Contents

1 Introduction .. 1
 1.1 Tight Reductions .. 4
 1.2 Digital Signatures 6
 1.3 Contribution ... 9
 1.3.1 Sufficient Conditions for the Impossibility of Tight Reductions. 9
 1.3.2 Tightly Secure Signatures in the Standard Model ... 11
 1.3.3 Tightly Secure Signatures in the Random Oracle Model 12

2 Preliminaries ... 15
 2.1 Notation .. 15
 2.2 Complexity Theoretical Foundations 16
 2.2.1 Model of Computation 16
 2.2.2 Complexity Assumptions 20
 2.3 Cryptographic Foundations 25
 2.3.1 The Security Parameter and Symmetric Key Size ... 25
 2.3.2 Asymmetric Key Size and Exact Security ... 27
 2.3.3 Basic Primitives 28

3 Sufficient Conditions for the Impossibility of Tight Reductions in Cryptography 33
 3.1 Warm-Up: Improved Bound for Digital Signatures 36
 3.1.1 Simple reductions from non-interactive complexity assumptions to breaking UF-SMA-security .. 38
 3.1.2 Lower Tightness Bound for r-simple reductions from any NICA to breaking UF-SMA-security .. 41
Contents

3.1.3 Interpretation .. 46
3.2 Sufficient Conditions to Rule out Tight Reductions 47
3.2.1 Definitions ... 48
3.2.2 Main Theorem to Rule Out Tight Reductions 50
3.3 Applications ... 55
3.4 Practical Implications 59
3.5 Limitations: How to circumvent the bound 60

4 Efficient Tightly Secure Signatures in the Standard Model 63
4.1 Security Notions for Digital Signatures in the Multi-User Setting ... 66
4.2 Generic Construction in the Standard Model 67
4.2.1 Description of the Scheme 68
4.2.2 Proof of Security 69
4.2.3 Instantiation with Building Blocks from the Literature .. 72

5 Practical Tightly Secure Signatures in the Random Oracle Model 75
5.1 Intuition .. 77
5.2 Description of the Scheme 79
5.3 Proof of Security ... 81
5.4 Efficiency of our Scheme 86

6 Conclusion .. 89

Bibliography .. 91