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Abstract

Intuitionistic logicians generally accept that a negation can be understood
as an implication to absurdity. An alternative account of constructive nega-
tion is to define it in terms of a primitive notion of falsity. This approach was
originally suggested by D. Nelson, who called the operator constructible falsity,
as complementing certain constructive aspects of negation. For intuitionistic
logicians to be able to understand this new notion, however, it is desirable that
constructible falsity has a comprehensive relationship with the traditional intu-
itionistic negation. This point is especially pressing in H. Wansing’s framework
of connexive constructible falsity, which exhibits unusual behaviours. From
this motivation, this paper enquires what kind of interaction between the two
operators can be satisfactory in the framework. We focus on a few natural-
looking candidates for such an interaction, and evaluate their relative merits
through analyses of their formal properties with both proof-theoretic and se-
mantical means. We in particular note that some interactions allow connexive
constructible falsity to provide a different solution to the problem of the failure
of the constructible falsity property in intuitionistic logic. An emerging per-
spective in the end is that intuitionistic logicians may have different preferences
depending on whether absurdity is to be understood as the falsehood.
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1 Introduction
The notion of constructible falsity (to be denoted by ∼) was first introduced by D. Nelson
[21] as an operator capturing the constructive procedures to falsify conjunctive and universal
statements. Intuitionistic negation (to be denoted by ¬), on the other hand, does not fully
capture these methods. As a result, while ⊢ ∼(A ∧ B) implies ⊢ ∼A or ⊢ ∼B (constructible
falsity property) in a Nelsonian system, an analogous property does not hold with respect
to ¬ in intuitionistic logic.

Constructible falsity can thus be seen as a way to improve the account offered by in-
tuitionistic negation. This does not, however, mean that one accepting such a view has to
give up intuitionistic negation as an intuitionistically acceptable operator. Indeed, in Nel-
son’s original system N3, intuitionistic negation is definable by taking ¬A := A → ∼A, as
noted by A.A. Markov [17]. Alternatively, one may allow the absurdity constant ⊥ inside
a system with constructible falsity, and define intuitionistic negation as an implication to
absurdity, i.e. ¬A := A → ⊥. The accommodation of ⊥ to the language seems acceptable
in light of Nelson’s remark that distinguishing the two proof methods for the negation of
a universal statement affords one to distinguish the meaning of ∼∀xA and ∀xA → ⊥ [21,
p.17]. If one is interested in talking about the meaning of ⊥ (as part of the latter formula),
then it seems unproblematic to have it in one’s vocabulary. An axiomatisation of N3 with
both negations as primitive is indeed used by N.N. Vorob’ev [31]. He suggests that such a
formalisation is more suitable as a model of mathematical thoughts: his point appears to be
that reductio ad absurdum used a lot in mathematics corresponds conceptually to ¬A but
not to A → ∼A. It is a primitive procedure independent of refutation (corresponding to ∼),
and the two negations must be treated as primitive, in order to reflect the primitive status
of the procedures.

This relationship between the negations change when the paraconsistent variant N4
(formulated1 by A. Almukdad and Nelson [1]) of N3 is considered. Intuitionistic negation
is not definable in N4, so the choice of whether to include ⊥ becomes more significant. The
version of N4 with ⊥ is commonly denoted by N4⊥, and both logics and their extensions
are investigated by S.P. Odintsov [23]. The book [15] by N. Kamide and H. Wansing treats
the proof theory of both systems and their neighbours.

Consider now a scenario where an intuitionistic logician (here we just mean somebody
who understands the connectives of intuitionistic logic, without necessarily being an intu-
itionist or constructivist.) tries to make sense of constructible falsity. In all three (proposi-
tional) systems we have mentioned, it is possible to convert each formula to an equivalent
formula in which ∼ occurs only in front of prime formulas. So in a sense, the understanding
of the ‘meaning’ of ∼A Nelson refers to is reduced to the understanding of ∼p (and ∼⊥ if
⊥ is taken as primitive). How then can an intuitionistic logician grasp the meaning of ∼p?

In the case of N3, we have ∼A → ¬A as a theorem, and so an intuitionistic logician
may understand ∼p as a strengthening of ¬p. This is evidenced by how Markov [17] calls
constructible falsity strong negation. For N4 (and N4⊥), on the other hand, there is no

1Equivalent systems were already introduced by D. Prawitz [28] and F. von Kutschera [30]: see
[32] for more historical details about N4.
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such or any other constraint that relates ∼p with ¬p or its negand p. It behaves almost like
another propositional variable.2 Therefore it seems an intuitionistic logician would have a
harder time understanding the meaning of ∼p in N4 (and N4⊥) than in N3.

An analogous question can be raised for other logics with constructible falsity based
on (positive) intuitionistic logic. An especially interesting case is that of the system C
introduced by Wansing [33]. This system is obtained from N4 by changing the condition
under which an implication is falsified. As a result of this change, C satisfies the criteria of
connexive logic [18, 35]: namely, it validates the theses proposed by Aristotle (AT,AT’) and
Boethius (BT,BT’):

AT: ∼(∼A → A) BT: (A → B) → ∼(A → ∼B)
AT’: ∼(A → ∼A) BT’: (A → ∼B) → ∼(A → B)

meanwhile invalidating (A → B) → (B → A) which would hold if → were a biconditional.
A further characteristics of C is that it has as theorems a pair of certain formulas A and
∼A, i.e. it is a negation inconsistent, yet non-trivial system.

C shares with N4 the characteristics that there is no stipulation for ∼p. At the same
time, the option of extending it with ∼A → ¬A is not available: it results in a trivial system
because of the negation inconsistency. A different way of extending C is proposed by H.
Omori and Wansing [26] and later explored Kripke-semantically by G.K. Olkhovikov [24]
and algebraically by D. Fazio and Odintsov [9]. The extension C3 is obtained with the
addition of A ∨ ∼A as an axiom schema. Since p ∨ ∼p holds in C3, it is arguably easier
for intuitionistic logicians to make sense of ∼p in C3 than in C.3 On the other hand, they
may not be too satisfied with the non-constructivity of the system, such as the failure of the
disjunction property.

A question we may ask then is whether there is a satisfactory system of connexive con-
structible falsity which is more understandable and acceptable for intuitionistic logicians.4
It is desired that such a system (i) gives a certain stipulation for ∼p as in C3, but (ii)
remains constructive. In this enquiry, we presuppose the existence of ⊥ in the language,
following the lines of justification mentioned above. Thus more precisely, our concern will
be with respect to the expansions5 Cab and Cab

3 of C and C3 with the absurdity constant.
In this paper, we shall study formal properties of a few extensions of Cab which form

a natural hierarchy between Cab and Cab
3 when seen through sequent rules. Our aim is

2Here it might be suggested that an intuitionistic logician can understand the meaning of ∼p by
an analogy with the behaviour of propositional variables. Encodability of derivations in an N4-style
system into a two-sorted λ-calculus [34] seems to also support such a view. This can be an answer,
but it would not satisfy him if he expected (perhaps mistakenly) to see something ‘negative’ in the
behaviour of ∼p that would justify him to take it as a negation.

3It exhibits a property often ascribed to negation, which may well be understood (without
endorsement) as a claim of decidability, perhaps by an analogy with classical negation.

4As one reviewer pointed out, such a system may be seen to motivate connexive logics from the
viewpoint of intuitionistic logic, thus has an affinity with the discussion in [37]. On the other hand,
our focus is not directly on the connexive theses themselves.

5This type of expansions is already studied in [9], but there is a slight variation, as we shall
discuss in the next section.
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thereby to find out which notion of connexive constructible falsity is more satisfactory for
intuitionistic logicians. We shall concentrate on two candidates for the axiom schemata.
The first is the schema of potential omniscience ¬¬(A ∨ ∼A), which was introduced and
investigated by I. Hasuo and R. Kashima [11] in the context of N4⊥. Also, as pointed out
by A. Avellone et al. [2], the constructive logic of classical truth by P. Miglioli et al. [19]
can be seen as N3 plus potential omniscience, when the classical truth is identified with
the intuitionistic double negation. Within the context of C, this schema already appears in
the proof of [9, Theorem 49]. The second candidate is the axiom schema ¬A → ∼A whose
implication is dual to ∼A → ¬A; we shall call the schema weak negation on this ground.

The structure of this paper is as follows: Section 2 introduces Hilbert-style systems and
sequent calculi for Cab and its extensions, and shows their equivalence. Section 3 treats
Kripke semantics for the systems, and establishes the soundness and completeness of the
systems with respect to the sequent calculi following the general argument presented by
O. Lahav and A. Avron [16]. Section 4 then applies the results so far to observe some
properties (with an emphasis on negation inconsistency) of the extensions with potential
omniscience/weak negation, which can be informative for the evaluation of the systems by
intuitionistic logicians. In Section 5, we introduce another type of sequent calculus, formu-
lated originally for N4 in [15], with better proof-theoretic properties. In particular, we show
that the calculus for potential omniscience enjoys the subformula property. In Section 6,
we make an observation concerning the relation between ∼ and ¬, which provides a new
perspective on the connexive constructible falsity. Lastly, section 7 sums up the insights to
evaluate the relative advantages of the systems.

2 Proof Systems
In this section, we shall introduce Hilbert-style axiomatic systems as well as Gentzen-style
sequent calculi for the logics that concern us.

2.1 Hilbert-style Systems
The main language L we shall consider in this paper is defined by the following form.

A ::= p | ∼A | (A ∧ A) | (A ∨ A) | (A → A) | ⊥.

If we remove ⊥ from the definition, it defines another propositional language L+. In both
languages, (A ↔ B) := (A → B) ∧ (B → A) and in L, ¬A := A → ⊥. The set of all
formulas in L (L+) will be denoted by Form (Form+). The set of subformulas of a formula
A and of a set Γ of formulas will be denoted by Sub(A) and Sub(Γ).

The complexity c(A) of a formula A is defined by the following clauses: c(p) = c(⊥) = 0,
c(∼A) = c(A) + 1 and c(A ◦ B) = c(A) + c(B) + 2 for ◦ ∈ {∧, ∨, →}.

We first introduce Wansing’s system C [33] in L+ and its expansion Cab in L which
becomes the basis of our enquiry.

Definition 2.1. The system C in L+ is defined by the next axiom schemata and a rule.
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(A→(B→C))→((A→B)→(A→C)) (S)
A→(B→A) (K)

A→(B→(A∧B)) (CI)
(A1∧A2)→Ai (CE)
Ai→(A1∨A2) (DI)

(A→C)→((B→C)→((A∨B)→ C)) (DE)

∼(A∧B)↔(∼A∨∼B) (NC)
∼(A∨B)↔(∼A∧∼B) (ND)

∼(A→B)↔(A→∼B) (NI)
∼∼A↔A (NN)

A A → B
B

(MP)

A derivation in C of A from a set of formulas Γ is a finite sequence B1, . . . , Bn ≡ A such
that each Bi is either an instance of one of the axiom schemata, an element of Γ, or obtained
from the preceding elements by means of (MP). Then for derivability, we write Γ ⊢h ∆ if
there is a derivation of a disjunction A1 ∨ . . . ∨ An from Γ, where ∆ is a non-empty set of
formulas and A1, . . . , An ∈ ∆.

We shall write A1, . . . , Am, Γ ⊢h ∆, B1, . . . , Bn for {A1, . . . , Am}∪Γ ⊢h ∆∪{B1, . . . , Bn}.
If ∆ is a singleton, we will occasionally omit the parentheses.

The second system is obtained from C by expanding the language.

Definition 2.2. The system Cab in L is defined from the axiomatisation of C by an addi-
tional axiom schema:

⊥ → A (EFQ)

The relation Γ ⊢hab ∆ is defined as before, except that we allow ∆ to be empty. Γ ⊢hab ∅
will mean that there is a derivation of ⊥ from Γ.

We now define a few more systems from Cab. Among these, Cab
3 is an expansion of the

system C3 [25] with ⊥.

Definition 2.3. The systems Cab
po, Cab

wn and Cab
3 are each defined with a respective addi-

tional axiom schema.
¬¬(A ∨ ∼A) (PO)
¬A → ∼A (WN)

A ∨ ∼A (3)

We shall use ⊢hpo, ⊢hwn and ⊢h3 for the derivability of the systems.

