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1. Introduction

1.1. Preface. In this doctoral thesis the results from two of the author’s papers and a third
project are presented: [5], a joint work with Yacine Barhoumi–Andréani and Peter
Eichelsbacher, [11], a joint work with Peter Eichelsbacher and Benedikt Rednoß,
and a third project, which is a joint work with Peter Eichelsbacher.
The foundation of this thesis are Rademacher random variables, which are the building blocks
of our objects of interest appearing either with the explicit probability distribution of a finite
set of spins in the Curie–Weiss model or as abstract L2-functionals depending on possibly
infinitely many Rademacher random variables. The results focus on normal approximation,
but in the context of fluctuations of the total magnetisation in the Curie–Weiss model also
other limit distributions appear. We give a new proof for these fluctuations in Fortet–Mourier
and Kolmogorov distance, which implies new interpretations concerning the phase transition
of the model. For the above mentioned L2-functionals we derive Cramér-type moderate
deviations and non-uniform Berry–Esseen bounds. As applications we discuss partial sums
of an i.i.d. Rademacher sequence, infinite weighted 2-runs and subgraph counting in the
Erdős–Rényi random graph. Throughout this thesis Stein’s method and the Malliavin–Stein
method are important tools to obtain our results.

1.2. Convergence results in probability theory. As a starting point we introduce the
types of convergence results that will appear throughout this thesis. In probability theory
and statistics the central limit theorem (CLT) is known as one the most important and most
useful results. While historically its first versions appeared in the work of A. de Moivre
(1733) and P.–S. Laplace (1812), who used the normal distribution to approximate dis-
tributions of their interest as the number of heads resulting from many tosses of a fair coin
or the binomial distribution, it were mathematicians as A. Lyapunov (1901), G. Pólya
(1920), J. W. Lindeberg (1922) and others, who contributed to the rich history of the
CLT, see [48] for an extensive overview.

The classical CLT, see e.g. [9], is stated as follows: We consider a sequence (Xk)k∈N of inde-
pendent and identically distributed (i.i.d.) random variables with expectation µ := E[X1] <
∞ and variance σ2 := Var(X1) <∞, for n ∈ N the n-th partial sum Sn := X1 + . . .+Xn as
well as the standardized n-th partial sum Wn := (Sn − nµ)/

√
nσ2, then

Wn
d−→ Z ∼ N (0, 1), (1.1)

which means that Wn converges in distribution to a standard-normal distributed random
variable Z as n tends to infinity. The distribution function of a normal distributed random
variable X ∼ N (µ, σ2), also known as Gaussian distribution, is given by

P(X ≤ x) = 1√
2πσ2

∫ x

−∞
e

(t−µ)2

2σ2 dt,

we call the case Z ∼ N (0, 1) standard-normal and define Φ(x) := P(Z ≤ x).
Indeed a CLT is proven in a great number of situations. In particular over the years (1.1)
was generalized for not necessarily identically distributed or dependent random variables,
and was extended to the multidimensional case and other limit distributions, e.g. densities
proportional to exp

(
−µx2k

(2k)!

)
.

For now, we come back to (1.1) and ask, how large the approximation error is. A. C.
Berry and C.–G. Esseen gave a first answer in 1941 respectively 1942: Under the assump-
tion, that the third absolute moments of X1, . . . , Xn are finite, we have the following bound,
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see [7] and [43],

sup
x∈R
|P(Wn ≤ x)− P(Z ≤ x)| ≤ C · E |X1|3√

n
, (1.2)

where C is a constant, which was original 7,59 and has been improved over the years. The
left-hand side of (1.2) is essentially the difference of the distribution functions of Wn and
Z and is called Kolmogorov distance. We will refer to this notion and other distances of
random variables more precisely in section 2.1. The right-hand side of (1.2) can be, apart
from seeing it as an approximation error, interpreted as the speed of convergence of (1.1). In
this case it is of order O

(
1√
n

)
, see section 1.5 for Landau notation O(.), and was proved to be

optimal. Due to the fundamental work of Berry and Esseen mathematicians are used to
call results as (1.2) Berry–Esseen-type results. Note, that we have to distinguish uniform and
non-uniform Berry–Esseen bounds. While uniform bounds as (1.2) have a supremum, here
over all x ∈ R, this is not the case for non-uniform bounds. As a consequence the right-hand
side of such bounds has an additional prefactor depending on our real variable x, e.g. a result
by [8] for independent and not necessarily identically distributed random variables is given
as follows:

|P(Wn ≤ x)− P(Z ≤ x)| ≤ C
n∑
i=1

E |Xi|3

1 + |x|3
. (1.3)

So far, we talked about the approximation error in the CLT, but to become more precise
we talked about the absolute error. We can be also interested in the relative error and this
motivates the notion of moderate deviations. The theory of moderate deviations goes back
to H. Cramér in 1938: Under the assumption, that µ = 0 and σ2 = 1,Wn simplifies to
Wn := Sn/

√
n and we can rewrite (1.1) to

P(Wn > x)
P(Z > x) −→ 1 for x = O(1), (1.4)

which is a consequence of the convergence in distribution. Cramér was asking what happens,
if x depends on n ∈ N such that x→∞ for n→∞? Can we find an interval such that (1.4)
holds for 0 ≤ x ≤ I(n), I(n)→∞? The answer was given by himself: Under the assumption,
that the moment generating function E[et|X1|] <∞ for all 0 ≤ t ≤ t0 with t0 > 0,

P(Wn > x)
P(Z > x) = 1 +O(1)n−1/2(1 + x3) for 0 ≤ x ≤ n1/6, (1.5)

and the result is optimal, see e.g. [24] and [78]. Reminiscent of (1.5) for a sequence (Yn)n∈N
of random variables, such that Yn d→ Y , the moderate deviation of Cramér-type is given by

P(Yn > x)
P(Y > x) = 1 + error term→ 1

with range 0 ≤ x ≤ an, where an →∞ for n→∞.
Apart from moderate deviations there is also the notion of large or moderate deviation prin-
ciples (LDP, MDP), we refer to [26] for a precise definition. The MDP corresponding to (1.4)
is given by

lim
n→∞

1
b2
n

log(P(Sn/bn > x)) = −x
2

2 ,

where
√
n << bn << n, so a scaling inbetween a central limit theorem and a law of large

numbers. At the end of [30] it is shown that moderate deviations of Cramér-type imply
MDPs, but we will not go deeper into that.
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1.3. Results for Rademacher random variables. Now we come to the concrete objects
we will investigate and the concrete results we will prove throughout this thesis.

Although probability theory is a large field in mathematics and we can have all kinds of
complicated distributions in mind, already some of the easiest can give fascinating results.
As we mentioned before, in 1733 de Moivre was interested in the number of heads resulting
from many tosses of a fair coin. If we toss a fair coin, there are two outcomes to expect: heads
and tails. Another possible interpretation is success and failure, which we can identify with
+1 and −1. Random variables, that take only values +1 and −1 with probabilty p ∈ (0, 1)
respectively q := 1−p are known in the literature as Rademacher random variables. Depend-
ing on the source, the classical Rademacher distribution, named after H. Rademacher, is
defined for p = q = 1

2 , but the notion can be also used for general p. We will work with
Rademacher random variables to construct our objects of interest and among them we can
distinguish two main types: First, we treat the Curie–Weiss model as an example for an
explicit probability distribution depending on finitely many Rademacher random variables.
Secondly, we consider general L2-functionals over possibly infinitely many Rademacher ran-
dom variables, sometimes just called L2-Rademacher-functionals. In what follows we give an
overview which results other authors proved concerning our topics and how we continue their
considerations with our new results.

In statistical mechanics the Curie–Weiss model of n spins at temperature T > 0 is the
joint distibution of the random variables (X(β)

k )1≤k≤n defined by

P
(
X

(β)
1 = x1, . . . , X

(β)
n = xn

)
:= e

β
2n s

2
n

Zn,β

n⊗
i=1

d%(xi), (1.6)

where β := T−1 is the inverse temperature, sn := ∑n
k=1 xk and Zn,β a normalizing constant

to ensure (1.6) is a probability distribution. Moreover we denote by % the distribution of
a single spin for β = 0. In our case the spins (X(0)

k )1≤k≤n are i.i.d. Rademacher random
variables with p = q = 1

2 , in other words % = 1
2(δ+1 + δ−1), see also subsection 2.2.1. This

setting is also known as the classical Curie–Weiss model.
The Curie–Weiss model was originally introduced by P. Curie in 1895 [25] and refined by
P.–E. Weiss in 1907 [100] as an exactly solvable model of ferromagnetism: the ferromagnetic
alloys have the property of spontaneously changing their magnetic behaviour when heated,
once a certain critical temperature treshold is reached.
Nowadays, it is presented as a mean-field approximation of the more refined Ising model, e.g.
as the replacement of an interaction with nearest neighbour∑i∼j XiXj by an interaction with
all other spins ∑i,j XiXj, see e.g. [49, chapter 2]. Such approximations are frequently per-
formed in probability theory in general and in statistical mechanics in particular. Replacing a
complex model with a simpler one whose overall behavior may be examined through explicit
computations allows to get an intuition of the features that can be inferred from the original
model, sometimes with no alteration. In particular, the Curie–Weiss model does exhibit a
phase transition with three distinct behaviours at high, critical and low temperature.
We refer to [49, ch. 2] for a friendly introduction to its main properties, or the more classical
references, e.g. [10], [54], [93] and [99].
Of particular interest is the distribution of the (unnormalised) total magnetisation

M (β)
n :=

n∑
k=1

X
(β)
k , (1.7)

since this random variable contains all the information of the model, as the distribution of
every spin is defined by means of M (β)

n .
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The difference of behaviour of the system when the inverse temperature β varies can be
summarised in the following theorem that can be found e.g. in the books [10], [38], [49], [54],
[93] and [99] or in the papers [33], [39], [40] and [92]. We have the following fluctuations of
the total magnetisation:

(1) For β < 1 and Zβ ∼ N
(
0, 1

1−β

)
,
1√
n
M (β)

n
d−→ Zβ. (1.8)

(2) For β = 1 and F 0 with density 1
Z0
e−

x4
12 ,

1
n3/4 M

(1)
n

d−→ F 0. (1.9)

(3) For β = 1− γ√
n
with γ ∈ R fixed, and Fγ with density 1

Zγ e
−γ x

2
2 −

x4
12 ,

1
n3/4 M

(1−γ/
√
n)

n
d−→ Fγ. (1.10)

(4) For β > 1 and δx the dirac measure of x,
1
n
M (β)

n
d−→ 1

2
(
δ+mβ + δ−mβ

)
, mβ = tanh(βmβ). (1.11)

We note that in case (3) the left transition γ > 0 and the right transition γ < 0 give the
same limiting law, even though the graph of the density displays a very different behaviour,
with two different modes that announce the case β > 1 in the second case. This continuous
phase transition is characteristic for the classical Curie–Weiss model, see e.g. [49, § 2.5.3].
Several modifications and follow-ups to (1.8) – (1.11) can be made: universality of the limits
when the law of the (Xk)k is changed, see [39] and [40], dynamical spin-flip version, see [63],
concentration properties of the spins around the limit in the case β > 1, see [14] and [15],
moderate and large deviations, see [32] and [38], modification of the Hamiltonian leading to
the Curie–Weiss–Potts model, see [34] and [41], the inhomogeneous Curie–Weiss model, see
[31], etc. These results allow the variety of techniques used in probability theory to express
their power and illustrate a form of richness of the field, both in the questions asked and in
the responses that follow.
In a domain as venerable as the Curie–Weiss model, older than 100 years, it seems very dif-
ficult to innovate, especially with the original model of ±1-spins. In addition to the classical
studies in [39] and [40] that use the Laplace transform, one should add the classical tools of
probability theory when concerned with distributional approximation such as Stein’s method
of exchangeable pairs, see [14], [15], [16], [33] and [90].
In this thesis we aim for giving yet another proof of the old and respectable results (1.8)
– (1.11) with the additional result of the speed of convergence in Fortet–Mourier and Kol-
mogorov distance.
For this intention we will work with a very important feature of the Curie–Weiss random
variables (1.6), which is the existence of an exchangeability measure. Here, exchangeability
means that the joint distribution of the Curie–Weiss spins does not change if they are per-
muted. While exchangeable pairs have been used thoroughly by means of Stein’s method,
writing the spins as i.i.d. random variables conditionally to a measure of mixture is a par-
ticularly strong peculiarity that was taken advantage of in several works on the Curie–Weiss
model, for instance the papers [13], [53], [66] and [76]. The authors of these papers use in an
extensive way the existence of a De Finetti measure of exchangeability for the Curie–Weiss
spins to tackle natural probabilistic questions as functional CLT, extension to infinite ex-
changeability, etc., but none of these problems will be treated here, though; we will focus
exclusively on a new approach to (1.8) – (1.11), and for this approach the general theory of
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B. De Finetti as well as the De Finetti measure of the Curie–Weiss model will be funda-
mental, see section 2.3. We want to emphasize that this approach is also promising for other
mean-field models.

An important role for our second topic plays a paper written by Z.–S. Zhang, which we
cite here in its first version [101] and its latest version [102] to compensate changes in the
content. In [102] Zhang was able to prove Cramér-type moderate deviations for unbounded
exchangeable pairs (W,W ′). For such pairs it holds that (W,W ′) and (W ′,W ) are equal
in distribution. If the difference W −W ′ is bounded, we call (W,W ′) bounded, otherwise
unbounded. Zhang developed his moderate deviations by stopping the proof of the cor-
responding Berry–Esseen-type inequalities, he had obtained before by Stein’s method, at a
certain point and continuing differently. Stein’s method is basically a powerful tool by itself
to derive upper bounds for differences of probability distributions, originally developed for
the normal distribution and later extended to other distributions. We refer to section 2.1 for a
formal introduction to Stein’s method and exchangeable pairs, which are typically combined
with it. Zhang rearranged the fragments of the so-called Stein-equation and the bound of
its solution, a technique that was already seen in [19], [46], [82] and [89]. This technique will
be the core of the proof of our result.
Our ambition is to prove Cramér-type moderate deviations for L2-functionals over infinitely
many independent Rademacher random variables taking values +1 and –1 only. This new
general result intersects with [45], where the authors obtain Cramér-type moderate deviations
via p-Wasserstein bounds, and we will refer to that. For L2-Rademacher-functionals a Kol-
mogorov bound in the context of normal approximation was shown recently by P. Eichels-
bacher, B. Rednoß, C. Thäle and G. Zheng in [36, Theorem 3.1] such that the bound-
ing terms can be expressed in terms of operators of the so-called Malliavin–Stein method,
see section 2.2. Normal approximation of L2-functionals over infinitely many Rademacher
random variables was derived already in [73], [61], [62] and [29]. Theorem 3.1 in [36] will be
our starting point.

Last, we deal with non-uniform Berry–Esseen results. The first bounds of this type came
from Esseen himself in 1945, see [44], for independent and identically distributed random
variables with finite third moments. They were improved by [70] in 1965 and generalized by
[8] in 1966 for independent and not necessarily identically distributed random variables to
(1.3). Moreover the constant C was improved over the following decades.
In 2001, L.H.Y. Chen und Q.–M. Shao [21] generalized (1.3) and proved their bound
without assuming the existence of third moments. Another feature of their bound is the
truncation of the random variables at 1:

|P(W ≤ x)− Φ(x)| ≤ C
n∑
i=1

(
E[X2

i ]1{|Xi|>1+|x|}

(1 + |x|)2 + E |Xi|3 1{|Xi|≤1+|x|}

(1 + |x|)3

)
. (1.12)

More precise, in (1.3) and (1.12) it is W = ∑n
i=1Xi for an independent and not necessarily

identically distributed sequence (Xk)k∈N with E[Xk] = 0,Var(Xk) < ∞ and Var(W ) = 1,
with respectively without existence of absolute third moments, and C an absolute constant.
A few years later Chen und Shao [22] established a similar result under local dependence.
They obtained both of their results by a combination of Stein’s method and a concentration
inequality approach.
In the following years, continuations of the work of Chen und Shao can be found in [3]
for translated Poisson approximation or [23] for nonlinear statistics. Moreover papers, which
aimed for improvement or lower bounds of the absolute constant in the non-uniform prefactor,
or comparable results under stricter moment assumptions, are [57], [58], [79] and [91].
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The specific starting point in this thesis is [67], where D.L. Liu, Z. Li, H.C. Wang and Z.J.
Chen showed non-uniform Berry–Esseen bounds for normal and nonnormal approximations
by unbounded exchangeable pairs (W,W ′). They referred to a corresponding uniform bound
in [90] and proved their main result without concentration inequalities. Recently their work
was generalized in [97] for the normal approximation case under the additional assumption
of E |W −W ′|2r being of certain order.
When we studied the proof of the main result in [67], our observation was the following:
The non-uniform bound consists almost of the same terms, which were constructed by the
theory of exchangeable pairs, as the uniform bound in [90], but with a prefactor depending
on z ∈ R. The reason for that type of bound is a strict separation between the mentioned
terms and the fragments of the Stein-equation of the corresponding exchangeable pair by
the Cauchy–Schwarz inequality. Most of the proof depends on the Stein-equation, whose
fragments have to be bounded precisely to lead to the desired prefactor, and not on the
exchangeable pair itself. This motivates our attempt to adapt the argumentation in [67] to
obtain non-uniform Berry–Esseen results for L2-Rademacher-functionals in the context of
Malliavin–Stein method. Moreover we will derive an analogous result for so-called Poisson-
functionals, see subsection 2.2.3 for a short introduction.

1.4. Overview. The remaining chapters of this thesis are structured as follows.

Chapter 2 thematizes the preliminaries, meaning methods, models and notions, which
will appear in the following chapters. In section 2.1 we present important aspects of Stein’s
method as the concept of the method, its history, properties of the Stein-equation and its solu-
tion, and techniques to bound latter ones. The combination of Stein’s method and Malliavin
calculus is known as Malliavin–Stein method, which is topic of section 2.2; in particular we
introduce operators from Malliavin calculus for L2-Rademacher- and L2-Poisson-functionals.
In section 2.3 we discuss the De Finetti theorem and write down the corresponding measure
of the Curie–Weiss model explicitly. Furthermore we motivate the application of surrogate
random variables in probability theory and construct our specific surrogate random variable
by a combination of the Gaussian CLT in the particular case of Rademacher random variables
and a randomisation of the Rademacher parameter p, which is distributed with respect to
the De Finetti measure of the Curie–Weiss model.

In Chapter 3 we investigate the Curie–Weiss model by using surrogate random variables,
which are distributed with respect to its De Finetti measure of exchangeability, and give
a new proof of the phase portrait of the model. Writing the magnetisation as a sum of
i.i.d. Rademacher’s randomised by the underlying De Finetti random variable, we show that
the apparition of a phase transition can be understood as a competition between these two
sources of randomness, the Gaussian randomness coming from the CLT approximation and
the randomness in the mixture of the Rademacher’s. We consider four cases: sub critical
(β < 1), critical (β = 1), near critical (β = 1 ± γ√

n
) and super critical (β > 1). The results

are proven in Fortet–Mourier distance, see section 3.1, and Kolmogorov distance, see section
3.2, which implies in particular convergence in distribution. Moreover the results include
speeds of convergence. In section 3.3, an appendix, we analyse diverse constants, which are
relevant for the underlying De Finetti measure.

In Chapter 4, section 4.1, we derive moderate deviations for normal approximation of L2-
functionals over infinitely many Rademacher random variables. They are based on a bound
for the Kolmogorov distance between a general L2-Rademacher-functional and a Gaussian
random variable, continued by an intensive study of the behaviour of operators from the
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Malliavin–Stein method along with the moment generating function of the mentioned L2-
functional. We treat the i.i.d.-case as a first application and get the optimal range from
Cramér in section 4.2. At last, we study infinite weighted 2-runs with general summable
coefficient sequences in section 4.3. Despite their comparatively simple structure, the corre-
sponding proof is challenging. Moreover we look at examples for coefficient sequences where
the result is optimal.

In Chapter 5, section 5.1, we obtain non-uniform Berry–Esseen bounds for L2-Rademacher-
and L2-Poisson-functionals, which include a non-uniform second-order Gaussian Poincaré in-
equality in the Rademacher case. The foundation for these bounds are the corresponding
uniform Berry–Esseen bounds respectively their proofs, where we separate the terms consist-
ing of operators from Malliavin–Stein method and the terms consisting of fragments of the
Stein-equation from normal approximation. Latter ones have to be bounded precisely to give
us the prefactor of the non-uniform bound, whose order depends on the existence of higher
moments of the considered functional. As applications we treat infinite weighted 2-runs and
subgraph counting in the Erdős–Rényi random graph in section 5.2.

1.5. Basic notions and notations. At last we want to collect some basic notions and
notations from probability theory, which partially already appeared and will accompany us
through this thesis. If not mentioned explicitly, all appearing random variables are defined on
an appropriate probability space (Ω,A,P). The expectation E(X), the variance Var(X) and
the pth moment E(Xp) of a random variable X are computed with respect to the underlying
probability measure P. If E(|X|p) <∞, we write X ∈ Lp(Ω).
We call two random variables X and Y equal in distribution, if P(X ≤ t) = P(Y ≤ t) ∀ t ∈ R
and then we write X d= Y . A sequence of random variables (Yn)n∈N converges in distribution
to a random variable Y , if P(Yn ≤ t) −→ P(Y ≤ t) as n → ∞ ∀ t ∈ R and then we write
Yn

d−→ Y . Alternatively we can also say law instead of distribution for these notions.
A distribution very similar to the Rademacher distribution is the Bernoulli distribution,
classically taking values 0 and 1 only. We will sometimes see this more general and call a
random variable B Bernoulli distributed, if it takes values ±x only, apart from ±1, with
probability p respectively 1− p and then we write B ∼ Ber±x(p).
Denote by U([a, b]) the continuous uniform distribution on an interval [a, b]. If a random
variable X is absolutely continuous with Lebesgue-density f , we write P(X ∈ dt) = f(t)dt.
Throughout this thesis we use the usual Landau symbols; the big-O notation O(.) and the
small-o notation o(.) with the meaning that the implicit constant does not depend on the
parameters in brackets.
Moreover we define the supremum norm ‖f‖∞ := supx∈R |f(x)| for any function f : R→ R.
We denote by C1 the continuous and continuously differentiable functions, while by C∞ we
mean the infinitely often continuously differentiable functions.
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2. Preliminaries

2.1. Stein’s method.

2.1.1. General concept. In 1972 Charles Stein established a method to provide explicit
bounds for the quality of the approximation of a probability distribution through another,
with normal approximation as its original application. Over the years this method has become
famous as Stein’s method. We want to explain its main ideas and refer to [4], [85], [20] and
[18] as sources and also for further information. The foundation of Stein’s method is an
important characterisation of the standard normal distribution, also known as Stein-Lemma.
According to [4, Lemma 2.1] it is

Z ∼ N (0, 1)⇔ E[f ′(Z)− Zf(Z)] = 0 (2.1)

for all continuous and piecewise continuous differentiable f : R→ R such that the appearing
expectations exist. So if a random variable is in some sense close to N (0, 1), it is likely that
the expectation in (2.1) is close to 0. The appropriate way to express this closeness is to
work with distances of random variables respectively their probability distributions. All these
distances are of the following form: For a fixed class of test functions H, which determines
an associated metric, and random variables X and Y we are interested in

dH(X, Y ) = sup
h∈H
|E[h(X)]− E[h(Y )]| .

While H = {1A : A measurable} and H = {h : R → R : |h(x)− h(y)| ≤ |x− y|} for
the total variation distance respectively the Wasserstein distance are also possible choices in
probability theory, throughout this thesis we will focus on the following two distances:

• For H = {h : R→ R : ‖h‖∞ ≤ 1, ‖h′‖∞ ≤ 1} the Fortet-Mourier distance is given by

dFM(X, Y ) := sup
h∈H
|E[h(X)]− E[h(Y )]| . (2.2)

• For H = {1{.≤t} : t ∈ R} the Kolmogorov distance is given by

dKol(X, Y ) := sup
t∈R
|P(X ≤ t)− P(Y ≤ t)| . (2.3)

Thus the Stein-equation, written in the case of Kolmogorov distance, is given by

f ′z(w)− wfz(w) = 1{w≤z} − Φ(z), (2.4)

respectively for our random variable of interest

sup
z∈R
|E[f ′z(W )−Wfz(W )]| = sup

z∈R
|P(W ≤ z)− Φ(z)| . (2.5)

(2.4) is a differential equation and we can solve it with the following trick: We multiply on
both sides by −e−w2/2 and rewrite the new equation to(

e−w
2/2fz(w)

)′
= −e−w2/2

(
1{w≤z} − Φ(z)

)
.

Then the solution f = fz is given by

fz(w) = ew
2/2
∫ w

−∞

(
1{x≤z} − Φ(z)

)
e−x

2/2dx

= −ew2/2
∫ ∞
w

(
1{x≤z} − Φ(z)

)
e−x

2/2dx

=


Φ(w)(1−Φ(z))

p(w) w ≤ z,
Φ(z)(1−Φ(w))

p(w) w > z,
(2.6)
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where p(w) = e−w
2/2/
√

2π is the density of N (0, 1). If we combine (2.4) and (2.6) we obtain
also the first derivative

f ′z(w) = wfz(w) + 1{w≤z} − Φ(z)

=

wfz(w) + 1− Φ(z) w < z,

wfz(w)− Φ(z) w > z;

=

(
√

2πwew2/2Φ(w) + 1)(1− Φ(z)) w < z,

(
√

2πwew2/2(1− Φ(w))− 1)Φ(z) w > z.
(2.7)

Now we want to collect useful properties related to (2.6) and (2.7), mostly extracted from
[20, Lemma 2.3]:

0 < fz(w) ≤ min
{√

2π
4 ,

1
|z|

}
for all w ∈ R, (2.8)

wfz(w) is an increasing function of w ∈ R, (2.9)

|wfz(w)| ≤ 1 for all w ∈ R, (2.10)

|wfz(w)| ≤ (1− Φ(z)) for all w < 0 ≤ z, (2.11)

|f ′z(w)| ≤ 1 for all w ∈ R, (2.12)

1− Φ(w)
p(w) ≤ min

{
1
w
,

√
2π
2

}
for all w > 0, (2.13)

and if a statement is valid for all w ∈ R, it can be written in particular with ‖.‖∞.
(2.13) is known as Mill’s ratio for the standard normal distribution. It can be used together
with (2.6) to obtain (2.11) as follows:

|wfz(w)| = |w|
√

2πew2/2Φ(w)(1− Φ(z))

= (1− Φ(z))(1− Φ(|w|))
√

2π |w| e|w|
2/2

≤ (1− Φ(z)),

where we also used the symmetry of Φ. We will need this more precise bound of |wfz(w)| for
the main result in section 4.1, where we distinguish different cases for w ∈ R.

Motivated by (2.5) our main task is now to show that E[f ′z(W )−Wfz(W )] is small. There
are several techniques, which have proven to be very useful for that purpose. One thing they
have in common is the idea of coupling. By that we mean that our random variable of interest
W is coupled with another random variable W ′, resulting from W by a slight change and so
in some sense close to W . This concept differs within the approaches and will become more
clear, when we illustrate them now.

2.1.2. Leave one out approach. Let X1, . . . , Xn independent random variables with mean zero
and variances σ2

1, ..., σ
2
n with ∑n

i=1 σ
2
i = 1. Further let W = ∑n

i=1Xi and W (i) = ∑n
j 6=iXj, the

sum where we leave the i-th summand out. The key element is now the independence of W (i)

and Xi. Due to that

E[Wf(W )] =
n∑
i=1

E
(
Xif

(
W (i) +Xi

))
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=
n∑
i=1

E
(
X2
i

∫ 1

0
f ′
(
W (i) + uXi

)
du
)

+
n∑
i=1

E
(
Xif

(
W (i)

))
=

n∑
i=1

E
(
X2
i

∫ 1

0
f ′
(
W (i) + uXi

)
du
)

and

E[f ′(W )] = E
(

n∑
i=1

σ2
i f
′(W )

)

= E
(

n∑
i=1

σ2
i f
′(W (i))

)
+ E

(
n∑
i=1

σ2
i

(
f ′(W )− f ′(W (i))

))

= E
(

n∑
i=1

X2
i f
′(W (i))

)
+ E

(
n∑
i=1

σ2
i

(
f ′(W )− f ′(W (i))

))
.

Combining the last two equations leads to

E[f ′(W )−Wf(W )] =
n∑
i=1

E
(
X2
i

∫ 1

0

(
f ′
(
W (i)

)
− f ′

(
W (i) + uXi

))
du
)

+
n∑
i=1

E
(
σ2
i

(
f ′(W )− f ′(W (i))

))
.

Both terms include a difference of first derivatives, so we can use∣∣∣f ′(W )− f ′(W (i))
∣∣∣ ≤ |Xi| ‖f ′′‖∞ (2.14)

for the second term, if f has a bounded second derivative, see subsection 2.1.5 for a related
discussion. We get an analogous bound for the first term since u is bounded by 1. Then

|E[f ′(W )−Wf(W )]| ≤ ‖f ′′‖∞
n∑
i=1

(
E |Xi|3 + σ2

iE |Xi|
)
≤ 2 ‖f ′′‖∞

n∑
i=1

E |Xi|3 (2.15)

using E[X2
i ]E |Xi| ≤

(
E |Xi|3

)2/3(
E |Xi|3

)1/3
by Hölder’s inequality. If we consider i.i.d. scaled

random variables Xi = n−1/2ξi our bound (2.15) is of the form

|E[f ′(W )−Wf(W )]| ≤ C · E |ξ|3√
n

.

The authors of [21] apply the leave one out approach together with concentration inequalities
to obtain (non-) uniform Berry–Esseen bounds. In the sequel, [22], the approach is generalized
for a setting with local dependence, in which not only one summand is left out, but every
summand depending on a random variable with fixed index, to get corresponding (non-)
uniform Berry–Esseen bounds.

2.1.3. Exchangeable pairs. We call a pair (W,W ′) of random variables an exchangeable pair
if (W,W ′) d= (W ′,W ). If for some 0 < λ < 1 the exchangeable pair satisfies the linear
regression condition

E[W −W ′|W ] = λW, (2.16)
then we call (W,W ′) a λ-Stein Pair or just Stein Pair, see [6] for an introduction to condi-
tional expectations. Typically in settings with dependency (2.16) does not hold exactly, but
with a remainder random variable R of small order such that

E[W −W ′|W ] = λW +R.
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We define ∆ := W − W ′. In case ∆ is bounded we call the exchangeable pair bounded,
otherwise unbounded. There are some basic properties of a Stein Pair (W,W ′), which follow
almost immediately from the exchangeability:

• E[W ] = E[W ′] = 0, if R = 0,
• E[∆2] = 2λVar(W ), if Var(W ) <∞,
• E[F (W,W ′)] = 0 for all anti-symmetric measurable functions F such that the expec-
tation exists.

Now we want to give an example for an exchangeable pair. Let X1, . . . , Xn be independent
random variables with mean 0 and variance 1. Next we take copies X ′1, . . . , X ′n of X1, . . . , Xn,
where Xi

d= X ′i and the X ′i are independent as well as independent from all Xi. Last let I be
uniform on {1, 2, . . . , n} and independent of all Xi and X ′i. Then we define

W := 1√
n

n∑
i=1

Xi and W ′ := W − XI√
n

+ X ′I√
n
.

So we remove a randomly chosen summand and add an independent copy of it. It follows
mainly from

E(W −W ′|W ) = 1√
n
E(XI −X ′I |W )

= 1√
n

1
n

n∑
i=1

E(Xi −X ′i|W )

= 1√
n

1
n

n∑
i=1

E(Xi|W )− E(X ′i|W )

= 1
n
E (W |W )

= 1
n
W

that (W,W ′) is a Stein-Pair with λ = 1
n
, where we used in particular E(X ′i|W ) = E(X ′i) = 0

by independence of our random variables. We refer to [20, Lemma 2.7] and its proof to show
how the terms of the Stein-equation in the general exchangeable pair setting look like, namely

E[f ′(W )−Wf(W )] = E
(
f ′(W )

(
1− 1

2λE[∆2|W ]
))

+ 1
2λE

(
∆
∫ 0

−∆
(f ′(W )− f ′(W + t)) dt

)
.

It is a priori not obvious whether the first term can be bounded well, but if Var(W ) = 1 and
we recall E[∆2] = 2λVar(W ) the success of this representation becomes more clear. Note that
these are the original terms to rewrite the Stein-equation, but they have been modified over
the years in particular for unbounded exchangeable pairs, see e.g. [33], [90], [102] and [67],
where the authors obtain (non-)uniform Berry–Esseen bounds and Cramér-type moderate
deviations.

2.1.4. Size-bias- and zero-bias-transformations. Since these techniques were not used in our
research, we just give a short introduction here.
For a random variable X ≥ 0 with E[X] = µ < ∞ we say the random variable XS has a
size-bias distribution with respect to X if for all f with E |Xf(X)| <∞ we have

E(Xf(X)) = µE(f(XS)). (2.17)
For a real-valued random variable X with E[X] = 0 and E[X2] = σ2 <∞ we say the random
variable XZ has a zero-bias distribution with respect to X if for all absolutely continuous f
with E |Xf(X)| <∞ we have

E(Xf(X)) = σ2E(f ′(XZ)). (2.18)
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We see immediately how our term of interest E(Xf(X)) is rewritten by the defining equations
(2.17) and (2.18). In fact, similar to the previous two subsections bounds obtained by the
size-bias or zero-bias approach rely on the difference

∣∣∣X −XS
∣∣∣ respectively ∣∣∣X −XZ

∣∣∣, see
e.g. sections 5.1 and 5.3 in [20] for related results.

