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Abstract

Cryptographic protocols are a critical element of the infrastructure for secure com-
munication. They can be used to provide security guarantees for the exchanged data
when multiple parties are communicating in an insecure or untrusted environment. The
core of cryptographic protocols such as SSL, TLS, SSH, or IPSec is the key exchange
protocol, which allows two parties to generate a shared secret key used for establishing
a secure channel. Authenticated key exchange (AKE) and authenticated and confiden-
tial channel establishment (ACCE) protocols are the most important building blocks in
secure communication. Intuitively, they allow a party “Alice” to authenticate a commu-
nication partner “Bob” and securely establish a common session key (used for estab-
lishing a secure communication channel) with Bob, and vice versa. The communication
between Alice and Bob is then protected with this secret session key.

This thesis is concerned with the approach to design and analysis of cryptographic
protocols based around the most widely used security models. In particular, we show
how to systematically construct and analyze security protocols in realistic models. This
work splits into two parts.

In the first part of this thesis we give an overview of the most widely used security
models for AKE/ACCE protocols. Then, we extend existing security models to capture
relevant attacks that were originally outside the scope of these models. Finally, we dis-
cuss the differences between the proposed security models and show the relationship
between the existing models and our models.

In the second part of this thesis we first analyze the security of all three TLS-PSK
ciphersuites in our extended ACCE model. It is the first detailed security analysis for the
symmetric-key based TLS-PSK protocols. Then, we construct the first tightly-secure
AKE protocol in an enhanced Bellare-Rogaway security model under standard assump-
tions. In contrast to other AKE protocols, its security does not degrade with an increas-
ing number of participating parties and protocol sessions. Moreover, we present new
efficient compilers that generically turn passively secure key exchange protocols into
efficient AKE protocols where the security properties hold in the realistic setting of
communication channels controlled by an active adversary. Finally, we introduce a new
theoretical attack for AKE protocols, named no-match attack, and show that proving
security under the matching conversations (MC) as session IDs (MC-based sID) is a del-
icate issue. In particular, we provide several examples of AKE protocols that claim to be
secure under a security definition based on MC-based session identifier but where the
security proof is actually flawed. Additionally, we give several generic ways to thwart
our no-match attacks.





Kurzfassung

Informationssicherheit spielt eine wichtige und entscheidende Rolle in der heutigen dig-
italen Gesellschaft. Integrität und Authentizität von Daten muss sichergestellt werden
können und Informationen müssen vertraulich gesendet werden können. Kryptographis-
che Protokolle zur authentischen Schlüsselvereinbarung (AKE-Protokolle) bilden einen
wichtigen Baustein, um eine sichere Kommunikation zu gewährleisten. Diese Protokolle
werden von mehreren Parteien in einer unsicheren oder nicht vertrauenswürdigen Kom-
munikationsumgebung, wie dem Internet, ausgeführt um anschließend Daten authen-
tisch, integritätsgeschützt und vertraulich übertragen zu können. Etwas genauer erlauben
sie einer Partei, etwa Alice (A), einen Kommunikationspartner, beispielsweise Bob (B),
zu authentifizieren und einen gemeinsamen, “sicheren” Sitzungsschlüssel zu generieren.
Die Kommunikation wird anschließend mit diesem Sitzungsschlüssel geschützt.

Das Design und die Analyse der sicheren Kommunikationsprotokolle haben sich
als nicht-triviale Aufgabe erwiesen. Der Beweis der Sicherheit einfacher kryptographis-
cher Protokolle ist üblicherweise sehr komplex. Viele Protokolle wurden ohne theo-
retische Rechtfertigung, d.h. ohne formalen Sicherheitsbeweis, entwickelt. Dies um-
fasst etwa die Protokolle TLS/SSL, IPSec oder Kerberos. Aus diesem Grund gibt es in
regelmäßigen Abständen Angriffe auf diese Protokolle. Daher ist die Analyse bstehen-
der Protokolle, sowie der Entwurf theoretisch fundierter kryptographischer Protokolle
von großer Wichtigkeit, wenn man solche Angriffe vermeiden möchte.

Diese Arbeit beschäftigt sich mit dem Design und Analyse kryptographischer Pro-
tokolle in den aktuell gängisten Sicherheitsmodellen. Wir zeigen wie man die Kommu-
nikationsprotokolle systematisch konstruieren und analysieren kann, insbesondere für
authentifizierte Schlüsselaustauschprotokollen in realitätsnahen Modellen. Protokoll en-
twickeln und analysieren kann. Diese Arbeit besteht aus zwei Teilen.

Im ersten Teil dieser Dissertation erweitern wir existierende Sicherheitsmodelle,
um zusätzlich praktisch relevante Angriffe zu simulieren, die durch existierende Mod-
elle noch nicht berücksichtigt wurden. Außerdem diskutieren wir die vorgeschlagenen
Sicherheitsmodelle und zeigen die Beziehungen zu vorherigen Modellen auf.

Im zweiten Teil dieser Dissertation beschreiben wir die Ergebnisse mit den folgen-
den Schwerpunkten:

• Wir analysieren die Sicherheit des TLS-PSK Protokolls. TLS-PSK ist ein sehr
wichtiges Sicherheitsprotokoll, welches häufig für den Remotezugriff auf eine Smart-
card eingesetzt wird. Um die Sicherheit des Protokolls zu beweisen haben wir das
bekannte ACCE Modell erweitert.

• Wir konstruieren generisch das erste AKE-Protokoll mit einer "scharfen Reduktion"
(tight reduction). Der Sicherheitsbeweis verliert nur einen konstanten Faktor.
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• We erforschen zwei neue effiziente Transformationen, die sichere Schlüsselaus-
tauschprotokolle gegen passive Angreifer in effiziente sichere AKE-Protokolle gegen
aktive Angreifer überführen.

• Die Dissertation schließt mit einen neuen generischen Angriff gegen AKE-Protkolle
(“No-Match Attack”). Wir zeigen, dass unser Angriff auf viele existierende AKE-
Protokolle durchgeführt werden kann. Wir betonen, dass unsere Angriffe nicht
das Modell verletzen, in dem die Sicherheit dieser Protokolle bewiesen wurde.
Schließlich geben wir einige Lösungen an mit deren Hilfe unser Angriff verhindert
werden kann.
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Listings

• Integer, Strings, Transcript and Vectors. Let N = [n] = {1, . . . , n} ⊂ N be the set
of integers between 1 and n. Unless otherwise specified, a natual number is presented
in its binary expansion. We denote by 1n the unary expansion of n, i.e., the concate-
nation of n 1’s. Given a string x, we denote x|i be the i′-th bit of x. We denote −→x be
a finite sequence of elements {x1, · · ·xn}, and we let |−→x | denote the number of ele-
ments in the sequence. Let ‘||’ denote the operation concatenating two binary strings.
Let T be the transcript of messages sent and received by communication parties.

• Parameter Spaces. Let SK be the long-term secret key space and PK be the long-
term public key space. Let EPK be the ephemeral public key space, ESK be the
ephemeral secret key space and SSK be the session key space. LetM be the mes-
sage space and C be the ciphertext space. Let R be the random value space. Let
IDS be the identity space of the communication parties and Π be the set of system
parameters.

• Algorithms. Let S be a set, we then denote by s $← S the operation of picking an
element s of S uniformly at random. We writeA is an algorithm with inputs x, y, . . .
and by z $← A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and letting z be the output of the algorithm A. We write AO1(·),O2(·),...(x, y, . . .) to
indicate that A is an algorithm with inputs x, y, . . . and black-box access to oracles
O1(· ),O2(· ), . . .. IfA is a randomized algorithm, the notionA(x; r) means running
A with input x and randomness r.