Remark 2.4. One possible option in defining the systems is to have ∼⊥ (or equivalently,
A → ∼⊥) as an additional axiom schema, as is done in the case of N4⊥, see e.g. [15, 23, 22].
Intuitively, it states that what is absurd is false. This option is indeed adopted in the systems
C⊥, C3⊥ and their extensions in [9]. On the other hand, we are not assuming this, chiefly
due to ∼¬A being one of its consequences. This means that every intuitionistic negation is
false, which seems to be a very strong claim.6 For another reason, ∼⊥ is actually provable
in the current definition of Cab

wn and Cab
3 , so for these systems we do not need the formula

6T.M. Ferguson [10] however suggests that it may be possible to motivate the feature using an
adequate Brouwer-Heyting-Kolmogorov interpretation.
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as an axiom schema (thus Cab
3 is equivalent to C3⊥). This suggests that each system has

already in mind, so to speak, whether and what to say about the falsity of ⊥. This may be
worthwhile to be respected (we shall have a few more words on this topic in the conclusion).

Since (MP) is the only rule present in the systems, it is straightforward to observe that
the deduction theorem holds for each of the above systems.

Theorem 2.5. For ∗ ∈ {ab, po, wn, 3} we have:

Γ, A ⊢h∗ B if and only if Γ ⊢h∗ A → B.

Proof. The ‘only if’ direction is shown by induction on the depth of derivation. The ‘if’
direction follows by (MP).

It is helpful at this stage to note the (non-strict) relative strength of the systems.

Proposition 2.6. The following statements hold.

(i) If Γ ⊢hab ∆ then Γ ⊢hpo ∆.

(ii) If Γ ⊢hpo ∆ then Γ ⊢hwn ∆.

(iii) If Γ ⊢hwn ∆ then Γ ⊢h3 ∆.

Proof. (i) is immediate from the definition; (ii) follows since it follows from (WN) that
⊢hwn ¬∼A → ¬¬A, from which (PO) follows. For (iii), from (3) it follows that ⊢h3 (A →
∼A) → ∼A, and also ⊢h3 ¬A → (A → ∼A) by (EFQ); so (WN) follows.

2.2 Sequent Calculi
We shall next introduce (multi-succedent) sequent calculi for Cab, Cab

po and Cab
wn. We shall

use the framework in which each sequent Γ ⇒ ∆ is such that Γ and ∆ are finite sets7 of
formulas (cf. e.g. the system LJ{ } in [3, p.64]). The empty set will be denoted by a blank.

First we define the calculus for Cab.

Definition 2.7. The calculus GCab is defined by the following rules.

A ⇒ A (Ax)

⊥ ⇒ (L⊥) Γ ⇒ ∆, A A, Γ′ ⇒ ∆′
(Cut)

Γ, Γ′ ⇒ ∆, ∆′

Γ ⇒ ∆ (LW)
A, Γ ⇒ ∆

Γ ⇒ ∆ (RW)Γ ⇒ ∆, A

7In this setting, it is important to note that different sequents can be derived from the same rule
when applied to the same sequent. For instance, consider (L∼∼) applied to {A, B} ⇒ {C}: then
we can derive {∼∼A, B} ⇒ {C}, but we may also derive {∼∼A, A, B} ⇒ {C}, if the antecedent
set is conceived as {A} ∪ {A, B}.
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Ai, Γ ⇒ ∆ (L∧)
A1 ∧ A2, Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B (R∧)Γ ⇒ ∆, A ∧ B

A, Γ ⇒ ∆ B, Γ ⇒ ∆ (L∨)
A ∨ B, Γ ⇒ ∆

Γ ⇒ ∆, Ai (R∨)Γ ⇒ ∆, A1 ∨ A2

Γ ⇒ ∆, A B, Γ′ ⇒ ∆′
(L→)

A → B, Γ, Γ′ ⇒ ∆, ∆′
A, Γ ⇒ B (R→)Γ ⇒ A → B

∼A, Γ ⇒ ∆ ∼B, Γ ⇒ ∆ (L∼∧)∼(A ∧ B), Γ ⇒ ∆
Γ ⇒ ∆, ∼Ai (R∼∧)

Γ ⇒ ∆, ∼(A1 ∧ A2)

∼Ai, Γ ⇒ ∆ (L∼∨)∼(A1 ∨ A2), Γ ⇒ ∆
Γ ⇒ ∆, ∼A Γ ⇒ ∆, ∼B (R∼∨)

Γ ⇒ ∆, ∼(A ∨ B)

Γ ⇒ ∆, A ∼B, Γ′ ⇒ ∆′
(L∼→)∼(A → B), Γ, Γ′ ⇒ ∆, ∆′

A, Γ ⇒ ∼B (R∼→)
Γ ⇒ ∼(A → B)

A, Γ ⇒ ∆ (L∼∼)∼∼A, Γ ⇒ ∆
Γ ⇒ ∆, A (R∼∼)Γ ⇒ ∆, ∼∼A

where i ∈ {1, 2}. We write ⊢gab Γ ⇒ ∆ if there is a derivation in GCab of Γ ⇒ ∆ from the
0-premise rules, i.e. (Ax), (L⊥).

As usual, the formulas in Γ, ∆ etc. will be called contexts, a non-context formula in the
premises of a rule will be called active, and a non-context formula in the conclusion of a rule
will be called principal.

For Cab
po and Cab

wn, we have the following calculi.

Definition 2.8. The calculi GCab
po and GCab

wn are respectively defined from GCab each
with an additional rule:

A, Γ ⇒ ∼A, Γ ⇒ (gPO)Γ ⇒
A, Γ ⇒ ∼A, Γ ⇒ ∆ (gWN)Γ ⇒ ∆

The relations ⊢gpo and ⊢gwn are defined analogously to ⊢gab

A calculus for Cab
3 can also be defined, as is done in [26] for C3, by allowing the

succedent of both premises in (gWN) to be non-empty. Hence (PO), (WN) and (3) give a
natural hierarchy of sequent rules, which can motivate our focus on the axioms.

We proceed to establish the correspondence between the Hilbert-style systems and the
sequent calculi.

Proposition 2.9. Let ∗ ∈ {ab, po, wn} and Γ, ∆ be finite sets of formulas. Then Γ ⊢h∗ ∆
if and only if ⊢g∗ Γ ⇒ ∆.

Proof. The ‘only if’ direction is shown by induction on the depth of derivation in the Hilbert-
style systems. Here we look at the case of (PO) in GCab

po and (WN) in GCab
wn. For (PO):
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A ⇒ A (R∨)
A ⇒ A∨∼A ⊥ ⇒ (L→)

A, ¬(A∨∼A) ⇒

∼A ⇒ ∼A (R∨)∼A ⇒ A∨∼A ⊥ ⇒ (L→)∼A, ¬(A∨∼A) ⇒
(gPO)¬(A∨∼A) ⇒

(RW),(R→)
⇒ ¬¬(A∨∼A)

(A double line indicates multiple applications of rules). For (WN), we have:

A ⇒ A ⊥ ⇒ (L→)
A, ¬A ⇒

∼A ⇒ ∼A (LW)∼A, ¬A ⇒ ∼A (gWN)¬A ⇒ ∼A (R→)⇒ ¬A → ∼A

For the ‘if’ direction, we show by induction on the depth of derivation in the sequent calculi.
Here we check the cases of (gPO) for GCab

po and of (gWN) for GCab
wn. For the former, by

I.H. we have A, Γ ⊢hpo ⊥ and ∼A, Γ ⊢hpo ⊥. By Theorem 2.5, Γ ⊢hpo ¬A and Γ ⊢hpo ¬∼A.
Hence Γ ⊢hpo ¬(A ∨ ∼A) and so by (PO) we conclude Γ ⊢hpo ⊥. For the latter, by I.H.
A, Γ ⊢hwn ⊥ and ∼A, Γ ⊢hwn B1 ∨ . . . ∨ Bn for some B1, . . . , Bn ∈ ∆. By Theorem 2.5
we obtain Γ ⊢hwn ¬A and Γ ⊢hwn ∼A → (B1 ∨ . . . ∨ Bn). Thus by (WN) we conclude
Γ ⊢hwn B1 ∨ . . . ∨ Bn, i.e. Γ ⊢hwn ∆.

3 Semantics
In this subsection, we shall introduce8 Kripke semantics for Cab, Cab

po and Cab
wn, and then

show that the systems are sound and complete with the semantics.

3.1 Kripke Semantics
We first introduce a Kripke semantics for Cab. The presentation here is a combination of
bilateral-style sequent calculi used for C in [33] and non-deterministic sequent calculi due
to O. Lahav and A. Avron [16]. We have a few more words about the latter in Section 3.3.

Definition 3.1. A Cab-frame F is a pair (W, ≤), where W is a non-empty set and ≤ is a
pre-ordering on W . A Cab-model M is a pair (F , V), where F is a Cab-frame, V = {V+, V−}
where V∗ : Form → P(W ) for ∗ ∈ {+, −}. We shall write w ∈ V∗(A) also as M, w ⊩∗

ab A
(M will be omitted when it is contextually clear). V must satisfy a general condition below:

(Upward Closure): w ⊩∗
ab A and w ≤ w′ implies w′ ⊩∗

ab A.

for both ∗ ∈ {+, −}. Moreover, the next conditions for the connectives must also be satisfied.

8A semantics for Cab
3 can be similarly given following [26], but it is outside our focus here.
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w ⊩+
ab ⊥ ⇔ never.

w ⊩+
ab A∧B ⇔ w ⊩+

ab A and w ⊩+
ab B.

w ⊩+
ab A∨B ⇔ w ⊩+

ab A or w ⊩+
ab B.

w ⊩+
ab A→B ⇔ ∀w′≥w(w′⊩+

abA⇒w′⊩+
abB).

w ⊩+
ab ∼A ⇔ w ⊩−

ab A.

w ⊩−
ab A∧B ⇔ w ⊩−

ab A or w ⊩−
ab B.

w ⊩−
ab A∨B ⇔ w ⊩−

ab A and w ⊩−
ab B.

w ⊩−
ab A→B ⇔ ∀w′≥w(w′⊩+

abA⇒w′⊩−
abB).

w ⊩−
ab ∼A ⇔ w ⊩+

ab A.

With respect to a Cab-model M and a sequent Γ ⇒ ∆, we shall write M, w ⊨ab Γ ⇒ ∆
if M, w ⊩+

ab A for all A ∈ Γ implies M, w ⊩+
ab B for some B ∈ ∆. If M, w ⊨ab Γ ⇒ ∆

for all w in M, then we shall write M ⊨ab Γ ⇒ ∆. Finally, we shall write ⊨ab Γ ⇒ ∆ if
M ⊨ab Γ ⇒ ∆ for all M.

Remark 3.2. The forcing relations ⊩+
ab/⊩−

ab may be seen to represent e.g. the concepts
of verification/falsification or (support of) truth/(support of) falsity [33]. In our scenario,
intuitionistic logicians can be assumed to understand the former relation, by identifying
it with the forcing relation of intuitionistic Kripke semantics (except the one for ∼, which
encodes ⊩−

ab in ⊩+
ab). The latter relation, on the other hand, needs an explanation, especially

when it comes to ⊩−
ab p for which no special restriction is given.

Next, we define Kripke semantics for Cab
po and Cab

wn.

Definition 3.3. Kripke semantics for Cab
po and Cab

wn (we shall use the subscripts po and
wn for ⊩ and ⊨.) are each defined from the one for Cab by the addition of the following
condition of (Potential Omniscience) and (Weak Negation), respectively:

(Potential Omniscience): ∀w′ ≥ w(w′ ⊮+
po A) implies ∃x ≥ w(x ⊩−

po A).
(Weak Negation): ∀w′ ≥ w(w′ ⊮+

wn A) implies w ⊩−
wn A.

In these semantics, some relationships between e.g. verification and falsification of p are
given, so the latter concept should be more easily understood by an intuitionistic logician
in terms of the former.

Let us note a difference in character between (Potential Omniscience) and (Weak Nega-
tion), despite their similar appearances. The former condition may be restricted to propo-
sitional variables and ⊥, similarly to how upward closure is ensured in ordinary Kripke
semantics for intuitionistic logic by requiring it to hold only in the atomic case. In contrast,
such a restriction does not generalise for the latter condition.

Proposition 3.4. The following statements hold.

(i) If a Cab-model M satisfies the following conditions:

∀w′ ≥ w(w′ ⊮+
ab p) implies ∃x ≥ w(x ⊩−

ab p).
∀w′ ≥ w(w′ ⊮+

ab ⊥) implies ∃x ≥ w(x ⊩−
ab ⊥).

then M is a Cab
po-model.
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(ii) There exists a Cab-model which satisfies the following conditions:

∀w′ ≥ w(w′ ⊮+
ab p) implies w ⊩−

ab p.

∀w′ ≥ w(w′ ⊮−
ab p) implies w ⊩+

ab p.

∀w′ ≥ w(w′ ⊮+
ab ⊥) implies w ⊩−

ab ⊥.

∀w′ ≥ w(w′ ⊮−
ab ⊥) implies w ⊩+

ab ⊥.

while not being a Cab
wn-model.