2.1.5. Further techniques. In this subsection we want to introduce certain techniques that
can be seen as an addition to those mentioned so far. We recall, how we wrote the solution
of the Stein-equation and related bounds explicitly in the Kolmogorov case in subsection
2.1.1. This can be also done similarly for general real valued measurable test functions h
with E[h(Z)] <∞. Then we have

fh(w) = ew
2/2
∫ w

−∞
(h(x)− E[h(Z)]) e−x2/2dx

= −ew2/2
∫ ∞
w

(h(x)− E[h(Z)]) e−x2/2dx.

and for absolutely continuous h : R→ R, by [20, Lemma 2.4],

‖fh‖∞ ≤ min
(√

π/2 ‖h(.)− E[h(Z)]‖∞ , 2 ‖h
′‖∞

)
,

‖f ′h‖∞ ≤ min
(

2 ‖h(.)− E[h(Z)]‖∞ ,
√

2/π ‖h′‖∞
)
,

‖f ′′h‖∞ ≤ 2 ‖h′‖∞ .
The upper bounds of fh and its derivatives depend on derivatives of the test functions and
for higher derivatives more restrictive assumptions concerning boundness and continuouity
of h, h′, h′′, . . . are needed. Thus in the field of Stein’s method there is an ambition to avoid
higher derivatives if possible. In particular if we are interested in Kolmogorov distance the
main problem is ‖f ′′z ‖∞ =∞ and (2.14) cannot be applied. To work against this problem a
rather simple but effective trick is to replace f ′(W ) by the rest of the Stein equation (2.4).
Furthermore, if there is already a difference of first derivatives we can get even more benefit
from it: The structure

f ′(W + t)− f ′(W ) = (W + t)f(W + t)−Wf(W ) + 1{W+t≤z} − 1{W≤z}

motivates to use the monotonicity (2.9) of wf(w) as well as that the indicator 1{w≤z} is
a decreasing function in w for further computations. This monotonicity argument does not
require a second derivative and was applied many times in research related to Stein’s method,
but it was used in [90] for the first time to prove noticeably simplified bounds in the context
of (non-)normal approximation for unbounded exchangeable pairs.

2.1.6. History. Now that we have collected many of the formulas and techniques related to
Stein’s method, we finish this section with a brief overview on its history, see [18]. Although
C. Stein already worked on his method in the 1960’s, his fundamental papers [94] and [95]
were published in 1972 respectively 1986. In these he established his general method as
well as the leave one out approach and exchangeable pairs. While the concept of size-bias
distributions appeared for the first time in 1989 [2] and was extended in 1996 by [52], zero-
bias distributions were considered first in 1997 by [51].
Another reason for the success of Stein’s method is that its ideas can be applied to many other
distributions apart from normal distribution. Among these are the Poisson- [17], binomial-
[95] and gamma-distribution [68], distributions with density proportional to exp

(
−µx2k

(2k)!

)
[16]

and [33], and more. Especially for continuous distributions there is a strategy how to find
characterizations reminiscent of (2.1) known as Stein’s density approach. The idea is to
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choose an expression like f ′(x) +ψ(x)f(x) with ψ(x) being ϕ′(x)
ϕ(x) , if ϕ(x) is the density of the

target distribution. In the case of the standard normal distribution we get

f ′(x) + ϕ′(x)
ϕ(x) f(x) = f ′(x)− xe−

x2
2

e−
x2
2

f(x) = f ′(x)− xf(x),

the lefthand side of the classical Stein-equation. We refer to [96] for technical details and
further information about the density approach.
Over the years Stein’s method has never stopped to expand in various directions with their
own applications such as the Malliavin–Stein method. This method will be considered in
the next section. Moreover the so-called Stein–Tikhomirov method was developed by several
authors. It combines the original theory of Stein with the theory of characteristic functions,
see [98] and also [35].
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2.2. Malliavin–Stein method.

2.2.1. Malliavin calculus. Historically Malliavin calculus was applied first to Gaussian- [72],
then to Poisson- [77] and then to Rademacher-functionals [73] — in fact these are all since for
other distributions the chaos representations of the corresponding functionals do not exist.
We want to summarize the setting and the operators that will appear in our results later on.
Due to the focus of this thesis on Rademacher random variables we present the corresponding
notions more extensive, while the Poisson case will play a minor role. We refer to all sources
mentioned so far and additional to [36] and [60] for further details and information as well
as [69] for further results related to the topic.

The Rademacher case. We start with l2(N), the space of real square-summable sequences,
formally defined as

l2(N) :=
{

(ak)k∈N
∣∣∣ ‖a‖2

l2(N) <∞
}
,

where the norm

‖a‖2
l2(N) :=

∑
k∈N

a2
k (2.19)

is induced by the scalar product

〈a, b〉 :=
∑
k∈N

akbk, a, b ∈ l2(N).

Moreover, by l2(N)⊗p we mean the pth tensor product of l2(N) for p ∈ N. Relevant subsets are
l2(N)◦p, the symmetric functions in l2(N)⊗p, and l20(N)◦p, the symmetric functions in l2(N)⊗p
which vanish on diagonals.
Let (pk)k∈N a sequence with pk ∈ (0, 1) and (Ω,F ,P) a probability space such that

Ω := {−1,+1}N, F := P({−1,+1})⊗N, P :=
⊗
k∈N

(pkδ+1 + (1− pk)δ−1) ,

where δ±1 is the unit-mass dirac-measure concentrated at ±1 and P(M) the power set of a
set M . Then we define X = (Xk)k∈N, an i.i.d. sequence of Rademacher random variables, on
(Ω,F ,P):

P(Xk = 1) = pk,

P(Xk = −1) = qk = 1− pk,

and, if needed, the standardized random variable

Yk = Xk − pk + qk
2√qkpk

∀ k ∈ N.

We are interested in square-integrable random variables F ∈ L2(Ω, σ(X),P), with σ(X) the
σ-field generated by X. According to [80, Proposition 6.7] and section 2.1 in [59] we can
write this space as the following direct sum:

L2(Ω, σ(X),P) =
⊕
n∈N0

Cn, (2.20)

where C0 = R and Cn = {Jn(f) : f ∈ l2(N)⊗n}, the nth Rademacher chaos. Cn consists of
square-integrable n-linear polynomias Jn(f) defined by

Jn(f) =
∑

(i1,...,in)∈∆n

f(i1, ..., in)Yi1Yi2 ...Yin ,
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where f ∈ l20(N)◦n and ∆n := {(i1, ..., in) ∈ Nn : ij 6= ik for j 6= k}. Jn(f) is called the nth
discrete multiple integral. The decomposition (2.20) is known as Wiener-Itô-Walsh decompo-
sition and as a consequence we can write F ∈ L2(Ω, σ(X),P) as

F = E[F ] +
∞∑
n=1

Jn(fn) (2.21)

for a unique sequence of functions (fn)n∈N with fn ∈ l20(N)◦n.
For F = f(X) = f(X1, X2, ...) ∈ L1(Ω, σ(X),P) we define the discrete gradient DkF of F at
kth coordinate:

DkF := √pkqk(F+
k − F−k ),

DF := (D1F,D2F, ...),

where F+
k := f(X1, ..., Xk−1,+1, Xk+1, ...) and F−k := f(X1, ..., Xk−1,−1, Xk+1, ...), k ∈ N.

So we fix the k-th Rademacher random variable of our functional at 1 respectively -1 and
are interested in the difference. It follows from the definition that DkYj = 1{k=j}. Note that
throughout the literature it is not unusual to define the discrete gradient D a priori for a
Rademacher chaos of fixed order, but D can be extended consistently to

D1,2 := Dom(D) =
{
F ∈ L2(Ω, σ(X),P)

∣∣∣E[‖DF‖2
l2(N)] <∞

}
,

where

E[‖DF‖2
l2(N)] := E

∑
k∈N

(DkF )2

 ,
see section 2.4.1 in [60]. More precise, if F has a chaos representation (2.21) it holds that

DkF =
∞∑
n=1

nJn−1(fn(·, k)), (2.22)

where fn(·, k) ∈ l20(N)◦n−1 is a function with one fixed component and n − 1 variables, see
[59, Proposition 2.1.17]. Next we define the divergence operator δ, also known as Skorokhod
operator, and its domain Dom(δ). For u := (uk)k∈N ∈ (L2(Ω))N with

uk :=
∞∑
n=1

Jn−1(fn(·, k)),

where fn ∈ l20(N)◦n−1 ⊗ l2(N) for n ∈ N, we say that u ∈ Dom(δ), if
∞∑
n=1

n!
∥∥∥f̃n1∆n

∥∥∥2

l2(N)⊗n
<∞.

By f̃(k1, ..., kn) := 1
n!
∑
σ∈Gn f(kσ(1), ..., kσ(n)) we mean the canonical symmetrization of a

function f in n variables such that Gn is the symmetric group on {1, ..., n}. Then, for
u ∈ Dom(δ), the operator δ is given by

δ(u) :=
∞∑
n=1

Jn
(
f̃n1∆n

)
. (2.23)

Another way to characterize δ is by the duality, see [59, Lemma 2.1.22],
E[〈DF, u〉] = E[Fδ(u)], F ∈ D1,2, u ∈ Dom(δ), (2.24)

such that we can identify δ as the adjoint operator of D. Furthermore we can rewrite its
domain to

Dom(δ) =
{
u ∈ L2(Ω, l2(N))

∣∣∣∣∣∃Cu > 0 ∀F ∈ D1,2 : |E[〈DF, u〉]| ≤ Cu
√
E[F 2]

}
.
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For

F ∈ Dom(L) =
{
F = E[F ] +

∞∑
n=1

Jn(fn) ∈ L2(Ω, σ(X),P)
∣∣∣∣∣
∞∑
n=1

n2n! ‖fn‖2
l2(N)⊗n <∞

}
we define by

LF :=
∞∑
n=1
−nJn(fn),

L−1F :=
∞∑
n=1
− 1
n
Jn(fn),

the Ornstein–Uhlenbeck operator L and the pseudo-inverse Ornstein–Uhlenbeck operator L−1.
It is possible to show that F ∈ Dom(L) is equivalent to F ∈ D1,2 and DF ∈ Dom(δ); in this
case, it holds that

L = −δD. (2.25)
The validity of (2.25) follows mainly from

DF = (DkF )k∈N =
( ∞∑
n=1

nJn−1(fn(·, k))
)
k∈N

=
( ∞∑
n=1

Jn−1(nfn(·, k))
)
k∈N

and

−δDF = −
∞∑
n=1

Jn
(
nf̃n1∆n

)
=
∞∑
n=1
−nJn(fn)

by definitions (2.22) and (2.23), and we refer to [59, Lemma 2.1.25] for details. We want to
emphasize that (2.24) and (2.25) will be very important for the connection of the Malliavin
operators we introduced and Stein’s method, which we will illustrate in subsection 2.2.2.
Before that we finish the introduction into Malliavin calculus by giving two examples of L2-
Rademacher-functionals we will investigate in the upcoming chapters.

Infinite weighted 2-runs. Due to their simple dependence structure, runs, and more gen-
erally weighted or incomplete U -statistics, lend themselves to normal approximations, see
[84], where an exchangeable pair coupling is employed for a normal approximation. In [84]
the authors studied even degenerate weighted U -statistics, where either weights are consid-
ered which ensures a weak dependence or kernel functions are considered which depend on
the sample size n in a specific way. See also subsection 1.2 in [74], where subgraph counts
in random graphs are considered. Here we consider infinite weighted 2-runs, where random
variables are possibly depending on the whole infinite sequence of i.i.d. Rademacher random
variables.
Let X = (Xi)i∈Z be a double-sided sequence of i.i.d. Rademacher random variables such that
P(Xi = 1) = P(Xi = −1) = 1

2 and let for each n ∈ N, (a(n)
i )i∈Z be a double-sided summable

sequence of real numbers. Usually 2-runs are definded with a square-summable sequence but
this will be not enough.
The sequence (Fn)n∈N of standardized infinite weighted 2-runs is then defined as

Fn := Gn − E[Gn]√
Var(Gn)

, Gn :=
∑
i∈Z

a
(n)
i ξiξi+1, n ∈ N, (2.26)

where ξi := Xi+1
2 for i ∈ Z. More generally one can consider an infinite weighted d-run

defined by

Gn(d) :=
∑
i∈Z

a
(n)
i ξi · · · ξi+d−1,
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which is a weighted degenerate U -statistic of degree d. However, since the analysis for any d
is of the cost of a quite cumbersome notation, we will focus on the case where d = 2 (2-runs).
Since the behaviour of the coefficient sequences (a(n)

i )i∈Z will be very important for our stud-
ies we define for p > 0 the lp-norm by ‖a‖lp(Z) := (∑i∈Z |ai|

p)1/p.
For recent results on 2-runs combined with Malliavin–Stein method see [36], [60] and [73].

Subgraph counting in the Erdős–Rényi random graph. We start with the complete graph
on n vertices and keep an edge with probability p ∈ [0, 1], while we remove it with prob-
ability q := 1 − p, for all edges independently from each other. The outcome is known
as the classical Erdős–Rényi random graph G(n,p) and in many applications p depends on
n. We fix a graph G0 with at least one edge and consider the number W of subgraphs
H ⊂ G(n, p), which are isomorphic to G0. Note that we are calling two graphs G1 = (V1, E1)
and G2 = (V2, E2) isomorphic if there is an edge-preserving bijection f : V1 → V2 between
their sets of vertices, such that two vertices v, w ∈ V1 are joined by an edge {v, w} ∈ E1 in
G1 if and only if the vertices f(v), f(w) ∈ V2 are joined by an edge {f(v), f(w)} ∈ E2 in G2.
The corresponding standardized random variable is then defined as

F := W − E[W ]√
Var(W )

, (2.27)

which is basically the standardized number of copies of G0 in G(n, p).
For our result we have to define the important quantity

Ψ := min
H⊂G0
eH≥1

{nvHpeH} ,

where vH denotes the number of vertices of a subgraph H of G0 and eH the number of
edges, respectively. We give a short summary of the history of optimal uniform Berry–
Esseen bounds in the context of subgraph counting, since they will be fundamental for our
non-uniform Berry–Esseen bound. The first optimal result valid for arbitrary subgraphs and
arbitrary p was shown in [81]. After that, the authors of [35] obtained a result of the same
quality, but with an easier proof using the Stein–Tikhomirov method. At last another proof
using the Malliavin–Stein method was given in [36].

2.2.2. Stein’s method and Malliavin calculus. The idea of Malliavin–Stein method was de-
veloped by I. Nourdin and G. Peccati [71], and combines Stein’s method with Malliavin
calculus. For the first important steps we recall the lefthandside of the Stein-equation (2.4)
and the identities (2.25) and (2.24). Then, for a Rademacher-functional F ∈ D1,2 we can
write

E [Ffz(F )] = E
[
(LL−1F )fz(F )

]
= E

[
(−δDL−1F )fz(F )

]
= E

[
〈Dfz(F ),−DL−1F 〉

]
.

We continue with a closer look at the k-th component of Dfz(F ) that gives us

Dkfz(F ) = √pkqk
[
fz(F+

k )− fz(F−k )
]

= √pkqk
∫ F+

k

F−
k

f ′z(u)du

= √pkqk
∫ F+

k

F−
k

[f ′z(u)− f ′z(F )] du+ f ′z(F )DkF

=: Rk + f ′z(F )DkF
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and so

E [Ffz(F )] = E
[
〈R,−DL−1F 〉

]
+ E

[
〈f ′z(F )DF,−DL−1F 〉

]
for R = (R1, R2, ...). Next we include E [f ′z(F )] into our computation and receive

E [f ′z(F )− Ffz(F )] = E
[
f ′z(F )

(
1− 〈DF,−DL−1F 〉

)]
− E

[
〈R,−DL−1F 〉

]
≤ E

[∣∣∣1− 〈DF,−DL−1F 〉
∣∣∣]+

∑
k∈N

E
[
|Rk| ×

∣∣∣DL−1F
∣∣∣] . (2.28)

Now let us assume that E[F ] = 0 and Var(F ) = 1. Then the first summand of (2.28) is
promising since it holds that 1 = Var(F ) = E[〈DF,−DL−1F 〉], by choosing f(x) = x in [61,
(2.13)]. For the second summand of (2.28) we have to bound E [|Rk| × |DL−1F |]; this is done
nicely in the proof of [36, Theorem 3.1] by using the monotonicity of the components of the
Stein-equation, see subsection 2.1.5. In the mentioned paper the authors obtain ultimately a
discrete second-order Gaussian Poincaré inequality, which expresses the bound of the second
summand in terms of the divergence operator δ. In any case the second summand will be
challenging in chapter 4.

2.2.3. The Poisson case. We want to take a short theoretic look on the Poisson case. Let
(X,X ) be a standard Borel space with a σ-finite measure µ. By η we denote a Poisson
(random) measure, also known as Poisson point process, on X with control µ. Note that η is
defined on an underlying probability space (Ω,F ,P). Define X0 = {B ∈ X : µ(B) <∞} such
that η = {η(B) : B ∈ X0} is a collection of random variables with the following properties:

• η(B) is Poisson distributed with parameter µ(B) for all B ∈ X0.
• If B1, ..., Bn ∈ X0 are disjoint sets, the random variables η(B1), ..., η(Bn) are indepen-
dent.

Denote by Pη the distribution of η and, if needed, by η̂ the centered Poisson measure

η̂(B) = η(B)− E[η(B)] = η(B)− µ(B).

Last, we use the notations L2(µn) and L2(Pη) for the space of square-integrable functions
with respect to µn respectively the space of square-integrable functionals with respect to Pη.
We are interested in functionals F = F (η) ∈ L2(Pη), which posses similar to the Rademacher
case a chaos expansion

F = E[F ] +
∞∑
n=1

In(fn),

where In is the n-fold Wiener-Itô integral, also known as Poisson multiple integral, with
respect to η̂ and (fn)n∈N is a unique sequence of symmetric functions in L2(µn). We refer
to section 3 in [65] for formal details. For such functionals we define the difference operator
DxF of F at x ∈ X:

DxF (η) := F (η + δx)− F (η),
DF : x 7→ DxF,

also known as the add-one-cost operator since it measures the effect on F of adding the point
x ∈ X to η. From here on the rest is very similar to the Rademacher case — to be precise
we recall the Poisson case historical as the predecessor. We are interested in functionals

F ∈ D̂1,2 := Dom(D) =
{
F ∈ L2(Pη)

∣∣∣∣∣
∞∑
n=1

n · n! ‖fn‖2
n <∞

}
,
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with ‖.‖n the norm in L2(µn). Supposing F ∈ D̂1,2 such that∑∞n=1 n
2·n! ‖fn‖2

n <∞, we define
the Ornstein–Uhlenbeck operator L and the pseudo-inverse Ornstein–Uhlenbeck operator L−1

as

LF :=
∞∑
n=1
−nIn(fn),

L−1F :=
∞∑
n=1
− 1
n
In(fn).

In the Poisson case there are also characterizations for the divergence operator δ and the
other Malliavin operators analogous to (2.24) and (2.25), see e.g. [37, Lemma 2.1].
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2.3. The Curie–Weiss model and a surrogate approach.

2.3.1. The De Finetti measure of the Curie–Weiss model. The celebrated De Finetti theorem
[27] by Bruno De Finetti, 1969, can be stated as follows:

Every exchangeable infinite sequence of random variables is a mixture of an i.i.d. sequence.

Here, exchangeability for an infinite sequence is understood in the sense of the action of
the inductive limit of the symmetric group, e.g. every finite sub-sequence of the sequence is
invariant by a (finite) permutation, which means that the joint distribution of the random
variables does not change if they are permuted. This notion has been extended in several
ways, in a finite-dimensional version by [28], using other groups such as the projective limit
of symmetric groups by [50] and orthogonal groups by [75] and [88], etc. See e.g. [1] for an
account of subtleties on this theorem and further references, or [28] for a presentation of the
topic in relation with the computation of total variation distances.

The Curie–Weiss spins are clearly exchangeable since the measure (1.6) is invariant by per-
mutation of the spins. Since n is fixed, the De Finetti theorem a priori does not apply, but
nevertheless it exists a measure ν̃n,β : [0, 1]→ [0, 1] such that

P(β)
n ≡ P(X(β)

1 ,...,X
(β)
n ) =

∫
[0,1]

P(X1(p),...,Xn(p)) ν̃n,β(dp), (2.29)

where (Xk(p))1≤k≤n ∼ pδ+1 + (1− p)δ−1 i.i.d. So the joint distribution of (X(β)
k )1≤k≤n can be

written as a mixture of the joint distribution of (Xk(p))1≤k≤n and the measure ν̃n,β.
We can write (2.29) in a more probabilistic way using a random variable Ṽn,β ∼ ν̃n,β inde-
pendent of (Xk(p))1≤k≤n,p∈[0,1]. We then have the randomisation equality

(X(β)
1 , . . . , X(β)

n ) d= (X1(Ṽn,β), . . . , Xn(Ṽn,β)). (2.30)
For another point of view we can also write

Xk(p) = 2 1{Uk<p} − 1, Uk ∼ U([0, 1]), (2.31)

which gives a functional representation of this last randomisation (2.30), e.g.

X
(β)
k = 2 1{{Uk<Ṽn,β}} − 1.

The measure ν̃n,β respectively the random variable Ṽn,β is well-known for the Curie–Weiss
model. It is given by

ν̃n,β(dp) = f̃n,β(p)dp, f̃n,β(p) := 1
Zn,β

e−
n

2β Argtanh(2p−1)2−(n2 +1) ln(1−(2p−1)2) (2.32)

with an explicit renormalisation constant Zn,β defined by the equality
∫ 1

0 f̃n,β(p)dp = 1, see
[55, Theorem 5.6, (164), (165)]. We recall that Argtanh(x) = 1

2 log
∣∣∣1+x
1−x

∣∣∣ for |x| < 1.
If instead of considering the parameter p ∈ [0, 1] of the Rademacher random variables, we
encode the De Finetti measure with the expectation parameter t := 2p− 1 ∈ [−1, 1] and get

νn,β(dt) = fn,β(t)dt, fn,β(t) := 1
Zn,β

e−
n

2β Argtanh(t)2−(n2 +1) ln(1−t2) (2.33)

and a randomisation by an independent random variable Vn,β ∼ νn,β. The corresponding
version of (2.29) is given by

P(X(β)
1 ,...,X

(β)
n ) =

∫
[−1,1]

P(X1( t+1
2 ),...,Xn( t+1

2 )) νn,β(dt).
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2.3.2. Surrogate random variables in probability theory. Consider the following classical prob-
lem in extreme value theory: compute the fluctuations ofHn := max1≤k≤n Zk for independent
random variables (Zk)k≥1 when n→ +∞. One way to proceed is to note that

{Hn ≤ x} = {∀k ≤ n, Zk ≤ x} = {
n∑
k=1

1{Zk>x} = 0}. (2.34)

The problem amounts thus to analyse the fluctuations of the parametric random variable

Sn(xn) :=
n∑
k=1

1{Zk>xn}, xn := µn + σnx,

for given numbers µn, σn that one has to tune in order to get the corresponding limit dis-
tribution. Since Sn(xn) is a sum of independent {0, 1}-Bernoulli random variables, one can
proceed to a Poisson approximation Sn(xn) ≈ Po(f(xn)), using for instance the Chen–Stein
method [47], resulting in:

P(Hn ≤ xn) = P(Sn(xn) = 0) = P(Po(f(xn)) = 0) + o(1) = e−f(xn) + o(1).
By doing so, one has replaced the estimation of a non linear functional of (Zk)k, a maximum,
by a simpler problem, the estimation of a sum. Such a sum is a surrogate random variable.
Its study is equivalent to the original problem while being arguably simpler.
The equality (2.34) allows to use a strict equality to replace the original problem by the
surrogate problem, and the approximation is only performed at the level of Sn(xn), but one
could reverse the steps or add an additional approximation step in between, e.g. replacing
the equality (2.34) by an approximation, as long as the original problem is not fundamentally
impacted. This is what we perform now.

2.3.3. Surrogate magnetisation inequalities. We consider the following setting: For (Zk)k
i.i.d. satisfying E|Z1|3 < ∞, σ2

n := Var(Sn) = nVar(Z1), µn := E(Sn) = nE(Z1) we define
Sn := ∑n

k=1 Zk andWn := (Sn−µn)/σn = ∑n
k=1 Ẑk, where Ẑk := (Zk−E(Zk))/(nVar(Zk))1/2.

We recall the following non-uniform bound obtained with Stein’s method and zero-bias trans-
form, see [51, (13)] or [85, Theorem 3.29], valid for all h ∈ C1 with ‖h′‖∞ <∞:

|E(h(Wn))− E(h(G))| ≤ C ‖h′‖∞ E
∣∣∣WZ

n −Wn

∣∣∣ , (2.35)

where G ∼ N (0, 1),WZ
n defined by (2.18) and C is an absolute constant. According to

[85, Proposition 3.32] it holds that WZ
n = Wn − ẐI + ẐZ

I for a random index I satisfying
P(I = i) = Var(Ẑi) and being independent of all else. As a consequence

E
∣∣∣WZ

n −Wn

∣∣∣ = E
∣∣∣ẐZ

I − ẐI
∣∣∣ ≤ E

∣∣∣ẐZ
I

∣∣∣+ E
∣∣∣ẐI ∣∣∣ = E

∣∣∣ẐZ
1

∣∣∣+ E
∣∣∣Ẑ1

∣∣∣
by the triangle inequality and identical distribution. Now we use [85, Proposition 3.32] and
(2.18) for f(x) = x|x|

2 to get

E
∣∣∣ẐZ

1

∣∣∣ = 1
(nVar(Z1))1/2E

∣∣∣(Z1 − E(Z1))Z
∣∣∣ = 1

(nVar(Z1))1/2
E|(Z1 − E(Z1)|3

2 Var(Z1) <∞

since by our moment assumptions all appearing moments are finite. This simplifies (2.35) to
|E(h(Wn))− E(h(G))| ≤ C ‖h′‖∞

for another absolute constant C. If we rescale our test function h linearly by h ← h( ·−µn
σn

)
we can rewrite the foregoing inequality to

|E(h(Sn))− E(h(σnG+ µn))| ≤ C ‖h′‖∞ , (2.36)
We see in particular that rescaling linearly h ← h( ·√

n
) gives a speed of convergence in

O
(

1√
n

)
.
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Note that other identities using stronger conditions on the functional space defining the
norm and stronger moments conditions allow for stronger speed of convergence, see e.g. [51,
Corollary 3.1].
In the particular case of Rademacher random variables (Xk)k of parameter p := P(X1 = 1),
we have E[X1] = 2p− 1 and Var(X1) = 4p(1− p), thus∣∣∣∣E(h(Sn))− E

(
h
(√

n 2
√
p(1− p)G+ (2p− 1)n

))∣∣∣∣ ≤ C ‖h′‖∞ .

Now, taking p at random with a distribution ν and writing Sn(p) to mark the dependency,
we get

δn(h) :=
∣∣∣∣∣
∫

[0,1]
E(h(Sn(p))) ν(dp)−

∫
[0,1]

E
(
h
(√

n 2
√
p(1− p)G+ (2p− 1)n

))
ν(dp)

∣∣∣∣∣
≤
∫

[0,1]

∣∣∣∣E(h(Sn(p)))− E
(
h
(√

n 2
√
p(1− p)G+ (2p− 1)n

))∣∣∣∣ ν(dp)

≤ C ‖h′‖∞
∫

[0,1]
ν(dp) = C ‖h′‖∞ .

In the case of the Curie–Weiss model, taking p distributed as

P (β)
n ∼ ν̃n,β, (2.37)

we finally get with (2.29) and (2.30):∣∣∣∣E(h(M (β)
n

))
− E

(
h
(√

nG× 2
√
P (β)
n (1− P (β)

n ) + n× (2P (β)
n − 1)

))∣∣∣∣ ≤ C ‖h′‖∞ .

We can perform a last change of variables to this expression. Define the random variable

T (β)
n := 2P (β)

n − 1 ∼ νn,β (2.38)

which corresponds to the parametrisation of the De Finetti measure νn,β defined in (2.33) as
opposed to the one defined in (2.32). Noting that p(1 − p) = 1−t2

4 , we define the surrogate
magnetisation by

M(β)
n :=

√
nG

√
1− (T (β)

n )2 + nT (β)
n (2.39)

so that ∣∣∣E(h(M (β)
n

))
− E

(
h
(
M(β)

n

))∣∣∣ ≤ C ‖h′‖∞ . (2.40)

Using (2.40) in conjunction with the triangle inequality yields with Zn,β ∼ N (0, n/(1− β))∣∣∣E(h(M (β)
n

))
− E(h(Zn,β))

∣∣∣ ≤ ∣∣∣E(h(M (β)
n

))
− E

(
h
(
M(β)

n

))∣∣∣+ ∣∣∣E(h(M(β)
n

))
− E(h(Zn,β))

∣∣∣
≤ C ‖h′‖∞ +

∣∣∣E(h(M(β)
n

))
− E(h(Zn,β))

∣∣∣ .
It is thus enough to control the convergence of the surrogate random variableM(β)

n towards
its limit (up to a rescaling) to obtain the speed of convergence of the original random variable.
The explanation of (1.8) – (1.11) relies then entirely on the fact that the structure ofM(β)

n

defined in (2.39) is particularly simple to understand since G is of order 1 and T (β)
n =:

cos(Θ(β)
n ) ∈ [−1, 1]:

(1) When T (β)
n converges to 0, the first term is approximately Gaussian after rescaling

by
√
n and we need to study the behaviour of T (β)

n

√
n which will be shown to be

Gaussian too, and this corresponds to β < 1;
(2) when T (β)

n tends to ±1, we need to rescale by n and the limit will come from the last
term in (2.39), and this corresponds to β > 1;
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(3) last, when both terms are of the same order, e.g.
√
n sin(Θ(β)

n ) ≈ n cos(Θ(β)
n ) or

equivalently tan(Θ(β)
n ) = OP(

√
n), the analysis has to be refined and a non standard

limit can emerge.
Compared with the expository case of subsection 2.3.2, we defined the surrogate by means
of an initial (fundamental) inequality and added an additional (non fundamental) inequality
to use it, the approximation coming then next.



Precise approximations of Rademacher functionals 27

3. A surrogate by exchangeability approach to the Curie–Weiss model

This chapter is based on [5]. After our preparations in section 2.3 we are ready to give a new
proof of (1.8) – (1.11). In order to control exactly the error originated from the replacement of
the original random variable by its surrogate, the approximation in law must be quantitative.
As a result, we will not only be concerned with the limits in law presented in (1.8) – (1.11),
but also with their speed of convergence in particular distances: The Fortet–Mourier distance
(2.2) with test functions having a certain degree of smoothness, and the Kolmogorov distance
(2.3) whose test functions are indicators of half infinite intervals of the real line.
Here, not only can one save a considerable computational effort by using the classical CLT
approximation for sums of i.i.d.’s, but in addition comes an unexpected bonus that arises as
a byproduct of the use of such a surrogate: by integrating a fraction of the randomness of
the surrogate, the indicator functions in the Kolmogorov distance are replaced by smooth
functions. This transfert from randomness to smoothness is a very agreable surprise that
reduces the discontinuous norm estimate to a smooth one for a related random variable,
allowing thus to bypass the usual pathologies of discontinuous test functions distances, see
section 3.2. This is one of the advantages of the surrogate by exchangeability approach: it
does not differentiate between the discontinuous and the continuous probability norms.

3.1. Application to the Curie–Weiss magnetisation in Fortet–Mourier distance.

3.1.1. The case β < 1. Define Zβ ∼ N
(
0, 1

1−β

)
.

Theorem 3.1 (Fluctuations of the unnormalised magnetisation for β < 1). If β < 1, we
have for all h ∈ C1 with ‖h‖∞ , ‖h′‖∞ <∞∣∣∣∣∣E

(
h

(
M (β)

n√
n

))
− E(h(Zβ))

∣∣∣∣∣ ≤ C
‖h′‖∞√

n
+ 1
n

(
β

1− β ‖h
′‖∞ + C(β) ‖h‖∞

)
(3.1)

for explicit constants C,C(β) > 0.

Proof. Rescaling M (β)
n by

√
n amounts to do h← h( ·√

n
), thus h′ ← 1√

n
h′( ·√

n
). Substituting

in (2.40) yields ∣∣∣∣∣E
(
h

(
M (β)

n√
n

))
− E

(
h

(
M(β)

n√
n

))∣∣∣∣∣ ≤ C√
n
‖h′‖∞

and the triangle inequality implies then∣∣∣∣∣E
(
h

(
M (β)

n√
n

))
− E(h(Zβ))

∣∣∣∣∣ ≤ C√
n
‖h′‖∞ +

∣∣∣∣∣E
(
h

(
M(β)

n√
n

))
− E(h(Zβ))

∣∣∣∣∣ . (3.2)

Note that we do not get better than the usual normal approximation bound for the magneti-
sation due to the term C√

n
‖h′‖∞. So far, we are focused on the validity of the approximation,

e.g. we want to prove that M
(β)
n√
n

converges in law to a Gaussian, with speed in the Fortet–
Mourier norm of order at least 1√

n
. We thus define

δ̃n(h) :=
∣∣∣∣∣E
(
h

(
M(β)

n√
n

))
− E(h(Zβ))

∣∣∣∣∣ , Zβ ∼ N
(

0, 1
1− β

)
. (3.3)

Define
Xn,β :=

√
nT (β)

n ,

Gβ ∼ N
(

0, β

1− β

)
.
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Supposing that

Xn,β

d
−−−−→
n→+∞

Gβ (3.4)

we get

G

√
1− (Xn,β)2

n
+Xn,β ∼n→+∞ G

√
1−

G2
β

n
+Gβ −−−−→

n→+∞
G+Gβ.

