3.5 Security-Oriented EDA Tool-Flow. While logic transformations between register stages
do not affect the glitch-robust probing security, other low-level design decisions have an impact.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:17

For example, the routing impacts the occurring cross-talk, and the power network links differ-
ent sources of leakage together. However, state-of-the-art PSCA tools do not consider such low-
level effects. Hence, this points to a promising and imperative line of research for a complete
PSCA-aware design flow. Research in this direction will likely uncover a mismatch between the-
ory and practice as not all sources of leakage, e.g., power networks and static leakage, are covered
by current leakage models.

5.3.6 Required Information and Modules. Formal verification of probing security and secure
composition of gadgets requires a pre-processing step, identifying the information flow of secret
data within the circuit. Further, verification of secure composition first requires the verification
of gadgets, ideally supporting compartmentalization of tasks and responsibilities. Experience has
shown that security does not stop at design or implementation boundaries but requires a holistic
view of the system and its environment. Although security should be constructed and evaluated
in a bottom-up approach, ensuring solid and sound foundations, extension to higher levels of
abstraction is indispensable.

6 FAULT INJECTION ANALYSIS

Correct operation of a system is only guaranteed under well-defined conditions, while any exe-
cution outside the specified conditions might result in undefined behavior and a corrupted sys-
tem state. In this regard, security mechanisms are no exception, and any event outside specified
boundaries is considered a fault and might affect system security properties. For this, malicious
fault injection can lead to security violations, e.g., breach of integrity, leakage of cryptographic
keys [22, 24], or the disabling of security mechanisms.

The different nature of faults requires dynamic handling at runtime, either by detecting or cor-
recting any occurring fault. While fault correction is self-sufficient, countermeasures based on
detection need to handle faults appropriately, either by aborting or rendering the system behav-
ior useless for an adversary (infection). This runtime requirement enforces some overhead in the
actual implementation, mostly due to redundancy based on information, area, or time. However,
even as error handling can not be done statically, a given system can be analized for its suscepti-
bility against fault injection statically. Hence, one major objective of Fault Injection Analysis (FIA)
is to distinguish faults that might result in an exploitable behavior and those that just lead to a
system error.

6.1 Domain-Specific Taxonomy

In accordance with the general taxonomy we introduce the following FIA-specific security
features.

Fault Model allows the attacker to fix (stuck-at) or change (bit flip) the value of a bit.
Location distinguishes between gate-input and gate-output fault locations.
Distribution describes faults that occur uniformly (randomly) or have a bias.
Quantity allows univariate (single) or multivariate (multiple) fault injections.
Attack Specific methods have narrow applicability.
Countermeasures can be analyzed for sufficiency under some considered fault attacks.
Mechanism distinguishes error detection, error correction, and infection countermeasures.
Redundancy uses information (codes), area (parallelism), or timing (repetition) to detect or

correct faults.

6.2 Current Research

Table 5 (generic taxonomy) and Table 6 (domain-specific taxonomy) list state-of-the-art FIA
methodologies for hardware design, grouped based on the methods handling rather specific fault

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:18 J. Feldtkeller et al.

Table 5. Fault Injection Analysis Methods for Hardware in Literature (General Taxonomy)

Symbols indicate whether the method has the property (), has the property partially (), or does not have
the property (). An entry with * indicates that the method uses the reduction to the indicated level.

Table 6. Fault Injection Analysis Methods for Hardware in Literature
(Domain-specific Taxonomy)

Symbols indicate whether the method has the property (), has the property
partially (), or does not have the property ().

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:19

models, those that generate algebraic equations for analysis, those that analyze a high-level cipher
specification, those based on fault simulation, those based on symbolic fault injection, and those
that use property-driven synthesis.

6.2.1 Specific Fault Models. An Attacker can use fault injection to manipulate an FSM to pro-
voke the transition to a sensitive state. This scenario can be analyzed by AVFSM [102]. During
synthesis, and in particular design optimization, some don’t care states and transitions might be
added to an FSM. An attacker can inject a fault that transfers the FSM to such a don’t care state,
which in turn has a transition to a sensitive state. Since don’t care states do not exist at the RTL,
AVFSM takes a gate level description and generates the associated FSM with don’t care states, to
analyze it further.

6.2.2 Algebraic Equation Generation. A more general type of fault attack is Algebraic Fault At-
tack (AFA), where algebraic cryptanalysis is enhanced by additional equations obtained through
faults. AutoFault [26] was the first to automatically generate the necessary algebraic equations
from a hardware description based on Tseitin transformations [135]. Gay et al. extended this ap-
proach to a multivariate fault setting [51].

6.2.3 High-Level Cipher Specification. Most existing fault injection attacks target specific cryp-
tographic systems and exploit mathematical properties. As this information is already available
at a high-level cipher description, an analysis at this level can guide the selection and integration
of countermeasures. Such analysis is done in XFC [74], which uses IFA techniques to trace the
propagation of specified faults through a block cipher, find potential key distinguishers for Differ-
ential Fault Analysis (DFA), i.e., differentials between correct and faulty intermediate states, and
ultimately provide the attack complexity for a given fault location. A similar analysis is done in
DFARPA [73] where the outcome is used to inform the placement of registers, to make coarse-
grain faults less exploitable, and insert watchdog ring oscillators, to detect more focused fault
injections. SAFARI [117] leverages XFC to generate a DFA-secure hardware description automati-
cally. Thereby, appropriate countermeasures are selected based on the vulnerable locations and the
corresponding attack complexity as reported by XFC. Then the cipher description is altered accord-
ingly. Afterwards, the countermeasure-enhanced specification is synthesized to RTL. SOLOMON
[130] also extends XFC by mapping the reported vulnerable locations from the high-level cipher
description to a specific hardware implementation at RTL or gate level.

6.2.4 Simulation-Based FIA. By simulation of both the correct and faulty behavior of a system,
valuable insights about possible attacks and the effectiveness of countermeasures can be drawn.
Such simulation is used by ExpFault [119] to find potential key distinguishers for DFA, using tech-
niques from data mining. A mathematical description of the implemented cipher is then used to
estimate the complexity of the related attack. A more general approach takes VerFI [7] by providing
the means for simulation based on a wide variety of fault models. The tool can evaluate the effec-
tiveness of countermeasures by reporting detected, undetected, and ineffective faults, however
human expertise is required for setup and evaluation. SoFI [137] uses executable security proper-
ties to directly identify exploitable faults, making the evaluation more comprehensive, however,
at the cost of a more complex setup phase due to the necessity to generate appropriate security
properties.

6.2.5 Symbolic FIA. Formal guarantees with respect to fault injection can be given by creat-
ing a system model that incorporates information from both correct and faulty execution for all
possible inputs. FIVER [116] generates such a model based on ROBDDs as an efficient means for
symbolic simulation. In particular, a ROBDD is created, such that a satisfying assignment of the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:20 J. Feldtkeller et al.

ROBDD yields a successful fault injection by generating the XOR ROBDD of the correct and faulty
ROBDD. Thereby, the faulty ROBDD is generated by replacing the Boolean functions of internal
gates with other Boolean functions according to a fault model [115]. In the end, a simple evaluation
provides the number of effective, ineffective, and detected faults, where the designer has to mark
the detection flag of detection-based mechanisms.

6.2.6 Property-Driven Synthesis. Some fault attacks, i.e., Fault Sensitivity Analysis (FSA), use
timing differences at gate granularity, e.g., by providing a higher clock frequency, to obtain sensi-
tive information statistically. Eldib et al. [39] propose inductive synthesis for finding a netlist such
that the gate level timing behavior is independent of any sensitive signal. However, since inductive
synthesis scales poorly with large designs, the authors use a divide-and-conquer approach to di-
vide the system into smaller entities that are handled separately. In a different matter, redundancy
in area suffers from the fact that the same fault in all redundant parts is very likely when all of
them are confronted with the same stress level during the fault injection, impeding the capability
for fault detection/correction. Avatar [118] strengthens two-times area redundancy by choosing
different gate variants (different in terms of size, supply voltage, and threshold voltage) for the
two redundant parts, building upon the observation that fault susceptibility is correlated to the de-
lay properties of the chosen gate implementation. In this, the approach has some similarity with
Karna [127] (cf., Section 5.2). By choosing one fast and one slow implementation, for the dupli-
cation, Avatar increases the difference in fault behavior in the redundant parts without changing
the actual logic. However, a fast implementation increases the power consumption, while a slow
variant decreases the operational frequency. For that, Avatar tries to fulfill user-specified power
and delay constraints, providing the option to trade security and performance. Currently, it is an
open question how to extend this approach to more than two-times redundancy.