Proof. For (i), we show by induction on the complexity of formulas that (Potential Omni-
science) is satisfied in M. The cases when A ≡ p, ⊥ follow from the assumption.

When A ≡ B ∧ C, we show the contrapositive. If ¬∃x ≥ w(x ⊩−
ab B ∧ C), it must be

the case that ∀x ≥ w(x ⊮−
ab B and x ⊮−

ab C) (∗) and so ∀x ≥ w(x ⊮−
ab B). Also, as one of

the I.H., ∀w′ ≥ w(w′ ⊮+
ab B) implies ∃x ≥ w(x ⊩−

ab B). Hence we deduce from these that
∃w′ ≥ w(w′ ⊩+

ab B). Fix one such w′. By (∗), ∀y ≥ w′(y ⊮−
ab C). Then as another I.H., it

holds that ∀w′′ ≥ w′(w′′ ⊮+
ab C) implies ∃y ≥ w′(y ⊩−

ab C). So ∃w′′ ≥ w′(w′′ ⊩+
ab C). By

(Upward Closure), we have w′′ ⊩+ B for such w′′ as well. Therefore ¬∀w′ ≥ w(w′ ⊮+
ab B∧C),

as desired.
When A ≡ B∨C, if ∀w′ ≥ w(w′ ⊮+

ab B∨C) we have ∀w′ ≥ w(w′ ⊮+
ab B). Thus by one of

the I.H. ∃x ≥ w(x ⊩−
ab B). Take such an x. Then ∀x′ ≥ x(x′ ⊮+

ab C) and so ∃y ≥ x(y ⊩−
ab C)

from the other I.H.. By (Upward Closure), y ⊩−
ab B as well; so ∃x ≥ w(x ⊩−

ab B ∨ C).
When A ≡ B → C, if ¬∀w′ ≥ w(w′ ⊮+

ab C) then w′ ⊩+
ab C and so w′ ⊩+

ab B → C
for some w′ ≥ w. Hence ¬∀w′ ≥ w(w′ ⊮+

ab B → C); consequently ∀w′ ≥ w(w′ ⊮+
ab

B → C) implies ∃x ≥ w(x ⊩−
ab B → C). Otherwise, ∀w′ ≥ w(w′ ⊮+

ab C) and by the I.H
∃x ≥ w(x ⊩−

ab C). Hence ∃x ≥ w(x ⊩−
ab B → C) and therefore ∀w′ ≥ w(w′ ⊮+

ab B →
C) implies ∃x ≥ w(x ⊩−

ab B → C) in this case as well.
Finally, when A ≡ ∼B, by the I.H. ∀w′ ≥ w(w′ ⊮+

ab B) implies ∃x ≥ w(x ⊩−
ab B),

contraposing which we obtain ∀w′ ≥ w(w′ ⊮−
ab B) implies ∃x ≥ w(x ⊩+

ab B). Therefore
∀w′ ≥ w(w′ ⊮+

ab ∼B) implies ∃x ≥ w(x ⊩−
ab ∼B).

For (ii), suppose M = ((W, ≤), V) is such that W = {w, x, y}, ≤ is the reflexive closure
of {(w, x), (w, y)}, V+(p) = {x}, V−(p) = {y}, V −(⊥) = W and for compound formulas V
is defined in accordance with the equivalences in Definition 3.1: e.g. set x ∈ V−(A → B)
if for all y ≥ x(y ∈ V+(A) implies y ∈ V−(B)). Then the equivalences in Definition 3.1 are
naturally satisfied, and (Upward Closure) may be checked by induction on the complexity
of formula. Therefore M is a Cab-model. In addition, M satisfies the conditions of the
proposition at each world. For instance, for the first condition, ∀u′ ≥ u(u′ ⊮+

ab p) implies
u = y, but u ⊩−

ab p.
Now, it is readily observed that ∀w′ ≥ w(w′ ⊮+

ab p ∧ ∼p), but w ⊮−
ab p ∧ ∼p. Therefore

(Weak Negation) is not satisfied for all formulas in M.

3.2 Soundness
In the next two subsections, we shall establish the soundness and completeness of the three
sequent calculi GCab, GCab

po and GCab
wn with respect to their Kripke semantics. We shall

treat the soundness direction in this subsection.
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Theorem 3.5 (soundness). Let ∗ ∈ {ab, po, wn}. Then ⊢g∗ Γ ⇒ ∆ implies ⊨∗ Γ ⇒ ∆.

Proof. For GCab, we can establish the statement by induction on the depth of derivation.
For instance, if the last step in the derivation is an instance of (R∼→):

A, Γ ⇒ ∼B

Γ ⇒ ∼(A → B)

then by the I.H. M ⊨ab A, Γ ⇒ ∼B. Suppose M, w ⊩+
ab C for all C ∈ Γ and M, w′ ⊩+

ab A for
w′ ≥ w. Then by (Upward Closure) M, w′ ⊩+

ab C for all C ∈ {A} ∪ Γ; thus M, w′ ⊩+
ab ∼B

and so M, w′ ⊩−
ab B. Therefore M, w ⊩−

ab A → B and consequently M, w ⊩+
ab ∼(A → B).

For GCab
po, we in addition need to check the case for (gPO):

A, Γ ⇒ ∼A, Γ ⇒
Γ ⇒

If M, w ⊩+
po B for all B ∈ Γ, then M, w′ ⊩+

po A for w′ ≥ w leads to a contradiction by (Up-
ward Closure) and the I.H.. Hence ∀w′ ≥ w(M, w′ ⊮+

po A). But then ∃w′ ≥ w(M, w′ ⊩−
po A)

by (Potential Omniscience), which again contradicts the I.H.. Therefore M, w ⊨po Γ ⇒ for
all w, as required.

For GCab
wn, we need to check the case for (gWN).

A, Γ ⇒ ∼A, Γ ⇒ ∆
Γ ⇒ ∆

If M, w ⊩+
wn B for all B ∈ Γ, then we infer ∀w′ ≥ w(M, w′ ⊮+

wn A) as in the previous case.
By (Weak Negation), M, w ⊩−

wn A; so by the I.H. M, w ⊩+
wn C for some C ∈ ∆. Therefore

M, w ⊨wn Γ ⇒ ∆.

We can also connect the Hilbert-style systems and the Kripke semantics.

Corollary 3.6. Let ∗ ∈ {ab, po, wn} and Γ, ∆ be finite sets of formulas. Then Γ ⊢h∗ ∆
implies ⊨∗ Γ ⇒ ∆.

Proof. An immediate consequence of Proposition 2.9 and Theorem 3.5.

3.3 Completeness
The proof of completeness follows the one given by Lahav and Avron [16] for basic systems,
which are sequent calculi that satisfy a few natural criteria. In [16] the authors present a
general framework for formulating a sound and strongly complete Kripke semantics for a
calculus in the class, to which GCab, GCab

po and GCab
wn also belong. The argument here is

only slightly altered from the outline given in [16], in order to fit the bilateral-style semantical
setting.

Let us first introduce some preliminary notions. In what follows, we keep using the
abbreviation with ∗ ∈ {ab, po, wn}.
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Definition 3.7 (maximal set). A maximal set (for GCab/GCab
po/GCab

wn) is a pair (Γ, ∆) of
sets of formulas, where:

(i) For any finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, ⊬g∗ Γ′ ⇒ ∆′.

(ii) If A /∈ Γ then ⊢g∗ A, Γ′ ⇒ ∆′ for some finite Γ′ ⊆ Γ and ∆′ ⊆ ∆.

(iii) If A /∈ ∆ then ⊢g∗ Γ′ ⇒ ∆′, A for some finite Γ′ ⊆ Γ and ∆′ ⊆ ∆.

Lemma 3.8. If ⊬g∗ Γ′ ⇒ ∆′ for any finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, then there is a maximal set
(Γm, ∆m) (for GCab/GCab

po/GCab
wn) such that Γ ⊆ Γm and ∆ ⊆ ∆m.

Proof. Let (Bi)i∈N and (Ci)i∈N be the sets of formulas not occurring in Γ and ∆, respectively.
Let (Ai)i∈N be such that A0 := B0, A1 := C0, A2 := B1, A3 := C1, . . .. We define pairs
(Γi, ∆i)i∈N inductively by the following clauses:

(Γ0, ∆0) := (Γ, ∆).

(Γ2i+1, ∆2i+1) :=





(Γ2i∪{A2i}, ∆2i) if ⊬g∗ Γ′ ⇒ ∆′ for any finite
Γ′ ⊆ Γ2i∪{A2i} & ∆′ ⊆ ∆2i.

(Γ2i, ∆2i) otherwise.

(Γ2i+2, ∆2i+2) :=





(Γ2i+1, ∆2i+1∪{A2i+1}) if ⊬g∗ Γ′ ⇒ ∆′ for any finite
Γ′⊆Γ2i+1 & ∆′⊆∆2i+1∪{A2i+1}.

(Γ2i+1, ∆2i+1) otherwise.

Let (Γm, ∆m) := (
⋃

i Γi,
⋃

i ∆i). We need to check that (i)–(iii) of Definition 3.7 hold for
the pair (Γm, ∆m).

For (i), if ⊢g∗ Γ′ ⇒ ∆′ for some finite Γ′ ⊆ Γm and ∆′ ⊆ ∆m, then there is i such that
Γ′ ⊆ Γi and ∆′ ⊆ ∆i. However we can check by induction that this cannot be the case for
any i.

For (ii), if A /∈ Γm then Γ ⊆ Γm implies A ≡ A2i for some i. If ⊬g∗ Γ′ ⇒ ∆′ for all finite
Γ′ ⊆ Γ2i ∪ {A} and ∆′ ⊆ ∆2i, then A ∈ Γ2i+1 ⊆ Γm, a contradiction. So there must be
finite Γ′ ⊆ Γ2i ⊆ Γm and ∆′ ⊆ ∆2i ⊆ ∆m such that ⊢g∗ A, Γ′ ⇒ ∆′. For (iii), the argument
is analogous.

Next we introduce the notion of a canonical model.

Definition 3.9 (canonical model). The canonical model Mc = ((Wc, ≤c), Vc) for GCab (or
GCab

po/GCab
wn) is defined by:

• Wc := {(Γ, ∆) : (Γ, ∆) is a maximal set}.

• (Γ, ∆) ≤c (Γ′, ∆′) iff Γ ⊆ Γ′.

• (Γ, ∆) ∈ V+
c (A) iff A ∈ Γ and (Γ, ∆) ∈ V−

c (A) iff ∼A ∈ Γ.

Towards completeness, we shall show a few lemmas.
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Lemma 3.10 (properties of canonical model). Let Mc be the canonical model for GCab

(or GCab
po/GCab

wn). Then:

(i) The following are equivalent.

(a) Mc, (Γ, ∆) ⊨∗ Σ ⇒ Π.
(b) Σ ⊈ Γ or Π ⊈ ∆.
(c) There are finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that ⊢g∗ Γ′, Σ ⇒ Π, ∆′.

(ii) If Mc, (Γ′, ∆′) ⊨∗ Σ ⇒ Π for all (Γ′, ∆′) ≥c (Γ, ∆), then there is a finite Γ′′ ⊆ Γ such
that ⊢g∗ Γ′′, Σ ⇒ Π.

(iii) ⊢g∗ Σ ⇒ Π iff Mc ⊨∗ Σ ⇒ Π.

Proof. For (i), we shall first check that (a) holds if and only if (b) holds. From (a) to
(b), suppose (Γ, ∆) ⊨∗ Σ ⇒ Π, i.e. (Γ, ∆) ⊩+

∗ A for all A ∈ Σ implies (Γ, ∆) ⊩+
∗ B for

some B ∈ Π. From the definition of Vc, this can be rephrased as that Σ ⊆ Γ implies
Γ ∩ Π ̸= ∅. Hence Σ ⊆ Γ and Π ⊆ ∆ implies Γ ∩ ∆ ̸= ∅, which contradicts the maximality
of (Γ, ∆). Therefore Σ ⊈ Γ or Π ⊈ ∆. From (b) to (a), if Σ ⊈ Γ then (Γ, ∆) ⊮+

∗ A for
some A ∈ Σ. So (Γ, ∆) ⊨∗ Σ ⇒ Π. If on the other hand Π ⊈ ∆, then there is A ∈ Π such
that A /∈ ∆. If in addition A /∈ Γ, then by the definition of a maximal set it must be that
⊢g∗ A, Γ1 ⇒ ∆1 and ⊢g∗ Γ2 ⇒ ∆2, A for some finite Γ1, Γ2 ⊆ Γ and ∆1, ∆2 ⊆ ∆. Hence by
(Cut) ⊢g∗ Γ1, Γ2 ⇒ ∆1, ∆2; but this contradicts the maximality of (Γ, ∆). So A ∈ Γ and
consequently (Γ, ∆) ⊨∗ Σ ⇒ Π as well.