Hence by the decomposition with G independent of Gβ we receive

G+Gβ
d= Zβ (3.5)

since G and Xn,β are independent (hence so are G and Gβ).
The distribution of Xn,β :=

√
nT (β)

n is given by the rescaling of νn,β in (2.33):

P(Xn,β ∈ dt) = fn,β

(
t√
n

)
dt√
n

= 1√
nZn,β

e
− n

2β Argtanh( t√
n

)2−(n2 +1) ln(1− t
2
n

)1{|t|≤√n}dt.

Using a Taylor expansion in 0, we easily get

n

2β Argtanh
(

t√
n

)2

+
(
n

2 + 1
)

ln
(

1− t2

n

)
= 1
β

t2

2 −
t2

2 +O

(
t4

n

)
=
(

1− β
β

)
t2

2 +O

(
t4

n

)
.

We can moreover show that, see [55],
√
nZn,β −−−−→

n→+∞

√
2π ×

√
β

1− β
which implies (3.4) and would imply

M(β)
n√
n

= G
√

1− (T (β)
n )2 +

√
nT (β)

n

d
−−−−→
n→+∞

Zβ (3.6)

with an additional dominated convergence. This is what we prove now. We have

δ̃n(h) :=
∣∣∣∣∣E
(
h

(
M(β)

n√
n

))
− E(h(G+Gβ))

∣∣∣∣∣
=

∣∣∣∣∣∣E
h
G

√
1− (Xn,β)2

n
+Xn,β

− E(h(G+Gβ))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

[−
√
n,
√
n]
E

h
G

√
1− x2

n
+ x

 fn,β
(
x√
n

)
dx√
n
− E(h(G+Gβ))

∣∣∣∣∣∣
=:
∣∣∣∣∣
∫

[−
√
n,
√
n]
hn(x)gn(x)dx−

∫
R
hG(x)gβ(x)dx

∣∣∣∣∣
with

hn(x) := E

h
G

√
1− x2

n
+ x

 ,
hG(x) := E

(
h (G+ x)

)
,

gn(x) := 1√
n
fn,β

(
x√
n

)
,

gβ(x) :=
√

1− β
2πβ e−

1−β
β

x2
2 .
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Note that we have used a coupling ofM(β)
n and Zβ by supposing that the random variable

G that is used in each random variable is the same. Such a coupling is always possible, and
this is an important feature of the proof. We have moreover∣∣∣∣∣

∫
[−
√
n,
√
n]
hngn −

∫
R
hGgβ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

[−
√
n,
√
n]

(hngn − hGgβ)
∣∣∣∣∣+

∣∣∣∣∣
∫
R\[−

√
n,
√
n]
hGgβ

∣∣∣∣∣
with ∣∣∣∣∣

∫
R\[−

√
n,
√
n]
hGgβ

∣∣∣∣∣ ≤ ‖hG‖∞
∫
R\[−

√
n,
√
n]
gβ ≤ ‖h‖∞

∫
R\[−

√
n,
√
n]
gβ

= ‖h‖∞ P
(
|Gβ| ≥

√
n
)

≤ ‖h‖∞ E
(
|Gβ|2k

)
n−k, ∀ k ≥ 1,

using Markov’s inequality.
Note that the true value of the Gaussian tail is P(|Gβ| ≥ x) ≤ 1√

2πxσ2
β

exp
(
− x2

2σ2
β

)
, hence

P(|Gβ| ≥
√
n) = O(e−n/2) since β < 1, and this power bound is small enough for our purposes.

The first integral can be estimated writing∣∣∣∣∣
∫

[−
√
n,
√
n]

(hngn − hGgβ)
∣∣∣∣∣ =

∣∣∣∣∣
∫

[−
√
n,
√
n]

[ hn(gn − gβ) + (hn − hG)gβ]
∣∣∣∣∣

≤
∫

[−
√
n,
√
n]
|hn(gn − gβ)|+

∣∣∣∣∣
∫

[−
√
n,
√
n]

(hn − hG)gβ
∣∣∣∣∣

≤ ‖hn‖∞
∫

[−
√
n,
√
n]
|gn − gβ|+ ‖hn − hG‖∞

∫
[−
√
n,
√
n]
gβ.

It is clear that |hn(x)| ≤ ‖h‖∞. We can thus bound ‖hn − hG‖∞ by 2 ‖h‖∞ but since∫
[−
√
n,
√
n] gβ = P(|Gβ| ≤

√
n) = O(1− e−n/2) = O(1) which does not tend to 0, we must work

on
∣∣∣∫[−√n,√n](hn − hG)gβ

∣∣∣ directly. Since we have the same random variables G and Gβ, we
have a coupling that allows to write
∫

[−
√
n,
√
n]

(hn − hG)gβ = E

h
G

√
1−

G2
β

n
+Gβ

 1{|Gβ|≤√n} − h(G+Gβ)1{|Gβ|≤√n}


= E

(
G

(√
1− G2

β

n
− 1

)
1{|Gβ|≤√n}h

′
(
Gβ +G+ U G

(√
1− G2

β

n
− 1

)))

with U ∼ U([0, 1]) independent of (G,Gβ). By using x+ := max{x, 0} = x1{x≥0} and
{|Gβ| ≤

√
n} = {1−G2

β/n ≥ 0}, we then get∣∣∣∣∣
∫

[−
√
n,
√
n]

(hn − hG)gβ
∣∣∣∣∣ ≤ E

∣∣∣∣∣∣G
√√√√(1−

G2
β

n

)
+
− 1

∣∣∣∣∣∣
 ‖h′‖∞

= E(|G|) ‖h′‖∞ × E

∣∣∣∣∣∣
√√√√(1−

G2
β

n

)
+
− 1

∣∣∣∣∣∣


≤
E
(
G2
β

)
n

‖h′‖∞ ,

where we have used the independency of G and Gβ, 1 −
√

1− x ≤ x for 0 ≤ x ≤ 1 and
E(|G|) ≤

√
E(G2) = 1.
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The important quantity to bound is thus

‖hn‖∞
∫

[−
√
n,
√
n]
|gn − gβ| ≤ ‖h‖∞

∫
[−
√
n,
√
n]
|gn − gβ| .

We thus need to estimate carefully

δ(gn, gβ) :=
∫

[−
√
n,
√
n]
|gn − gβ|

=
∫

[−
√
n,
√
n]

∣∣∣∣∣ 1√
n
fn,β

(
x√
n

)
−
√

1− β
2πβ e−

1−β
β

x2
2

∣∣∣∣∣ dx
= 2

∫
[0,
√
n]

∣∣∣∣∣ 1√
n
fn,β

(
x√
n

)
−
√

1− β
2πβ e−

1−β
β

x2
2

∣∣∣∣∣ dx
by symmetry of gn and gβ.
Define

ϕn(x) := n

2β Argtanh
(
x√
n

)2

+
(
n

2 + 1
)

ln
(

1− x2

n

)
,

Cβ := 1− β
β

,

so that

fn,β

(
x√
n

)
= 1
Zn,β

e−ϕn(x),

gβ(x) =
√
Cβ
2π e

−Cβ x
2

2 .

We then have

δ(gn, gβ) ≤

∣∣∣∣∣∣ 1
Zn,β
√
n
−
√
Cβ
2π

∣∣∣∣∣∣
∫

[−
√
n,
√
n]
e−ϕn(x)dx+

√
Cβ
2π

∫
[−
√
n,
√
n]

∣∣∣∣e−ϕn(x) − e−Cβ
x2
2

∣∣∣∣ dx.
The first quantity is∣∣∣∣∣∣

√
Cβ
2π ×Zn,β

√
n− 1

∣∣∣∣∣∣
∫

[−
√
n,
√
n]
gn =

∣∣∣∣∣∣
√
Cβ
2π ×Zn,β

√
n− 1

∣∣∣∣∣∣P(|Xn| ≤
√
n)

≤

∣∣∣∣∣∣
√
Cβ
2π ×Zn,β

√
n− 1

∣∣∣∣∣∣
and an analysis of its speed of convergence to 0 is performed in Lemma 3.15.
The important quantity is the second one. Define

γn :=
∫

(−
√
n,
√
n)

∣∣∣∣e−ϕn(x) − e−Cβ
x2
2

∣∣∣∣ dx
=
∫

(−
√
n,
√
n)

∣∣∣∣e−(ϕn(x)−Cβ x
2

2 ) − 1
∣∣∣∣ e−Cβ x2

2 dx.

Supposing that the quantity inside the absolute value in the second line was bounded by a
constant Dn on (−

√
n,
√
n), we would have

γn = O

(
Dn

∫
(−
√
n,
√
n)
e−Cβ

x2
2 dx

)
= O

(
DnP

(
|Gβ| ≤

√
n
))

= O(Dn) .



Precise approximations of Rademacher functionals 31

This is not the case as Argtanh2( x√
n
)→ +∞ when x→

√
n; nevertheless, the integral is still

definite. By symmetry, we will now work on [0,
√
n) and use a factor 2. Let ε ∈ (0,

√
n) to

be choosen later. We split [0,
√
n) according to

[0,
√
n) := [0,

√
n− ε) ∪ [

√
n− ε,

√
n)

and estimate the integral on each of these subintervals.
• Main interval: On [0,

√
n − ε), the function κ̃n : x 7→ ϕn(x) − Cβ

x2

2 is not monotone.
This is mainly due to the fact that the second derivatives of the two functions occuring in
the difference do not match in 0. Indeed, we have ϕn(0) = ϕ′n(0) = 0 but ϕ′′n(0) = Cβ − 2

n
.

Up to comparing with a triangle inequality Gβ and Gβ,n ∼ N (0, (Cβ − 2
n
)−1), we define then

for n ≥ n0(β) := [2C−1
β ]

Cβ,n := Cβ −
2
n
,

κn(x) := ϕn(x)− Cβ,n
x2

2 .
(3.7)

The replacement of Gβ ∼ N (0, C−1
β ) by Gβ,n ∼ N (0, C−1

β,n) can be done up to O
(

1
n

)
. Indeed,

γn =
∫

(−
√
n,
√
n)

∣∣∣∣e−ϕn(x) − e−Cβ
x2
2

∣∣∣∣ dx
=
∫

(−
√
n,
√
n)

∣∣∣∣e−ϕn(x) − e−Cβ,n
x2
2 + e−Cβ,n

x2
2 − e−Cβ

x2
2

∣∣∣∣ dx
≤
∫

(−
√
n,
√
n)

∣∣∣∣e−ϕn(x) − e−Cβ,n
x2
2

∣∣∣∣ dx+
∫

(−
√
n,
√
n)

∣∣∣∣e−Cβ,n x2
2 − e−Cβ

x2
2

∣∣∣∣ dx
=: 2

√
2π
Cβ,n

γ̃n +
∫

(−
√
n,
√
n)

∣∣∣∣e−Cβ,n x2
2 − e−Cβ

x2
2

∣∣∣∣ dx
with

γ̃n :=
√
Cβ,n
2π

∫ √n
0

∣∣∣∣e−ϕn(x) − e−Cβ,n
x2
2

∣∣∣∣ dx
=
√
Cβ,n
2π

∫ √n
0

∣∣∣1− e−κn(x)
∣∣∣ e−Cβ,n x2

2 dx

and ∫ √n
−
√
n

∣∣∣∣e−Cβ,n x2
2 − e−Cβ

x2
2

∣∣∣∣ dx =
∫ √n
−
√
n

∣∣∣∣ex2
n − 1

∣∣∣∣ e−Cβ x2
2 dx

≤ 3
∫
R

x2

n
e−Cβ

x2
2 dx

= 3
n

√
2π

C
3/2
β

.

Here, we have used |ex − 1| ≤ e|x|− 1 ≤ |x| e|x| for all x ∈ R, ex
2
n ≤ 3 for x ∈ (−

√
n,
√
n) and

the second moment of a Gaussian.
The function κn thus defined in (3.7) is now strictly increasing and positive on [0,

√
n),

hence, so is 1− e−κn . Moreover, thanks to the matching of the derivatives and the fact that
ϕ′′′n (0) = 0, the Taylor formula with integral remainder gives at the fourth order

κn(x) = x4

6

∫ 1

0
(1− α)3κ(4)

n (αx)dα = x4

6

∫ 1

0
(1− α)3ϕ(4)

n (αx)dα,
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where κ(4)
n (x) :=

(
d
dx

)4
κn(x). The only singularity of all the derivatives of κn is in

√
n, which

is not in (0,
√
n− ε). We can thus write for all x ∈ [0,

√
n)

0 ≤ κn(x) ≤ x4

6

∫ 1

0
(1− α)3dα

∥∥∥κ(4)
n 1[0,

√
n−ε)

∥∥∥
∞

= x4

24
∥∥∥κ(4)

n 1[0,
√
n−ε)

∥∥∥
∞

=: Mn(ε)x
4

24 .

Since κ(4)
n is positive and increasing on [0,

√
n− ε), we have

Mn(ε) = κ(4)
n (
√
n− ε)

hence ∫
[0,
√
n−ε)

∣∣∣1− e−κn(x)
∣∣∣ e−Cβ,n x2

2 dx ≤
∫

[0,
√
n−ε)

(
1− e−Mn(ε)x

4
24

)
e−Cβ,n

x2
2 dx

≤ Mn(ε)
24

∫
[0,
√
n−ε)

x4e−Cβ,n
x2
2 dx

≤ Mn(ε)
24

√
2π
Cβ,n

E
(
(Gβ,n)4

)
= Mn(ε)

8

√
2π
Cβ,n

C−2
β,n,

where we have used the scaling of the Gaussian and its fourth moment equal to 3.
Last, a computation with SageMath [87] gives

κ(4)
n (x) = ϕ(4)

n (x) = 2
nβ

P (x/
√
n) Argtanh(x/

√
n)−Qn,β(x/

√
n)

(1− (x/
√
n)2)4

with explicit polynomials
P (x) := 12x(x2 + 1),

Qn,β(x) := 3β(1 + 2n−1)x4 − 18(1− β − 2n−1)x2 − (4− 3β − 6βn−1)

=: Qβ(x) + 1
n
Q̃β(x),

Qβ(x) := 3βx4 − 18(1− β)x2 − (4− 3β),
Q̃β(x) := 6(βx4 + 6x2 + 6β).

Define
t := ε√

n
∈ (0, 1).

Then,

Mn(ε) = ϕ(4)
n (
√
n− ε) = 2

nβ

P (1− t) Argtanh(1− t)−Qn,β(1− t)
(1− (1− t)2)4

= 2
nβ

P (1− t) Argtanh(1− t)−Qβ(1− t)
t4(2− t)4 − 2

n2β

Q̃β(1− t)
t4(2− t)4 . (3.8)

• Remaining interval: As κn is positive on [
√
n− ε,

√
n), we have 1− e−κn(x) ≤ 1 and∫

[
√
n−ε,

√
n)

∣∣∣1− e−κn(x)
∣∣∣ e−Cβ,n x2

2 dx ≤
∫

[
√
n−ε,

√
n)
e−Cβ,n

x2
2 dx

= ε
∫ 1

0
e−Cβ,n

(
√
n−εu)2

2 du

≤ ε e−Cβ,n
√
n

2 ≤ 3ε e−Cβ
√
n

2 ,
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where we have used the change of variables x =
√
n− εu, (

√
n− εu)2 = n(1− tu)2 ≥

√
n for

n big enough and for all t, u ∈ [0, 1], in addition to Cβ,n
√
n

2 = Cβ
√
n

2 −
1√
n
and e1/

√
n ≤ 3.

• General contribution: We finally get√
2π
Cβ,n

γ̃n :=
∫

(0,
√
n)

∣∣∣1− e−κn(x)
∣∣∣ e−Cβ,n x2

2 dx ≤Mn(ε)
C−2
β,n

8 + 3
√
Cβ,n
2π ε e−Cβ

√
n

2 .

It remains to choose ε in order to get the order of convergence. In view of (3.8), we can take
for instance t = 3

4 , yielding

Mn(3
4
√
n) = 2

nβ

P
(

1
4

)
Argtanh(1

4)−Qβ(1
4)

(3/4)4(3/2− 1)4 − 2
n2β

Q̃β(1
4)

(3/4)4(3/2− 1)4

=: K1(β)
n

+ K2(β)
n2 .

As a result, we get for explicit constants K3(β), K4(β) > 0√
2π
Cβ,n

γ̃n ≤
K3(β)
n

+ K4(β)
n2 +O

(√
n e−Cβ

√
n

2

)
= Oβ

( 1
n

)
.

• Conclusion: We have for all k ≥ 1

δ̃n(h) ≤
E
(
|Gβ|2k

)
nk

‖h‖∞ +
E
(
G2
β

)
n

‖h′‖∞ + δ(gn, gβ) ‖h‖∞
and using Lemma 3.15, we have

δ(gn, gβ) ≤

∣∣∣∣∣∣
√
Cβ
2π ×Zn,β

√
n− 1

∣∣∣∣∣∣+ γn

≤
C
−9/2
β

4n + 2
√

2π
Cβ,n

γ̃n + 3
n

√
2π

C
3/2
β

= Oβ

( 1
n

)
, (3.9)

which gives the result.
�

Remark 3.2. The surrogate approach here defined allows to understand in a better way the
apparition of the limiting Gaussian random variable. In the case β < 1, the Gaussian CLT
is present through the random variable G, and it is the adjunction of the random variable
Gβ coming from the fluctuations of the randomisation that finally gives Zβ = G + Gβ.
It is thus a subtle mixture of the two structures, sums of i.i.d.’s and randomisation, that
gives the final distribution in this case. In the language of statistical mechanics of phase
transitions, when a disorder is present in a statistical system and has a marginal effect, one
talks about a marginally relevant disordered system, see e.g. [12] and [103] in the context of
the KPZ equation or random polymers. It is typically the case here with the decomposition
Zβ = G+Gβ since in the case β < 1 the overall behaviour is still Gaussian.

Nevertheless, when looking at the speed in (3.2) and (3.1), we see that it is only the
CLT bound for sums of i.i.d.’s that gives its footprint to the first order and not at all the
randomisation in this case, while the speed coming from the randomisation only appears at
the second order. This will be the opposite in the next case β = 1. The regime β < 1
can thus be considered as the regime where the independent CLT dominates at the level of
the speed and the randomisation is marginally relevant; the regime β = 1 will be the one
where the randomisation dominates at the level of the fluctuations, visible as non Gaussian
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behaviour. From this perspective, the transition is interesting: there is a competition between
randomisation and sums of independent random variables.

3.1.2. The case β = 1.

Theorem 3.3 (Fluctuations of the unnormalised magnetisation for β = 1). Let F be a ran-
dom variable of law given by P(F ∈ dx) := 1

ZF
e−

x4
12 dx with ZF :=

∫
R e
−x

4
12 dx = 31/42−1/2Γ(1/4).

Then, for all h ∈ C1 with ‖h‖∞ , ‖h′‖∞ <∞∣∣∣∣∣E
(
h

(
M (1)

n

n3/4

))
− E(h(F ))

∣∣∣∣∣ ≤
(
C√
n

+O
( 1
n3/4

))(
‖h‖∞ + ‖h′‖∞

)
, (3.10)

where C > 0 is an explicit constant.

Proof. Randomising (2.40) and rescaling it by a factor n3/4, which amounts to do h← h( ·
n3/4 )

hence h′ ← 1
n3/4h

′( ·
n3/4 ), yields∣∣∣∣∣E

(
h

(
M (1)

n

n3/4

))
− E

(
h

(
M(1)

n

n3/4

))∣∣∣∣∣ ≤ C

n3/4 ‖h
′‖∞ (3.11)

with
M(1)

n

n3/4 = G

n1/4

√
1− (T (1)

n )2 + n1/4 T (1)
n ,

where G ∼ N (0, 1) is independent of M (1)
n ,F . Setting

Fn := n1/4 T (1)
n (3.12)

with T (1)
n defined in (2.38) gives

M(1)
n

n3/4 = G

n1/4

√√√√1− F
2
n√
n

+ Fn (3.13)

and the triangle inequality gives then the analogue of (3.2)∣∣∣∣∣E
(
h

(
M (1)

n

n3/4

))
− E(h(F ))

∣∣∣∣∣ ≤ C

n3/4 ‖h
′‖∞ +

∣∣∣∣∣E
(
h

(
M(1)

n

n3/4

))
− E(h(F ))

∣∣∣∣∣ . (3.14)

Nevertheless, one sees from the expression of (3.13) that if Fn → F in distribution,

M(1)
n

n3/4 = G

n1/4

√√√√1− F
2
n√
n

+ Fn ≈ F + G

n1/4

(
1− F 2

2
√
n

)
≈ F + G

n1/4 +OP

(
1√
n

)
.

As a result, we will always have at best E
(
h
(
M(1)

n

n3/4

))
− E(h(F )) = O

(
‖h′‖∞
n1/4

)
which is in-

compatible with the results of [16] and [33] that give a speed in O
(

1√
n

)
. Such a discrepancy

between this result and (3.11) shows that we have used the “wrong” random variable to com-
pare to, when using the triangle inequality. We should instead incorporate another random
variable at a distance 1√

n
to decrease the distance in 1

n1/4 , possibly at the cost of increasing
the distance in 1

n3/4 in (3.11). Such a replacement can be performed by introducing another
related surrogate.
For i.i.d. Rademacher random variables (Xk)k, we take Sn(p) := ∑n

k=1Xk(p). A possible
representation of Xk(p) is given by

Xk(p) := 1{Uk<p} − 1{Uk>p} = 2 1{Uk<p} − 1, (Uk)k≥1 ∼ i.i.d.U([0, 1]) (3.15)
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and this representation allows in addition to visualise the randomisation of the parameter p
in a functional way.
We can thus use a coupling of Sn(p) and Sn(q) using these uniform random variables. This
very coupling is said to be totally dependent in the sense that these are the same uniform
random variables that are used, e.g. Xk(q) is a measurable function of Xk(p) and vice versa.
Define for p, q ∈ [0, 1]

λn := 2n(p− q) = E(Sn(p)− Sn(q)) ,
Sn(p, q) := Sn(p)− Sn(q)− λn,
σ(p)2 := 4p(1− p).

Then,
|E(h(Sn(p)))− E(h(Sn(q) + λn))| ≤ ‖h′‖∞ E(|Sn(p, q)|)

≤ ‖h′‖∞
√
E
(
|Sn(p, q)|2

)
=: ‖h′‖∞

√
n
√
σ(p)2 + σ(q)2 − 2ρ(p, q)

with
◦
Xk(p) := Xk(p)− E(Xk(p)) = 2

(
1{Uk<p} − p

)
and

ρ(p, q) := E
( ◦
X(p) ◦X(q)

)
= 4E

((
1{U<p} − p

)(
1{U<q} − q

))
= 4E

(
1{U<p∧q} − p1{U<q} − q1{U<p} + pq

)
= 4(p ∧ q − pq)

with
p ∧ q := min{p, q}.

We thus have

σ(p)2 + σ(q)2 − 2ρ(p, q) = E
(( ◦
X(p)− ◦

X(q)
)2
)

= 4(p(1− p) + q(1− q)− 2(p ∧ q − pq))

= 4
(
p+ q − 2(p ∧ q)− [p2 + q2 − 2pq]

)
= 4

(
|p− q| − |p− q|2

)
= 4 |p− q| (1− |p− q|).

We can now write with λn := 2n(P −Q) and (P ,Q) chosen at random independently from
(Uk)k

δn(h) :=
∣∣∣∣∣E
(
h

(
Sn(P )
n3/4

))
− E(h(F ))

∣∣∣∣∣
≤

∣∣∣∣∣E
(
h

(
Sn(P )
n3/4

))
− E

(
h

(
Sn(Q) + λn

n3/4

))∣∣∣∣∣
+
∣∣∣∣∣E
(
h

(
Sn(Q) + λn

n3/4

))
− E

(
h

(
2Q(1−Q)

√
nG+ n(2Q− 1) + λn
n3/4

))∣∣∣∣∣
+
∣∣∣∣∣E
(
h

(
2Q(1−Q)

√
nG+ n(2Q− 1) + λn
n3/4

))
− E(h(F ))

∣∣∣∣∣
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=: δ(1)
n (h) + δ(2)

n (h) + δ(3)
n (h).

Choosing 2P −1 = T (1)
n = n−1/4F ′n with F ′n

d= Fn will then give a bound on the magnetisation
M

(1)
n

n3/4 . We moreover choose 2Q− 1 = n−1/4Fn to obtain

2Q(1−Q)
√
nG+ n(2Q− 1) + λn
n3/4 = G

n1/4

√√√√1− F
2
n√
n

+ Fn + λn
n3/4

= G

n1/4

√√√√1− F
2
n√
n

+ Fn + (F ′n − Fn)

since

λn = 2n(P −Q) = n× n−1/4(F ′n − Fn).

We would then want to couple (Fn,F ′n) by setting F ′n − Fn = − G
n1/4 with the same G that

defines the surrogate magnetisation in δ(3)
n (h), nevertheless, we also need to remember that

p, q ∈ [0, 1], hence that (p− q) ∈ [−1, 1]. We thus set

F ′n − Fn := − G

n1/4 1{|G|≤√n}. (3.16)

To be precise, P is the usual randomisation and we choose Q appropriate to get (3.16). With
the choice (3.16), we have

2(P −Q) = 1
n1/4 (F ′n − Fn) = − G√

n
1{|G|≤√n}

hence

δ(1)
n (h) ≤ ‖h

′‖∞
n3/4 × 2

√
n
√
E(|P −Q| (1− |P −Q|)) = ‖h

′‖∞√
2n

(
1 +O

(
1√
n

))
.

Setting g := h(·+λn/n3/4) and using the inequality (2.40) rescaled by a factor n3/4 still gives

δ(2)
n (h) ≤ C

n3/4E(‖g′‖∞) ≤ C

n3/4 ‖h
′‖∞ ,

but now, we have

2Q(1−Q)
√
nG+ n(2Q− 1) + λn
n3/4 = G

n1/4


√√√√1− F

2
n√
n
− 1

+ Fn + G

n1/4 1{|G|>√n}.

Set

Fn := G

n1/4


√√√√1− F

2
n√
n
− 1

 ,
δ(4)
n (h) := |E(h(Fn + Fn))− E(h(Fn))| ,
δ(5)
n (h) := |E(h(F n))− E(h(F ))| ,

so that

δ(3)
n (h) =

∣∣∣∣E(h(Fn + Fn + G

n1/4 1{|G|>√n}
))
− E(h(F ))

∣∣∣∣
≤ ‖h′‖∞ E

(
|G|
n1/4 1{|G|>√n}

)
+ δ(4)

n (h) + δ(5)
n (h)
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≤ ‖h′‖∞

√
E
(
|G|2

)
n1/4

√
P
(
|G| >

√
n
)

+ δ(4)
n (h) + δ(5)

n (h)

≤ ‖h′‖∞

√
E(G2k)
nk+1/4 + δ(4)

n (h) + δ(5)
n (h)

for all k ≥ 1 using Taylor expansion, the triangle-, Cauchy–Schwarz- and Markov’s inequality.
Moreover,

δ(4)
n (h) = |E(h(Fn + Fn))− E(h(Fn))|

≤ ‖h′‖∞ E(|Fn|)

≤ ‖h′‖∞
E(|G|)E

(
F 2
n

)
n3/4 ≤ ‖h′‖∞

E
(
F 2
n

)
n3/4

using
∣∣∣1−√1− u

∣∣∣ ≤ u for u ∈ (0, 1) and E(|G|) ≤
√
E(G2) = 1. We will now show that

F 2
n → F 2 in distribution and in L1, hence that E

(
F 2
n

)
= E

(
F 2
)

+o(1), which we will achieve
to bound δ(4)

n (h).
The distribution of Fn := n1/4 T (1)

n is given by the rescaling of νn,β in (2.33):

P(Fn ∈ dt) = fn,1

(
t

n1/4

)
dt

n1/4 = 1
n1/4Zn,1

e
−n2 Argtanh( t

n1/4 )2−(n2 +1) ln(1− t2√
n

)1{|t|≤n1/4}dt.

Lemma 3.16 gives

n1/4Zn,1 = ZF +O

(
1√
n

)
and a Taylor expansion in 0 yields

n

2 Argtanh
(

t

n1/4

)2
+
(
n

2 + 1
)

ln
(

1− t2√
n

)
= − t2√

n
+ t4

12

(
1− 6

n

)
+O

(
t6

n3/2

)
. (3.17)

This implies the convergence in law Fn → F by looking at the densities, and the result by
square integrability of F .
We now study δ(5)

n (h). In the same vein as for β < 1, we have for all ε ∈ (0, 1) and setting
ε := 1− ε

δ(5)
n (h) := |E(h(Fn))− E(h(F ))|

≤
∫

(−εn1/4,εn1/4)
|h| |fFn − fF |+

∣∣∣∣E(h(F )1{|F |>εn1/4}
)∣∣∣∣

≤ ‖h‖∞
(
‖fFn − fF‖L1([−εn1/4,εn1/4]) + P|F | > εn1/4

)
≤ ‖h‖∞

‖fFn − fF‖L1([−εn1/4,εn1/4]) +
E
(
F 4k

)
(1− ε)4k nk

 ,
using the triangle inequality and Markov’s inequality for all k ≥ 1.
We now show that

‖fFn − fF‖L1([−εn1/4,εn1/4]) ≤ δ
(6)
n +

E
(
F 2
)

√
n

+O
( 1
n

)
, (3.18)

where δ(6)
n will be defined in (3.19) and bounded in (3.21).

In view of (3.17), we introduce the random variable F̂n defined by the density

f
F̂n

(x) := 1
Ẑn

e−Φ̂n(x), Φ̂n(x) := x4

12

(
1− 6

n

)
− x2
√
n
, Ẑn :=

∫
R
e−Φ̂n .
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Define also

Φn : x 7→ n

2 Argtanh
(

x

n1/4

)2
+
(
n

2 + 1
)

ln
(

1− x2
√
n

)
,

Φ := Φ̂∞ = Φ∞ : x 7→ x4

12 .

Then, we can replace F by F̂n up to O( 1√
n
) by writing

‖fFn − fF‖L1([−εn1/4, εn1/4]) ≤
∥∥∥fFn − fF̂n∥∥∥L1([−εn1/4, εn1/4])

+
∥∥∥f
F̂n
− fF

∥∥∥
L1(R)

and ∥∥∥f
F̂n
− fF

∥∥∥
L1(R)

:=
∫
R

∣∣∣∣∣ 1
Ẑn

e−Φ̂n − 1
ZF

e−Φ
∣∣∣∣∣ = 1
ZF

∫
R

∣∣∣∣∣ZFẐn e−Φ̂n+Φ − 1
∣∣∣∣∣ e−Φ

= 1
ZF

∫
R

∣∣∣∣∣
(
ZF
Ẑn
− 1

)
e−Φ̂n+Φ + e−Φ̂n+Φ − 1

∣∣∣∣∣ e−Φ

≤
∣∣∣∣∣ZFẐn − 1

∣∣∣∣∣ 1
ZF

∫
R
e−Φ̂n+Φe−Φ + 1

ZF

∫
R

∣∣∣∣e−Φ̂n+Φ − 1
∣∣∣∣ e−Φ

= 1
ZF

∣∣∣ZF − Ẑn∣∣∣+ E
(∣∣∣∣eF 4

2n + F 2
√
n − 1

∣∣∣∣)
= 1
ZF

∣∣∣∣∫
R

(
e−Φ̂n − e−Φ

)∣∣∣∣+ E
(∣∣∣∣eF 4

2n + F 2
√
n − 1

∣∣∣∣)
≤ 2E

(∣∣∣∣eF 4
2n + F 2

√
n − 1

∣∣∣∣)
with

E
(∣∣∣∣eF 4

2n + F 2
√
n − 1

∣∣∣∣) = E
(∣∣∣∣∣1 + F 4

2n + F 2
√
n
− 1 +O

(
F 4

n

)∣∣∣∣∣
)

=
E
(
F 2
)

√
n

+O
( 1
n

)
by ex = 1 + x+O(x2). We thus have

δ(5)
n (h) ≤ ‖h‖∞

∥∥∥fFn − fF̂n∥∥∥L1([−εn1/4,εn1/4])
+

E
(
F 2
)

√
n

+O
( 1
n

)
+

E
(
F 4k

)
(1− ε)4k nk


and we now estimate the remaining norm. We have

δ(6)
n :=

∥∥∥fFn − fF̂n∥∥∥L1([−εn1/4,εn1/4])
(3.19)

=
∫ εn1/4

−εn1/4

∣∣∣fFn − fF̂n∣∣∣ =
∫ εn1/4

−εn1/4

∣∣∣∣∣1− fFn
f
F̂n

∣∣∣∣∣ fF̂n
=
∫ εn1/4

−εn1/4

∣∣∣∣∣1− Ẑn
n1/4Zn,1

e−(Φn−Φ̂n)
∣∣∣∣∣ fF̂n

=
∫ εn1/4

−εn1/4

∣∣∣∣∣1− e−(Φn−Φ̂n) +
(

1− Ẑn
n1/4Zn,1

)
e−(Φn−Φ̂n)

∣∣∣∣∣ fF̂n
≤
∣∣∣∣∣1− Ẑn

n1/4Zn,1

∣∣∣∣∣
∫ εn1/4

−εn1/4
e−(Φn−Φ̂n)f

F̂n
+
∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn−Φ̂n)
∣∣∣∣ fF̂n

≤
∣∣∣∣∣1− Ẑn

n1/4Zn,1

∣∣∣∣∣ n1/4Zn,1
Ẑn

+
∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn−Φ̂n)
∣∣∣∣ fF̂n .
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We have in addition
Ẑn
ZF

:= 1
ZF

∫
R
e−Φ̂n = 1

ZF

∫
R
e
−x

4
12 (1− 6

n
)+ x2
√
ndx = 1

ZF
(
1− 6

n

)1/4 ∫R e−x
4

12 + x2
√
n−6dx

= 1(
1− 6

n

)1/4E
(
e

F 2
√
n−6

)
= 1 +

E
(
F 2
)

√
n

+O
( 1
n

)
,

using the change of variables x(1 − 6/n)−1/4 7→ x for the third and a taylor expansion of
exp(.) for the fifth equation. Further we used 1/(1 − x)α = 1 + αx − α(α − 1)x/2 + ... for
small x. Lemma 3.16 gives

ZF
n1/4Zn,1

= 1 +O

(
1√
n

)
.

