CONTENT

I. LIST OF FIGURES IX

II. ABBREVIATIONS XI

IIIA. SUMMARY XIII

IIIB. ZUSAMMENFASSUNG XV

1 INTRODUCTION 17

1.1 THE BASE OF MODERN NEUROSCIENCE 17

1.2 THE DEVELOPMENT OF THE NERVOUS SYSTEM 17

1.3 THE HIPPOCAMPUS 18

1.4 CHEMICAL SYNAPSES 20

1.5 FORMATION OF SYNAPTIC CONTACTS 23
 1.5.1 AXON GUIDANCE AND PATH-FINDING 23
 1.5.2 SYNAPTIC ASSEMBLY 24
 1.5.2.1 PRESYNAPTIC ASSEMBLY 26
 1.5.2.2 POSTSYNAPTIC ASSEMBLY 26
 1.5.3 INDUCTION OF SYNAPSE FORMATION IN THE CNS 27
 1.5.3.1 PRIMING FACTORS 28
 1.5.3.2 INDUCTIVE SYNAPTGENIC FACTORS 28
 1.5.4 MATURATION AND ELIMINATION OF SYNAPSES 30
 1.5.5 THE TRIPARTITE SYMPHONY 31

1.6 THE EXTRACELLULAR MATRIX 34
 1.6.1 GENERAL CHARACTERISTICS OF THE EXTRACELLULAR MATRIX 34
 1.6.2 ECM-MOLECULES IN THE CNS 35
 1.6.2.1 GLYCOAMINOGLYCANS 35
 1.6.2.2 PROTEOGLYCANS 37
 1.6.2.3 GLYCOPROTEINS 38
 1.6.2.4 ECM-RECEPTORS 40
 1.6.2.5 PERINEURONAL NETS AND THE ECM AT SYNAPTIC SITES 42

2 MATERIAL & METHODS 44

2.1 COMPANIES 44

2.2 EQUIPMENT 45

2.3 SOURCES FOR ANTIBODIES, CHEMICALS, ENZYMES AND CONSUMABLES 45
 2.3.1 PLASTICWARE 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>MEDIA & COMPONENTS</td>
<td>46</td>
</tr>
<tr>
<td>2.3.3</td>
<td>CHEMICALS</td>
<td>46</td>
</tr>
<tr>
<td>2.3.4</td>
<td>KITS</td>
<td>46</td>
</tr>
<tr>
<td>2.3.5</td>
<td>PLASMIDS</td>
<td>47</td>
</tr>
<tr>
<td>2.3.6</td>
<td>ANTIKOBIES</td>
<td>47</td>
</tr>
<tr>
<td>2.3.7</td>
<td>OTHER REAGENTS</td>
<td>48</td>
</tr>
<tr>
<td>2.3.8</td>
<td>OTHER CONSUMABLES</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>COMPOSITION OF CELL CULTURE MEDIA, BUFFERS AND OTHER REAGENTS</td>
<td>49</td>
</tr>
<tr>
<td>2.4.1</td>
<td>CELL CULTURE</td>
<td>49</td>
</tr>
<tr>
<td>2.4.2</td>
<td>PROTEINBIOCHEMISTRY</td>
<td>50</td>
</tr>
<tr>
<td>2.4.3</td>
<td>MOLECULAR BIOLOGY</td>
<td>51</td>
</tr>
<tr>
<td>2.4.4</td>
<td>IMMUNOCYTOCHEMISTRY/IMMUNOHISTOCHEMISTRY</td>
<td>51</td>
</tr>
<tr>
<td>2.5</td>
<td>PRIMERS FOR RT PCR</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>CELL CULTURE</td>
<td>53</td>
</tr>
<tr>
<td>2.6.1</td>
<td>PREPARATION OF PRIMARY FIBROBLAST CULTURES</td>
<td>53</td>
</tr>
<tr>
<td>2.6.2</td>
<td>PREPARATION OF PRIMARY ASTROCYTE CULTURES</td>
<td>53</td>
</tr>
<tr>
<td>2.6.3</td>
<td>CULTIVATION OF E18 HIPPOCAMPAL NEURONS</td>
<td>54</td>
</tr>
<tr>
<td>2.6.4</td>
<td>CULTIVATION OF OL-NEU CELLS</td>
<td>55</td>
</tr>
<tr>
<td>2.6.5</td>
<td>CULTIVATION OF Neu7 AND A7 CELLS</td>
<td>55</td>
</tr>
<tr>
<td>2.6.6</td>
<td>CULTIVATION OF CHO CELLS</td>
<td>55</td>
</tr>
<tr>
<td>2.6.7</td>
<td>PREPARATION OF CELL-CULTURE INSERTS</td>
<td>56</td>
</tr>
<tr>
<td>2.6.8</td>
<td>PREPARATION OF MICROISLAND CULTURES</td>
<td>57</td>
</tr>
<tr>
<td>2.6.9</td>
<td>INVESTIGATION OF CELL DEATH RATES</td>
<td>57</td>
</tr>
<tr>
<td>2.6.10</td>
<td>DIGESTION OF ECM-COMPONENTS</td>
<td>57</td>
</tr>
<tr>
<td>2.7</td>
<td>IMMUNOCYTOCHEMISTRY</td>
<td>59</td>
</tr>
<tr>
<td>2.7.1</td>
<td>STAINING FOR SYNAPTIC PUNCTA</td>
<td>59</td>
</tr>
<tr>
<td>2.7.2</td>
<td>LIVE STAINING OF CELLS</td>
<td>59</td>
</tr>
<tr>
<td>2.7.3</td>
<td>STANDARD STAINING OF CELLS</td>
<td>59</td>
</tr>
<tr>
<td>2.8</td>
<td>IMMUNOHISTOCHEMISTRY</td>
<td>61</td>
</tr>
<tr>
<td>2.8.1</td>
<td>TISSUE PREPARATION</td>
<td>61</td>
</tr>
<tr>
<td>2.8.2</td>
<td>STAINING OF CRYOSECTIONS</td>
<td>61</td>
</tr>
<tr>
<td>2.9</td>
<td>PROTEINBIOCHEMISTRY</td>
<td>62</td>
</tr>
<tr>
<td>2.9.1</td>
<td>CELL LYSIS AND PROTEIN QUANTITATION</td>
<td>62</td>
</tr>
<tr>
<td>2.9.2</td>
<td>PROTEIN QUANTITATION OF CONDITIONED MEDIUM</td>
<td>62</td>
</tr>
<tr>
<td>2.9.3</td>
<td>SDS-PAGE</td>
<td>62</td>
</tr>
<tr>
<td>2.9.4</td>
<td>COOMASSIE STAIN</td>
<td>63</td>
</tr>
<tr>
<td>2.9.5</td>
<td>SILVER STAIN</td>
<td>63</td>
</tr>
<tr>
<td>2.9.6</td>
<td>IMMUNOBLOTTING</td>
<td>63</td>
</tr>
<tr>
<td>2.10</td>
<td>MOLECULAR BIOLOGY</td>
<td>65</td>
</tr>
<tr>
<td>2.10.1</td>
<td>RNA-ISOLATION</td>
<td>65</td>
</tr>
<tr>
<td>2.10.2</td>
<td>REVERSE TRANSCRIPTION</td>
<td>65</td>
</tr>
<tr>
<td>2.10.3</td>
<td>POLYMERASE CHAIN REACTION (PCR)</td>
<td>65</td>
</tr>
</tbody>
</table>
2.10.4 Electrophoresis of PCR Products 66
2.10.5 Cloning and Transfection of PCR Products 66
2.10.6 Isolation of Plasmid DNA 66
2.10.7 Digestion of DNA-Fragments 67