Next we check that (b) holds if and only if (c) holds. From (b) to (c), suppose Σ ⊈ Γ
or Π ⊈ ∆. Consider the former case. Then there is A ∈ Σ such that A /∈ Γ. Now because
(Γ, ∆) is maximal, it must be that ⊢g∗ A, Γ′ ⇒ ∆′ for some Γ′ ⊆ Γ and ∆′ ⊆ ∆. Hence
⊢g∗ Γ′, Σ ⇒ Π, ∆′ with respect to the Γ′ and ∆′. The latter case is analogous. From (c)
to (b), if Σ ⊆ Γ and Π ⊆ ∆, then ⊢g∗ Γ′, Σ ⇒ Π, ∆′ contradicts the maximality of (Γ, ∆).
Hence Σ ⊈ Γ or Π ⊈ ∆.

For (ii), we show the contrapositive. Suppose for all Γ′ ⊆ Γ we have ⊬g∗ Γ′, Σ ⇒ Π.
Then for any Σ′ ⊆ Γ ∪ Σ and Π′ ⊆ Π it holds that ⊬g∗ Σ′ ⇒ Π′. Hence apply Lemma
3.8 to obtain a maximal set (Σ′′, Π′′) such that Γ ∪ Σ ⊆ Σ′′ and Π ⊆ Π′′. Now by (i),
(Σ′′, Π′′) ⊭∗ Σ ⇒ Π and (Γ, ∆) ≤c (Σ′′, Π′′).

For (iii), if ⊢g∗ Σ ⇒ Π then by (i) (Γ, ∆) ⊨∗ Σ ⇒ Π for all (Γ, ∆) ∈ Wc. For the
converse direction, we show the contrapositive. If ⊬g∗ Σ ⇒ Π then apply Lemma 3.8 to
obtain a maximal set (Σ′, Π′). Then by (i) we conclude (Σ′, Π′) ⊭∗ Σ ⇒ Π.

Lemma 3.11. The canonical model for GCab is indeed a Cab-model.

Proof. It is readily checked that (Wc, ≤c) is a non-empty pre-ordered set. For (Upward Clo-
sure), if (Γ, ∆) ⊩∗

ab A and (Γ′, ∆′) ≥c (Γ, ∆) then A ∈ Γ ⊆ Γ′ for ∗ = + and ∼A ∈ Γ ⊆ Γ′

for ∗ = −. So (Γ′, ∆′) ⊩∗
ab A.

We also need to check the conditions on ⊥ and compound formulas.
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⊥ If we have ⊥ ∈ Γ for some (Γ, ∆) ∈ Wc, then the fact that ⊢gab ⊥ ⇒ ∆′ for any finite
∆′ ⊆ ∆ contradicts the maximality of (Γ, ∆). Hence ⊥ /∈ Γ and consequently (Γ, ∆) ⊮+

ab ⊥
for all (Γ, ∆) ∈ Wc.

∼ For ⊩+
ab, it holds that (Γ, ∆) ⊩+

ab ∼A iff ∼A ∈ Γ iff (Γ, ∆) ⊩−
ab A. For ⊩−

ab, if (Γ, ∆) ⊩−
ab ∼A

but (Γ, ∆) ⊮+
ab A then (Γ, ∆) ⊨ab A ⇒ . By Lemma 3.10 (i) there are Γ′ ⊆ Γ and ∆′ ⊆ ∆

such that ⊢gab Γ′, A ⇒ ∆′. Thus by (L∼∼) ⊢gab Γ′, ∼∼A ⇒ ∆′. Hence by Lemma 3.10 (i)
again, (Γ, ∆) ⊨ab ∼∼A ⇒ . But we have (Γ, ∆) ⊩+

ab ∼∼A as ∼∼A ∈ Γ, a contradiction.
Therefore (Γ, ∆) ⊩+

ab A. Conversely, if (Γ, ∆) ⊩+
ab A then (Γ, ∆) ⊨ab ⇒ A. By Lemma

3.10 (i) there are Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that ⊢gab Γ′ ⇒ A, ∆′. Apply (R∼∼) to obtain
⊢gab Γ′ ⇒ ∼∼A, ∆′. By Lemma 3.10 (i), (Γ, ∆) ⊨ab ⇒ ∼∼A. Therefore (Γ, ∆) ⊩−

ab ∼A.

∧ For ⊩+
ab, suppose (Γ, ∆) ⊩+

ab A ∧ B but (Γ, ∆) ⊮+
ab A. Then (Γ, ∆) ⊨ab A ⇒ . By

Lemma 3.10 (i) there are Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that ⊢gab Γ′, A ⇒ ∆′. Thus by (L∧),
⊢gab Γ′, A ∧ B ⇒ ∆′. Hence by Lemma 3.10 (i) again, (Γ, ∆) ⊨ab A ∧ B ⇒ , a contradiction.
Thus (Γ, ∆) ⊩+

ab A and similarly (Γ, ∆) ⊩+
ab B. Conversely, if (Γ, ∆) ⊩+

ab A and (Γ, ∆) ⊩+
ab B,

then (Γ, ∆) ⊨ab ⇒ A and (Γ, ∆) ⊨ab ⇒ B. By Lemma 3.10 (i), there are Γ′ ⊆ Γ and ∆′ ⊆ ∆
such that ⊢gab Γ′ ⇒ A, ∆′ and ⊢gab Γ′ ⇒ B, ∆′. Thus by (R∧), ⊢gab Γ′ ⇒ A ∧ B, ∆′. So by
Lemma 3.10 (i), (Γ, ∆) ⊨ab ⇒ A ∧ B. Therefore (Γ, ∆) ⊩+

ab A ∧ B.
Next for ⊩−

ab, if (Γ, ∆) ⊩−
ab A ∧ B then (Γ, ∆) ⊮−

ab A and (Γ, ∆) ⊮−
ab B imply (Γ, ∆) ⊨ab

∼A ⇒ and (Γ, ∆) ⊨ab ∼B ⇒ . By Lemma 3.10 (i) there are Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that
⊢gab Γ′, ∼A ⇒ ∆′ and ⊢gab Γ′, ∼B ⇒ ∆′. By (L∼∧) we infer ⊢gab Γ′, ∼(A ∧ B) ⇒ ∆′; so by
Lemma 3.10 (i) again, (Γ, ∆) ⊨ab ∼(A∧B) ⇒ . Hence ∼(A∧B) /∈ Γ and so (Γ, ∆) ⊮−

ab A∧B,
a contradiction. Therefore either (Γ, ∆) ⊩−

ab A or (Γ, ∆) ⊩−
ab B. Conversely, if (Γ, ∆) ⊩−

ab A
then ∼A ∈ Γ and so (Γ, ∆) ⊨ab ⇒ ∼A. Then (Γ, ∆) ⊨ab ⇒ ∼(A ∧ B) by Lemma 3.10 (i)
and (R∼∧). Therefore (Γ, ∆) ⊩−

ab A ∧ B. The case when (Γ, ∆) ⊩−
ab B is analogous.

∨ Similar to the cases for conjunction.

→ For ⊩+
ab, suppose (Γ, ∆) ⊩+

ab A → B. Then since ⊢gab A, A → B ⇒ B, by Lemma 3.10 (i)
we infer (Γ′, ∆′) ⊨ab A ⇒ B for any (Γ′, ∆′) ≥c (Γ, ∆); that is to say, (Γ′, ∆′) ⊩+

ab A implies
(Γ′, ∆′) ⊩+

ab B for all (Γ′, ∆′) ≥c (Γ, ∆).
Conversely, if for all (Σ, Π) ≥c (Γ, ∆) it holds that (Σ, Π) ⊩+

ab A implies (Σ, Π) ⊩+
ab B,

then by Lemma 3.10 (ii) we infer ⊢gab Γ′, A ⇒ B for some Γ′ ⊆ Γ. By (R→) we obtain
⊢gab Γ′ ⇒ A → B. Hence by Lemma 3.10 (i) we conclude (Γ, ∆) ⊨ab ⇒ A → B, i.e.
(Γ, ∆) ⊩+

ab A → B. The case for ⊩−
ab is argued in a similar manner, using the already

established equivalence for negation.

Lemma 3.12. The canonical model for GCab
po (GCab

wn) is indeed a Cab
po-model (Cab

wn-model).

Proof. For GCab
po, we have to check that the canonical model satisfies (Potential Omni-

science). Towards a contradiction, suppose that (Γ′, ∆′) ⊮+
po A for all (Γ′, ∆′) ≥c (Γ, ∆) but

(Γ′, ∆′) ⊮−
po A for all (Γ′, ∆′) ≥c (Γ, ∆). Then (Γ′, ∆′) ⊨po A ⇒ and (Γ′, ∆′) ⊨po ∼A ⇒ for

each such (Γ′, ∆′); hence by Lemma 3.10 (ii) we conclude ⊢gpo Σ, A ⇒ and ⊢gpo Σ, ∼A ⇒
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for some Σ ⊆ Γ. By (gPO) , ⊢gpo Σ ⇒ ; thus (Γ, ∆) ⊨po ⇒ by Lemma 3.10 (i), a contra-
diction. Therefore we can conclude that (Γ′, ∆′) ⊩−

po A for some (Γ′, ∆′) ≥c (Γ, ∆).
For GCab

wn, we have to check (Weak Negation). Suppose that (Γ′, ∆′) ⊮+
wn A for all

(Γ′, ∆′) ≥c (Γ, ∆). Then like in the previous case, ⊢gwn Σ, A ⇒ for some Σ ⊆ Γ. Also
⊢gwn Σ, ∼A ⇒ ∼A. Thus by (gWN) ⊢gwn Σ ⇒ ∼A; therefore (Γ, ∆) ⊨wn⇒ ∼A and so
(Γ, ∆) ⊩−

wn A.

Now we are ready to show the completeness theorem.

Theorem 3.13 (completeness). Let ∗ ∈ {ab, po, wn}. If ⊨∗ Γ ⇒ ∆ then ⊢g∗ Γ ⇒ ∆.

Proof. Suppose ⊨∗ Γ ⇒ ∆. Consider the canonical model Mc, which is by Lemma 3.11 and
3.12 is an appropriate model. Then by Lemma 3.10 (iii), we conclude ⊢g∗ Γ ⇒ ∆.

We consequently obtain the completeness with respect to Hilbert-style systems as well.

Corollary 3.14. Let ∗ ∈ {ab, po, wn} and Γ, ∆ be finite sets of formulas. Then ⊨∗ Γ ⇒ ∆
implies Γ ⊢h∗ ∆.

4 Properties of Cab
po and Cab

wn

In this section, we shall look at some properties of Cab
po and Cab

wn that can be shown from the
results we have established so far. They provide useful information when we later discuss
which of the systems an intuitionistic logician might prefer.

We begin with separating the Hilbert-style systems. This gives a strict hierarchy of the
systems, Cab

3 , Cab
wn, Cab

po and Cab when ordered from the strongest to the weakest.

Proposition 4.1. The following statements hold.
(i) ⊬hab ¬¬(A ∨ ∼A).
(ii) ⊬hpo ¬A → ∼A.
(iii) ⊬hwn A ∨ ∼A.

Proof. For (i), take a model M = ((W, ≤), V) such that W = {w, w′}; ≤ is the reflexive
closure of {(w, w′)}; and V is defined inductively such that V+(p) = V−(p) = ∅ for all p,
V−(⊥) = W , and for compound formulas, V+ and V− are defined according to the equiv-
alences in Definition 3.1. As before, M is easily checked to be a Cab-model. Now, since
M, w′ ⊮+

ab p and M, w′ ⊮+
ab ∼p, it holds that M, w′ ⊮+

ab p∨∼p. Thus M ⊭ab ⇒ ¬¬(p∨∼p).
The statement then holds by Corollary 3.6.

For (ii), consider a model M′ defined analogously to M with the only difference being
that V−(p) = {w′} for all p. In order to check that M′ is a Cab

po-model, we need to show
that (Potential Omniscience) holds. First observe that:

M′, w′ ⊮+
po p ⇒ M′, w′ ⊩−

po p;
M′, w′ ⊮−

po p ⇒ M′, w′ ⊩+
po p.
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Now if for some x ∈ W it holds that ∀x′ ≥ x(M′, x′ ⊮+
po p), then M′, w′ ⊮+

po p; so
M′, w′ ⊩−

po p. Hence ∃y ≥ x(y ⊩−
po p). From Proposition 3.4 (i), this and the easily check-

able case for ⊥ are sufficient to establish (Potential Omniscience).
The only thing that is left is to observe that M′ works as a counter-model. For this

it suffices to note that M′, w′ ⊮+
po p implies M′, w ⊩+

po ¬p, but M′, w ⊮+
po ∼p; Therefore

M′, w ⊮+
po ¬p → ∼p.