This implies

1− Ẑn
n1/4Zn,1

= 1− Ẑn
ZF

ZF
n1/4Zn,1

= O

(
1√
n

)
.

Hence

δ(6)
n ≤

∣∣∣∣∣n1/4Zn,1
Ẑn

− 1
∣∣∣∣∣+

∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn−Φ̂n)
∣∣∣∣ fF̂n

≤
∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn−Φ̂n)
∣∣∣∣ fF̂n + O

(
1√
n

)
=: δ(7)

n +O

(
1√
n

)
,

(3.20)

having in mind that if an
bn

= 1 + O
(

1√
n

)
, it is bn

an
= 1

1+O
(

1√
n

) = 1 + O
(

1√
n

)
. It remains to

investigate

δ(7)
n :=

∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn−Φ̂n)
∣∣∣∣ fF̂n = E

(∣∣∣∣1− e−(Φn−Φ̂n)(F̂n)
∣∣∣∣ 1{|F̂n|≤εn1/4}

)
.

Define

κn(x) := Φn(x)− Φ̂n(x) = n

2 Argtanh
(

x

n1/4

)2
+
(
n

2 + 1
)

ln
(

1− x2
√
n

)
+ x2
√
n

+ x4

2n −
x4

12 .

The Taylor expansion (3.17) shows that κ(k)
n (0) = 0 for k = 0, 1, ..., 5, hence

κn(x) = x6

5!

∫ 1

0
(1− α)5κ(6)

n (αx)dα.

An analysis of κ(6)
n with SageMath [87] in the same vein as for the case β < 1 shows that

κ(6)
n ≥ 0 on (−εn1/4 εn1/4), is an odd function and is strictly increasing on (0, εn1/4). As a

result, we can write

δ(7)
n :=

∫ εn1/4

−εn1/4

∣∣∣1− e−κn∣∣∣ f
F̂n

= 2
∫ εn1/4

0

(
1− e−κn

)
f
F̂n

≤ 2
6! κ

(6)
n (εn1/4)E

(
F̂

6
n

)
= 2

6! κ
(6)
n (εn1/4)E

(
F 6
)(

1 +O

(
1√
n

))
.
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Moreover, we can write

κn(x) = nW1

(
x

n1/4

)
+W2

(
x

n1/4

)
− x4

12
with W1,W2 explicit and infinitely differentiable on (0, εn1/4). As a result,

κ(6)
n (x) = 1√

n
W

(6)
1

(
x

n1/4

)
+ 1
n3/2W

(6)
2

(
x

n1/4

)
and

κ(6)
n (εn1/4) = 1√

n
W

(6)
1 (ε) + 1

n3/2W
(6)
2 (ε) .

Choosing ε = 3
4 for instance gives then

κ(6)
n (εn1/4) = 1√

n
W

(6)
1

(1
4

)
+O

( 1
n3/2

)
and

δ(7)
n ≤

1√
n
× 2

6! W
(6)
1

(1
4

)
E
(
F 6
)

+O
( 1
n3/2

)
=: K6√

n
+O

( 1
n3/2

)
.

Using (3.19) and (3.20), there exists K7 > 0 such that

δ(6)
n ≤

K7√
n

+O
( 1
n3/2

)
. (3.21)

In the end, we have
δn(h) ≤ δ(1)

n (h) + δ(2)
n (h) + δ(3)

n (h)

≤ δ(1)
n (h) + δ(2)

n (h) + ‖h′‖∞

√
E(G2k)
nk+1/4 + δ(4)

n (h) + δ(5)
n (h)

≤ δ(1)
n (h) + δ(2)

n (h) + ‖h′‖∞

√
E(G2k)
nk+1/4 + δ(4)

n (h)

+ ‖h‖∞

δ(6)
n +

E
(
F 2
)

√
n

+O
( 1
n

)
+

E
(
F 4k

)
(1− ε)4k nk


= δ(1)

n (h) + δ(2)
n (h) + ‖h′‖∞

√
E(G2k)
nk+1/4 + δ(4)

n (h)

+ ‖h‖∞

K7√
n

+O
( 1
n3/2

)
+

E
(
F 2
)

√
n

+O
( 1
n

)
+

E
(
F 4k

)
(1− ε)4k nk


≤ ‖h

′‖∞√
2n

(
1 +O

(
1√
n

))
+ C

n3/4 ‖h
′‖∞ + ‖h′‖∞

√
E(G2k)
nk+1/4 + ‖h′‖∞

E
(
F 2
)

+ o(1)
n3/4

+ ‖h‖∞

K7√
n

+O
( 1
n3/2

)
+

E
(
F 2
)

√
n

+O
( 1
n

)
+

E
(
F 4k

)
(1− ε)4k nk

 ,
hence the result.

�

Remark 3.4. Note that without using the totally dependent coupling for (Sn(p), Sn(q)), we
could have taken independent random variables and used the bound E(|Sn(p)− Sn(q)|) ≤√
E((Sn(p)− Sn(q))2) =

√
n
√
σ(p)2 + σ(q)2, but this bound does not provide any useful gain.

This particular choice of coupling is thus a critical ingredient of the proof.
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Remark 3.5. As announced in Remark 3.2, this is the randomisation that dominates the
distance in the case β = 1. This is already visible at the level of the fluctuations, since they
are not Gaussian.

3.1.3. The case βn = 1± γ√
n
, γ > 0.

Theorem 3.6 (Fluctuations of the unnormalised magnetisation for βn = 1 − γ√
n
, γ ∈ R∗).

Let Fγ be a random variable of law given by

P(Fγ ∈ dx) := 1
ZFγ

e−
x4
12−γ

x2
2 dx, ZFγ :=

∫
R
e−

x4
12−γ

x2
2 dx.

Then, for all h ∈ C1 with ‖h‖∞ , ‖h′‖∞ <∞∣∣∣∣∣E
(
h

(
M (βn)

n

n3/4

))
− E(h(Fγ))

∣∣∣∣∣ ≤
(
C√
n

+O
( 1
n3/4

))(
‖h‖∞ + ‖h′‖∞

)
, (3.22)

where C > 0 is an explicit constant.

Proof. The proof is an adaption of the case β = 1. Recalling the coupling (3.15) and the
notations that follow, we replace Fn by Fn,γ with law given by

P(Fn,γ ∈ dt) = fn,βn

(
t

n1/4

)
dt

n1/4

= 1
n1/4Zn,βn

e
− n

2βn
Argtanh( t

n1/4 )2−(n2 +1) ln(1− t2√
n

)1{|t|≤n1/4}dt. (3.23)

By analogy with (3.16), set for G ∼ N (0, 1) independent of M (βn)
n ,Fγ

P := 1
2 + 1

2n1/4Fn,γ, Q := 1
2 + 1

2n1/4F
′
n,γ, F ′n,γ − Fn,γ = − G

n1/4 1{|G|≤√n}.

Set also λn := 2n(P −Q) = n3/4(F ′n,γ − Fn,γ). Analogously to the case β = 1, we form

δγn(h) :=
∣∣∣∣∣E
(
h

(
Sn(P )
n3/4

))
− E(h(Fγ))

∣∣∣∣∣
≤

∣∣∣∣∣E
(
h

(
Sn(P )
n3/4

))
− E

(
h

(
Sn(Q) + λn

n3/4

))∣∣∣∣∣
+
∣∣∣∣∣E
(
h

(
Sn(Q) + λn

n3/4

))
− E

(
h

(
2Q(1−Q)

√
nG+ n(2Q− 1) + λn
n3/4

))∣∣∣∣∣
+
∣∣∣∣∣E
(
h

(
2Q(1−Q)

√
nG+ n(2Q− 1) + λn
n3/4

))
− E(h(Fγ))

∣∣∣∣∣
=: δ(γ,1)

n (h) + δ(γ,2)
n (h) + δ(γ,3)

n (h).

Recalling our arguments for δ(1)
n (h), δ(2)

n (h) and δ(3)
n (h) from the previous case we get

δ(γ,1)
n (h) ≤ ‖h

′‖∞
n3/4 × 2

√
n
√
E(|P −Q| (1− |P −Q|)) = ‖h

′‖∞√
2n

(
1 +O

(
1√
n

))
,

δ(γ,2)
n (h) ≤ C

n3/4 ‖h
′‖∞ ,

δ(γ,3)
n (h) ≤ ‖h′‖∞

√
E(G2k)
nk+1/4 + δ(γ,4)

n (h) + δ(γ,5)
n (h),



42 M. Butzek

where

Fn,γ := G

n1/4


√√√√1−

F 2
n,γ√
n
− 1

 ,
δ(γ,4)
n (h) := |E(h(Fn,γ + Fn,γ))− E(h(Fn,γ))| ,
δ(γ,5)
n (h) := |E(h(F n,γ))− E(h(Fγ))| .

We have moreover

δ(γ,4)
n (h) ≤ ‖h′‖∞

E
(
F 2
n,γ

)
n3/4 .

We now show that F 2
n,γ → F 2

γ in law and in L1, implying that E
(
F 2
n,γ

)
= E

(
F 2
γ

)
+ o(1).

Lemma 3.18 gives

n1/4Zn,βn = ZFγ +O

(
1√
n

)
and a Taylor expansion in 0 yields

Φn,γ(t) := n

2βn
Argtanh

(
t

n1/4

)2
+
(
n

2 + 1
)

ln
(

1− t2√
n

)

=
(

1− βn
βn

√
n− 2√

n

)
t2

2 + t4

12

(
4− 3βn
βn

− 6
n

)
+O

(
t6

n3/2

)

=
(
γ

βn
− 2√

n

)
t2

2 + t4

12

(
4− 3βn
βn

− 6
n

)
+O

(
t6

n3/2

)
. (3.24)

Since βn → 1, this implies the convergence in law Fn,γ → Fγ by looking at the densities, and
the result by square integrability of Fγ.
We now study δ(γ,5)

n (h). In the same vein as for β = 1, we have for all ε ∈ (0, 1) and setting
ε := 1− ε,

δ(γ,5)
n (h) := |E(h(Fn,γ))− E(h(Fγ))|

≤
∫

(−εn1/4,εn1/4)
|h|
∣∣∣fFn,γ − fFγ ∣∣∣+ ∣∣∣∣E(h(Fγ)1{|Fγ |>εn1/4}

)∣∣∣∣
≤ ‖h‖∞

(∥∥∥fFn,γ − fFγ∥∥∥L1([−εn1/4,εn1/4])
+ P|Fγ| > εn1/4

)

≤ ‖h‖∞

∥∥∥fFn,γ − fFγ∥∥∥L1([−εn1/4,εn1/4])
+

E
(
F 4k
γ

)
(1− ε)4k nk


using the triangle inequality and Markov’s inequality for all k ≥ 1. In view of (3.24), we
introduce the random variable F̂n,γ defined by the density

f
F̂n,γ

(x) := 1
Ẑn,γ

e−Φ̂n,γ(x), Ẑn,γ :=
∫
R
e−Φ̂n,γ ,

Φ̂n,γ(x) := α(1)
n

x4

12 + α(2)
n

x2

2 , α(1)
n := 4− 3βn

βn
− 6
n
, α(2)

n := γ

βn
− 2√

n
,

Φγ := Φ̂∞,γ = Φ∞,γ : x 7→ x4

12 + γ
x2

2 .

Then, we can replace Fγ by F̂n,γ up to O( 1√
n
) by writing∥∥∥fFn,γ − fFγ∥∥∥L1([−εn1/4, εn1/4])

≤
∥∥∥fFn,γ − fF̂n,γ∥∥∥L1([−εn1/4, εn1/4])

+
∥∥∥f
F̂n,γ
− fFγ

∥∥∥
L1(R)
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and ∥∥∥f
F̂n,γ
− fFγ

∥∥∥
L1(R)

:=
∫
R

∣∣∣∣∣ 1
Ẑn,γ

e−Φ̂n,γ − 1
ZFγ

e−Φγ

∣∣∣∣∣ = 1
ZFγ

∫
R

∣∣∣∣∣ZFγẐn,γ e−Φ̂n,γ+Φγ − 1
∣∣∣∣∣ e−Φγ

= 1
ZFγ

∫
R

∣∣∣∣∣
(
ZFγ
Ẑn,γ

− 1
)
e−Φ̂n,γ+Φγ + e−Φ̂n,γ+Φγ − 1

∣∣∣∣∣ e−Φγ

≤
∣∣∣∣∣ZFγẐn,γ − 1

∣∣∣∣∣ 1
ZFγ

∫
R
e−Φ̂n,γ+Φγe−Φγ + 1

ZFγ

∫
R

∣∣∣∣e−Φ̂n,γ+Φγ − 1
∣∣∣∣ e−Φγ

= 1
ZFγ

∣∣∣ZFγ − Ẑn,γ∣∣∣+ E

∣∣∣∣∣∣e
(

1−α(1)
n

)
F 4
γ

12 +
(
γ−α(2)

n

)
F 2
γ
2 − 1

∣∣∣∣∣∣


= 1
ZFγ

∣∣∣∣∫
R

(
e−Φ̂n,γ − e−Φγ

)∣∣∣∣+ E

∣∣∣∣∣∣e
(

1−α(1)
n

)
F 4
γ

12 +
(
γ−α(2)

n

)
F 2
γ
2 − 1

∣∣∣∣∣∣


≤ 2E
∣∣∣∣∣∣e

(
1−α(1)

n

)
F 4
γ

12 +
(
γ−α(2)

n

)
F 2
γ
2 − 1

∣∣∣∣∣∣
 .

Using

1− α(1)
n = 6

n
+ 4

(
1− 1

βn

)
= 4γ√

n
+O

( 1
n

)
,

γ − α(2)
n = γ

(
1− 1

βn

)
− 2√

n
= γ2 − 2√

n
+O

( 1
n

)
we get

E

∣∣∣∣∣∣e
(

1−α(1)
n

)
F 4
γ

12 +
(
α

(2)
n −γ

)
F 2
γ
2 − 1

∣∣∣∣∣∣
 = E

(∣∣∣∣∣1 + 4γ√
n

F 4
γ

12 + (γ2 − 2)√
n

F 2
γ

2 − 1 +O

(
F 4
γ

n

)∣∣∣∣∣
)

=
2γE

(
F 2
γ

)
+ 3(γ2 − 2)E

(
F 4
γ

)
6
√
n

+O
( 1
n

)
.

We now estimate the remaining norm:
δ(γ,6)
n :=

∥∥∥fFn,γ − fF̂n,γ∥∥∥L1([−εn1/4, εn1/4])
(3.25)

=
∫ εn1/4

−εn1/4

∣∣∣fFn,γ − fF̂n,γ ∣∣∣ =
∫ εn1/4

−εn1/4

∣∣∣∣∣∣1− fFn,γ
f
F̂n,γ

∣∣∣∣∣∣ fF̂n,γ
=
∫ εn1/4

−εn1/4

∣∣∣∣∣1− Ẑn,γ
n1/4Zn,βn

e−(Φn,γ−Φ̂n,γ)
∣∣∣∣∣ fF̂n,γ

=
∫ εn1/4

−εn1/4

∣∣∣∣∣1− e−(Φn,γ−Φ̂n,γ) +
(

1− Ẑn,γ
n1/4Zn,βn

)
e−(Φn,γ−Φ̂n,γ)

∣∣∣∣∣ fF̂n,γ
≤
∣∣∣∣∣1− Ẑn,γ

n1/4Zn,βn

∣∣∣∣∣
∫ εn1/4

−εn1/4
e−(Φn,γ−Φ̂n,γ)f

F̂n,γ
+
∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn,γ−Φ̂n,γ)
∣∣∣∣ fF̂n,γ

≤
∣∣∣∣∣1− Ẑn,γ

n1/4Zn,βn

∣∣∣∣∣ n1/4Zn,βn
Ẑn,γ

+
∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn,γ−Φ̂n,γ)
∣∣∣∣ fF̂n,γ .

We have in addition
Ẑn,γ
ZFγ

:= 1
ZFγ

∫
R
e−Φ̂n,γ = 1

ZFγ

∫
R
e−α

(1)
n

x4
12−α

(2)
n

x2
2 dx =: 1

ZFγ
(
α

(1)
n

)1/4 ∫R e−x
4

12−γ
x2
2 −γn

x2
2 dx
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= 1(
α

(1)
n

)1/4E(e−γnF 2
γ /2
)

= 1 +
2γ − (γ2 + 2)E

(
F 2
γ

)
2
√
n

+O
( 1
n

)
,

since

γn := α(2)
n√
α

(1)
n

− γ = γ


 1

1 + γ√
n

+ 2
γ
√
n

 1
1− 4γ√

n
+O

(
1
n

)
1/2

− 1


= γ2 + 2√

n
+O

( 1
n

)
and

1(
α

(1)
n

)1/4 = 1(
1− 4γ√

n
+O

(
1
n

))1/4 = 1 + γ√
n

+O
( 1
n

)
.

Lemma 3.18 gives
ZFγ

n1/4Zn,βn
= 1 +O

(
1√
n

)
.

This implies

1− Ẑn,γ
n1/4Zn,βn

= 1− Ẑn,γ
ZFγ

ZFγ
n1/4Zn,βn

= O

(
1√
n

)
,

hence

δ(γ,6)
n ≤

∣∣∣∣∣n1/4Zn,βn
Ẑn,γ

− 1
∣∣∣∣∣+

∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn,γ−Φ̂n,γ)
∣∣∣∣ fF̂n,γ

≤
∫ εn1/4

−εn1/4

∣∣∣∣1− e−(Φn,γ−Φ̂n,γ)
∣∣∣∣ fF̂n,γ + O

(
1√
n

)
=: δ(γ,7)

n +O

(
1√
n

)
.

(3.26)

Define
κn,γ(x) := Φn,γ(x)− Φ̂n,γ(x)

= n

2βn
Argtanh

(
x

n1/4

)2
+
(
n

2 + 1
)

ln
(

1− x2
√
n

)
− α(1)

n

x4

12 − α
(2)
n

x2

2 .

The Taylor expansion (3.24) shows that κ(k)
n,γ(0) = 0 for k = 0, 1, ..., 5, hence

κn,γ(x) = x6

5!

∫ 1

0
(1− α)5κ(6)

n,γ(αx)dα.

An analysis of κ(6)
n,γ with SageMath [87] in the same vein as for the other cases shows that

κ(6)
n,γ ≥ 0 on (−εn1/4 εn1/4), is an odd function and is strictly increasing on (0, εn1/4). As a

result, we can write

δ(γ,7)
n :=

∫ εn1/4

−εn1/4

∣∣∣1− e−κn,γ ∣∣∣ f
F̂n,γ

= 2
∫ εn1/4

0

(
1− e−κn,γ

)
f
F̂n,γ

≤ 2
6! κ

(6)
n,γ(εn1/4)E

(
F̂

6
n,γ

)
= 2

6! κ
(6)
n,γ(εn1/4)E

(
F 6
γ

)(
1 +O

(
1√
n

))
.
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Moreover, we can write

κn,γ(x) = n

βn
W1

(
x

n1/4

)
+ nW2

(
x

n1/4

)
+W3

(
x

n1/4

)
− 4− 3βn

βn

x4

12 −
γ

βn

x2

2

with W1,W2 and W3 explicit and infinitely differentiable on (0, εn1/4). As a result,

κ(6)
n,γ(x) = 1

βn
√
n
W

(6)
1

(
x

n1/4

)
+ 1√

n
W

(6)
2

(
x

n1/4

)
+ 1
n3/2W

(6)
3

(
x

n1/4

)
and

κ(6)
n,γ(εn1/4) = 1

βn
√
n
W

(6)
1 (ε) + 1√

n
W

(6)
2 (ε) + 1

n3/2W
(6)
3 (ε) .

Choosing ε = 3
4 for instance gives then

κ(6)
n,γ(εn1/4) = 1

βn
√
n
W

(6)
1

(1
4

)
+ 1√

n
W

(6)
2

(1
4

)
+O

( 1
n3/2

)
= 1√

n

(
W

(6)
1

(1
4

)
+W

(6)
2

(1
4

))
+O

( 1
n

)
and

δ(γ,7)
n ≤ 1√

n
× 2

6!

(
W

(6)
1

(1
4

)
+W

(6)
2

(1
4

))
E
(
F 6
γ

)
+O

( 1
n

)
=: K

γ
6√
n

+O
( 1
n

)
.

Using (3.25) and (3.26), there exists Kγ
7 > 0 such that

δ(γ,6)
n ≤ Kγ

7√
n

+O
( 1
n

)
. (3.27)

Collecting all the previous estimates finally gives the desired result.
�

Remark 3.7. It seems interesting to note the discrepancy between the case γ ≥ 0 where the
derivative of the function x 7→ −x4

12 − γ
x2

2 only vanishes in 0 and the case γ < 0 where the
derivative has two additional zeroes in ±

√
−3γ. As a result, the density fFγ has two humps

in this case, which is close to the last case that we will analyse now.

3.1.4. The case β > 1. We consider the transcendent equation

tanh(x) = x

β
, β > 1. (3.28)

An easy study shows that there exist two solutions to this equation denoted by ±xβ with
xβ > 1. We define

Xβ ∼ Ber±xβ
(

1
2

)
, Bβ ∼ Ber±mβ

(
1
2

)
, mβ := xβ

β
= tanh(xβ).

Theorem 3.8 (Fluctuations of the unnormalised magnetisation for β > 1). If β > 1, we
have for all h ∈ C1 with ‖h‖∞ , ‖h′‖∞ <∞∣∣∣∣∣E

(
h

(
M (β)

n

n

))
− E(h(Bβ))

∣∣∣∣∣ ≤
(
C√
n

+Oβ

( 1
n

))
‖h′‖∞ (3.29)

for an explicit constant C > 0.
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Proof. Rescaling M (β)
n by n and substituting in (2.40) yields∣∣∣∣∣E

(
h

(
M (β)

n

n

))
− E

(
h

(
M(β)

n

n

))∣∣∣∣∣ ≤ C ′

n
‖h′‖∞

and the triangle inequality implies the following adaptation of (3.2):∣∣∣∣∣E
(
h

(
M (β)

n

n

))
− E(h(Bβ))

∣∣∣∣∣ ≤ C ′

n
‖h′‖∞ +

∣∣∣∣∣E
(
h

(
M(β)

n

n

))
− E(h(Bβ))

∣∣∣∣∣ . (3.30)

Moreover, we have
M(β)

n

n
= G√

n

√
1− (T (β)

n )2 + T (β)
n

and, since T (β)
n ∈ [−1, 1] a.s., we get |G|√

n

√
1− (T (β)

n )2 ≤ |G|√
n
→ 0 in law, hence∣∣∣∣∣E

(
h

(
M(β)

n

n

))
− E(h(Bβ))

∣∣∣∣∣ ≤ ‖h′‖∞√n +
∣∣∣E(h(T (β)

n

)
− E(h(Bβ))

)∣∣∣ .
It thus remains to show that T (β)

n
L−→ Bβ and to control its norm. For this, remark that∣∣∣E(h(T (β)

n

)
− E(h(Bβ))

)∣∣∣ =
∣∣∣E(h(tanh(R(β)

n )
)
− E(h(tanh(Xβ)))

)∣∣∣
=:
∣∣∣E(h̃(R(β)

n

)
− E

(
h̃(Xβ)

))∣∣∣ , h̃ := h◦tanh,

where R(β)
n has a law given by

µn,β(dy) := P
(
R(β)
n ∈ dy

)
= e−nϕβ(y) dy

Zn,β
, ϕβ(y) := y2

2β − log cosh(y). (3.31)

We now adapt the Laplace method, in the easier case of a global minimum, to show that
µn,β → 1

2(δmβ + δ−mβ) weakly. Since
∫
R+
dµn,β =

∫
R− dµn,β = 1

2 , we have∣∣∣E(h̃(R(β)
n

)
− E

(
h̃(Xβ)

))∣∣∣ =
∫
R+

[h̃(y)− h̃(xβ)]µn,β(dy) +
∫
R−

[h̃(y)− h̃(−xβ)]µn,β(dy)

=: δn(h̃) + δn(h̃(−·)).

It is thus enough to treat the case of δn(h̃). For this, note that (3.28) is equivalent to
ϕ′β(xβ) = 0, hence that for all x ≥ 0

ϕβ(x) = ϕβ(xβ) + (x− xβ)2
∫ 1

0
ϕ′′β(αx+ αxβ)αdα, α := 1− α.

As a result

δn(h̃) = e−nϕβ(xβ)
∫
R+

[h̃(x)− h̃(xβ)]e−n(ϕβ(x)−ϕβ(xβ)) dx

Zn,β

= e−nϕβ(xβ)
∫
R+

[h̃(x)− h̃(xβ)]e−n(x−xβ)2
∫ 1

0 ϕ′′β(αx+αxβ)αdα dx

Zn,β

= e−nϕβ(xβ)
∫ +∞

−xβ
√
n
[h̃
(
xβ + w√

n

)
− h̃(xβ)]e−w2

∫ 1
0 ϕ′′β(αw/

√
n+xβ)αdα dw

Zn,β
√
n

≤ e−nϕβ(xβ) ||h̃′||∞√
n

∫ +∞

−xβ
√
n
|w| e−w

2
∫ 1

0 ϕ′′β(αw/
√
n+xβ)αdα dw

Zn,β
√
n
.

As

ϕ′′β : x 7→ −β − 1
β

+ tanh(x)2
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is bounded and continuous, dominated convergence and continuity imply∫ 1

0
ϕ′′β(αw/

√
n+ xβ)αdα −−−−→

n→+∞

∫ 1

0
ϕ′′β(xβ)αdα =

ϕ′′β(xβ)
2

and ϕ′′β(xβ) > 0 by an easy study. It is also easy to see that xβ is the global minimum of ϕβ
on R+, hence that ϕ(x)−ϕ(xβ) > 0 on R+\{xβ}. As a result, dominated convergence applies
on this set to give∫ +∞

−xβ
√
n
|w| e−w

2
∫ 1

0 ϕ′′β(αw/
√
n+xβ)αdαdw −−−−→

n→+∞

∫
R
|w| e−

w2
2 ϕ′′(xβ)dw =

√√√√ 2π
ϕ′′β(xβ)E(|G|)

with G ∼ N (0, 1).
In the end, we obtain

δn(h̃) ≤ ||h̃
′||∞√
n

√√√√ 2π
ϕ′′β(xβ)E(|G|) + o(1)

× e−nϕβ(xβ)
√
nZn,β

= ||h̃
′||∞

2
√
n

(E(|G|) + o(1))

using Lemma 3.20.
Last, ||h̃′||∞ =

∥∥∥h′◦ tanh× tanh′
∥∥∥
∞
≤ ‖h′◦tanh‖∞

∥∥∥tanh′
∥∥∥
∞

= ‖h′‖∞ since
∥∥∥tanh′

∥∥∥
∞

= 1.
Using C := C ′ + 1 concludes the proof.

�

Remark 3.9. Our results of this section can be rewritten in the Fortet–Mourier distance as
follows.

(1) If β < 1, according to Theorem 3.1 it holds that

dFM

(
M (β)

n√
n
, Zβ

)
≤ C√

n
+ D(β)

n

for constants C,D(β) > 0.
(2) If β = 1, according to Theorem 3.3 it holds that

dFM

(
M (1)

n

n3/4 , F0

)
≤ C√

n
+ E

n3/4

for constants C,E > 0.
(3) If β = 1− γ√

n
, according to Theorem 3.6 it holds that

dFM

M (1+ γ
n

)
n

n3/4 , Fγ

 ≤ C√
n

+ E(γ)
n3/4

for constants C,E(γ) > 0.
(4) If β > 1, according to Theorem 3.8 it holds that

dFM

(
M (β)

n

n
, Bβ

)
≤ C√

n
+ F (β)

n

for constants C,F (β) > 0.
Note that the original versions of the theorems show the exact dependency on ‖h‖∞ and
‖h′‖∞, which is more precise.
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3.2. Application to the Curie–Weiss magnetisation in Kolmogorov distance. Recall
that for two random variables X, Y , the Kolmogorov distance is defined by

dKol(X, Y ) := sup
t∈R
|P(X ≤ t)− P(Y ≤ t)| . (3.32)

It is thus a functional norm in the same vein as the previous one, using test functions
h = 1(−∞,x]. The main difference is nevertheless the lack of differentiability of these test
functions that prevents the use of (2.36). An extension of Theorem 3.1 to the Kolmogorov
distance case requires thus to find an analogue of this inequality for indicator functions. This
is furnished by the classical Berry–Esseen bound for sums of i.i.d. random variables, see e.g.
[85, Theorem 3.39].

dKol
(
Sn, σ

√
nG+ nµ

)
= O

(
1√
n

)
. (3.33)

Here, (Zk)k is a sequence of i.i.d. random variables satisfying E
(
|Z|3

)
<∞, Sn := ∑n

k=1 Zk,
Var(Sn) =: nσ2, E(Sn) = nµ and G ∼ N (0, 1).
Of course, a randomisation of this inequality will give the same result as in subsection 2.3.3,
since one has just changed test functions.

3.2.1. The case β < 1.

Theorem 3.10 (Kolmogorov distance to the Gaussian for the unnormalised magnetisation
for β < 1). With Zβ ∼ N

(
0, 1

1−β

)
, we have

dKol

(
M (β)

n√
n
,Zβ

)
= O

(
1√
n

)
. (3.34)

Proof. We use (3.33) in the particular case of Rademacher random variables (Xk)k of param-
eter p := P(X1 = 1), with E(X1) = 2p − 1 and Var(X1) = 4p(1 − p), and then randomise
p. Taking p distributed as in (2.37), e.g. P (β)

n ∼ ν̃n,β, or equivalently taking t := 2p − 1
distributed as in (2.38), e.g. T (β)

n ∼ νn,β yields

dKol

(
M (β)

n , G
√
n
√

1− (T (β)
n )2 + nT (β)

n

)
= O

(
1√
n

)

⇐⇒ dKol

(
M (β)

n√
n
,
M(β)

n√
n

)
= O

(
1√
n

)

by invariance of the norm and using the definition of the surrogateM(β)
n given in (2.39).

The triangle inequality then yields

dKol

(
M (β)

n√
n
,Zβ

)
≤ dKol

(
M (β)

n√
n
,
M(β)

n√
n

)
+ dKol

(
M(β)

n√
n
,Zβ

)

= dKol

(
M(β)

n√
n
,Zβ

)
+O

(
1√
n

)
and we are led to analyse

dKol

(
M(β)

n√
n
,Zβ

)
=: sup

x∈R
δn(x)

with

δn(x) :=
∣∣∣∣∣P
(
M(β)

n√
n
≤ x

)
− P(Zβ ≤ x)

∣∣∣∣∣ .
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Recall that Zβ d= G+Gβ with G ∼ N (0, 1) independent of Gβ ∼ N (0, β/(1− β)). We thus
have

δn(x) =

∣∣∣∣∣∣P
G

√
1− (X(β)

n )2

n
+X(β)

n ≤ x

− P(G+Gβ ≤ x)

∣∣∣∣∣∣
with Xn,β :=

√
nT (β)

n → Gβ (in law).
Integrating on G and using Φ(x) := P(G ≤ x), Xn,β

d= −Xn,β and Gβ
d= −Gβ yields

δn(x) =

∣∣∣∣∣∣∣∣E
Φ

 x+X(β)
n√

1− (X(β)
n )2

n


− E(Φ(x+Gβ))

∣∣∣∣∣∣∣∣ .
Set

Yx := x+Gβ,

Ψx,n(u) := x+ u√
1− u2

n

,

Ξn(u) := 1√
1− u2

n

,

Yx,n := Ψx,n

(
X(β)

n

)
,

Yx,n := Ψx,n(Gβ) = Yx Ξn(Gβ).

