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1. INTRODUCTION

1.1. Preface. In this doctoral thesis the results from two of the author’s papers and a third
project are presented: [5], a joint work with YACINE BARHOUMI-ANDREANI and PETER
EICHELSBACHER, |1 1], a joint work with PETER EICHELSBACHER and BENEDIKT REDNOSS,
and a third project, which is a joint work with PETER EICHELSBACHER.

The foundation of this thesis are Rademacher random variables, which are the building blocks
of our objects of interest appearing either with the explicit probability distribution of a finite
set of spins in the Curie-Weiss model or as abstract L?-functionals depending on possibly
infinitely many Rademacher random variables. The results focus on normal approximation,
but in the context of fluctuations of the total magnetisation in the Curie-~Weiss model also
other limit distributions appear. We give a new proof for these fluctuations in Fortet—Mourier
and Kolmogorov distance, which implies new interpretations concerning the phase transition
of the model. For the above mentioned L?-functionals we derive Cramér-type moderate
deviations and non-uniform Berry—Esseen bounds. As applications we discuss partial sums
of an i.i.d. Rademacher sequence, infinite weighted 2-runs and subgraph counting in the
Erdés—Rényi random graph. Throughout this thesis Stein’s method and the Malliavin—Stein
method are important tools to obtain our results.

1.2. Convergence results in probability theory. As a starting point we introduce the
types of convergence results that will appear throughout this thesis. In probability theory
and statistics the central limit theorem (CLT) is known as one the most important and most
useful results. While historically its first versions appeared in the work of A. DE MOIVRE
(1733) and P.—S. LAPLACE (1812), who used the normal distribution to approximate dis-
tributions of their interest as the number of heads resulting from many tosses of a fair coin
or the binomial distribution, it were mathematicians as A. LyapuNov (1901), G. POLYA
(1920), J. W. LINDEBERG (1922) and others, who contributed to the rich history of the
CLT, see [13] for an extensive overview.

The classical CLT, see e.g. [9], is stated as follows: We consider a sequence (Xj)xen of inde-
pendent and identically distributed (i.i.d.) random variables with expectation p o= E[X] <
oo and variance o2 := Var(X;) < oo, for n € N the n-th partial sum S, := X; + ...+ X,, as

well as the standardlzed n-th partial sum W, := (S, — nu)/vno?, then
W, -4 Z ~ N(0,1), (1.1)

which means that W, converges in distribution to a standard-normal distributed random
variable Z as n tends to infinity. The distribution function of a normal distributed random
variable X ~ N(u,0?), also known as Gaussian distribution, is given by

(t— #)2
6 202

P(X <)
( \/ 2mo?

we call the case Z ~ N(0,1) standard-normal and define ®(z) :=P(Z < z).

Indeed a CLT is proven in a great number of situations. In particular over the years (1.1)
was generalized for not necessarily identically distributed or dependent random variables,
and was extended to the multidimensional case and other limit distributions, e.g. densities

proportional to exp ( — ‘(‘;]:)k, ) .

For now, we come back to (1.1) and ask, how large the approximation error is. A. C.
BERRY and C.—G. ESSEEN gave a first answer in 1941 respectively 1942: Under the assump-
tion, that the third absolute moments of Xy, ..., X,, are finite, we have the following bound,
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see [7] and [13],

3
sup [P(W,, < x) — P(Z < a)] < S Bl
z€eR \/ﬁ

where C' is a constant, which was original 7,59 and has been improved over the years. The

left-hand side of (1.2) is essentially the difference of the distribution functions of W,, and

Z and is called Kolmogorov distance. We will refer to this notion and other distances of

random variables more precisely in section 2.1. The right-hand side of (1.2) can be, apart

from seeing it as an approximation error, interpreted as the speed of convergence of (1.1). In

(1.2)

this case it is of order O(ﬁ) , see section 1.5 for Landau notation O(.), and was proved to be
optimal. Due to the fundamental work of BERRY and ESSEEN mathematicians are used to
call results as (1.2) Berry—Esseen-type results. Note, that we have to distinguish uniform and
non-uniform Berry—Esseen bounds. While uniform bounds as (1.2) have a supremum, here
over all z € R, this is not the case for non-uniform bounds. As a consequence the right-hand
side of such bounds has an additional prefactor depending on our real variable x, e.g. a result
by [8] for independent and not necessarily identically distributed random variables is given
as follows:

n 3
POV, < 2)—B(Z < )| < 03 L
o1+

(1.3)

So far, we talked about the approximation error in the CLT, but to become more precise
we talked about the absolute error. We can be also interested in the relative error and this
motivates the notion of moderate deviations. The theory of moderate deviations goes back
to H. CRAMER in 1938: Under the assumption, that ;4 = 0 and o? = 1, W,, simplifies to
W,, := S, /+/n and we can rewrite (1.1) to

P(W,, > x)

P(Z > 1) — 1 for x=0(1), (1.4)

which is a consequence of the convergence in distribution. CRAMER was asking what happens,
if  depends on n € N such that 2 — oo for n — 0o? Can we find an interval such that (1.4)
holds for 0 < z < I(n),I(n) — co? The answer was given by himself: Under the assumption,
that the moment generating function E[et‘X”] < oo for all 0 <t <ty with tg > 0,

P(W,
]PS(Z>>:;;) =1+0M)n 21423 for 0<az<n'/C (1.5)
and the result is optimal, see e.g. [21] and [78]. Reminiscent of (1.5) for a sequence (Yy,)nen

of random variables, such that Y, KN Y, the moderate deviation of Cramér-type is given by
P(Y, > x)
P(Y > x)

with range 0 < z < a,,, where a,, — oo for n — oc.

Apart from moderate deviations there is also the notion of large or moderate deviation prin-

ciples (LDP, MDP), we refer to [26] for a precise definition. The MDP corresponding to (1.4)
is given by

=1 + error term — 1

1 x?
lim. élog(P(Sn/bn > ) ==~
where /n << b, << n, so a scaling inbetween a central limit theorem and a law of large
numbers. At the end of [30] it is shown that moderate deviations of Cramér-type imply

MDPs, but we will not go deeper into that.
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1.3. Results for Rademacher random variables. Now we come to the concrete objects
we will investigate and the concrete results we will prove throughout this thesis.

Although probability theory is a large field in mathematics and we can have all kinds of
complicated distributions in mind, already some of the easiest can give fascinating results.
As we mentioned before, in 1733 DE MOIVRE was interested in the number of heads resulting
from many tosses of a fair coin. If we toss a fair coin, there are two outcomes to expect: heads
and tails. Another possible interpretation is success and failure, which we can identify with
+1 and —1. Random variables, that take only values +1 and —1 with probabilty p € (0,1)
respectively ¢ := 1 —p are known in the literature as Rademacher random variables. Depend-
ing on the source, the classical Rademacher distribution, named after H. RADEMACHER, is
defined for p = q = %, but the notion can be also used for general p. We will work with
Rademacher random variables to construct our objects of interest and among them we can
distinguish two main types: First, we treat the Curie-Weiss model as an example for an
explicit probability distribution depending on finitely many Rademacher random variables.
Secondly, we consider general L2-functionals over possibly infinitely many Rademacher ran-
dom variables, sometimes just called L?-Rademacher-functionals. In what follows we give an
overview which results other authors proved concerning our topics and how we continue their
considerations with our new results.

In statistical mechanics the Curie—Weiss model of n spins at temperature 7" > 0 is the

joint distibution of the random variables (X ]gﬁ ))1§k§n defined by

P(X{7 = ay.., X = 2,) = &) do(:), (1.6)
where 3 := T~ is the inverse temperature, s, := S_}_; xy and Z, 3 a normalizing constant
to ensure (1.6) is a probability distribution. Moreover we denote by g the distribution of

a single spin for # = 0. In our case the spins (X,S”)lgkgn are i.i.d. Rademacher random
variables with p = g = %, in other words o = %(5“ +d_1), see also subsection 2.2.1. This
setting is also known as the classical Curie—Weiss model.

The Curie-Weiss model was originally introduced by P. CURIE in 1895 [25] and refined by
P.—E. WEISs in 1907 [100] as an exactly solvable model of ferromagnetism: the ferromagnetic
alloys have the property of spontaneously changing their magnetic behaviour when heated,
once a certain critical temperature treshold is reached.

Nowadays, it is presented as a mean-field approximation of the more refined Ising model, e.g.
as the replacement of an interaction with nearest neighbour 3=, ; X; X; by an interaction with
all other spins Y, ; X; X, see e.g. [49, chapter 2]. Such approximations are frequently per-
formed in probability theory in general and in statistical mechanics in particular. Replacing a
complex model with a simpler one whose overall behavior may be examined through explicit
computations allows to get an intuition of the features that can be inferred from the original
model, sometimes with no alteration. In particular, the Curie-Weiss model does exhibit a
phase transition with three distinct behaviours at high, critical and low temperature.

We refer to [19, ch. 2] for a friendly introduction to its main properties, or the more classical
references, e.g. [10], [54], [93] and [99].

Of particular interest is the distribution of the (unnormalised) total magnetisation

MP =3 X, (1.7)
k=1

since this random variable contains all the information of the model, as the distribution of
every spin is defined by means of M%),
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The difference of behaviour of the system when the inverse temperature  varies can be
summarised in the following theorem that can be found e.g. in the books [10], [38], [19], [51],
(93] and [99] or in the papers [33], [39], [10] and [92]. We have the following fluctuations of
the total magnetisation:

(1) For g < 1 and Zj NN(O,ﬁ),
1
NG

ac4
(2) For f =1 and F, with density e~ 12,

M L5 7, (1.8)

Z
ni/‘l VAQENNG (1.9)
(3) For f=1— X with 7 € R fixed, and F, with density e 7% 72,
ni/4 M-V L R (1.10)
(4) For > 1 and 9§, the dirac measure of z,
iMff) N ;(5% +0.my),  ms = tanh(Bmy). (1.11)

We note that in case (3) the left transition v > 0 and the right transition v < 0 give the
same limiting law, even though the graph of the density displays a very different behaviour,
with two different modes that announce the case § > 1 in the second case. This continuous

phase transition is characteristic for the classical Curie-Weiss model, see e.g. [19, § 2.5.3].

Several modifications and follow-ups to (1.8) — (1.11) can be made: universality of the limits
when the law of the (Xj); is changed, see [39] and [10], dynamical spin-flip version, see [63],
concentration properties of the spins around the limit in the case 5 > 1, see [11] and [15],
moderate and large deviations, see [32] and [38], modification of the Hamiltonian leading to
the Curie-Weiss—Potts model, see [341] and [11], the inhomogeneous Curie-Weiss model, see

[31], etc. These results allow the variety of techniques used in probability theory to express
their power and illustrate a form of richness of the field, both in the questions asked and in
the responses that follow.

In a domain as venerable as the Curie-Weiss model, older than 100 years, it seems very dif-
ficult to innovate, especially with the original model of £+1-spins. In addition to the classical
studies in [39] and [10] that use the Laplace transform, one should add the classical tools of
probability theory when concerned with distributional approximation such as Stein’s method
of exchangeable pairs, see [11], [15], [10], [33] and [90].

In this thesis we aim for giving yet another proof of the old and respectable results (1.8)
— (1.11) with the additional result of the speed of convergence in Fortet—Mourier and Kol-
mogorov distance.

For this intention we will work with a very important feature of the Curie-Weiss random
variables (1.6), which is the existence of an exchangeability measure. Here, exchangeability
means that the joint distribution of the Curie-Weiss spins does not change if they are per-
muted. While exchangeable pairs have been used thoroughly by means of Stein’s method,
writing the spins as i.i.d. random variables conditionally to a measure of mixture is a par-
ticularly strong peculiarity that was taken advantage of in several works on the Curie-Weiss
model, for instance the papers [13], [53], [66] and [76]. The authors of these papers use in an
extensive way the existence of a De Finetti measure of exchangeability for the Curie-Weiss
spins to tackle natural probabilistic questions as functional CLT, extension to infinite ex-
changeability, etc., but none of these problems will be treated here, though; we will focus
exclusively on a new approach to (1.8) — (1.11), and for this approach the general theory of
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B. DE FINETTI as well as the De Finetti measure of the Curie-Weiss model will be funda-
mental, see section 2.3. We want to emphasize that this approach is also promising for other
mean-field models.

An important role for our second topic plays a paper written by Z.—S. ZHANG, which we
cite here in its first version [101] and its latest version [102] to compensate changes in the
content. In [102] ZHANG was able to prove Cramér-type moderate deviations for unbounded
exchangeable pairs (W, W’). For such pairs it holds that (W, W’) and (W', W) are equal
in distribution. If the difference W — W' is bounded, we call (W, W’) bounded, otherwise
unbounded. ZHANG developed his moderate deviations by stopping the proof of the cor-
responding Berry—Esseen-type inequalities, he had obtained before by Stein’s method, at a
certain point and continuing differently. Stein’s method is basically a powerful tool by itself
to derive upper bounds for differences of probability distributions, originally developed for
the normal distribution and later extended to other distributions. We refer to section 2.1 for a
formal introduction to Stein’s method and exchangeable pairs, which are typically combined
with it. ZHANG rearranged the fragments of the so-called Stein-equation and the bound of
its solution, a technique that was already seen in [19], [16], [32] and [89]. This technique will
be the core of the proof of our result.

Our ambition is to prove Cramér-type moderate deviations for L2-functionals over infinitely
many independent Rademacher random variables taking values +1 and —1 only. This new
general result intersects with [15], where the authors obtain Cramér-type moderate deviations
via p-Wasserstein bounds, and we will refer to that. For L?-Rademacher-functionals a Kol-
mogorov bound in the context of normal approximation was shown recently by P. EICHELS-
BACHER, B. REDNOSS, C. THALE and G. ZHENG in [30, Theorem 3.1] such that the bound-
ing terms can be expressed in terms of operators of the so-called Malliavin—Stein method,
see section 2.2. Normal approximation of L2-functionals over infinitely many Rademacher
random variables was derived already in [73], [01], [62] and [29]. Theorem 3.1 in [30] will be
our starting point.

Last, we deal with non-uniform Berry—Esseen results. The first bounds of this type came
from ESSEEN himself in 1945, see [11], for independent and identically distributed random
variables with finite third moments. They were improved by [70] in 1965 and generalized by
(8] in 1966 for independent and not necessarily identically distributed random variables to
(1.3). Moreover the constant C' was improved over the following decades.

In 2001, L.H.Y. CHEN und Q.-M. SHAO [21] generalized (1.3) and proved their bound
without assuming the existence of third moments. Another feature of their bound is the
truncation of the random variables at 1:

EXLgxo1eep | BIXGF Lpxisiven )
(1 +[a)? (1 +[a)?

P(W < z2)— &(z)] gCi( (1.12)

More precise, in (1.3) and (1.12) it is W = 332, X; for an independent and not necessarily
identically distributed sequence (Xj)reny with E[X}] = 0, Var(X;) < oo and Var(W) = 1,
with respectively without existence of absolute third moments, and C an absolute constant.
A few years later CHEN und SHAO [22] established a similar result under local dependence.
They obtained both of their results by a combination of Stein’s method and a concentration
inequality approach.

In the following years, continuations of the work of CHEN und SHAO can be found in [3]
for translated Poisson approximation or [23] for nonlinear statistics. Moreover papers, which
aimed for improvement or lower bounds of the absolute constant in the non-uniform prefactor,
or comparable results under stricter moment assumptions, are [57], [58], [79] and [91].
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The specific starting point in this thesis is [67], where D.L. Liu, Z. L1, H.C. WANG and Z.J.
CHEN showed non-uniform Berry—FEsseen bounds for normal and nonnormal approximations
by unbounded exchangeable pairs (W, W’). They referred to a corresponding uniform bound
in [90] and proved their main result without concentration inequalities. Recently their work
was generalized in [97] for the normal approximation case under the additional assumption
of E|W — W'|”" being of certain order.

When we studied the proof of the main result in [67], our observation was the following:
The non-uniform bound consists almost of the same terms, which were constructed by the
theory of exchangeable pairs, as the uniform bound in [90], but with a prefactor depending
on z € R. The reason for that type of bound is a strict separation between the mentioned
terms and the fragments of the Stein-equation of the corresponding exchangeable pair by
the Cauchy—Schwarz inequality. Most of the proof depends on the Stein-equation, whose
fragments have to be bounded precisely to lead to the desired prefactor, and not on the
exchangeable pair itself. This motivates our attempt to adapt the argumentation in [67] to
obtain non-uniform Berry-Esseen results for L?-Rademacher-functionals in the context of
Malliavin—Stein method. Moreover we will derive an analogous result for so-called Poisson-
functionals, see subsection 2.2.3 for a short introduction.

1.4. Overview. The remaining chapters of this thesis are structured as follows.

CHAPTER 2 thematizes the preliminaries, meaning methods, models and notions, which
will appear in the following chapters. In section 2.1 we present important aspects of Stein’s
method as the concept of the method, its history, properties of the Stein-equation and its solu-
tion, and techniques to bound latter ones. The combination of Stein’s method and Malliavin
calculus is known as Malliavin—Stein method, which is topic of section 2.2; in particular we
introduce operators from Malliavin calculus for L2-Rademacher- and L?-Poisson-functionals.
In section 2.3 we discuss the De Finetti theorem and write down the corresponding measure
of the Curie-Weiss model explicitly. Furthermore we motivate the application of surrogate
random variables in probability theory and construct our specific surrogate random variable
by a combination of the Gaussian CLT in the particular case of Rademacher random variables
and a randomisation of the Rademacher parameter p, which is distributed with respect to
the De Finetti measure of the Curie-Weiss model.

In CHAPTER 3 we investigate the Curie-Weiss model by using surrogate random variables,
which are distributed with respect to its De Finetti measure of exchangeability, and give
a new proof of the phase portrait of the model. Writing the magnetisation as a sum of
i.i.d. Rademacher’s randomised by the underlying De Finetti random variable, we show that
the apparition of a phase transition can be understood as a competition between these two
sources of randomness, the Gaussian randomness coming from the CLT approximation and
the randomness in the mixture of the Rademacher’s. We consider four cases: sub critical
(B < 1), critical (8 = 1), near critical (f =1%+ %) and super critical (8 > 1). The results
are proven in Fortet—Mourier distance, see section 3.1, and Kolmogorov distance, see section
3.2, which implies in particular convergence in distribution. Moreover the results include
speeds of convergence. In section 3.3, an appendix, we analyse diverse constants, which are
relevant for the underlying De Finetti measure.

In CHAPTER 4, section 4.1, we derive moderate deviations for normal approximation of L>-
functionals over infinitely many Rademacher random variables. They are based on a bound
for the Kolmogorov distance between a general L2-Rademacher-functional and a Gaussian
random variable, continued by an intensive study of the behaviour of operators from the
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Malliavin—Stein method along with the moment generating function of the mentioned L?-
functional. We treat the i.i.d.-case as a first application and get the optimal range from
CRAMER in section 4.2. At last, we study infinite weighted 2-runs with general summable
coefficient sequences in section 4.3. Despite their comparatively simple structure, the corre-
sponding proof is challenging. Moreover we look at examples for coefficient sequences where
the result is optimal.

In CHAPTER 5, section 5.1, we obtain non-uniform Berry-Esseen bounds for L?-Rademacher-
and L2-Poisson-functionals, which include a non-uniform second-order Gaussian Poincaré in-
equality in the Rademacher case. The foundation for these bounds are the corresponding
uniform Berry—Esseen bounds respectively their proofs, where we separate the terms consist-
ing of operators from Malliavin—Stein method and the terms consisting of fragments of the
Stein-equation from normal approximation. Latter ones have to be bounded precisely to give
us the prefactor of the non-uniform bound, whose order depends on the existence of higher
moments of the considered functional. As applications we treat infinite weighted 2-runs and
subgraph counting in the Erdés—Rényi random graph in section 5.2.

1.5. Basic notions and notations. At last we want to collect some basic notions and
notations from probability theory, which partially already appeared and will accompany us
through this thesis. If not mentioned explicitly, all appearing random variables are defined on
an appropriate probability space (2, A,P). The ezpectation E(X), the variance Var(X) and
the pth moment E(XP?) of a random variable X are computed with respect to the underlying
probability measure P. If E(|X]") < oo, we write X € LP(Q).

We call two random variables X and Y equal in distribution, if P(X <t) =P(Y <t)VteR

and then we write X V. A sequence of random variables (Y,,)nen converges in distribution
to a random variable Y, if P(Y,, <t) — P(Y <t) asn — oo V¢ € R and then we write

Y, ey, Alternatively we can also say law instead of distribution for these notions.

A distribution very similar to the Rademacher distribution is the Bernoulli distribution,
classically taking values 0 and 1 only. We will sometimes see this more general and call a
random variable B Bernoulli distributed, if it takes values +x only, apart from +1, with
probability p respectively 1 — p and then we write B ~ Bery,(p).

Denote by U([a,b]) the continuous uniform distribution on an interval [a,b]. If a random
variable X is absolutely continuous with Lebesgue-density f, we write P(X € dt) = f(t)dt.
Throughout this thesis we use the usual Landau symbols; the big-O notation O(.) and the
small-o notation o(.) with the meaning that the implicit constant does not depend on the
parameters in brackets.

Moreover we define the supremum norm || f|| ., := sup,cg | f(x)| for any function f: R — R.
We denote by C! the continuous and continuously differentiable functions, while by C* we
mean the infinitely often continuously differentiable functions.
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2. PRELIMINARIES

2.1. Stein’s method.

2.1.1. General concept. In 1972 CHARLES STEIN established a method to provide explicit
bounds for the quality of the approximation of a probability distribution through another,
with normal approximation as its original application. Over the years this method has become
famous as Stein’s method. We want to explain its main ideas and refer to [1], [35], [20] and
[18] as sources and also for further information. The foundation of Stein’s method is an
important characterisation of the standard normal distribution, also known as Stein-Lemma.
According to [1, Lemma 2.1] it is

Z ~ N(0,1) & E[f'(Z) — Zf(Z)] =0 (2.1)

for all continuous and piecewise continuous differentiable f : R — R such that the appearing
expectations exist. So if a random variable is in some sense close to N(0, 1), it is likely that
the expectation in (2.1) is close to 0. The appropriate way to express this closeness is to
work with distances of random variables respectively their probability distributions. All these
distances are of the following form: For a fixed class of test functions H, which determines
an associated metric, and random variables X and Y we are interested in

du(X,Y) = sup [E[A(X)] = E[R(Y)]].

While H = {14 : A measurable} and H = {h : R — R : |h(z) — h(y)| < |z —y|} for
the total variation distance respectively the Wasserstein distance are also possible choices in
probability theory, throughout this thesis we will focus on the following two distances:

e For H ={h:R—=R: |l <1,|I|, <1} the Fortet-Mourier distance is given by

din (X, ') := sup [E[A(X)] — E[h(Y)]] (2.2)
€
o For H = {1y <y : t € R} the Kolmogorov distance is given by
i (X, Y) = sup [B(X < ¢) — (Y < 1)]. (2.3)
teR
Thus the Stein-equation, written in the case of Kolmogorov distance, is given by
flw) —wf.(w) = liw<ay — ®(2), (2.4)
respectively for our random variable of interest
Sup [ELL2(W) = W L(W)]| = sup [P(W' < z) — (2] (2.5)

(2.4) is a differential equation and we can solve it with the following trick: We multiply on
both sides by —e~**/2 and rewrite the new equation to

(e_wz/ZfZ(w)>/ — w2 (1{w§z} — CD(Z)) .