For (iii), consider a model M′′ defined analogously to M′ with the only difference being
that V+(p) = {w′} as well, for all p. In order to check that M′′ is a Cab

wn-model, we claim
that

M′′, w′ ⊮+
wn A ⇒ M′′, w ⊩−

wn A;
M′′, w′ ⊮−

wn A ⇒ M′′, w ⊩+
wn A.

The cases when A ≡ p, ⊥ are immediate. For conjunction, if w′ ⊮+
wn B ∧ C then w′ ⊮+

wn B
or w′ ⊮+

wn C. Hence by the I.H. w ⊩−
wn B or w ⊩−

wn C and so w ⊩−
wn B ∧ C. For the second

item, if w′ ⊮−
wn B ∧ C then w′ ⊮−

wn B and w′ ⊮−
wn C. By the I.H. w ⊩+

wn B and w ⊩+
wn C;

so w ⊩+
wn B ∧ C. The cases for disjunction are analogous.

For implication, if w′ ⊮+
wn B → C then w′ ⊮+

wn C. By the I.H. w ⊩−
wn C and so

w ⊩−
wn B → C. The case for the second item is similar. Finally if w′ ⊮+

wn ∼A then
w′ ⊮−

wn A. By the I.H. w ⊩+
wn A and so w ⊩−

wn ∼A. The case for the second item is similar
as well.

Now if for some x it holds that ∀x′ ≥ x(M′′, x′ ⊮+
wn A), then M′′, w′ ⊮+

wn A and so by
the claim M′′, w ⊩−

wn A, which implies M′′, x ⊩−
wn A, as required. Finally, to see that M′′

invalidates A ∨ ∼A, note that M′′, w ⊮+ p ∨ ∼p.

Another point that follows from soundness is that ∼⊥ is not a theorem of Cab
po.

Proposition 4.2. ⊢hpo ¬¬∼⊥ but ⊬hpo ∼⊥.

Proof. The former follows from ∼⊥ ↔ (⊥∨∼⊥) and ¬¬(⊥∨∼⊥). For the latter, construct a
model M = ((W, ≤), V) where W = {w, w′}, ≤ is the reflexive closure of {(w, w′)}, V+(p) =
V−(p) = W , V−(⊥) = {w′} and otherwise V is defined according to the equivalences in
Definition 3.1. Then it is straightforward to see via Proposition 3.4 that M is a Cab

po-model.
Note then M, w ⊮−

po ⊥. Hence ⊬hpo ∼⊥ by Corollary 3.6.

Remark 4.3. This observation also implies that ⊢hpo ¬¬∼¬A but ⊬hpo ∼¬A. Since the
latter may be a controversial formula, it can be taken as an advantage that Cab

po does not
prove it. The provability of the former, on the other hand, appears less controversial, because
it merely states that the falsity of an intuitionistic negation does not (in the sense of ¬) lead
to absurdity. It might be even preferable from the perspective of an intuitionistic logician,
because it offers some information about the status of ∼⊥ compared with the case for Cab

where it is left unspecified.

Next we shall point to the strength of Cab
po in expressing provable contradictions, i.e.

formulas A such that both A and ∼A are provable in the system. For this purpose, we shall
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use the logic CN introduced by J. Cantwell [4] plus ⊥, an expansion already considered in
[9]. As pointed out by Omori and Wansing [25], CN can be seen as an extension of C3 with
Peirce’s law; for more information about CN and related systems, see also the two-part
papers by P. Égré, L. Rossi and J. Sprenger [6, 7] as well as [8].

Definition 4.4. We define CN⊥ by adding the next axiom schema to Cab
3 :

((A → B) → A) → A (PL)

We shall use ⊢hcn to denote the derivability.

CN⊥ works as the classical counterpart of Cab
po, as confirmed by expanding Glivenko’s

theorem to include ∼.

Proposition 4.5 (Glivenko’s theorem). Γ ⊢hcn A if and only if Γ ⊢hpo ¬¬A.

Proof. The ‘if’ direction is immediate. For the ‘only if’ direction, it follows by induction
on the depth of derivation in CN⊥. Most of the cases are as in Glivenko’s theorem for
intuitionistic logic (see e.g. [27]). The only important case is that of (3), but clearly, (PO)
suffices in this case.

Using this, we can embed provable contradictions of CN⊥ into Cab
po in a simple manner.

Corollary 4.6. A formulas A is a provable contradiction in CN⊥ if and only if ¬(A∧∼A) →
A is so in Cab

po.

Proof. For the ‘only if’ direction, if A is a provable contradiction in CN⊥ then by Proposition
4.5 we infer ⊢hpo ¬¬(A ∧ ∼A). hence ⊢hpo ¬(A ∧ ¬A) → A and ⊢hpo ¬(A ∧ ¬A) → ∼A,
so by (NI) ⊢hpo ∼(¬(A ∧ ¬A) → A) as well. For the ‘if’ direction, if ¬(A ∧ ∼A) → A is a
provable contradiction in Cab

po then ⊢hpo ¬(A ∧ ∼A) → (A ∧ ∼A) and so ⊢hcn A ∧ ∼A. Thus
the statement follows.

Remark 4.7. We may also note that the same embedding does not work with respect to
Cab. It is straightforward from (3) that (p ↔ ∼p) → p is a provable contradiction in CN⊥,
but we can construct a Cab-model M = (({w}, ({(w, w)})), V) such that V+(p) = V−(p) = ∅:
we can show in this model that M, w ⊮+

ab ¬(((p ↔ ∼p) → p) ∧ ∼((p ↔ ∼p) → p)) → ((p ↔
∼p) → p).

The above corollary says that Cab
po is as rich as CN⊥ in producing provable contradic-

tions. As we shall see later, Cab
po is a constructive system, so this means that every provable

contradiction in CN⊥ has a constructive counterpart. At the same time, one may wonder
whether this is due to (PO) being a rather strong principle. There can be a worry that
the system is not acceptable to someone who is interested in provable contradictions but
is inclined to stay in C. The following observation, based on the conservativity of Jankov’s
logic over positive intuitionistic logic [13], addresses such worry to some extent.
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Proposition 4.8. Let Γ and ∆ be finite sets of formulas in L+. Then Γ ⊢hab ∆ iff Γ ⊢hpo ∆
iff Γ ⊢hwn ∆.

Proof. By Proposition 2.6, it is sufficient to check that Γ ⊢hwn ∆ implies Γ ⊢hab ∆. We
shall show the contrapositive of this implication. If Γ ⊬hab ∆ then ⊭ab Γ ⇒ ∆ by Corollary
3.14. Thus there is a Cab-model M = ((W, ≤), V) such that M, w0 ⊭ab Γ ⇒ ∆ for some
w0 ∈ W . Define a new model M′ = ((W ′, ≤′), V ′) as follows.

• W ′ := W ∪ {u}.

• ≤′:=≤ ∪{(w, u) : w ∈ W ′}.

• V ′∗ for ∗ ∈ {+, −} is defined inductively, by:

– V ′∗(p) := V∗(p) ∪ {u}.
– V ′−(⊥) := W ′.
– otherwise, the equivalences in Definition 3.1 are followed.

We claim M′ is a Cab
wn-model. It is immediate from the definition that all the equivalences

in Definition 3.1 hold. Then it is also straightforward to check that (Upward Closure) is
satisfied.

We need also to check that (Weak Negation) holds. Towards this, we shall first show by
induction that for any w ∈ W ′:

M′, u ⊮+
wn A =⇒ M′, w ⊩−

wn A and M′, u ⊮−
wn A =⇒ M′, w ⊩+

wn A.

Since M′, u ⊩+
wn p and M′, u ⊩−

wn p for all p, the cases for propositional variables hold. For
⊥, the statements hold because M′, w ⊩−

wn ⊥ for all w ∈ W ′.
For conjunction, first if M′, u ⊮+

wn A ∧ B, then M′, u ⊮+
wn A or M′, u ⊮+

wn B. By the
I.H. M′, w ⊩−

wn A or M′, w ⊩−
wn B; hence M′, w ⊩−

wn A ∧ B. Next, if M′, u ⊮−
wn A ∧ B

then M′, u ⊮−
wn A and M′, u ⊮−

wn B. By the I.H. M′, w ⊩+
wn A and M′, w ⊩+

wn B; hence
M′, w ⊩+

wn A ∧ B. The cases for disjunction are analogous.
For implication, first if M′, u ⊮+

wn A → B then M′, u ⊮+
wn B. Thus by the I.H.

M′, w ⊩−
wn B and consequently M′, w ⊩−

wn A → B. Similarly, if M′, u ⊮−
wn A → B then

M′, u ⊮−
wn B, so by the I.H. M′, w ⊩+

wn B and M′, w ⊩+
wn A → B.

For negation, first if M′, u ⊮+
wn ∼A then M′, u ⊮−

wn A. By the I.H. M′, w ⊩+
wn A; hence

M′, w ⊩−
wn ∼A. Similarly, if M′, u ⊮−

wn ∼A then M′, u ⊮+
wn A. By the I.H. M′, w ⊩−

wn A
and so M′, w ⊩−

wn ∼A.
Now, if ∀w′ ≥ w(M′, w′ ⊮+

wn A) then in particular M, u ⊮+
wn A. By what we have

established, we infer M, x ⊩−
wn A for any x ∈ W ′. Therefore M, w ⊩−

wn A. It is thus
established that (Weak Negation) is satisfied. Consequently M′ is an Cab

wn-model.
In order to establish the proposition itself, we shall observe that

M, w ⊩∗
ab A if and only if M′, w ⊩∗

wn A

for ∗ ∈ {+, −}, w ∈ W and A in L+. The cases for propositional variables hold by stipula-
tion.
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For conjunction, first, M, w ⊩+
ab A∧B holds if and only if M, w ⊩+

ab A and M, w ⊩+
ab B.

By the I.H. this is equivalent to M′, w ⊩+
wn A and M′, w ⊩+

wn B and hence to M′, w ⊩+
wn

A ∧ B. Similarly, M, w ⊩−
ab A ∧ B holds if and only if M, w ⊩−

ab A or M, w ⊩−
ab B

holds. By the I.H. this is equivalent to that M′, w ⊩−
wn A or M′, w ⊩−

wn B and hence to
M′, w ⊩−

wn A ∧ B. The cases for disjunction are similar.
For implication, first, M, w ⊩+

ab A → B holds if ∀w′ ≥ w(M, w′ ⊩+
ab A ⇒ M, w′ ⊩+

ab B).
By the I.H. this is equivalent to ∀w′ ≥ w(M′, w′ ⊩+

wn A ⇒ M′, w′ ⊩+
wn B). Further-

more, as is easily checkable, M′, u ⊩∗
wn C for ∗ ∈ {+, −} and C in L+. Therefore

M′, u ⊩+
wn A implies M′, u ⊩+

wn B as well. Thus M, w ⊩+
ab A → B is equivalent to

∀w′ ≥′ w(M, w′ ⊩+
wn A ⇒ M, w′ ⊩+

wn B), i,e. M′, w ⊩+
wn A → B. Similarly for the case

for ⊩−.
For negation, M, w ⊩+

ab ∼A holds if and only if M, w ⊩−
ab A. By the I.H., this is equiv-

alent to M′, w ⊩−
wn A and therefore to M, w ⊩+

ab ∼A. The case for ⊩− is analogous.
We are now ready to observe that M′, w0 ⊩+

wn A for all A ∈ Γ but M′, w0 ⊮+
wn B for

all B ∈ ∆. Therefore ⊭wn Γ ⇒ ∆ and by Corollary 3.6 we conclude Γ ⊬hwn ∆.

5 More on Sequent Calculus
In this section, we shall introduce another type of sequent calculi for Cab, Cab

po and Cab
wn

which have certain proof-theoretic advantages. We shall show their cut-eliminability and
make a few observations related to constructivity and the subformula property.

5.1 Bilateral-style Sequent Calculi
The calculi we shall consider are based on the subformula calculus Sn4 for N4, introduced
by N. Kamide and H. Wansing [14, 15]. As the name suggests, this type of calculi shows
a better behaviour with respect to the subformula property than the type of calculi of
Definition 2.7. In addition, it has a more bilateral flavour (see e.g. [5, 29, 36]) as well, which
might be preferable from certain philosophical perspectives.