• Protocols. Let KE be key exchange protocols, and AKE be authenticated key ex-
change protocols. Let tAKE be AKE protocols with a tight reduction. Let ACCE be
authenticated and confidential channel establishment protocols.

• Security Models. Let BR93 be the Bellare-Rogaway model introduced by Bellare
and Rogaway in 1993 for the security analysis of authenticated key exchange proto-
cols. Let CK01 be the Canetti and Krawczyk security model introduced by Canetti
and Krawczyk in 2001 for (implicitly) authenticated key exchange protocols. Let
CKHMQV be the extension of the Canetti and Krawczyk security model introduced by
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Krawczyk in 2005 in order to capture KCI and weak PFS attacks. Let eCK be the ex-
tended Canetti-Krawczyk model introduced by LaMacchia er al. to capture exposure
of ephemeral keys attacks. Let eBR be an extension of the BR93 model. Let eBRC

be an extended Bellare-Rogaway security model for AKE compilers. Let eBRT be an
extended Bellare-Rogaway security model for AKE protocols with a tight reduction.
Let ACCE12 be a security model for authenticated and confidential channel estab-
lishment protocols introduced by Jager et al. in 2012. Let eACCE be an extension of
ACCE12.



Chapter 1

Introduction

Recent years have seen the emergence of various electronic services in an attempt to fa-
cilitate everyday life, such as on-line banking, electronic trading, online shopping, social
networking, e-business or e-voting, and so forth. Naturally, security is a major concern
for these applications. Sensitive information transferred over the public networks need
to be protected. Cryptographic protocols as the best solutions are always considered
for achieving these given security requirements, for example authenticity, privacy and
integrity.

Cryptographic protocols are used to provide security guarantees for the exchanged
data when the communication parties communicate over insecure networks. Authen-
ticated key exchange (AKE) and authenticated and confidential channel establishment
(ACCE) protocols are central building blocks of secure communication, such as HMQV [Kra05a],
TLS/SSL [DA99, Res00, BWNH+03, BU04, Uri10, PUM11], SSH [BKN06, FPS06,
Har06, HSGW06, WG06, GT06] and IPSec [Pip98, MSST98, HC98, Kau05] which
are always used to establish a secure connection between the communication parties.
Roughly speaking, they establish a shared secret session key between the parties and
subsequent communication is protected with this session key, i.e., this “secret” is used
for encrypting all messages in one communication session.

The design and analysis of cryptographic protocols has proved to be a non-trivial
task for every protocol designer. Bad security is worse than no security. Many designers
fail to provide a formal proof of security. Flaws in the protocol can lead to disastrous
effects, especially if the protocol is widely used. A number of examples exists in the aca-
demic literature of flaws that were found in protocols that had not received intensive se-
curity analysis [CBHM04, CBH05a, CBH05b, DP07, BCF+13, PS14]. For instance, the
new attacks on SSL/TLS protocol are found and published in renown international con-
ferences frequently [PRS11a, PA12, ABP+13, AP13, MSW+14]. Such errors could have
been found by protocol designers if a correct proof of security was to be constructed.
Therefore, the analysis of secure protocols is important for protocol development.

This thesis is focused on design and analysis of cryptographic protocols that are used
to authenticate parties and to establish cryptographic session keys, which are then com-
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monly used to enable a confidential transport of messages over insecure networks. We
show how to systematically construct and analyze cryptographic protocols in realistic
models. We will first elaborate on several important topics in the field of cryptographic
protocols (especially key exchange protocols), and then formulate corresponding re-
search questions.

• TLS is undeniably the most prominent key exchange protocol in use today. While the
security of most web applications relies on the classical Diffie-Hellman and RSA-
based ciphersuites of TLS, there also exist several important applications that make
use of one of the less common ciphersuites [BU04, Uri10, PUM11]. One such ap-
plication is (remote) authentication of resource-restricted clients like smart-cards.
In these scenarios, computational efficiency and low power consumption often are
one of the most important system features. Instead of using the public-key based ci-
phersuites of TLS, applications can apply a variant of TLS that assumes pre-shared
symmetric keys between client and server. The corresponding ciphersuite family is
termed TLS with pre-shared keys (TLS-PSK) and available in many TLS releases
and libraries [Ope13, MJ, Bot13, Pau13, Pee13, Pet13, Tod13, Bou13].

QUESTION 1: The research question arising from the above objectives is as follows:
How secure are the commonly used symmetric TLS-PSK ciphersuites in a realistic
environment?

• The wide application of AKE protocols, such as TLS protocol, make it necessary
and interesting to study their security in a large-scale setting with many millions of
parties. Known provably secure AKE protocols come with a reduction which has a
reduction loss factor that depends on the number ` of parties and the number d of
session per party. For example, if the reduction has to guess only one party partici-
pating in a particular session, it will lose a factor of (d`), i.e. the number of sessions.
This may become significant in large-scale applications. Informally, assume that a
1248 bit RSA modulars N refers to 80 bits of security. Thus, a solver algorithm run-
ning in time t has success probability at most t

280
. Now let us assume that d` = 230.

According to [BR96, Cor00], the bound on the work factor of the adversary A is
280

230
= 250. To achieve 80 bits of security, we have to choose an RSA-modulus N of

size roughly 2460 bits [ECR12]. Moreover, if d` > 230, then we can not rule out the
attacks, even if we choose the RSA-modulus N to be of size 2460 bits. Therefore,
developing efficient AKE protocols with tight reduction is the most important for
practical applications of cryptosystems.

The existence of tight security reductions has been studied for many cryptographic
primitives, like identity-based encryption [CW13, BKP14], digital signatures [Ber08,
Sch11, KK12], and public-key encryption [BBM00, HJ12, LJYP14]. However,
there is no example of an authenticated key exchange protocol that comes with
tight security proof under a standard assumption, not even in the Random Oracle
Model [BR93b].
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QUESTION 2: As indicated above, one can raise the question: Is it possible to con-
struct a secure authenticated key exchange protocol with a tight security reduction in
an enhanced Bellare-Rogaway security model under standard assumptions?

• A generic compiler of authenticated key exchange systems has several admirable
benefits and advantages [BCK98, KY07, JKSS10]. One is flexibility as one of these
can resort to a rich collection of existing authentication schemes and key exchange
protocols that can be combined to yield new authenticated key exchange systems.
Another benefit is applicability, as a generic compiler (ideally) does not require any
modifications in existing implementations of the input protocols. Instead, security
can be established by simply “adding” the implementation of the compiler to the
system. Also, a generic compiler can considerably simplify the security analysis,
as only the input protocols have to be analyzed to meet their respective security
requirements.

QUESTION 3: How can protocol designers modularly construct secure, efficient and
reliable authenticated key exchange systems?

• An essential part of the definition of security for any key exchange protocol is the
notion of partnering [BR95, BWJM97, BCK98, Sho99a, BPR00, CK01, CK02b,
KP05, Kra05a, LLM07a]. This essentially defines when two processes running the
key exchange protocol can be considered to have communicated with each other
and thus share important confidential information. The de-facto standard definition
is that of matching conversations (MC), which essentially states that two processes
are partnered if every message sent by the first is actually received by the second and
vice versa.

QUESTION 4: Is this an appropriate choice if we use the notion of matching con-
versation as session identifier (MC-based sID) to prove the security for (all) key ex-
change protocols?

CONTRIBUTIONS OF THE THESIS.