Recall that the support of the law of X(β)
n is (−

√
n,
√
n). We have

δn(x) = |E(Φ(Yx))− E(Φ(Yx,n))|

≤
∣∣∣∣E(Φ(Yx) 1{|Gβ|≤√n}

)
− E

(
Φ(Yx,n) 1{|Gβ|≤√n}

)∣∣∣∣
+
∣∣∣∣E(Φ(Yx,n) 1{|Gβ|≤√n}

)
− E(Φ(Yx,n))

∣∣∣∣+ ∣∣∣∣E(Φ(Yx) 1{|Gβ|>√n}
)∣∣∣∣

=: δ(1)
n (x) + δ(2)

n (x) + δ(3)
n (x).

Since Φ(x) := P(G ≤ x) ≤ 1, Markov’s inequality gives for all k ≥ 1

δ(3)
n (x) ≤ P

(
|Gβ| >

√
n
)
≤

E
(
|Gβ|2k

)
nk

.

Moreover, using the notation gβ (resp. gn) for the Lebesgue density of Gβ (resp. X(β)
n ) as in

the proof of Theorem 3.1, we get

δ(2)
n (x) =

∣∣∣∣∣∣E
(

Φ ◦Ψx,n(Gβ)1{|Gβ|≤√n}
)
− E

Φ ◦Ψx,n(X(β)
n )1{∣∣∣X(β)

n

∣∣∣≤√n}
∣∣∣∣∣∣

=
∣∣∣∣∣
∫

(−
√
n,
√
n )

Φ ◦Ψx,n · (gβ − gn)
∣∣∣∣∣

≤ ‖Φ ◦Ψx,n‖∞
∥∥∥(gβ − gn)1(−

√
n,
√
n )

∥∥∥
L1(R)

=: ‖Φ ◦Ψx,n‖∞ δn(gn, gβ).
Since 0 ≤ Φ ≤ 1, we have supx∈R ‖Φ ◦Ψx,n‖∞ ≤ 1, and (3.9) yields then for all x ∈ R

δ(2)
n (x) = Oβ

( 1
n

)
.
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We now estimate δ(1)
n (x). Setting ϕ := Φ(·+ x)− Φ ◦Ψx,n, we get

δ(1)
n (x) =

∣∣∣∣E(Φ(Yx)1{|Gβ|≤√n}
)
− E

(
Φ(Yx)1{|Gβ|≤√n}

)∣∣∣∣
=
∣∣∣∣E((Φ(x+Gβ)− Φ ◦Ψx,n(Gβ)) 1{|Gβ|≤√n}

)∣∣∣∣
=:
∣∣∣∣E(ϕ(Gβ)

(
1{|Gβ|≤(1−ε)

√
n} + 1{(1−ε)

√
n≤|Gβ|≤√n}

))∣∣∣∣
≤
∣∣∣∣E(ϕ(Gβ)1{|Gβ|≤(1−ε)

√
n}
)∣∣∣∣+ ‖ϕ‖∞ P

(
(1− ε)

√
n ≤ |Gβ|

)

≤
∣∣∣∣E(ϕ(Gβ)1{|Gβ|≤(1−ε)

√
n}
)∣∣∣∣+ 2

E
(
|Gβ|2k

)
nk(1− ε)2k

for all ε ∈ (0, 1), using Markov’s inequality and ‖ϕ‖∞ ≤ 2.
Recall that Φ′(x) = 1√

2πe
−x2/2 ≥ 0 for all x ∈ R and that Yn,x = Yx Ξn(Gβ). We have then

with U ∼ U([0, 1]) independent of Gβ

δ(4)
n (x) :=

∣∣∣∣E(ϕ(Gβ)1{|Gβ|≤(1−ε)
√
n}
)∣∣∣∣ =

∣∣∣∣E((Φ(Yx)− Φ(Yn,x)
)

1{|Gβ|≤(1−ε)
√
n}
)∣∣∣∣

≤ E
(
|Yx,n − Yx|Φ′(Yx + U(Yx,n − Yx)) 1{|Gβ|≤(1−ε)

√
n}
)

= E
(
|1− Ξn(Gβ)| × |Yx|Φ′(Yx + YxU(Ξn(Gβ)− 1)) 1{|Gβ|≤(1−ε)

√
n}
)

= 1√
2π

E
((

Ξn(Gβ)− 1
)
× |Yx| e−

Y 2
x
2 (1+U(Ξn(Gβ)−1))2

1{|Gβ|≤(1−ε)
√
n}
)

≤ 1√
2π

E
((

Ξn(Gβ)− 1
)
× |Yx| e−

Y 2
x
2 1{|Gβ|≤(1−ε)

√
n}
)

since on {|Gβ| ≤ (1− ε)
√
n}, it is Ξn(G)− 1 = (1−G2/n)−1/2 − 1 ≥ 0. In particular,

δ(4)
n (x) ≤ 1√

2π
E
((

Ξn(Gβ)− 1
)
× sup

x∈R
{|Yx| e−

Y 2
x
2 }1{|Gβ|≤(1−ε)

√
n}

)

= 1√
2π

E
((

Ξn(Gβ)− 1
)

1{|Gβ|≤(1−ε)
√
n}
)
× sup

y∈R
{|y| e−

y2
2 }

= 1√
2πe

E
((

Ξn(Gβ)− 1
)

1{|Gβ|≤(1−ε)
√
n}
)

since Yx = x + Gβ and the supremum of the function y 7→ |y| e−y2/2 is easily seen to be
reached uniquely in y = 1.
Last, the function x 7→ Ξn(

√
nx)− 1 is clearly integrable on (−1 + ε, 1− ε), and as a result,

using 0 ≤ 1√
1−t − 1 ≤ t sup|u|≤1−ε

∣∣∣ d
du

1√
1−u

∣∣∣ = t
2ε3/2 and E

(
G2
β

)
= β

1−β , we finally get for all
x ∈ R

δ(4)
n (x) ≤ β

4ε3/2(1− β)
√

2πe
× 1
n
.

In the end, we obtain

δn(x) ≤ δ(1)
n (x) + δ(2)

n (x) + δ(3)
n (x)

≤ δ(4)
n (x) + 2

E
(
|Gβ|2k

)
nk(1− ε)2k + δ(2)

n (x) + δ(3)
n (x)
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≤ β

4ε3/2(1− β)
√

2πe
× 1
n

+ 2
E
(
|Gβ|2k

)
nk(1− ε)2k +Oβ

( 1
n

)
+

E
(
|Gβ|2k

)
nk

= Oβ

( 1
n

)
having choosen ε = 3

4 for instance. Taking the supremum over x ∈ R ends the proof.
�

Remark 3.11. Analogously with the case of a smooth norm analysed in Remark 3.2, we see
that dKol

(
M(β)

n√
n
,Zβ

)
= Oβ

(
1
n

)
which is faster than the speed coming from the sum of i.i.d.s,

e.g. from the CLT. Here again, we can check in Kolmogorov distance the phenomenon of
“CLT domination” over the randomisation.

3.2.2. The case β = 1.

Theorem 3.12 (Kolmogorov distance to F for the unnormalised magnetisation for β = 1).
Let F be a random variable of law given in Theorem 3.3. Then,

dKol

(
M (1)

n

n3/4 ,F

)
= O

(
1√
n

)
(3.35)

Proof. We use (3.33) in the particular case of Rademacher random variables (Xk)k of param-
eter p := P(X1 = 1), with E(X1) = 2p − 1 and Var(X1) = 4p(1 − p) and then randomise
p. Taking p distributed as in (2.37), e.g. P (1)

n ∼ ν̃n,1, or equivalently taking t := 2p − 1
distributed as in (2.38), e.g. T (1)

n ∼ νn,1 yields

dKol

(
M (1)

n , G
√
n
√

1− (T (1)
n )2 + nT (1)

n

)
= O

(
1√
n

)

⇐⇒ dKol

(
M (1)

n

n3/4 ,
M(1)

n

n3/4

)
= O

(
1√
n

)
(3.36)

by invariance of the norm and using the definition of the surrogate M(1)
n given in (2.39).

With the coupling (3.15) and the notations that follow, we get

δn(x) :=
∣∣∣∣∣P
(
Sn(P )
n3/4 ≤ x

)
− P(F ≤ x)

∣∣∣∣∣
≤

∣∣∣∣∣P
(
Sn(P )
n3/4 ≤ x

)
− P

(
Sn(Q) + λn

n3/4 ≤ x

)∣∣∣∣∣
+
∣∣∣∣∣P
(
Sn(Q) + λn

n3/4 ≤ x

)
− P

(
2Q(1−Q)

√
nG+ n(2Q− 1) + λn
n3/4 ≤ x

)∣∣∣∣∣
+
∣∣∣∣∣P
(

2Q(1−Q)
√
nG+ n(2Q− 1) + λn
n3/4 ≤ x

)
− P(F ≤ x)

∣∣∣∣∣
=: δ(1)

n (x) + δ(2)
n (x) + δ(3)

n (x).

Bound on δ(2)
n (x): The Berry–Esseen bound (3.36) gives

δ(2)
n (x) ≤ sup

x∈R
δ(2)
n (x) = sup

y∈R

∣∣∣∣∣P
(
Sn(Q)
n3/4 ≤ y

)
− P

(
2Q(1−Q)

√
nG+ n(2Q− 1)
n3/4 ≤ y

)∣∣∣∣∣
= O

(
1√
n

)
.
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Bound on δ(3)
n (x): One has

2Q(1−Q)
√
nG+ n(2Q− 1) + λn
n3/4 = G

n1/4


√√√√1− F

2
n√
n
− 1

+ Fn + G

n1/4 1{|G|>√n}.

Similarly to the proof of Theorem 3.3, set

Fn := G

n1/4


√√√√1− F

2
n√
n
− 1

 ,
δ(4)
n (x) :=

∣∣∣∣P(Fn + Fn + G

n1/4 1{|G|>√n} ≤ x
)
− P(Fn + Fn ≤ x)

∣∣∣∣ ,
δ(5)
n (x) := |P(Fn + Fn ≤ x)− P(Fn ≤ x)| ,
δ(6)
n (x) := |P(F n ≤ x)− P(F ≤ x)| ,

so that

δ(3)
n (x) =

∣∣∣∣P(Fn + Fn + G

n1/4 1{|G|>√n} ≤ x
)
− P(F ≤ x)

∣∣∣∣
≤ δ(4)

n (x) + δ(5)
n (x) + δ(6)

n (x).

Integrating on Fn and using FFn(x) := P(Fn ≤ x) =
∫ x
−∞ fFn and Fn d= −Fn yields

δ(5)
n (x) = |E(FFn(x+ Fn))− E(FFn(x))|

≤ ‖fFn‖∞ E(|Fn|)

≤ ‖fFn‖∞
E(|G|)E

(
F 2
n

)
n3/4

≤
(

1
ZF

+O

(
1√
n

)) E
(
F 2
)

+ o(1)
n3/4 ,

using Lemma 3.17.
Similarly, using G d= −G, we get

δ(4)
n (x) =

∣∣∣∣E(FFn(x+ Fn + G

n1/4 1{|G|>√n}
))
− E(FFn(x))

∣∣∣∣
and

δ(4)
n (x) =

∣∣∣∣E(FFn(x+ Fn + G

n1/4 1{|G|>√n}
))
− E(FFn(x))

∣∣∣∣
≤ ‖fFn‖∞ E

(∣∣∣∣Fn + G

n1/4 1{|G|>√n}
∣∣∣∣)

≤ ‖fFn‖∞

E(|Fn|) +

√
E
(
|G|2

)
n1/4

√
P
(
|G| >

√
n
)

≤ ‖fFn‖∞

E
(
F 2
n

)
n3/4 +

√
E(G2k)
nk+1/4


≤
(

1
ZF

+O

(
1√
n

))E
(
F 2
)

+ o(1)
n3/4 +

√
E(G2k)
nk+1/4
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by Lemma 3.17 and the Cauchy–Schwarz- and Markov’s inequality.

We now study δ(6)
n (x). In the same vein as for β < 1, we have for all ε ∈ (0, 1) and setting

ε := 1− ε

δ(6)
n (x) := |P(Fn ≤ x)− P(F ≤ x)| =

∣∣∣∣∫ x

−∞
(fFn − fF )

∣∣∣∣
≤
∫
R
|fFn − fF |

≤
∫

(−εn1/4,εn1/4)
|fFn − fF |+

∫
R\[−εn1/4,εn1/4]

|fFn|+
∫
R\[−εn1/4,εn1/4]

|fF |

≤ ‖fFn − fF‖L1([−εn1/4,εn1/4]) + P
(
|Fn| > εn1/4

)
+ P

(
|F | > εn1/4

)
≤ ‖fFn − fF‖L1([−εn1/4,εn1/4]) +

E
(
F 4k
n

)
(1− ε)4k nk

+
E
(
F 4k

)
(1− ε)4k nk

≤ ‖fFn − fF‖L1([−εn1/4,εn1/4]) +
2E
(
F 4k

)
+ o(1)

(1− ε)4k nk

using the triangle inequality and Markov’s inequality for all k ≥ 1. We then conclude with
(3.18) and (3.21).

Bound on δ(1)
n (x): Recall that λn = 2n(P −Q). Then,

sup
x∈R

δ(1)
n (x) = sup

x∈R

∣∣∣∣∣P
(
Sn(P )
n3/4 ≤ x

)
− P

(
Sn(Q) + λn

n3/4 ≤ x

)∣∣∣∣∣
= sup

x∈R

∣∣∣∣P(Sn(P )− n(2P − 1) ≤ n3/4x− n(2P − 1)
)

− P
(
Sn(Q)− n(2Q− 1) ≤ n3/4x− n(2P − 1)

) ∣∣∣∣
≤ E

 sup
x∈R

∣∣∣∣∣∣P
(
Sn(P )− n(2P − 1) ≤ n3/4x− n(2P − 1)

∣∣∣∣P)

− P
(
Sn(Q)− n(2Q− 1) ≤ n3/4x− n(2P − 1)

∣∣∣∣P ,Q)
∣∣∣∣∣∣


= E
(

sup
y∈R

∣∣∣∣P(Sn(P )− n(2P − 1) ≤ y

∣∣∣∣P)− P
(
Sn(Q)− n(2Q− 1) ≤ y

∣∣∣∣Q) ∣∣∣∣
)

≤ E
(
|P −Q|

∣∣∣∣∣1− (P +Q)
P (1− P )

∣∣∣∣∣
)

+O

(
1√
n

)

by Lemma 3.21.
We recall the following definitions from the proof of Theorem 3.3:

• Q = 1
2 + 1

2n1/4Fn,

• P = 1
2 + 1

2n1/4F
′
n,

• 2(P −Q) = 1
n1/4 (F ′n − Fn) = − G√

n
1{|G|≤√n}.
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As a result

sup
x∈R

δ(1)
n (x) ≤ 1

4n3/4E

|G|
∣∣∣∣∣∣ Fn + F ′n(

1
2 + 1

2n1/4F
′
n

)(
1
2 −

1
2n1/4F

′
n

)
∣∣∣∣∣∣
+O

(
1√
n

)

= 1
n3/4E

|G|
∣∣∣∣∣∣ Fn + F ′n
1− 1√

n
F ′n

2

∣∣∣∣∣∣
+O

(
1√
n

)

≤ 1
n3/4

E

 F + F ′

1− 1√
n
F 2

2
+ o(1)


1/2

+O

(
1√
n

)

≤

√
2E

(
F 2
)

n3/4

(
1 +O

(
1√
n

))
+O

(
1√
n

)
= O

(
1√
n

)
.

In the end, we obtain
δn(x) ≤ δ(1)

n (x) + δ(2)
n (x) + δ(3)

n (x)

≤ O

(
1√
n

)
+O

(
1√
n

)
+ δ(4)

n (x) + δ(5)
n (x) + δ(6)

n (x)

≤ O

(
1√
n

)
+
(

1
ZF

+O

(
1√
n

))2E
(
F 2
)

+ o(1)
n3/4 +

√
E(G2k)
nk+1/2

+
E
(
F 4k

)
(1− ε)4k nk

= O

(
1√
n

)
which concludes the proof.

�

3.2.3. The case βn = 1± γ√
n
, γ > 0.

Theorem 3.13 (Kolmogorov distance to Fγ for the unnormalised magnetisation for βn = 1− γ√
n
,

γ ∈ R∗). Let Fγ be a random variable of law given in Theorem 3.6. Then,

dKol

(
M (βn)

n

n3/4 ,Fγ

)
= O

(
1√
n

)
. (3.37)

Proof. Starting with the approach (3.33) with β = βn yields

dKol

(
M (βn)

n

n3/4 ,
M(βn)

n

n3/4

)
= O

(
1√
n

)
, (3.38)

where the surrogateM(βn)
n is given in (2.39). With the coupling (3.15) and the notations in

the proof of theorem 3.6, we get

δγn(x) :=
∣∣∣∣∣P
(
Sn(P )
n3/4 ≤ x

)
− P(Fγ ≤ x)

∣∣∣∣∣
≤

∣∣∣∣∣P
(
Sn(P )
n3/4 ≤ x

)
− P

(
Sn(Q) + λn

n3/4 ≤ x

)∣∣∣∣∣
+
∣∣∣∣∣P
(
Sn(Q) + λn

n3/4 ≤ x

)
− P

(
2Q(1−Q)

√
nG+ n(2Q− 1) + λn
n3/4 ≤ x

)∣∣∣∣∣
+
∣∣∣∣∣P
(

2Q(1−Q)
√
nG+ n(2Q− 1) + λn
n3/4 ≤ x

)
− P(Fγ ≤ x)

∣∣∣∣∣
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=: δ(γ,1)
n (x) + δ(γ,2)

n (x) + δ(γ,3)
n (x).

Bound on δ(γ,2)
n (x): The Berry–Esseen bound (3.38) gives

δ(γ,2)
n (x) ≤ sup

x∈R
δ(γ,2)
n (x) = sup

y∈R

∣∣∣∣∣P
(
Sn(Q)
n3/4 ≤ y

)
− P

(
2Q(1−Q)

√
nG+ n(2Q− 1)
n3/4 ≤ y

)∣∣∣∣∣
= O

(
1√
n

)
.

Bound on δ(γ,3)
n (x): We have

2Q(1−Q)
√
nG+ n(2Q− 1) + λn
n3/4 = G

n1/4


√√√√1−

F 2
n,γ√
n
− 1

+ Fn,γ + G

n1/4 1{|G|>√n}.

Similarly to the proof of Theorem 3.6, set

Fn,γ := G

n1/4


√√√√1−

F 2
n,γ√
n
− 1

 ,
δ(γ,4)
n (x) :=

∣∣∣∣P(Fn,γ + Fn,γ + G

n1/4 1{|G|>√n} ≤ x
)
− P(Fn,γ + Fn,γ ≤ x)

∣∣∣∣ ,
δ(γ,5)
n (x) := |P(Fn,γ + Fn,γ ≤ x)− P(Fn,γ ≤ x)| ,
δ(γ,6)
n (x) := |P(F n,γ ≤ x)− P(Fγ ≤ x)| ,

so that

δ(γ,3)
n (x) =

∣∣∣∣P(Fn,γ + Fn,γ + G

n1/4 1{|G|>√n} ≤ x
)
− P(Fγ ≤ x)

∣∣∣∣
≤ δ(γ,4)

n (x) + δ(γ,5)
n (x) + δ(γ,6)

n (x).

Integrating on Fn,γ and using FFn,γ (x) := P(Fn,γ ≤ x) =
∫ x
−∞ fFn,γ and Fn,γ d= −Fn,γ yields

δ(γ,5)
n (x) =

∣∣∣E(FFn,γ (x+ Fn,γ)
)
− E

(
FFn,γ (x)

)∣∣∣
≤
∥∥∥fFn,γ∥∥∥∞ E(|Fn,γ|)

≤
∥∥∥fFn,γ∥∥∥∞ E(|G|)E

(
F 2
n,γ

)
n3/4

≤
(

1
ZFγ

+O

(
1√
n

)) E
(
F 2
γ

)
+ o(1)

n3/4 .

Here, we have used Lemma 3.19 for the last inequality. Similarly, using G d= −G, we get

δ(γ,4)
n (x) =

∣∣∣∣E(FFn,γ(x+ Fn,γ + G

n1/4 1{|G|>√n}
))
− E

(
FFn,γ (x)

)∣∣∣∣
≤
(

1
ZFγ

+O

(
1√
n

))E
(
F 2
γ

)
+ o(1)

n3/4 +

√
E(G2k)
nk+1/4


by the same arguments we used in the previous proof.
We now study δ(γ,6)

n (x). In the same vein as for β = 1, we have for all ε ∈ (0, 1) and setting
ε := 1− ε

δ(γ,6)
n (x) := |P(Fn,γ ≤ x)− P(Fγ ≤ x)|
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=
∣∣∣∣∫ x

−∞
(fFn,γ − fFγ )

∣∣∣∣
≤
∫
R

∣∣∣fFn,γ − fFγ ∣∣∣
≤
∥∥∥fFn,γ − fFγ∥∥∥L1([−εn1/4,εn1/4])

+
2E
(
F 4k
γ

)
+ o(1)

(1− ε)4k nk

using the triangle inequality and Markov’s inequality for all k ≥ 1. We then conclude with
(3.25) and (3.27).
Bound on δ(γ,1)

n (x): Recall that λn = 2n(P −Q) = n3/4(F ′n,γ − Fn,γ). Then,

sup
x∈R

δ(γ,1)
n (x) = sup

x∈R

∣∣∣∣∣P
(
Sn(P )
n3/4 ≤ x

)
− P

(
Sn(Q) + λn

n3/4 ≤ x

)∣∣∣∣∣
≤ E

(
|P −Q|

∣∣∣∣∣1− (P +Q)
P (1− P )

∣∣∣∣∣
)

+O

(
1√
n

)

by Lemma 3.21.
We recall the following definitions from the proof of Theorem 3.6:

• Q = 1
2 + 1

2n1/4Fn,γ,

• P = 1
2 + 1

2n1/4F
′
n,γ,

• 2(P −Q) = 1
n1/4

(
F ′n,γ − Fn,γ

)
= − G√

n
1{|G|≤√n}.

As a result

sup
x∈R

δ(γ,1)
n (x) ≤ 1

4n3/4E

|G|
∣∣∣∣∣∣ Fn,γ + F ′n,γ(

1
2 + 1

2n1/4F
′
n,γ

)(
1
2 −

1
2n1/4F

′
n,γ

)
∣∣∣∣∣∣
+O

(
1√
n

)

≤ 1
n3/4

E

 Fγ + F ′γ

1− 1√
n
F 2
γ

2
+ o(1)


1/2

+O

(
1√
n

)

≤

√
2E

(
F 2
γ

)
n3/4

(
1 +O

(
1√
n

))
+O

(
1√
n

)
= O

(
1√
n

)
.

In the end, we obtain

δγn(x) ≤ δ(γ,1)
n (x) + δ(γ,2)

n (x) + δ(γ,3)
n (x)

≤ O

(
1√
n

)
+O

(
1√
n

)
+ δ(γ,4)

n (x) + δ(γ,5)
n (x) + δ(γ,6)

n (x)

≤ O

(
1√
n

)
+
(

1
ZFγ

+O

(
1√
n

))2E
(
F 2
γ

)
+ o(1)

n3/4 +

√
E(G2k)
nk+1/2

+
E
(
F 4k
γ

)
(1− ε)4k nk

= O

(
1√
n

)

which concludes the proof.
�
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3.2.4. The case β > 1. Recall that ±xβ are the solution to the transcendent equation (3.28)
and that mβ = tanh(xβ), with Xβ ∼ Ber±xβ

(
1
2

)
and Bβ ∼ Ber±mβ

(
1
2

)
.

Theorem 3.14 (Fluctuations of the unnormalised magnetisation for β > 1). If β > 1, we
have

dKol

(
M (β)

n

n
,Bβ

)
= O

(
1√
n

)
(3.39)

for an explicit constant C > 0.
Proof. Using (3.33) and the invariance of dKol gives

dKol

(
M (β)

n , G
√
n
√

1− (T (β)
n )2 + nT (β)

n

)
= O

(
1√
n

)

⇐⇒ dKol

(
M (β)

n

n
,
M(β)

n

n

)
= O

(
1√
n

)
(3.40)

and the triangle inequality then implies

dKol

(
M (β)

n

n
,Bβ

)
≤ dKol

(
M (β)

n

n
,
M(β)

n

n

)
+ dKol

(
M(β)

n

n
,T (β)

n

)
+ dKol

(
T (β)
n ,Bβ

)
= dKol

(
M(β)

n

n
,T (β)

n

)
+ dKol

(
T (β)
n ,Bβ

)
+O

(
1√
n

)
.

We have

dKol

(
M(β)

n

n
,T (β)

n

)
= dKol

(
T (β)
n + G√

n

√
1− (T (β)

n )2, T (β)
n

)

= sup
x∈R

∣∣∣∣∣P
(
T (β)
n + G√

n

√
1− (T (β)

n )2 ≤ x

)
− P

(
T (β)
n ≤ x

)∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
(
G√
n
≤ Yn,x,β

)
− P(0 ≤ Yn,x,β)

∣∣∣∣∣ = sup
x∈R

P
(

0 ≤ Yn,x,β ≤
G√
n

)
with

Yn,x,β := x− T (β)
n√

1− (T (β)
n )2

= x cosh
(
R(β)
n

)
− sinh

(
R(β)
n

)

=


√

1− x2 sinh
(
Argtanh(x)−R(β)

n

)
if |x| < 1

sxe
−sxR(β)

n if |x| = 1√
x2 − 1 cosh

(
Argtanh(x−1)−R(β)

n

)
if |x| > 1,

sx the sign of x. Thus, for ε > 0 small enough so that min|x−1|<ε(x−mβ)+ > 0, it is

dKol

(
M(β)

n

n
,T (β)

n

)
≤ sup
|x−1|≤ε

P
(

0 ≤ Yn,x,β ≤
G√
n

)
+ sup
|x−1|>ε

P
(

0 ≤ Yn,x,β ≤
G√
n

)
.

Then

sup
|x−1|>ε

P
(

0 ≤ Yn,x,β ≤
G√
n

)
≤ P

(√
ε

2 eArgtanh(ε)−R(β)
n ≤ G√

n

)
+ P

(√
2ε ≤ G√

n

)

= O
(
e−nCε

)
, C > 0,

and

sup
|x−1|<ε

P
(

0 ≤ Yn,x,β ≤
G√
n

)
≤ sup
|x−1|<ε

P
(

(Yn,x,β)+ ≤
G√
n

)
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≤ sup
|x−1|<ε

E
(
eG
)
E
(
e−
√
n(x cosh(R(β)

n )−sinh(R(β)
n ))+

)
≤
√
e sup
|x−1|<ε

e−
√
n[(x cosh(xβ)−sinh(xβ))++o(1)]

=
√
e exp

(
−
√
n cosh(xβ)

(
min
|x−1|<ε

(x− tanh(xβ))+ + o(1)
))

= O
(
e−Cε

√
n
)
, Cε > 0.

It then remains to analyse
dKol

(
T (β)
n ,Bβ

)
:= sup

x∈R

∣∣∣P(T (β)
n ≤ x

)
− P(Bβ ≤ x)

∣∣∣
= sup

x∈R

∣∣∣P(tanh(R(β)
n ) ≤ x

)
− P(tanh(Xβ) ≤ x)

∣∣∣
= sup

y∈R

∣∣∣P(R(β)
n ≤ y

)
− P(Xβ ≤ y)

∣∣∣
= sup

y∈R

∣∣∣∣∣
∫ y

−∞
e−nϕβ(x) dx

Zn,β
− 1

2

(
1{y≥−xβ} + 1{y≥xβ}

)∣∣∣∣∣ .
Since maxA∪B f = max{maxA f,maxB f}, it is enough to consider the following quantities:

I+(y) :=
∫ +∞

y
e−nϕβ(x) dx

Zn,β
, y > xβ,

I0(y) :=
∫ y

−∞
e−nϕβ(x) dx

Zn,β
− 1

2 =
∫ y

0
e−nϕβ(x) dx

Zn,β
, −xβ < y ≤ xβ,

I−(y) :=
∫ y

−∞
e−nϕβ(x) dx

Zn,β
= I+(−y), y < −xβ.

By symmetry, it is enough to consider the case 0 < y < xβ in the case of I0(y). We thus have
for y ∈ (0, xβ)

I0(y) =
∫ y

0
e−nϕβ(x) dx

Zn,β
≤ y

e−nϕβ(y)

Zn,β
= O

(√
n e−n(ϕβ(xβ−ε)−ϕβ(xβ))

)
with Lemma 3.20

= O
(√

n e−nε
2ϕ′′β(xβ)/2

)
having set y := xβ − ε with ε > 0.
In the case of I+(y), y = xβ + ε, Markov’s inequality gives

I+(xβ + ε) = P
(
R(β)
n ≥ xβ + ε

)
≤ 1
ε
E
(∣∣∣R(β)

n − xβ
∣∣∣) = O

(
1√
n

)
using the computations at the end of the proof of Theorem 3.8. This concludes the proof.

�
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3.3. Appendix: Analysis of diverse constants.

3.3.1. Renormalisation constants.

Lemma 3.15 (Asymptotic analysis of Zn,β for β < 1). We have∣∣∣∣∣∣
√
Cβ
2π ×Zn,β

√
n− 1

∣∣∣∣∣∣ ≤ 1
n

C
−9/2
β

4 .

Proof. Using (2.33), we have

Zn,β :=
∫

(−1,1)
e−

n
2 Fβ(t) dt

1− t2 , Fβ(t) := 1
β

Argtanh(t)2 + ln(1− t2).

Setting x = Argtanh(t) and y :=
√
nx gives

Zn,β :=
∫
R
e−

n
2 Fβ(tanh(x))dx =

∫
R
e−

n
2 Fβ(tanh(y/

√
n)) dy√

n

with
n

2Fβ(tanh(y/
√
n)) = y2

2β + n

2 log
(
1− tanh(y/

√
n)2

)
= y2

2

(
1
β
− 1

)
+ y2

2 + n

2 log
(
1− tanh(y/

√
n)2

)
=: y

2

2 Cβ + ψn(y),

where

Cβ := 1
β
− 1,

ψn(y) := y2

2 + n

2 log
(
1− tanh(y/

√
n)2

)
= y2

2 − n log cosh
(
y√
n

)
=: nψ

(
y√
n

)
,

ψ(y) := y2

2 − log cosh(y)

(3.41)

since 1− tanh2 = cosh−2. The equality∫
R
e−

y2
2 Cβdy =

√
2π
Cβ

implies that √
2π
Cβ
−Zn,β

√
n =

∫
R
e−

y2
2 Cβdy −

∫
R
e−

n
2 Fβ(tanh(y/

√
n))dy

=
∫
R

(
1− e−ψn(y)

)
e−

y2
2 Cβdy.

The study of ψn with SageMath [87] shows that ψn is non negative on R with only cancelation
in 0. This can also be seen with the inequality cosh(t) ≤ exp( t22 ) that follows from the
termwise comparison of the Taylor series of each function. As a result, the previous quantity
is positive on R∗. Moreover, in the same vein as for κn defined in (3.7), we have ψn(0) =
ψ′n(0) = ψ′′n(0) = ψ′′′n (0) = 0, and the Taylor formula with integral remainder gives at the
fourth order

ψn(y) = y4

6

∫ 1

0
(1− α)3ψ(4)

n (αy)dα.
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A computation with SageMath [87] gives

• ψ′n(y) = y −
√
n tanh

(
y√
n

)

• ψ′′n(y) = tanh
(
y√
n

)2

• ψ′′′n (y) = 2√
n

tanh
(
y√
n

)1− tanh
(
y√
n

)2


• ψ(4)
n (y) = 2

n

1− tanh
(
y√
n

)2
1− 3 tanh

(
y√
n

)2
 .

Moreover, the function y 7→ n log(1 − tanh(y/
√
n)2) = −2n log cosh(y/

√
n) has bounded

derivatives. We thus have

0 ≤ 1− e−ψn(y) ≤ ψn(y) ≤ y4

24
∥∥∥ψ(4)

n

∥∥∥
∞
.

Since
∣∣∣ψ(4)
n (y)

∣∣∣ := 2
n

∣∣∣1− tanh( y√
n
)2
∣∣∣ ∣∣∣1− 3 tanh( y√

n
)2
∣∣∣ ≤ 2

n
, we get

0 ≤
√

2π
Cβ
−Zn,β

√
n =

∫
R

(
1− e−ψn(y)

)
e−

y2
2 Cβdy

≤ 2
24n

∫
R
y4e−

y2
2 Cβdy = 1

4n
√

2πC−5
β

hence the result using the fourth moment of a Gaussian (equal to 3). �

Lemma 3.16 (Asymptotic analysis of Zn,1). We have∣∣∣∣n1/4Zn,1
ZF
− 1

∣∣∣∣ = O

(
1√
n

)
.

Proof. Using (2.33), we have

Zn,1 :=
∫

(−1,1)
e−

n
2 F1(t) dt

1− t2 , F1(t) := Argtanh(t)2 + ln(1− t2).