In this type of calculus, a sequent (for distinction, we shall call it a b-sequent) is of the
form Γ|∆ ⇒∗ Π, where Γ, ∆ are finite sets of formulas, Π is a set of formulas with at most
one element, and ∗ ∈ {+, −}. Let us first look at a calculus for Cab.

Definition 5.1. The calculus SCab is defined by the following rules:

A| ⇒− A (Ax−) |A ⇒+ A (Ax+)

|⊥ ⇒∗ (L⊥+)

Γ|∆ ⇒− A A, Γ′|∆′ ⇒∗ Π
(Cut−)

Γ, Γ′|∆, ∆′ ⇒∗ Π
Γ|∆ ⇒+ A Γ′|∆′, A ⇒∗ Π

(Cut+)
Γ, Γ′|∆, ∆′ ⇒∗ Π

Γ|∆ ⇒∗ Π
(LW−)

A, Γ|∆ ⇒∗ Π
Γ|∆ ⇒∗

(RW−)
Γ|∆ ⇒− C
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Γ|∆ ⇒∗ Π
(LW+)

Γ|∆, A ⇒∗ Π
Γ|∆ ⇒∗

(RW+)
Γ|∆ ⇒+ C

A, Γ|∆ ⇒∗ Π B, Γ|∆ ⇒∗ Π
(L∧−)

A ∧ B, Γ|∆ ⇒∗ Π
Γ|∆ ⇒− Ai (R∧−)

Γ|∆ ⇒− A1 ∧ A2

Γ|∆, Ai ⇒∗ Π
(L∧+)

Γ|∆, A1 ∧ A2 ⇒∗ Π
Γ|∆ ⇒+ A Γ|∆ ⇒+ B

(R∧+)
Γ|∆ ⇒+ A ∧ B

Ai, Γ|∆ ⇒∗ Π
(L∨−)

A1 ∨ A2, Γ|∆ ⇒∗ Π
Γ|∆ ⇒− A Γ|∆ ⇒− B

(R∨−)
Γ|∆ ⇒− A ∨ B

Γ|∆, A ⇒∗ Π Γ|∆, B ⇒∗ Π
(L∨+)

Γ|∆, A ∨ B ⇒∗ Π
Γ|∆ ⇒+ Ai (R∨+)

Γ|∆ ⇒+ A1 ∨ A2

Γ|∆ ⇒+ A B, Γ′|∆′ ⇒∗ Π
(L→−)

A → B, Γ, Γ′|∆, ∆′ ⇒∗ Π
Γ|∆, A ⇒− B

(R→−)
Γ|∆ ⇒− A → B

Γ|∆ ⇒+ A Γ′|∆′, B ⇒∗ Π
(L→+)

Γ, Γ′|∆, ∆′, A → B ⇒∗ Π
Γ|∆, A ⇒+ B

(R→+)
Γ|∆ ⇒+ A → B

Γ|∆, A ⇒∗ Π
(L∼−)∼A, Γ|∆ ⇒∗ Π

Γ|∆ ⇒+ A
(R∼−)

Γ|∆ ⇒− ∼A

A, Γ|∆ ⇒∗ Π
(L∼+)

Γ|∆, ∼A ⇒∗ Π
Γ|∆ ⇒− A

(R∼+)
Γ|∆ ⇒+ ∼A

where i ∈ {1, 2}. The derivability in SCab will be denoted by ⊢sab. If the rules (Cut−) and
(Cut+) are removed from SCab, it defines the cut-free system SCab-(Cut), whose derivability
is denoted by ⊢cf

sab.

Next we define the bilateral-style calculi for Cab
po and Cab

wn.

Definition 5.2. The calculus SCab
po is defined from SCab by the following rules.

p, Γ|∆ ⇒∗ Γ|∆, p ⇒∗
(sPO)

Γ|∆ ⇒∗
⊥, Γ|∆ ⇒∗

(L⊥−)
Γ|∆ ⇒∗

The calculus SCab
wn is defined from SCab by the following rule.

A, Γ|∆ ⇒∗ Π Γ|∆, A ⇒∗
(sWN)

Γ|∆ ⇒∗ Π

The derivability in SCab and SCab
wn will be denoted by ⊢spo and ⊢swn. The derivability in

the cut-free systems SCab
po-(Cut) and SCab

wn-(Cut) will be denoted by ⊢cf
spo and ⊢cf

swn.

The rule (sPO) is modelled after the rule (Gem-at) for the systems G3ip +(Gem-at) in
[20] and G3C3at in [26]. We should also note already that eliminating cut in SCab

wn does
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not give too many benefits, for (gWN) can similarly remove an arbitrary formula.
Before moving onto the proof of cut-elimination, let us observe the correspondence be-

tween the bilateral-style calculi and Hilbert-style calculi. For this purpose, we shall use the
notations ∼Γ := {∼A : A ∈ Γ}, ∅+, ∅− := ⊥, {C}+ := C and {C}− := ∼C.

Proposition 5.3. Let † ∈ {ab, po, wn}. If ⊢s† Γ|∆ ⇒∗ Π then ∼Γ, ∆ ⊢h† Π∗.

Proof. By induction on the depth of derivation in SCab
† . For instance, when the last rule

applied is an instance of (L→−):

Γ|∆ ⇒+ A B, Γ′|∆′ ⇒− C

A → B, Γ, Γ′|∆, ∆′ ⇒− C

Then from the I.H. ∼Γ, ∆ ⊢h† A and ∼B, ∼Γ′, ∆′ ⊢h† ∼C. It is now straightforward to
observe from (NC) and Theorem 2.5 that ∼(A → B), ∼Γ, ∼Γ′, ∆, ∆′ ⊢h† ∼C.

For the other direction, we need a couple of lemmas for Cab
po.

Lemma 5.4. The following statements hold.

(i) If ⊢spo A ∧ B, Γ|∆ ⇒∗ C then ⊢spo A, Γ|∆ ⇒∗ C and ⊢spo B, Γ|∆ ⇒∗ C.

(ii) If ⊢spo A ∨ B, Γ|∆ ⇒∗ C then ⊢spo A, B, Γ|∆ ⇒∗ C.

(iii) If ⊢spo A → B, Γ|∆ ⇒∗ C then ⊢spo B, Γ|∆ ⇒∗ C.

(iv) If ⊢spo ∼A, Γ|∆ ⇒∗ C then ⊢spo Γ|∆, A ⇒∗ C.

(v) If ⊢spo Γ|∆, A ∧ B ⇒∗ C then ⊢spo Γ|∆, A, B ⇒∗ C.

(vi) If ⊢spo Γ|∆, A ∨ B ⇒∗ C then ⊢spo Γ|∆, A ⇒∗ C and ⊢spo Γ|∆, B ⇒∗ C.

(vii) If ⊢spo Γ|∆, A → B ⇒∗ C then ⊢spo Γ|∆, B ⇒∗ C.

(viii) If ⊢spo Γ|∆, ∼A ⇒∗ C then ⊢spo A, Γ|∆ ⇒∗ C.

Proof. By (Cut−) and (Cut+).

Lemma 5.5. If ⊢spo A, Γ|∆ ⇒∗ and ⊢spo Γ|∆, A ⇒∗ then ⊢spo Γ|∆ ⇒∗ .

Proof. By induction on the complexity of A. The cases when A ≡ p and A ≡ ⊥ follow from
(sPO) and (L⊥−), respectively. If A ≡ B ∧ C, then B ∧ C, Γ|∆ ⇒∗ and Γ|∆, B ∧ C ⇒∗ .
By Lemma 5.4 it holds that B, Γ|∆ ⇒∗ ; C, Γ|∆ ⇒∗ and Γ|∆, B, C ⇒∗ . Hence we obtain
the next derivation.

Γ|∆, B, C ⇒∗
B, Γ|∆ ⇒∗

(LW+)
B, Γ|∆, C ⇒∗

(I.H.)
Γ|∆, C ⇒∗ C, Γ|∆ ⇒∗

(I.H.)
Γ|∆ ⇒∗

The other cases are analogous.
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Proposition 5.6. For † ∈ {ab, po, wn}, if Γ ⊢h† A then ⊢s† |Γ ⇒+ A.

Proof. By induction on the depth of derivation in Cab
† . As an example, one direction of

(NI) is:

|A ⇒+ A

B| ⇒− B
(L∼+)|∼B ⇒− B
(L→+)|A, A → ∼B ⇒− B

(R→−)|A → ∼B ⇒− A → B
(R∼+)|A → ∼B ⇒+ ∼(A → B)

(R→+)| ⇒+ (A → ∼B) → ∼(A → B)

The other cases are checked similarly. For (PO), we need to appeal to Lemma 5.5.

5.2 Cut-elimination
For cut-elimination, the argument will be a standard one, but as in [14, 15], we have to take
care of two types of cut rules. We begin with introducing a couple of notions: suppose we
have a derivation in SCab

† († ∈ {ab, po, wn}) in which there is an application of cut (i.e.
either (Cut−) or (Cut+)). Then by the grade of the cut, we shall mean the complexity of
the cutformula (the formula A in (Cut−) and (Cut+).) By the height of the cut, we shall
mean the number of b-sequents that occur in the subderivation which has the conclusion of
cut as the endsequent.

Let us first establish a couple of lemmas.

Lemma 5.7. Let † ∈ {ab, po, wn}. Then ⊢cf
s† Γ|∆ ⇒+ if and only if ⊢cf

s† Γ|∆ ⇒− .

Proof. By induction on the depth of derivation.

Lemma 5.8. Let † ∈ {ab, po, wn} and suppose there is a derivation of a b-sequent in SCab
†

in which (Cut−) or (Cut+) is applied only at the last step. Then there is a derivation of
the b-sequent SCab

† in which there is no application of (Cut−) nor (Cut+).

Proof. We shall establish the statement by double induction, with the main induction on the
grade of (Cut−)/(Cut+), and the subinduction on the height of (Cut−)/(Cut+). We divide
into cases depending on which rules are applied to obtain the premises of the (Cut−)/(Cut+).

First we consider the cases where one of the premises is an instance of one of the 0-premise
rules (Ax−), (Ax+) or (L⊥+). Then for the first two cases, the subderivation ending with
the other premise is the desired derivation. If the right premise is (L⊥+) and the left premise
is (RW+), then the subderivation ending with the premise of the (RW+) is either the desired
derivation or is different from it only by the sign on the arrow: in this case apply Lemma
5.7. If the right premise is one of the other rules, e.g. (L→−), the derivation must have the
following form.

146



Intuitionistic Views on Connexive Constructible Falsity

Γ|∆ ⇒+ A B, Γ′|∆′ ⇒+ ⊥
(L→−)

A → B, Γ, Γ′|∆, ∆′ ⇒+ ⊥ |⊥ ⇒∗
(Cut+)

A → B, Γ, Γ′|∆, ∆′ ⇒∗

Then we can construct the following derivation:

Γ|∆ ⇒+ A

B, Γ′|∆ ⇒+ ⊥ |⊥ ⇒∗
(Cut+)

B, Γ′|∆′ ⇒∗
(L→−)

A → B, Γ, Γ′|∆, ∆′ ⇒∗

Since the new instance of (Cut+) is of lower height, it is possible to apply the I.H. to the
subderivation ending with the instance of (Cut+); so we obtain a cut-free derivation of the
endsequent.

Secondly, if one of the premises is obtained by an application of a weakening rule (i.e.
(LW−), (LW+), (RW−) or (RW+)), then we can argue similarly to the previous cases, along
with possible applications of weakening rules.

Thirdly, assume both of the premises are obtained through non-0-premise and non-
weakening rules, but the cutformula is not principal in one of them. Consider, as a first
example, the case of (Cut−) where the left premise is obtained through (sWN).

A, Γ|∆ ⇒− B Γ|∆, A ⇒−
(sWN)

Γ|∆ ⇒− B B, Γ′|∆′ ⇒∗ C
(Cut−)

Γ, Γ′|∆, ∆′ ⇒∗ C

Then we can construct the following derivation (the dashed line indicates applications of
Lemma 5.7 and weakening).

A, Γ|∆ ⇒− B B, Γ′|∆′ ⇒∗ C
(Cut−)

A, Γ, Γ′|∆, ∆′ ⇒∗ C

Γ|∆, A ⇒−

Γ, Γ′|∆, ∆′, A ⇒∗
(sWN)

Γ, Γ′|∆, ∆′ ⇒∗ C

We can then apply the I.H. to the subderivation ending with the instance of (Cut−). As a
second example, consider the case of (Cut+) for SCab

po where the right premise is obtained
through (sPO).