Then the solution f = f, is given by
folw) = [ (L = 0(2)) e 2

= —ew2/2/ (1{359} — CD(z)) e 2y
{@(w)(l—@(z)) w< 2,

W)
e@(iZow) o, (2:6)
p(w) ’
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where p(w) = e~**/2/\/27 is the density of N'(0,1). If we combine (2.4) and (2.6) we obtain
also the first derivative

fow) = wf(w) + Lipesy — (2)
_ {wfz(w)—i-l—@(z) w < z,
wfz<w) o (I)(Z) w > z;

(2.7)

- {( 2rwe (w) +1)(1 - (2)) w < z,
(V2mwe® /2(1 — ®(w)) — 1)®(2) w > 2.

Now we want to collect useful properties related to (2.6) and (2.7), mostly extracted from

[20, Lemma 2.3]:

V2r 1
0 < f.(w) < min {47T, M} for all w € R, (2.8)
wf,(w) is an increasing function of w € R, (2.9)
lwf.(w)| <1forallw € R, (2.10)
lwf,(w)] < (1 —&(2)) for allw < 0 < z, (2.11)
|f/(w)| < 1 for all w € R, (2.12)

1-0 1 v2
1= ow) Smin{,ﬂ} for all w > 0, (2.13)

p(w) w2

and if a statement is valid for all w € R, it can be written in particular with |[|.|| .
(2.13) is known as Mill’s ratio for the standard normal distribution. It can be used together
with (2.6) to obtain (2.11) as follows:

[ f2(w)] = |w] V2me” (w)(1 - @(=))

= (1= @(=)(1 = B(fw])v2r |w] /2
< (1 - (I)(Z>>7

where we also used the symmetry of ®. We will need this more precise bound of |wf,(w)| for
the main result in section 4.1, where we distinguish different cases for w € R.

Motivated by (2.5) our main task is now to show that E[f.(W) — W f.(W)] is small. There
are several techniques, which have proven to be very useful for that purpose. One thing they
have in common is the idea of coupling. By that we mean that our random variable of interest
W is coupled with another random variable W', resulting from W by a slight change and so
in some sense close to W. This concept differs within the approaches and will become more
clear, when we illustrate them now.

2.1.2. Leave one out approach. Let Xy, ..., X, independent random variables with mean zero
and variances 0%, ..., 02 with ¥/, 07 = 1. Further let W = Y% ) X; and W = 3" X, the
sum where we leave the i-th summand out. The key element is now the independence of W
and X;. Due to that

E[Wf(W)] = Y E(Xif (W + X))

=1



Precise approximations of Rademacher functionals 13
n 1 n
_ EX?// 0 4 X, ) E(X, f(W®
SE(X [ (WO +uXi) du) + S E(Xis (W)
n 1 )
- $oa ([ o o)
- 0

and

Combining the last two equations leads to

" 1 | |
BL(V) WA (W) =3 E(Xf L5 () = 5 (w0 4 ux,)) du)
+ Y E( (W)~ D)),
Both terms include a difference of ﬁr;?derivatives, 30 We can use
FV) = W <X 1)l (2.14)

for the second term, if f has a bounded second derivative, see subsection 2.1.5 for a related
discussion. We get an analogous bound for the first term since u is bounded by 1. Then

n

EW) - W < 171 S (E1XF +2EIX]) <2/l S EIXE (215)
=1

=1

usin - | < i 2 E | X; 3 1/?’b Holder’s inequality. If we consider i.i.d. scaled
g EXIE|X;| < (E|Xi|°) y quality.

random variables X; = n~'/2¢; our bound (2.15) is of the form

C-El’
E[f'(W) =W fW)] < ——.
[ELf(W) =W W)l < NG
The authors of [21] apply the leave one out approach together with concentration inequalities
to obtain (non-) uniform Berry—Esseen bounds. In the sequel, [22], the approach is generalized

for a setting with local dependence, in which not only one summand is left out, but every
summand depending on a random variable with fixed index, to get corresponding (non-)
uniform Berry—Esseen bounds.

2.1.3. Exchangeable pairs. We call a pair (W, W’) of random variables an ezchangeable pair
if (W, W) £ (W', W). If for some 0 < A < 1 the exchangeable pair satisfies the linear
regression condition

E[W — W'|W] = AW, (2.16)

then we call (W, W') a A-Stein Pair or just Stein Pair, see [0] for an introduction to condi-
tional expectations. Typically in settings with dependency (2.16) does not hold exactly, but
with a remainder random variable R of small order such that

E[W — W/|W] = AW + R.
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We define A := W — W’. In case A is bounded we call the exchangeable pair bounded,
otherwise unbounded. There are some basic properties of a Stein Pair (W, W), which follow
almost immediately from the exchangeability:
e EW]=E[W]|=0,if R=0,
o E[A?] = 2\ Var(W), if Var(IW) < oo,
o E[F(W,W")] = 0 for all anti-symmetric measurable functions F' such that the expec-
tation exists.

Now we want to give an example for an exchangeable pair. Let Xi,...,X,, be independent
random variables with mean 0 and variance 1. Next we take copies X1,..., X! of X;,..., X},

where X < X/ and the X] are independent as well as independent from all X;. Last let I be
uniform on {1,2,...,n} and independent of all X; and X/. Then we define

W= fj X, and W— W - 2L A
= — ; an =W - — .
Vi & Vit
So we remove a randomly chosen summand and add an independent copy of it. It follows
mainly from

1
_ b1 zn:IE(X — X!|W)
=i l i
= LS TR(XW) ~ B(XYW)
Van& ' ’
1
=-E
B (W[11)
1
=-W
n
that (W, W’) is a Stein-Pair with A = £, where we used in particular E(X/|W) = E(X]) =0
by independence of our random variables. We refer to [20, Lemma 2.7] and its proof to show
how the terms of the Stein-equation in the general exchangeable pair setting look like, namely
1 1 0
ELf(W) = W) = E(f/0) (1 - 5 ER2W]) ) + 7E(A [ (70V) = OV +0)dt).

It is a priori not obvious whether the first term can be bounded well, but if Var(1#') = 1 and
we recall E[A?] = 2\ Var(T) the success of this representation becomes more clear. Note that
these are the original terms to rewrite the Stein-equation, but they have been modified over
the years in particular for unbounded exchangeable pairs, see e.g. [33], [90], [102] and [67],
where the authors obtain (non-)uniform Berry—Esseen bounds and Cramér-type moderate
deviations.

2.1.4. Size-bias- and zero-bias-transformations. Since these techniques were not used in our
research, we just give a short introduction here.

For a random variable X > 0 with E[X] = y < co we say the random variable X* has a
size-bias distribution with respect to X if for all f with E|X f(X)] < oo we have

E(Xf(X)) = pE(f(X*)). (2.17)

For a real-valued random variable X with E[X] = 0 and E[X?] = 0 < 0o we say the random
variable X7 has a zero-bias distribution with respect to X if for all absolutely continuous f
with E | X f(X)| < co we have

E(Xf(X)) = o*E(f'(X7)). (2.18)
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We see immediately how our term of interest E(X f(X)) is rewritten by the defining equations
(2.17) and (2.18). In fact, similar to the previous two subsections bounds obtained by the

size-bias or zero-bias approach rely on the difference ‘X - X S‘ respectively ‘X - X7

, see
e.g. sections 5.1 and 5.3 in [20] for related results.

2.1.5. Further techniques. In this subsection we want to introduce certain techniques that
can be seen as an addition to those mentioned so far. We recall, how we wrote the solution
of the Stein-equation and related bounds explicitly in the Kolmogorov case in subsection
2.1.1. This can be also done similarly for general real valued measurable test functions h
with E[h(Z)] < co. Then we have

fulw) = e [* (h(z) — Bb(2)]) e d

—0o0

— 2 [* (h(a) ~ BIH(Z)) e *2do.

w

and for absolutely continuous h : R — R, by [20, Lemma 2.4],

il < min(y/7/2 [1() — BB 2]
[#1loe < min(2[12C) = BBl 2/ [ )

1filloe < 2017l -

The upper bounds of f; and its derivatives depend on derivatives of the test functions and
for higher derivatives more restrictive assumptions concerning boundness and continuouity
of h,h/,h”,... are needed. Thus in the field of Stein’s method there is an ambition to avoid
higher derivatives if possible. In particular if we are interested in Kolmogorov distance the
main problem is || /]|, = oo and (2.14) cannot be applied. To work against this problem a
rather simple but effective ¢rick is to replace f'(W) by the rest of the Stein equation (2.4).
Furthermore, if there is already a difference of first derivatives we can get even more benefit
from it: The structure

FOV4t)— (W)= (W ) f(W +1) = WFW) + Lawrresy — Lowen

motivates to use the monotonicity (2.9) of wf(w) as well as that the indicator 1g,<.; is
a decreasing function in w for further computations. This monotonicity argument does not
require a second derivative and was applied many times in research related to Stein’s method,
but it was used in [90] for the first time to prove noticeably simplified bounds in the context
of (non-)normal approximation for unbounded exchangeable pairs.

2.1.6. History. Now that we have collected many of the formulas and techniques related to
Stein’s method, we finish this section with a brief overview on its history, see [18]. Although
C. STEIN already worked on his method in the 1960’s, his fundamental papers [91] and [97]
were published in 1972 respectively 1986. In these he established his general method as
well as the leave one out approach and exchangeable pairs. While the concept of size-bias
distributions appeared for the first time in 1989 [2] and was extended in 1996 by [52], zero-
bias distributions were considered first in 1997 by [51].

Another reason for the success of Stein’s method is that its ideas can be applied to many other
distributions apart from normal distribution. Among these are the Poisson- [17], binomial-
[95] and gamma-distribution [68], distributions with density proportional to exp(—%) [16]
and [33], and more. Especially for continuous distributions there is a strategy how to find
characterizations reminiscent of (2.1) known as Stein’s density approach. The idea is to
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choose an expression like f/(x) + ¢ (z)f(z) with ¢(z) being f:((f)), if o(x) is the density of the

target distribution. In the case of the standard normal distribution we get

"(x re 7
£+ 20 f(@) = ) - @) = ) - 2 (w),
() ez
the lefthand side of the classical Stein-equation. We refer to [90] for technical details and

further information about the density approach.

Over the years Stein’s method has never stopped to expand in various directions with their
own applications such as the Malliavin—Stein method. This method will be considered in
the next section. Moreover the so-called Stein—Tikhomirov method was developed by several
authors. It combines the original theory of Stein with the theory of characteristic functions,
see [98] and also [35].
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2.2. Malliavin—Stein method.

2.2.1. Malliavin calculus. Historically Malliavin calculus was applied first to Gaussian- [72],
then to Poisson- [77] and then to Rademacher-functionals [73] — in fact these are all since for
other distributions the chaos representations of the corresponding functionals do not exist.
We want to summarize the setting and the operators that will appear in our results later on.
Due to the focus of this thesis on Rademacher random variables we present the corresponding
notions more extensive, while the Poisson case will play a minor role. We refer to all sources
mentioned so far and additional to [36] and [60] for further details and information as well
as [09] for further results related to the topic.

The Rademacher case. We start with [(N), the space of real square-summable sequences,
formally defined as

P(N) := {(an)ken| lallfog < o0},
where the norm
H@||z22(N) = aj (2.19)
keN
is induced by the scalar product
{a,b) := > arby, a,be *(N).
keN

Moreover, by [?(N)®? we mean the pth tensor product of [>(N) for p € N. Relevant subsets are
[>(N)°?, the symmetric functions in [*(N)®?, and [2(N)°?, the symmetric functions in [*(N)®?
which vanish on diagonals.

Let (pr)ren a sequence with pg € (0,1) and (€2, F,P) a probability space such that

Q:= {_17 +1}N7 F o= P({_la +1}>®Nv P:= ®(pk5+1 + (1 - pk)é—l) )

where 04 is the unit-mass dirac-measure concentrated at +1 and P(M) the power set of a

set M. Then we define X = (Xj)ren, an i.i.d. sequence of Rademacher random variables, on
(Q, F,P):

]P()(k:: 1) = Pk,
P(Xy=-1)=q =1—py,
and, if needed, the standardized random variable

_ Xk —Di + Qe
2\/qxDx

We are interested in square-integrable random variables F' € L*(Q,0(X),P), with o(X) the

Yi VkeN.

o-field generated by X. According to [30, Proposition 6.7] and section 2.1 in [59] we can
write this space as the following direct sum:
L*(Q,0(X),P) = € C,, (2.20)
n€eNp

where Co = R and C,, = {J,,(f) : f € I*(N)®"}, the nth Rademacher chaos. C, consists of
square-integrable n-linear polynomias J,(f) defined by

Tf)= > [l in)¥s Y Y,
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where f € Z(N)" and A, := {(i1,...,7,) € N" 1 i; # ipforj # k}. J,(f) is called the nth
discrete multiple integral. The decomposition (2.20) is known as Wiener-Ito- Walsh decompo-
sition and as a consequence we can write F' € L?(Q,0(X),P) as

F—EF+Y Ju(fn) (2.21)

for a unique sequence of functions (f,)neny with f, € I2(N)°™.
For F = f(X) = f(X1, Xy, ...) € L'(Q,0(X),P) we define the discrete gradient Dy, F of F at
kth coordinate:

DyF = \/pea(Fy — Fy),

DF := (D,F, DsF,...),
where Flj = f(Xl, ...,Xk,1,+1,Xk+1, ) and Fk_ = f(Xl, --'>Xk717 —1,Xk+1, ), k € N.
So we fix the k-th Rademacher random variable of our functional at 1 respectively -1 and
are interested in the difference. It follows from the definition that D,Y; = 1—;,. Note that

throughout the literature it is not unusual to define the discrete gradient D a priori for a
Rademacher chaos of fixed order, but D can be extended consistently to

D'2 := Dom(D) = {F € L*(,0(X),P)|E[|| DF|[js) < oo} ,

where
EH|DF||122(N)] =E Z(DkF)Q )
keN
see section 2.4.1 in [60]. More precise, if ' has a chaos representation (2.21) it holds that
DkF = Z an—l(fn(': k))) (222)

n=1

where f,(-,k) € [2(N)°"~! is a function with one fixed component and n — 1 variables, see
(59, Proposition 2.1.17]. Next we define the divergence operator §, also known as Skorokhod
operator, and its domain Dom(6). For u := (ug)ren € (L*(Q))N with

. i Jur(Ful B)),

where f,, € [2(N)""! @ [?(N) for n € N, we say that u € Dom(9), if

e —~ 2
z::ln' anlAn 2(Nyen < Q.
By f(ky,....kn) = %degn f(ksq1), -y ko)) We mean the canonical symmetrization of a

function f in n variables such that G, is the symmetric group on {1,...,n}. Then, for
u € Dom(9), the operator ¢§ is given by

3(u) =3 Ju(fala,) - (2.23)
n=1
Another way to characterize ¢ is by the duality, see [59, Lemma 2.1.22],
E[(DF,u)] = E[Fi(u)], F €D"“* ue€ Dom(s), (2.24)

such that we can identify 0 as the adjoint operator of D. Furthermore we can rewrite its
domain to

Dom(8) = {u € L*(Q, 52(N))|3 C, >0V F e D" [E[(DF,u)]| < Cm/E[FQ]} :
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For
F € Dom(L) = {F =E[F]+ Y Ju(fn) € L*(,0(X),P)| Y n’n! anHlQQ(N)@n < oo}
n=1 n=1
we define by
LF = Z —ndy(fn),
n=1
1 = 1
LF = Z——Jn(fn),
n=1 n

the Ornstein—Uhlenbeck operator L and the pseudo-inverse Ornstein—Uhlenbeck operator L™!.
It is possible to show that F' € Dom(L) is equivalent to F' € DY? and DF € Dom(d); in this
case, it holds that

L=-6D. (2.25)
The validity of (2.25) follows mainly from

DF = (Dshes = (S ndalhle k) =(32 cs(on 1)

keN keN
and
—0DF = =3 Ju(nfala,) = 3 —nJu(fa)
n=1 n=1

by definitions (2.22) and (2.23), and we refer to [9, Lemma 2.1.25] for details. We want to
emphasize that (2.24) and (2.25) will be very important for the connection of the Malliavin
operators we introduced and Stein’s method, which we will illustrate in subsection 2.2.2.
Before that we finish the introduction into Malliavin calculus by giving two examples of L*-
Rademacher-functionals we will investigate in the upcoming chapters.

Infinite weighted 2-runs. Due to their simple dependence structure, runs, and more gen-
erally weighted or incomplete U-statistics, lend themselves to normal approximations, see
[84], where an exchangeable pair coupling is employed for a normal approximation. In [81]
the authors studied even degenerate weighted U-statistics, where either weights are consid-
ered which ensures a weak dependence or kernel functions are considered which depend on
the sample size n in a specific way. See also subsection 1.2 in [74], where subgraph counts
in random graphs are considered. Here we consider infinite weighted 2-runs, where random
variables are possibly depending on the whole infinite sequence of i.i.d. Rademacher random
variables.

Let X = (X;)iez be a double-sided sequence of i.i.d. Rademacher random variables such that

P(X; =1) =P(X; = —1) = 5 and let for each n € N, (agn))iez be a double-sided summable
sequence of real numbers. Usually 2-runs are definded with a square-summable sequence but
this will be not enough.

The sequence (F),),en of standardized infinite weighted 2-runs is then defined as

F, = é, Gn=> a1, neN, (2.26)
Var(G,,) i€Z
where & = % for + € Z. More generally one can consider an infinite weighted d-run

defined by
Gu(d) = Z az('n)fi v itd—1s

€L
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which is a weighted degenerate U-statistic of degree d. However, since the analysis for any d
is of the cost of a quite cumbersome notation, we will focus on the case where d = 2 (2-runs).
(n)

Since the behaviour of the coefficient sequences (a; "’ );cz will be very important for our stud-

ies we define for p > 0 the IP-norm by ||al;sz) = (Zicz |ai|p)1/p.
For recent results on 2-runs combined with Malliavin—Stein method see [36], [60] and [73].

Subgraph counting in the Erdds—Rényi random graph. We start with the complete graph
on n vertices and keep an edge with probability p € [0, 1], while we remove it with prob-
ability ¢ := 1 — p, for all edges independently from each other. The outcome is known
as the classical Erdés—Rényi random graph G(n,p) and in many applications p depends on
n. We fix a graph Gy with at least one edge and consider the number W of subgraphs
H C G(n,p), which are isomorphic to G. Note that we are calling two graphs G; = (V, E)
and Gy = (Va, Ey) isomorphic if there is an edge-preserving bijection f : V; — V5 between
their sets of vertices, such that two vertices v,w € V] are joined by an edge {v,w} € E; in
G if and only if the vertices f(v), f(w) € V, are joined by an edge {f(v), f(w)} € Ey in Gs.

The corresponding standardized random variable is then defined as
W — E[W]
Var(W) '

which is basically the standardized number of copies of Gy in G(n, p).
For our result we have to define the important quantity
U := min {n""p},

HCGy
eg>1

F = (2.27)

where vy denotes the number of vertices of a subgraph H of Gy and ey the number of
edges, respectively. We give a short summary of the history of optimal uniform Berry—
Esseen bounds in the context of subgraph counting, since they will be fundamental for our
non-uniform Berry—Esseen bound. The first optimal result valid for arbitrary subgraphs and
arbitrary p was shown in [31]. After that, the authors of [35] obtained a result of the same
quality, but with an easier proof using the Stein—Tikhomirov method. At last another proof
using the Malliavin-Stein method was given in [30].

2.2.2. Stein’s method and Malliavin calculus. The idea of Malliavin—Stein method was de-
veloped by I. NOURDIN and G. PECCATI [71], and combines Stein’s method with Malliavin
calculus. For the first important steps we recall the lefthandside of the Stein-equation (2.4)
and the identities (2.25) and (2.24). Then, for a Rademacher-functional F € D"? we can
write

E[Ff.(F)] =E[(LL™'F)f.(F)]
=R |[(=6DL™'F)f.(F)]
=E [(Df.(F),-DL™'F)].
We continue with a closer look at the k-th component of Df,(F') that gives us
Difo(F) = /ot [ f-(F5) = Fo(Fy)]

Fy
= /Prq /F” fi(u)du

= Vi [ 1) ~ UF) du+ £L(F)DLF
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and so
E[Ff.(F)] = E[(R,—DL™'F)| + E [(f.(F)DF,—=DL™'F)]
for R = (Ry, Ry, ...). Next we include E [f.(F')] into our computation and receive
E[f/(F) - FL.(F)] = E [f/(F)(1 - (DF,.~DL"'F))| ~ B [(R,~DL"'F)
<E[[1—(DF,-DL™'F)|| + S E[|Rs| x [DL'F|]. (2.28)

Now let us assume that E[F] = 0 and Var(F) = 1. Then the first summand of (2.28) is
promising since it holds that 1 = Var(F) = E[(DF, —DL™'F)], by choosing f(z) =z in [(1,
(2.13)]. For the second summand of (2.28) we have to bound E [|Ry| x |DL'F|]; this is done
nicely in the proof of [36, Theorem 3.1] by using the monotonicity of the components of the
Stein-equation, see subsection 2.1.5. In the mentioned paper the authors obtain ultimately a
discrete second-order Gaussian Poincaré inequality, which expresses the bound of the second
summand in terms of the divergence operator 9. In any case the second summand will be
challenging in chapter 4.

2.2.3. The Poisson case. We want to take a short theoretic look on the Poisson case. Let
(X, X) be a standard Borel space with a o-finite measure p. By 1 we denote a Poisson
(random) measure, also known as Poisson point process, on X with control j. Note that n is
defined on an underlying probability space (2, F,[P). Define Xy = {B € X' : u(B) < 0o} such
that n = {n(B) : B € Xy} is a collection of random variables with the following properties:

e 7)(B) is Poisson distributed with parameter u(B) for all B € Aj.
o If By, ..., B, € A} are disjoint sets, the random variables n(B;), ..., n(B,) are indepen-
dent.

Denote by P, the distribution of 1 and, if needed, by 7 the centered Poisson measure
N(B) = n(B) — E[n(B)] = n(B) — u(B).

Last, we use the notations L?*(u™) and L*(P,) for the space of square-integrable functions
with respect to p" respectively the space of square-integrable functionals with respect to P,,.
We are interested in functionals F' = F(n) € L*(P,), which posses similar to the Rademacher
case a chaos expansion

F=EF|+ 3 Lf,),

where [, is the n-fold Wiener-Ito integral, also known as Poisson multiple integral, with
respect to ) and (f,)nen is a unique sequence of symmetric functions in L?(u"). We refer
to section 3 in [65] for formal details. For such functionals we define the difference operator
D, F of Fatz € X:

Do F(n) := F(n+6.) — F(n),
DF :xz— D,F,
also known as the add-one-cost operator since it measures the effect on F of adding the point
x € X ton. From here on the rest is very similar to the Rademacher case — to be precise
we recall the Poisson case historical as the predecessor. We are interested in functionals

FeD'? .= Dom(D) = {F e L*(P,) > n-nl ||fn||721 < OO}’
n=1
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with ||.||,, the norm in L2(u™). Supposing F' € D2 such that 3%, n®-n! || f,||> < oo, we define
the Ornstein—Uhlenbeck operator L and the pseudo-inverse Ornstein—Uhlenbeck operator L™}
as

LF = i —nl,(fn),
n=1
L'F = i —lfn(fn).
n=1 n

In the Poisson case there are also characterizations for the divergence operator § and the
other Malliavin operators analogous to (2.24) and (2.25), see e.g. [37, Lemma 2.1].
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2.3. The Curie—Weiss model and a surrogate approach.