This thesis answers the previous questions such as:

• 1: First formal security analysis of all the TLS-PSK ciphersuites.
To answer “How secure are the commonly used symmetric TLS-PSK ciphersuites
in a realistic environment?”, we give the security analysis of Transport Layer Se-
curity Pre-Shared Key ciphersuites (TLS-PSK), including TLS_PSK, TLS_RSA_-
PSK and TLS_DHE_PSK. In oder to prove the protocols, we present a new variant
of pseudo-random functions, called double pseudo-random function (DPRF) and a
strengthened variant of forward secrecy, named asymmetric perfect forward secrecy
(APFS). We first give a brief description of all three protocols, and then introduce an
extension of the ACCE security model for authentication protocols with pre-shared
keys. Finally, we prove that all ciphersuite families of TLS-PSK meet our strong
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notion of our security model. This result was joint work with Sven Schäge, Zheng
Yang, Jörg Schwenk and Florian Kohlar. and published in the proceedings of the In-
ternational Conference on Practice and Theory of Public-Key Cryptography (PKC)
2014 [LSY+14b] and in the IACR archive ePrint [LSY+14c].

• 2: First tightly-secure authenticated key exchange protocol.
In order to answer the question: “Is it possible to construct a secure authenticated key
exchange protocol with a tight security reduction in an enhanced Bellare-Rogaway
security model under standards assumptions?”, we construct the first tightly-secure
authenticated key exchange (AKE) protocol, called tAKE, where security does not
degrade with an increasing number of participating parties and protocol sessions.
We describe a generic three-pass AKE protocol and prove its security in an enhanced
Bellare-Rogaway security model under the standard assumption. Our construction
is modular and enjoys a tight security reduction. This result was joint work with
Christoph Bader, Dennis Hofheinz, Tibor Jager and Eike Kiltz and published in the
proceedings of the International Conference on Theory of Cryptography Conference
(TCC) 2015 [BHJ+15] and in the IACR archive ePrint [BHJ+14].

• 3: New modular compilers for authenticated key exchange protocols.
“How can protocol designers modularly construct secure, efficient and reliable AKE
systems?” For this question, we give two new efficient AKE compilers that generi-
cally construct secure and efficient AKE systems from Passive Key Exchange Mod-
ule (PKEM) and Authentication Module (AM). Our first compiler is very efficient
which relies on secure signature schemes and only requires two additional moves in
which signatures are exchanged. The second compiler relies on public key encryption
systems and accounts for scenarios where the parties do not have certified signature
keys but only encryption keys. This scenarios can often occur in practice. This result
was joint work with Sven Schäge, Zheng Yang, Jörg Schwenk and Christoph Bader
and published in the proceedings of the International Conference on Applied Cryp-
tography and Network Security (ACNS) 2014 [LSY+14a].

• 4: A new theoretical attack: “no-match attack”.

“Is this an appropriate choice if we use the notion of matching conversation as ses-
sion identifier (MC-based sID) to prove the security for (all) authenticated key ex-
change protocols?” To answer this important question, we present a new theoreti-
cal attack, named here no-match attack, and show that proving security under the
matching conversations as session identifier is a delicate issue. In particular, we pro-
vide several examples of protocols that claim to be secure under a security definition
based on MC-based sID but where the security proof is actually flawed. We show that
no-match attacks are often hard to avoid without costly modifications of the original
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protocol. Simultaneously, we also give several ways to thwart no-match attacks. This
result was joint work with Sven Schäge and Zheng Yang.

STRUCTURE OF THE THESIS.

The rest of this thesis is organized as follows:

• Chapter 2 providers a set of cryptographic basis and describes some preliminaries
and definitions that will be used in this thesis.

• In Chapter 3, we introduce security models for AKE and ACCE protocols. The chap-
ter shows how to incorporate the Bellare-Rogaway approach to modeling a security
environment and produce a model-system description which is suitable for the secu-
rity analysis of protocols. Firstly, we give security properties that theses communica-
tion protocols should satisfy. Then, we describe an overview of the most widely used
security models for authenticated key exchange protocols. Next. we give a formal
definition of passively-secure key exchange protocol and a corresponding security
model. Moreover, we present an extension of Bellare-Rogaway (BR93) model and
an extension of ACCE model used in the security analysis of our protocols. Finally,
we give the relationship between the existing models and our models.

• In Chapter 4, we describe all three TLS-PSK ciphersuites and prove the security in an
extended ACCE model. To prove our results on TLS_RSA_PSK and TLS_DHE_-
PSK, we introduce a new variant of pseudo-random functions (PRFs), called double
pseudo-random function (DPRF) and prove the ACCE security of TLS_RSA_PSK
with asymmetric perfect forward secrecy and TLS_DHE_PSK with perfect forward
secrecy in the standard model.

• In Chapter 5, we construct the first tightly-secure AKE protocol in an enhanced under
standard assumptions where security does not degrade with an increasing number of
participating parties and protocol sessions, i.e., tight security reduction.

• In Chapter 6, we present new efficient AKE compilers that generically turn passively-
secure key exchange (KE) protocols into authenticated key exchange (AKE) pro-
tocols where the security properties hold in the realistic setting of communication
channels controlled by an active adversary.

• Finally, we present a new theoretical attack for key exchange protocols in Chap-
ter 7, named no-match attack, and show that proving security under the matching
conversations as session identifier (MC-based sID) is a delicate issue. In particular,
we provide several examples of protocols that claim to be secure under a security
definition based on MC-based sID but where the security proof is actually flawed. At
the end of this chapter, we discuss several ways to thwart our no-match attacks.





Chapter 2

Preliminaries and Definitions
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In this chapter we recall a set of cryptographic basic, and describe some prelimi-
naries and definitions that will be used in this thesis. References for these topics include
the books by Kranakis [Kra86], Menezes et al. [MvOV96], Schneier [Sch96] and Gol-
dreich [Gol98, Gol01, Gol04, Gol10].

2.1 Number Theoretic Problems

In 1976, Whitfield Diffie and Martin Hellman first introduced the notion of public key
cryptography. After that, there is a lot of research in public key cryptography and more-
over, numerous schemes are proposed. All of these public key cryptographic systems
based their security on the difficulty of solving some mathematical problem. In this sec-
tion, we first simply describe the concept of computational security, then list a set of
hard problems used in this thesis.

2.1.1 Computational Security for Cryptography

Many modern cryptosystems are proved computationally secure under some compu-
tational assumptions, e.g. RSA assumption, DDH assumption, CDH assumption, DL
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assumption, etc. In computational security many assumptions are defined under the con-
cept of Turing machine TM which was introduced in 1936 by Alan Turing. No such
a probabilistic polynomial Turing machine TM which can solve some computational
Problem with non-negligible probability. In this thesis, we use ε(κ) as a negligible func-
tion. For more information on TM, see [Gol10]. To compare running times of algo-
rithms, one uses some standard asymptotic notations [Gol01]. We represent these stan-
dard asymptotic notations as follows:

• f(x) = O(g(x));

• f(x) = o(g(x)), (x→∞) ;

Suppose that two functions f(x) and g(x) are functions of an integer variable x. The
expression f(x) = O(g(x)) means that there exists constants x0 and c such that |f(x)| ≤
c|f(x)| for all x ≥ x0. The notation f(x) = o(g(x)), (x → ∞) means that g(x) 6= 0
for sufficiently large x and limx→∞

f(x)
g(x)

= 0. Note that if C is a positive constant, then
f(x) = O(Cg(x)) is equivalent to f(x) = O(g(x)). In particular, f(x) = O(C) is
equivalent to f(x) = O(1).

In cryptanalysis, some technical factors contribute to the time complexity of a crypt-
analytic attack, e.g. key size, input length, processor speed, a amount of space, etc. With
an algorithmic input size of l we denote the notions as follows: O(l) is linearly time
bounded;O(lx) is polynomial time bounded, where x is a constant;O(xp(l)) is exponen-
tially time bounded, where x is a constant x > 1 and p(l) is a polynomial.