2.11 Electrophysiology 67

2.12 Microscopy 68
2.12.1 Fluorescence Microscopy 68
2.12.2 Phase Contrast Microscopy 68
2.12.3 Quantification of Synaptic Puncta 68

2.13 Counting and Statistical Analysis 69

3 Results 70

3.1 In vivo expression of CSPGs and other extracellular matrix proteins in the developing E18 hippocampus 71

3.2 In vitro model systems 79

3.3 Initial characterization of used cell types 79

3.4 Microisland assay 81
3.4.1 Characterization of matrix components in the microisland assay 81
3.4.2 Electrophysiological recordings in the microisland assay 84

3.5 The cell-insert co-culture system 87
3.5.1 Survival of neurons in the cell-insert co-culture assay 87
3.5.2 Polarization of hippocampal neurons in the cell-insert co-culture system and the characterization of neuronal subtypes 89
3.5.3 Expression of ECM components in the cell-insert co-culture system 91
3.5.4 Expression of synaptogenic factors and ECM-related proteins in the cell-insert co-culture system 93
3.5.5 Expression of synaptic proteins in the cell-insert co-culture system 96
3.5.5.1 Quantification synaptic puncta 98
3.5.6 Comparison between different supporting cell types 98
3.5.7 Degradation of ECM components in the cell-insert co-culture system 101
3.5.8 Biochemical analysis of conditioned media from the cell-insert co-culture system 107
3.5.9 Electrophysiological recordings of hippocampal neurons in the cell-insert co-culture system 109

4 Discussion 112

4.1 Technical considerations 113

4.2 Role of ECM-molecules for structural and functional synapses 118

4.3 Expression of ECM-molecules in the CNS 124
<table>
<thead>
<tr>
<th>CONTENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 CONCLUSION AND OUTLOOK</td>
<td>127</td>
</tr>
<tr>
<td>5 REFERENCES</td>
<td>128</td>
</tr>
<tr>
<td>6 APPENDIX</td>
<td>143</td>
</tr>
<tr>
<td>6.1 CURRICULUM VITAE</td>
<td>143</td>
</tr>
<tr>
<td>6.2 LIST OF PUBLICATIONS</td>
<td>145</td>
</tr>
<tr>
<td>6.3 ACKNOWLEDGEMENTS</td>
<td>147</td>
</tr>
</tbody>
</table>