Setting x = Argtanh(t) and y := n1/4x gives

Zn,1 :=
∫
R
e−

n
2 F1(tanh(x))dx =

∫
R
e−

n
2 F1(tanh(y/n1/4)) dy

n1/4 =:
∫
R
e−nψ(y/n1/4) dy

n1/4

with ψ defined in (3.41).
Since ZF =

∫
R e
− y

4
12 dy, it is

n1/4Zn,1 −ZF =
∫
R
e−nψ(y/n1/4)dy −

∫
R
e−

y4
12 dy

=
∫
R

(
1− e−ψ̃n(y)

)
e−nψ(y/n1/4)dy,

where

ψ̃n(y) := y4

12 − nψ
(

y

n1/4

)
= n

(
1
12

(
y

n1/4

)4
− ψ

(
y

n1/4

))
=: nψ̃

(
y

n1/4

)
,

ψ̃(y) := y4

12 − ψ(y) = y4

12 −
y2

2 + log cosh(y).
(3.42)
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The study of ψ̃n with SageMath [87] shows that it is non negative on R with only cancelation
in 0, see also the Taylor formula at the fourth order below. As a result, the previous quantity
is positive on R∗. Moreover, in the same vein as for κn defined in (3.7), one has ψ̃(k)

n (0) = 0
for all k = 0, 1, ..., 5, and the Taylor formula with integral remainder gives at the sixth order

ψ̃n(y) = y6

120

∫ 1

0
(1− α)5ψ̃(6)

n (αy)dα = y6

120
√
n

∫ 1

0
(1− α)5ψ̃(6)(αyn−1/4)dα.

A computation with SageMath [87] gives

• ψ̃′(y) = tanh(y) + y3

3 − y

• ψ̃′′(y) = − tanh(y)2 + y2

• ψ̃′′′(y) = 2 tanh(y)
(
1− tanh(y)2

)
+ 2y

• ψ̃(4)(y) = 2 sinh(y)4 + 4 sinh(y)2

cosh(y)4 ≥ 0

• ψ̃(5)(y) = −8(cosh(y)4 − 3) sinh(y)
cosh(y)5

• ψ̃(6)(y) = 4 4 cosh(y)4 − 30 cosh(y)2 + 30
cosh(y)6 .

Note that the Taylor formula at the fourth order gives ψn(y) = y4

6
∫ 1

0 (1−α)3ψ̃(4)(αy/n1/4)dα
and since ψ̃(4) ≥ 0, it is easily seen that ψ̃n is non negative. We thus have

0 ≤ 1− e−ψ̃n(y) ≤ ψ̃n(y) ≤ y6

720
∥∥∥ψ̃(6)

n

∥∥∥
∞

= y6

720
√
n

∥∥∥ψ̃(6)
∥∥∥
∞
.

Since

ψ̃(6)(y) = 4 4 cosh(y)4 − 30 cosh(y)2 + 30
cosh(y)6

= 4
(
4(1− tanh(y)2)− 30(1− tanh(y)2)2 + 30(1− tanh(y)2)3

)
≤ 136

we get

0 ≤ n1/4Zn,1 −ZF =
∫
R

(
1− e−ψ̃n(y)

)
e−nψ(y/n1/4)dy

≤ 136
720
√
n

∫
R
y6e−nψ(y/n1/4)dy = 136

720
√
n
n1/4Zn,1E

(
F 6
n

)
.

Hence

0 ≤ 1− ZF
n1/4Zn,1

≤ 136
720
√
n

(
E
(
F 6
)

+ o(1)
)

which concludes the proof. �

Lemma 3.17 (Asymptotic analysis of ‖fFn‖∞). With Fn defined in (3.12), we have

max
x∈R

fFn(x) = 1
ZF

+O

(
1√
n

)
.

Proof. Using (3.12), (2.38) and (2.33), we get

fFn(x) = 1
n1/4fn,1

(
x

n1/4

)
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:= 1
n1/4Zn,1

e
−n2 Argtanh

(
x

n1/4

)2
−(n2 +1) ln

(
1− x2
√
n

)
1{|x|<n1/4}

=: eξn(x)

n1/4Zn,1
1{|x|<n1/4}

and

ξ′n(x) = −n3/4 Argtanh
(

x
n1/4

)
−
(
1 + 2

n

)
x

n1/4

1− ( x
n1/4 )2 .

We have ξ′n(0) = 0, and ξ′′n(0) = 2√
n
, hence, 0 is a minimum of ξn and fFn . To find the

maxima, set

y := Argtanh
(

x

n1/4

)
.

We need to analyse the solutions of the equation
tanh(y)

y
= 1

1 + 2
n

. (3.43)

This equation is well known in the study of the Curie–Weiss model as it gives the limiting
magnetisation when β > 1 (see e.g. [56, prop. 8]). An easy study shows that (3.43) has a
unique solution yn on R+ and by symmetry a unique solution −yn on R−, both being global
maxima.
Define

G(w) := 1− tanh(
√
w)√

w
= w

3 +O(w2), when w → 0,

εn = 1− 1
1 + 2

n

= 2
n+ 2 ∼

n→+∞

2
n
.

Then, the solution yn of (3.43) is such that yn = √wn, where
G(wn) = εn.

Since G is bijective on R+, we can define its inverse G−1 for the composition ◦ of functions,
and, both functions being C∞,

wn = G−1(εn) = G−1(0) + (G−1)′(0)εn +O(ε2
n) = 3εn +O(ε2

n) = 6
n

+O
( 1
n2

)
.

Hence

yn = √wn =
√

6
n

(
1 +O

( 1
n

))
=
√

6
n

+O
( 1
n3/2

)
,

xn
n1/4 := tanh(yn) = tanh

√ 6
n

+O
( 1
n3/2

) =
√

6
n

+O
( 1
n

)
.

In the end, using H(x) := x+ log(1− tanh(
√
x)2) = x2

6 +O(x3), we get

‖fFn‖∞ = fFn(xn) = 1
n1/4Zn,1

e
−n2 Argtanh

(
xn

n1/4

)2
−(n2 +1) ln

(
1− x2

n√
n

)

= 1
n1/4Zn,1

e−
n
2wn−(n2 +1) ln(1− tanh(√wn)2) = 1

n1/4Zn,1
e−

n
2H(wn)−ln(1− tanh(√wn)2)

= 1
n1/4Zn,1

e−
n
12w

2
n+O(nw3

n)+ 6
n

+O(n−3/2)
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= 1
n1/4Zn,1

e
9
n

+O(n−3/2) = 1
n1/4Zn,1

(
1 +O

( 1
n

))
and Lemma 3.16 gives n1/4Zn,1 = ZF +O

(
1√
n

)
, concluding the proof. �

Lemma 3.18 (Asymptotic analysis of Zn,βn). Set ZFγ :=
∫
R e
− y

4
12−γ

y2
2 dy. Then,∣∣∣∣∣n1/4Zn,βn

ZFγ
− 1

∣∣∣∣∣ = O

(
1√
n

)
.

Proof. Using (2.33), we have

Zn,βn :=
∫

(−1,1)
e−(

n
2βn

Argtanh(t)2+n
2 ln(1−t2)) dt

1− t2

=
∫
R
e
−
( √

n
2βn

y2−n ln(cosh(y/n1/4))
)
dy

n1/4

=
∫
R
e
−
(√

n( 1
βn
−1) y

2
2 −n

(
ln(cosh(y/n1/4))−(y/n1/4)2

/2
))

dy

n1/4

having set y := n1/4 Argtanh(t) and used 1− tanh(x)2 = cosh(x)−2.
Recall that ψ(y) := y2

2 − ln(cosh(y)) is defined in (3.41) and set

γn :=
√
n

(
1
βn
− 1

)
= γ

βn

so that

Zn,βn =
∫
R
e−γn

y2
2 −nψ(y/n1/4) dy

n1/4 ,

n1/4Zn,βn −ZFγ =
∫
R

(
e−γn

y2
2 −nψ(y/n1/4) − e−γ

y2
2 −

y4
12

)
dy.

We have moreover with γn ≥ γ

0 ≤ ZFγ −ZFγn =
∫
R

(
e−γ

y2
2 −

y4
12 − e−γn

y2
2 −

y4
12

)
dy =

∫
R

(
e−γ

y2
2 − e−γn

y2
2

)
e−

y4
12 dy

≤ (γn − γ)
∫
R

y2

2 e
− y

4
12 dy ≤ γ2

2
√
n
ZFE

(
F 2
)

and the same inequality holds if γ ≥ γn but with 0 ≤ ZFγn −ZFγ .
Last, the analysis of n1/4Zn,βn−ZFγn is similar to the previous one with β < 1, using exactly
the same function ψ but with a different rescaling. We form

0 ≤ n1/4Zn,βn −ZFγn =
∫
R

(
e−γn

y2
2 −nψ(y/n1/4) − e−γn

y2
2 −

y4
12

)
dy =:

∫
R

(
1− e−ψ̃n(y)

)
f̃Fγn (y)dy

with f̃Fγn := ZFγnfFγn and ψ̃n := nψ̃(·/n1/4) is defined in (3.42).
Since ψ̃n ≥ 0 and 0 ≤ 1− e−ψ̃n(y) ≤ ψ̃n(y) ≤ y6

√
n

∥∥∥ψ̃(6)
∥∥∥
∞
≤ 136 y6

√
n
, we get

0 ≤ n1/4Zn,βn −ZFγn ≤
136
720

1√
n

∫
R
y6f̃Fγn (y)dy = 136

720
ZFγnE

(
F 6
γn

)
√
n

= 136
720
ZFγE

(
F 6
γ

)
+ o(1)

√
n

.

In the end, ∣∣∣n1/4Zn,βn −ZFγ
∣∣∣ ≤ ∣∣∣n1/4Zn,βn −ZF γn

∣∣∣+ ∣∣∣ZF γn −ZFγ ∣∣∣
≤ 1√

n

(
136
720ZFγE

(
F 4
γ

)
+ γ2

2 ZFE
(
F 2
)

+ o(1)
)
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which concludes the proof. �

Lemma 3.19 (Asymptotic analysis of
∥∥∥fFn,γ∥∥∥∞). With fFn,γ , the density of Fn,γ, defined in

(3.23) and βn := 1− γ√
n
, we have

max
x∈R

fFn,γ (x) = 1
ZFγ

+O

(
1√
n

)
.

Proof. Recalling (3.23) we get

fFn,γ (x) = 1
n1/4fn,βn

(
x

n1/4

)

:= 1
n1/4Zn,βn

e
−n2 Argtanh

(
x

n1/4

)2
−(n2 +1) ln

(
1− x2
√
n

)
1{|x|<n1/4}

=: eξn(x)

n1/4Zn,βn
1{|x|<n1/4}

and

ξ′n(x) = −n3/4 β
−1
n Argtanh

(
x

n1/4

)
−
(
1 + 2

n

)
x

n1/4

1− ( x
n1/4 )2 .

We have ξ′n(0) = 0, and ξ′′n(0) = 2√
n
, hence, 0 is a minimum of ξn and fFn,γ . To find the

maxima, set

y := Argtanh
(

x

n1/4

)
.

We need to analyse the solutions of the equation
tanh(y)

y
= βn

1 + 2
n

. (3.44)

This equation is well known in the study of the Curie–Weiss model as it gives the limiting
magnetisation when β > 1 (see e.g. [56, prop. 8]). An easy study shows that (3.44) has a
unique solution yn on R+ and by symmetry a unique solution −yn on R−, both being global
maxima.
Define

G(w) := 1− tanh(
√
w)√

w
= w

3 +O(w2), when w → 0,

εn = 1− βn
1 + 2

n

= 1−
1− γ√

n

1 + 2
n

∼
n→+∞

γ√
n

1{γ 6=0} + 2
n

1{γ=0}.

Then, the solution yn of (3.44) is such that yn = √wn, where
G(wn) = εn.

Since G is bijective on R+, we can define its inverse G−1 for the composition ◦ of functions,
and, both functions being C∞,

wn = G−1(εn) = G−1(0) + (G−1)′(0)εn +O(ε2
n) = 3εn +O(ε2

n).
Hence

yn = √wn =
√

3εn
(
1 +O

(
ε2
n

))
=
√

3εn +O
(
ε3/2
n

)
,

xn
n1/4 := tanh(yn) = tanh

(√
3εn +O

(
ε3/2
n

))
=
√

3εn +O(εn) .
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In the end, using H(x) := x+ log(1− tanh(
√
x)2) = x2

6 +O(x3), we get
∥∥∥fFn,γ∥∥∥∞ = fFn,γ (xn) = 1

n1/4Zn,βn
e
− n

2βn
Argtanh

(
xn

n1/4

)2
−(n2 +1) ln

(
1− x2

n√
n

)

= 1
n1/4Zn,βn

e−
n

2βn
wn−(n2 +1) ln(1− tanh(√wn)2)

= 1
n1/4Zn,βn

e−
n

2βn
H(wn)−ln(1− tanh(√wn)2)

= 1
n1/4Zn,βn

e−
n

12βn
w2
n+O(nw3

n)+ 6
n

+O(n−3/2)

= 1
n1/4Zn,βn

e
γ2
4 1{γ 6=0}+ 9

n
1{γ=0}+o(n−1) = 1

n1/4Zn,βn

(
1 +O

(
1√
n

))

and Lemma 3.18 gives n1/4Zn,βn = ZFγ +O
(

1√
n

)
, concluding the proof. �

Lemma 3.20 (Asymptotic analysis of Zn,β for β > 1). Set Zn,β :=
∫
R e
−nϕβ(y)dy with

ϕβ(y) := y2

2β − log cosh(y). Then,

√
n enϕβ(xβ)Zn,β =

2
√√√√ 2π
ϕ′′β(xβ) +O

(
1√
n

) .
Proof. By symmetry of ϕβ, we have

√
n enϕβ(xβ)Zn,β =

√
n
∫
R
e−n(ϕβ(x)−ϕβ(xβ))dx = 2

√
n
∫
R+
e−n(ϕβ(x)−ϕβ(xβ))dx

= 2
√
n
∫
R+
e−n(x−xβ)2

∫ 1
0 ϕ′′β(αx+αxβ)αdαdx

= 2
∫ +∞

−xβ
√
n
e−

w2
2

∫ 1
0 ϕ′′β(αw/

√
n+xβ)αdαdw

−−−−→
n→+∞

2
∫
R
e−

w2
2 ϕ′′β(xβ)dw = 2

√√√√ 2π
ϕ′′β(xβ)

using dominated convergence as in the proof of Theorem 3.8. �

3.3.2. Kolmogorov distance between two centered sums of Rademacher’s.

Lemma 3.21 (Kolmogorov Distance between two centered sums of Rademacher’s). For all
t ∈ (0, 1), define

◦
Sn (t) := Sn(t) − n(2t − 1) with Sn(t) = ∑n

k=1Xk(t) and Xk(t) ∼ i.i.d.
Rademacher random variables. Then, for all p, q ∈ (0, 1), we have

dKol

(
◦
Sn(p),

◦
Sn(q)

)
≤ |p− q|

∣∣∣∣∣1− (p+ q)
p(1− p)

∣∣∣∣∣+O

(
1√
n

)
.

Proof. Recall that E
(
◦
Sn(t)

)
= 0 and set σ2

n(q) := Var(
◦
Sn (q)) = 4q(1 − q)n. We define

Gp ∼ N (0, σ2
n(p)) and Gq ∼ N (0, σ2

n(q)). The triangle inequality yields

dKol

(
◦
Sn(p),

◦
Sn(q)

)
≤ dKol

(
◦
Sn(p), Gp

)
+ dKol

(
◦
Sn(q), Gq

)
+ dKol(Gp, Gq)

≤ dKol(Gp, Gq) +O

(
1√
n

)
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by the Berry–Esseen theorem (3.33). It remains to prove that

dKol(Gp, Gq) ≤ |p− q|
∣∣∣∣∣1− (p+ q)
p(1− p)

∣∣∣∣∣ .
Stein’s method for Gp gives, [85, (2.2)],

dKol(Gp, Gq) := sup
w∈R
|P(Gp ≤ w)− P(Gq ≤ w)|

= sup
w∈R

∣∣∣∣∣E
(
f ′w,p(Gq)−

Gq

σ2
n(p)fw,p(Gq)

)∣∣∣∣∣ ,
where

fw,p(x) := 1
fGp(x)E

(
1{Gp≤x}

(
1{Gp≤w} − P(Gp ≤ w)

))
, fGp(x) := 1

σn(p)
√

2π
e
− x2

2σn(p)2

is the solution of the Stein equation for Gp, see [95, (19)] and [85, (2.1)].
Moreover, the Gaussian integration by parts gives for fw,p ∈ C1

E(Gqfw,p(Gq)) = σ2
n(q)E

(
f ′w,p(Gq)

)
implying

dKol(Gp, Gq) = sup
w∈R

∣∣∣∣∣E
(
f ′w,p(Gq)−

σ2
n(q)
σ2
n(p)f

′
w,p(Gq)

)∣∣∣∣∣
=
∣∣∣∣∣1− σ2

n(q)
σ2
n(p)

∣∣∣∣∣ sup
w∈R

∣∣∣E(f ′w,p(Gq)
)∣∣∣

≤
∣∣∣∣∣1− σ2

n(q)
σ2
n(p)

∣∣∣∣∣ sup
w∈R

∥∥∥f ′w,p∥∥∥∞
and, see e.g. [95, (22)],

sup
w∈R

∥∥∥f ′w,p∥∥∥∞ ≤ 1.

Finally ∣∣∣∣∣1− σ2
n(q)
σ2
n(p)

∣∣∣∣∣ =
∣∣∣∣∣1− 4q(1− q)n

4p(1− p)n

∣∣∣∣∣ = |p− q|
∣∣∣∣∣1− (p+ q)
p(1− p)

∣∣∣∣∣
which gives the result. �
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4. Cramér-type moderate deviations for L2-Rademacher-functionals

In this chapter, which is based on [11], we derive moderate deviations for L2-Rademacher-
functionals. For the proof of our main result Theorem 4.1 we will need two auxiliary lemmas.
The first one gives us a more precise bound of the moment generating function constructed
in the setting of the theorem. In the proof of Theorem 4.1 we split the relevant terms into
sub-terms by the use of different indicators and the second lemma helps us to bound one of
these. This theoretical part is done in the first section. In the following sections we treat the
i.i.d.-case and infinite weighted 2-runs as applications.

4.1. Main Result. Now we present the main result of this chapter.

Theorem 4.1 (Moderate deviations for L2-Rademacher-functionals). Let F ∈ D1,2 with
E[F ] = 0,Var(F ) = 1, and

Ffz(F ) + 1{F>z} ∈ D1,2 ∀ z ∈ R,

1
√
pq
DF

∣∣∣DL−1F
∣∣∣ ∈ Dom(δ).

Assume that there exists a constant A > 0 and increasing functions γ1(t), γ2(t) such that
etF ∈ D1,2 and

E
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣ etF ] ≤ γ1(t)E
[
etF
]
,(A1)

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ etF

]
≤ γ2(t)E

[
etF
]
,(A2)

for all 0 ≤ t ≤ A. For d0 ≥ 0, let

A0(d0) := max
{

0 ≤ t ≤ A : t
2

2 (γ1(t) + γ2(t)) ≤ d0

}
.

Then, for any d0 ≥ 0, ∣∣∣∣∣P(F > z)
1− Φ(z) − 1

∣∣∣∣∣ ≤ 25ed0(1 + z2)(γ1(z) + γ2(z))

provided that 0 ≤ z ≤ A0(d0).

In consequence, the following result is achieved.

Theorem 4.2. Under the assumptions from Theorem 4.1, there is∣∣∣∣∣P(F > z)
1− Φ(z) − 1

∣∣∣∣∣ ≤ 25e z
2
2 (γ1(z)+γ2(z))(1 + z2)(γ1(z) + γ2(z))

for all 0 ≤ z ≤ A.

As we mentioned before we continue with two auxiliary lemmas.

Lemma 4.3 (Bound for the moment generating function). Under the assumptions of Theo-
rem 4.1, for 0 ≤ t ≤ A, we have

E
[
etF
]
≤ exp

{
t2

2 (1 + γ1(t) + γ2(t))
}
. (4.1)

Then, for 0 ≤ t ≤ A0(d0),

E
[
etF
]
≤ ed0et

2/2. (4.2)
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Proof. Let h(t) := E
[
etF
]
. We recall that E

[
etF
]
<∞ is implied by etF ∈ D1,2 for 0 ≤ t ≤ A,

and so, by the continuity of the exponential funtion, we have h′(t) = E
[
FetF

]
. It follows

with (2.24) and (2.25) that
E
[
FetF

]
= E

[
(LL−1F )etF

]
= E

[
(−δDL−1F )etF

]
= E

[
〈DetF ,−DL−1F 〉

]
. (4.3)

Now we consider the k-th component of DetF , which gives us
Dke

tF = √pkqk
[
etF

+
k − etF

−
k

]
= t
√
pkqk

∫ F+
k

F−
k

etudu

= t
√
pkqk

∫ F+
k

F−
k

[
etu − etF

]
du+ tetFDkF

=: tRk + tetFDkF.

If we define R := (R1, R2, . . .), we can go on from (4.3) by writing
E
[
FetF

]
= E

[
〈tR,−DL−1F 〉

]
+ E

[
〈tetFDF,−DL−1F 〉

]
≤ tE

[
etF
]

+ tE
∣∣∣〈R,−DL−1F 〉

∣∣∣+ tE
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣ etF ] . (4.4)

Without loss of generality F−k ≤ F ≤ F+
k ; for the other case we just have to change the sign.

Then we can bound Rk as follows.

Rk = √pkqk
∫ F+

k

F−
k

[
etu − etF

]
du

≤ √pkqk
∫ F+

k

F−
k

[
etF

+
k − etF

−
k

]
du

= √pkqk
[
etF

+
k − etF

−
k

] ∫ F+
k

F−
k

du

= Dke
tF · 1
√
pkqk

DkF

and by combining both cases

|Rk| ≤
1

√
pkqk

Dke
tF ·DkF. (4.5)

By condition (A2) and (4.5) we get
tE
∣∣∣〈R,−DL−1F 〉

∣∣∣ ≤ tE
[
〈|R| ,

∣∣∣DL−1F
∣∣∣〉]

≤ tE
[
〈DetF , 1

√
pq
DF

∣∣∣DL−1F
∣∣∣〉]

≤ tE
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ etF

]
≤ tγ2(t)E

[
etF
]
. (4.6)

By condition (A1), for 0 ≤ t ≤ A,
tE
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣ etF ] ≤ tγ1(t)E
[
etF
]
. (4.7)
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Combining (4.4), (4.6) and (4.7), we have for 0 ≤ t ≤ A,

h′(t) = E
[
FetF

]
≤ th(t) + {t(γ1(t) + γ2(t))}h(t)
= {1 + γ1(t) + γ2(t)} t h(t).

Having in mind that h(0) = 1, and γ1 and γ2 are increasing, we complete the proof of (4.1)
by solving the foregoing differential inequality:

log(h(t)) =
∫ t

0

h′(s)
h(s) ds

≤
∫ t

0
(1 + γ1(s) + γ2(s))sds

≤
∫ t

0
(1 + γ1(t) + γ2(t))sds

= t2

2 (1 + γ1(t) + γ2(t)) ,

now we apply exp(.) on both sides. At last, (4.2) follows immediately from (4.1) by definition
of A0(d0). �

Lemma 4.4. Under the assumptions of Theorem 4.1, we have for 0 ≤ z ≤ A0(d0),

E
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣FeF 2/21{0≤F≤z}
]
≤ 6ed0(1 + z2)γ1(z) (4.8)

and

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣FeF 2/21{0≤F≤z}

]
≤ 6ed0(1 + z2)γ2(z). (4.9)

Proof. Same as [102] we apply the idea in [19, Lemma 5.2] for this proof. For a ∈ R, denote
[a] = max{n ∈ N : n ≤ a}. Next, we define H := 1− 〈DF,−DL−1F 〉.

E
[
|H|FeF 2/21{0≤F≤z}

]
=

[z]∑
j=1

E
[
|H|FeF 2/21{j−1≤F≤j}

]
+ E

[
|H|FeF 2/21{[z]≤F≤z}

]
.

For the first term we get
[z]∑
j=1

E
[
|H|FeF 2/21{j−1≤F≤j}

]
≤

[z]∑
j=1

je(j−1)2/2−j(j−1)E
[
|H| ejF1{j−1≤F≤j}

]

≤ 3
[z]∑
j=1

je−j
2/2E

[
|H| ejF1{j−1≤F≤j}

]
and similarly, for the second

E
[
|H|FeF 2/21{[z]≤F≤z}

]
≤ ze[z]2/2−[z]zE

[
|H| ezF1{[z]≤F≤z}

]
≤ 3ze−z2/2E

[
|H| ezF1{[z]≤F≤z}

]
.

For both terms, we used similar manipulations, namely for j − 1 ≤ F ≤ j:
• e(j−1)2/2−j(j−1) = ej

2/2−j+1/2−j2+j = e−j
2/2e1/2 ≤ 3e−j2/2.

• e(j−F )2/2 ≤ e1/2 ⇔ eF
2/2 ≤ e−j

2/2+jF+1/2 ⇔ eF
2/2 ≤ e(j−1)2/2−j(j−1)ejF .

And for [z] ≤ F ≤ z:
• e[z]2/2−[z]z = e[z]2/2−[z]z+z2/2−z2/2 = e(z−[z])2/2e−z

2/2 ≤ 3e−z2/2.
• e(z−F )2/2 ≤ e(z−[z])2/2 ⇔ eF

2/2 ≤ e(z−[z])2/2+zF−z2/2 ⇔ eF
2/2 ≤ e[z]2/2−[z]zezF .
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By condition (A1) and (4.2), and recalling that γ1 is increasing, for any 0 ≤ x ≤ z ≤ A0(d0)

e−x
2/2E

[∣∣∣1− 〈DF,−DL−1F 〉
∣∣∣ exF ] ≤ γ1(x)E[exF−x2/2]

≤ ed0γ1(x) ≤ ed0γ1(z).

By the foregoing inequalities,

E
[
|H|FeF 2/21{0≤F≤z}

]
≤ 3ed0γ1(z)

 [z]∑
j=1

j + z

 ≤ 6ed0(1 + z2)γ1(z).

The other statement of the lemma is completely analogous. �

Now we are ready to prove our two theorems.

Proof of Theorem 4.1. We note at first that

|P(F > z)− (1− Φ(z))| = |1− P(F ≤ z)− (1− Φ(z))| = |Φ(z)− P(F ≤ z)| .

By Stein’s method and the proof of [36, Theorem 3.1] we have for z ∈ R

|P(F > z)− (1− Φ(z))| = |E[f ′z(F )− Ffz(F )]| ≤ J1 + J2

with

J1 := E
∣∣∣f ′z(F )

(
1− 〈DF,−DL−1F 〉

)∣∣∣ ,
J2 := E

[
(Ffz(F ) + 1{F>z})δ

(
1
√
pq
DF

∣∣∣DL−1F
∣∣∣)] .

For the upcoming estimation we can split J2 into two terms, namely

|J2| ≤ E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ ∣∣∣Ffz(F ) + 1{F>z}

∣∣∣] ≤ J21 + J22

with

J21 := E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ |Ffz(F )|

]
,

J22 := E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F>z}

]
.

Using the same arguments as in the proof of [102, Proposition 4.1], in particular (2.6), (2.10)
and (2.11), we have

J21 ≤ J23 + J24 + J25

with

J23 := (1− Φ(z)) · E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F<0}

]
,

J24 :=
√

2π · (1− Φ(z)) · E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣FeF 2/21{0≤F≤z}

]
,

J25 := E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F>z}

]
= J22.

Thus,

|J2| ≤ J23 + J24 + 2 · J25. (4.10)
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For J23, by condition (A2) with t = 0 and noting that γ2 is increasing,

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F<0}

]
≤ E

[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣
]
≤ γ2(0) ≤ ed0γ2(z).

(4.11)
For J24, by Lemma 4.4, we have

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣FeF 2/21{0≤F≤z}

]
≤ 6ed0(1 + z2)γ2(z). (4.12)

For J25, by condition (A2) and (4.2), for 0 ≤ z ≤ A0(d0),

J25 = E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F>z}ezF e−zF

]

≤ E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F>z}ezF

]
e−z

2

≤ γ2(z)E
[
ezF

]
e−z

2

≤ ed0γ2(z)e−z2/2.

We recall that for z > 0

e−z
2/2 ≤

√
2π · (1 + z) · (1− Φ(z)) ≤ 3

√
2π

2 · (1 + z2) · (1− Φ(z)).

Then, for 0 ≤ z ≤ A0(d0),

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F>z}

]
≤ 3ed0

√
2π

2 (1 + z2)γ2(z)(1− Φ(z)). (4.13)

Therefore, combining (4.10) – (4.13), for 0 ≤ z ≤ A0(d0), we have

|J2| ≤
(
1 + 6

√
2π + 3

√
2π
)
ed0(1 + z2)γ2(z)(1− Φ(z)) ≤ 25ed0(1 + z2)γ2(z)(1− Φ(z)).

For the remaining term J1 we have a similar approach after using again Stein’s equation:

|J1| = E
∣∣∣f ′z(F )

(
1− 〈DF,−DL−1F 〉

)∣∣∣
≤ E

[
|f ′z(F )|

∣∣∣1− 〈DF,−DL−1F 〉
∣∣∣]

≤ J11 + J12 + J13

with

J11 := E
[
|Ffz(F )|

∣∣∣1− 〈DF,−DL−1F 〉
∣∣∣] ,

J12 := E
[
(1− Φ(z))

∣∣∣1− 〈DF,−DL−1F 〉
∣∣∣] ,

J13 := E
[
1{F>z}

∣∣∣1− 〈DF,−DL−1F 〉
∣∣∣] .

From here on we can identify any of these terms with a corresponding term from the first
part of the proof, namely J21 − J25. Therefore, combining these modified estimations, for
0 ≤ z ≤ A0(d0), we have

|J1| ≤
(
1 + 1 + 6

√
2π + 3

√
2π
)
ed0(1 + z2)γ1(z)(1− Φ(z)) ≤ 25ed0(1 + z2)γ1(z)(1− Φ(z)).

All in all, we have shown, for 0 ≤ z ≤ A0(d0),

|P(F > z)− (1− Φ(z))| ≤ 25ed0(1 + z2)(γ1(z) + γ2(z))(1− Φ(z))
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or equivalently ∣∣∣∣∣P(F > z)
1− Φ(z) − 1

∣∣∣∣∣ ≤ 25ed0(1 + z2)(γ1(z) + γ2(z)). �

Proof of Theorem 4.2. Let 0 ≤ z0 ≤ A be fixed. Choose d0 = z2
0
2 (γ1(z0) + γ2(z0)). Per

definition there is 0 ≤ z0 ≤ A0(d0). Hence, we may apply Theorem 4.1, which then implies∣∣∣∣∣P(F > z0)
1− Φ(z0) − 1

∣∣∣∣∣ ≤ 25ed0(1 + z2
0)(γ1(z0) + γ2(z0))

= 25e
z2

0
2 (γ1(z0)+γ2(z0))(1 + z2

0)(γ1(z0) + γ2(z0)) . �

4.2. Application: The i.i.d.-case. As a first application we treat the i.i.d.-case: For our
sequence (Xi)i∈N of Rademacher random variables we consider the standardized nth partial
sum

F := Fn = 1√
n

n∑
i=1

Yi := 1√
n

n∑
i=1

Xi − (2p− 1)
2√pq .

The classical result can be received:

Corollary 4.5. Recall the definition of Fn from above. Then
P(Fn > z)
1− Φ(z) = 1 +O(1)(1 + z2)γn(z), (4.14)

for 0 ≤ z ≤ n1/6 such that (1 + z2)γn(z) ≤ 1, where O(1) is bounded by a constant and

γn(z) := eO(1)zn−1/2 (1 + z)√
n

.

Remark 4.6. We obtain the optimal range 0 ≤ z ≤ n1/6 from (1.5), but there is no log(n) in
our error term compared to [45, Corollary 2.2].

Proof of Corollary 4.5. Due to finiteness of the sum and therefore boundness it is easy to see
that the assumptions

• F ∈ D1,2,
• Ffz(F ) + 1{F>z} ∈ D1,2 ∀z ∈ R,
• 1√

pq
DF |DL−1F | ∈ Dom(δ),

• etF ∈ D1,2

are valid. Now we start to compute the terms appearing in (A1) and (A2). By definition

F+
k = 1√

n

 n∑
i=1
i 6=k

Xi − (2p− 1)
2√pq + 1− (2p− 1)

2√pq



F−k = 1√
n

 n∑
i=1
i 6=k

Xi − (2p− 1)
2√pq + −1− (2p− 1)

2√pq



and we get, for fixed n ∈ N,

DkF = √pq
(
F+
k − F−k

)
=

2√pq
2√pq

√
n

= 1√
n
.
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On the other hand it holds that −L−1F = F and so

−DkL
−1F = 1√

n
.

With these expressions we can compute the scalar product

〈DF,−DL−1F 〉 =
n∑
i=1

(
1√
n

)2

= 1 = Var(F ).

As a consequence
E
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣ etF ] = 0,

so γ1(t) = 0 or we are free to choose something appropriate. We now move on and show that
a bound as in condition (A2) exists: By the Cauchy–Schwarz inequality

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ etF

]
≤

E
(δ( 1

√
pq
DF

∣∣∣DL−1F
∣∣∣))2

etF

 1
2(
E
[
etF
]) 1

2 .