Definition 2.1. We say that a function ε(κ) is negligible if for every c > 0 there exists
κc > 0 such that ε(κ) < κ−c for all κ > κc.

In the following subsections we describe some assumptions which are used in this
thesis.

2.1.2 The Diffie-Hellman Assumption

The Diffie-Hellman problem can be classified into two types: the Computational Diffie-
Hellman problem and the Decisional Diffie-Hellman problem. There are some variations
of both types. We only give the descriptions used in this thesis in the next paragraphs. In
describing these assumptions, we use the notations of the preceding subsection.

2.1.2.1 The Decisional Diffie-Hellman Assumption

The decision Diffie-Hellman problem DDH is defined as follows:

• Input: A cyclic group G of prime order p, g is a generator of G, and three random
elements ga, gb, gc $← G;
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• Output: Decide whether or not gc ?
= gab.

Definition 2.2 (DDH-Definition). A DDH adversary A takes as input a tuple (G, g, ga,
gb, gb) in G4 and outputs 0 or 1. We say that A (t, εDDH)-breaks the decisional Diffie-
Hellman (DDH) Assumption in G if it runs in time at most t,

|Pr[A(G, g, ga, gb, gab) = 1]− Pr[A(G, g, ga, gb, gc) = 1]| ≤ εDDH,

where the probability is taken over a, b, c $← Zp.

2.2 Cryptographic Foundations

In this section we describe the foundations of cryptography that will be used in the
subsequent chapters. The foundations of cryptography are the paradigms, approaches
and techniques used to conceptualize, define and provide solutions to the cryptographic
problems.

2.2.1 Hash Functions

Informally, a hash functions is applied to reduce messages of arbitrary length to binary
strings of a fixed length `. Naturally, we require a hash function to be efficiently com-
putable. For cryptographic purposes a hash function must have at least one of the follow-
ing properties: one-wayness and/or collision resistance. In this subsection we describe
the security definitions of collision-resistant hash function and target collision-resistant
hash function.

2.2.1.1 Collision-Resistant Hash Function

A collision-resistant hash function is a deterministic algorithm CRHF: KCRHF ×M→
{0, 1}` which given a key k ∈ KCRHF(1κ)1 and a bit string M ∈M outputs a hash value
w = CRHF(k,M) in the hash space {0, 1}` with ` polynomial in κ.

The security of a collision-resistant hash function CRHF is captured via the follow-
ing game that is played between a challenger C and an adversary A:

• The challenger C selects a key k ∈ KCRHF and gives k to A.

• The attacker A outputs two strings M0 and M1 ∈M.

1 We assume that there is a PPT algorithmKCRHF that on input 1κ produces a random key k, where κ is the security
parameter.
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• The attacker A wins the security game if and only if M0 6= M1 and CRHF(k,M0) =
CRHF(k,M1).

Definition 2.3. We say that CRHF is a (t, εCRHF)-secure collision-resistant hash function,
if all t-time adversaries A have an advantage of at most εCRHF, that is

Pr

[
CRHF(k,M0) = CRHF(k,M1)

∧
M1 6= M0

∧
M1,M0 ∈MCRHF :

k ∈ KCRHF; (M0,M1)← A(1κ, k)

]
≤ εCRHF.

2.2.2 Pseudo-Random Functions.

Let PRF : KPRF ×MPRF → RPRF denote a family of deterministic functions, where
KPRF is the key space,MPRF is the domain andRPRF is the range of PRF.

To define security, we consider the following security game played between a chal-
lenger C and an adversary A. Let πPRF(·) denote an oracle implemented by C, which
takes as input a message m ∈MPRF and outputs a value z ∈ RPRF.

1. The challenger samples b $← {0, 1}. If b = 0, the challenger samples k $← KPRF and
assigns oracle πPRF(·) to PRF(k, ·). If b = 1, the challenger assigns oracle πPRF(·) to
RF(·) which is a truly random function associated with the same range and domain
as PRF(k, ·).

2. The adversary may adaptively make queries mi for 1 ≤ i ≤ q to oracle πPRF(·) and
receives the result depending on the random bit b.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b. If b = b′ the adversary wins.

We assume that the overall number of queries made to the challenger is q = q(κ). As
before, we call Pr [b = b′] the success probability of the adversary in winning the above
game. We call |Pr [b = b′]− 1/2| the advantage of the adversary.

Definition 2.4. We say that PRF is a (q, t, εPRF)-secure pseudo-random function, if any
adversary running in time t has an advantage of at most ε to distinguish the PRF from a
truly random function, i.e.,

Pr [b = b′] ≤ 1/2 + εPRF,

while the number of allowed queries q is upper bounded by t.

2.2.3 Message Authentication Code

We first recall the notions of general message authentication codes scheme. A mes-
sage authentication code MAC consists of three probabilistic algorithms (MAC.KGen,
MAC.Tag, MAC.Vfy) with associated key space KMAC, message space MMAC and tag
space TMAC.
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• KMAC
$← MAC.KGen(1κ): The probabilistic key-generation algorithm takes as input

a security parameter κ and outputs a secret key KMAC ∈ KMAC.

• ρ ← MAC.Tag(KMAC,m): The algorithm MAC.Tag is a deterministic algorithm
which takes as input a secret key KMAC ∈ KMAC and a message m ∈ MMAC and
outputs an authentication tag ρ ∈ TMAC.

• b ∈ {0, 1} ← MAC.Vfy(KMAC,m, ρ): The deterministic verification algorithm
MAC.Vfy takes as input a secret key KMAC ∈ KMAC, a message m ∈ MMAC and
a tag ρ ∈ TMAC and outputs b = 1 if it accepts. Otherwise, it returns b = 0. In prac-
tice, we do not need to specify a separate tag-verification algorithm. Here we assume
that the tag-verification works the same way: the receiver, having received (m, ρ),
computes ρ′ ← MAC.Tag(KMAC,m). If ρ′ = ρ then b = 1; otherwise, b = 0.

The (UF-CMA) security of a MAC scheme MAC = (MAC.KGen, MAC.Tag, MAC.Vfy)
via the following game that is played between a challenger C and an adversary A.

1. The challenger C computes KMAC
$← MAC.KGen(1κ).

2. The adversary A may adaptively query q ∈ N messages mi of his choice, where i is
an index, 1 ≤ i ≤ q.

3. The challenger C replies to each query with ρi ← MAC.Tag(KMAC,mi).

4. Eventually, A outputs a fresh pair (m∗, ρ∗). If MAC.Vfy(KMAC,m
∗, ρ∗) = 1 and m∗

/∈ {m1, . . . ,mq}, the adversary A wins.

We assume that the overall number of queries made to the challenger C is q = q(κ).

Definition 2.5. We say that a message authentication code scheme MAC is (q, t, εMAC)-
secure against forgeries under adaptive chosen-message attacks (UF-CMA), if for all
adversaries A that run in time t and queries at most q messages holds that

Pr
[
(m∗, ρ∗)

$← A(1κ) : MAC.Vfy(KMAC,m
∗, ρ∗) = 1 ∧m∗ /∈ {m1, . . . ,mq}

]
≤ εMAC,

while the number of allowed query at most q is upper bounded by t.

2.2.3.1 One-Time Message Authentication Code

Definition 2.6. We say that a one-time message authentication code scheme OTM is
(t, εOTM)-secure, if OTM is a (1, t, εOTM)-secure message authentication code scheme
in the sense of Definition 2.5.