2.3.1. The De Finetti measure of the Curie—Weiss model. The celebrated De Finetti theorem
[27] by BRuNO DE FINETTI, 1969, can be stated as follows:

Every exchangeable infinite sequence of random variables is a mixture of an i.i.d. sequence.

Here, exchangeability for an infinite sequence is understood in the sense of the action of
the inductive limit of the symmetric group, e.g. every finite sub-sequence of the sequence is
invariant by a (finite) permutation, which means that the joint distribution of the random
variables does not change if they are permuted. This notion has been extended in several

ways, in a finite-dimensional version by [28], using other groups such as the projective limit
of symmetric groups by [50] and orthogonal groups by [75] and [88], etc. See e.g. [!] for an
account of subtleties on this theorem and further references, or [2%] for a presentation of the

topic in relation with the computation of total variation distances.

The Curie-Weiss spins are clearly exchangeable since the measure (1.6) is invariant by per-
mutation of the spins. Since n is fixed, the De Finetti theorem a priori does not apply, but
nevertheless it exists a measure 7, g : [0,1] — [0, 1] such that

P =Py xi) = /[071] P(x1(p).... Xu(w) Pn5(dP), (2.29)

where (X5, (p))1<ken ~ pds1 + (1 —p)d_1 iid. So the joint distribution of (X\”);<4<, can be
written as a mizture of the joint distribution of (X (p))1<k<n and the measure 7, g.

We can write (2.29) in a more probabilistic way using a random variable V, 3 ~ 7,5 inde-
pendent of (Xy(p))i<k<npeo,)- We then have the randomisation equality

(X XYL (X (Vig), s X (V). (2.30)
For another point of view we can also write
Xi(p) =2L{,<py — 1, Ur ~U([0,1]), (2.31)

which gives a functional representation of this last randomisation (2.30), e.g.
8) _
X =2ty L

The measure 7, 3 respectively the random variable f/n,ﬁ is well-known for the Curie-Weiss
model. It is given by

~ ra ra 1 — % Argtan —1)2—(2 n(1—(2p—1)2
Uns(dp) = fap(P)dp,  fas(p) = 3 o 2 Argtanh(2p=1)"=(5 +1) In(1=(2p—1)%) (2.32)

with an explicit renormalisation constant Z, 5 defined by the equality [} f, s(p)dp = 1, see
[55, Theorem 5.6, (164), (165)]. We recall that Argtanh(z) = 3 log Hf—i‘ for |z < 1.

If instead of considering the parameter p € [0, 1] of the Rademacher random variables, we
encode the De Finetti measure with the expectation parameter ¢ := 2p — 1 € [—1, 1] and get

1 n n
Vn”b’(dt) = fn,ﬁ(t)dta fnﬁ(t) — Z ﬁefﬁ Argtanh(t)2f(§+1)1n(17t2) (233)

and a randomisation by an independent random variable V;, 3 ~ 1, 3. The corresponding
version of (2.29) is given by

]:P(Xiﬂ):"wxr(zﬁ)) = /[_1,1] P@ﬁ(%),,){n(%)) Vnﬂ(dt).
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2.3.2. Surrogate random variables in probability theory. Consider the following classical prob-
lem in extreme value theory: compute the fluctuations of H,, := max;<j<, Z for independent
random variables (Z)r>1 when n — +o00. One way to proceed is to note that

(H, <o} = Yk <n Z <2} = {3 Lzon = 0}, (234)

k=1
The problem amounts thus to analyse the fluctuations of the parametric random variable

Sn(-rn) = Z 1{Zk>xn}7 Ty 1= fn + OnZ,
k=1
for given numbers u,,o, that one has to tune in order to get the corresponding limit dis-
tribution. Since S, (x,) is a sum of independent {0, 1}-Bernoulli random variables, one can
proceed to a Poisson approximation S,(x,) ~ Po(f(z,)), using for instance the Chen—Stein
method [17], resulting in:

P(H, < x,) = P(Sy(z,) = 0) = P(Po(f(x,)) = 0) + o(1) = e~ @) 4 o(1).

By doing so, one has replaced the estimation of a non linear functional of (Z)y, a maximum,
by a simpler problem, the estimation of a sum. Such a sum is a surrogate random variable.
Its study is equivalent to the original problem while being arguably simpler.

The equality (2.34) allows to use a strict equality to replace the original problem by the
surrogate problem, and the approximation is only performed at the level of S,,(x,), but one
could reverse the steps or add an additional approximation step in between, e.g. replacing
the equality (2.34) by an approximation, as long as the original problem is not fundamentally
impacted. This is what we perform now.

2.3.3. Surrogate magnetisation inequalities. We consider the following setting: For (Z)
i.id. satisfying E|Z,|> < co, 62 := Var(S,) = nVar(Zy), pn := E(S,) = nE(Z;) we define
Sy =0 Zand Wy, := (Sp—fin) /00 = X4y Zi, where Z;, := (Z,—E(Z,))/(n Var(Z;)) /2.
We recall the following non-uniform bound obtained with Stein’s method and zero-bias trans-
form, see [51, (13)] or [35, Theorem 3.29], valid for all h € C* with ||R/[| < oo:

[E(R(W,)) — E(h(G))] < C ||| E|WZ = W,|, (2.35)

where G ~ N(0,1), W? defined by (2.18) and C is an absolute constant. According to
(25, Proposition 3.32] it holds that W7 = W,, — Z; + Z# for a random index I satisfying

A

P(I = i) = Var(Z;) and being independent of all else. As a consequence
E|WZ - W,| =E|2f - 2)| <E|Zf|+ E|Z/| = E|ZE| + E |Z)]

by the triangle inequality and identical distribution. Now we use [35, Proposition 3.32] and
(2.18) for f(z) = % to get
5 1 1 E|(Z —E(Z))°
E|ZZ| = ————rB|(Z1 - E(Z))?| =
LI (nVar(2y))1/2 ‘< 1= E(2))] (nVar(Z,))'/2 2 Var(Z,)

since by our moment assumptions all appearing moments are finite. This simplifies (2.35) to
[E(h(Wa)) = E((G))] < C W]

for another absolute constant C'. If we rescale our test function h linearly by h < h(=*)
we can rewrite the foregoing inequality to

[E(h(Sn)) = E(h(onG + 1n))| < C 1], (2.36)

We see in particular that rescaling linearly h < h(ﬁ) gives a speed of convergence in

().
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Note that other identities using stronger conditions on the functional space defining the
norm and stronger moments conditions allow for stronger speed of convergence, see e.g. |
Corollary 3.1].

In the particular case of Rademacher random variables (Xj), of parameter p := P(X; = 1),
we have E[X;] = 2p — 1 and Var(X;) = 4p(1 — p), thus

E(h(s.) ~ E(h(Virzyp(1 = p)G + (29— ) )| < O]

Now, taking p at random with a distribution v and writing S, (p) to mark the dependency,

)

we get
()= [ E(S, @) vidp) ~ [ E(h(VA2/p(l - p)G+ (2~ 1n) ) u<dp>‘
< [ B0, E(b(virzyp(l =G + p = 1n) )| v(ap)
< / — / .
<Ol | vidp) = C I
In the case of the Curie-Weiss model, taking p distributed as
PSLB) ~ ﬁn,ﬁa (237)

we finally get with (2.29) and (2.30):

‘E(h(Mg@)) - E(h(\/EG x 2/PO(1— PP) 11 x 2PP) - 1)))‘ <C|H|...

We can perform a last change of variables to this expression. Define the random variable
T :=2PP) — 1 ~u,p (2.38)

which corresponds to the parametrisation of the De Finetti measure v, 3 defined in (2.33) as

opposed to the one defined in (2.32). Noting that p(1 — p) = =22 we define the surrogate

1
magnetisation by

MO = /nG\1— (T2 +nT® (2.39)

so that
E(h(MP)) = E(h(MP))]| < C W], - (2.40)
Using (2.40) in conjunction with the triangle inequality yields with Z, 3 ~ N (0,n/(1 — 3))
E(h(M2)) — E(Zn))] < [E((M7)) = E(h(MD))] + [E(r(ML)) ~ E(h(Z0.5))|
<C Wy + [E(R(MP)) = E(h(Z05))| -

It is thus enough to control the convergence of the surrogate random variable M!?) towards
its limit (up to a rescaling) to obtain the speed of convergence of the original random variable.
The explanation of (1.8) — (1.11) relies then entirely on the fact that the structure of M%)
defined in (2.39) is particularly simple to understand since G is of order 1 and TT(LB ) =
cos(@) € [—-1,1]:
(1) When T\ converges to 0, the first term is approximately Gaussian after rescaling
by v/n and we need to study the behaviour of T,(f )\/ﬁ which will be shown to be
Gaussian too, and this corresponds to § < 1;

(2) when T'?) tends to 41, we need to rescale by n and the limit will come from the last
term in (2.39), and this corresponds to § > 1;
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(3) last, when both terms are of the same order, e.g. /nsin(@©) ~ ncos(®) or
equivalently tan(©?)) = Op(y/n), the analysis has to be refined and a non standard
limit can emerge.

Compared with the expository case of subsection 2.3.2, we defined the surrogate by means
of an initial (fundamental) inequality and added an additional (non fundamental) inequality
to use it, the approximation coming then next.
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3. A SURROGATE BY EXCHANGEABILITY APPROACH TO THE CURIE-WEISS MODEL

This chapter is based on [5]. After our preparations in section 2.3 we are ready to give a new
proof of (1.8) — (1.11). In order to control exactly the error originated from the replacement of
the original random variable by its surrogate, the approximation in law must be quantitative.
As a result, we will not only be concerned with the limits in law presented in (1.8) — (1.11),
but also with their speed of convergence in particular distances: The Fortet—Mourier distance
(2.2) with test functions having a certain degree of smoothness, and the Kolmogorov distance
(2.3) whose test functions are indicators of half infinite intervals of the real line.

Here, not only can one save a considerable computational effort by using the classical CLT
approximation for sums of i.i.d’s, but in addition comes an unexpected bonus that arises as
a byproduct of the use of such a surrogate: by integrating a fraction of the randomness of
the surrogate, the indicator functions in the Kolmogorov distance are replaced by smooth
functions. This transfert from randomness to smoothness is a very agreable surprise that
reduces the discontinuous norm estimate to a smooth one for a related random variable,
allowing thus to bypass the usual pathologies of discontinuous test functions distances, see
section 3.2. This is one of the advantages of the surrogate by exchangeability approach: it
does not differentiate between the discontinuous and the continuous probability norms.

3.1. Application to the Curie—Weiss magnetisation in Fortet—Mourier distance.
1
3.1.1. The case B < 1. Define Zg ~ N(O, ﬁ)

Theorem 3.1 (Fluctuations of the unnormalised magnetisation for < 1). If B < 1, we
have for all h € C* with ||h| ., 1], < oo

<)) s

for explicit constants C,C(5) > 0.
Proof. Rescaling M®) by /n amounts to do h < h(T)

in (2.40) yields
L)) =0T

and the triangle inequality implies then
MB) ) ) M
E\h| — E(h(Zs))| < —= 1Ml —E(n(Z)|.  (32)
( < Vi ’ \F \/ﬁ ’
Note that we do not get better than the usual normal approximation bound for the magneti-
sation due to the term % ||| - So far, we are focused on the validity of the approximation,

8
e.g. we want to prove that M\/% converges in law to a Gaussian, with speed in the Fortet—

Wl 1( B
<ol (2w com) e

thus A’ + —- h/(f) Substituting

7 17l o

Mourier norm of order at least . We thus define
on(h) :=E[h Mgﬁ) E(h(Z Z; ~ N0, L 3.3
n( ) T \/ﬁ - ( ( /3)) ) B~ m ( . )

Define
Xnﬁ = \/ﬁTTE’B),

ﬁ””( fﬂ)
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Supposing that

d
X, s — Gj (3.4)
n — +0o
we get
X, )2 [ &
G 1—M+XH,5NnH+OOG 1—l+Gﬁ—>G+G5.
n n n—+o00

Hence by the decomposition with G independent of Gz we receive
G+Gs Lz, (3.5)

since G and X, 3 are independent (hence so are G and Gp).
The distribution of X, 53 := \/nT\?) is given by the rescaling of v, 5 in (2.33):

t dt 1 — 24 Argtanh(—%)2— (2 +1) In(1—
P Xn edt) = n = T o v )
(Xonp €dt) =] 75<ﬁ> Vi nZes

Using a Taylor expansion in 0, we easily get

n t\> /n 2\ 12 #4 1—8) #2 #

We can moreover show that, see [55],

£)
L<ymydt

VnZ, 5 —— V21 x B
’ n—+o00 1— 5
which implies (3.4) and would imply
MB) d
N G\1— (TP 4 /nT® — % (3.6)

with an additional dominated convergence. This is what we prove now. We have

() — E<h<M’(f )>) B(h(G + G))
E

NG

_ E(h (GW +XW)) ~E(WG + Gy))

o 32) T~ B0MG+ G

vn) v/n

with
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Note that we have used a coupling of M!?) and Z; by supposing that the random variable
G that is used in each random variable is the same. Such a coupling is always possible, and
this is an important feature of the proof. We have moreover

< haygs

hngn — /R hegs (hngn — hcgs)| +

’/wwm /[—wwm /R\[—\/Ex/ﬁ]

with

hags

<||h cx)/ g3 < ||h oo/ g
ol for o 98 < Ibl f g9
= |l P(1Gs| > v/n)

< Rl E(IGs) ", Vh 21,

using Markov’s inequality.
Note that the true value of the Gaussian tail is P(|Gg| > z) < —= exp(—%), hence

A /27r$02 205
P(|Gg| > /n) = O(e~™?) since 3 < 1, and this power bound is small enough for our purposes.
The first integral can be estimated writing

[hnlgn — 95) + (hn — ha)gs)

B |/wwm

S hngn_g +‘/ hn_h g
=gl (e = ho)gs

e | lan— sl + = hcll [ g

It is clear that |h,(z)| < |[|h||,- We can thus bound |h, — h¢|, by 2|h|, but since
Jioymvm 95 = P(IGg| < /n) = O(1 — e~™?2) = O(1) which does not tend to 0, we must work

on ‘ Ji= v, (T — hG)gB‘ directly. Since we have the same random variables G and G, we

hngn — I
/me( gn — haygs)

have a coupling that allows to write

G2
-y e = ) = (h (GH * Gﬂ) Ljeolsv —HE+ Gﬁ)l{\@slsﬁ})
- E(G(\/l - % 1) 1{‘Gﬁ‘§ﬁ}h’<aﬁ +G+ UG(M - 1)))

with U ~ U([0,1]) independent of (G,Gp). By using z;, := max{z,0} = xlf>0 and
{|Gs| < /n} = {1 —G3/n >0}, we then get

SE(G< (1— (ff)— 1))2|h'|oo
~ E() Hh’llooxE(‘m—l

|
E(G?
< E(G) 17l »

- n

(hn - hG)gﬁ

‘/[_\/ﬁv\/m

|

where we have used the independency of G and Gg, 1 — 1 —2 < x for 0 < x < 1 and

E(|G]) < VE(G?) = 1.
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The important quantity to bound is thus

hnoo/ In — ¢ Shoo/ In — 98| -
Ly T e L Ny N

We thus need to estimate carefully

3(Gn,93) = |9n — 98]

‘/[_\/ﬁvﬂ

:2/[

by symmetry of g, and gg.

Define
2 n x?
. " Argtanh ( 1)1 -7
i s ) <3 )2
1-3
Cgi=—,
B
so that
v —pn(z)
fnﬁ(\/ﬁ) ange 5
C
g9s(x) = 275670“
We then have
1 Cs _ Cs _ 0.2
5(an.05) < |——— — 7/ n(@) g ‘/7/ en@) _ o=Co% | do.
(gns98) < Z T or | € T35 . e O | da

The first quantity is

Cp Cpg
“B gz —1/ = 2B 2 m— 1| PX,| <
|\/27T>< AV - 5 X ZnsVn (1Xal < v/n)
C
<2 x Z,5vn—1
2w '

and an analysis of its speed of convergence to 0 is performed in Lemma 3.15.
The important quantity is the second one. Define

= /<—¢wa>

2

dx

2 2
e~ (Pn(@)=Cs %) e~ 985 dx.

(_\/ﬁv\/ﬁ)

Supposing that the quantity inside the absolute value in the second line was bounded by a
constant D,, on (—/n,/n), we would have

Yo = O(Dn /(ﬁ . e—cﬁfdx> = O(D.P(|Gs| < Vn)) = O(Dy) .
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This is not the case as ArgtanhQ(%) — 400 when x — /n; nevertheless, the integral is still

definite. By symmetry, we will now work on [0,1/n) and use a factor 2. Let ¢ € (0,/n) to
be choosen later. We split [0, y/n) according to

[07\/5) = [07\/%_5>U[\/ﬁ_57\/ﬁ)

and estimate the integral on each of these subintervals.

e Main interval: On [0,/n — ¢), the function &, : * — ¢,(z) — Cg% is not monotone.
This is mainly due to the fact that the second derivatives of the two functions occuring in
the difference do not match in 0. Indeed, we have ¢,,(0) = ¢/, (0) = 0 but ¢ (0) = Cs — 2.
Up to comparing with a triangle inequality G and Gg,, ~ N (0, (Cs — 2)7!), we define then
for n > ne(B) := [2C5 "]

2
Cg,n = Cg — ﬁ’

9 (3.7)

T
En(Z) = @n(z) — Cg’n?.

The replacement of Gz ~ N'(0,C5") by G, ~ N(0,Cj,,) can be done up to O(%) Indeed,

_ ~pn ()
%—/ et —e
NOD)

- / e~ (@) _ o=Csny 4 o Con'y _ o= Cpy
ff

</ e—n(@) _ o Cﬂn2 dx+/
f\f)

2
—Cpy

dz

dx

2 2
_CB,R% — 6_0’8%

dx

=:2 / _03"2 —e_CBﬁ dx
\/an (—v/r,V/n)
with
— C;B’n /ﬁ ) _ ¢=Con| dy
m Jo
[Cg, [V 22
= —2[3’ / ‘1 — e (@) e=ConT g
w Jo
and
/\/; e’cﬂm% — e’cﬁ% dr = /\/; = e’cﬂédx

2
¢ o2
<3| e %Tdx
R N

3 \ 2T
- 03/2

z2
Here, we have used |e® — 1| < el —1 < |z|el*l for all z € R, e < 3 for # € (—y/n, /1) and
the second moment of a Gaussian.

The function k, thus defined in (3.7) is now strictly increasing and positive on [0, /n),
hence, so is 1 — e™"». Moreover, thanks to the matching of the derivatives and the fact that

©"(0) = 0, the Taylor formula with integral remainder gives at the fourth order

K ( _6/ (1—a)*c®(a 6/ (1—a)’ ax)do,
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4
where £ (z (?) Kn(z). The only singularity of all the derivatives of &, is in /n, which

D) :
is not in (0,/n — ). We can thus write for all z € [0,/n)

o 34 || @ e z*
0 < Rp(x) < E/o (1 —a)’da H/in Loyn-o), = 2 H/@n Loa-e), = Mn(e)ﬁ
Since k(Y is positive and increasing on [0, v/n — €), we have
Ma(e) = K9 (Vi — )
hence
2 4 2
/ 1 —e @ e=Cons qy < / (1 - e_M”(E)&) e~ 98T dg
[07\/575) [07\/7;75)
< M (e) / PO dy
24 [0,4/n—¢)
M,(e) | 2m 4
< E((Ggn
Y Cﬂn (')
M, (e)
= C;2
s Cﬁ n P
where we have used the scaling of the Gaussian and its fourth moment equal to 3.
Last, a computation with SageMath [37] gives
I{(4) (l‘) _ S0(4)(1,) — ip(l‘/\/ﬁ) Argtanh@/\/ﬁ) — Qn”@(iﬁ/\/ﬁ)
np (1= (z/y/n)?)
with explicit polynomials
P(z) = 122(2* + 1),
Qnp(z) :=38(1+2n 2" —18(1 — B —2n"")2? — (4 - 33 —68n"")
1~
= Qule) + > Qs(a),
Qs(x) = 38" — 18(1 — B)? — (4 — 38),
Qs(z) := 6(Bx* + 622 4 653).
Define
€
t:=—=¢€(0,1).
e
Then,
2 P(1—t)Argtanh(l —t) — Q, (1 — t)
M. — (4) - = n,
2 P(1—t)Argtanh(1—1) — Qp(1—t) 2 Qs(1—1) (38)
np t4(2 — t)4 n2B t4(2 — )4’ '

e Remaining interval: As x, is positive on [\/n — &, /n), we have 1 — e~ < 1 and

‘1 — e (@)

e OB T dy < / e~ OB T dy
[Vn—e,v/n)

1 2
_ (v/n—eu)
= <€/ e Cin du
0

_ Vn _Oa M
<ege BT < 3ce 052,

/['\/ﬁgv\/ﬁ)
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where we have used the change of variables z = \/n — eu, (y/n —eu)? = n(1 — tu)? > \/n for
n big enough and for all ¢,u € [0, 1], in addition to C'B,n@ = Og@ — % and e'/vV" < 3.

%

e General contribution: We finally get

2 ac2 Cfi O " -
Sl Tn = / ‘1 — e @) o=ConT qp < Mn(a) B, + 3\/76 e—C’g%_
Can (0.v/7) 8 o

It remains to choose € in order to get the order of convergence. In view of (3.8), we can take
for instance t = %, yielding

, o P(4) Argtanh(}) — Qs(3) 2 Qs(3)
Ma(5/n) = nB  (3/4)'3/2—-1)*  n2B(3/4)%3/2 - 1)*
. Ki(B) N Kz(ﬁ)‘

As a result, we get for explicit constants K3(3), K4(5) >0

[ B0 B o) =)

e Conclusion: We have for all £ > 1

_ E(|Gs)>* E(G?
Gulh) < (n) 1] + (n) 9]l + 805,95 1]
and using Lemma 3.15, we have
Cs
c;"? 2 32
< 4o |5, 42X
dn Can nCB/
1
—0s(,. ). (3.9)

which gives the result.
O

Remark 3.2. The surrogate approach here defined allows to understand in a better way the
apparition of the limiting Gaussian random variable. In the case § < 1, the Gaussian CLT
is present through the random variable G, and it is the adjunction of the random variable
G coming from the fluctuations of the randomisation that finally gives Zs = G + Gp.
It is thus a subtle mixture of the two structures, sums of i.i.d’s and randomisation, that
gives the final distribution in this case. In the language of statistical mechanics of phase
transitions, when a disorder is present in a statistical system and has a marginal effect, one
talks about a marginally relevant disordered system, see e.g. [12] and [103] in the context of
the KPZ equation or random polymers. It is typically the case here with the decomposition
Zz = G + G since in the case S < 1 the overall behaviour is still Gaussian.

Nevertheless, when looking at the speed in (3.2) and (3.1), we see that it is only the
CLT bound for sums of i.i.d’s that gives its footprint to the first order and not at all the
randomisation in this case, while the speed coming from the randomisation only appears at
the second order. This will be the opposite in the next case 5 = 1. The regime § < 1
can thus be considered as the regime where the independent CLT dominates at the level of
the speed and the randomisation is marginally relevant; the regime g = 1 will be the one
where the randomisation dominates at the level of the fluctuations, visible as non Gaussian
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behaviour. From this perspective, the transition is interesting: there is a competition between
randomisation and sums of independent random variables.