By [80, Corollary 9.9] it is δ(u) = ∑n
k=1 Ykuk, where Yk is the kth centered and standardized

Rademacher random variable as above. The corollary can be applied since

uk := DkF |DkL
−1F |

√
pq

= 1
n
√
pq

does not depend on Xk. Then

(
E
[
(δ(u))2 etF

]) 1
2 = 1

n
√
pq

 n∑
k,l=1

E
[
YkYle

tF
] 1

2

≤ 1
n
√
pq

(
n∑
k=1

E
[
Y 2
k e

tF
]) 1

2

+ 1
n
√
pq

 n∑
k,l=1
k 6=l

E
[
YkYle

tF
]

1
2

. (4.15)

We estimate the first term of (4.15) without further computation:

1
n
√
pq

(
n∑
k=1

E
[
Y 2
k e

tF
]) 1

2

≤ C√
n

(
E
[
etF
]) 1

2 .

For the second term of (4.15) we take a closer look at the summands E
[
YkYle

tF
]
. Our

strategy is to split F into Fa, the summands depending on Yk and Yl, and Fu, the independent
summands, such that

Fa = 1√
n

(Yk + Yl) , Fu = F − Fa.

Then by Taylor expansion
E[YkYletF ] = E[YkYletFaetFu ]

= E[YkYletFu ] + tE[YkYlFaetFu ] + t2E[YkYlF 2
a r2(tFa)etFu/2],

where |r2(tFa)| ≤ et|Fa|.
0-order-term: By independence

E[YkYletFu ] = E[Yk]E[Yl]E[etFu ] = 0.
1st-order-term: By definition of Fa and by independence

tE[YkYlFaetFu ] = t√
n

(
E[Y 2

k Yle
tFu ] + E[YkY 2

l e
tFu ]

)
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= t√
n

(
E[Y 2

k ]E[Yl]E[etFu ] + E[Yk]E[Y 2
l ]E[etFu ]

)
= 0.

2nd-order-term: Finally, having in mind that |r2(tFa)| ≤ et|Fa| we can bound the last term
of our Taylor expansion by

t2
∣∣∣E[YkYlF 2

a r2(tFa)etFu/2]
∣∣∣ ≤ Ct2

n
E
[
etF
]
ect

with c = O
(

1√
n

)
and so

1
n
√
pq

 n∑
k,l=1
k 6=l

E
[
YkYle

tF
]

1
2

= 1
n
√
pq

 n∑
k,l=1
k 6=l

t2
∣∣∣E[YkYlF 2

a r2(tFa)etFu/2]
∣∣∣


1
2

≤ Cect√
n
t
(
E
[
etF
]) 1

2 .

Summarizing everything we have done so far a bound as in condition (A2) is obtained by

E
[
|δ(u)| etF

]
≤
(
E
[
(δ(u))2 etF

]) 1
2
(
E
[
etF
]) 1

2

≤


∑
k∈Z

E
[
u2
ke
tF
] 1

2

+

∑
k,l∈Z
k 6=l

E
[
ukulXkXle

tF
]

1
2
(E [etF ]) 1

2

≤ Cect√
n

(1 + t)E
[
etF
]

=: γ2(t)E
[
etF
]
.

�
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4.3. Application: Infinite weighted 2-runs. Our moderate deviation is given as follows.
Theorem 4.7. Recall the definition of Fn given by (2.26). Then

P(Fn > z)
1− Φ(z) = 1 +O(1)(1 + z2)γn(z), (4.16)

for 0 ≤ z ≤ min{C−1/3
n , C−2

n ,Var(Gn)1/2} such that (1 + z2)γn(z) ≤ 1, where O(1) is bounded
by a constant only depending on the coefficient sequence (a(n)

i )i∈Z and

γn(z) := eO(1)z(Var(Gn))−1/2((1 + z1/2 + z)Cn
)
, Cn :=

∥∥∥a(n)
∥∥∥2

l4(Z)

Var(Gn) .

Remark 4.8. The constant Cn has an important meaning. It is the order of the corresponding
Kolmogorov distance in [36, Theorem 1.1]. Depending on the coefficient sequence, Cn can
behave differently: By (4.18) and (4.39) Cn is in general bounded by a constant, but it can
be a constant itself, see e.g. a(n)

i = 1
i2
. So, to make (4.16) tend to 0 and the range increase

in n, the condition Cn → 0 for n→∞ is sufficient. We give now examples, where this is the
case and where the resulting rate is optimal.
Example 4.9. We consider a(n)

i = 1{|i|≤n} ∀ i ∈ Z, which is obviously a summable sequence.
Then

∥∥∥a(n)
∥∥∥2

l4(Z)
= O

(
n1/2

)
,Var(Gn) = O(n) and Cn = O

(
n−1/2

)
. The moderate deviation

we get is
P(Fn > z)
1− Φ(z) = 1 +O(1)(1 + z2)γn(z), (4.17)

for 0 ≤ z ≤ n1/6 such that (1 + z2)γn(z) ≤ 1, where

γn(z) := eO(1)zn−1/2((1 + z1/2 + z)n−1/2
)
.

In order to discuss the quality of this result, we use a lower Kolmogorov bound known from
[42, Theorem 1(c)], which got later refined by [83, Corollary 3.12]. Since Gn is almost surely
an integer between −n and n, said results imply that the Kolmogorov distance for normal
approximation of Fn is bounded from below by c0 · (Var(Gn))− 1

2 for some constant c0 > 0.
As Var(Gn) is of order n, we conclude that Cn being of order n− 1

2 is optimal.

Example 4.10. We generalize the previous example to a(n)
i = n−β1{|i|≤nα} ∀ i ∈ Z, α ∈ R, β >

0. Then
∥∥∥a(n)

∥∥∥2

l4(Z)
= O

(
n(α−4β)/2

)
,Var(Gn) = O

(
nα−2β

)
and Cn = O

(
n−α/2

)
. If we choose

β = 0 and α ≥ 1 the moderate deviation we get is of the same form as (4.17) with range
0 ≤ z ≤ nα/6 respectively 0 ≤ z ≤ (Var(Gn))α/6. Using the same argumentation as in the
previous example, we see that the rate of Cn is again optimal.
Proof of Theorem 4.7. In what follows, we show that all the assumptions of Theorem 4.1 are
verified. Note that although here the Rademacher random variables are indexed by Z instead
of N, Theorem 4.1 can be fully carried to this setting. Since the coefficient sequence (a(n)

i )i∈Z
is in l1(Z) we have

∥∥∥a(n)
∥∥∥
lp(Z)

<∞∀ p ∈ N. By definition E[F ] = 0 and Var(F ) = 1, and the
rewritten random variable

F := Fn = 1√
Var(Gn)

∑
i∈Z

a
(n)
i

[
ξiξi+1 −

1
4

]
= 1

4
√

Var(Gn)

∑
i∈Z

a
(n)
i [Xi +XiXi+1 +Xi+1]

is bounded. In particular we will use E |Gn| ≤
∥∥∥a(n)

∥∥∥
l1(Z)

and

1
16
∥∥∥a(n)

∥∥∥2

l2(Z)
≤ Var(Gn) = 3

16
∑
i∈Z

(a(n)
i )2 + 1

8
∑
i∈Z

a
(n)
i a

(n)
i+1 ≤

5
16
∥∥∥a(n)

∥∥∥2

l2(Z)
. (4.18)
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Regarding the assumptions that 1√
pq
DF |DL−1F | ∈ Dom(δ) and Ffz(F )+1{F>z} ∈ D1,2 ∀ z ∈

R, we follow the argumentation of [36], see in particular Remark 3.5 in there. F is an
element of the sum of the first and second Rademacher chaos, see the beginning of the proof
of Theorem 1.1 in [36], and by hypercontractivity we find that F ∈ L4(Ω). Following the
calculations in the proof of Lemma 3.7 in [29] with uk = 1√

pkqk
DkF |DkL

−1F | for k ∈ Z,
it can be shown that assumption (2.14) in Proposition 2.2 in [61] is satisfied. This implies
that u = 1√

pq
DF |DL−1F | ∈ Dom(δ). Further, it implies that E[(Ffz(F ) + 1{F>z})δ(u)] =

E[〈D(Ffz(F ) + 1{F>z}), u〉], which is why we do not need to verify whether Ffz(F ) + 1{F>z}
is an element of D1,2 ∀ z ∈ R.
We start to compute the terms appearing in (A1) and (A2). By definition

F+
k = 1

4
√

Var(Gn)

 ∑
i∈Z

i 6=k−1,k

a
(n)
i [Xi +XiXi+1 +Xi+1] + a

(n)
k−1(2Xk−1 + 1) + a

(n)
k (2Xk+1 + 1)



F−k = 1
4
√

Var(Gn)

 ∑
i∈Z

i 6=k−1,k

a
(n)
i [Xi +XiXi+1 +Xi+1]− a(n)

k−1 − a
(n)
k


and we get, for fixed n ∈ N,

DkF = 1
2
(
F+
k − F−k

)
= 1

4
√

Var(Gn)

(
a

(n)
k−1(Xk−1 + 1) + a

(n)
k (Xk+1 + 1)

)
. (4.19)

Further we obtain

−L−1F = 1
4
√

Var(Gn)

∑
i∈Z

a
(n)
i

[
Xi + 1

2XiXi+1 +Xi+1

]
and so

−DkL
−1F = 1

8
√

Var(Gn)

(
a

(n)
k−1(Xk−1 + 2) + a

(n)
k (Xk+1 + 2)

)
. (4.20)

Now it is easy to see that F ∈ D1,2. By definition Var(F ) = 1, so F is in particular square-
integrable. The condition E(∑k∈Z(DkF )2) <∞ follows from (4.19) and the fact that (a(n)

i )i∈Z
is in l1(Z) respectively l2(Z). Concerning the assumption etF ∈ D1,2 ∀ t ∈ R we notice at first
that the boundness of F implies the square-integrability of etF . We compute further

E

∑
k∈Z

(Dke
tF )2

 = E

∑
k∈Z

(
Xk
√
pqetF

(
1− e−t

Xk√
pq
DkF

))2


= E

∑
k∈Z

X2
k pq e

2tF
∣∣∣∣1− e−t Xk√pqDkF ∣∣∣∣2


≤ E

∑
k∈Z

pq e2tF t2
X2
k

pq
(DkF )2e

2t |Xk|√
pq
|DkF |


= E

t2e2tF ∑
k∈Z

(DkF )2e2t|F+
k
−F−

k |
 ,

where we used |ex − 1| ≤ e|x|−1 ≤ |x| e|x| ∀x ∈ R and equation (12.2) in [80]. The boundness
follows then from the boundness of the terms we have studied so far. With (4.19) and (4.20)
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we can compute the scalar product

〈DF,−DL−1F 〉 = 1
32 Var(Gn)

(∑
k∈Z

(a(n)
k−1)2

[
X2
k−1 + 3Xk−1 + 2

]
+ (a(n)

k )2
[
X2
k+1 + 3Xk+1 + 2

]
+ a

(n)
k−1a

(n)
k [3Xk−1 + 2Xk−1Xk+1 + 3Xk+1 + 4]

)
.

If we choose f(x) = x in [61, (2.13)] we are able to write

1 = E[〈DF,−DL−1F 〉] = 1
32 Var(Gn)

∑
k∈Z

3(a(n)
k−1)2 + 4a(n)

k−1a
(n)
k + 3(a(n)

k )2.

We use the Cauchy–Schwarz inequality for

E
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣ etF ] ≤(E [(1− 〈DF,−DL−1F 〉
)2
etF
]) 1

2(
E
[
etF
]) 1

2

and deal with the double sum resulting from the square of

〈DF,−DL−1F 〉 − 1 = 1
32 Var(Gn)

(∑
k∈Z

(a(n)
k−1)23Xk−1 + (a(n)

k )23Xk+1

+ a
(n)
k−1a

(n)
k [3Xk−1 + 2Xk−1Xk+1 + 3Xk+1]

)
.

Then we can write (1− 〈DF,−DL−1F 〉)2 = B1 + . . .+B9 with

B1 = 9
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k−1)2(a(n)

l−1)2Xk−1Xl−1,

B2 = 9
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k )2(a(n)

l )2XkXl,

B3 = 9
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k−1)2(a(n)

l )2Xk−1Xl,

B4 = 9
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k )2(a(n)

l−1)2XkXl−1,

B5 = 3
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k−1)2(a(n)

l−1)(a(n)
l )Xk−1 [3Xl−1 + 2Xl−1Xl+1 + 3Xl+1] ,

B6 = 3
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k )2(a(n)

l−1)(a(n)
l )Xk [3Xl−1 + 2Xl−1Xl+1 + 3Xl+1] ,

B7 = 3
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k−1)(a(n)

k )(a(n)
l−1)2Xl−1 [3Xk−1 + 2Xk−1Xk+1 + 3Xk+1] ,

B8 = 3
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k−1)(a(n)

k )(a(n)
l )2Xl [3Xk−1 + 2Xk−1Xk+1 + 3Xk+1] ,

where B1 = B2 = B3 = B4 and B5 = B6 = B7 = B8 by symmetry and change of variables.
The last missing term is given by

B9 = 1
1024(Var(Gn))2

( ∑
k,l∈Z

(a(n)
k−1)(a(n)

k )(a(n)
l−1)(a(n)

l ) · [3Xk−1 + 2Xk−1Xk+1 + 3Xk+1]

· [3Xl−1 + 2Xl−1Xl+1 + 3Xl+1]
)
.
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So basically we have to deal with three classes of subterms in total. Since they will be
multiplied with etF , we have to study

E[Xie
tF ], E[XiXje

tF ], E[XiXjXke
tF ], E[XiXjXkXle

tF ]

for i 6= j 6= k 6= l — if two or more indices are equal, it is just one of the terms from before or
immediately E[etF ]. This is done in the following lemma and we will refer to it, in particular
the inequalities shown in its proof.

Lemma 4.11. In the setting of Theorem 4.7 we have for i 6= j 6= k 6= l ∈ Z∣∣∣E[Xie
tF ]
∣∣∣ ≤ Ct

4
√

Var(Gn)
·
(∣∣∣a(n)

i−1

∣∣∣+ ∣∣∣a(n)
i

∣∣∣) · E [etF ] ect
+ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i}
n1∈{i−2,i+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect

+ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect. (4.21)

∣∣∣E[XiXje
tF ]
∣∣∣ ≤ Ct

4
√

Var(Gn)
·
∣∣∣a(n)

min(i,j)

∣∣∣ · E [etF ] ect1{|i−j|=1}

+ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1}
n1∈{i−2,i+1,j−2,j+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect

+ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i,j−1,j}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect. (4.22)

∣∣∣E[XiXjXke
tF ]
∣∣∣ ≤ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1,j,k−1,k}
n1∈{i−2,i+1,j−2,j+1,k−2,k+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect

+ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i,j−1,j,k−1,k}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect. (4.23)

∣∣∣E[XiXjXkXle
tF ]
∣∣∣ ≤ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1,j,k−1,k,l−1,l}
n1∈{i−2,i+1,j−2,j+1,k−2,k+1,l−2,l+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect

+ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i,j−1,j,k−1,k,l−1,l}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect. (4.24)

Proof. The first key element of our strategy is to split F into Fa, the summands that depend
on the X’s multiplied with etF , and Fu, the summands that are independent. We should
have in mind that Fa and Fu are not necessarily independent from each other. To get
this dependency structure under control we will make use of several Taylor expansions of
the exponential. Note that there are remainder functions r1, r2 : R → R, such that ex =
1 + x · r1(x) = 1 + x + x2

2 · r2(x) with |r1(x)|, |r2(x)| ≤ emax{0,x} ≤ e|x| for all x ∈ R. So, the
second key element is an iterated Taylor expansion on etF according to the following scheme:
For a finite index set I, let there be real numbers (xj)j∈I , (yj)j∈I and z. Then by iterated
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Taylor expansion there is

ez+
∑

j∈I xj = 1 · ez +
∑
j∈I

xj · ez + 1
2

(∑
j∈I

xj

)2
r2

(∑
j∈I

xj

)
· ez

= 1 · ez +
∑
j∈I

xj · 1 · ez−yj +
∑
j∈I

xj · yjr1(yj) · ez−yj + 1
2

(∑
j∈I

xj

)2
r2

(∑
j∈I

xj

)
· ez.

(4.25)

We remind on the short notation Ak := a
(n)
k [Xk +XkXk+1 +Xk+1] for the upcoming com-

putations. In the case of E[Xie
tF ]:

Fa = 1
4
√

Var(Gn)
(Ai−1 + Ai)

and by independence

E[Xie
tF ] = E[Xie

tFaetFu ] = E[Xie
tFu ] + tE[XiFae

tFu ] + t2E[XiF
2
a r2(tFa)etFu/2]

= tE[XiFae
tFu ] + t2E[XiF

2
a r2(tFa)etFu/2],

where we chose z = Fu and ∑j∈I xj = Fa — note that I will increase with every case since
the number of multiplied X’s increases. For the first order term we split Fu in the same
manner as before, Fu = Fua + Fuu , such that Fua = (Ai−2 + Ai+1) /4

√
Var(Gn) and use the

iteration from (4.25). Then

XiFa = 1
4
√

Var(Gn)

(
a

(n)
i−1(Xi−1Xi +Xi−1 + 1) + a

(n)
i (1 +Xi+1 +XiXi+1)

)

and

tE[XiFae
tFu ] = tE

[
XiFae

tFuaetFuu
]

= tE
[
XiFae

tFuu
]

+ t2E
[
XiFaFuar1(tFua)etFuu

]
,

so yj = Fua . From here on we get etF back by bounding the difference of the independent
part and F , e.g.

|Fuu − F | = |Fua + Fa| ≤ c = O

 1√
Var(Gn)

→ 0 as n→∞.

Since the exact constant is not important, we always write just c if we use that type of
estimation, and in the same way C for prefactors. Thus

t
∣∣∣E[XiFae

tFu ]
∣∣∣ ≤ Ct

4
√

Var(Gn)
·
(∣∣∣a(n)

i−1

∣∣∣+ ∣∣∣a(n)
i

∣∣∣) · E [etF ] ect
+ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i}
n1∈{i−2,i+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect. (4.26)

For the second order term we just bound

t2
∣∣∣E[XiF

2
a r2(tFa)etFu/2]

∣∣∣ ≤ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect. (4.27)
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In the case of E[XiXje
tF ]:

Fa =



1
4
√

Var(Gn)
(Ai + Aj−1 + Aj) , i = j + 1,

1
4
√

Var(Gn)
(Ai−1 + Ai + Aj−1 + Aj) , |i− j| ≥ 2,

1
4
√

Var(Gn)
(Ai−1 + Ai + Aj) , j = i+ 1,

and
E[XiXje

tF ] = tE[XiXjFae
tFu ] + t2E[XiXjF

2
a r2(tFa)etFu/2].

For the first order term we compute as a preparation
XiXjFa = a

(n)
i−1(Xi−1XiXj +Xi−1Xj +Xj) + a

(n)
i (Xj +Xi+1Xj +XiXi+1Xj)

+ a
(n)
j−1(XiXj−1Xj +XiXj−1 +Xi)

+ a
(n)
j (Xi +XiXj+1 +XiXjXj+1).

In particular we have to consider the special case |i− j| = 1 and assume i = j + 1. If not,
we just have to swap i and j. Under our assumption the last equation reduces to

XiXjFa = a
(n)
i−1(Xi + 1 +Xj) + a

(n)
i (Xj +Xi+1Xj +XiXi+1Xj)

+ a
(n)
j−1(XiXj−1Xj +XiXj−1 +Xi).

From here on we assume that the indices apperaring in upcoming Fa’s and Fua ’s are all
different. If not, there is only an effect on the number of coefficients and so the constants,
but not on the order of our bound. Having that in mind we split Fu in the same manner as
before, Fu = Fua + Fuu , such that Fua =(Ai−2 + Ai+1 + Aj−2 + Aj+1) /4

√
Var(Gn). Then

tE[XiXjFae
tFu ] = tE[XiXjFae

tFuu ] + t2E[XiXjFaFuar1(tFua)etFuu ]
and thus for i = j + 1

t
∣∣∣E[XiXjFae

tFu ]
∣∣∣ ≤ Ct

4
√

Var(Gn)
·
∣∣∣a(n)
i−1

∣∣∣ · E [etF ] ect
+ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1}
n1∈{i−2,i+1,j−2,j+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect. (4.28)

In the case |i− j| ≥ 2 the first term of the last inequality does not appear since all the indices
in XiXjFa are different:

t
∣∣∣E[XiXjFae

tFu ]
∣∣∣ ≤ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1,j}
n1∈{i−2,i+1,j−2,j+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect. (4.29)

For the second order term we just bound

t2
∣∣∣E[XiXjF

2
a r2(tFa)etFu/2]

∣∣∣ ≤ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i,j−1,j}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect. (4.30)

In the case of E[XiXjXke
tF ]:

Fa = 1
4
√

Var(Gn)
(Ai−1 + Ai + Aj−1 + Aj + Ak−1 + Ak)

and
E[XiXjXke

tF ] = tE[XiXjXkFae
tFu ] + t2E[XiXjXkF

2
a r2(tFa)etFu/2].
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For the first order term we compute as a preparation

XiXjXkFa =a(n)
i−1(Xi−1XiXjXk +Xi−1XjXk +XjXk)

+ a
(n)
i (XjXk +Xi+1XjXk +XiXi+1XjXk)

+ a
(n)
j−1(XiXj−1XjXk +XiXj−1Xk +XiXk)

+ a
(n)
j (XiXk +XiXj+1Xk +XiXjXj+1Xk)

+ a
(n)
k−1(XiXjXk−1Xk +XiXjXk−1 +XiXj)

+ a
(n)
k (XiXj +XiXjXk+1 +XiXjXkXk+1).

And by our assumption i 6= j 6= k in every summand at least one X will remain. We split
Fu = Fua + Fuu , such that Fua = (Ai−2 + Ai+1 + Aj−2 + Aj+1 + Ak−2 + Ak+1) /4

√
Var(Gn).

Then
tE[XiXjXkFae

tFu ] = tE[XiXjXkFae
tFuaetFuu ]

= tE[XiXjXkFae
tFuu ] + t2E[XiXjXkFaFuar1(tFua)etFuu ]

= t2E[XiXjXkFaFuar1(tFua)etFuu ]

by independence and thus

t
∣∣∣E[XiXjXkFae

tFu ]
∣∣∣ ≤ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1,j,k−1,k}
n1∈{i−2,i+1,j−2,j+1,k−2,k+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect. (4.31)

For the second order term we just bound

t2
∣∣∣E[XiXjXkF

2
a r2(tFa)etFu/2]

∣∣∣ ≤ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i,j−1,j,k−1,k}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect.
(4.32)

In the case of E[XiXjXkXle
tF ]:

Fa = 1
4
√

Var(Gn)
(Ai−1 + Ai + Aj−1 + Aj + Ak−1 + Ak + Al−1 + Al)

and
E[XiXjXkXle

tF ] = tE[XiXjXkXlFae
tFu ] + t2E[XiXjXkXlF

2
a r2(tFa)etFu/2].

For the first order term we compute as a preparation

XiXjXkXlFa =a(n)
i−1(Xi−1XiXjXkXl +Xi−1XjXkXl +XjXkXl)

+ a
(n)
i (XjXkXl +Xi+1XjXkXl +XiXi+1XjXkXl)

+ a
(n)
j−1(XiXj−1XjXkXl +XiXj−1XkXl +XiXkXl)

+ a
(n)
j (XiXkXl +XiXj+1XkXl +XiXjXj+1XkXl)

+ a
(n)
k−1(XiXjXk−1XkXl +XiXjXk−1Xl +XiXjXl)

+ a
(n)
k (XiXjXl +XiXjXk+1Xl +XiXjXkXk+1Xl)

+ a
(n)
l−1(XiXjXkXl−1Xl +XiXjXkXl−1 +XiXjXk)

+ a
(n)
k (XiXjXk +XiXjXkXl+1 +XiXjXkXlXl+1).
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And by our assumption i 6= j 6= k 6= l in every summand at least one X will remain. Fua is
given by Fua = (Ai−2 + Ai+1 + Aj−2 + Aj+1 + Ak−2 + Ak+1 + Al−2 + Al+1) /4

√
Var(Gn) this

time. Then

tE[XiXjXkXlFae
tFu ] = t2E[XiXjXkXlFaFuar1(tFua)etFuu ]

by independence and thus

t
∣∣∣E[XiXjXkXlFae

tFu ]
∣∣∣ ≤ Ct2

16 Var(Gn) ·
∑

m1∈{i−1,i,j−1,j,k−1,k,l−1,l}
n1∈{i−2,i+1,j−2,j+1,k−2,k+1,l−2,l+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ · E [etF ] ect. (4.33)

For the second order term we just bound

t2
∣∣∣E[XiXjXkXlF

2
a r2(tFa)etFu/2]

∣∣∣ ≤ Ct2

32 Var(Gn) ·
∑

m2,n2∈{i−1,i,j−1,j,k−1,k,l−1,l}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ · E [etF ] ect.
(4.34)

�

Now we are ready to deal with all three classes of subterms and choose B2, B6 and B9 as
representatives:
First class of subterms, B1 −B4:

E[B2e
tF ] = 9

1024(Var(Gn))2

∑
k∈Z

(a(n)
k )4E[etF ] +

∑
k,l∈Z
|k−l|=1

(a(n)
k )2(a(n)

l )2E[XkXle
tF ]

+
∑
k,l∈Z
|k−l|≥2

(a(n)
k )2(a(n)

l )2E[XkXle
tF ]
. (4.35)

The first one is the easiest by

B21 := 9
1024(Var(Gn))2

∑
k∈Z

(a(n)
k )4E[etF ] = 9

1024(Var(Gn))2

∥∥∥a(n)
∥∥∥4

l4(Z)
E[etF ].

By using (4.28), (4.29) and (4.30) it remains to bound

B22 := 9
1024(Var(Gn))2

∑
k,l∈Z
|k−l|=1

(a(n)
k )2(a(n)

l )2E[XkXle
tF ]

≤ 9
1024(Var(Gn))2 (B221 +B222 +B223)E

[
etF
]
ect,

B23 := 9
1024(Var(Gn))2

∑
k,l∈Z
|k−l|≥2

(a(n)
k )2(a(n)

l )2E[XkXle
tF ]

≤ 9
1024(Var(Gn))2 (B231 +B232)E

[
etF
]
ect,

such that

B221 := Ct

4
√

Var(Gn)
·
∑
k,l∈Z
|k−l|=1

(a(n)
k )2(a(n)

l )2
∣∣∣a(n)

min(k,l)

∣∣∣ ,
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B222 := Ct2

16 Var(Gn) ·
∑
k,l∈Z
|k−l|=1

(a(n)
k )2(a(n)

l )2 ·
∑

m1∈{k−1,k,l−1,l}
n1∈{k−2,k+1,l−2,l+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ ,

B223 := Ct2

32 Var(Gn) ·
∑
k,l∈Z
|k−l|=1

(a(n)
k )2(a(n)

l )2 ·
∑

m2,n2∈{k−1,k,l−1,l}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ ,
B231 := Ct2

16 Var(Gn) ·
∑
k,l∈Z
|k−l|≥2

(a(n)
k )2(a(n)

l )2 ·
∑

m1∈{k−1,k,l−1,l}
n1∈{k−2,k+1,l−2,l+1}

∣∣∣a(n)
m1

∣∣∣ ∣∣∣a(n)
n1

∣∣∣ ,

B232 := Ct2

32 Var(Gn) ·
∑
k,l∈Z
|k−l|≥2

(a(n)
k )2(a(n)

l )2 ·
∑

m2,n2∈{k−1,k,l−1,l}

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ .
Then by the inequality of arithmetic and geometric means, from here on AM-GM inequality,

B221 = Ct

4
√

Var(Gn)

∑
k∈Z

(a(n)
k )2(a(n)

k−1)2
∣∣∣a(n)
k−1

∣∣∣+ ∑
k∈Z

(a(n)
k )2(a(n)

k+1)2
∣∣∣a(n)
k

∣∣∣


= Ct

4
√

Var(Gn)

∑
k∈Z

5

√∣∣∣a(n)
k

∣∣∣10 ∣∣∣a(n)
k−1

∣∣∣10 ∣∣∣a(n)
k−1

∣∣∣5 +
∑
k∈Z

5

√∣∣∣a(n)
k

∣∣∣10 ∣∣∣a(n)
k+1

∣∣∣10 ∣∣∣a(n)
k

∣∣∣5


≤ Ct

20
√

Var(Gn)

∑
k∈Z

2
∣∣∣a(n)
k

∣∣∣5 + 3
∣∣∣a(n)
k−1

∣∣∣5 +
∑
k∈Z

3
∣∣∣a(n)
k

∣∣∣5 + 2
∣∣∣a(n)
k+1

∣∣∣5


≤ Ct√
Var(Gn)

∥∥∥a(n)
∥∥∥5

l5(Z)
.

If we look at B222 − B232, we can change the order of summation since all summands are
non-negative. And we become even bigger if we add the missing indices:

B223 ≤
Ct2

32 Var(Gn)
∑
k,l∈Z

∑
m2∈{k−1,k,l−1,l}

∑
n2∈{k−1,k,l−1,l}

(a(n)
k )2(a(n)

l )2
∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ .
From here on we treat different cases, but every time we can use the AM-GM inequality:
Case 1: m2 ∈ {k − 1, k} and n2 ∈ {k − 1, k}:∑

k∈Z

∑
l∈Z

(a(n)
k )2(a(n)

l )2
∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ =
∑
k∈Z

(a(n)
k )2

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣∑
l∈Z

(a(n)
l )2

≤ C
∥∥∥a(n)

∥∥∥4

l4(Z)

∥∥∥a(n)
∥∥∥2

l2(Z)
.

Case 2: m2 ∈ {l − 1, l} and n2 ∈ {l − 1, l}:∑
l∈Z

∑
k∈Z

(a(n)
k )2(a(n)

l )2
∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ =
∑
l∈Z

(a(n)
l )2

∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣∑
k∈Z

(a(n)
k )2

≤ C
∥∥∥a(n)

∥∥∥4

l4(Z)

∥∥∥a(n)
∥∥∥2

l2(Z)
.

Case 3: m2 ∈ {k − 1, k} and n2 ∈ {l − 1, l}:∑
k∈Z

∑
l∈Z

(a(n)
k )2(a(n)

l )2
∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ =
∑
k∈Z

(a(n)
k )2

∣∣∣a(n)
m2

∣∣∣∑
l∈Z

(a(n)
l )2

∣∣∣a(n)
n2

∣∣∣
≤ C

∥∥∥a(n)
∥∥∥6

l3(Z)
.
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Case 4: m2 ∈ {l − 1, l} and n2 ∈ {k − 1, k}:∑
l∈Z

∑
k∈Z

(a(n)
k )2(a(n)

l )2
∣∣∣a(n)
m2

∣∣∣ ∣∣∣a(n)
n2

∣∣∣ =
∑
l∈Z

(a(n)
l )2

∣∣∣a(n)
m2

∣∣∣∑
k∈Z

(a(n)
k )2

∣∣∣a(n)
n2

∣∣∣
≤ C

∥∥∥a(n)
∥∥∥6

l3(Z)
.

According to (4.18) in case 1 and 2 the norm
∥∥∥a(n)

∥∥∥2

l2(Z)
vanishes directly with the variance

in the prefactor. Summarizing for B223:

B223 ≤
Ct2

32
∥∥∥a(n)

∥∥∥4

l4(Z)
+ Ct2

32 Var(Gn)
∥∥∥a(n)

∥∥∥6

l3(Z)
.

Analogously we get basically bounds of the same order for B222, B231 and B232. Combining
our bounds for the subterms of (4.35) gives us

E[B2e
tF ] ≤ Cect

t2
∥∥∥a(n)

∥∥∥6

l3(Z)

(Var(Gn))3 + (1 + t2)

∥∥∥a(n)
∥∥∥4

l4(Z)

(Var(Gn))2 + t

∥∥∥a(n)
∥∥∥5

l5(Z)

(Var(Gn))5/2

E[etF ].

Second class of subterms, B5 −B8: We write E[B6e
tF ] = B61 +B62 +B63 such that

B61 := 9
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k )2(a(n)

l−1)(a(n)
l )E[XkXl−1e

tF ],

B62 := 6
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k )2(a(n)

l−1)(a(n)
l )E[XkXl−1Xl+1e

tF ],

B63 := 9
1024(Var(Gn))2

∑
k,l∈Z

(a(n)
k )2(a(n)

l−1)(a(n)
l )E[XkXl+1e

tF ].

B61 and B63 are analogous to B22 and B23 since they have the same structure: Two coefficients
with k-index, two coefficients with l-index, one X with k-index and one X with l-index. And
with that the arguments are the same. Looking at the remaining B62 two indices of the X’s
are equal if and only if k = l + 1 or k = l − 1. In the latter case B62 reduces to

C

(Var(Gn))2

∑
k∈Z

(a(n)
k )3(a(n)

k+1)E[Xk+2e
tF ],

so we can use (4.26) and (4.27) giving us upper bounds of order

O

t
∥∥∥a(n)

∥∥∥5

l5(Z)

(Var(Gn))5/2

 and O

t2
∥∥∥a(n)

∥∥∥6

l6(Z)

(Var(Gn))3

 .
And the same for k = l+ 1. At last, if neither k = l− 1 nor k = l+ 1 we can use (4.31) and
(4.32) giving us upper bounds of order

O

t2
∥∥∥a(n)

∥∥∥6

l3(Z)

(Var(Gn))3

 and O

t2
∥∥∥a(n)

∥∥∥4

l4(Z)

(Var(Gn))2

 .
Combining our bounds for B61, B62 and B63 we get

E[B6e
tF ] ≤ Cect

t2
∥∥∥a(n)

∥∥∥6

l3(Z)

(Var(Gn))3 + t2

∥∥∥a(n)
∥∥∥4

l4(Z)

(Var(Gn))2 + t

∥∥∥a(n)
∥∥∥5

l5(Z)

(Var(Gn))5/2 + t2

∥∥∥a(n)
∥∥∥6

l6(Z)

(Var(Gn))3

E[etF ].
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Third class of subterms: It consists only of B9 and so we have to deal with E[B9e
tF ].