6.3 Observations and Research Challenges

Comparing state-of-the-art research in security-aware EDA with respect to FIA, we discuss essen-
tial observations and outline possible directions for extensions and future work.

6.3.1 Security Model. In contrast to other domains, FIA has not yet a precise security model
and finding one is complicated through the vast amount of possible faults. Therefore, we see many
different approaches and features in FIA tools for security-aware EDA and a manual specification
of specific security properties is required.

6.3.2 Security Analysis. There exist different approaches for analysis in the context of FIA, both
general and specific to attack types. In absence of a clear criterion that distinguishes secure from in-
secure designs (c.f., simulation as proof technique in the context of PSCA), the general approaches
analyze the occurrence and propagation of effective faults, i.e., values that are different from a fault-
free execution with the same input. On the downside, this results in an exponential increase of the
analysis complexity for the number of injected faults, prohibiting the analysis of large designs.
Hence, clear criteria and more efficient methods are required. For specific attacks the security
criteria are better understood. Thus, fault analysis is much more direct and efficient.

6.3.3 Secure-Design Generation. Existing tools can harden circuits against specific fault attacks,
i.e., DFA [73, 117] or clock glitching [39]. General protection is trivially achieved by repetition with
error detection/correction at the end, optionally hardened with different fault susceptibility [118].
Again, due to the missing criteria for security, more efficient countermeasures against general fault
attacks are more complex to apply automatically. Besides, Table 5 clearly shows that none of the
existing methods provide an automatic implementation of error correction capabilities. However,
recent research in error-correcting countermeasures shows a path towards integration into an

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:21

automatic hardware design flow, e.g., [123]. Also, no methods supports the implementation of
temporal redundancy. However, as a system transformation for temporal redundancy requires
significant changes to the controller FSM and changes to the timing behavior of the system, this
is rather expected. Nevertheless, we assume that an automatic implementation is possible starting
at a system-level description (using HLS), providing a reasonable alternative for area-restricted
applications.

6.3.4 Security-Aware Optimization. Today, no tools consider logic optimization in the context
of FIA. However, in this context, it is especially vital as protection against fault injection usually
uses some redundancy, which optimization techniques try to overcome. Luckily, the introduced
redundancy is not always detectable by simple optimization processes. Nevertheless, a thorough
analysis is required to provide strong guarantees.

6.3.5 Security-Oriented EDA Tool-Flow. For FIA, there are open questions in all areas of the
EDA tool-flow. Especially the automatic implementation of generic protection mechanisms and
subsequent security-aware transformations are currently missing. However, the entire flow has to
be considered, as the logical implementation, the chosen technology and configuration, and the
placement of logic impact the susceptibility against faults.

6.3.6 Required Information and Modules. Nearly all presented methods require the designer
to specify the concrete fault model, i.e., the location and fault type under consideration, due to
the enormous large set of possibilities. Hence, considerable human expertise is required to re-
ceive meaningful results, even when, in reality, only a few faults are exploitable. An efficient
method for discarding harmless faults could enable tools more feasible for inexperienced users.
Further, the presented methods operate either at the algorithmic level to find cipher-specific at-
tacks or at a low-level hardware description to analyze implementation-specific behavior. There-
fore, effective FIA requires information from various abstraction levels to assess the concrete fault
behavior and exploitability. After definition of interesting fault locations, the tool analyzes the
propagation of faults within the system to assess the faulty behavior. This step is rather simple
and done via standard IFA or simulation techniques. Finally, to determine the impact of fault in-
jection, the exploitability and the complexity of potential attacks are analyzed. The specific ap-
proach for this step considers the fault type and adversary model, and various methods exist in the
literature.

6.3.7 General Applications. One common denominator is that all existing methods target cryp-
tographic implementations, where an attacker tries to learn some information about a secret key.
As for real-world implementations, it is often much easier to circumvent the execution of encryp-
tion or security mechanisms altogether or to alter the result of final security checks. The analysis of
such attacks is vital, e.g., considering general-purpose processors that might operate on sensitive
data, but will differ from those for cryptographic systems.

7 DISCUSSION AND DIRECTIONS

All preceding sections show that security-aware EDA is an active field of research as new ap-
proaches are introduced constantly while existing approaches are refined and improved. At the
same time, none of the presented tools are particularly designed for integration, despite some
progress in the right direction, which we mostly attribute to best practices in software engineer-
ing rather than conscious decisions. As a consequence we conclude that security-aware EDA is
currently still in the Age of Implementation, based on the observation that state-of-the-art security-

aware EDA is isolated with respect to security domains and abstraction levels.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:22 J. Feldtkeller et al.

7.1 Isolation in Security Domains

We observe that most tools are focused on one particular security domain, except for IFA and
TSCA, which inherently share some common properties, as all timing flows result from implicit
information flows. Nevertheless, even though more advanced methods for TSCA have evolved
from general IFA, these approaches often focus solely on timing flows, hence disregarding the
aspect of integration.

Normally, practical applications require protection against multiple attack vectors, and a
security-aware design paradigm should take a holistic view to tackle issues across security do-
mains. Some research into cross-domain countermeasures already exists, e.g., [114, 120], and could
be adopted by the security-aware EDA community. We argue that an integrated and security-aware
EDA framework is especially suited for the task of cross-domain security, as different modules can
remain specialized to their security domain and still negotiate a common solution. Of course, this
requires that a cross-domain-secure solution exists and the tool has the means to find and apply
it efficiently. With VERICA [113] exists some early work in this direction that combines the capa-
bilities of SILVER [83] and FIVER [116] and, hence, verifies for both SCA and FIA in a combined
attacker setting.

Therefore, an integrated and security-aware EDA framework can ensure security across security-

domain boundaries.

7.2 Isolation at Abstraction Levels

We further observe that most tools operate isolated at one particular abstraction level or during a
specific reduction. This isolation can have severe security consequences when subsequent trans-
formations are not considered, which potentially degrade security. Again there exist a few ex-
ceptions but only in the domain of FIA, where some methods use both an algorithmic and an
implementation-specific description for analysis. Those examples highlight the potential of cross-
abstraction analysis and transformation passes.

In general, passes on a higher level of abstraction benefit of lower expenses in terms of com-
plexity and resources and can generate timely feedback about design issues, particularly at design
levels that are more applicable to human designers, eventually resulting in faster recovery from
errors. In addition, the design is more mutable, as most of the implementation details are not de-
termined yet, however, this also means that it is harder to predict the actual impact of design
decisions. Diametrically opposed, passes at lower levels, especially at the lowest level can guar-
anty meaningful results with respect to the actual hardware device and estimate the impact of
changes more precisely, but at the cost of higher expenses. In consequence, security awareness
can be integrated into EDA following three major approaches (or combinations of them), i.e., iter-
atively updating security-related information synchronous to design transformations along with
constant analysis for violations, execution of proven security-preserving design transformations
only (as already considered for software compilers [9, 21, 126, 136]), or using the framework of
composable security [27].

Unfortunately, not all information is available at all design levels equally. For example, the full
combinational logic is only specified at the gate level, while higher levels might rely on behavioral
abstraction. In contrast, the hierarchy of modules is often already resolved at the gate level, avail-
able at a structural level, and not yet entirely specified at even higher levels. Hence, an efficient
design flow should anticipate later design stages, already gathering the required information, and
preparing design directives. Such cross-abstraction-layer thinking of (security-aware) EDA tools
has the potential to reduce the burden of the user as information, normally provided manually, can
potentially be inferred at a higher level automatically.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:23

Therefore, an integrated and security-aware EDA framework can provide information across ab-

straction levels for efficient security analysis and transformation.

7.3 Holistic, Integrated, and Security-Aware EDA

Based on this, we now argue that a holistic, integrated, and security-aware design paradigm is
required to tackle the complexity of today’s security landscape. A holistic view is required to over-
come the current isolation, both in security-domains and abstraction levels, and to set up a strong
line of defenses. The resulting complexity calls for an integrated approach. Finally, efficient and
effective security measures require consideration of security implications during all design trans-
formation. Hence, security should be established as a fundamental design constraint, alongside
speed, area, and power. In this context, artificial intelligence and machine learning will certainly
play a role. However, this part is extensively discussed by Koblah et al. [85], and we refer the
interested reader to their work.

Our analysis shows that some of the proposed methods are only necessary because of the lack
of security-awareness in EDA. For instance, SOLOMON [130] could be replaced by a hardware
design flow that analyzes the system-level description for vulnerable locations and then keeps
track of those locations while transformations and reductions take place. Similarly, AVFSM [102]
could be directly integrated into a security-aware design flow by ensuring that FSM optimization
does not lead to exploitable don’t care states. Hence, a security-unaware design flow requires the
development and use of additional tools that compensate for the lack of security consideration.
This is more complex and leads to less optimal solutions than integrating security into the design
flow as a first-class design constraint.