2.2.4 Public-Key Encryption

A public key encryption (PKE) scheme consists of three polynomial time algorithms
PKE =(PKE.KGen, PKE.Enc, PKE.Dec) with the following semantics:
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• (pk, sk)
$← PKE.KGen(1κ): is a probabilistic polynomial-time key generation algo-

rithm which generates a encryption/decryption key pair (pk, sk) ∈ SK × PK on
input of the security parameter κ,

• C $← PKE.Enc(pk,m): is a probabilistic polynomial-time encryption algorithm
which takes as inputs a public key pk ∈ PK and a message m ∈ M and outputs
ciphertext C ∈ C.

• m ← PKE.Dec(sk, C): is a deterministic polynomial-time decryption algorithm
which takes as input a key sk and a ciphertext C, and outputs either m ∈ M or
an error symbol ⊥.

CORRECTNESS. For consistency, we require the correctness properties. For all (pk, sk)
$← PKE.KGen(1κ), and all C $← PKE.Enc(pk,m) we have

Pr
[
m← PKE.Dec(sk, C)

]
= 1,

where the probability is the coins of all the algorithms described above.

SECURITY GAME. The (IND-CCA) security of a PKE scheme PKE = (PKE.KGen,
PKE.Enc, PKE.Dec) is captured via the following game that is played between a chal-
lenger C and an adversary A.

1. The challenger C computes (pk, sk)
$← PKE.KGen(1κ) and gives pk to the adversary

A.

2. A may adaptively decrypt polynomially (in κ) many ciphertexts C of his choice. At
any pointA may query PKE.Enc oracle, which takes two messages m0 and m1 from
the message space.

3. C samples b $← {0, 1} and computes C∗ $← PKE.Enc(pk,mb) and sends C∗ to A.

4. Amay adaptively decrypt polynomially (in κ) many ciphertexts C of his choice with
the restriction that C∗ is not among the values queried by A.

5. A outputs his guess b′ ∈ {0, 1} of b. If b = b′ the adversary wins.

We assume that the overall number of queries made to C is q = q(κ). We call
Pr [b = b′] the success probability of the adversary in winning the above game. We call
|Pr [b = b′]− 1/2| the advantage of the adversary.

Definition 2.7 (IND-CCA-PKE Security). We say that a public encryption scheme is
a (q, t, εPKE)-secure (IND-CCA) PKE scheme, if an adversary running in time t in the
above security game has an advantage of at most εPKE, i.e.,

Pr [b = b′] ≤ 1/2 + εPKE,

while the number of allowed queries q is upper bounded by t.
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IND-CPA security is a weaker security notion than IND-CCA security. In other
words, IND-CPA security for PKE scheme is based on the same security game as IND-
CCA security except for, in step 2 and step 4, where A cannot access the decryption
oracle.

Definition 2.8 (IND-CPA-PKE Security). We say that a public encryption scheme is a
(t, εPKE)-secure (IND-CPA) PKE scheme, if an adversary within running time t in the
above security game without accessing the decryption oracles has an advantage of at
most ε, i.e.,

Pr [b = b′] ≤ 1/2 + εPKE.

2.2.5 Key Encapsulation Mechanism

In this subsection, we introduce key encapsulation mechanism in multi-user setting with
corruptions (KEMC

MU), and describe the definitions of this primitive, security games and
security definition [BHJ+15].

2.2.5.1 Key Encapsulation Mechanism in the Multi-User Setting with Corruptions

A key encapsulation mechanism with corruptions KEMC
MU consists of three probabilistic

polynomial algorithms:

• (sk, pk)
$← KEM.GenCMU(1κ): This algorithm KEM.GenCMU takes as input the security

parameter 1κ, and outputs a key pair (sk, pk) ∈ SK × PK.

• (K, C)
$← KEM.EncapCMU(pk): This algorithm KEM.EncapCMU takes as input a long-

term public key pk, and outputs a ciphertext C ∈ C along with a session key K ∈ K.

• K ← KEM.DecapCMU(sk, C): This algorithm KEM.DecapCMU takes as input a long-
term secret key sk and a ciphertext C, and outputs a key K ∈ K or an error symbol
⊥.

CORRECTNESS. For consistency, we require the correctness properties. For all (K, C)
$←

KEM.EncapCMU(pk) we have

Pr
[
K← KEM.DecapCMU(sk, C)

]
= 1,

where the probability is taken over the choice of (sk, pk)
$← KEM.GenCMU(1κ) and the

coins of all the algorithms described above.

SECURITY GAME. The (MU-C-IND-CPA) security of a key encapsulation mechanism
scheme in the multi-user setting with corruptions of secret keys is captured via the
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following game that is played between a challenger C and an adversary A and that is
parametrized by two numbers, ` ∈ N denoted here as the number of honest parties and
d ∈ N as the maximum number of encapsulation per party. An adversary A is able to
interact with the execution environment by issuing two queries: Encaps and Corrupt.

1. At the beginning of the game, C generates public parameters and (`· d) key pairs
(sksi , pk

s
i )

$← KEM.GenCMU(1κ) for each i ∈ [`] and s ∈ [d]. Then, it gives public
parameters and all public keys {pksi }, i ∈ [`] and s ∈ [d], to A. Finally, C selects bsi
$← {0, 1} and initializes a set SCorrupt := ∅ to keep track of the corrupted keys.

2. The adversary A may adaptively issue q Encaps and Corrupt queries. Corrupt(pksi )
takes as input a public key pksi supplied by A, and responds with sksi to A. The
index (i, s) has been saved to SCorrupt, i.e., SCorrupt := {(i, s)}, i ∈ [`] and s ∈ [d].
For Encaps queries made by A with pksi , the challenger C generates a (ciphertext
and key) pair (Ksi , C

s
i )

$← KEM.EncapCMU(pksi ) and sets Ksi,0 = Ksi . Then, it selects a
random session key Ksi,1 ∈ K. Finally, C responds with (Ksi,bsi , C

s
i ) to A.

3. Finally, A outputs his guess b′ ∈ {0, 1} of bsi . If bsi = b′ the adversary A wins this
security game.

We assume that the overall number of queries made to the challenger is q = q(κ).
We call Pr [bsi = b′] the success probability of the adversary in winning the above game.
We call |Pr [bsi = b′]− 1/2| the advantage of the adversary.

Definition 2.9 (MU-C-IND-CPA-KEM Security). We say that a key encapsulation
mechanism scheme in the multi-user setting with corruptions KEMC

MU is a (d, `, t,
εKEMC

MU
)-secure (MU-C-IND-CPA) KEMC

MU scheme, if an adversary running in time t
has an advantage of at most εKEMC

MU
, i.e.,

Pr
[
bsi = b′ ∧ (s, i) /∈ SCorrupt

]
≤ 1/2 + εKEMC

MU
,

while the number of allowed queries is upper bounded by t.

2.2.6 Digital Signatures

In this subsection, we introduce standard security notion for digital signature scheme
as proposed by Goldwasser, Micali, and Rivest [GMR88], named SU-EUF-CMA, and
an extension of this notion, i.e., digital signature in multi-user setting with corruptions
(SIGC), named MU-EUF-CMA.

2.2.6.1 Standard Digital Signature Scheme

First, we give the standard digital signature definition. A digital signature scheme SIG
consists of the following algorithms:
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• (sk, vk)
$← SIG.Gen(1κ): The key generation algorithm SIG.Gen that on input 1κ

outputs vk ∈ PK and sk ∈ SK, where PK is the verification key space and SK is
the private key space;

• σ $← SIG.Sign(sk,m): The signature algorithm SIG.Sign that on input sk and a
massage m ∈MSIG, outputs a signature σ ∈ SSIG, whereMSIG is the message space
and SSIG is the signature space;

• b ∈ {0, 1} ← SIG.Vfy(vk,m, σ): The verification algorithm SIG.Vfy that on input
a verification key vk, a message m and a signature σ, outputs b = 1 if σ is a valid
signature for m under the verification key vk, and 0 otherwise.