3.1.2. The case g = 1.

Theorem 3.3 (Fluctuations of the unnormalised magnetisation for § = 1). Let F' be a ran-
dom variable of law given by P(F € dx) := z-e” 2dx with Zp := [pe” 2dx = 31/4271/210(1/4).
Then, for all h € C* with ||k, ||M],, < oo

’E(h(%ﬁ)) _ E(h(F))‘ (\? 4 0( 3/4>> (1Al +I71.) - (3.10)

where C' > 0 is an explicit constant.

Proof. Randomising (2.40) and rescaling it by a factor n*/*, which amounts to do h < h(=7)
hence h' <= —7h (=7), yields

M MO ,
2 () 20 (557 =7 1)

MO G
wo_ G T 1/4 (1)
34 T i/ 1= (T, +n T,

where G ~ N(0,1) is independent of M), F. Setting
E, .= n'/tTM (3.12)

with

with TV defined in (2.38) gives

MDD G F?

and the triangle inequality gives then the analogue of (3.2)

‘E(h(ﬁ?)) - E(h(F))| < 75/4 T ‘E(h(fﬁ))) - E(h(F))| | (3.14)

Nevertheless, one sees from the expression of (3.13) that if F;, — F in distribution,

MP G F? G F? G 1
34 i/t 1_7+F ~F+ 1/4(1_2\/5>NF+ 1/4+OP<\/5>

As a result, we will always have at best E(h(%%)) —E(h(F)) = O(%) which is in-

compatible with the results of [16] and [33] that give a speed in O(ﬁ) Such a discrepancy

between this result and (3.11) shows that we have used the “wrong” random variable to com-
pare to, when using the triangle inequality. We should instead incorporate another random
variable at a distance \lf to decrease the distance in ﬁ, possibly at the cost of increasing

the distance in — /4 in (3.11). Such a replacement can be performed by introducing another
related surrogate

For i.i.d. Rademacher random variables (Xj)x, we take S,(p) := > p_; Xk(p). A possible
representation of Xy (p) is given by

Xk(p) = 1{Uk<p} — 1{Uk>p} =2 1{Uk<p} — 1, (Uk)k21 ~ lle/{([O, 1]) (315)
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and this representation allows in addition to visualise the randomisation of the parameter p
in a functional way.

We can thus use a coupling of S, (p) and S,(¢q) using these uniform random variables. This
very coupling is said to be totally dependent in the sense that these are the same uniform
random variables that are used, e.g. X;(q) is a measurable function of Xy (p) and vice versa.
Define for p,q € [0, 1]

An = 2n(p — q) = E(Su(p) — Sn(q))
Sn(p; @) = Sn(p) — Sn(q) — An,
o(p)? == 4p(1 —p).

Then,
IE(R(Sn(p))) — E(h(Sn(q) + M) < 7]l E(ISn(p; 9)])
< 11 lo VE(ISu(p, 0))
= ||l VirJo(p)? + a(9)2 — 2p(p, @)
with
Xe(p) = Xu(p) — E(Xi(p)) = 2(Lg<) — p)
and
p(p,q) == E(X(p) X(9))
=4E((1<n —») (Lw<a — 9))
= 4E(1{U<p/\q} —plw<gy — Lw<py + pQ)
=4(pNq—pq)
with

p A q:=min{p,q}.
We thus have

o(p)* + o0 ~ 20(p.0) = E((X(0)- X(a)°)
=4(p(1 =p) + a1 —q) —2(p N g —pq))
=4(p+q—20Aq) = [P+ — 2pq))
=4(lp—ql = Ip—q*)

=4lp—q| (1 —|p—ql|).
)

We can now write with A, := 2n(P — Q) and (P, Q) chosen at random independently from
(Uk)k

nH{52)
() (2%:2)
PG e pmasen)

‘ (h( Q1l-Q)vnG+n(2Q —1)+ X, )) ]E(h(F))‘

<

n3/4
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= 8W(R) + 8D (h) + 6B ().

Choosing 2P —1 = T'V = n=V/4F' with F' £ F, will then give a bound on the magnetisation
]X[(l) We moreover choose 2Q — 1 = n~Y/*E,, to obtain
2Q1-Q)VnG+n(2Q -+, _ G | F? o
n3/4 T opl/a o ﬁ + n3/4
G E; ,
:n1/4 1—%+Fn+(Fn_E1)

since
A, =2n(P—-Q)=nxnYF —F,).
We would then want to couple (F,, F!) by setting F, — F, = _n%* with the same G that

defines the surrogate magnetisation in 8> (h), nevertheless, we also need to remember that
p,q € [0,1], hence that (p — q) € [—1,1]. We thus set

G
I Pyp—

To be precise, P is the usual randomisation and we choose @ appropriate to get (3.16). With
the choice (3.16), we have

AP - Q) = (Fl = F) =~y )

b Il Il i
50 < Wl o i fE(P— Q- 1P - Q) - m(”o<ﬁ>>'

Setting g := h(-+ X, /n**) and using the inequality (2.40) rescaled by a factor n%/* still gives

C
< 1) < o Il

8.7 (h)

but now, we have

2Q(1-Q)vnG+n(2Q -1)+A, G E? G
nn3/4n n1/4( 1— \/ﬁl)"i‘F-i- 1/41{|G\>f}

Set
8W(h) .= [E(h(F, + E,)) — E(h(E,))|,
8 (h) := [E(h(F,)) — E(h(F))|,

so that

20 17 o Sekn) 50|

, G
< I B (S5 oy ) + 0000 + 6910
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E(GF)

<Nl i B(IG] > Vi) + 80 (h) + 87 (k)
< e YD ey 4 50

0o k+1/4
for all £ > 1 using Taylor expansion, the triangle-, Cauchy—Schwarz- and Markov’s inequality.
Moreover,

8Y(h) = [E(MF, + F,)) — E(W(E,))|

n

< [|W']] o E(1Fnl)
- E(G))E(F? . E(F?
< |h uoowf) < Il (3/4>

using ’1 — V1 - u‘ < wu for u € (0,1) and E(|G|) < /E(G?) = 1. We will now show that
F? — F? in distribution and in L*, hence that E(Ff) = E(FQ) +o0(1), which we will achieve

to bound 8 (h).
The distribution of F, := n'/*T" is given by the rescaling of v, 5 in (2.33):

t dt 1 —n Argtanh( t )2 (n+1)ln(1**)
P(Fn c dt) = fn’1<n1/4> i = i Zn,16 2 nl/4 1{\t|< 1/4}dt
Lemma 3.16 gives

1
iz 1 =Zp+0|—
n n,1 F+ (ﬁ)

and a Taylor expansion in 0 yields

Argtanh( f/4>2+<g+1> 1n<1—\t/25> = j_ f;(1—2>+0< a ) (3.17)

This implies the convergence in law F,, — F' by looking at the densities, and the result by
square integrability of F.

We now study 8> (h). In the same vein as for 5 < 1, we have for all € € (0,1) and setting
gi=1-¢

8O (h) = [E(h(F,)) — E(h(F))|
< ooz ||an—fF‘+‘E( 1{|F|>E””4})‘

(—&nl/4gnt

é HhHoo(Han - fFHLl([fgnl/él’gnl/zLD + ]P'F’ > €n1/4>

E(F*") ) |

< [l (||an = Tl znira zniragy + (=) nk

using the triangle inequality and Markov’s inequality for all £ > 1.
We now show that

+ o() , (3.18)

Han - fFHLl([,gnl/47gn1/4D < (57(16) +

where 6 will be defined in (3.19) and bounded in (3.21).
In view of (3.17), we introduce the random variable F;, defined by the density

R ~ o x4( 6) z? - ‘_/ 3
fn(x) = Z@ ) ¢n<x) = E 1 5 ﬁ’ Zn = Re
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Define also

2 72
O, x— — Argtanh< . > +(+1> ln(l—)
/4 2 vn)’

ZE4

Di=Py =D i x> —.
SR

Then, we can replace F' by F, up to O( —) by writing

||an - fFHLl([—Enl/‘l,Enl/‘l]) S Han - ff‘n‘ Ll([7§n1/4,5n1/4]) + Hff‘n - fF LI(R)
and
R 1 ,E}Sn 1 —d 1 ZF 7q>n+q> —P
HfF —fr LY(R) -—/]R Ze —?Fe ZF Z ——€ —1le
— i é o 1 —‘Dn—l-‘b + e—‘bn—Fq) o 1 e—q)
Zp Jr Zn
ZF 1 £ £
“F 4 7/ Bt @ | L ~ButP _ |~
< Zn Z, e e + Zr e e e
F2
]ZF—Z ‘+E<e%+ - 1‘)
1 Fi_ F2
gl e 1)
F4
< Q]E( e T VE — 1D
with

o8 5 ) - 5 G100 T)) - 5 o)

by ¥ =1+ z + O(x?). We thus have

6’51,5) (h) S HhHoo (Han —JE Ll([_gn1/47gnl/4]) \/ﬁ

and we now estimate the remaining norm. We have

6) .
s Hf e (3.19)
gnl/4 Enl/4 fF
— — =~ = 1 — n ~
—_gnl/4 fF" _/;gnl/4 ffr fEL
Enl/4 = ~
= =21 @i Iz
—Enl/4 n1/4Zn,1 E,
gnl/4 ~ Z\ ~
— _ o (2n—%n) _ n —(Pn—®n)| £
= i 1 e + (1 n1/4Zn71> e sz
ZA Enl/4 ~ znl/4
_ n —(Pn—Pn) £ —(Pn— ‘I>n) ~
: ‘1 iz, /—Enl/‘1 c fF" * /—En1/4 L= fEl
4 1/4 znl/4 -
<l1— Zn n AZn,l + / 1 — e—(@n—i’n) fA )
= n1/4Zn,1 Zn Znl/4 B,




Precise approximations of Rademacher functionals 39

We have in addition

Z, 1 5 1 s 1 ot a?
—::7/6_‘1)":7/6 50 6)+fdx—4 1/4/6 2t Vie dy
Zp  Zp/r Zp Zp(l _ Q)

_ ”E(ﬁ) . ES‘? Lo,

using the change of variables (1 — 6/n)~"* + = for the third and a taylor expansion of
exp(.) for the fifth equation. Further we used 1/(1 — 2)* =1+ az — a(a — 1)z/2 + ... for
small z. Lemma 3.16 gives

Zp 1
—2F 1t 0(—].
n1/4Zn71 + (\/ﬁ)

~ ~

Z zZ, Z 1
l_nzl_nF:()().

This implies

n1/4Zn,1 ZF n1/4Zn,1 \/ﬁ
Hence
1 4 znl/4 ~
5( ) < / Z 1 _ 1 + /“€ 1_ ef(én*(bn) f/\
L Zn —enl/4 B
o " 1 (3.20)
_ o (Pn=Pn)| £ — ) =604 il
fol e ol ) <ol )

having in mind that if §* =1+ O(ﬁ), it is Z—: = % =1+ O( n) It remains to
/ 1+0( % )
investigate
gnl/4 ~ ~ o~
(M) . o (@n—®n)| £ _ o (@n—®n)(F) -
80 = [t o =B(1- <o)

Define

~ 2 22 R A
Kn(z) = () — O, (2) = Argtanh( 1/4> +(2—|—1> ln<1—\/ﬁ> +\/ﬁ+%_ﬁ'
The Taylor expansion (3.17) shows that x*(0) = 0 for k = 0,1,..., 5, hence

ZE6

1
—/ (1 — )’k (az)do.
5! Jo "

An analysis of k(¥ with SageMath [37] in the same vein as for the case 3 < 1 shows that
k% >0 on (—zn'/*zn'/?), is an odd function and is strictly increasing on (0,zn'/*). As a
result, we can write

kn(T) =

- Enl/4
6" = =
" —gnl/4 sz

=nl/4
- 2/0 (1—e) fa

2 —6
2 (6)(=,1/4
< A K, (En )E(Fn)

2

= ) e E(F) (1 - O(iﬁ)) |

1 —e™ "




40 M. Butzek

Moreover, we can write

4
x x
Kn (T )—nWl( 1/4)+W2(n1/4) " 12

with Wy, W5 explicit and infinitely differentiable on (O zn'/*). As a result,

1 T T
6 _ (6)
W) = o () + e (i)

and
_ 1 6) 1 6)
kP (En') = v Wi )(5) + T/QWQ( )<5)
Choosing ¢ = % for instance gives then
, 1 1 1
6)(=,1/4y — & 17(6) -
ety = =% (3) +0( )
and

1 K, 1
(7) VV 6 _. 226
On < \/ﬁ 6! ! <4) E(F> O< 3/2> T Vn O(ni‘/?)'
Using (3.19) and (3.20), there exists K7 > 0 such that

K 1
8 < T+ 0( 3 (3:21)

In the end, we have
8n(h) < 8 (h) + 87 (h) + 8 (h)

1 @ / E(G?) (4) 5)
< 00+ 600) + L, S a0 + 5P )
(G2
< 0 + 800 + .. Lo 50
E(F?) o1y E(FY)
S0 of)
+||h'||oo(n + Jn +0 n +(1_5)4knk
E(G2F)

=81 (h) + 8P (h) + || Y + 6 ()

bl (% +0(—5) + E(li) +o(5)+ m)

/ 2k; o(1
< U (1o 1)) + ot I S0 i B +ot)

= Jn k+1/4 n3/4
+||h||oo(51+o( — +E(f‘;) +o(5) +M),

hence the result.
O

Remark 3.4. Note that without using the totally dependent coupling for (.S, (p), Sn(q)), we
could have taken independent random variables and used the bound E(|S,(p) — S.(q)|) <

\/E((Sn(p) — 5.(9))?) = /ny/o(p)? + o(q)?, but this bound does not provide any useful gain.

This particular choice of coupling is thus a critical ingredient of the proof.
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Remark 3.5. As announced in Remark 3.2, this is the randomisation that dominates the
distance in the case § = 1. This is already visible at the level of the fluctuations, since they
are not Gaussian.

3.1.3. The case 5, =1+ ﬁ, v > 0.

Theorem 3.6 (Fluctuations of the unnormalised magnetisation for 5, =1 — -, v € R*).
Let F, be a random variable of law given by

1 z z2 24 22
P(F, € dr) := 267377761% 2F, = /]Refﬁﬂ?dx.

Then, for all h € C* with ||h|, |||, < oo

|E(h(ﬂff”)) CE(M(E))| < (fﬁw(?;m))(nhnoﬁ W), (322)

where C' > 0 is an explicit constant.

Proof. The proof is an adaption of the case f = 1. Recalling the coupling (3.15) and the
notations that follow, we replace F, by F;, , with law given by

t dt
P(F,, € dt) = fup, (711/4> Y

1 — 52— Argtan L2 n
= 77711/4 Z 5 e 26n Argt h(n1/4) ( +1)1 ( )1{|t|<n1/4}dt (323)
By analogy with (3.16), set for G ~ N(0,1) independent of M), F,
11 S / __6C
P = 92 + 2n1/4EW’ Q= 9 + m 1/4F;w’ Ew — b= _n1/41{|G|§x/ﬁ}‘

Set also A, :=2n(P — Q) = n*/*(F, , — F, ). Analogously to the case 3 = 1, we form

= (57) sy
B2
(0 -sf - eng e

‘ ( ( Ql-Q)vnG+n(2Q —1)+ X, )) E(h(ﬂ))‘

n3/4

2)
n

=: 80V () + 802 (h) + 809 (h).
5

Recalling our arguments for 8V (h), 8@ (h) and 6'¥ (h) from the previous case we get

80(h) < % = x2vaE(P - Q- P- @) = = 1+ 0( 1),

(5(7’2)(h) <

n

Sl

87 (h) < |||
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where

We have moreover

E(F,
570 (h) < 10 ( ’7)-

n3/4

We now show that Efv — Ff in law and in L', implying that E(Frf,y) = E(Ef) + o(1).
Lemma 3.18 gives

1
n1/4 Zn,ﬁn = ZF“/ + @) (ﬁ)

and a Taylor expansion in 0 yields
B, () = QZn Argtanh<nlt/4>2 + <Z + 1> 1n<1 - \2)
— 2 4 _ 6
(5 m) s el ) o)
:<;l_jﬁ>i+$<4_ﬁjﬁ”—g>+0<£2>. (3.24)

Since 3, — 1, this implies the convergence in law F;, , — F, by looking at the densities, and
the result by square integrability of E,.

We now study 6”(h). In the same vein as for § = 1, we have for all £ € (0, 1) and setting
gi=1—¢,

80 (h) = [E(h(F,,)) — E(h(E))|
< _
o /(€n1/4’5n1/4) i ‘fF”’V fﬂ

< il (| 5 I,

n ‘E(h(Ey)l{FwPf"lM})‘

J+PIE| > 5n1/4)

E(E") )

LY([-en'/tznt/4) (1 — g)tknk

L1([—&nl/4gn1/4

< ||h||oo(HfFM ~ fr,

using the triangle inequality and Markov’s inequality for all £ > 1. In view of (3.24), we
introduce the random variable F,, ., defined by the density

1 = R =
I3, (@) =5 e 2 ::/]Re o

nyy
~ 4 2 4—-38, 6 v 2
o, () :=aD L @8 0. 27 D @._ 0 _ 2
77($) an 12 + an 92 ) an 671 TL, an ﬁn \/ﬁ’
~ x? x?
O, =Py, =Dy, x> D) —|—’y?.
Then, we can replace F, by /F\n,7 up to O(ﬁ) by writing
HfF"N - fF“/ Ll([—En1/4,Enl/4]) S Han»“/ - ff'n,»y Ll([—€n1/4,§n1/4]) + Hff’n,»y o fF‘/ Ll(]R)
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and
1 -3 1 _® 1 / ZF -3 _
o - = e mY— — V| = ——— Ai'\/ ny+®y 1 [
Hanw fFW L(R) /IR{ Z, € vae Zp, Jr Znﬁe ¢
= 1/ %F"Y —1 e_:fnﬁ"‘q’“f + e_gn,v+@v -1 6_@7
ZFA, R Zm,y
ZF, 1 PR SY 1 — 3, 4D —®
<|= —1—/6 mIT e ”+—/e mTEY —1le
Zn,'y Z,YF;Y R ZF’Y R
1 - o) 4 (—a®) E
:ZFW—Znﬁ‘—l—E(e(l )12*(7 )2_1
F'\/
2
T (A L O E
ZFA/ R
ENCOAE A NN NS 27
ng(e(I V)i (el) s _1).
Using
1 4 1
=S i L) =00,
n Bn n n
1 2 v -2 1
_a® = I I O()
Ty ’Y( 5n> - NG n
we get

6v/n

We now estimate the remaining norm:

0% = |1~ I3,

(3.25)

L1([-znl/4,En1/4))

— 1/4 — 1/4
_ [ fr . — [ :/En 1_@ fa
_Enl/4 Yy F~ _=p1/4 ~ B
enl/ gnl/ fEL,’y
= 1/4 g .
= - 1 — Ae_(q)nﬁ_@"ﬁ) fA
_zpl/4 n1/4Zn,,8n Fh
zEnl/4 ~ = ~
— 1 — e*(‘bnw*q’nﬁ) +11= A e*(‘l’nw*‘bn,v) fA
=n1/4 /47 E;,
—znl/ n n,Bn Y
Z" Enl/4 . Enl/4 N
<|1-— n,y / 6_(¢"’7_¢n’7)ff, +/ 1— e—(q’n,'y_@nw) ff‘
n1/4Zn,Bn _znl/4 n,y _znl/4 oy
4 1/4 nl/4 ~
< 1 . Znﬂ’ n AZTL’BTL + /En 1 _ e—(@nﬁ—@n,—y) f/\ )
- n1/4Zn,Bn Zory _znl/4 Fn vy
We have in addition

Z 1 o 1 L2t (2)a? 1 4 2 22
- = 7/ e_q)n,'y = 7/ e~ T Ty =: —1/4/ e 12 77 T InT (g
ZFW ZF"/ R ZFW R ; a(l)) R
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since
1/2
a? 1 2 1 ! .
Tn = —7=7 -
NG 1+ yWhn 1—\4/75+O(l)
2
v+ 2 <1>
— o=
\/ﬁ+ n
and
1 1 ~ 1
_ —1+=+0(5)
1/4 1/4
N O A

Lemma 3.18 gives

ZF’Y 1
——=14+0|—].
g =10( )
This implies
Z, Z,.., Z 1
1—14’7:1—’714177:0<>,
n / Zn,,@n ZFA, n / Zn,ﬂn \/ﬁ

hence

1/4 Enl/4 ~

59,6) < nAiz”ﬁn _ 1‘ +/ » 1 — ¢ (Pny=Pns) fﬁ
N,y —&n Y
et (=) 1 (17) 1 (320
< 1 —e V™)) iy — | =6 — .
- /€n1/4 ¢ fF”’” - O(ﬁ) n O(ﬁ)
Define
oo (@) = Do () = B (1)
n r \2 /n x? x? x?

_ e o _ 2 ) 0 @

=35 Argtanh<n1/4> +<2 + 1> ln<1 \/ﬁ> 'y~ 5
The Taylor expansion (3.24) shows that K,ﬁfzy(O) =0 for k=0,1,...,5, hence

6
b (2) = = / (1= 0Pk (az)da.
7 5! Jo "

An analysis of n;‘f; with SageMath [27] in the same vein as for the other cases shows that

k) >0 on (—zn'/*en'/*), is an odd function and is strictly increasing on (0,2n'/*). As a
result, we can write

SO .= /Snl/4 1 —e " fa
' 7

n
_znl/4 n,y

En1/4
=2 [" (1-e)
0 ( € ) an,"/
9 -
< Gl k() (§n1/4) E(F6 )

n7’Y n7’Y

o (irol2)
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Moreover, we can write

T x 4 —38, z* v x?
Kny(T) = B Wl( 1/4>+nw2(w)+w3<n1/4)_ By 12 B 2

with Wy, Ws and W3 explicit and infinitely differentiable on (0,2n'/4). As a result,

1 T 1 x 1 T
6) _ (6) w6 - we
fnl®) = 5 5 () + NG (o) + 5 ()

and
K En'/) = = WO + W@ + ).
Choosing ¢ = % for instance gives then
=yt = 7m0 (5) + () + o (m)
- () 0 (5)) + o)
and

< Lo ) o () ) o2) = 5 vof )
o= yn e\ 4 4 7 n) /n n/)
Using (3.25) and (3.26), there exists K7 > 0 such that

K7
(v6) « 27 )
4, < Jn + O(n> (3.27)

Collecting all the previous estimates finally gives the desired result.
O

Remark 3.7. Tt seems interesting to note the discrepancy between the case v > 0 where the
derivative of the function z — —% — 7%2 only vanishes in 0 and the case 7 < 0 where the
derivative has two additional zeroes in £/—=37. As a result, the density fp has two humps
in this case, which is close to the last case that we will analyse now.

3.1.4. The case B > 1. We consider the transcendent equation

tanh(z) = g > 1. (3.28)

x
B>
An easy study shows that there exist two solutions to this equation denoted by £xz with
xg > 1. We define

X ~ Bery,, (%) , Bj ~ Berip,, (%) , mg = :%B = tanh(xg).