Other methods could be significantly improved by an integrated design approach. For example,
Eldib et al. assume equal latency for all gate types [39], a requirement that can be dropped when
leveraging state-of-the-art timing analysis tools. A vast majority of other tools focus primarily
on the identification of vulnerabilities. While a fundamental task, tool-assisted transformation
into secure systems and automated repair of flawed designs is the desirable objective, but supreme
discipline of security-aware EDA. In this sense, we would expect a boost in research of constructive
security methods through integration, as they become easier to construct and evaluate.

7.3.1 Global Adversary Model. In an integrated, holistic, and security-aware EDA framework,
security properties and goals should be derived from a globally defined adversary model to ensure
a simple and usable design flow. Similar to hardware description, the user would describe the
adversary at a high level of abstraction which then is compiled alongside the hardware design
and adjusted to the different abstraction layers [61]. However, as this is an entirely new branch of
research and clearly out of the scope for this paper, we leave the discussion of this complex field
of research here.

7.3.2 Unified IR. An important aspect of integration is an agreed-upon semantic design struc-
ture. Modern software compiler frameworks, e.g., LLVM [91] or MLIR [92], are developed around a
unified IR to provide a single representation for optimization and analysis spanning across all com-
pilation stages. With FIRRTL [70] and LLHD [121], for the first time, this approach was transferred
to the hardware context, enabling modernization and innovation in HDLs.

Similarly, an IR tailored to the context of security-aware EDA could lead to innovations in this
field. The example of IFA shows the potential of such an approach. There, a specific type system
was introduced by language-based methods, representing different security classes. Other security
domains could ease analysis and transformation by introducing particular types and operations as
well. For instance, tightPROVE [17] assumes securely implemented gates, which can be modeled
by own operations making an automatic distinction between secure and insecure gates simple. To

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:24 J. Feldtkeller et al.

Fig. 1. Overview of the proposed design flow.

deal with the added complexity of such a security-aware IR, one could define an IR dialect [92] for
each security domain. Then each EDA pass only needs to handle the dialects required for its task.
We leave the specifics of such a security-aware IR for future work.

The design flow of hardware systems can be roughly divided into four layers of abstraction:

System Level (SyL) provides a behavioral or algorithmic description of the system, mostly without
hardware-specific details.

Architectural Level (ArL) provides a coarse-grain structure, by defining components and their
relation to each other, specifying the micro-architecture.

Structural Level (StL) defines a fine-grain structure of modules, their hierarchy, and I/O relations,
based on a Register-Transfer description with explicit clock-based timing behavior. This is the
abstraction of traditional HDLs and the reduction from SyL to StL is considered as HLS, with the
ArL as a potential intermediate step proposed by Sharifian et al. [124].

Netlist Level (NeL) provides a technology-specific description that solely operates on signals and
logic gates. The reduction from StL to NeL is considered as classical logic synthesis while physical

synthesis denotes the process of place & route transformations at NeL.

Using the concept of multi-level IR, where every level is a subset of higher levels, we propose
an EDA design flow consisting of those four abstraction layers and inspired by existing work [70,
121, 124]. Starting with a design written in a high-level language and ending with a technology-
specific netlist, our design flow is depicted in Figure 1. Each intermediate level provides opportu-
nities for automatic analysis and transformation, before the design is transferred to the next level
through automatic reduction, i.e., removing and replacing no longer supported language constructs.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:25

Trade-offs between automation and low-level control are possible through input languages target-
ing other abstraction levels. However, the concept of multi-level IR naturally allows the description
in lower abstraction levels, as they are part of SyL anyway.

In the following, we discuss the exemplary design flow for a hardware accelerator. The input
to the tool flow is a software-like, algorithmic description of the design at SyL that contains com-
plex data structures (like vectors or data classes), operations on those data structures, and complex
control structures (like loops or functions). However, since the lower IR levels are a subset of SyL,
the designer can also define hardware-specific module borders or use registers and operations on
bits to specify exactly how the final design should operate. This allows easy descriptions of the
functionality and fine-grain control of the outcome where necessary. In addition, the designer pro-
vides some specifications of the adversary model that defines the security requirements. From this
point onward, all transformations are automated but guided by the designer through parameter
selection. First and still on SyL, an IFA is performed to ensure that the design has no trivial leakage
of secrets and to propagate security classes and security requirements via type systems and anno-
tations through the design. Hence, each operation is annotated afterwards with the protection it
should provide. An information-flow secure final design is guaranteed by performing each down-
stream transformation such that no new information flow is created that violates the established
security. When reducing to ArL, all complex control structures are removed and instead hardware
modules are introduced that operate in parallel or consecutive and are controlled by a dedicated
control unit. For that, each operation is assigned to some hardware module by deciding which op-
erations can share some hardware resource (same security level with non-overlapping execution
time such that no new violating information flow is created), which operations can run in paral-
lel, and which require the completion of other modules. This coarse-grain scheduling & binding

already considers which operations should run in constant time to prepare for efficient operation
scheduling. In addition, the security requirements of the dedicated control unit are assessed and
annotated accordingly. Reduction to StL includes the replacement of complex data structures to
simpler structures, like vectors of numerical values of specified size. This allows the introduction of
hardware registers and hence fine-grained scheduling and binding within modules. While doing
this, constant-time execution is enforced wherever necessary. Of course, this can require cross-
module analysis to ensure that the interaction of different modules is still constant-time. The last
reduction is from StL to NeL and translates everything to operations taken from a specified tech-
nology library operating on single bits. During this process, masked gadgets are used to protect
against PSCA, introducing specific gadget operations as an intermediary step. Also, FSA is consid-
ered during this transformation by ensuring equal path delay for sensitive data within each clock
cycle. Lastly, place & route ensures that different shares of the same intermediate are processed
and routed far enough apart to prevent leakage from cross-talk.

7.3.3 Incremental Design. Again, our analysis in this paper clearly shows that none of the pre-
sented tools are designed following an incremental paradigm, i.e., all tools operate on the entire
design at once while small and local changes always require a reprocessing of the entire design.
This leads to limitations with respect to the size that can be efficiently handled, and the number of
executions that are practically feasible. Using incremental tools would allow analysis passes to be
executed frequently, to assess the security impact of transformations and transformation passes
to reverse insecure design changes and explore different alternatives. An incremental design ap-
proach is possible whenever compositional properties [27] hold, i.e., when the security analysis
can be divided into the analysis of sub-components and the interaction of those sub-components
with each other. Then, individual components can be changed without affecting the overall secu-
rity as long as the compositional property is maintained. Finding compositional properties is easy

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

43:26 J. Feldtkeller et al.

for some security domains, e.g., IFA and TSCA, while it is more complex for others, e.g., PSCA and
FIA. Specifically, for IFA, non-interference allows trivial composition, while for TSCA, changes are
generally allowed as long as no new registers are introduces. In contrast, PSCA requires a thorough
analysis of the possible leakage after composition, or composition needs to be considered during
construction. However, this is extensively researched in the literature [12, 16, 29, 31]. Similarly,
FIA usually requires some sort of checkpoints [1, 110, 123], where faults are detected and handled
appropriately, or some isolation of instances [45] to achieve composition. As a result, more com-
plex notions impose additional costs that ideally get removed later in the design flow by some
optimization. The existing compositional notions for individual security domains are an impor-
tant step. However, ultimately, we require rules for composition under multiple security domains
at once [45, 113]. Such an incremental design flow is most efficient in combination with a secure

by construction methodology, in which composable structures are used for construction and then
marked. Otherwise, composable properties need to be detected from scratch, which is currently
an open problem.

In the following, we list major advantages of the proposed framework compared to the state-of-
the-art methodology.

� Reduced infrastructure implementation and verification effort due to reuse of analysis
and transformation passes even across abstraction levels.

� Reduced design verification effort as a unified IR reduces the necessary translations to a
minimum and provides a simple and unambiguous design representation.

� Enhanced usability as a modular design allows to enable required passes only and simplifies
maintenance. In addition, automatic information gathering across abstraction levels reduces
the required user expertise.

� Enhanced efficiency through information accumulation and sharing across abstraction lev-
els and modules as well as an incremental design paradigm.

� Enhanced security through a holistic view that overcomes the isolation in security domains
and abstraction levels, providing guarantees for the final design.

� Support of innovation through easy integration of new input languages, simple adaption
to new security concepts and threat models, and reduced implementation effort. Experts can
focus on their domain of expertise and provide tools for a broader community.