Γ|∆ ⇒+ A

p, Γ′|∆′, A ⇒∗ Γ′|∆′, A, p ⇒∗
(sPO)

Γ′|∆′, A ⇒∗
(Cut+)

Γ, Γ′|∆, ∆′ ⇒∗

Then we can construct the next derivation:

Γ|∆ ⇒+ A p, Γ′|∆′, A ⇒∗
(Cut+)

p, Γ, Γ′|∆, ∆′ ⇒∗
Γ|∆ ⇒+ A Γ′|∆′, A, p ⇒∗

(Cut+)
Γ, Γ′|∆, ∆′, p ⇒∗

(sPO)
Γ, Γ′|∆, ∆′ ⇒∗
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Then we can apply the I.H. to the subderivations ending with an application of (Cut+).
Finally, assume that both of the premises are obtained through non-0-premise and non-

weakening rules, and the cutformula is principal in both of them. Here we look at the cases
for (Cut−) and the cutformula is an implication:

Γ|∆, A ⇒− B
(R→−)

Γ|∆ ⇒− A → B

Γ′|∆′ ⇒+ A B, Γ′′|∆′′ ⇒∗ C
(L→−)

A → B, Γ′, Γ′′|∆′, ∆′′ ⇒∗ C
(Cut−)

Γ, Γ′, Γ′′|∆, ∆′, ∆′′ ⇒∗ C

Then we can construct the following derivation:

Γ′|∆′ ⇒+ A Γ|∆, A ⇒− B
(Cut+)

Γ, Γ′|∆, ∆′ ⇒− B B, Γ′′|∆′′ ⇒∗ C
(Cut−)

Γ, Γ′, Γ′′|∆, ∆′, ∆′′ ⇒∗ C

Now we can first apply the I.H. to the (Cut+) to get a cut-free derivation of Γ, Γ′|∆, ∆′ ⇒−

B; then we can apply the I.H. to the (Cut−) because it has a lower grade. Other cases are
similarly argued.

Lemma 5.8 is enough to establish the cut-eliminability of the systems.

Theorem 5.9 (cut-elimination). Let † ∈ {ab, po, wn}. Then ⊢s† Γ|∆ ⇒∗ Π if and only if
⊢cf

s† Γ|∆ ⇒∗ Π.

Proof. From Lemma 5.8, it is possible to transform a derivation with (Cut+) and (Cut−)
into a cut-free one by removing, step by step, one of the uppermost instances of (Cut+) or
(Cut−).

5.3 Properties of Cut-free Systems
An immediate corollary of Theorem 5.9 is the following subformula property of SCab:

Corollary 5.10 (subformula property). If ⊢sab Γ|∆ ⇒∗ Π then there is a derivation of the
b-sequent in which all formulas are a subformula of Γ ∪ ∆ ∪ Π.

Proof. By inspection of the rules in SCab-(Cut).

On the other hand, the same argument does not show that the systems SCab
po and SCab

wn

enjoy the subformula property: they have rules which can eliminate a formula, which leads
to its not occurring in the endsequent as a subformula. Despite this, we shall see that when
it comes to SCab

po, it is always possible to convert any derivation into a derivation in which
all formulas occurring also occur in the endsequent as a subformula.

Following the example of analytic cut (see e.g. [12, 27]), we shall call an instance
of (sPO)/(L⊥−) analytic, if the active formula occurs in the conclusion of the rule as a
subformula. Our aim here is to eliminate non-analytic instances of the rules that affect the
subformula property.
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Lemma 5.11. Let N be either a propositional variable or ⊥. For any derivation of Γ|∆ ⇒∗

Π in SCab
po-(Cut), suppose all instances of (sPO)/(L⊥−) in the derivation are analytic. Then

N /∈ Sub((Γ \ {N}) ∪ ∆ ∪ Π) implies there is a derivation of Γ \ {N}|∆ ⇒∗ Π in which all
instances of (sPO)/(L⊥−) are analytic.

Proof. We show by induction on the depth of derivation. If the derivation is an instance of
(Ax−):

A| ⇒− A.

Then N /∈ Sub(({A}\{N})∪{A}) implies {A}\{N} = {A}. So the derivation is the desired
derivation of {A} \ {N}| ⇒− A. For (Ax+) and (L⊥+), the statement follows trivially.

Suppose the derivation ends with an instance of (LW−):

Γ|∆ ⇒∗ Π
A, Γ|∆ ⇒∗ Π

Then N /∈ Sub(({A} ∪ Γ) \ {N} ∪ ∆ ∪ Π) implies N /∈ Sub(Γ \ {N} ∪ ∆ ∪ Π). Hence by
the I.H. there is a derivation of Γ \ {N}|∆ ⇒∗ Π in which all instances of (sPO)/(L⊥−) are
analytic. Now if A ≡ N then this is a desired derivation of ({A} ∪ Γ) \ {N}|∆ ⇒∗ Π. If on
the other hand A ̸≡ N , then apply (LW−) to obtain a desired derivation.

Suppose the derivation ends with an instance of (L∧−):

A, Γ|∆ ⇒∗ Π B, Γ|∆ ⇒∗ Π
A ∧ B, Γ|∆ ⇒∗ Π

Then N /∈ Sub((({A ∧ B} ∪ Γ) \ {N}) ∪ ∆ ∪ Π) implies N /∈ Sub((({A} ∪ Γ) \ {N}) ∪ ∆ ∪ Π),
N /∈ Sub((({B} ∪ Γ) \ {N}) ∪ ∆ ∪ Π) and in particular N ̸≡ A, B. Thus by the I.H. there
are derivations of ({A} ∪ Γ) \ {N}|∆ ⇒∗ Π and ({B} ∪ Γ) \ {N}|∆ ⇒∗ Π in which all
instances of (sPO)/(L⊥−) are analytic. Now, because N ̸≡ A, B we can apply (L∧−) to
obtain a desired derivation of ({A ∧ B} ∪ Γ) \ {N}|∆ ⇒∗ Π (note N ̸≡ A ∧ B since it is not
a compound formula).

Suppose the derivation ends with an instance of (L→−):

Γ|∆ ⇒+ A B, Γ′|∆′ ⇒∗ Π
A → B, Γ, Γ′|∆, ∆′ ⇒∗ Π

Then N /∈ Sub((({A → B}∪Γ∪Γ′)\{N})∪∆∪∆′∪Π) implies N /∈ Sub((Γ\{N})∪∆∪{A})
and N /∈ Sub((({B} ∪ Γ′) \ {N}) ∪ ∆′ ∪ Π). Hence by the I.H. we have the derivations of
Γ \ {N}|∆ ⇒+ A and ({B} ∪ Γ′) \ {N}|∆′ ⇒∗ Π. Noting B, A → B ̸≡ N , we can apply
(L→−) to obtain ({A → B} ∪ Γ ∪ Γ′) \ {N}|∆, ∆′ ⇒∗ Π.

Suppose the derivation ends with an instance of (L∼−):

Γ|∆, A ⇒∗ Π
∼A, Γ|∆ →∗ Π
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Then N /∈ Sub((({∼A} ∪ Γ) \ {N}) ∪ ∆ ∪ Π) implies N /∈ Sub((Γ \ {N}) ∪ ∆ ∪ {A} ∪ Π).
So there is a derivation of Γ \ {N}|∆, A ⇒∗ Π in which all instances of (sPO)/(L⊥−) are
analytic. Apply (L∼−) to obtain a desired derivation of ({∼A} ∪ Γ) \ {N}|∆ ⇒∗ Π.

Suppose the derivation ends with an instance of (L∼+):

A, Γ|∆ ⇒∗ Π
Γ|∆, ∼A ⇒∗ Π

Then N /∈ Sub((Γ \ {N}) ∪ ∆ ∪ {∼A} ∪ Π) implies N /∈ Sub((({A} ∪ Γ) \ {N}) ∪ ∆ ∪ Π).
Hence by the I.H. there is a derivation of ({A} ∪ Γ) \ {N}|∆ ⇒∗ Π wherein all instances
of (sPO)/(L⊥−) are analytic. Noting A ̸≡ N , we can apply (L∼+) to obtain a desired
derivation of (Γ) \ {N}|∆, ∼A ⇒∗ Π.

Suppose the derivation ends with an instance of (sPO):

p, Γ|∆ ⇒∗ Γ|∆, p ⇒∗

Γ|∆ ⇒∗

Then by assumption the instance must be analytic, and N /∈ Sub((Γ \ {N}) ∪ ∆) implies
N /∈ Sub((({p} ∪ Γ) \ {N}) ∪ ∆). Now if N ≡ p, then by the I.H. there is a derivation of
({p} ∪ Γ) \ {N}|∆ ⇒∗ , and this derivation is also a desired derivation of Γ \ {N}|∆ ⇒∗

. If N ̸≡ p, then N /∈ Sub((Γ \ {N}) ∪ ∆ ∪ {p}) as well. So we have derivations of
({p} ∪ Γ) \ {N}|∆ ⇒∗ and Γ \ {N}|∆, p ⇒∗ . As N ̸≡ p, we can apply (sPO) to obtain a
desired derivation of Γ\{N}|∆ ⇒∗ : note in particular that the application remains analytic
because N ̸≡ p.

Other cases can be argued analogously.

Theorem 5.12. If ⊢cf
spo Γ|∆ ⇒∗ Π, then there is a derivation of the b-sequent in which all

instances of (sPO) and (L⊥−) are analytic.

Proof. Given a derivation of Γ|∆ ⇒∗ Π, we consider a topmost instance of non-analytic
(sPO) or (L⊥−). By definition, the active formula N in its (left) premise N, Γ′|∆′ ⇒†

does not occur in the conclusion Γ′|∆′ ⇒† as a subformula. This means we can apply
Lemma 5.11 to obtain a subderivation of Γ′|∆′ ⇒† in which all instances of (sPO)/(L⊥+)
are analytic. This reduces the number of non-analytic (sPO)/(L⊥−) in the new overall
derivation, and so we can eliminate all instances by repeating the process.

Hence we can conclude that the subformula property holds for SCab
po as well.

Corollary 5.13 (subformula property). If ⊢spo Γ|∆ ⇒∗ Π then there is a derivation of the
b-sequent in which all formulas are a subformula of Γ ∪ ∆ ∪ Π.

Proof. By inspection on the rules in SCab
po-(Cut) restricted with analytic instances of (sPO)

and (L⊥−).

Next, let us move on to consider the constructivity of the systems, conceived here by
means of the disjunction property. We begin with the cases for SCab and SCab

po, where,
analogously to the case for intuitionistic logic [27], the property holds as a consequence of
cut-elimination.
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Corollary 5.14 (disjunction property). Let Γ and ∆ be finite sets of formulas such that
there is no occurrence of {∧, ∼} in Γ and no occurrence of {∨, ∼} in ∆. Then for † ∈ {ab, po},
⊢s† Γ|∆ ⇒+ A ∨ B implies ⊢s† Γ|∆ ⇒+ A or ⊢s† Γ|∆ ⇒+ B.

Proof. Suppose that a cut-free derivation of such a b-sequent is given. Then following a
path in the derivation upwards, we can construct a finite sequence s0, . . . , sn of b-sequents
such that s0 is Γ|∆ ⇒+ A ∨ B, si+1 is the premise of si whose succedent is A ∨ B, and sn

does not have a premise whose succedent is A ∨ B. Note that the choice of si+1 is uniquely
made, as we do not meet an application of (L∧−) nor (L∨+).

Then sn cannot be an instance of (Ax+) because ∆ does not contain a disjunctive
formula. It is not difficult to similarly check other rules to see that the rule applied to
obtain sn must be either (RW+) or (R∨+). Consider the latter case, and assume that the
succedent in the premise is A. Then take the premise as s′

n. The we can successively define
new b-sequents s′

i whose only difference is that the succedents are A. In particular, each s′
i

for i < n is obtained by an application of the same rule. This gives a desired derivation of
Γ|∆ ⇒+ A. It is analogously argued when the rule applied is (RW+).

The constructible falsity property of the systems (with the same class of antecedent
formulas) then follows immediately from the disjunction property. On the other hand, the
general disjunction property does not hold with respect to SCab

wn, when conceived with the
same class of formulas in the antecedent.

