Contents

1 Introduction 1
 1.1 Overview of seismic reconnaissance methods in mechanized tunneling 1
 1.2 Numerical methods for seismic simulation 3
 1.3 Simulation of Seismic Waves for Tunnel Reconnaissance with the Nodal Discontinuous Galerkin Method 6
 1.4 Full Waveform Inversion for Tunneling Seismic Application 7
 1.5 Aim of this study 8

2 Theory of the Nodal Discontinuous Galerkin Method for Wave Propagation Problems 9
 2.1 The Elastic Wave Equation in 2D 9
 2.2 The Numerical Scheme in 2D 12
 2.2.1 General Formulation of the NDG in 2D 12
 2.2.2 NDG on the Triangular Element 13
 2.2.3 NDG Operators in 2D 17
 2.2.4 Numerical Flux Computation in 2D 21
 2.2.5 Boundary conditions 23
 2.2.6 Nearly Perfectly Matched Layers 24
 2.3 Viscoelastic Attenuation for Seismic Waves 27
 2.4 The elastic wave equation in 3D 33
 2.5 The Numerical Scheme in 3D 36
 2.5.1 NDG on the Tetrahedral Element 37
 2.5.2 NDG Operators in 3D 39
 2.5.3 Numerical Flux Computation in 3D 41
 2.6 Time Discretization 43

3 Implementation and Additional Methods 45
 3.1 Implementation of the NDG 45
 3.2 The Spectral Element Method 47
Contents

4 Validation of the NDG 49
 4.1 Lamb’s problem .. 49
 4.2 P-convergence Test ... 50
 4.3 Two layer half space in 3D .. 54
 4.4 MPI Scaling ... 58
 4.5 Validation of the NPML absorbing boundary conditions 62
 4.6 Comparison of a Viscoelastic Simulation with a SEM Reference Solution 64

5 Forward Tunnel Simulation with NDG and SEM 69
 5.1 Simple Tunnel Model in Two Dimensions with NDG 70
 5.2 Two Dimensional Tunnel Simulation with Machine, Lining and Attenuation 72
 5.3 Two Layer Tunnel Model in Three Dimensions with NDG 78
 5.4 Comparison of a SEM and NDG Simulation for Complex Geological Model 84
 5.5 Forward Simulation of a Geological Model with Curved Tunnel ... 92

6 Inverse Modeling of Seismic Tunnel Reconnaissance 97
 6.1 Basics of Inversion and the Adjoint Method 97
 6.2 Crosshole Inversion ... 100
 6.3 Tunnel inversion .. 104
 6.4 Wehrhahnlinie Tunnel Inversion based on Cross Sections of a Three Dimensional Model 112
 6.4.1 Vertical cross section 115
 6.4.2 Horizontal Cross Section 116

7 Discussion 127

8 Summary and Conclusion 133

Bibliography 150