8 CONCLUSION

In this work, we provided an extensive overview of existing research for security-aware EDA, con-
sidering information flow, timing and power side channels, and fault injection threats. In essence,
this overview clearly shows the potential of security-aware EDA in closing the gap between secu-
rity and hardware design experts. Nevertheless, our systematization of existing knowledge shows
that security-aware EDA currently is in the Age of Implementation, demonstrated by isolation with
respect to security domains and abstraction levels. Hence, a huge effort is necessary to bring to-
gether different methods and approaches to take a holistic view of security.

For this, we propose a modern, security-aware design flow developed around a unified IR and
tool integration to overcome those limitations and fuel innovation, both in hardware design and
security. Our design framework provides a path towards a holistic view on hardware-based sys-
tem security at design time by enabling interaction between security passes across design levels
and security goals. To this, we see the framework of Universal Composable Security [27] in com-
bination with a unified IR [91] as the fundamental and most promising building blocks to tackle
future challenges of security-aware EDA, such as the integration of scalable and efficient construc-
tive security passes, and the analysis of complex hardware architectures to identify sophisticated
microarchitectural attacks.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

Challenges and Opportunities of Security-Aware EDA 43:27

REFERENCES

[1] A. Aghaie, A. Moradi, S. Rasoolzadeh, A. R. Shahmirzadi, F. Schellenberg, and T. Schneider. 2020. Impeccable circuits.
IEEE Trans. Computers 69, 3 (2020), 361–376. https://doi.org/10.1109/TC.2019.2948617

[2] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi, and G. Smith. 2020. The Science of Quantitative

Information Flow. Springer. https://doi.org/10.1007/978-3-319-96131-6
[3] A. Ardeshiricham, W. Hu, and R. Kastner. 2017. Clepsydra: Modeling timing flows in hardware designs. In 2017

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 147–154. https://doi.org/10.1109/ICCAD.
2017.8203772

[4] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner. 2017. Register transfer level information flow tracking for
provably secure hardware design. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017. 1691–
1696.

[5] A. Ardeshiricham, Y. Takashima, S. Gao, and R. Kastner. 2019. VeriSketch: Synthesizing secure hardware designs with
timing-sensitive information flow properties. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (CCS’19). Association for Computing Machinery, New York, NY, USA, 1623–1638. https:
//doi.org/10.1145/3319535.3354246

[6] V. Arribas, S. Nikova, and V. Rijmen. 2018. VerMI: Verification tool for masked implementations. In 25th IEEE In-

ternational Conference on Electronics, Circuits and Systems, ICECS 2018, Bordeaux, France, December 9–12, 2018. IEEE,
381–384. https://doi.org/10.1109/ICECS.2018.8617841

[7] V. Arribas, F. Wegener, A. Moradi, and S. Nikova. 2020. Cryptographic fault diagnosis using VerFI. 2020 IEEE Inter-

national Symposium on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA, USA, December 7–11, (2020),
229–240. https://doi.org/10.1109/HOST45689.2020.9300264

[8] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi. 2021. Exploring cortex-m microarchitectural side channel infor-
mation leakage. IEEE Access 9 (2021), 156507–156527. https://doi.org/10.1109/ACCESS.2021.3124761

[9] G. Barthe, A. Basu, and T. Rezk. 2004. Security types preserving compilation. In Verification, Model Checking, and

Abstract Interpretation. Springer Berlin, 2–15.
[10] G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X. Standaert. 2019. maskVerif: Automated verifica-

tion of higher-order masking in presence of physical defaults. In Computer Security - ESORICS 2019 - 24th European

Symposium on Research in Computer Security, Luxembourg, September 23–27, 2019, Proceedings, Part I (Lecture Notes

in Computer Science, Vol. 11735). Springer, 300–318. https://doi.org/10.1007/978-3-030-29959-0_15
[11] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub. 2015. Verified proofs of higher-order

masking. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Proceedings, Part I (Lecture Notes in Computer

Science, Vol. 9056). Springer, 457–485. https://doi.org/10.1007/978-3-662-46800-5_18
[12] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini. 2016. Strong non-

interference and type-directed higher-order masking. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, Vienna, Austria, October 24–28, 2016. ACM, 116–129. https://doi.org/10.1145/2976749.
2978427

[13] G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert, and P.-Y. Strub. 2017. Parallel implementations of
masking schemes and the bounded moment leakage model. In Advances in Cryptology - EUROCRYPT 2017 - 36th

Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -

May 4, 2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10210). 535–566. https://doi.org/10.1007/978-
3-319-56620-7_19

[14] A. Becker, W. Hu, Y. Tai, P. Brisk, R. Kastner, and P. Ienne. 2017. Arbitrary precision and complexity tradeoffs for
gate-level information flow tracking. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[15] S. Belaïd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and D. Vergnaud. 2016. Randomness complexity of
private circuits for multiplication. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II.
616–648. https://doi.org/10.1007/978-3-662-49896-5_22

[16] S. Belaïd, J.-S. Coron, E. Prouff, M. Rivain, and A. R. Taleb. 2020. Random probing security: Verification, composition,
expansion and new constructions. In Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology

Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I (Lecture Notes in Computer

Science, Vol. 12170). Springer, 339–368. https://doi.org/10.1007/978-3-030-56784-2_12
[17] S. Belaïd, D. Goudarzi, and M. Rivain. 2018. Tight private circuits: Achieving probing security with the least refresh-

ing. In Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and Application of

Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II (Lecture Notes

in Computer Science, Vol. 11273). Springer, 343–372. https://doi.org/10.1007/978-3-030-03329-3_12

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://doi.org/10.1109/TC.2019.2948617
https://doi.org/10.1007/978-3-319-96131-6
https://doi.org/10.1109/ICCAD.2017.8203772
https://doi.org/10.1145/3319535.3354246
https://doi.org/10.1109/ICECS.2018.8617841
https://doi.org/10.1109/HOST45689.2020.9300264
https://doi.org/10.1109/ACCESS.2021.3124761
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-03329-3_12

43:28 J. Feldtkeller et al.

[18] S. Belaïd, P.-É.Dagand, D. Mercadier, M. Rivain, and R. Wintersdorff. 2020. Tornado: Automatic generation of probing-
secure masked bitsliced implementations. In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,

Part III (Lecture Notes in Computer Science, Vol. 12107). Springer, 311–341. https://doi.org/10.1007/978-3-030-45727-
3_11

[19] S. Belaïd, D. Mercadier, M. Rivain, and A. R. Taleb. 2021. IronMask: Versatile verification of masking security. IACR

Cryptol. ePrint Arch. 2021 (2021). http://eprint.iacr.org/2021/1671.
[20] D. J. Bernstein. 2005. Cache-timing attacks on AES. (2005).
[21] F. Besson, A. Dang, and T. Jensen. 2019. Information-flow preservation in compiler optimisations. In CSF 2019 -

32nd IEEE Computer Security Foundations Symposium. IEEE, Hoboken, NJ, United States, 1–13. https://hal.inria.fr/hal-
02180303.

[22] E. Biham and A. Shamir. 1997. Differential fault analysis of secret key cryptosystems. In Advances in Cryptology —

CRYPTO’97. Springer Berlin, Berlin, 513–525.
[23] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. 2018. Formal verification of masked hardware

implementations in the presence of glitches. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10821). Springer, 321–353. https://doi.org/10.1007/978-3-
319-78375-8_11

[24] D. Boneh, R. A. DeMillo, and R. J. Lipton. 1997. On the importance of checking cryptographic protocols for faults. In
Advances in Cryptology — EUROCRYPT’97. Springer Berlin, Berlin, 37–51.

[25] I. Buhan, L. Batina, Y. Yarom, and P. Schaumont. 2022. SoK: Design tools for side-channel-aware implementations.
In ASIA CCS’22: ACM Asia Conference on Computer and Communications Security, Nagasaki, Japan, 30 May 2022 - 3

June 2022. 756–770. https://doi.org/10.1145/3488932.3517415. arXiv:https://eprint.iacr.org/2021/497.
[26] J. Burchard, M. Gay, A. M. Ekossono, J. Horáček, B. Becker, T. Schubert, M. Kreuzer, and I. Polian. 2017. AutoFault:

Towards automatic construction of algebraic fault attacks. In 2017 Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC). 65–72.
[27] R. Canetti. 2001. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of

the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01). IEEE Computer Society, USA, 136.
[28] R. Canetti, M. van Dijk, H. Maleki, U. Rührmair, and P. Schaumont. 2020. Using universal composition to design and

analyze secure complex hardware systems. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE).
520–525.