Theorem 3.8 (Fluctuations of the unnormalised magnetisation for g > 1). If § > 1, we
have for all h € C* with ||h| ., [|I]., < o0

‘E(h(Mf)» - E(h(Bﬁ))‘ < <¢Cﬁ ¥ oﬂ(;)) W1l (3.20)

for an explicit constant C' > 0.
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Proof. Rescaling M(® by n and substituting in (2.40) yields

000)) =) =5

< — Ml
and the triangle inequality implies the following adaptation of (3.2):

o(n(M2)) - mnE] < S i+ B((25)) -0 o)

n

Moreover, we have

MP _ G (TP 4 T
n \/ﬁ n n
and, since T\?) € [—1,1] a.s., we get L\Gf' 1— (TP < L% — 0 in law, hence
M) 171l
‘E(h( ) | —E(h(By))| < N E(h(TS) - E(h(Bs)))| -

It thus remains to show that T¥) £ Bg and to control its norm. For this, remark that

n

E(h(T) - E(h(By)))| = |E(h(tanh(R(?)) — E(h(tanh(X}))))|

= ]E(E(R;@) ~E(h(Xp)))|, h := hotanh,
where Rff ) has a law given by
(B) —nep(y) dy v’
jnp(dy) = P(RY) € dy) = e z,,;  Po)i= g5 ~logcosh(y) (3.31)

We now adapt the Laplace method, in the easier case of a global minimum, to show that
fing — 2(8m, + 0_m,) weakly. Since Jr, dpinpg = Jr_dpinpg = 5, we have

E(R(RY) ~B(A(X5))| = [, Bw) ~ has)lsnsldy) + [, o)~ B—z3)lpns(dy)
= 5n(ﬁ) + 571(%(_))

It is thus enough to treat the case of 6,(h). For this, note that (3.28) is equivalent to
¢5(zp) = 0, hence that for all x > 0

1
ws(x) = pa(xp) + (x — a:/g)Q/O @ (ar + axg)ada, a:=1-a.

As a result

~ d
5.(h) = e—ns«w(m)/ [h(x) — h(xﬁ)]e_”(wi( z)—pp(wp)) LT
Ry Znp

dx

_ —mpg(xﬁ)/ 77/ _E —n(z—z5)? f ”(aeraxg Yada
e [ i)~ el g

+o0o ~ w ~ 2 Y dw
_ e—nw(ra)/ h (Iﬂ + ) _ h(xﬁ)]e_w Jy #hlaw/v/atas)ada
—CCB\/E \/ﬁ Zn”B\/ﬁ
< e—napﬁ(xﬁ) ”h/”OO +oo |U)’ e—w2 fol ¢ law/V/ntzg)ada dw '
\/ﬁ —zg/n Zn,ﬁ\/ﬁ
As

Qg x = —ﬁﬁ%—tanh( )2
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is bounded and continuous, dominated convergence and continuity imply
'
x
/ slaw//n + zg)ada —>/ ©i(xg)ado = ('%(26)

and ¢3(r3) > 0 by an easy study. It is also easy to see that x4 is the global minimum of ¢g
on R, hence that ¢(x) —p(zz) > 0 on R:\{zs}. As a result, dominated convergence applies
on this set to give

too 1, w2 2
/ |w| 67w2 fo @B(aw/\/ﬁ+15)o¢dadw - / |1U‘ e 2% (Iﬂ)dw = 7 T E(|GD
2 n—+00 R @ﬁ(fﬂﬁ)

with G ~ N(0,1).
In the end, we obtain

6n(h) < ”h/”‘”( on E(|G|)+o(1)) X oo

v\ es(s) VnZng

W)
NG (E(IG]) + o(1))

using L~emma 3.20.
Last, |h|e = ‘ h'o tanh X tanh'|| < ||h'otanh||_ Htanh' =
Using C' := C" + 1 concludes the proof.

= 1.

|h']|, since Htanh’ .

U

Remark 3.9. Our results of this section can be rewritten in the Fortet—Mourier distance as
follows.

(1) If 5 < 1, according to Theorem 3.1 it holds that

M C  D(p)
d Z — 4+ —
FM( NI 5) /il
for constants C, D(5) > 0.
(2) If 5 =1, according to Theorem 3.3 it holds that
MY C E
dFM<n3/4a Fo) < 7n + s

for constants C, £ > 0.
B)Ifpg=1- 7 according to Theorem 3.6 it holds that

(1+3)
n " ¢, E0)
den (W Fv) S e

for constants C, E(v) > 0.
(4) If 5 > 1, according to Theorem 3.8 it holds that

(8)
(M 5) < C O

for constants C, F'(3) > 0.

Note that the original versions of the theorems show the exact dependency on |h|| . and
||h']| ., which is more precise.
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3.2. Application to the Curie—~Weiss magnetisation in Kolmogorov distance. Recall
that for two random variables X, Y, the Kolmogorov distance is defined by

diol(X,Y) = sup |[P(X < t) — P(Y < )] (3.32)
teR

It is thus a functional norm in the same vein as the previous one, using test functions
h = 1«4 The main difference is nevertheless the lack of differentiability of these test
functions that prevents the use of (2.36). An extension of Theorem 3.1 to the Kolmogorov
distance case requires thus to find an analogue of this inequality for indicator functions. This
is furnished by the classical Berry—Esseen bound for sums of i.i.d. random variables, see e.g.
(85, Theorem 3.39).

1
dKol(Sn7 O'\/EG + n/ub) = O(ﬁ) . (333)
Here, (Z)) is a sequence of i.i.d. random variables satisfying IE(|Z\3) <00, Sy =01 Zks
Var(S,) =: no?, E(S,) = np and G ~ N(0,1).

Of course, a randomisation of this inequality will give the same result as in subsection 2.3.3,
since one has just changed test functions.

3.2.1. The case < 1.

Theorem 3.10 (Kolmogorov distance to the Gaussian for the unnormalised magnetisation
for g < 1). With Zg ~ N(O, ﬁ), we have

(M2, 24) - 0 72 (33

Proof. We use (3.33) in the particular case of Rademacher random variables (X} ) of param-
eter p := P(X; =1), with E(X;) = 2p — 1 and Var(X;) = 4p(1 — p), and then randomise
p. Taking p distributed as in (2.37), e.g. ng) ~ Up g, or equivalently taking ¢ := 2p — 1
distributed as in (2.38), e.g. T ~ v, 5 yields

dK01< MO, GynyJ1 — (T2 + n T ) (%)

p M®B  MB) o 1

= — =, — | =0|—=

by invariance of the norm and using the definition of the surrogate M!? given in (2.39).
The triangle inequality then yields

MP) MB) AB) M (B)
dKol< N Zﬁ) chﬂ( \/nﬁ ,\/%> +dKol<\/%aZ/5>
M (B) 1
~o(i) o ()

MB)
—rZs| =
dKol < \/ﬁ 3 ﬁ) ilel]g 611 (l’)

and we are led to analyse

with

on(x) = |P<Aj’(§) < .70) —P(Zs < x)|.
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Recall that Zs £ G + G with G ~ A(0,1) independent of G ~ N(0, /(1 — 8)). We thus
have

on(z) =

n
n

(B2
(G .k +X§f)§x>—IP(G+G5§m)

with X, 5 := /nT\" — Gz (in law).

Integrating on G and using ®(z) :=P(G < z), X, 3 L n,p and G < —Gp yields
X(B)
so(z) = |BE| @] L2 Zn O(z + Gy))| .
e B>)2
Set
}/w =T+ Gﬂa
U, (1) = T+u

=
3%

S

1_ v
Yx,n = \Ija:,n (X%B)) ;

Recall that the support of the law of X?) is (—y/n, v/n). We have
On(z) = [E(P(Yz)) — E((Yzn))]
(200 Lo cvmp) ~ E(20 Lo v )|

+ ’E(@(yz,n) Ljslevay ) ~ B@en))| + [E(200) 16, vy )|
=6, (x) + 6,7 () + 0 (x).
Since ¢(z) :=P(G < x) < 1, Markov’s inequality gives for all k > 1

E(|G6|2k).

nk

IN

6P (z) <P(IGgl > V) <

Moreover, using the notation gs (resp. g,) for the Lebesgue density of Gz (resp. X?) as in
the proof of Theorem 3.1, we get
<ﬁﬁ‘

= E(CI) o \Iju’vm(Gﬁ)lﬂcﬁ\g\/ﬁ}) - ]E((I) o \Dx,n(X%ﬂ))l{

®o qjm,n . (gﬂ - gn)

N “/(_\/ﬁﬂ/ﬁ)
<@ 0 Wanlly, [[(95 — 9n) 1 ymm)

=0 [|® 0 Wyl 0n(9n; 95)-
Since 0 < ® < 1, we have sup,cp ||® o ¥, || < 1, and (3.9) yields then for all z € R

6@ (z) = Oﬁ(i) :

L' ()



50 M. Butzek

We now estimate 0((z). Setting ¢ := ®(- +z) — P o ¥, ,,, we get

1) = [B(200)1 g cvmy) ~ B2 e, <vm )|
'E(@ r+Gp) CI)o\IIM(Gg))l{|GB|Sﬁ})‘

(
= [E(#(G0) (3jes <0-am + Hu-avacierte))
(oG 1< ovm) )| + 10l B(( — VA < 1G5)

E(|Ggl™)

‘E( G5>1{|G5|<1 5f}>‘+2(1—5)2k

for all € € (0,1), using Markov’s inequality and ||¢||, <2
Recall that ¢'(x) = \/%e_“’j/? > 0 for all z € R and that ), , = Y, =,(G). We have then
with U ~ U([0, 1]) independent of Gg

5w) = ‘E(W(G5>1{IG5I<<1—a>\/ﬁ}>‘ - ’E((MY:”) ) 1{|Gﬁ|<<1—€>ﬁ}>‘
< ]E(Dim Vol @' (Ye + UV = Ya)) Lj6 <10 f})

1= 2,(Ga)] X [V #(Y: + VU EGS) ~ D) gy <o)

IN

E

7 N\

- /" ((~n<Gﬁ> 1) Y F OISO )
< \/12—7TE<<En(GB) - 1) x |z eyglﬂa,a]su—e)\/ﬁ})
since on {|Gg| < (1 —¢)y/n}, it is Z,(G) — 1 = (1 — G?/n)~Y2 — 1 > 0. In particular,
§W () < \/12—7r ((En(Gﬁ) —1) x Sup{\Y e % }1{\Gﬁ\< 1-¢) f})
= (50 1) ey peaay) < supll e %)

1 -
_ \/ﬁE«:"(Gﬁ) — 1) 1{|G51<(1—a)ﬁ})

since Y, = = + Gp and the supremum of the function y — |y e ¥*/2 is easily seen to be
reached uniquely in y = 1.
Last, the function x +— Z,(y/nx) — 1 is clearly integrable on (—1+¢,1 —¢), and as a result,

‘ - 25%/2 and E<G%) = 1535, we finally get for all

using 0 < F — 1 < tsuppy <.
reR

d 1
du \/1—u

6W(z) < P « L

T 4e32(1 = P)V2me  n

In the end, we obtain
On(z) < 6 (2) + 6P (2) + 6 (z)

< 59 ff;ﬁ'f’ﬂ' )) 169 (2) + 69 (2)
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: L B9 o 0y 4 EIG)

nk

< X = 42—
T 4e32(1 - B)V2me nk(l —e)%

-0:(;)

having choosen ¢ = % for instance. Taking the supremum over z € R ends the proof.

g

Remark 3.11. Analogously with the case of a smooth norm analysed in Remark 3.2, we see
(8)
that dko </‘:’/’£ Zg ) = Og(%) which is faster than the speed coming from the sum of i.i.d.s,

e.g. from the CLT. Here again, we can check in Kolmogorov distance the phenomenon of
“CLT domination” over the randomisation.

3.2.2. The case p = 1.

Theorem 3.12 (Kolmogorov distance to F' for the unnormalised magnetisation for 5 = 1).
Let F' be a random variable of law given in Theorem 3.3. Then,

MM 1
dK01 <n3/4’ F) == O <\/ﬁ> (335)
Proof. We use (3.33) in the particular case of Rademacher random variables (X} ) of param-
eter p := P(X; =1), with E(X;) = 2p — 1 and Var(X;) = 4p(1 — p) and then randomise
p. Taking p distributed as in (2.37), e.g. Pg) ~ Up1, or equivalently taking ¢ := 2p — 1
distributed as in (2.38), e.g. TV ~ v, yields

dkol (M;}), Gvny/1 — (T(V)2 + nT,gU) = 0(\/1_>
n

MO M) 1
< dKOl <TL3/47 n3/4 ) - O(ﬁ) (336)

by invariance of the norm and using the definition of the surrogate M) given in (2.39).
With the coupling (3.15) and the notations that follow, we get

5, (1) = IP(S”(P) < x) _P(F < 1)
g

n3/4
Sn(P) Sn(Q) + An
< (% <o) (>

N |P<Sn(Q) + An < x) _P<2Q(1 —Q)v/nG+n(2Q —1) + A, < x)

IN

n3/4 n3/4

P(ZQ(l—Q)\/ﬁGJrn(ZQ—l)Jr)\n gx) _B(F <)

n3/4

_|_

= 60 (2) + 0@ (2) + 6D ().

n

Bound on 6% (z): The Berry-Esseen bound (3.36) gives
(20 o) p(200-@NrCnER-) )

8% (x) < sup 8 (x) = sup
zeR yER

o)

n3/4 n3/4
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Bound on 8% (z): One has

2Q(1-Q)v/nG+n2Q —1)+ X, G F? G
( Wi n3/4n( ) Tt/ (\ L= 1) +E Tl (e vay-

Similarly to the proof of Theorem 3.3, set

Y

so that
G
5%3)(1‘) = ‘P(Fn + F, + W1{|G\>\/ﬁ} < x) — IP)(F < l’)
<80 (x) + 60 (2) + 80 ().

Integrating on F, and using Fp, (z) := P(F, < ) = [*_ fg and F, <

69 (@) = [E(Fr, (« + Fu)) - E(Fg, ()|
< |1 fe, Il E(F)
E(|G)) E(E)

—F, yields

< ||an o0 n3/4
1 1 E(FZ) +o(1)
<(z+o(m)) "

using Lemma 3.17.
Similarly, using G L —G, we get

oW (z) = ‘E(FF (a: + F,+ &l{wﬁ})) — E(FE, (m))‘

and
0w = [B(Fr. (v + ot i sy ) ) ~BOF)
< ||an||OOIE< Fut 75/41{|G|>ﬁ} )
E(IGP)

< lfe oo | BOFD + T B (161 > Vi)

E(F;) E(G?k))

< HanHoo n3/4 nk+1/4

{3 ol )
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by Lemma 3.17 and the Cauchy—Schwarz- and Markov’s inequality.

We now study 8% (z). In the same vein as for § < 1, we have for all € € (0,1) and setting
eg=1-c¢

60(w) = B(F, < 2) = P(F <o) = | [ (/. = 1)
S/RVF,L — /F|

< _
- /(—5n1/4,5n1/4) r, = el + R\[—En!/4,zn1/4] | r] =+ /]R\[—anl/‘l,anl/‘l] |l

S Han - fFHLl([,gnl/zl,gnUz;]) + ]P(|Fn| > gnl/4) 4 P(lF’ > é,’,01/4)

E(E") | E(F")
< ||an - fF||L1([—En1/4,§n1/4]) + (1 _ 5)4k nk + (1 _ E)41c nk

2E(F*™) + o(1)
< Han - fFHLl([fEnl/‘l,Enl/‘l]) + (1 _ €)4k nk

using the triangle inequality and Markov’s inequality for all £ > 1. We then conclude with
(3.18) and (3.21).

Bound on 8" (z): Recall that A, = 2n(P — Q). Then,

(500 (10 )

P(S.(P) = n(2P — 1) < n*/'z —n(2P — 1))

sup 553)@) = sup
z€R z€R

= sup
zeR

- ]P(Sn(Q) —n(2Q — 1) < n**z —n(2P — 1)) ’

< ]E(sup

z€eR

IP’(S”(P) —n(2P —1) < n**z —n(2P — 1)’P)

~P(5.(@) ~n(2Q 1) < n¥''s — n(2P - 1)|P.Q) |)

= E(iﬁg [P(Sn(P) —n(2P - 1) < y‘P> - P<Sn<Q) -n(2Q@ -1) < y‘Q) D

<=(r-al = a ) o)

by Lemma 3.21.
We recall the following definitions from the proof of Theorem 3.3:

1 1
.Q_§ 2”1/417;7"
11,
o P= 2+21/4E1,
1 G

«2P-Q)= 1 (F~F)=

~n Hicisval
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)+O<;ﬁ>

As a result

1 E, +F’
(1)
apdo) < e 1o (B (s o Ff>
n1/4 onl/4

z€R
1 E,+F
- (ol 2 F,z)
1 F+F’ 1

QE(F ]
<o (1 ( >>+0( 2)-ol)
In the end, we obtain

On(z) <80 (2) + 68 () + 60 ()

<0 (%) +0 <1> +0W(x) 4+ 69 (z) + 69 (z)

Vn
o) (4 o ) (S )
o

which concludes the proof.

3.2.3. The case 5, =1+ %, v > 0.

Theorem 3.13 (Kolmogorov distance to F, for the unnormalised magnetisation for 3, = 1—%,
v € R*). Let E, be a random variable of law given in Theorem 3.6. Then,

M(Pr) 1
dKol<n3/47Fv> - O(\/ﬁ> : (3-37)
Proof. Starting with the approach (3.33) with 5 = 3, yields
dKol<n3/47 n3/4> = O(ﬁ) ’ (3-38)

where the surrogate M%) is given in (2.39). With the coupling (3.15) and the notations in
the proof of theorem 3.6, we get

d)(x) = IP’(SZS)Z) < :1:) —P(E, <x)
(<)o)
N ‘P<S"(2§/j An < x) B P(z Q1 — Q)\/ﬁi;4n(2Q -1+, - x)

3/ F, < )

+‘P<2Q(1— Q)VvnG+n(2Q — 1)+ X, x)_P(
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= 80 (@) + 852 (2) + 609 ().

Bound on §?(z): The BerryEsseen bound (3.38) gives
(549) ) _p(200-QIG Ao )

n3/A = n3/4

8% () < sup 6P (x) = sup
zeR yER

()

Bound on 8" (x): We have

2Q1 -Q)VnG+n(2Q -1+, _ G (| _E

G
n3/4 - nl/4 \/ﬁ —1 _I_Fn,'y‘l' 7n1/41{|G|>\/ﬁ}'

Similarly to the proof of Theorem 3.6, set

G F.
fn”Y./’f’/l/él( 1ﬁ1)7

Y

so that

G
&, (x) = ’P(}—nﬁ By Cal e va) S 3‘3) ~ B <)
<87V (@) + 89 () + 670 ().

Integrating on F, , and using Fp, (z) :=P(F,, <x)= [*_ f5_ and F,, & —Fn~ yields

807 (x) = [E(Fr,,(z + Fuy)) — E(Fr, . (2))]
< | fena| E(FAD
E(G)) E(F?
S ’fF"V %S n3/4( 7)

(o) 2

Here, we have used Lemma 3.19 for the last inequality. Similarly, using G 4 —G, we get

G
@) = [B( i, (2 + Foo + i rovny ) ) B (0)

1 1 E(F?) +o(1 E(G?*
<|z—+0|—= (8) + ot VG

Zp NG n3/4 nk+1/4
by the same arguments we used in the previous proof.

We now study 609 (z). In the same vein as for § = 1, we have for all € € (0,1) and setting
gi=1-c¢

5(7,6)(@ = |P(F,, < x)—P(F, <)
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|/ =m0
S/R‘an,A,—fFW

2E(E™) + o(1)

—enl/4zn1/4)) (1 —g)tknk

< Han,7 — IF, i

using the triangle inequality and Markov’s inequality for all £ > 1. We then conclude with
(3.25) and (3.27).
Bound on 80"V (z): Recall that A\, = 2n(P — Q) = 713/4(1:;:,7 — F;, ). Then,

sup 59’1)(@ = sup ]P’(SR(P) < ac) — ]P’(SH(Q)ML < x)‘

zeR zeR n3/4 n3/4

<=(r-al e m ) o)

by Lemma 3.21.
We recall the following definitions from the proof of Theorem 3.6:

1
Q_§ om 1/4Fn,77
1 1 ,
°P_§ m 1/4 ny’

y G
*2(P-Q)= 1/4 (any - an) = _ﬁl{\mg\/ﬁ}'
F.,+F,,

Tty o)

1/2
1 F, +F 1
= i (E ((1}533) ) * 0(1)> * O(ﬁ)

2E(FY) 1 1 1
< (e o(G)) o) o)

In the end, we obtain

op(x) < 67 () + 07D () + 67 ()
<0 (\/1%> +0 (%) + 009 () + 609 () 4+ 609 ()
§O<1> +<1+O< ! >><2E(F%2)+0(1> N E(G%)) N (115(1%“)

()

which concludes the proof.

As a result
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3.2.4. The case B > 1. Recall that £a 43 are the solution to the transcendent equation (3.28)
and that mg = tanh(zs), with X3 ~ Bery,, (%) and By ~ Bery,,, (%)

Theorem 3.14 (Fluctuations of the unnormalised magnetisation for g > 1). If § > 1, we

have
M® 1
dgol| ——,Bg | = — )
wlHm) =o(7) )

for an explicit constant C > 0.

Proof. Using (3.33) and the invariance of dk, gives

dicor (M,gﬁ), vy /1 — (TP 4 nT}lﬂ)> — 0(\/1_>
n

ME MB) 1
<~ dK01< n 771] ) O<\/ﬁ> (3 0)

and the triangle inequality then implies

A B O )
de(",Bﬂ) < ch,l( w M ) +dK01<M,T7§ﬂ>> + dio (TS, By)
n n n

n
MB) 1
— n (B) (8) 7
_dKol< n 7Tn +dK01(Tn ,Bg)—‘—O \/ﬁ .
We have
MB) G
dico n_ B — g . T® L T2 B)
Kl<nan K1n+\/ﬁ (n)7n
— sup |P( TP + C A (T2 <z) -P(TY) < x)
zeR \/ﬁ
= su IP’£<;)) — P00 < Vpop)| =supP|{0 <) <£
with
1T, )} _ sinh(R®
Vizp = —F————— = xcosh(Rn ) - Slnh(Rn )
1— (Tff))Q
V1—a? sinh(Argtanh(:v) - Rgf)) if |z] <1
= Sme_szR’("LB) if |z] =1

Vaz—1 cosh(Argtanh(x_l) - R;ﬁ)) if |z| > 1,

s, the sign of x. Thus, for € > 0 small enough so that minj,_1<.(x —mg)4+ > 0, it is

(8) G G
de(M" ,T£ﬁ>> < sup P(O < Vs < ) + sup P(o < Vnwp < ) .
n

lo—1]<e Vi) je—i]se NG
Then
G VE A g» G G
sup P{0 < Vs < —= | <P Loehretanh(e)-Ra? < ) +IP><\/2_5§ )
o P03 s ) < P[4 n G
— o(e—"C€) . O>0,
and

G G
sup IP) O S yn,x, S ) S sup P( yn,x, S >
lz—1|<e < ’ \/ﬁ lz—1|<e ( IB)+ \/ﬁ
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< sup E(eG)E<6—ﬁ(xcosh(R;B>)_sinh(R5LB>))+)

lz—1|<e
< e sup e Vl(zcosh(zg)=sinh(zp))i+o(l)]
N lz—1|<e

= Ve exp Vicosntos) (i 2~ tanbioa)) +of1)

lz—1|<e

=0(e V"), >0
It then remains to analyse
dkol (T,SB)7Bﬂ) := sup 'P(T,E’B) < :p) —P(B; < JJ)‘

zeR
= sup ]P’(tanh(RSf)) < x) — P(tanh(Xj3) < :1:)‘
TeR
=sup [P(R) < y) — P(X; < )|

n
yER

y dx 1
_ —npg(x) _ =
sup| [ e 25 = 5 (1) + L)

Since max 4 p [ = max{max, f, maxp f}, it is enough to consider the following quantities:

+oo d
L) = [ e 2y s,
Y nvﬁ
y dx 1 Y dx
I ::/ —npg(z) _ - :/ —npg(z) : 15 <y < xp,
O(?/) —00 ¢ Zn”g 2 0 c Znﬁ l‘ﬁ v= l’ﬁ
Y —n T dx
I (y):= [We w5l )Z ; =1, (—y), y < —xp.