Proposition 5.15. ⊢swn |¬(p ∧ q) ⇒+ ∼p ∨ ∼q but ⊬swn |¬(p ∧ q) ⇒+ ∼p and ⊬swn

|¬(p ∧ q) ⇒+ ∼q

Proof. The first part is verified by the next derivation:

p| ⇒−p

p|¬(p∧q)⇒−p

p|¬(p∧q)⇒+∼p

p|¬(p∧q)⇒+∼p∨∼q q|¬(p∧q)⇒+∼p∨∼q

p∧q|¬(p∧q)⇒+∼p∨∼q

|p∧q⇒+p∧q |⊥⇒+

|p∧q, ¬(p∧q)⇒+
(sWN)|¬(p∧q)⇒+∼p∨∼q

As for the second part, by Proposition 5.3 and Corollary 3.6, it suffices to provide
counter-models for ⊨wn ¬(p ∧ q) ⇒ ∼p and ⊨wn ¬(p ∧ q) ⇒ ∼q. For the former, let
M = ((W, ≤), V) be a Cab

wn-model such that W = {w}, ≤= {(w, w)}, V+(p) = V−(q) = W
and V−(p) = V+(q) = V−(⊥) = ∅. Otherwise, V+ and V− are defined according to the
equivalences in Definition 3.1. Then we can inductively check w ⊩+

wn A or w ⊩−
wn A for all

A; thus (Weak Negation) is satisfied. Now clearly, w ⊩+
wn ¬(p ∧ q) but w ⊮+ ∼p. The latter

case is analogous.
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It therefore appears that Cab
wn does not enjoy the same level of constructivity9 as Cab

and Cab
po. This suggest that Cab

wn may not be fully acceptable10 to an intuitionistic logician
similarly to the case for C3.

6 Mixed Constructible Falsity
In this section, we shall look at a further interaction between ¬ and ∼ which holds in many
systems in the vicinity of Cab. We first introduce the notion of reduced formula, commonly
used for systems with constructible falsity since Nelson [21], as a preliminary notion.

Definition 6.1. For each formula A in L, we define its reduced formula r(A) by the following
clauses.

r(p) = p. r(∼p) = ∼p.

r(⊥) = ⊥. r(∼⊥) = ∼⊥.

r(A ∧ B) = r(A) ∧ r(B). r(∼(A ∧ B)) = r(∼A) ∨ r(∼B).
r(A ∨ B) = r(A) ∨ r(B). r(∼(A ∨ B)) = r(∼A) ∧ r(∼B).

r(A → B) = r(A) → r(B). r(∼(A → B)) = r(A) → r(∼B).
r(∼∼A) = r(A).

We shall set r(Γ) := {r(A) : A ∈ Γ}. Reduced formulas for C are already discussed by
Wansing [33]. Some standard properties shown therein hold in the current setting as well:

Lemma 6.2. The following statements hold.

(i) ⊢hab A ↔ r(A).

(ii) ⊢hab r(∼A) ↔ ∼r(A).

(iii) ⊢hab ∼A ↔ ∼r(A).

Proof. We shall show (i) and (ii) by induction on the complexity of A. Here we shall treat
the cases where A ≡ ∼(B → C).

For (i), r(∼(B → C)) ≡ r(B) → r(∼C). By the I.H. ⊢hab B ↔ r(B) and ⊢hab ∼C ↔
r(∼C). The equivalence then follows from (NI).

For (ii), r(∼∼(B → C)) ≡ r(B) → r(C) and ∼r(∼(B → C)) ≡ ∼(r(B) → r(∼C)). By
the I.H. ⊢hab r(∼∼C) ↔ ∼r(∼C); so from this and (NI) the statement holds.

Now, ⊢hab ∼A ↔ r(∼A) from (i) and ⊢hab r(∼A) ↔ ∼r(A) from (ii); so (iii) follows.

Next we introduce a class of formulas in L.
9We do not know if SCab

wn enjoys the disjunction property with the empty antecedent.
10It might be argued that C is already disfavourable for a similar reason: Γ ⊢ A ∨ B (where Γ is

disjunction-free) implies Γ ⊢ A or Γ ⊢ B in intuitionistic logic but not in C. In this case, however,
the two logics have different languages, so it is less clear that we can draw the conclusion that C is
less constructive than intuitionistic logic.
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Definition 6.3. Let F be a class of formulas in L given by the next clauses.

F ::= ⊥ | (A ∧ F ) | (F ∧ A) | (F ∨ F ) | (A → F ).

With respect to this class, we have the following couple of lemmas.

Lemma 6.4. Let † ∈ {ab, po}. If ⊢s† Γ|∆ ⇒∗ , then
∧

r(∼Γ) ∧ ∧
r(∆) ∈ F .

Proof. We show by induction on the depth of derivation. By Theorem 5.9, it suffices to
consider the cut-free derivations. Also we may check via soundness that the antecedent is
non-empty.

The derivation cannot be an instance of (Ax−) or (Ax+). If it is an instance of (L⊥+),
then r(⊥) ≡ ⊥ ∈ F .

Otherwise, the derivation ends with an instance of a left rule or (sPO). If it ends with
an instance of (LW−):

Γ|∆ ⇒∗

A, Γ|∆ ⇒∗

then by the I.H.
∧

r(∼Γ) ∧ ∧
r(∆) ∈ F Hence r(∼A) ∧ ∧

r(∼Γ) ∧ ∧
r(∆) ∈ F , as required.

The case for (LW+) is analogous.
If the derivation ends with an instance of (L∧−):

A, Γ|∆ ⇒∗ B, Γ|∆ ⇒∗

A ∧ B, Γ|∆ ⇒∗

then by the I.H. r(∼A) ∧ ∧
r(∼Γ) ∧ ∧

r(∆) ∈ F and r(∼B) ∧ ∧
r(∼Γ) ∧ ∧

r(∆) ∈ F . Now
if there is C ∈ ∼Γ ∪ ∆ such that r(C) ∈ F , then the statement follows. Otherwise, it must
be that r(∼A), r(∼B) ∈ F Hence r(∼(A ∧ B)) ≡ r(∼A) ∨ ∼(B) ∈ F . Hence the statement
follows in all cases. The case for (L∨+) is analogous.

If the derivation ends with an instance of (L∧+):

Γ|∆, Ai ⇒∗

Γ|∆, A1 ∧ A2 ⇒∗

then by the I.H.
∧

r(∼Γ) ∧ ∧
r(∆) ∧ r(Ai) ∈ F . Hence

∧
r(∼Γ) ∧ ∧

r(∆) ∧ r(A1 ∧ A2) ∈ F .
The case for (L∨−) is analogous.

If the derivation ends with an instance of (L→−):

Γ|∆ ⇒+ A B, Γ′|∆′ ⇒∗

A → B, Γ, Γ′|∆, ∆′ ⇒∗

then by the I.H. r(∼B)∧∧
r(∼Γ′)∧∧

r(∆′) ∈ F . If there is C ∈ ∼Γ′∪∆′ such that r(C) ∈ F ,
then the statement follows. Otherwise, r(∼B) ∈ F , so r(∼(A → B)) ≡ r(A) → r(∼B) ∈ F .
Hence the statement follows in both cases. The case for (L→+) is analogous.

If the derivation ends with an instance of (L∼−):
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Γ|∆, A ⇒∗

∼A, Γ|∆ ⇒∗

then by the I.H.
∧

r(∼Γ) ∧ ∧
r(∆) ∧ r(A) ∈ F . Now if r(A) ∈ F , then r(∼∼A) ∈ F and so

the statement follows. Otherwise, the statement follows from the I.H.. The case for (L∼+)
also follows trivially by the I.H..

If the derivation ends with an instance of (sPO):

p, Γ|∆ ⇒∗ Γ|∆, p ⇒∗

Γ|∆ ⇒∗

Then by the I.H. r(∼p)∧∧
r(∼Γ)∧r(∆) ∈ F and

∧
r(∼Γ)∧r(∆)∧r(p) ∈ F . Then because

∼p, p /∈ F , there must be A ∈ ∼Γ ∪ ∆ such that r(A) ∈ F . Thus
∧

r(∼Γ) ∧ r(∆) ∈ F . The
case for (L⊥−) is analogous.

Lemma 6.5. If A ∈ F then ⊢hwn ∼A.

Proof. By induction on the construction of formulas in F . If A ≡ ⊥, then ⊢hwn ∼⊥ follows
from (WN).

If A ≡ B ∧ F , then by the I.H. ⊢hwn ∼F . Hence ⊢hwn ∼(B ∧ F ) by (DI) and (NC). The
case A ≡ F ∧ B is analogous.

If A ≡ F1 ∨ F2, then by the I.H. ⊢hwn ∼F1 and ⊢hwn ∼F2. Hence ⊢hwn ∼(F1 ∨ F2) by
(CI) and (ND).

If A ≡ B → F , then by the I.H. ⊢hwn ∼F . Hence ⊢hwn ∼(B → F ) by (K) and (NI).

The lemmas allow us to establish the next relationship between ¬ and ∼. (The first
item is in fact obvious from (WN); an alternative proof is given here for the interest of a
posterior remark.)

Theorem 6.6. The following statements hold.

(i) If ⊢hwn ¬A then ⊢hwn ∼A.

(ii) If ⊢hwn ¬(A ∧ B) then ⊢hwn ∼A or ⊢hwn ∼B.

Proof. For (i), by Proposition 4.5, if ⊢hwn ¬A then ⊢hpo ¬A. Thus by Proposition 5.3,
⊢spo | ⇒+ ¬A; by (Cut+), ⊢spo |A ⇒+ . Hence r(A) ∈ F by Lemma 6.4 and so
⊢hwn ∼r(A) by Lemma 6.5. Finally, Lemma 6.2 (iii) implies the desired conclusion.

For (ii), like in (i) if ⊢hwn ¬(A ∧ B) then r(A ∧ B) ≡ r(A) ∧ r(B) ∈ F . This implies that
either r(A) ∈ F or r(B) ∈ F . Then we follow the same path to conclude that ⊢hwn ∼A or
⊢hwn ∼B.

Therefore in Cab
wn, we obtain a sort of ‘mixed constructible falsity’ property, where the

witness for an intuitionistically negated conjunction is given in terms of constructible falsity.
This property may be seen to offer an alternative answer for intuitionistic logicians to the
failure of the constructible falsity property for intuitionistic negation. Instead of introducing
an alternative notion of negation which replaces intuitionistic negation (as happens in N4),
the connexive constructible falsity of Cab

wn complements intuitionistic negation by becoming
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a witness of an intuitionistically negated conjunction. In this specific sense, C-style systems
with the property might be called more intuitionistic than N4-style systems.

Remark 6.7. It is easily seen from the proof of the above theorem that the same properties
can be shown with respect to CN⊥ and any intermediate system which falls under the scope
of Proposition 4.5. Moreover, consider the ([9]-style) variants of Cab and Cab

po in which ∼⊥
is added as an axiom schema, and the corresponding sequent calculi with an additional
axiom | ⇒− ⊥. It is not difficult to observe that the additional rule does not affect the
cut-elimination and Lemma 6.5. Hence the properties of Theorem 6.6 hold with respect to
these variants as well.

7 Concluding Remarks
The question that motivated our enquiry is how an intuitionistic logician can make sense
of C-style connexive constructible falsity, and whether there is a related system in which it
is made more understandable by relating it with intuitionistic negation. We in particular
looked at two candidates Cab

po and Cab
wn.

Having looked at their properties, we may ask which one is to be preferred. Here it
seems Cab

po is largely more advantageous, because it has a better behaviour in the semantics
(Proposition 3.4), less controversial status on the falsity of intuitionistic negation (Proposi-
tion 4.2), a subformula calculus (Corollary 5.13) and better constructivity (Corollary 5.14).
Moreover, it shows a good property for investigating provable contradictions constructively
(Corollary 4.6), while staying close to C (Proposition 4.8). We would therefore suggest that
this could be a system that satisfies an intuitionistic logician enough, both in terms of its
comprehensibility11 and its formal behaviours.

In comparison, Cab
wn fares not as well as Cab

po in many of the above-mentioned aspects,
and the less satisfactory constructive status may be particularly worrying for an intuition-
istic logician. Nonetheless, its satisfaction of ‘the mixed constructible falsity’ property can
offer an independent motivation for the system. Since some of its disadvantages may well
be rectified (e.g. by a subformula calculus or the disjunction property with the empty an-
tecedent), further investigations can offer an improved evaluation.

Lastly, however, we would like to point out that there is another system that can po-
tentially meet the expectation of an intuitionistic logician. It is the system C⊥ in [9], i.e.
Cab with an additional axiom schema ∼⊥. As we discussed in Remark 6.7, in this system
(WN) holds in the rule form (i.e. Theorem 6.6 (i)). This relationship between intuitionistic
negation and constructible falsity may be enough for an intuitionistic logician to have an
adequate understanding of the latter concept. Therefore it seems, from this perspective, the
acceptability of ∼¬A as a theorem and the reading of ⊥ as falsehood can have a noticeable
influence on the preference of intuitionistic logicians.

11Admittedly, the double negation can make the schema more difficult to makes sense even though
the inner A ∨ ∼A is readily understandable. However, it is our (perhaps idealised) supposition that
intuitionistic logicians do understand all intuitionistic connectives; so the presence of the double
negation does not pose an issue for their comprehension.
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