[29] G. Cassiers, B. Grégoire, I. Levi, and F.-X. Standaert. 2021. Hardware private circuits: From trivial composition to full
verification. IEEE Trans. Computers 70, 10 (2021), 1677–1690. https://doi.org/10.1109/TC.2020.3022979

[30] G. Cassiers and F.-X. Standaert. 2019. Towards globally optimized masking: From low randomness to low noise
rate: Or probe isolating multiplications with reduced randomness and security against horizontal attacks. IACR

Transactions on Cryptographic Hardware and Embedded Systems 2019, 2 (Feb. 2019), 162–198. https://doi.org/10.13154/
tches.v2019.i2.162-198

[31] G. Cassiers and F.-X. Standaert. 2020. Trivially and efficiently composing masked gadgets with probe isolating non-
interference. IEEE Trans. Inf. Forensics Secur. 15 (2020), 2542–2555. https://doi.org/10.1109/TIFS.2020.2971153

[32] G. Cassiers and F.-X. Standaert. 2021. Provably secure hardware masking in the transition- and glitch-robust probing
model: Better safe than sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2 (2021), 136–158. https://doi.org/10.
46586/tches.v2021.i2.136-158

[33] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. 1999. Towards sound approaches to counteract power-analysis attacks.
In Advances in Cryptology - CRYPTO’99, 19th Annual International Cryptology Conference, Santa Barbara, California,

USA, August 15-19, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1666). Springer, 398–412. https://doi.org/
10.1007/3-540-48405-1_26

[34] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. 2008. On the Bayes risk in information-hiding protocols. J.

Comput. Secur. 16, 5 (2008), 531–571. https://doi.org/10.3233/JCS-2008-0333
[35] D. Chinnery, L. Stok, D. Hathaway, and K. Keutzer. [n. d.]. Design FLow. In Electronic Design Automation for IC

Implementation, Circuit Design, and Process Technology, Luciano Lavagno, Igor L. Markov, Grant Martin, and Louis K.
Scheffer (Eds.). CRC Press.

[36] J.-S. Coron, A. Greuet, and R. Zeitoun. 2020. Side-channel masking with pseudo-random generator. In Advances in

Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III. 342–375. https://doi.org/10.1007/978-3-030-45727-
3_12. arXiv:https://eprint.iacr.org/2019/1106.pdf.

[37] S. Deng, D. Gümüundefinedoundefinedlu, W. Xiong, S. Sari, Y. S. Gener, C. Lu, O. Demir, and J. Szefer. 2019. SecChisel
framework for security verification of secure processor architectures. In Proceedings of the 8th International Workshop

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://doi.org/10.1007/978-3-030-45727-3_11
http://eprint.iacr.org/2021/1671
https://hal.inria.fr/hal-02180303
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1145/3488932.3517415
http://arxiv.org/abs/https://eprint.iacr.org/2021/497
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.13154/tches.v2019.i2.162-198
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.46586/tches.v2021.i2.136-158
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.3233/JCS-2008-0333
https://doi.org/10.1007/978-3-030-45727-3_12
http://arxiv.org/abs/https://eprint.iacr.org/2019/1106.pdf

Challenges and Opportunities of Security-Aware EDA 43:29

on Hardware and Architectural Support for Security and Privacy (HASP’19). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3337167.3337174

[38] A. Duc, S. Dziembowski, and S. Faust. 2019. Unifying leakage models: From probing attacks to noisy leakage. J.

Cryptology 32, 1 (2019), 151–177. https://doi.org/10.1007/s00145-018-9284-1
[39] H. Eldib, M. Wu, and C. Wang. 2016. Synthesis of fault-attack countermeasures for cryptographic circuits. In Com-

puter Aided Verification. Springer International Publishing, Cham, 343–363.
[40] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and W. Kunz. 2020. A formal approach for detecting vulner-

abilities to transient execution attacks in out-of-order processors. In 57th ACM/IEEE Design Automation Conference,

DAC 2020, San Francisco, CA, USA, July 20-24, 2020. 1–6. https://doi.org/10.1109/DAC18072.2020.9218572
[41] M. Rahmani Fadiheh, D. Stoffel, C. W. Barrett, S. Mitra, and W. Kunz. 2019. Processor hardware security vulnerabilities

and their detection by unique program execution checking. In Design, Automation & Test in Europe Conference &

Exhibition, DATE 2019, Florence, Italy, March 25–29, 2019. 994–999. https://doi.org/10.23919/DATE.2019.8715004
[42] S. Faust, V. Grosso, S. M. Del Pozo, C. Paglialonga, and F.-X. Standaert. 2018. Composable masking schemes in the

presence of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3 (2018),
89–120. https://doi.org/10.13154/tches.v2018.i3.89-120

[43] S. Faust, C. Paglialonga, and T. Schneider. 2017. Amortizing randomness complexity in private circuits. In Advances

in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and

Information Security, Hong Kong, China, December 3–7, 2017, Proceedings, Part I. 781–810. https://doi.org/10.1007/978-
3-319-70694-8_27. arXiv:https://eprint.iacr.org/2017/869.pdf.

[44] J. Feldtkeller, D. Knichel, P. Sasdrich, A. Moradi, and T. Güneysu. 2022. Randomness optimization for gadget
compositions in higher-order masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 4 (2022), 188–227. https:
//doi.org/10.46586/tches.v2022.i4.188-227

[45] J. Feldtkeller, J. Richter-Brockmann, P. Sasdrich, and T. Güneysu. 2022. CINI MINIS: Domain isolation for fault and
combined security. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2022, Los Angeles, CA, USA, November 7–11, 2022. 1023–1036. https://doi.org/10.1145/3548606.3560614
[46] A. Ferraiuolo. 2017. Security results for SIRRTL, a hardware description language for information flow security.

(2017). https://ecommons.cornell.edu/handle/1813/57673.
[47] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh. 2018. HyperFlow: A processor architecture for nonmal-

leable, timing-safe information flow security. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security (CCS’18). Association for Computing Machinery, New York, NY, USA, 1583–1600.
https://doi.org/10.1145/3243734.3243743

[48] A. Fogh. 2016. Covert Shotgun: Automatically Finding SMT Covert Channels. https://cyber.wtf/2016/09/27/covert-
shotgun/.

[49] K. Gandolfi, C. Mourtel, and F. Olivier. 2001. Electromagnetic analysis: Concrete results. In Cryptographic Hardware

and Embedded Systems - CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceedings (Lecture

Notes in Computer Science, Vol. 2162). Springer, 251–261. https://doi.org/10.1007/3-540-44709-1_21
[50] S. Gao, E. Oswald, and D. Page. 2021. Reverse engineering the micro-architectural leakage features of a commercial

processor. IACR Cryptol. ePrint Arch. (2021), 794. https://eprint.iacr.org/2021/794.
[51] M. Gay, T. Paxian, D. Upadhyaya, B. Becker, and I. Polian. 2019. Hardware-oriented algebraic fault attack framework

with multiple fault injection support. In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
25–32.

[52] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. 2018. A survey of microarchitectural timing attacks and countermeasures
on contemporary hardware. J. Cryptogr. Eng. 8, 1 (2018), 1–27. https://doi.org/10.1007/s13389-016-0141-6

[53] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala. 2019. IODINE: Verifying constant-time execution of hardware.
In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1411–1428. https:
//www.usenix.org/conference/usenixsecurity19/presentation/von-gleissenthall.

[54] J. A. Goguen and J. Meseguer. 1982. Security policies and security models. In 1982 IEEE Symposium on Security and

Privacy. 11.
[55] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. 2011. A testing methodology for side-channel resistance validation. In

NIST Non-Invasive Attack Testing Workshop, Vol. 7. 115–136.
[56] V. Goyal, Y. Ishai, and Y. Song. 2022. Private circuits with quasilinear randomness. IACR Cryptol. ePrint Arch. 2022

(2022). http://eprint.iacr.org/2022/250.
[57] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi. 2020. ABSynthe: Automatic blackbox side-channel synthesis on

commodity microarchitectures. In 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San

Diego, California, USA, February 23–26, 2020. https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-
blackbox-side-channel-synthesis-on-commodity-microarchitectures/.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://doi.org/10.1145/3337167.3337174
https://doi.org/10.1007/s00145-018-9284-1
https://doi.org/10.1109/DAC18072.2020.9218572
https://doi.org/10.23919/DATE.2019.8715004
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.1007/978-3-319-70694-8_27
http://arxiv.org/abs/https://eprint.iacr.org/2017/869.pdf
https://doi.org/10.46586/tches.v2022.i4.188-227
https://doi.org/10.1145/3548606.3560614
https://ecommons.cornell.edu/handle/1813/57673
https://doi.org/10.1145/3243734.3243743
https://cyber.wtf/2016/09/27/covert-shotgun/
https://doi.org/10.1007/3-540-44709-1_21
https://eprint.iacr.org/2021/794
https://doi.org/10.1007/s13389-016-0141-6
https://www.usenix.org/conference/usenixsecurity19/presentation/von-gleissenthall
http://eprint.iacr.org/2022/250
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/

43:30 J. Feldtkeller et al.