By symmetry, it is enough to consider the case 0 < y < xg in the case of I(y). We thus have
for y € (0, xp)
dl’ e_n‘pﬂ(y)
) <

Y

I :/ —npg(z

o(y) 0 € Z5 = Y Z0 s
= O(\/ﬁ e*m?«pg(m)m)

having set y := x3 — ¢ with ¢ > 0.
In the case of I, (y), y = x5 + ¢, Markov’s inequality gives

= O(V/ne "#slm=70(a))) with Lemma 3.20

1 1
I —P(RY > < -E(|RY — =0(—=
+($6+5) ( n —$5+5>—€ (’ n xﬁD \/ﬁ
using the computations at the end of the proof of Theorem 3.8. This concludes the proof.
O
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3.3. Appendix: Analysis of diverse constants.

3.3.1. Renormalisation constants.

Lemma 3.15 (Asymptotic analysis of Z, 3 for 8 < 1). We have

/ 1057
gXZnﬁ\/ﬁ—l .

n 4
dt

n 1
Z, ::/ —aFet) Fs(t) := = Argtanh(¢)? + In(1 — ¢?).
Setting z = Argtanh(t) and y := \/nx gives

2,51 / e~ 3 Fa(tann(@)) g / =3 Fa(tanh(y/vi) W
b R ]R ﬁ

Proof. Using (2.33), we have

with
5 Faltanh(y/v/m)) = ;+1@@%mmw@3
2 2
_ % (; - 1) + % + glog(l — tanh(y/v/n)?)
2
= 506 +Un(y),
where
1
Csgi=——
/3 6 1?
2 2
Un(y) == % + glog (1 — tanh(y/\/ﬁ)z) = % —nlog cosh(%) =:ny (%) : (3.41)

¥(y) := 5 — logcosh(y)

since 1 — tanh? = cosh™2. The equality
2 27
_Y
e 2 dy = | =
/R Y=V,
implies that

2
N Z.svn= / 5y — / F(tanh(y/ V) g

Cp
= / 1 . e‘w”(y)) e_%cﬁdy.
R

The study of ¢, with SageMath [37] shows that v, is non negative on R with only cancelation
in 0. This can also be seen with the inequality cosh(t) < exp(5 ) that follows from the
termwise comparison of the Taylor series of each function. As a result the previous quantity
is positive on R*. Moreover, in the same vein as for k, defined in (3.7), we have 1, (0) =
! (0) = (0) = ¢”(0) = 0, and the Taylor formula with integral remainder gives at the
fourth order

P 6/ (1 — )’ (ay)da.
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A computation with SageMath [37] gives

o« UL(y) =y - ﬂtanh(jﬁ)
-fwz@»::tanh(\ﬁﬁ)z

o U (y) = jﬁtanh<\j/ﬁ> (1 - tanh<\3//ﬁ>2>

o yD(y) = i(1 - tanh<jﬁ>2) (1 - 3tanh<\z/%>2> .

Moreover, the function y +— nlog(l — tanh(y//n)?) = —2nlogcosh(y/y/n) has bounded
derivatives. We thus have

0<1—e W <o (y _24H¢ H

Since ‘zbﬁf‘) (v) ‘ ‘1 — tanh (- ‘ ‘1 — 3tanh(-L ‘ < 2 we get

27 2
_ — _ o= n(y) -LC
OS”CB Zn,ﬂ\/ﬁ—/R(l e )e 2 Y dy
< 2/ y%‘gcﬁdy = L\/27TC’_5
— 24n Jr 4n g

hence the result using the fourth moment of a Gaussian (equal to 3). g
Lemma 3.16 (Asymptotic analysis of Z, ). We have
Z 1
g o =),
" Zp N

n dt
Zp1 = / e 2P _— Fi(t) := Argtanh(t)* + In(1 — #?).
’ (-1,1) 1 —¢2

Proof. Using (2.33), we have

Setting x = Argtanh(t) and y := n'/4x gives

Za ':/e 5 Fi(tanh(z)) 7. :/@—%Fl(tanh(y/nl/“)) dy :./ Cn(ymi/h) Y
R R ni/4 " Jr nl/4

with v defined in (3 41).
Since Zp = [ge” B dy, it is

nAZ,, — Zp = / (/) gy / e~y

_/<1 — e—Unly )e—nw(y/nl/“)dy’
a0~ () = () ) ()

4 4 2

bly) = 55— ¥(y) = 35— %+ log cosh(y).

where

(3.42)



Precise approximations of Rademacher functionals 61

The study of ¢, with SageMath [37] shows that it is non negative on R with only cancelation
in 0, see also the Taylor formula at the fourth order below. As a result, the previous quantity
is positive on R*. Moreover, in the same vein as for &, defined in (3.7), one has ¥*)(0) = 0
for all K =0,1,...,5, and the Taylor formula with integral remainder gives at the sixth order

59O (ayn~*)da.

(6) da
vnlv) = 135 / (ay) 120f

A computation with SageMath [87] gives
N 3
o 0'(y) = tanh(y) + 5 —y
o U"(y) = —tanh(y)” + 3
e U (y) = 2tanh(y) (1 - tanh(y)2> + 2y

~ sinh(y)* + 4 sinh(y)?

[ J ( ) e
YW (y) =2 coi(y)? >0

o 6y — _gleosh(y)® —3)sinh(y)
v (y) = -8 cosh(y)?

o 5O _ 4 Loosh(y)® — 30 cosh(y)® + 30
vy =4 cosh(y)8 :

Note that the Taylor formula at the fourth order gives 1, (y) = % Ji1 = a)3W (ay/n'/*)da
and since 1/1 > 0, it is easily seen that @Zzn is non negative. We thus have

) _ Y 5(6)
O<1- < ¢ - 72() H¢ Hoo o 7204/n Hw Hoo
Since
CI 4 cosh(y)* — 30 cosh(y)? + 30
cosh(y)®
= 4(4(1 — tanh(y)) — 30(1 — tanh(y)®)* + 30(1 — tanh(y)*)*) < 136
we get
0<n'Z,,— Zp= / (1 — e{l;"(y)> e W/ gy
o ’ R
136 1/4 136
< 6 —ny(y/n / )d — 1/4Zn E FG )
—720\/5/]&“ YT 0ym !t (£7)
Hence
Zp 136 6
01— < 72O\/H(E(F ) +o0(1))
which concludes the proof. (I

Lemma 3.17 (Asymptotic analysis of || fg,||.). With F, defined in (3.12), we have

1 1
max f, (r) = er+0<\/ﬁ>

Proof. Using (3.12), (2.38) and (2.33), we get

@) = =i (27
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2
- 711/412,7”,1 6_%Argtanh("f4) @ +1)ln( 1{|z|<n1/4}
(@)
= g,y )
and
€ () = Argtanh( 1/4) —(1 + %) —7

1= (i)

We have £,(0) = 0, and £/(0) = %, hence, 0 is a minimum of &, and fg. To find the
maxima, set

Y= Argtanh( 1/4)

We need to analyse the solutions of the equation

tanh 1
anhly) 1 (3.43)
Y 1+ n
This equation is well known in the study of the Curie-Weiss model as it gives the limiting
magnetisation when 8 > 1 (see e.g. [50, prop. 8]). An easy study shows that (3.43) has a

unique solution y,, on R, and by symmetry a unique solution —y,, on R_, both being global
maxima.
Define

tanh(y/w) w

G(w) := 1—7 = §+O(w2), when w — 0,
1 2 2

142 ng2 noveen
Then, the solution y, of (3.43) is such that y, = \/w,, where
G(wy) = &y.

Since G is bijective on R, , we can define its inverse G~! for the composition o of functions,
and, both functions being C*°,

wn = G (en) = G7H0) + (G (0)en + O(e2) = 3ep + O(c2) = § + o(n2>

= (10() = farolia)
=ty =2 +0( 12 ) < B o).

Hence

In the end, using H(z) := z + log(1 — tanh(y/7)?) = %2 + O(z?), we get

2 22
1 —% Argtanh | 22 ) —(5+1)In 1—\/—1
I o = f ) = 7ige () (-4%)
— ;6*%“%*(%“)ln(lftanh(\/tTn)Q) _ ;efgfl(wn)fln(ktanh(m)?)
n1/4Zn,1 n1/4Zn,l
1 — 2 w2 +0(nw? )+ +0(n=3/2)

= — € 12

n1/4Z 1
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1 9 —3/2 1 1
— = =10 ) — —
Wiz, ° WAz, <1 o (n)>
and Lemma 3.16 gives n1/4Zn71 =Zr+ O(ﬁ), concluding the proof. O

y4 2
Lemma 3.18 (Asymptotic analysis of 2, 3,). Set Zp, = [ e~ VT dy. Then,

ZF

Y

n”‘lizn’ﬁ” — 1| = O<1> )

Proof. Using (2.33), we have

n n dt
Zn : / ( Argtanh(t)2+§ ln(l—t2))

_/ Qﬁ y —nln cosh(y/n1/4))) d’y

nl/4

[ttt ) )y
R

/4
having set y := n'/4 Argtanh(¢) and used 1 — tanh(z)? = cosh(z)™2
Recall that ¥ (y) := % — In(cosh(y)) is defined in (3.41) and set

1 0
Tn = \/_ n 1)
<6n Bn
d
Znpu = /R@ It —nu/nt/ ) 2Y

nl/4
1/4 =yt _ et

so that

We have moreover with 7, >«

2 4 2 4 2 2 4
S T i DV i i N DV Tl W /i
OSZFW_ZF%:/R<€ TTTIE — e 2 12>dy:/R(e T — e 7"2>€ 12 dy

y: oy o8 2
< (=) [, e By < 5 2eB(F)

and the same inequality holds if v > v, but with 0 < Zp — ZFf .

Last, the analysis of n!/ 1Z.s, — 2 F,, is similar to the previous one with § < 1, using exactly

the same function ¢ but with a different rescaling. We form

0< 25, — Zp, = |

R
with fe, = Zp, fr, and 1, == n(-/n'/*) is defined in (3. 42)

) ~ 7 ~ 6 ||~
Since ¥, > 0and 0 < 1 — e ¥ < Un(y) < % me)H <136 4 T’ we get

2 112 .4
(6_7n112_n¢(y/n1/4) _ 6_7".2_1{2) dy = /R<1 — € wn > fF’Yn( )

0 S n1/4anBn - ZF’Yn S

720 /n Jr T 720 n 720

In the end,

n1/4znﬁn - ZF’Y‘ S ‘nlMZ”/B - ZF'yn

+|2r,, — 2,

< \;_ (;ZgZFIE(Ff) + 7;ZFIE(F?) + 0(1)>

136 1 [ 4+ 136 Zr, E(ES) 136 ZrE(E") +o(1)
[ ey~ 8 ZBAE) |
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which concludes the proof. ]

Lemma 3.19 (Asymptotic analysis of H /5.,
(3.23) and B, :=1— %, we have

Oo). With fg, .. the density of F, ., defined in

1 1
— 40
g Jr, (@) = Zp, + (ﬁ)
Proof. Recalling (3.23) we get
1 x
fr.,(z) = an,ﬁn (nl/‘l)
L 1 — 5 Argtanh 2—( 2+4+1)In 1——
= 7711/42%&” e ( ) ( >1{x|<n1/4}

T WIAZ, )
and

/ B 1Argtanh( 1/4> _(14_%)#
fn(x) — _p3/4 L (#)2

We have ¢/ (0) = 0, and &!(0) = %, hence, 0 is a minimum of &, and fg_. To find the
maxima, set

Yy = Argtanh( 1/4)

We need to analyse the solutions of the equation

tanh n
anhly) _ _fn (3.44)
Yy 1 + n
This equation is well known in the study of the Curie-Weiss model as it gives the limiting
magnetisation when 8 > 1 (see e.g. [50, prop. 8]). An easy study shows that (3.44) has a

unique solution y,, on R, and by symmetry a unique solution —y,, on R_, both being global

maxima.
Define

Glw) =1 — m\/(wﬁ’) — 5 +0(w?),

when w — 0,

En=1- i :1—1_% ~ L1 +31_.
n 142 142 n—>+oo\/ﬁ{77é0} o 1=0
Then, the solution y,, of (3.44) is such that y, = \/w,, where
G(wy) = &y.

Since G is bijective on R, , we can define its inverse G~! for the composition o of functions,
and, both functions being C*°,

w, =G (g,) = GH0) + (G (0)e, + O(2) = 3¢, + O(£2).
Hence
Yo = V0n = V32, (1+ 0(22)) = V3e, + O(3/?)
Fn tanh(y,) = tanh(@ + O( 3/2>> =3, + O(g,).

/4
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In the end, using H(z) := = + log(1 — tanh(y/z)?) = & + O(z*), we get

2
1 Argtanh 5+1)In 171—"
ol e )
_ 1 efw%nwnf(%+l)ln(lftanh(M)z)
WAz, o
_ 1 o 5 Hlwa)~In (1= tanh(y/wm)?)
WAz, o
— 1 e~ 125 w2 +O0(nwd )+ +0(n=3/2)
n1/4Zn75
1 2y s . 1 1
— = erlpzatilp=gtenT) — (140 —
Wiz, 5 ¢ WAz, o ( HRA W
and Lemma 3.18 gives n'/1Z, 5 = Zp + O(ﬁ), concluding the proof. O

Lemma 3.20 (Asymptotic analysis of Z, 5 for 8 > 1). Set Z,5 = [pe ™Wdy with
ws(y) == % —log cosh(y). Then,

2T 1
\/ﬁemﬁﬁ(zﬁ)zm =2 | —— + O() .
’ w5(zp) vn
Proof. By symmetry of ¢g, we have
Vneeels) z, 5= \/_/ n(ep(@)=vp(s)) Jp — 2\/_/ n(ep(@)=ps(s) 1o
_ 2\/5 e—n(x—xg) fo cpﬁ(ax—i—ax,g adadx
Ry

+OO w2 1 11
-9 e T Jo ¢ﬁ(aw/\/ﬁ+zg)adadw

—zg\/n

— 2 e*w;“"lﬁl(”)dw =2 2m
notoo JR ©h(zp)

using dominated convergence as in the proof of Theorem 3.8. U

3.3.2. Kolmogorov distance between two centered sums of Rademacher’s.

Lemma 3.21 (Kolmogorov Distance between two centered sums of Rademacher’s). For all

€ (0,1), define S, (t) := Sp(t) — n(2t — 1) with S,(t) = S7_, Xi(t) and Xp(t) ~ iid.
Rademacher random variables. Then, for all p,q € (0,1), we have

dica(Su(p), 5:(0)) < I~ |p+mq) + 0(%) -

Proof. Recall that E(Sn(t)> = 0 and set 02(q) := Var(§n (q)) = 4q(1 — ¢)n. We define
G, ~ N(0,02(p)) and G, ~ N(0,02(q)). The triangle inequality yields

dol <Son(p)> §n(Q)) < dxol <§n(p)7 Gp) + diol (Son(Q)a Gq) + diol (G, Gy)

< dko(Gp, Gg) + O (%)
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by the Berry—Esseen theorem (3.33). It remains to prove that

1—(P+Q)|.

< |p—
dKOl(GP7 Gq) = |p Q| p(l _p)

Stein’s method for G, gives, [85, (2.2)],
dkol(Gp, Gy) == sup IP(G, <w)—P(G, < w)|
we

/ G
= oup 8 11,(G) ~ 201,06 )|
where
1 ; o
fw’p(x) _ pr(x)E(l{Gpgz} (1{Gp§w} — P(Gp < U)))) ’ pr(I) = We 200 (p)?

is the solution of the Stein equation for G, see [95, (19)] and [¢5, (2.1)].
Moreover, the Gaussian integration by parts gives for f,,, € C!

E(Gyfup(Gy) = 02(E(£,,(G,))

implying
(G, Go) = sup [B( 1 (Go) = 22D pr
Kol( P q) - i}lé% fw,p( q) - O_,,%(p) fw,p( q)
A0 :
=|1- o2(p) zlé%\E(fw,p(Gq))\
on(q) :
<|1- 22(0) ilé%\fw,pHoo
and, see e.g. [95, (22)],
!/ < 1
sup i, |, <
Finally
o] |, 4 -=gn| | J1-(p+9)
o7(p) 4p(1 - p) p(1—p)

which gives the result. U
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4. CRAMER-TYPE MODERATE DEVIATIONS FOR L?-RADEMACHER-FUNCTIONALS

In this chapter, which is based on [11], we derive moderate deviations for L?-Rademacher-
functionals. For the proof of our main result Theorem 4.1 we will need two auxiliary lemmas.
The first one gives us a more precise bound of the moment generating function constructed
in the setting of the theorem. In the proof of Theorem 4.1 we split the relevant terms into
sub-terms by the use of different indicators and the second lemma helps us to bound one of
these. This theoretical part is done in the first section. In the following sections we treat the
i.i.d.-case and infinite weighted 2-runs as applications.

4.1. Main Result. Now we present the main result of this chapter.

Theorem 4.1 (Moderate deviations for L?-Rademacher-functionals). Let F' € D'“? with
E[F] =0, Var(F) =1, and
FfZ(F) + 1{F>z} eD? Vvze R,
L pr IDL™'F| € Dom(s).
VPa

Assume that there exists a constant A > 0 and increasing functions v1(t),v2(t) such that
e e DY? and

(A1) E[[1 = (DF,—~DL'F)| "] < n(HE [e'],

(A2) E Ha(lpF ]DL—lFD etF
VP4

forall0 <t < A. Fordy >0, let

< Y (H)E {etF} ;

Ap(dp) := max {O <t<A: t;(vl(t) +72(t)) < do} :

Then, for any dg > 0,

P(F > z)
e

provided that 0 < z < Agy(dp).

— 1| < 25 (1 + 2%)(71(2) + 72(2))

In consequence, the following result is achieved.

Theorem 4.2. Under the assumptions from Theorem 4.1, there is
P(F > z)
1—®(2)

22
_ 1| < 25eFMERRE (1 4+ 22)(71(2) + 7(2))

forall0 <z < A.
As we mentioned before we continue with two auxiliary lemmas.

Lemma 4.3 (Bound for the moment generating function). Under the assumptions of Theo-
rem 4.1, for 0 <t < A, we have

R {etF} < exp {2(1 + () + ’72(25))} . (4.1)
Then, for 0 <t < Ay(dy),
E [etp} < eloet’/?, (4.2)
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Proof. Let h(t) :=E {e“ﬂ. We recall that E [etF] < oo is implied by e/ € D2 for 0 <t < A,

and so, by the continuity of the exponential funtion, we have h'(t) = E [FetF } It follows
with (2.24) and (2.25) that

E[Fet| = E[(LL7'F)e'"]
=R |[(=6DL ™ F)e'"]
=E [(De'",—~DL7'F)|. (4.3)
Now we consider the k-th component of De'f’, which gives us

DketF — \/m {etF,:' o etFk_}
Ey
= t\/Drk /F Cedu
k

pn
= t\/Drdk /F: [et“ — etF] du + te' D, F
=: tRy + te'" Dy F.
If we define R := (R, R, ...), we can go on from (4.3) by writing
E[Fet| =E[(tR,—DL™'F)| + E [(t¢'" DF, - DL™'F)]
<tE [ +tE|[(R,~DL'F)| +tE [|1 = (DF, -DL7'F)| "] (4.4)

Without loss of generality F, < F < F;f; for the other case we just have to change the sign.
Then we can bound Ry, as follows.

Ft
Ry, = \/m/Ff e — "] du
k
LA - -
< V/Prdk / e — et | du
Fy

F+
_ tFT tF- k
= /Drar |€7F — ek du
By

1
vV Prqk

= Dye'"" DyF

and by combining both cases

|Ry| < Dye't - DyF. (4.5)

Kk
By condition (A2) and (4.5) we get

tE|(R,~DL™'F)| <tE[(|R|,

DL'F|)]

< ty(t)E {etF} : (4.6)
By condition (A1), for 0 <t < A,
tE [|1 = (DF, —=DL™'F)| '] <ty (HE [e"]. (4.7)
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Combining (4.4), (4.6) and (4.7), we have for 0 <t < A,
W(t) =E[Fe'"]
< th(t) + {t(1(t) +72(8)) 1A (t)
= {1+ m() + )} th(?).

Having in mind that h(0) = 1, and v, and v, are increasing, we complete the proof of (4.1)
by solving the foregoing differential inequality:

log(h(e) = [ 4

< [+ () + als))sds
< [+ m@) +a(e)sds

= D) + ).

now we apply exp(.) on both sides. At last, (4.2) follows immediately from (4.1) by definition
of A() (do) . O

ds

Lemma 4.4. Under the assumptions of Theorem 4.1, we have for 0 < z < Ay(dy),
E[|l = (DF,=DL'F)| Fe™ P1igcpezy| < 6e®(1 + 2%)m(2) (4.8)

and

1
E[F<1”WDL1FD|FJ”“w§@4 < Geto(1 4+ ) (2). (49)

VP4

Proof. Same as [102] we apply the idea in [19, Lemma 5.2] for this proof. For a € R, denote
la] = max{n € N:n < a}. Next, we define H :=1— (DF, —DL™'F).
(2]
E|[|H|Fe™Lipcren] = Y B [|H| Fe™ 1 1cpajy| + B [|H| Fe™ PLicpesy] .
j=1
For the first term we get
[2]

> E[[H| Fe™ 1 1<pey) < Zjej VHRGIE (1H| €71 1erep]
j=1 J=1
(2] . A
<3Y_ je PR || H| € Ly 1<rep]

J=1

and similarly, for the second
E ||H| Fe™ " Lpcren| < 2R ||H| M Ligcran
< 3z "R [IH | e* 1{[499}} :

For both terms, we used similar manipulations, namely for j — 1 < F' < j:
o cU=D?/2=5(=1) — ¢3*/2=3+1/2=3%+] — ¢=37/2¢1/2 < 3¢-37/2,
° e( F) /2 < 61/2 PN eF /2 < e ]2/2+]F+1/2 N eF /2 < e(.] 1) /2—=3(— 1)6‘]F
And for [z] < F < z:
o clPP/2-[lz — ol /2= ()42 /2222 _ o(a=[2)?/20-22/2 < 3o—27/2,
6(z F)2/2 < e(zf[z])Q/Q PN €F2/2 < e(,2'7[z])2/2+zF7,22/2 PN 6F2/2 < e[z]2/27[z}zezF.
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By condition (A1) and (4.2), and recalling that - is increasing, for any 0 < x < z < Ay(dp)
&) < (@)l

< ey (z) < e®y(2).

e PR ||l — (DF,~DL™'F)

By the foregoing inequalities,

2]
E[[H| Fe"* P 1pcresy]| < 3ey1(2) (Zj + Z) < 6e™(1+2%)m(2).

j=1
The other statement of the lemma is completely analogous. O

Now we are ready to prove our two theorems.

Proof of Theorem 4.1. We note at first that
[P(F > 2) = (1 = ®(2))] = [1 = P(F < 2) = (1 = ®(2))| = [®(2) = P(F < 2)].
By Stein’s method and the proof of [36, Theorem 3.1] we have for z € R
[P(F > z) = (1= ®(2))| = [E[fI(F) = FfF)]| < )1 + J
with
J:=E

Y

FUF) (1= (DF,~DL'F))

Jp:=E [(FfZ(F) + 1{F>Z})5<\/;_qDF ‘DLlFD] .