2.2.6.2 Standard SU-EUF-CMA Security Definition

The standard security definition for signature schemes in the single user setting is ex-
istential unforgeability under chosen-message attacks proposed by Goldwasser, Micali
and Rivest [GMR88].

SECURITY GAME.We consider the following security game between a challenger C
and an adversary A.

1. The challenger C generates a key pair (vk, sk)
$← SIG.Gen(1κ) and gives vk to the

adversary A.

2. The adversary A may adaptively query polynomially (in κ) many messages mi of
his choice, where i is an index, 1 ≤ i ≤ q for some q ∈ N.

3. The challenger C responds to each of the sign-queries with a corresponding signature
σi

$← SIG.Sign(sk,mi).

4. The adversaryA outputs a fresh message/signature pair (m∗, σ∗). If SIG.Vfy(vk,m∗, σ∗)
= 1 and m∗ /∈ {m1, . . . ,mq}, the adversary A wins.

Definition 2.10. We say that a signature scheme SIG is (q, t, εSIG)-secure against existen-
tial unforgeability under adaptive chosen-message attack (EUF-CMA), if in the above
security game for all adversaries A running in time t holds that

Pr
[
(m∗, σ∗)

$← A(1κ) : SIG.Vfy(vk,m∗, σ∗) = 1 ∧m∗ /∈ {m1, . . . ,mq}
]
≤ εSIG,

while the number of allowed queries q is upper bounded by t.

2.2.6.3 Digital Signature in the Multi-User Setting with Corruptions

In this subsection, we introduce digital signature schemes and their security in the multi-
user setting with corruptions, i.e., Existential Unforgeability under adaptive Chosen-
Message attacks in the Multi-User setting with adaptive Corruptions, named MU-C-
EUF-CMA [BHJ+15]. The (MU-C-EUF-CMA) security of a signature scheme is cap-
tured via the following game that is played between a challenger C and an adversary
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A. Note that in this security game A can access a sign oracle OSIG and corrupt oracle
OCorrupt. Fix a set of honest parties { P1, . . ., P` }, where each honest party Pi ∈ { P1, . . .,
P` } is a potential protocol participant and has a pair of long-term verification/private
key (vki, ski)

$← SIG.Gen(1κ) that corresponds to its identity i.

1. The challenger C generates key pairs (vki, ski)
$← SIG.Gen(1κ), i ∈ [`] and gives vki

to the adversaryA, where ` is the number of verification keys. Moreover, C initializes
a set SCorrupt to keep track of corrupted keys, and ` sets { S1, · · · ,S` } to keep track
of the sign-message queries for each party.

2. Then, A may adaptively make two different types of queries, i.e., SIGN-query and
Corrupt-query.

• Corrupt-query: A supplies an identity i ∈ [`]. Then the challenger C returns the
corresponding secret key ski. Moreover, C updates SCorrupt := SCorrupt ∪ {i}.

• SIGN-query:A supplies a pair (Pidi,m
j
i ) of his choice, where i ∈ [`] is an identity

and j is a message-index, 1 ≤ j ≤ qSIG for some qSIG ∈ N. The challenger
C responds to each of the sign-queries with a corresponding signature σji

$←
SIG.Sign(ski,m

j
i ) and updates Si := Si ∪ { (mj

i , σ
j
i ) }.

3. The adversary A outputs a message/signature pair (i∗, m′, σ′i∗).

4. If SIG.Vfy(vki∗ , m′, σ′i∗) = 1 and (m′i∗ , σ
′
i∗) /∈ Si∗ and i∗ /∈ SCorrupt, the adversary A

wins.

Definition 2.11. We say that a signature scheme SIG is (qSIG, `, t, εSIG)-secure against
existential unforgeability under adaptive chosen-message attacks in multi-user setting
with corruptions (MU-C-EUF-CMA), if in the above security game for any adversaries
A running in time t holds that

Pr

[
(i∗,m′i∗ , σ

′
i∗)

$← AO(·)(1κ) :
SIG.Vfy(vki∗ ,m

′
i∗ , σ

′
i∗) = 1 ∧ (m′i∗ , σ

′
i∗) /∈ Si∗ ∧ i∗ /∈ SCorrupt

]
≤ εSIG,

while the number of allowed queries qSIG is upper bounded by t.

Definition 2.12 (One-Time Signature). We say that a one-time signature scheme SIG is
(1, `, t, εOTSIG)-secure against strong existential unforgeability under adaptive chosen-
message attacks in multi-user setting without corruptions (MU-OTS-EUF-CMA), if in
the above security game for any adversaries A running in time t holds that

Pr

 (i∗,m′i∗ , σ
′
i∗)

$← A(1κ) :
SIG.Vfy(vki∗ ,m

′, σ′i∗) = 1 ∧ (m′i∗ , σ
′
i∗) /∈ Si∗∧

SCorrupt = ∅ ∧ |Si| ≤ 1 ∧ i ∈ [`]

 ≤ εOTSIG.
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2.2.7 Stateful Length-Hiding Authenticated Encryption

We use the stateful variant of LHAE security (sLHAE) as originally defined by Pa-
terson et al. [PRS11b] and used by JKSS [JKSS12] for their analysis of TLS-DHE.
A stateful symmetric encryption scheme basically consists of two algorithms StE =
(StE.Enc, StE.Dec).

• (C, st′e)
$← StE.Enc(k, len,Hd,m, ste): takes as input a secret key k ∈ KsLHAE ,

an output ciphertext length len ∈ N, some header data Hd ∈ {0, 1}∗, a plaintext
m ∈ MsLHAE , and the current state ste ∈ {0, 1}∗, and outputs either a ciphertext
C ∈ {0, 1}len and an updated state st′e or an error symbol ⊥ if for instance the output
length len is not valid for the message m, e.g. len < |MsLHAE |, or the encryption
algorithm does not support ciphertexts of length len.

• (m′, st′d) = StE.Dec(k,Hd, C, std): takes as input a key k, header data Hd, a cipher-
text C, and the current state std ∈ {0, 1}∗, and returns an updated state st′d and a
value m′ which is either the message encrypted in C, or a distinguished error symbol
⊥ indicating that C is not a valid ciphertext.

Both, encryption state ste and decryption state std are initialized to the empty string
∅. Algorithm StE.Enc may be probabilistic, while StE.Dec is always deterministic.
See [PRS11b] for more details.

The security is formalized in the following security game that is played between a
challenger C and an adversary A. First, we describe how the oracles OENC and ODEC

respond to A’s queries as follows:

• ENC(m0,m1, len,Hd):
1: u := u+ 1;
2: (C(0), st

(0)
e )

$← StE.Enc(k, len,Hd,m0, ste);
3: (C(1), st

(1)
e )

$← StE.Enc(k, len,Hd,m1, ste);
4: IF (C(0) = ⊥ OR C(1) = ⊥) THEN RETURN ⊥;
5: (Cu,Hdu, ste) := (C(b),Hd, st

(b)
e );

6: RETURN Cu.

• DEC(C,Hd):
1: v := v + 1;
2: IF b = 0 THEN RETURN ⊥;
3: (m, std) = StE.Dec(k,Hd, C, std);
4: IF v > u OR C 6= Cv OR Hd 6= Hdv; THEN phase := 1;
5: IF phase = 1 THEN RETURN m;
6: RETURN ⊥.
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The values u, v and phase are all initialized to 0 at the beginning of the security
game. Note that the security game described above gives an attacker access to select
messages (m0, m1) of arbitrary lengths and a chosen ciphertext-length len.