[58] D. Gruss. 2017. Software-based Microarchitectural Attacks. Ph. D. Dissertation. Graz University of Technology.
arXiv:1706.05973 http://arxiv.org/abs/1706.05973.

[59] X. Guo, R. G. Dutta, J. He, M. M. Tehranipoor, and Y. Jin. 2019. QIF-Verilog: Quantitative information-flow based hard-
ware description languages for pre-silicon security assessment. In 2019 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST). 91–100. https://doi.org/10.1109/HST.2019.8740840
[60] M. T. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. M. Tehranipoor. 2019. RTL-PSC: Automated power side-

channel leakage assessment at register-transfer level. In 37th IEEE VLSI Test Symposium, VTS 2019, Monterey, CA,

USA, April 23-25, 2019. IEEE, 1–6. https://doi.org/10.1109/VTS.2019.8758600
[61] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner. 2016. Towards property driven hardware security. In 2016 17th

International Workshop on Microprocessor and SOC Test and Verification (MTV). 51–56. https://doi.org/10.1109/MTV.
2016.12

[62] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li. 2021. An overview of hardware security and
trust: Threats, countermeasures, and design tools. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40, 6 (2021),
1010–1038. https://doi.org/10.1109/TCAD.2020.3047976

[63] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and R. Kastner. 2014. Gate-level information flow tracking
for security lattices. ACM Trans. Des. Autom. Electron. Syst. 20, 1 (2014). https://doi.org/10.1145/2676548

[64] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner. 2011. Theoretical fundamentals of gate
level information flow tracking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 30,
8 (2011), 1128–1140.

[65] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner. 2012. On the complexity of generating
gate level information flow tracking logic. IEEE Trans. Information Forensics and Security 7, 3 (2012), 1067–1080.
https://doi.org/10.1109/TIFS.2012.2189105

[66] S. A. Huss and O. Stein. 2017. A novel design flow for a security-driven synthesis of side-channel hardened crypto-
graphic modules. Journal of Low Power Electronics and Applications 7, 1 (2017), 4.

[67] M. Hutter and J.-M. Schmidt. 2013. The temperature side channel and heating fault attacks. In Smart Card Research

and Advanced Applications - 12th International Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Re-

vised Selected Papers (Lecture Notes in Computer Science, Vol. 8419). Springer, 219–235. https://doi.org/10.1007/978-3-
319-08302-5_15

[68] Y. Ishai, E. Kushilevitz, X. Li, R. Ostrovsky, M. Prabhakaran, A. Sahai, and D. Zuckerman. 2013. Robust pseudorandom
generators. In Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July

8–12, 2013, Proceedings, Part I. 576–588. https://doi.org/10.1007/978-3-642-39206-1_49
[69] Y. Ishai, A. Sahai, and D. A. Wagner. 2003. Private circuits: Securing hardware against probing attacks. In Advances in

Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August

17-21, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2729). Springer, 463–481. https://doi.org/10.1007/978-
3-540-45146-4_27

[70] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson, and J. Bachrach.
2017. Reusability is FIRRTL ground: Hardware construction languages, compiler frameworks, and transformations.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 209–216. https://doi.org/10.1109/
ICCAD.2017.8203780

[71] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang. 2018. High-level synthesis with timing-sensitive information flow enforce-
ment. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’18). Association for Comput-
ing Machinery, New York, NY, USA. https://doi.org/10.1145/3240765.3243415

[72] A. Kerckhoffs. 1883. La cryptographie militaire. In Journal Des Sciences Militaires, Vol. 9.
[73] M. Khairallah, R. Sadhukhan, R. Samanta, J. Breier, S. Bhasin, R. S. Chakraborty, A. Chattopadhyay, and D. Mukhopad-

hyay. 2018. DFARPA: Differential fault attack resistant physical design automation. In 2018 Design, Automation

& Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, March 19–23, 2018. 1171–1174. https:
//doi.org/10.23919/DATE.2018.8342190

[74] P. Khanna, C. Rebeiro, and A. Hazra. 2017. XFC: A framework for exploitable fault characterization in block ciphers.
In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[75] P. Kiaei, Z. Liu, R. K. Eren, Y. Yao, and P. Schaumont. 2021. Saidoyoki: Evaluating side-channel leakage in pre- and
post-silicon setting. IACR Cryptol. ePrint Arch. (2021), 1235. https://eprint.iacr.org/2021/1235.

[76] P. Kiaei, Z. Liu, and P. Schaumont. 2022. Leverage the average: Averaged sampling in pre-silicon side-channel leakage
assessment. In GLSVLSI’22: Great Lakes Symposium on VLSI 2022, Irvine CA USA, June 6–8, 2022. 3–8. https://doi.org/
10.1145/3526241.3530337

[77] P. Kiaei, Y. Yao, Z. Liu, N. Fern, C.-B. Breunesse, J. Van Woudenberg, K. Gillis, A. Dich, P. Grossmann, and P. Schau-
mont. 2022. Gate-level side-channel leakage assessment with architecture correlation analysis. CoRR abs/2204.11972
(2022). arXiv:2204.11972. http://arxiv.org/abs/2204.11972.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

http://arxiv.org/abs/1706.05973
http://arxiv.org/abs/1706.05973
https://doi.org/10.1109/HST.2019.8740840
https://doi.org/10.1109/VTS.2019.8758600
https://doi.org/10.1109/MTV.2016.12
https://doi.org/10.1109/TCAD.2020.3047976
https://doi.org/10.1145/2676548
https://doi.org/10.1109/TIFS.2012.2189105
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-642-39206-1_49
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1145/3240765.3243415
https://doi.org/10.23919/DATE.2018.8342190
https://eprint.iacr.org/2021/1235
https://doi.org/10.1145/3526241.3530337
http://arxiv.org/abs/2204.11972
http://arxiv.org/abs/2204.11972

Challenges and Opportunities of Security-Aware EDA 43:31

[78] R. Kici. 2020. Verifying Constant-Time Execution of Hardware. Ph. D. Dissertation. UC San Diego. https://escholarship.
org/uc/item/6mx0g513.

[79] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In 2014 ACM/IEEE 41st International

Symposium on Computer Architecture (ISCA). 361–372. https://doi.org/10.1109/ISCA.2014.6853210
[80] J. Knechtel, E. B. Kavun, F. Regazzoni, A. Heuser, A. Chattopadhyay, D. Mukhopadhyay, S. Dey, Y. Fei, Y. Belenky, I.

Levi, T. Güneysu, P. Schaumont, and I. Polian. 2020. Towards secure composition of integrated circuits and electronic
systems: On the role of EDA. In 2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020,

Grenoble, France, March 9-13, 2020. 508–513. https://doi.org/10.23919/DATE48585.2020.9116483
[81] D. Knichel and A. Moradi. 2022. Low-latency hardware private circuits. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7–11, 2022. 1799–
1812. https://doi.org/10.1145/3548606.3559362

[82] D. Knichel, A. Moradi, N. Müller, and P. Sasdrich. 2022. Automated generation of masked hardware. IACR Trans.

Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 589–629. https://doi.org/10.46586/tches.v2022.i1.589-629
[83] D. Knichel, P. Sasdrich, and A. Moradi. 2020. SILVER - statistical independence and leakage verification. In Advances

in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and

Information Security, Virtual, December 7–11, Proceedings.
[84] D. Knichel, P. Sasdrich, and A. Moradi. 2022. Generic hardware private circuits towards automated generation of

composable secure gadgets. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 323–344. https://doi.org/10.
46586/tches.v2022.i1.323-344

[85] D. S. Koblah, R. Y. Acharya, D. Capecci, O. P. Dizon-Paradis, S. Tajik, F. Ganji, D. L. Woodard, and D. Forte. 2022. A sur-
vey and perspective on artificial intelligence for security-aware electronic design automation. CoRR abs/2204.09579
(2022). https://doi.org/10.48550/arXiv.2204.09579. arXiv:2204.09579.