Multiplying all the X’s inside we get products of lengths two, three and four. The first two
cases are already solved and a product of length four appears only one time, namely

C

(Var(Gn))2

∑
k,l∈Z

(a(n)
k−1)(a(n)

k )(a(n)
l−1)(a(n)

l )E[Xk−1Xk+1Xl−1Xl+1e
tF ].

We have two pairs of two equal indices of the X’s if and only if k = l and then we are in
the situation of B21. Note that it is impossible that three or more indices are equal. If two
indices are equal and two indices are different, e.g. k − 1 = l + 1 we are in the 2X-case and
can use (4.28), (4.29) and (4.30). At last, if all four indices are different, most of the work is
done by (4.33) and (4.34) leading to upper bounds of order

O

t2
∥∥∥a(n)

∥∥∥6

l3(Z)

(Var(Gn))3

 and O

t2
∥∥∥a(n)

∥∥∥4

l4(Z)

(Var(Gn))2

 .
Combining our bounds from all the different cases we get

E[B9e
tF ] ≤ Cect

t2
∥∥∥a(n)

∥∥∥6

l3(Z)

(Var(Gn))3 + (1 + t2)

∥∥∥a(n)
∥∥∥4

l4(Z)

(Var(Gn))2 + t

∥∥∥a(n)
∥∥∥5

l5(Z)

(Var(Gn))5/2 + t2

∥∥∥a(n)
∥∥∥6

l6(Z)

(Var(Gn))3

E[etF ].

Summarizing everything we have done so far a bound as in condition (A1) is obtained by

E
[∣∣∣1− 〈DF,−DL−1F 〉

∣∣∣ etF ] ≤(E [(1− 〈DF,−DL−1F 〉
)2
etF
]) 1

2(
E
[
etF
]) 1

2

=
(
E
[ 9∑
i=1

Bie
tF

]) 1
2(
E
[
etF
]) 1

2

≤
9∑
i=1

(
E
[
Bie

tF
]) 1

2
(
E
[
etF
]) 1

2

≤ γ̃1(t)E
[
etF
]

such that

γ̃1(t) = Cect

t
∥∥∥a(n)

∥∥∥3

l3(Z)

(Var(Gn))3/2 + (1 + t)

∥∥∥a(n)
∥∥∥2

l4(Z)

Var(Gn) + t1/2

∥∥∥a(n)
∥∥∥5/2

l5(Z)

(Var(Gn))5/4 + t

∥∥∥a(n)
∥∥∥3

l6(Z)

(Var(Gn))3/2


=: Cect

(
tCn,1 + (1 + t)Cn,2 + t1/2Cn,3 + tCn,4

)
.

We now move on and show that a bound as in condition (A2) exists: Again, by the Cauchy–
Schwarz inequality

E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ etF

]
≤

E
(δ( 1

√
pq
DF

∣∣∣DL−1F
∣∣∣))2

etF

 1
2(
E
[
etF
]) 1

2 .

By [80, Corollary 9.9] it is δ(u) = ∑∞
k=0 Ykuk, where Yk is the kth centered and standardized

Rademacher random variable. In our case Yk = Xk and the corollary can be applied since
uk := DkF |DkL

−1F | /√pkqk does not depend on Xk. Then

(
E
[
(δ(u))2 etF

]) 1
2 =

∑
k,l∈Z

E
[
ukulXkXle

tF
] 1

2
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≤

∑
k∈Z

E
[
u2
ke
tF
] 1

2

+

∑
k,l∈Z
k 6=l

E
[
ukulXkXle

tF
]

1
2

. (4.36)

For the upcoming computations we recall

DkF = 1
4
√

Var(Gn)

(
a

(n)
k−1(Xk−1 + 1) + a

(n)
k (Xk+1 + 1)

)
,

−DkL
−1F = 1

8
√

Var(Gn)

(
a

(n)
k−1(Xk−1 + 2) + a

(n)
k (Xk+1 + 2)

)
.

and so

DkF (−DkL
−1F ) = 1

32 Var(Gn)

(
(a(n)
k−1)2 [3Xk−1 + 3] + (a(n)

k )2 [3Xk+1 + 3]

+ a
(n)
k−1a

(n)
k [3Xk−1 + 2Xk−1Xk+1 + 3Xk+1 + 4]

)
.

The square of the righthandside is of a familiar form: Every summand consists of a product
of length four of coefficients with index k± ... multiplied with something bounded, and so as
before we get immediately or by the AM-GM-inequality

∑
k∈Z

E
[
u2
ke
tF
]
≤ C

∥∥∥a(n)
∥∥∥4

l4(Z)

(Var(Gn))2E
[
etF
]
.

For the remaining term of (4.36) we adapt the strategy that is used in the proof of Lemma 4.11
— see its beginning for a detailed explanation. Set

Ak := a
(n)
k [Xk +XkXk+1 +Xk+1]

so that

Fa = 1
4
√

Var(Gn)
(Ak−2 + Ak−1 + Ak + Ak+1 + Al−2 + Al−1 + Al + Al+1)

and by Taylor expansion
E[ukulXkXle

tF ] = E[ukulXkXle
tFaetFu ]

= E[ukulXkXle
tFu ] + tE[ukulXkXlFae

tFu ] + t2E[ukulXkXlF
2
a r2(tFa)etFu/2].

0-order-term: By independence
E[ukulXkXle

tFu ] = E[ukulXkXl]E[etFu ].
Since by definition Xk and Xl respectively uk are independent, we just have to check whether
the same goes for Xk and ul, which is leading to two cases.
Case 1: l /∈ {k − 1, k + 1}

E[ukulXkXl] = E[Xk]E[ukulXl] = 0.

Case 2: l ∈ {k − 1, k + 1}

∑
k∈Z

E[ukulXkXl]E[etFu ] ≤ C

∥∥∥a(n)
∥∥∥4

l4(Z)

(Var(Gn))2E
[
etF
]
ect,

following our usual argumentation.
1st-order-term: We split Fu in the same manner as before, Fu = Fua + Fuu , such that
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Fua =(Ak−3 + Ak+2 + Al−3 + Al+2) /4
√

Var(Gn) and use another Taylor expansion of degree
1. Then

tE[ukulXkXlFae
tFu ] = tE[ukulXkXlFae

tFuaetFuu ]
= tE[ukulXkXlFae

tFuu ] + t2E[ukulXkXlFaFuar1(tFua)etFuu ]. (4.37)
Note that Fuu is — as part of Fu — independent of Xk, Xl, uk and ul, but also independent
of Fa since we removed Fua , the depending part of Fu. As a consequence

E[ukulXkXlFae
tFuu ] = E[ukulXkXlFa]E[etFuu ].

Our next observation is E[ukulXkXlFa] = 0 for |k − l| ≥ 5 — in this case all appearing indices
are different and the claim follows ultimately from independence. We treat the remaining
case |k − l| ≤ 4 as four subcases |k − l| = i for i ∈ {1, 2, 3, 4}, but here we just write down
the first one |k − l| = 1 as the others are analogous and so there outcome. In the mentioned
case, if l = k + 1, we receive

t |ukulXkXlFa| ≤
Ct

(Var(Gn))5/2

∑
i1,i2∈{k−1,k}
i3,i4∈{k,k+1}

i5∈{k−2,k−1,k,k+1,k+2}

∣∣∣a(n)
i1

∣∣∣ ∣∣∣a(n)
i2

∣∣∣ ∣∣∣a(n)
i3

∣∣∣ ∣∣∣a(n)
i4

∣∣∣ ∣∣∣a(n)
i5

∣∣∣

and very similar for l = k − 1. For both every summand consists of a product of five
coefficients with index k ± ..., and so we get

∑
k,l∈Z
k 6=l
|k−l|=1

t
∣∣∣E[ukulXkXlFa]E[etFuu ]

∣∣∣ ≤ Ct

∥∥∥a(n)
∥∥∥5

l5(Z)

(Var(Gn))5/2E
[
etF
]
ect.

Having in mind that |r1(tFua)| ≤ et|Fua | we can bound the second term of (4.37) by using

t2 |ukulXkXlFaFua| ≤
Ct2

(Var(Gn))3

∑
i1,i2∈{k−1,k}
i3,i4∈{l−1,l}

i5∈{k−2,k−1,k,k+1,l−2,l−1,l,l+1}
i6∈{k−3,k+2,l−3,l+2}

∣∣∣a(n)
i1

∣∣∣ ∣∣∣a(n)
i2

∣∣∣ ∣∣∣a(n)
i3

∣∣∣ ∣∣∣a(n)
i4

∣∣∣ ∣∣∣a(n)
i5

∣∣∣ ∣∣∣a(n)
i6

∣∣∣

and every summand consists of a product of length six of either three coefficients with index
k ± ... and three coefficients with index l ± ..., or four coefficients with index k ± ... and two
coefficients with index l ± ...or the other way around. Combining the cases we get

∑
k,l∈Z
k 6=l

t2
∣∣∣E[ukulXkXlFaFuar1(tFua)etFuu ]

∣∣∣ ≤ Ct2


∥∥∥a(n)

∥∥∥4

l4(Z)

(Var(Gn))2 +

∥∥∥a(n)
∥∥∥6

l3(Z)

(Var(Gn))3

E
[
etF
]
ect.

2nd-order-term: Finally, having in mind that |r2(tFa)| ≤ et|Fa| we can bound the last term
of our original Taylor expansion by using

t2
∣∣∣ukulXkXlF

2
a

∣∣∣ ≤ Ct2

(Var(Gn))3

∑
i1,i2∈{k−1,k}
i3,i4∈{l−1,l}

i5,i6∈{k−2,k−1,k,k+1,l−2,l−1,l,l+1}

∣∣∣a(n)
i1

∣∣∣ ∣∣∣a(n)
i2

∣∣∣ ∣∣∣a(n)
i3

∣∣∣ ∣∣∣a(n)
i4

∣∣∣ ∣∣∣a(n)
i5

∣∣∣ ∣∣∣a(n)
i6

∣∣∣

and get the analogous bound

∑
k,l∈Z
k 6=l

t2
∣∣∣E[ukulXkXlF

2
a r2(tFa)etFu/2]

∣∣∣ ≤ Ct2


∥∥∥a(n)

∥∥∥4

l4(Z)

(Var(Gn))2 +

∥∥∥a(n)
∥∥∥6

l3(Z)

(Var(Gn))3

E
[
etF
]
ect.
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Summarizing everything we have done so far a bound as in condition (A2) is obtained by

E
[
|δ(u)| etF

]
≤
(
E
[
(δ(u))2 etF

]) 1
2
(
E
[
etF
]) 1

2

≤


∑
k∈Z

E
[
u2
ke
tF
] 1

2

+

∑
k,l∈Z
k 6=l

E
[
ukulXkXle

tF
]

1
2
(E [etF ]) 1

2

≤ γ̃2(t)E
[
etF
]

such that

γ̃2(t) = Cect

t
∥∥∥a(n)

∥∥∥3

l3(Z)

(Var(Gn))3/2 + (1 + t)

∥∥∥a(n)
∥∥∥2

l4(Z)

Var(Gn) + t1/2

∥∥∥a(n)
∥∥∥5/2

l5(Z)

(Var(Gn))5/4


=: Cect

(
tCn,1 + (1 + t)Cn,2 + t1/2Cn,3

)
.

In a final step we want to simplify our bounds by comparing the constants Cn,i with each
other. To do so, we will use, for m ≥ 2:∥∥∥a(n)

∥∥∥m
lm(Z)

=
∑
k∈Z

(
|ak|m−1 |ak|

)
≤
√∑
k∈Z

(
|ak|m−1

)2 ∑
k∈Z
|ak|2

=
√∑
k∈Z

(
|ak|m−1

)2
· C · (Var(Gn))1/2 (4.38)

≤
∑
k∈Z
|ak|m−1 · C · (Var(Gn))1/2

=
∥∥∥a(n)

∥∥∥m−1

lm−1(Z)
· C · (Var(Gn))1/2 (4.39)

by the Cauchy–Schwarz inequality. Then (4.38) and (4.39) imply

Cn,1 =
∑
k∈Z
|ak|3 (Var(Gn))−3/2 ≤

∑
k∈Z
|ak|4

1/2

(Var(Gn))−1 = Cn,2,

Cn,3 =
∑
k∈Z
|ak|5

1/2

(Var(Gn))−5/4 ≤

∑
k∈Z
|ak|4 (Var(Gn))1/2

1/2

(Var(Gn))−5/4 = Cn,2,

Cn,4 =
∑
k∈Z
|ak|6

1/2

(Var(Gn))−3/2 ≤

∑
k∈Z
|ak|5 (Var(Gn))1/2

1/2

(Var(Gn))−3/2 ≤ Cn,2.

So, we choose γ1(t) = γ2(t) := Cect
(
(1 + t1/2 + t)Cn

)
for (A1) and (A2), and Cn := Cn,2.

�
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5. Non-uniform Berry–Esseen bounds for L2-Rademacher- and
L2-Poisson-functionals

In this chapter we obtain non-uniform Berry–Esseen bounds for L2-Rademacher and Poisson-
functionals. The starting points are the corresponding uniform bounds, which were proven
in [36] for the Rademacher respectively in [64] for the Poisson case in the context of normal
approximation by Malliavin–Stein method. The core of our proof is then to show non-uniform
bounds for the fragments of the Stein-equation; these bounds require the existence of higher
moments of the functionals and lead ultimately to the important prefactor of our non-uniform
Berry–Esseen bounds. In the second section we study two applications in the Rademacher
case, namely infinte weighted 2-runs and subgraph counting in the Erdős–Rényi random
graph.

5.1. Main Results. We present our first main result:

Theorem 5.1 (Non-uniform Berry–Esseen bound for Rademacher-functionals). Let F ∈ D1,2

with E[F ] = 0,Var(F ) = 1 and E[F 2k] < C for fixed k ∈ N. Further

Ffz(F ) + 1{F>z} ∈ D1,2 ∀z ∈ R,

1
√
pq
DF

∣∣∣DL−1F
∣∣∣ ∈ Dom(δ).

Then, for any z ∈ R,

|P(F ≤ z)− Φ(z)| ≤ C

(1 + |z|)k

(E(1− 〈DF,−DL−1F 〉
)2
)1/2

+
E(δ( 1

√
pq
DF

∣∣∣DL−1F
∣∣∣))2

1/2,
and C is a constant depending on k ∈ N.

Proof of Theorem 5.1. By Stein’s method and the proof of [36, Theorem 3.1] we have for
z ∈ R

|P(F ≤ z)− Φ(z)| = |E[f ′z(F )− Ffz(F )]| ≤ J1 + J2 (5.1)

with

J1 := E
∣∣∣f ′z(F )

(
1− 〈DF,−DL−1F 〉

)∣∣∣ ,
J2 := E

[
(Ffz(F ) + 1{F>z})δ

(
1
√
pq
DF

∣∣∣DL−1F
∣∣∣)] .

For the upcoming computation we split J2 into two terms, namely

|J2| ≤ E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ ∣∣∣Ffz(F ) + 1{F>z}

∣∣∣] ≤ J21 + J22

with

J21 := E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ |Ffz(F )|

]
,

J22 := E
[∣∣∣∣∣δ
(

1
√
pq
DF

∣∣∣DL−1F
∣∣∣)∣∣∣∣∣ 1{F>z}

]
.
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Now we continue by applying the Cauchy–Schwarz inequality on every of our terms of interest,
such that

J1 ≤ (E |f ′z(F )|2)1/2
(
E
(
1− 〈DF,−DL−1F 〉

)2
)1/2

,

J21 ≤ (E |Ffz(F )|2)1/2

E(δ( 1
√
pq
DF

∣∣∣DL−1F
∣∣∣))2

1/2

,

J22 ≤ (P(F > z))1/2

E(δ( 1
√
pq
DF

∣∣∣DL−1F
∣∣∣))2

1/2

.

To bound the fragments of the Stein-equation we refer to the proof of [67, Theorem 2], where
the authors considered Stein-equations fo non-normal approximation, but their arguments are
also valid for normal approximation by choosing g(x) = x in their framework. In particular,
in their condition (A4) we can choose τ arbitrary, e.g. τ = 1

2 . We extend our adaption of the
authors work by also referring to the proof of [67, Theorem 3]. So, in what follows we will
mention the relevant passages of both proofs explicitly. Note, that our appearing constants
will very likely depend on k ∈ N, but we will just write C. The core of our proof is to show
that

(E |f ′z(F )|2)1/2 ≤ C

(1 + |z|)k , (5.2)

(E |Ffz(F )|2)1/2 ≤ C

(1 + |z|)k , (5.3)

(P(F > z))1/2 ≤ C

(1 + |z|)k . (5.4)

case z > 0:
Proof of (5.2) and (5.4): We follow the proof of inequality (12) in [67], such that we write

E |f ′z(F )|2 = E[f ′z(F )21{F≤0}] + E[f ′z(F )21{0<F≤z/2}] + E[f ′z(F )21{F>z/2}]. (5.5)

and bound these terms separately. First, by inequality (14) in [67], we get

E[f ′z(F )21{F≤0}] ≤
Ce−z

2

z2 = Cz2k−2e−z
2

z2k ≤ C

z2k ,

using in particular z2le−z
2 ≤ C ∀ l ∈ N. Secondly,

E[f ′z(F )21{0<F≤z/2}] ≤
[
C
(

1 + z

2e
z2/8

)2
e−z

2 1
z2

]

≤
[
C

(
e−z

2

z2 + e−3z2/4
)]

=
[
C

(
z2k−2e−z

2

z2k + z2ke−3z2/4

z2k

)]

≤ C

z2k .

This technique of adding the desired exponent of z was used in the middle of the proof of
[67, Theorem 3]. Last, we can bound the third term of (5.5) and show also (5.4) by using
(2.12) and Markov’s inequality for

P(F > z) ≤ P(F 2k > z2k) ≤ E[F 2k]
z2k <

C

z2k ∀ z > 0.
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Proof of (5.3): We adapt the proof of inequality (17) in [67] for the following bounds:

E[(Ffz(F ))2] = E
[(
f ′z(F )−

(
1{F≤z} − Φ(z)

))2
]

≤ C
(
E
[
(f ′z(F ))2]+ E

[(
1{F≤z} − Φ(z)

)2
])

≤ C
(
C

z2k + E
[(

1{F≤z} − Φ(z)
)2
])
, (5.6)

where we used the Stein-equation (2.4) as well as the AM-GM-inequality and (5.2) for the
first respectively the second inequality. For the remaining expectation we obtain

E
[(

1{F≤z} − Φ(z)
)2
]

= E
[
(1− Φ(z))2 1{F≤z}

]
+ E

[
Φ(z)21{F>z}

]
≤ C

z2k (5.7)

by Markov’s inequality and inequality (13) in [67].

case z ≤ 0:
To treat this case, first of all we can go into the proof of [36, Theorem 3.1], having in mind
that 1 = 1{F>z}+ 1{F≤z}, and receive a bound very similar to (5.1), where J1 stays the same
but the indicator inside J2 changes to 1{F≤z}. A direct consequence of this procedure is a
modified (5.4) that we prove with the same arguments:

P(F ≤ z) ≤ P(F 2k > z2k) ≤ E[F 2k]
z2k <

C

z2k ∀ z ≤ 0.

Proof of (5.2) and (5.3): As the authors explain themselves at the end of the proof of [67,
Theorem 2] no big modifications of their argumentation are needed. The modified version of
(5.5) is given by

E |f ′z(F )|2 = E[f ′z(F )21{F≤z/2}] + E[f ′z(F )21{z/2≤F≤0}] + E[f ′z(F )21{F>0}],

and similar arguments lead to (5.2) in this case.
To prove (5.3) in the case z ≤ 0, we can keep (5.6) as in the previous case, but slightly change
(5.7) to

E
[(

1{F≤z} − Φ(z)
)2
]

= 2P(F ≤ z) + 2Φ(z)2 ≤ C

z2k

by the AM-GM- and Markov’s inequality as well as inequality (25) in [67].
To obtain (5.2) – (5.4) only a few steps are missing. Having in mind that (2.10) and (2.12)
hold, it is possible to consider the minimum of our bounds and 1 for all substantial subterms.
Similar to [67] this goes along with

min
(

1, C

|z|2k

)
≤ C

(1 + |z|)2k , (5.8)

which we would like to show explicitly with respect to our more general exponent of z,
compared to [67]. If |z|2k ≤ C, the minimum is 1 and (5.8) is equivalent to

(1 + |z|)2k ≤ C,

which is true, as our assumption implies |z|l ≤ C for 1 ≤ l ≤ 2k. If |z|2k > C, the minimum
is C

|z|2k and (5.8) is equivalent to

C
(1 + |z|)2k

|z|2k
≤ C.
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We show this last inequality by the Binomial theorem, which leads to

C
(1 + |z|)2k

|z|2k
= C

2k∑
l=0

(
2k
l

)
|z|l−2k

≤ C

(
1
|z|2k

+ · · ·+ C2k,s
1
|z|s

+ · · ·+ 1
)

< C
( 1
C

+ · · ·+ C2k,s
1

Cs/2k + · · ·+ 1
)

= 1 + · · ·+ C2k,sC
1−s/2k + · · ·+ C

≤ C

where C2k,s is a constant to bound the corresponding binomial coefficient.
Finally, we receive the desired prefactor of the theorem by taking the squareroot at last.

�

Remark 5.2. Since we adapted the arguments of [67] and [97] we were able to prove non-
uniform Berry–Esseen bounds without use of concentration inequalities. Although we can
write down our general result for any k ∈ N, the case k = 3 is of special interest for us: It
visualizes that we achieve a prefactor of order (1 + |z|)−3 only at the cost of existing sixth
moments of our functionals. If we compare our result to the classical i.i.d.-result, we see
that we are unfortunately not as good as the authors of [21]. Nevertheless our result makes
it possible to obtain non-uniform Berry–Esseen bounds without much effort, if the uniform
case was already studied.

A direct consequence of Theorem 5.1 is the following result, mostly obtained by a second-
order Gaussian Poincaré inequality given by [36, Theorem 4.1]:

Theorem 5.3 (Non-uniform second-order Gaussian Poincaré inequality). Let F ∈ D1,2 with
E[F ] = 0,Var(F ) = 1 and E[F 2k] < C for fixed k ∈ N. Further

Ffz(F ) + 1{F>z} ∈ D1,2 ∀z ∈ R,

1
√
pq
DF

∣∣∣DL−1F
∣∣∣ ∈ Dom(δ).

Then, for any z ∈ R,

|P(F ≤ z)− Φ(z)| ≤ C

(1 + |z|)k

(√
15
2

√
B1 +

√
3

2

√
B2 + 2

√
B3 + 2

√
6
√
B4 + 2

√
3
√
B5

)
,

where
B1 :=

∑
j,k,l∈N

√
E[(DjF )2(DkF )2]

√
E[(DlDjF )2(DlDkF )2],

B2 :=
∑

j,k,l∈N

1
plql

E[(DlDjF )2(DlDkF )2],

B3 :=
∑
k∈N

1
pkqk

E[(DkF )4],

B4 :=
∑
k,l∈N

1
pkqk

√
E[(DkF )4]

√
E[(DlDkF )4],

B5 :=
∑
k,l∈N

1
pkqkplql

E[(DlDkF )4],

and C is a constant depending on k ∈ N.
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Proof of Theorem 5.3. By Theorem 5.1 we already know that

|P(F ≤ z)− Φ(z)| ≤ C

(1 + |z|)k

(E(1− 〈DF,−DL−1F 〉
)2
)1/2

+
E(δ( 1

√
pq
DF

∣∣∣DL−1F
∣∣∣))2

1/2.
Moreover in the proof of [36, Theorem 4.1] it is shown that(

E
(
1− 〈DF,−DL−1F 〉

)2
)1/2
≤
√

15
2

√
B1 +

√
3

2

√
B2,E(δ( 1

√
pq
DF

∣∣∣DL−1F
∣∣∣))2

1/2

≤ 2
√
B3 + 2

√
6
√
B4 + 2

√
3
√
B5.

�

It is also possible to formulate an analogous version of Theorem 5.1 for Poisson functionals:

Theorem 5.4 (Non-uniform Berry–Esseen bound for Poisson-functionals). Let F ∈ D̂1,2 with
E[F ] = 0,Var(F ) = 1 and E[F 2k] < C for fixed k ∈ N. Further

E
∫
X

∫
X

[
Dy

(
DxF

∣∣∣DxL
−1F

∣∣∣)]2 µ2(dx, dy) <∞,

Ffz(F ) ∈ D̂1,2 ∀z ∈ R.
Then, for any z ∈ R,

|P(F ≤ z)− Φ(z)| ≤ C

(1 + |z|)k

((
E
(
1− 〈DF,−DL−1F 〉

)2
)1/2

+
(
E
(
δ
(
DF

∣∣∣DL−1F
∣∣∣))2

)1/2
)
,

and C is a constant depending on k ∈ N.

Proof of Theorem 5.4. By Stein’s method and the proof of [64, Theorem 1.12 ](special case
E[F ] = 0, σ2 = 1) we have for z ∈ R

|P(F ≤ z)− Φ(z)| = |E[f ′z(F )− Ffz(F )]| ≤ J1 + J2

with
J1 := E

∣∣∣f ′z(F )
(
1− 〈DF,−DL−1F 〉

)∣∣∣ ,
J2 := E

[
(Ffz(F ) + 1{F>z})δ

(
DF

∣∣∣DL−1F
∣∣∣)] .

Since we consider normal approximation, from here on the proof is just an adaption of the
proof of Theorem 5.1. �

Remark 5.5. We summarize our results: We have shown non-uniform Berry–Esseen bounds
for Rademacher- and Poisson-functionals. The core of the proofs, including [67, Theorem 2],
is to start from the known terms of the corresponding uniform Berry–Esseen bound and
separate them by the Cauchy–Schwarz inequality into a part, which highly depends on the
used technique as exchangeable pairs or Malliavin–Stein, and a part, which consists of a
fragment of a Stein-equation. While the first ones can be kept almost as the uniform Berry–
Esseen bound, the latter ones have to be bounded precisely, which requires the existence of
higher moments for our arguments.
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5.2. Applications.

5.2.1. Application: Infinte weighted 2-runs. We recall some basic notations and properties.
Let X = (Xi)i∈Z be a double-sided sequence of i.i.d. Rademacher random variables such
that P(Xi = 1) = P(Xi = −1) = 1

2 and let for each n ∈ N, (a(n)
i )i∈Z be a double-sided

square-summable sequence of real numbers.
The sequence (Fn)n∈N of standardized infinte weighted 2-runs is then defined as

Fn := Gn − E[Gn]√
Var(Gn)

, Gn :=
∑
i∈Z

a
(n)
i ξiξi+1, n ∈ N,

where ξi := Xi+1
2 for i ∈ Z. Since it is often nice to work with centered random variables we

rewrite Fn as

F := Fn = 1√
Var(Gn)

∑
i∈Z

a
(n)
i

[
ξiξi+1 −

1
4

]
= 1

4
√

Var(Gn)

∑
i∈Z

a
(n)
i [Xi +XiXi+1 +Xi+1] .

We recall further
∥∥∥a(n)

∥∥∥
lp(Z)

:= (∑i∈Z |ai|
p)1/p

< ∞∀p ≥ 2 as (a(n)
i )i∈Z ∈ l2(Z), as well as

E[Xk] = 1 for k even and E[Xk] = 0 for k odd, and Var(Gn) = O
(∥∥∥a(n)

∥∥∥2

l2(Z)

)
by (4.18).

Our corresponding result is given as follows.

Theorem 5.6 (Non-uniform Berry–Esseen bound for 2-runs). In the setting of infinite
weighted 2-runs from above we have

|P(F ≤ z)− Φ(z)| ≤ C

(1 + |z|)3


∥∥∥a(n)

∥∥∥2

l4(Z)

‖a(n)‖2
l2(Z)

 ,
and C is a constant depending on the coefficient sequence (a(n)

i )i∈Z.

Proof. We want to apply Theorem 5.1 for k = 3, so we have to show that

E[F 6
n ] = 1

46(Var(Gn))3

∑
(i,j,k,l,m,r)∈Z6

a
(n)
i a

(n)
j a

(n)
k a

(n)
l a(n)

m a(n)
r E(Ai · . . . · Ar) ≤ C <∞, (5.9)

where Ai = [Xi +XiXi+1 +Xi+1]. If we compute Ai · . . . · Ar for a fixed multi-index
(i, j, k, l,m, r), we get 36 summands in total. Among these summands the following cases
are possible (apart from the designation of the indices, e.g. i or i+ 1):

(i) 6 single X’s, 0 pairs, so 6 X’s in total,
(ii) 5 single X’s, 1 pair, so 7 X’s in total,
(iii) 4 single X’s, 2 pairs, so 8 X’s in total,
(iv) 3 single X’s, 3 pairs, so 9 X’s in total,
(v) 2 single X’s, 4 pairs, so 10 X’s in total,
(vi) 1 single X, 5 pairs, so 11 X’s in total,
(vii) 0 single X’s, 6 pairs, so 12 X’s in total

and by a pair we denote a term of the form XiXi+1.
case (i): When is E[XiXjXkXlXmXr] 6= 0? Since the odd moments of X are equal to 0
and the random variables are independent this happens if and only if the numbers of equal
indices are even, namely

• 6 equal indices, e.g. E[X6
i ] = 1,

• 4 and 2 equal indices, e.g. E[X4
i ] · E[X2

i ] = 1,
• 2 and 2 and 2 equal indices, e.g. E[X2

i ] · E[X2
j ] · E[X2

k ] = 1.
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Note, that the indices of a(n) and X do not have to be exactly the same, but up to a natural
number. In any case the product of the a(n)′s has length six and with respect to the subcases
of equal indices mentioned before, we can bound the corresponding subterms by the AM-
GM-inequality, cf. page 82 for examples of this strategy, to get

C
∥∥∥a(n)

∥∥∥6

l6(Z)

(Var(Gn))3 = O(1)

and

C
∥∥∥a(n)

∥∥∥4

l4(Z)

∥∥∥a(n)
∥∥∥2

l2(Z)

(Var(Gn))3 = O(1)

and

C
∥∥∥a(n)

∥∥∥6

l2(Z)

(Var(Gn))3 = O(1),

where we also used Var(Gn) = O
(∥∥∥a(n)

∥∥∥2

l2(Z)

)
and

∥∥∥a(n)
∥∥∥m
lm(Z)

≤
∥∥∥a(n)

∥∥∥m−1

lm−1(Z)
·C ·Var(Gn))1/2,

see (4.39).
case (ii): Since i 6= i+ 1 it is E[XiXi+1XjXkXlXmXr] = 0 for any index combiantion of this
type.
case (iii): Since i 6= i + 1 and j 6= j + 1 there can not be more than six equal indices in
E[XiXi+1XjXj+1XkXlXmXr] for any index combination of this type. In other words, equal
indices are from (up to six) different index sets. Note further that although the number of
X ′s increases with every case, the number of a(n)′s always stays at six. So up to a certain
degree we have a freedom of choice how we construct our

∥∥∥a(n)
∥∥∥
lm(Z)

, but m ≤ 6. Basically
our bound will be a mixture of the norms appearing in case (i).
cases (iv) and (vi): These cases are analogous to (ii).
cases (v) and (vii): These cases are analogous to (iii).
Putting all the cases together we have shown (5.9). Now we refer to the uniform bound in
[36, Theorem 1.1] to receive the desired result. �

5.2.2. Application: Subgraph counting in the Erdős–Rényi random graph. Again, we recall
some basic notations. We start with the complete graph on n vertices and keep an edge
with probability p ∈ [0, 1], while we remove it with probability q := 1 − p, for all edges
independently from each other. The outcome is known as the classical Erdős–Rényi random
graph G(n,p) and in many applications p depends on n. We fix a graph G0 with at least one
edge and consider the number W of subgraphs H ⊂ G(n, p), which are isomorphic to G0.
The corresponding standardized random variable is then defined as

F := W − E[W ]√
Var(W )

,

which is basically the standardized number of copies of G0 in G(n, p).
For our result we have to define the important quantity

Ψ := min
H⊂G0
eH≥1

{nvHpeH} ,

where vH denotes the number of vertices of a subgraph H of G0 and eH the number of edges,
respectively. Our corresponding result is given as follows.
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Theorem 5.7 (Non-uniform Berry–Esseen bound for subgraph counts). In the setting of
subgraph counts in the Erdős–Rényi random graph from above we have

|P(F ≤ z)− Φ(z)| ≤ C

(1 + |z|)k
O
(
(qΨ)− 1

2
)
,

and C is a constant depending on k ∈ N.

Proof. In [86, Theorem 2] a central limit theorem for F was shown and the core of the proof
was the method of moments. The idea of this method is to show that the moments of F con-
verge to the moments of the standard normal distribution, which is uniquely determined by
its moments. So, in particular all moments of F are bounded and we can apply Theorem 5.1.
Now we refer to the uniform bound in [36, Theorem 1.2] to receive the desired result. �
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