1. The challenger C selects b $← {0, 1} and k $← {0, 1}κ and sets ste := ∅ and std := ∅,
2. Amay adaptively query the encryption oracle (O(ENC)) qENC times and the decryption

oracle (O(DEC)) qDEC times.

3. Finally, A outputs its guess b′ ∈ {0, 1}.

We assume that the overall number of queries made to C is q = q(κ). We call
Pr [b = b′] the success probability of the adversary in winning the above game. We call
|Pr [b = b′]− 1/2| the advantage of the adversary.

Definition 2.13. We say that the stateful symmetric encryption scheme StE=(StE.Enc,
StE.Dec) is (t, ε)-secure, if any adversary running in time t has an advantage of at most
ε to output b′ such that b′ = b, i.e.,

Pr [b′ = b] ≤ 1/2 + ε,

while the number of allowed queries q is upper bounded by t.

2.2.8 CCLA-2-Secure Public-Key Cryptosystem

Dziembowski et al. [DF11] constructed an adaptively chosen ciphertext after-the-fact
leakage-resilient public-key cryptosystem which is secure against continuous leakage.
We use the same definition described in [ABS14].

A public-key encryption scheme PKE =(PKE.KGen, PKE.Enc, PKE.Dec) consists
of three PPT algorithms. This algorithms is similar to that described in 2.2.4.

The (CCLA2) security of a PKE scheme PKE =(PKE.KGen, PKE.Enc, PKE.Dec) is
defined via the following game that is played between a challenger C and an adversary
A.

1. The challenger C computes (pk, sk)
$← PKE.KGen(1κ) and gives pk to the adversary

A.

2. A is given access to the decryption oracle and the leakage oracle. Note that A is
able to get the leakage of the secret key sk using the leakage oracle. We denote
the λ-leakage oracle that any adversary A can select efficiently computable leakage
function f , f(sk)← Leakage(f) when |f(sk)| ≤ λ.

3. At any point A may query PKE.Enc oracle, which takes two messages m0 and m1

from the message space. C samples b $← {0, 1} and computesC∗ $← PKE.Enc(pk,mb)
and sends C∗ to A.
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4. Then, A may adaptively query the decryption oracle and the leakage oracle. How-
ever, the ciphertexts of his choice with the restriction that C∗ is not among the values
queried by A.

5. A outputs his guess b′ ∈ {0, 1} of b. If b = b′ the adversary wins.

We assume that the overall number of queries made to C is q = q(κ). We call
Pr [b = b′] the success probability of the adversary in winning the above game. We call
|Pr [b = b′]− 1/2| the advantage of the adversary.

Definition 2.14 (CCLA-2-PKE Security). We say that a public encryption scheme is a
(q, t, εPKE)-secure (CCLA-2) PKE scheme, if an adversary within running time t in the
above security game has an advantage of at most εPKE, i.e.,

Pr [b = b′] ≤ 1/2 + εPKE,

while the number of allowed queries q is upper bounded by t.





Chapter 3

Formal Security Models for Cryptographic Protocols

Contents
3.1 Security Properties of Key Exchange Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Overview of the Bellare-Rogaway and Canetti-Krawczyk Models . . . . . . . . . . . . . . . 38

3.2.1 Overview of the Bellare-Rogaway Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Overview of the Canetti-Krawczyk Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Overview of the extended Canetti-Krawczyk Model . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Security Model for Passively-secure Key Exchange Protocol . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Passively-secure Two-Move Key Exchange Protocols . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Extended Bellare-Rogaway Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Execution Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Extended ACCE Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Execution Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2 Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Security Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Relations among Security Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A two-party authenticated key exchange protocol (AKE) allows two parties to ex-
change a secret session key, and an authenticated and confidential channel establishment
protocol (ACCE) achieves a secure channel between the two users. Intuitively speaking,
the main security goals for AKE protocols are that session keys cannot be distinguished
from random values by adversary (key indistinguishability), and that a party really gen-
erates a session key with its intended partner, and not with some other user. In contrast
with AKE protocols, ACCE protocols consider the security of the record layer protocol,
i.e., the ciphertext security is integrated in the model. Roughly speaking, in the ACCE
model no challenge key is ever given to the adversary, the adversary wins the ACCE secu-
rity game if it can distinguish between encryptions of two distinct messages (ciphertext
indistinguishability).

In order to formally analyze the security of these cryptographic protocols, one needs
a suitable (formal) model. In this chapter, we will introduce the security models used
in this thesis. Firstly, we give security properties that these communication protocols
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should satisfy in Section 3.1. Then, we give an informal overview of the widely-used
security models for authenticated key exchange protocols, i.e., the Bellare-Rogaway
(BR93) and the (extended) Canetti-Krawczyk models in Section 3.2. Since passively-
secure key exchange protocol is the most important building block of our compilers, we
present a formal definition of passively-secure key exchange protocol and a correspond-
ing security model in Section 3.3. In Section 3.4, we describe two security models for our
AKE compilers and tightly-secure authenticated key exchange protocol. Moreover, we
present an extension of the formal security model for two-party authenticated and confi-
dential channel establishment (ACCE) protocols introduced by Jager et al. in [JKSS12]
to also cover scenarios with pre-shared, symmetric keys in Section 3.5. Finally, we dis-
cuss the relationship between the previously proposed models in Section 3.6. Our main
focus lies on the security of two-party AKE and ACCE protocols in the presence of active
adversaries.

Remark 3.1. Typically, there are two main approaches to capture security of crypto-
graphic protocols. One approach is based on the simulation paradigm, namely simulation-
based security model, such as the framework of universal composability [Can00, CK02b,
CLOS02, NMO05, KL05, Küs06, FHH14]. The other approach uses game to model
security. Namely, one proves security using the sequence-of-games approach [Sho04,
BR06]. For key exchange, the game is won if the adversary can distinguish the correct
session key from a random key. In this thesis, we only consider game-based security
models for our design and analysis of cryptographic protocols.

3.1 Security Properties of Key Exchange Protocols

In this section, we introduce a number of distinct security requirements for key exchange
protocols. Before we begin to describe the requirements, we first classify two types of
attacks as follows:

• Passive Attacks: We formalize a notion of passive attacks, where the adversary is
limited to manage the delivery of the messages exchanged by the communication
parties. But it can not inject, delete or manipulate messages;

• Active Attacks: In contrast to passive attacks, active attacks, where an adversary
is allowed to interact actively with the communicating parties, and can additionally
disrupt the communications in any possible way in order to achieve its goal, e.g. by
inserting, deleting, or modifying messages on any protocol communication.

Clearly, a secure protocol should be able to withstand both passive attacks and active
attacks. Protocols for AKE or ACCE allow parties within an insecure network to establish
a common session key which can then be used to secure their future communication.
Therefore, it is for precisely this reason that a comprehensive security model is very
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useful for the analysis of the cryptographic protocols. A number of security properties
are generally believed to be necessary for key agreement protocols [BR93a, BWJM97,
BWM99b]. In the following, we informally describe the security attributes for a secure
AKE/ACCE protocol as follows.

• Session Keys Expose Resilience (SK-E). Even if some session keys are compro-
mised by the adversary, the secrecy of the session keys established in other sessions
should not be affected.

• Prefect Forward Secrecy (PFS). Informally, this property holds if the long-term
secret keys of all the parties are compromised, the secrecy of previously generated
session keys is not affected [BR93a, BWJM97, BWM99b].