[86] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. 2019. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on Security and Privacy,

SP 2019, San Francisco, CA, USA, May 19–23, 2019. 1–19.
[87] P. C. Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Advances

in Cryptology — CRYPTO’96. Springer Berlin, 104–113.
[88] P. C. Kocher, J. Jaffe, and B. Jun. 1999. Differential power analysis. In Advances in Cryptology - CRYPTO’99, 19th

Annual International Cryptology Conference, Santa Barbara, California, USA, August 15–19, 1999, Proceedings (Lecture

Notes in Computer Science, Vol. 1666). Springer, 388–397. https://doi.org/10.1007/3-540-48405-1_25
[89] X. Lai, M. Jenihhin, J. Raik, and K. Paul. 2019. PASCAL: Timing SCA resistant design and verification flow. In 25th

IEEE International Symposium on On-Line Testing and Robust System Design, IOLTS 2019, Rhodes, Greece, July 1–3,

2019. 239–242. https://doi.org/10.1109/IOLTS.2019.8854458
[90] A. V. Lakshmy, C. Rebeiro, and S. Bhunia. 2022. FORTIFY: Analytical pre-silicon side-channel characterization of

digital designs. In 27th Asia and South Pacific Design Automation Conference, ASP-DAC 2022, Taipei, Taiwan, January

17–20, 2022. 660–665. https://doi.org/10.1109/ASP-DAC52403.2022.9712551
[91] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In

Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04). Palo Alto, California.
[92] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. A. Pienaar, R. Riddle, T. Shpeisman, N. Vasilache, and O.

Zinenko. 2021. MLIR: Scaling compiler infrastructure for domain specific computation. In IEEE/ACM International

Symposium on Code Generation and Optimization, CGO 2021, Seoul, South Korea, February 27–March 3, 2021. 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[93] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong.
2014. Sapper: A language for hardware-level security policy enforcement. In Architectural Support for Programming

Languages and Operating Systems, (ASPLOS’14), Salt Lake City, UT, USA, March 1–5, 2014. ACM, 97–112. https://doi.
org/10.1145/2541940.2541947

[94] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and B. Hardekopf. 2011. Caisson: A hardware
description language for secure information flow. In Proceedings of the 32nd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI’11). ACM, New York, NY, USA, 109–120. https://doi.org/10.1145/
1993498.1993512

[95] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. 2018. Meltdown: Reading kernel memory from user space. In Proceedings of the 27th USENIX Conference

on Security Symposium (SEC’18). USENIX Association, Berkeley, CA, USA, 973–990. http://dl.acm.org/citation.cfm?
id=3277203.3277276.

[96] H. Ma, Q. Zhang, Y. Gao, J. He, Y. Zhao, and Y. Jin. 2022. PathFinder: Side channel protection through automatic
leaky paths identification and obfuscation. In DAC’22: 59th ACM/IEEE Design Automation Conference, San Francisco,

California, USA, July 10–14, 2022. 79–84. https://doi.org/10.1145/3489517.3530413

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://escholarship.org/uc/item/6mx0g513
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.23919/DATE48585.2020.9116483
https://doi.org/10.1145/3548606.3559362
https://doi.org/10.46586/tches.v2022.i1.589-629
https://doi.org/10.46586/tches.v2022.i1.323-344
https://doi.org/10.48550/arXiv.2204.09579
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/IOLTS.2019.8854458
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2541940.2541947
https://doi.org/10.1145/1993498.1993512
http://dl.acm.org/citation.cfm?id=3277203.3277276
https://doi.org/10.1145/3489517.3530413

43:32 J. Feldtkeller et al.

[97] B. Marshall, D. Page, and J. Webb. 2022. MIRACLE: MIcRo-architectural leakage evaluation - a study of micro-
architectural power leakage across many devices. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 175–220.
https://doi.org/10.46586/tches.v2022.i1.175-220

[98] J. H. McDonald. 2014. Handbook of Biological Statistics. Vol. 2. Sparky House Publishing, Baltimore.
[99] G. H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell System Technical Journal 34, 5 (1955),

1045–1079.
[100] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz. 2020. Medusa: Microarchitectural data leakage via automated attack

synthesis. In 29th USENIX Security Symposium, USENIX Security 2020, August 12–14, 2020. 1427–1444. https://www.
usenix.org/conference/usenixsecurity20/presentation/moghimi-medusa.

[101] N. Müller and A. Moradi. 2022. PROLEAD: A probing-based hardware leakage detection tool. IACR Trans. Cryptogr.

Hardw. Embed. Syst. 2022, 4 (2022), 311–348. https://doi.org/10.46586/tches.v2022.i4.311-348
[102] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor. 2016. AVFSM: A framework for identifying and

mitigating vulnerabilities in FSMs. In 2016 53rd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.
[103] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner. 2013. A practical testing framework for isolating hardware

timing channels. In 2013 Design, Automation Test in Europe Conference Exhibition (DATE). 1281–1284.
[104] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner. 2014. Leveraging gate-level properties to identify hardware

timing channels. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 9 (2014), 1288–
1301.

[105] S. Peter and T. Givargis. 2016. Towards a timing attack aware high-level synthesis of integrated circuits. In 2016 IEEE

34th International Conference on Computer Design (ICCD). 452–455. https://doi.org/10.1109/ICCD.2016.7753326
[106] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. 2019. TaintHLS: High-level synthesis for dynamic information

flow tracking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2019), 798–808.
https://doi.org/10.1109/TCAD.2018.2834421

[107] N. Pundir, J. Park, F. Farahmandi, and M. M. Tehranipoor. 2022. Power side-channel leakage assessment framework
at register-transfer level. IEEE Trans. Very Large Scale Integr. Syst. 30, 9 (2022), 1207–1218. https://doi.org/10.1109/
TVLSI.2022.3175067

[108] M. Qin, W. Hu, X. Wang, D. Mu, and B. Mao. 2019. Theorem proof based gate level information flow tracking for
hardware security verification. Computers & Security 85 (2019), 225–239. https://doi.org/10.1016/j.cose.2019.05.005

[109] M. Qin, X. Wang, B. Mao, D. Mu, and W. Hu. 2020. A formal model for proving hardware timing properties and
identifying timing channels. Integration 72 (2020), 123–133. https://doi.org/10.1016/j.vlsi.2020.02.001

[110] S. Rasoolzadeh, A. R. Shahmirzadi, and A. Moradi. 2021. Impeccable circuits III. In IEEE International Test Conference,

ITC 2021, Anaheim, CA, USA, October 10–15, 2021. 163–169. https://doi.org/10.1109/ITC50571.2021.00024
[111] P. Ravi, Z. Najm, S. Bhasin, M. Khairallah, S. S. Gupta, and A. Chattopadhyay. 2019. Security is an architectural design

constraint. Microprocess. Microsystems 68 (2019), 17–27.
[112] L. M. Reimann, L. Hanel, D. Sisejkovic, F. Merchant, and R. Leupers. 2021. QFlow: Quantitative information flow for

security-aware hardware design in verilog. In 39th IEEE International Conference on Computer Design, ICCD 2021,

Storrs, CT, USA, October 24–27, 2021. 603–607. https://doi.org/10.1109/ICCD53106.2021.00097. arXiv:2109.02379.
[113] J. Richter-Brockmann, J. Feldtkeller, P. Sasdrich, and T. Güneysu. 2022. VERICA - verification of combined

attacks automated formal verification of security against simultaneous information leakage and tampering.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 4 (2022), 255–284. https://doi.org/10.46586/tches.v2022.i4.255-284.
arXiv:http://eprint.iacr.org/2022/484.

[114] J. Richter-Brockmann and T. Güneysu. 2020. Improved side-channel resistance by dynamic fault-injection counter-
measures. In 31st IEEE International Conference on Application-specific Systems, Architectures and Processors, ASAP

2020, Manchester, United Kingdom, July 6–8, 2020. 117–124. https://doi.org/10.1109/ASAP49362.2020.00029
[115] J. Richter-Brockmann, P. Sasdrich, and T. Güneysu. 2021. Revisiting fault adversary models - hardware faults in

theory and practice. IACR Cryptol. ePrint Arch. 2021 (2021). https://eprint.iacr.org/2021/296.
[116] J. Richter-Brockmann, A. R. Shahmirzadi, P. Sasdrich, A. Moradi, and T. Güneysu. 2021. FIVER – robust verification

of countermeasures against fault injections. IACR Cryptol. ePrint Arch. 2021 (2021). http://eprint.iacr.org/2021/936.
[117] I. Roy, C. Rebeiro, A. Hazra, and S. Bhunia. 2019. SAFARI: Automatic synthesis of fault-attack resistant block cipher

implementations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2019), 1. https:
//doi.org/10.1109/TCAD.2019.2897629

[118] P. B. Roy, P. SLPSK, and C. Rebeiro. 2022. Avatar: Reinforcing fault attack countermeasures in EDA with fault trans-
formations. In 27th Asia and South Pacific Design Automation Conference, ASP-DAC 2022, Taipei, Taiwan, January

17–20, 2022. 417–422. https://doi.org/10.1109/ASP-DAC52403.2022.9712539
[119] S. Saha, D. Mukhopadhyay, and P. Dasgupta. 2018. ExpFault: An automated framework for exploitable fault char-

acterization in block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2 (2018), 242–276. https://doi.org/10.
13154/tches.v2018.i2.242-276

