Contents

1. Introduction of the Dissertation 1
 1.1. Motivation .. 1
 1.2. Outline .. 2

I. Contribution of Hard Near Threshold Pion Electro Production to Nucleon Structure Functions 3

2. Introduction to Part I 5

3. Evaluation of the Cross Section 7

4. Determination of the Structure Functions 11
 4.1. Leptonic Tensor .. 11
 4.2. Unpolarized Hadronic Tensor at the Threshold 12
 4.3. Unpolarized Hadronic Tensor near the Threshold 14
 4.4. Polarized Hadronic Tensor at the Threshold 18
 4.5. Polarized Hadronic Tensor near the Threshold 20

5. Transition Form Factor Expansion 25

6. Comparison with Experimental Data 29

7. Conclusion to Part I 33

II. Leading Nucleon Form Factors at Large Momentum Transfer in Single Gauge Boson Exchange Approximation 35

8. Introduction to Part II 37

9. Magnetic Form Factor 39
 9.1. General Construction ... 39
 9.2. Sample Diagram Evaluation 40
 9.3. Results of the Form Factors 42
 9.3.1. Proton Magnetic Form Factor 42
 9.3.2. Neutron Magnetic Form Factor 42
 9.4. Comparison with Experimental Data 43
 9.4.1. Proton Magnetic Form Factor 43
 9.4.2. Neutron Magnetic Form Factor 44
Contents

10. Isovector Axial-Vector Form Factor 45
 10.1. General Construction .. 45
 10.2. Sample Diagram Evaluation 45
 10.3. Result of the Form Factor 47
 10.4. Comparison with Experimental Data 48

11. Isoscalar Axial-Vector Form Factor 49
 11.1. General Construction .. 49
 11.2. Sample Diagram Evaluation 49
 11.3. Result of the Form Factor 51
 11.4. Comparison with Experimental Data 52

12. Discussion of the Discrepancy 53

13. Conclusion to Part II 55

III. Evaluation of the Nucleon Helicity Flip Form Factor at Large
 Momentum Transfer using One and Two Virtual Photons 57

14. Introduction to Part III 59

15. One Photon Exchange Approximation 61

16. Two Photon Exchange Approximation 65

17. Conclusion to Part III 73

18. Summary of the Dissertation 75

A. Nucleon Form Factors 77
 A.1. Electromagnetic Form Factors 77
 A.2. Vector Form Factors .. 78
 A.3. Axial-Vector Form Factors 78

B. Quantum Chromodynamics 79

C. Nucleon Distribution Amplitudes 81
 C.1. Twist-3 Distribution Amplitudes 82
 C.2. Twist-4 Distribution Amplitudes 83

D. Leading Form Factor Diagrams 85

E. Leading Form Factor Structures 91

F. Leading Form Factor Results 95

Bibliography 97

Lebenslauf 103