For the upcoming estimation we can split J5 into two terms, namely

[FLAF) + 1(ps

1 _
|| <E Hd(\/p_qDF DL 1F‘>

] < Jog + Ja
with

1 1
s = 5(orlosH) 1Ese].

1 B
Joy i =F H(S(\/p_qDF ‘DL 1F‘> ‘ 1{F>Z}] .

Using the same arguments as in the proof of [102, Proposition 4.1], in particular (2.6), (2.10)
and (2.11), we have

Jo1 < Jaz + Jog + Jos

with
Jog = (1—®(2))-E Hé(\/;_qDF ‘DL‘lFD ’ 1{F<0}] ,
Jog =21 (1 —®(2))-E Ha(\/;_qDF ‘DLlFD ‘ FeFQ/Ql{OSFSZ}] ,
Jos = E H(S(\/Z_qDF ‘DL‘lFD ‘ 1{F>Z}] = Jaa-

Thus,

|Jo| < Joz + Jog + 2 Jos. (4.10)
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For Jy3, by condition (A2) with ¢ = 0 and noting that 7, is increasing,

1 1
E ||6 DF DL‘1F>‘1 <E ’(5<DF DL‘1F>’ < 75(0) < ePyy(2).
H<¢m | ) Lir<oy Vi | | 2(0) < e%(2)
(4.11)
For Jo4, by Lemma 4.4, we have
1
E[F<¢wL”WDL4FD+“J”“wq«@ <61+ (). (L12)
For Jos, by condition (A2) and (4.2), for 0 < z < Ay(dyp),
Jos = H (DF IDL” 1FD | Lponefe” F]
< [p(or iosraeae]
< pE [ e
< etoryy(2)e —=*/2,
We recall that for z > 0
V2
e <o (142)- (1—d(2)) < 3 5 To+2%)(1-0(2))
Then, for 0 < z < Ay(dp),
1 3edo\/27
E |0 —DF |DL'F|]|1 < (14 22 1—®(2)). 4.1
[(w@ | D|w»}_ S (14 2)(2)(1 - 8(2)) (4.13)

Therefore, combining (4.10) — (4.13), for 0 < z < Ay(dy), we have
1ol < (14 6v2m +3v2r) e®(1+ 2)72(2)(1 — ®(2)) < 25e(1+ 22)72(2)(1 — ©(2)).
For the remaining term J; we have a similar approach after using again Stein’s equation:
1| =E|fi(F)(1 - (DF,~DL™'F))|
<E[|f{(F)|[1 = (DF, -DL'F)]
< Ji+ Jig + i3

with
Ju =E[|Ff.(F)|[1 - (DF,-DL'F)||,
Jiz = E[(1 = ®(2)) [l = (DF, =DL'F)||,
Jis = E [Lipszy [l = (DF, ~DL'F)|] .

From here on we can identify any of these terms with a corresponding term from the first
part of the proof, namely Jy; — Jos5. Therefore, combining these modified estimations, for
0 <z < Ay(dy), we have

|| < (1 +1+6V2r + 3\/27?) e®(1 4+ 22)y1(2)(1 — ®(2)) < 25e®(1 4 22)y1(2)(1 — B(2)).
All in all, we have shown, for 0 < z < Ay(dp),

[P(F > z) — (1 = ®(2))| < 25e (1 + 2%)(n(2) +72(2)) (1 — D(2))
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or equivalently

-1

|P(F>Z) < 25e™(1 + 2%) (71 (2) + 72(2)). =

1—d(z)

Proof of Theorem 4.2. Let 0 < 2y < A be fixed. Choose dy = %
definition there is 0 < z5 < Ao( 0)- ence, we may apply Theorem 4.
IP)(F > ZO)
1— @(Z())

(71(20) +72(20)). Per
1, which then implies

— 1| < 25e®™(1 + 22)(71(20) + 72(20))

L2
— 25670(71(ZO)+’Y2(Z0))(1 + 2(2))(’)/1(20) + 72(20)) . ]

4.2. Application: The i.i.d.-case. As a first application we treat the i.i.d.-case: For our
sequence (X;);en of Rademacher random variables we consider the standardized nth partial
sum

1 & (2p—1
F::Fn:ﬁ;Yi:— Z \/p_ )
The classical result can be received:
Corollary 4.5. Recall the definition of F,, from above. Then
P(F, > z)
1—®(z)
for 0 < 2z < n'/6 such that (1 + 2%)y,(2) < 1, where O(1) is bounded by a constant and
Tu(2) = 60(1)2"_1/2(1—'—\/5@.

Remark 4.6. We obtain the optimal range 0 < z < n'/6 from (1.5), but there is no log(n) in
our error term compared to [15, Corollary 2.2].

=1+0(1)(1+ 2H7.(2), (4.14)

Proof of Corollary 4.5. Due to finiteness of the sum and therefore boundness it is easy to see
that the assumptions

o Fc D'

° FfZ(F) + l{F>z} eDh!? Vze R,
o \/%qDF]DL_lF| € Dom(9),

o off ¢ D12

are valid. Now we start to compute the terms appearing in (A1) and (A2). By definition

noX,—(2p—1) 1—(2p—1
Ff = 72 (2p )Jr (2p—1)
vilD o 2y 2/Pq
itk
1 [ & Xi—2p—1) —-1—(2p—1
Fr——|y% (2p )Jr (2p—1)
vrlio 2 2/pq

itk

and we get, for fixed n € N,

DiF = \/pq(Fyf - Fy) = 2\2/[f = \/1%
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On the other hand it holds that —L~'F = F and so
1
—DyL7'F = —.
k Jn
With these expressions we can compute the scalar product
2
"1
(DF,~DL™'F) = () = 1= Var(F).
As a consequence
E[[1 - (DF,—DL'F)| "] =0,

so 71(t) = 0 or we are free to choose something appropriate. We now move on and show that
a bound as in condition (A2) exists: By the Cauchy—Schwarz inequality
1 -1
E ||6| —=DF|DL'F|

N < (IE (5(\/;_(1DF‘DL1FD>2&F );(E {etFD%.

By [20, Corollary 9.9] it is 6(u) = >_p_; Yiug, where Y} is the kth centered and standardized
Rademacher random variable as above. The corollary can be applied since

VPa nVPa

etF

U -

does not depend on Xj. Then

(& (o) e])F = — (iE[mew])

N|=

/PG \ . 1=1

N

1 n 2 1 n
< E |Yz2ett E |V, Yiett . 4.15
‘WPQ<;§ e D N k,zz—l [rvie” 419)

k#l
We estimate the first term of (4.15) without further computation:

(320 < el

k=1

For the second term of (4.15) we take a closer look at the summands E [YleetF } Our
strategy is to split F'into F}, the summands depending on Y} and Y}, and F},, the independent
summands, such that

Faz\/lﬁ(Ykaz), F,=F—F,
Then by Taylor expansion
E[Y,.Ye''] = E[Y, Ve et
= E[Y,Yie'™™] + tE[Y Y F et + B[, Y Firy(tF, )et™ /2],

where |ry(tF,)| < eflfal.
O-order-term: By independence
E[Y,Ye'™] = E[Y,]E[V;]E[e'"*] = 0.
1st-order-term: By definition of F, and by independence
t
tE[V;YiFae'™) = — (E[Y2Vie'™] + B[y Y2e!"))

vn
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- L(E[ng[mlﬁz[e%] + E[YiJE[Y;?E[¢""])

\/ﬁ
=0.

2nd-order-term: Finally, having in mind that |ry(tF,)| < /sl we can bound the last term
of our Taylor expansion by

£ [B[YiYiF2ra(tFy)e™ /2] < Cnt?E "] et

with ¢ = O(i) and so

n

2 2
1 - tF _ 1 < 2 2 tFy,
o k;IE[Ylee ] = gjlt E[YRYiFrs(tFa)e'™ /2)]
k#l k#l

N

Ce R
<O o fer)

Summarizing everything we have done so far a bound as in condition (A2) is obtained by

B [0 ] < & ot ) (2 7]

[SI

N|=

< (Z E [uietF}) ’ + Z E [ukuleXletF} (]E [etF})
kEZ k];lilz

Cect
NG
Yot

(1+t)E [e"]

<
=: E {etF} .
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4.3. Application: Infinite weighted 2-runs. Our moderate deviation is given as follows.
Theorem 4.7. Recall the definition of F,, given by (2.26). Then
P(F, > 2)
1—d(2)

for 0 < z <min{C; Y3 C;2, Var(G,)"/?} such that (1+ 2*)y,(2) < 1, where O(1) is bounded

by a constant only depending on the coefficient sequence (a,(”))zez and

2
o ez
Var(G,,)

Remark 4.8. The constant C,, has an important meaning. It is the order of the corresponding
Kolmogorov distance in [36, Theorem 1.1]. Depending on the coefficient sequence, C,, can
behave differently: By (4.18) and (4.39) C,, is in general bounded by a constant, but it can
be a constant itself, see e.g. a§”) = %2 So, to make (4.16) tend to 0 and the range increase
in n, the condition C,, — 0 for n — oo is sufficient. We give now examples, where this is the
case and where the resulting rate is optimal.

=1+ 0)(1+ 2H)7.(2), (4.16)

ul2) = COCREN (112 4 )| €, om

Ezxample 4.9. We consider a§”> = 1yij<n} Vi € Z, which is obviously a summable sequence.

Then Ha(”) 24(2) = O(n1/2) , Var(G,) = O(n) and C,, = O(nfl/Q). The moderate deviation
we get is
P(F, > z) )
— =1 1)(1 4.1
1o+ ) (@.17)

for 0 < z < n'/% such that (1 + 22)v,(z) < 1, where
'Vn(z) - eO(l)Zn*1/2<(1 + S1/2 + z)n_1/2> ‘

In order to discuss the quality of this result, we use a lower Kolmogorov bound known from
[12, Theorem 1(c)], which got later refined by [83, Corollary 3.12]. Since G, is almost surely
an integer between —n and n, said results imply that the Kolmogorov distance for normal

approximation of F, is bounded from below by ¢y - (Var(G,)) 2 for some constant ¢ > 0.
1

As Var(G),,) is of order n, we conclude that C,, being of order n~2 is optimal.

Example 4.10. We generalize the previous example to a,ﬁ”) = n_ﬁl{‘i‘gna} VieZ,aeR, 8>
2

0. Then Ha( @ = O(n(o‘*w)ﬂ) , Var(G,) = O(na*%) and C,, = O(n*aﬂ). If we choose

f =0 and a > 1 the moderate deviation we get is of the same form as (4.17) with range

0 < z < n®/0 respectively 0 < z < (Var(G,,))*/%. Using the same argumentation as in the
previous example, we see that the rate of C,, is again optimal.

Proof of Theorem 4.7. In what follows, we show that all the assumptions of Theorem 4.1 are
verified. Note that although here the Rademacher random variables are indexed by Z instead

of N, Theorem 4.1 can be fully carried to this setting. Since the coefficient sequence (az(-n))iez

is in ['(Z) we have Ha(n)Hw(z) < 0oV p € N. By definition E[F] = 0 and Var(F) = 1, and the

rewritten random variable

1 n
> az(‘ ) (X + X; X + Xii4]

1
F:=F,= Var(G )z%“ [&5”1_4} :miez

is bounded. In particular we will use E |G| < Ha( ) 1) and
]_6 H 12(2) — Var(G ) 16 Z + Za i+1 < E Ha 2(2) (418)

’LEZ
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5 DF|DL™'F| € Dom(é) and Ff.(F)+1{r>.y € D'?Vz €

R, we follow the argumentation of [30], see in particular Remark 3.5 in there. F' is an
element of the sum of the first and second Rademacher chaos, see the beginning of the proof
of Theorem 1.1 in [36], and by hypercontractivity we find that F € L*(2). Following the
calculations in the proof of Lemma 3.7 in [20] with u = \/ﬁDkF |Di.L7'F| for k € Z,

Regarding the assumptions that

it can be shown that assumption (2.14) in Proposition 2.2 in [61] is satisfied. This implies
that u = \/%DF |IDL™'F| € Dom(d). Further, it implies that E[(F f.(F) + 1irs.y)0(uw)] =
E[(D(Ff.(F)+ 1{p>2y), u)], which is why we do not need to verify whether F'f.(F)+ 1{ps2)
is an element of DMV z € R.

We start to compute the terms appearing in (A1) and (A2). By definition

1
Ff=———— Z ( [Xi + XiXip1 + Xia] + a’l(c 12X +1) + a(n (2Xp41 + 1)
44/ V: n i
\/m i;ék:e—zl,k:
Fy = S — > o) [Xi + XiXip1 + Xig] — al(cn)l a;ﬁn)
4./Var(G, i '
m i;ék:e—Zl,k:

and we get, for fixed n € N,
1 _

DyF = §(F,j - Fy)

1

- 4,/Var(Gy,)

(0™ (Ximr +1) + 0l (X + 1) - (4.19)

Further we obtain

1
~L'F = a; [Xi + =X X + Xi
4\/Var(G ZGZZ 2 " !
and so
—DyL7'F = ;(a,&@l (X1 +2) + af” (Xpy1 +2)). (4.20)
8y/Var(G,,)

Now it is easy to see that F' € D"2. By definition Var(F) = 1, so F is in particular square-

integrable. The condition E(Y ez (DyF)?) < 0o follows from (4.19) and the fact that (a!™)iez
is in [1(Z) respectively [?(Z). Concerning the assumption ¢/’ € D2Vt € R we notice at first
that the boundness of F implies the square-integrability of e/f. We compute further

E(Z(DketF>2) -k Z(Xk\/P_QetF (1 — e_t\)/(z%DkF>)2>

keZ kEZ
2)

X |X |
<E qu thF t2 (D F)2 2t k DkF)
rq

kEZ

X
—tZk D, F
=E() X,que%F‘l—e vra Tk
k€EZ

— k| $2e2tF Z(DkF)262t|F,ij|) 7
keZ

where we used |e* — 1] < el =1 < |z|el?l V2 € R and equation (12.2) in [30]. The boundness
follows then from the boundness of the terms we have studied so far. With (4.19) and (4.20)
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we can compute the scalar product

1
DF,-DL'F)= — (n) y2 [ x2 Xo 142
< )= 32 Var(G,, )(,%:Z(ak )’ { b1 T 38k }

+ (a,(gn))Q [XE_H + SXk+1 + 2}

+aiyal” [3X5-1 + 2X5-1 X1 + 3X a1 + 4] )

If we choose f(z) = x in [01, (2.13)] we are able to write
[ 1= vy 80+ aeihal? + 3(of”)

We use the Cauchy—Schwarz inequality for
1 .
E[|1 = (DF,~DL™'F)| ] < (IE [(1 — (DF, —DL*1F>)2 etFD (B [e])?
and deal with the double sum resulting from the square of

1
DF —DL'F)—1= —— () Y23y, (My23 x
(DR =DITF) =1 = oS0l i + oo

+af™ a” [3X)m1 + 2Xk 1 X1 + 3Xku] )

Then we can write (1 — (DF, —DL—1F>)2 — By + ...+ By with

b= 1024(Var E ,g% A (@) X Xi,

Br = 1024(Var )2 g;z JXX

Ba = 1024(er G))? g;z A0 X X

ba= 1024(Var E ,;ezz ) XKoo,

Bs = 1024(Var G k%Z al™ )2 (™) (a\) Xpo1 [BX1-1 + 2X1_1 X1 + 3X144]
Bs = 1024<er G k%Z &l 1 (n))Xk 3Xi-1 + 22X, X1+ 3X044]

B; = 1024(Var 2 k%Z Gk 1 ( )1)2le1 3X5—1 + 2X5 -1 Xpg1 + 3X544]
Bs = 1024(V:r G k%Z Cbk 1 ( ))zXz [3X5—1 + 22X 1 Xi1 + 3X544]

where By = By = B3 = By and By = Bg = B; = Bg by symmetry and change of variables.
The last missing term is given by

1 ORYNONNG
Bo= sy 0 -5 + 250 K+ 3Kea

C[BXio1 + 22X X + 3X 4] )
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So basically we have to deal with three classes of subterms in total. Since they will be
multiplied with ef', we have to study

E[X:e'), E[X; X, E[X;X;Xpe], E[X;X;X.Xe'")

for 1 # j # k # [ — if two or more indices are equal, it is just one of the terms from before or
immediately E[e!f]. This is done in the following lemma and we will refer to it, in particular
the inequalities shown in its proof.

Lemma 4.11. In the setting of Theorem 4.7 we have fori # j # k #1 € Z

F Ct (n) (n) Fl e
mone |« el (o ) B ]
i L Z Iailff aﬁﬁ) ‘E [etF} oct
16 Var(G,,) myefi—1,i}
ni1e{i—2,i+1}
Ct?
. al| aM] - E || e, 4.21
32 Var(G,,) mg,mez{i_l,z‘}‘ e [ ] 2
Ot n Ci
B < | B Lo
b O e ] B[] e
16 Var(G,,) mie{i—1,ij—1} e
n1€{i—2,i+1,j—2,j+1}
Ct?
s . alM| |alV] - E €] e 4.22
32 Var(G,,) mQ,me{;,i,jl,j} B [ } )
‘E[X<X-Xk€tF]‘ < 07152 . Z ‘a(n) a™| . R {etF} eCt
PN g — 16 Var(G,) my€{i—1,ij—1,5,k—1k} e
n1€{i—2,i+1,j—2,j+1,k—2,k+1}
Ct?
LY afﬁ) a;") L |etf] et (4.23)
32 Var(G,,) m2’n2€{i_1,iz,j—1,j,k—1,k}‘ ’ ’ [ }
’E[X‘X.XleetFH < Citz Z a™| | _E{etF} ot
i“%j — 16 Var(G,) mie{i—lyij—1,jk—1kl—1,1} e

ny€{i—2,i+1,j—2,j+1,k—2,k+1,1—2,1+1}

Ct?
+—— > a™l M| E e et (4.24)
32 Var(Gh) mg,nge{i—l,i,j—l,j,k—1,k,l—1,l}2 ’ [ }

Proof. The first key element of our strategy is to split F' into F,, the summands that depend
on the X’s multiplied with e!*, and F,, the summands that are independent. We should
have in mind that F, and F, are not necessarily independent from each other. To get
this dependency structure under control we will make use of several Taylor expansions of
the exponential. Note that there are remainder functions ri,7, : R — R, such that e* =
l+x-rx)=14z+ % ro(z) with |ri(2)], |[re(x)| < ema{02h < elol for all z € R. So, the
second key element is an iterated Taylor expansion on e according to the following scheme:
For a finite index set I, let there be real numbers (z;);er, (y;)jer and z. Then by iterated
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Taylor expansion there is

1 2
et 2ier® = 1.62+ij-ez+2(2xj> T2<ij> - e

jel jel jel
1 2
=l-e" 4+ L4 aymiy) e + (ZIJ) m(Z%‘) A
jel jel 2\ jel
(4.25)

We remind on the short notatlon A = a,(C n) [ X% + Xk Xgs1 + Xgy1] for the upcoming com-

putations. In the case of E[X;e']:

1
Fo=———(4i1 + A)

4,/Var(G,)

and by independence
E[XietF] — E[XietFaetFu] — ]E[XietFu] + t]E[XZFaetF“] —+ t2]E[XiF3T2<tFa)€tFu/2]
= tE[X; Foe'™] + *E[X; Flry(tF,)e™ /2],

where we chose z = F, and 3 ,c;r; = F, — note that I will increase with every case since
the number of multiplied X’s increases. For the first order term we split F, in the same

manner as before, F,, = F,, + F,,, such that F,, =(A;_2 + A1) /4y/Var(G,) and use the
iteration from (4.25). Then

1 n n
X F, = 7(%@1 (Xiaa Xi +Xi1+1) + az( )(1 + Xin + XiXiJrl))

4,/ Var(G,,)

and
tR[X; Foe'™] = tE | X Fye!fua eFi |
= (B [XiFue'™ ] + £E [X,F,F,, i (tF,, )]

so y; = F,,. From here on we get e" back by bounding the difference of the independent
part and F', e.g.

1

|\Fy, —F|=|F, +F,|<c=0
Var(G,)

>—>Oasn—>oo.

Since the exact constant is not important, we always write just c¢ if we use that type of
estimation, and in the same way C' for prefactors. Thus

Ct
E XF etF - a(i) _|_ a(n) A ]E GtF ect
‘ ] 4 /VaI'(G ) ( 1‘ D |: :|
Cct?
- . OINNOIN tF] et
+ 16Var(G,) mle{;_u} ‘aml a,: E{e }e : (4.26)
nlé{i—Q,i—Fl}
For the second order term we just bound
£ |B[X Flra(tF,)e™ /2] < < S el |al)] B[] e (4.27)
~ 32 Var(G,) mel e

mao,n2 G{i—l,i}



80 M. Butzek

In the case of E[X; X e'f]:

4‘/Var(G (Ai +Aj1+45), i=J+1L

Fa = #m(Az_l +Az +AJ—1 +Aj)7 |l _]| > 27
L (A, 1+ A+ 4)), j=i+l

4~/ Var(Gr)

and
E[X; X;e'"] = tE[X; X, F,e'™] + B[ X, X; F2ry(tF,)et ™™ /2].
For the first order term we compute as a preparation
XX F, = a™ (X1 X X5+ Xi X5 + X)) + al™ (X + Xin X + XiXi1 X;)
ol (X X1 X5 + X Xjo1 + X,)
+al" (X XX + XXX ).

In particular we have to consider the special case |i — j| = 1 and assume i = j + 1. If not,
we just have to swap ¢ and j. Under our assumption the last equation reduces to

XiXjFy = " (Xi + 1+ X)) + o (X; + Xi1 X + XiXi1 X))

From here on we assume that the indices apperaring in upcoming F,’s and F,'s are all
different. If not, there is only an effect on the number of coefficients and so the constants,
but not on the order of our bound. Having that in mind we split F), in the same manner as

before, Fu = Fua + Fuu, such that Fua = (Ai_g + Ai—i-l + Aj_2 + Aj—i-l) /4\/V&T(Gn). Then
tE[X; X Fe'™]) = tE[ X, X; F et ] + PE[X, X, F, F, i (tF,, )e" ]
and thus for i = 5+ 1

tE[X, X, Foe'™] 4\/\%- ol | - E [e"] e
vy S sl e e

m1 E{l—l,l,j—l}
ni1€{i—2,i+1,5—2,j+1}

In the case |i — j| > 2 the first term of the last inequality does not appear since all the indices
in X; X, F, are different:

Ct?

tE[X: X Fpe™)| < e a™l oM K [eF] e, (4.29)
’ 16 Var(G,,) mle{i—zl,;,j—l,j} ‘ 1 { }
nye{i—2,i+1,j—2,j+1}
For the second order term we just bound
Ct?
2 tFy i (n) (n)| . tF| _ct
£ [B[X,X 2 (tF,)e!™ /2] < TVar () 3 )| [al)| - [ et. (4.30)

m27n2€{i71’i7j717j}

In the case of E[X;X;Xe'F]:

1
Fo=———— (A +A+A  + A+ A+ Ar)

4,/Var(G,)

E[X:X; Xpe''| = tR[X; X; Xy Fpe'™) + PE[X, X; X F2ro(tE, ) e /2).

and
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For the first order term we compute as a preparation
XX X Fy =al™ (Xio1 X X, Xk + Xi1 X, X5 + X, X5)
+ o (X X5 + Xi1 X; Xk + Xi X1 X X5)
+al" (XX XX+ XX Xy + XX
+ al (X Xp + X X511 Xp + XX, X501 X5)
+al™ (XX X Xp 4 X X, X0 + X X))
+al" (XX + XiX; Xpor + X X; X Xps1).