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://doi.org/10.46586/tches.v2022.i1.175-220
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-medusa
https://doi.org/10.46586/tches.v2022.i4.311-348
https://doi.org/10.1109/ICCD.2016.7753326
https://doi.org/10.1109/TCAD.2018.2834421
https://doi.org/10.1109/TVLSI.2022.3175067
https://doi.org/10.1016/j.cose.2019.05.005
https://doi.org/10.1016/j.vlsi.2020.02.001
https://doi.org/10.1109/ITC50571.2021.00024
https://doi.org/10.1109/ICCD53106.2021.00097
http://arxiv.org/abs/2109.02379
https://doi.org/10.46586/tches.v2022.i4.255-284
http://arxiv.org/abs/http://eprint.iacr.org/2022/484
https://doi.org/10.1109/ASAP49362.2020.00029
https://eprint.iacr.org/2021/296
http://eprint.iacr.org/2021/936
https://doi.org/10.1109/TCAD.2019.2897629
https://doi.org/10.1109/ASP-DAC52403.2022.9712539
https://doi.org/10.13154/tches.v2018.i2.242-276

Challenges and Opportunities of Security-Aware EDA 43:33

[120] T. Schneider, A. Moradi, and T. Güneysu. 2016. ParTI - Towards combined hardware countermeasures against side-
channel and fault-injection attacks. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 14–18, 2016, Proceedings, Part II. 302–332. https://doi.org/10.1007/978-3-
662-53008-5_11

[121] F. Schuiki, A. Kurth, T. Grosser, and L. Benini. 2020. LLHD: A multi-level intermediate representation for hardware
description languages. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language

Design and Implementation, PLDI 2020, London, UK, June 15–20, 2020. 258–271.
[122] M. Schwarz and D. Gruss. 2020. How trusted execution environments fuel research on microarchitectural attacks.

IEEE Secur. Priv. 18, 5 (2020), 18–27. https://doi.org/10.1109/MSEC.2020.2993896
[123] A. R. Shahmirzadi, S. Rasoolzadeh, and A. Moradi. 2020. Impeccable circuits II. In 57th ACM/IEEE Design Automation

Conference, DAC 2020, San Francisco, CA, USA, July 20–24, 2020. 1–6. https://doi.org/10.1109/DAC18072.2020.9218615
[124] A. Sharifian, R. Hojabr, N. Rahimi, S. Liu, A. Guha, T. Nowatzki, and A. Shriraman. 2019. µIR - an intermediate

representation for transforming and optimizing the microarchitecture of application accelerators. In Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’52). Association for Computing
Machinery, New York, NY, USA, 940–953. https://doi.org/10.1145/3352460.3358292

[125] N. Shenoy. 1997. Retiming: Theory and practice. Integration 22, 1 (1997), 1–21. https://doi.org/10.1016/S0167-9260(97)
00002-3

[126] R. Sison and T. Murray. 2019. Verifying that a compiler preserves concurrent value-dependent information-flow
security. In 10th International Conference on Interactive Theorem Proving, ITP 2019, September 9–12, 2019, Portland,

OR, USA. 27:1–27:19. https://doi.org/10.4230/LIPIcs.ITP.2019.27
[127] P. SLPSK, P. K. Vairam, C. Rebeiro, and V. Kamakoti. 2019. Karna: A gate-sizing based security aware EDA flow for

improved power side-channel attack protection. In Proceedings of the International Conference on Computer-Aided De-

sign, ICCAD 2019, Westminster, CO, USA, November 4–7, 2019. 1–8. https://doi.org/10.1109/ICCAD45719.2019.8942173
[128] G. Smith. 2009. On the foundations of quantitative information flow. In Foundations of Software Science and Compu-

tational Structures. Springer Berlin , Berlin, 288–302.
[129] A. Solar-Lezama. 2013. Program sketching. Int. J. Softw. Tools Technol. Transf. 15, 5-6 (2013), 475–495. https://doi.org/

10.1007/s10009-012-0249-7
[130] M. Srivastava, P. SLPSK, I. Roy, C. Rebeiro, A. Hazra, and S. Bhunia. 2020. SOLOMON: An automated framework for

detecting fault attack vulnerabilities in hardware. In 2020 Design, Automation Test in Europe Conference Exhibition

(DATE). 310–313.
[131] J. Szefer. 2019. Survey of microarchitectural side and covert channels, attacks, and defenses. J. Hardw. Syst. Secur. 3,

3 (2019), 219–234. https://doi.org/10.1007/s41635-018-0046-1
[132] A. Tang, S. Sethumadhavan, and S. J. Stolfo. 2017. CLKSCREW: Exposing the perils of security-oblivious energy

management. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16–18, 2017.
1057–1074. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang.

[133] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf, R. Kastner, F. T. Chong, and T. Sherwood. 2011.
Crafting a usable microkernel, processor, and I/O system with strict and provable information flow security. In 2011

38th Annual International Symposium on Computer Architecture (ISCA). 189–199.
[134] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and T. Sherwood. 2009. Complete information flow

tracking from the gates up. In Proceedings of the 14th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS XIV). Association for Computing Machinery, New York, NY, USA,
109–120. https://doi.org/10.1145/1508244.1508258

[135] G. S. Tseitin. 1983. On the complexity of derivation in propositional calculus. In Automation of Reasoning: 2: Classical

Papers on Computational Logic 1967–1970. Springer Berlin, 466–483. https://doi.org/10.1007/978-3-642-81955-1_28
[136] S. T. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen. 2020. Secure delivery of program properties through

optimizing compilation. In Proceedings of the 29th International Conference on Compiler Construction (CC 2020). As-
sociation for Computing Machinery, New York, NY, USA, 14–26. https://doi.org/10.1145/3377555.3377897

[137] H. Wang, H. Li, F. Rahman, M. M. Tehranipoor, and F. Farahmandi. 2021. SoFI: Security property-driven vulnerability
assessments of ICs against fault-injection attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (2021), 1–1. https://doi.org/10.1109/TCAD.2021.3063998
[138] W. Wang, C. Guo, F.-X. Standaert, Y. Yu, and G. Cassiers. 2020. Packed multiplication: How to amortize the cost of

side-channel masking?. In Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory

and Application of Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part

I. 851–880. https://doi.org/10.1007/978-3-030-64837-4_28. arXiv:https://eprint.iacr.org/2020/1103.pdf.
[139] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow. 2021. Osiris: Automated discovery of microarchitectural

side channels. CoRR abs/2106.03470 (2021). arXiv:2106.03470. http://arxiv.org/abs/2106.03470.
[140] K. Xiao, A. Nahiyan, and M. Tehranipoor. 2016. Security rule checking in IC design. Computer 49, 8 (2016), 54–61.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1109/DAC18072.2020.9218615
https://doi.org/10.1145/3352460.3358292
https://doi.org/10.1016/S0167-9260(97)00002-3
https://doi.org/10.4230/LIPIcs.ITP.2019.27
https://doi.org/10.1109/ICCAD45719.2019.8942173
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s41635-018-0046-1
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1145/1508244.1508258
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1109/TCAD.2021.3063998
https://doi.org/10.1007/978-3-030-64837-4_28
http://arxiv.org/abs/https://eprint.iacr.org/2020/1103.pdf
http://arxiv.org/abs/2106.03470
http://arxiv.org/abs/2106.03470

43:34 J. Feldtkeller et al.

[141] Y. Yao, T. Tufan, T. Kathuria, B. Ege, U. Guler, and P. Schaumont. 2021. Pre-silicon architecture correlation analysis
(PACA): Identifying and mitigating the source of side-channel leakage at gate-level. IACR Cryptol. ePrint Arch. 2021
(2021). https://eprint.iacr.org/2021/530. https://eprint.iacr.org/2021/530.

[142] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. 2015. A hardware design language for timing-sensitive information-
flow security. ACM SIGPLAN Notices 50, 4 (2015), 503–516. https://doi.org/10.1145/2775054.2694372

[143] M. Zohner, M. Stöttinger, S. A. Huss, and O. Stein. 2012. An adaptable, modular, and autonomous side-channel vul-
nerability evaluator. In 2012 IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2012, San

Francisco, CA, USA, June 3-4, 2012. IEEE Computer Society, 43–48. https://doi.org/10.1109/HST.2012.6224317

Received 27 June 2022; revised 18 November 2022; accepted 30 November 2022

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 43. Publication date: April 2023.

https://eprint.iacr.org/2021/530
https://eprint.iacr.org/2021/530
https://doi.org/10.1145/2775054.2694372
https://doi.org/10.1109/HST.2012.6224317