And by our assumption ¢ # j # k in every summand at least one X will remain. We split

Fu = Fua + Fuu, such that Fua = (AZ‘_Q + Ai—l—l + Aj_g + Aj+1 + Ak_g + Ak+1) /4\/V&F(Gn).
Then

tE[X, X; X Fue™] = tR[X; X; X}, F,e'F e e
= tE[X, X; X}, Fue'e ] + PRI X, X, X Fo Fy ri (tF,, et ]
= B[ X, X, X, F, F, 1 (tF,,)e ]

by independence and thus
2
< eeT > o2 o
16V&I"(G ) mle{ifl»i’jfl’j’kak}
ni1€{i—2,i+1,5—-2,j+1,k—2,k+1}

t |E[X; X Xy Fue'™]| <

R[] e, (4.31)

For the second order term we just bound

Ct?
P EXXGXFE s (F)e ™ 2] < g5y > ’

m27n26{1_1717]_17j7k_17k}

o

@) |40

n2

‘E [etF} et
(4.32)

In the case of E[X,;X; X, Xe']:
1

4,/ Var(G,,)

E[X:X; X Xie'] = tE[ X, X; X X Fue' ™) + B[ X X Xp Xy F2ro(tE, et ™ /2).

F, = (A +A+A L +A+A A FA L+ A)

and

For the first order term we compute as a preparation
X X X X0 Fy =a™) (X1 X X, X0 X0 + X1 X XX, + X, X X))
+ i (XXX + X1 X X0 X, + XX X, X0 X))
+al (XX X XX+ XX XX + X, X X))
+a\ " (XX X0+ XX XX+ X X X401 XX))
+al (XX X X X0+ X X X1 Xo 4 X, X, X))
+al (X XX+ XX X1 Xo 4 Xo X X X1 X))
+ al(”) (XX X X0 X, + X X, Xe X1 + XX, X3)
+ " (XX, Xp 4 XX, X X + XX, X6 X0 X041,
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And by our assumption ¢ # j # k # | in every summand at least one X will remain. F,, is

given by F,, = (Aio+ A1 + Aj o+ Ajpr + Apo + Apn + Ao + Aiy) /4y/Var(G,,) this
time. Then

tE[X; X X, X  Foet™) = PE[X, X; X, X F, F,, r1 (tF,, et

by independence and thus
t‘]E[X-XijXlF etfu]| < Ciﬂ . > ‘a( n) (n) .

1 a — mi

16 Var(Gn) m€{im1,ij—1jk—1,ki—1,1}
nye{i—2,i+1,j—2,j+1k—2,k+1,1-2,1+1}

{etF} e, (4.33)

For the second order term we just bound

Ct?
P E[X X X X Fory(tF,)e ™ /2] < —————— 3 a™||a™] - E [eF| e
‘ ‘ 32 Var(Gh, )mg,nze{il,i,j1,j,k1,k,l’1,l}2 ’ [ ]
(4.34)
O

Now we are ready to deal with all three classes of subterms and choose B,, Bs and By as
representatives:
First class of subterms, B; — By:

9
EIB,etF (M)V4R [ tF (m)y2( (2T x, x, otF
lk—1|=1
+ 3 (@™a")E[X X ], (4.35)
klEZ
|k—1]>2
The first one is the easiest by
9
By = 4E o] (n) EletF]
2 1024(Var(G )2 ,;Z ~ 1024(Var(G,, H o Bl

By using (4.28), (4.29) and (4.30) it remains to bound

9 " .
1024(Var(G,))?2 k;z (a,g ))2(al( )>2E[XleetF]
n , c
|k—1|=1

(Ba21 + Baga + Bags) E [etF} e,

BQQ =

9
<
= 1024(Var(G,))?

J (n)\2/ (n)\2 ‘F
E[X, X
1024(Var(G,))? MZEZ (") (0" E[X; Xie']

|k—1[>2

(Bag1 + Bas2) E [etF} e,

ng =

9
<
— 1024(Var(G,))?

such that
Ct

4,/Var(G,) kiez
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C't?

Bogy i= - Z (algn))z(agn))z : Z aﬁn)
16 Var(G,,) klcZ mye{k—1,k1-1,1} ‘ '
lk—1]=1 n1e{k—2,k+1,1—2,1+1}
2
Bags 1= o : Z (al(cn))z(al(n))2' Z \afﬁﬁ afﬁ) ;
32 Var(G,) klcZ ma,na€{k—1,k,1—1,1}
k—l|=1
ct? ()2, ()
Boz = - Z (ay )2<al )2' Z a%”) agln) 5
16 Var(G,) k€7 mie{k—1k,l—1,1} ‘ ' '
k—1]>2 nye{k—2,k+1,0-2,141}
2
Bapim ot 5 @™ Y ||l
32 Var(G,,) e mana€{k—1kl—1,}

k1] >2

Then by the inequality of arithmetic and geometric means, from here on AM-GM inequality,

Ct n n
Bzmzm(%(al&)) akl ’ )’+Z () ak+1 ’ ‘)

( n)‘lo ’akH 10 ]a,ﬁ")\s)
4W
el e et )

204/ Var(G,,)

akl akl

n)‘lo (n) '10

15(z)

L YR
: \/Var(Gn) Ha

If we look at Bags — B3, we can change the order of summation since all summands are
non-negative. And we become even bigger if we add the missing indices:

(M2, ()2 | (n)
Baaz < 32Var( Z Z Z (ap ") (a;) Ay

klEnge{k 1k I—1,1} nae{k—1,k,I—1,1}

From here on we treat different cases, but every time we can use the AM-GM inequality:
Case 1: mg € {k —1, k} andnge{k—l k}:

> D (ay ?|aS)] ol = > (a™)? |al| ol | So(a™)?
kEZ IEL kEZ I€Z
()| m|?
<C H 14(Z) H 12(z)
Case 2: my € {l — 1,1} ananG{l—l l}:

> (ay” 2|al)| |al)| = z<a§">>2 a2 a;? > (ag”)?
I€Z keZ = ke

<C H 14(Z) H 2(z) "

Case 3: mg € {k —1, k}andnge{l—l l}:

> > (@) (@) fafil] ol

n2
kEZ leZ

= > (") |af;)
keZ

<ca

> (ar")? o)
lez

B(z)
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Case 4: my € {l — 1, l}aDdTLzE{k—l k}:

ZZ% a()

n2
l€EZ keZ

= > (a")*|aly)
leZ

=C Ha(n) 163(2)'

> (ag™)? ol
kEZ

2
According to (4.18) in case 1 and 2 the norm Ha(”)

r@) vanishes directly with the variance

in the prefactor. Summarizing for Bsss:
4 ot Ci H m)
32 Var(G

Analogously we get basically bounds of the same order for Baos, Bog1 and Bage. Combining
our bounds for the subterms of (4.35) gives us

B(z)

o

@, 12
14(z)
(Var(G,, )) Var(G )) /2

[ ey

E[Bye't] < Ce| Var(G.))?

+ (148 Efetf].

Second class of subterms, Bs — Bg: We write E[Bge!'] = Bgy + Bga + Bes such that

Bgy = al(n)l (n))E[Xle_letF],
1024(Var )2 klzez
Bgo = (n) (n) EIX. X . X ‘P
o 1024(VarG Zk%Z (@) JE[X Xi 1 Xpy1e™ ],
) (n) ( )
Bes = E[X),X
657 1024(Var(G,)) 2%; (") (" VE[X X 1€,

Bg1 and Bgs are analogous to Bgs and Bsg since they have the same structure: Two coefficients
with k-index, two coefficients with [-index, one X with k-index and one X with /-index. And
with that the arguments are the same. Looking at the remaining Bgs two indices of the X's
are equal if and only if £ =1 + 1 or k=1[0—1. In the latter case By reduces to

(n) LF
(Var( 2 ];Z ak+1 ]E[Xk-l-Qe ]7

so we can use (4.26) and (4.27) glvmg us upper bounds of order

e 7 oy
a@yE | ™ O g

And the same for k = [+ 1. At last, if neither k =1 — 1 nor k = [+ 1 we can use (4.31) and
(4.32) giving us upper bounds of order

2 @) d R O ’4(Z
© Var( ) i EA T (A
Combining our bounds for Bel, Bgo and Bgs we get
(n)
]E[B etF] < Cect t2 H 13(2) —|—t2 Ha 4(z) +t Ha H E[@tF]
6 - (Var(G,))3 (Var(G ))? (Var(G )) Var(G ))3 '
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Third class of subterms: It consists only of By and so we have to deal with E[Bge'].
Multiplying all the X’s inside we get products of lengths two, three and four. The first two
cases are already solved and a product of length four appears only one time, namely

E 3 (a N (af")) (afVEX o1 Xi1 Xio1 Xigre'T].

(Var G P

We have two pairs of two equal indices of the X’s if and only if £ = [ and then we are in
the situation of Bs;. Note that it is impossible that three or more indices are equal. If two
indices are equal and two indices are different, e.g. k — 1 =1+ 1 we are in the 2X-case and
can use (4.28), (4.29) and (4.30). At last, if all four indices are different, most of the work is
done by (4.33) and (4.34) leading to upper bounds of order

ol o

Var( ) and Of ¢ Var(;()z)
Combining our bounds from all the different cases we get
O L O L S L PSR L
0 I=N Var(G))? ) Var(G )) T NGy )) N

Summarizing everything we have done so far a bound as in condition (A1) is obtained by

E Hl _ <DF’_DL—1F>‘€tF} < (E [(1 _ <DF,—DL_1F>)2€tFD§(E [etFD%

such that
o

e, e

3 H H Ha 5
<Var<Gl>(>Zi’)/2+ NG T A T

%(z)

—~ _ ct
n(t) = Ce” |t Var(Gn))?’/?

= Ce (tChy + (14 )Chp +1/2Cr5 + tCra)

We now move on and show that a bound as in condition (A2) exists: Again, by the Cauchy—
1 -1 tF
E||6| —=DF|DL™F|||e

Schwarz inequality
< (E <5<1DF\DL—1FD>2&F )(E [etFD%.
VPa VPa

By [30, Corollary 9.9] it is 0(u) = 372 Yiuk, where Yy is the kth centered and standardized
Rademacher random variable. In our case Y, = X} and the corollary can be applied since
uy, := Dy F' |Dy L7 F| /\/Prqr does not depend on Xj. Then

(E [(5(u))2 etF])% = (Z E [ukuleXletF})

kIEZ
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[N

1
S Z E [UietF} + Z E [ukuleXletF] . (436)
kEZ k];lilZ

For the upcoming computations we recall

1 (n) (n)
Dszia_(Xk_l—i—l)—l—a (Xk 1—|—1) s
4,/var<Gn)< . Xk +1)
1
—D L F = ————(al (X 4+ 2) + Y (X +2))
8\/Var(Gn)( - ' : o )
and so
— 1 n n
DyF(~=DyL7'F) = m((a/&_)ﬁ? [BXk-1+ 3] + (a")? [3Xp11 + 3]

+ agz)laé") [3Xk,1 + 2Xk,1Xk+1 + 3Xk+1 + 4] )

The square of the righthandside is of a familiar form: Every summand consists of a product
of length four of coefficients with index k 4 ... multiplied with something bounded, and so as
before we get immediately or by the AM-GM-inequality

th
élﬁl {uieﬁr} < C(Var((;in()z))?E [etF] .

For the remaining term of (4.36) we adapt the strategy that is used in the proof of Lemma 4.11
— see its beginning for a detailed explanation. Set

Ap = algn) [ Xk + X Xpt1 + X
so that
Fo_ 1
‘ 4,/Var(G,,)
and by Taylor expansion
Elupu Xp XieF] = Elupu X X et et
= Elupu X3 X" ] + tR[upu X X Fpe ™™ 4 2 Elupw X X Fro (LE,) e ™ /2].

(Apo+ Apr + Ap+ Ak + Ao + A+ A+ Ar)

0O-order-term: By independence
E[ukuleXletF“] = E[ukuleXl]]E[etF“]

Since by definition X and X; respectively uy are independent, we just have to check whether
the same goes for X}, and wu;, which is leading to two cases.
Case 1: I ¢ {k—1,k+1}

Case 2: l e {k—1,k+1}

%w4

4(z) tF] ct
S Elugu Xi X JE[e!F] < OB R [etF] e,
o) (Var(G,))? [ }

following our usual argumentation.
1st-order-term: We split F), in the same manner as before, F, = F,, + F,,, such that
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F., =(Ag—3+ Agro + Ai_3 + Ai2) /44/Var(G,,) and use another Taylor expansion of degree
1. Then

B[ X X Fue'™] = tE[ugu, Xp X, FyetFua o]
= 1B [upu Xp X Foe' ™o ] + CElupu Xp X Fy By i (EF,, ) et ] (4.37)

Note that F;,, is — as part of F, — independent of X}, X;, ux and u;, but also independent
of F, since we removed F;,,, the depending part of F,,. As a consequence

Elusu Xy, Xy Foe' ™™ ] = Elupu Xp X FoJEfe! ],

Our next observation is E{uyu X X, F,] = 0 for |k — | > 5 — in this case all appearing indices
are different and the claim follows ultimately from independence. We treat the remaining
case |k —l| < 4 as four subcases |k — | =i for i € {1,2,3,4}, but here we just write down
the first one |k — | = 1 as the others are analogous and so there outcome. In the mentioned
case, if [ = k + 1, we receive

Ct

e —— a
5
(Var(Gn)) i1 ine{k—1,k}
igis€{k k+1}
i5€fh—2,k—1,kk+1,k+2}

(n)

11

)

)

o

)

t |ukuleXlFa| S

and very similar for [ = k — 1. For both every summand consists of a product of five

coefficients with index k + ..., and so we get
H 5(Z) tF] et
t | E[upw X X, FE[e! ] PO R[] e
k,lZGZ ‘ ’ Var(G ))5/2 |: ]

k£l
lk—1|=1

Having in mind that |r;(tF,,)| < e!lful we can bound the second term of (4.37) by using
Ct?

2 )| @], @], () (n) (n)
t° Jupw X X  Fo Py, | < m Z Qi 7| | iy | | iz | | iy | |Pis | | P
i1,02€{k—1,k}
23,l4€{l ll}

is€{k—2,k—1,kk+1,1—2,1—1,1,1+1}
ig€{k—3,k+2,1-3,1+2}
and every summand consists of a product of length six of either three coefficients with index
k £ ... and three coefficients with index [ &£ ..., or four coefficients with index k £ ... and two
coefficients with index [ & ...or the other way around. Combining the cases we get

o o
k%t? B[k Xi X FuFy r1 (EF, e \<Ct2 E )Z) vt ;()Z)3 E [e!"] e

k£l

2nd-order-term: Finally, having in mind that |ry(tF,)| < el we can bound the last term
of our original Taylor expansion by using

Ct?
5 1 1,™] 4™ 1™ 4] |4
uk‘ule:XlF (Va,r(G ))3 ) Z a“ll 22 a“lg 24 a“l5 26

11,22€ 1K —1,

23,i4€{l71,l}

i5,i6€{k—2,k— 1k k+1,1—2,1—1,11+1}
and get the analogous bound
‘]E ukuleXlerg(tF) tFu /2 ‘ < Ct2 H @) + H @) E {etF} €Ct

k I€Z Var( n))? (Var( n))?
kL
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Summarizing everything we have done so far a bound as in condition (A2) is obtained by

B [0 < & ot ) (8 7]

[N

(ZE[ugeﬂ)2+ 5 E x| | |(£]e]):
keZ ﬁii?

< (t)E [

such that
n L
:yv(t) = Ce% t‘alg(z)_k(l_kt)HaHHUZ) t1/2HZ)
2 (Var(G.)2 Var(G,) T (Var(G)

= CBCt (tCn,l + (1 + t)cmg + tl/QCmg) .

In a final step we want to simplify our bounds by comparing the constants C,,; with each
other. To do so, we will use, for m > 2:

[y = 2 (™ b

Z(\ak|m_1)2 > laxl”

kez kez
- Z(W’C‘mfl)z O+ (Var(Gp))' (4.38)
kez
<™ C - (Var(G)) 2
kez
H ) Hzm 1z) C- (Var(Gn))1/2 (4.39)

by the Cauchy—Schwarz inequality. Then (4.38) and (4.39) imply

1/2
Coa =), |ag]® (Var(G,))™3/? < (Z lag| ) (Var(G,)) ™' = Cya,

keZ keZ

1/2 1/2
Chs = (Z \a;f) (Var(G,)) o/ < (Z ]ak] (Var(G ))1/2) (Var(Gn))_5/4 = Cpa,

keZ keZ

1/2 1/2
Cha = (Z |ak|6) (Var(G,) —3/2 < (Z |ak] (Var(G ))1/2) (Vf:ur(Gn))_?’/2 < Cha.

keZ keZ

So, we choose 71 (t) = 72(t) := C’eCt((l + 12 4 t)C'n> for (A1) and (A2), and C,, := C,, 0.
U
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5. NON-UNIFORM BERRY—ESSEEN BOUNDS FOR L2-RADEMACHER- AND
L?-POISSON-FUNCTIONALS

In this chapter we obtain non-uniform Berry—Esseen bounds for L2-Rademacher and Poisson-
functionals. The starting points are the corresponding uniform bounds, which were proven
in [36] for the Rademacher respectively in [(1] for the Poisson case in the context of normal
approximation by Malliavin—Stein method. The core of our proof is then to show non-uniform
bounds for the fragments of the Stein-equation; these bounds require the existence of higher
moments of the functionals and lead ultimately to the important prefactor of our non-uniform
Berry-Esseen bounds. In the second section we study two applications in the Rademacher
case, namely infinte weighted 2-runs and subgraph counting in the Erdés—Rényi random
graph.

5.1. Main Results. We present our first main result:

Theorem 5.1 (Non-uniform Berry-Esseen bound for Rademacher-functionals). Let F' € D2
with E[F] = 0, Var(F) = 1 and E[F?*] < C for fired k € N. Further

Ff.(F)+1(ps,; € D' Vze€eR,

\/;_qDF IDL™'F| € Dom(s).

Then, for any z € R,

B(F < )= 2) < 13 7 ((E(l ~ (DF, —DL_1F>)2>1/2

(1))
+ (E <5 (\/;_qDF ’DL‘lFD>2> 1/2) :

Proof of Theorem 5.1. By Stein’s method and the proof of [36, Theorem 3.1] we have for
z€eR

and C' is a constant depending on k € N.

IP(F < z) = ®(2)| = [E[fI(F) — FL(F)]] < Ji+ Jy (5.1)
with
Jl =E

9

FUF)(1 = (DF,~DL'F))
1
Nz

For the upcoming computation we split J; into two terms, namely

Jy:=E [(Ffz(F) + 1{F>Z})5< DF \DLlFN .

[FL(F) + 1(psy

1 _
|| <E Hé(\/p_qDF iDL 1F\>

1 < Jo1 + Jao
with

1 1
Jy :=E H(S(\/p_qDF ‘DL FD‘ \Ffz(F)!] :

1 _
Jos = E Hé(\/p_qDF DL 1F‘> ‘ 1{F>z}] .
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Now we continue by applying the Cauchy—Schwarz inequality on every of our terms of interest,

such that
o\ 1/2
< EIE))2(E(1 - (DF-DLTF))")
9\ 1/2
1/2 1 -1
Ja < B|FL(P)P)Y (E(a(mwim ) ) ,
1/2

pq

T < (B(F > 2))"” (E(é (j—DF L D))

To bound the fragments of the Stein-equation we refer to the proof of [67, Theorem 2|, where
the authors considered Stein-equations fo non-normal approximation, but their arguments are
also valid for normal approximation by choosing g(x) = x in their framework. In particular,
in their condition (A4) we can choose T arbitrary, e.g. 7 = % We extend our adaption of the
authors work by also referring to the proof of [67, Theorem 3]. So, in what follows we will
mention the relevant passages of both proofs explicitly. Note, that our appearing constants
will very likely depend on k € N, but we will just write C'. The core of our proof is to show
that

C

E|f(F))Y?< —F 5.2
BRI < o (5:2)

C
E|Ff(F))Y? < — 5.3
EIFLOPY < (5.3

C
P(F>z))? < ——. 5.4
B> )2 < (5.4

case z > 0:

Proof of (5.2) and (5.4): We follow the proof of inequality (12) in [67], such that we write
E|fL(F)* = BIfL(F)*Lp<oy] + E[fL(F)* Liocrcesoy] + ELFL(F)*Lipszyny). (5.5)

and bound these terms separately. First, by inequality (14) in [67], we get

Ce™# (%22 (
E[f;(F)Ql{Fgo}] < 2= T < 5

using in particular z%e~* < C' V1 € N. Secondly,

z 2 L1
E[f;(F)21{0<ng/2}] < C(1+2622/8> e 222]
D
< C<e +€—3z2/4>]
< o

r 2k—2 ,—22 2k ,—322/4
e z7ve

2k ~2k

C
This technique of adding the desired exponent of z was used in the middle of the proof of
(67, Theorem 3]. Last, we can bound the third term of (5.5) and show also (5.4) by using
(2.12) and Markov’s inequality for
E[F?*] C

< — Vz>0.
Z?k 2’2k

P(F > z) <P(F%* > %) <
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Proof of (5.3): We adapt the proof of inequality (17) in [67] for the following bounds:
B[(F.(F))) = E|(£(F) - (1) - 2() )
< C(E[RUP)] +E (1 — 2(2))])
< c(sz +E [(l{ng} _ @(z))QD , (5.6)

where we used the Stein-equation (2.4) as well as the AM-GM-inequality and (5.2) for the
first respectively the second inequality. For the remaining expectation we obtain

2 C
E [(1{ng} 0) } =B [1-®(2)* Lipey| + B [0(2) Lgpsny] < o (5.7)
by Markov’s inequality and inequality (13) in [67].
case z < 0:
To treat this case, first of all we can go into the proof of [36, Theorem 3.1], having in mind

that 1 = 1¢p>.y + 1ip<.y, and receive a bound very similar to (5.1), where J; stays the same
but the indicator inside .J; changes to 1p<.;. A direct consequence of this procedure is a
modified (5.4) that we prove with the same arguments:

E[F? C

P(F < 2) <P(F* > 22 < ok 2k

Proof of (5.2) and (5.3): As the authors explain themselves at the end of the proof of [67,
Theorem 2| no big modifications of their argumentation are needed. The modified version of
(5.5) is given by

E|fL(F)[* = E[fL(F)*1(r<s/o) + E[fLF)* 1 p<roy] + ELfL(F)* Lipsoy),

and similar arguments lead to (5.2) in this case.
To prove (5.3) in the case z < 0, we can keep (5.6) as in the previous case, but slightly change
(5.7) to

2 , C
E {(1{%3} —a(2)) ] = 2P(F < 2)+20(:) <
by the AM-GM- and Markov’s inequality as well as inequality (25) in [67].
To obtain (5.2) — (5.4) only a few steps are missing. Having in mind that (2.10) and (2.12)
hold, it is possible to consider the minimum of our bounds and 1 for all substantial subterms.
Similar to [67] this goes along with

C C
min(1, — | < —— 5.8
( \z|2k> — ([ 58
which we would like to show explicitly with respect to our more general exponent of z,
compared to [67]. If |2|** < C, the minimum is 1 and (5.8) is e