• Weak Perfect Forward Secrecy (wPFS). The adversary compromises the long-term
keys of parties if the target session is executed, Weak-PFS guarantees the secrecy
of previously generated session keys, but only for the passive adversary, i.e., the
adversary does not modify messages of the session except for eavesdropping the
communication [Kra05a].

• Asymmetric Prefect Forward Secrecy (APFS). Asymmetric perfect forward se-
crecy is similar to that of perfect forward secrecy except that only one of the parties
to the communication is allowed to be corrupted. This notion is used in the security
analysis of TLS_RSA_PSK protocol.

• Unknown Key-Share Attacks (UKS). Unknown key-share attacks are applicable
in a security model taht allows malicious insiders. An unknown key-share attack is
an attack whereby party Pi finally believes that he shares the session key with the
adversary A, but in fact it is shared with party Pj . As usual, the adversary A does
not get the session key [BWJM97, BWM99b].

• Key Compromise Impersonation Resilience (KCI). Suppose that the adversary A
corrupts the long-term secret key of party Pi. In general, A can impersonate party
Pi to other parties. However, for key compromise impersonation resilienceA should
not be able to impersonate other parties to Pi [BWJM97, BWM99b].

• Session-State Expose Resilience (S-S-E). Suppose that a session state is computed
from the static long-term secret keys. This property holds that even if the adversary
is allowed access to all the internal state information of a party (Pi) associated to a
particular session with its partner party (Pj), it also can not distinguish the session
key from a random value [CK02a, Kra05a, LLM07a].

• Ephemeral-Key Expose Resilience (E-K-E). Suppose that a party who wants to
share information with its partner sends the ephemeral public keys which is gener-
ated by the corresponding ephemeral secret keys, e.g. randomness. The ephemeral-
key expose resilience holds even if given the ephemeral secret keys used in the tar-
get session, an adversary can not break the session key indistinguishability property
[CK02a, Kra05a, LLM07a].
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• PKI-Related Attacks (PKI-R-A). PKI-related attacks in which an adversary can
register arbitrary valid public keys (even public keys of honest parties) at the trusted
third party, e.g. a certificate authority. CA does not require that the adversary per-
forms “proof of knowledge” of the secret key corresponding to a public key when a
certificate is established [BWM99b].

3.2 Overview of the Bellare-Rogaway and Canetti-Krawczyk Models

In this section, we give an informal overview of the Bellare-Rogaway (BR93) and (ex-
tended) Canetti-Krawczyk Models for authenticated key exchange protocols. Intuitively
speaking, the main security goals for AKE protocols are that session keys cannot be dis-
tinguished from random values by an outside malicious adversary, and that a party really
generates a session key with its intended partner, and not with some other user, i.e., entity
authentication and key exchange. In order to formally analyze these key exchange pro-
tocols we need a security model. Therefore, some models are well-studied in the cryp-
tographic literature. We mention here just the Bellare-Rogaway and (extended) Canetti-
Krawczyk models that are most relevant to this thesis and give informal overview of
these models.

3.2.1 Overview of the Bellare-Rogaway Model

In 1993, Bellare and Rogaway [BR93a] first introduced an indistinguishability-based
security model for authenticated key exchange protocols, named as BR93 model, which
captures the security of key exchange for active adversary such as mutual-entity au-
thentication and confidentiality of agreed session keys. In this paper, they only consider
the entity authentication for the symmetric case, i.e., parties share a secret key. Since the
pioneering work of Bellare and Rogaway, many extensions have been made to the defini-
tion of secure authenticated key exchange protocol [BR95, BWJM97, BCK98, Sho99a,
BPR00, CK01, CK02b, KP05, Kra05a, LLM07a]. In this subsection, we describe the
BR93 model and introduce some notation which will be useful later in this thesis.

Suppose that a set of honest parties (as potential protocol participants) in the model,
where each honest party has long-term secret. In order to formalize the several sequential
and parallel protocol executions, we use the same notion introduced by Bellare and
Rogaway in [BR93a] and denote that each party is characterized by a polynomial number
of oracles, i.e πsi . Oracle πsi shows the i-th protocol instantiation of a principal party Pi
in a protocol execution. In order to simulate adversarial capabilities, they model the
adversary A as a probabilistic polynomial-time (PPT) Turing machine that controls the
communication of the participants using the following queries: Send, Reveal, Corrupt
and Test queries. We formally describe these involved queries in Section 3.4.2. More
details can be found in Section 3.4.2.
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The BR93 models partnership of two oracles via the concept of matching conversa-
tions. Informally, a conversation is the sequence of messages sent and received by an or-
acle. If the transcripts of two oracles are pairwise equivalent, they have matching conver-
sations. This notion was firstly introduced by Bellare and Rogaway in Paper [BR93a] and
later refined in Paper [JKSS12]. In this thesis, we use the refined definition of [JKSS12].
A formal definition of matching conversations is given in Section 3.4.3.

In order to capture the security goals for authenticated key exchange protocols,
firstly a “fresh” session must be identified. In original paper, a completed session is
“fresh” if this session as well as its matching session (if it exists) is not corrupted (i.e.,
no session key was revealed by the adversary) and if none of the participating parties is
corrupted. It is apparent that the BR93 model does not capture key compromise imper-
sonation (KCI) and forward secrecy (FS).

A two-party AKE protocol is correct if for any two accepting oracles that have
matching conversation it holds that both oracles have the same session key. The security
definition of the BR93-model includes two security properties: explicit entity authenti-
cation and session key indistinguishability. The security of explicit entity authentication
is based on the notion of matching conversation. Informally, there exists no fresh oracle
πsi such that there is no unique oracle πtj such that πsi and πtj have matching conversa-
tions. For key indistinguishability, an adversary should not be able to distinguish a true
session key from a random key. In other words, the adversary selects a fresh completed
session 1 which is called a test session and makes a Test-query for this test session to the
challenger. In response, the challenger selects a random bit b ∈ {0, 1}: if b = 0, it returns
a random string from the session key space to the adversary; Otherwise the challenger
returns the session key of the test session. Security of AKE protocol is defined based on
a game between an adversary A and a challenger C. In this game A interacts with C.
A is allowed to adaptively perform Send, Reveal and Corrupt queries. Then A makes
a Test-query to a fresh session of its choice. At the end of run the adversary outputs a
guess b′. The advantage of the adversary is defined as ε = |Pr[b = b′] − 1/2|. We say
that an AKE protocol is secure in BR93 model if no adversary has more than a negligible
advantage in the AKE experiment.

3.2.2 Overview of the Canetti-Krawczyk Model

Cryptographic models for key agreement protocol were initiated by Bellare and Rog-
away in the 1990s. These initial models, the BR93 and BR95 models [BR93a, BR95],
did not consider various secret properties, e.g. forward secrecy (FS), key compromise
impersonation (KCI), and so forth. Later, many papers extended their models to con-
sider various security attributes. In 2001, Canetti and Krawczyk introduced a new key
exchange model in [CK01], today known as the CK-model, where implicit authentica-
tion and session state are considered. It involves a wide range of practical attacks and has
1 We denote that a session is completed by party when it receives the last protocol message from its partner session

and computes the session key.
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become more popular. In 2005, Krawczyk extended their mode to capture key imperson-
ation (KCI) security and weak forward secrecy, named as CKHMQV model [Kra05a]. In
this paper, he analyzed an efficient one-round key exchange protocol (HMQV) in random
oracle model. In this subsection, we simply give an overview of the CK model.

Given a similar execution environment as described above, supposing a set of hon-
est parties (as potential protocol participants) in the model, where each honest party has
long-term public/secret keys. A session πsi is defined as a s-th instance of a protocol
run at a protocol participant Pi. In the CK model, each session has an associated session
state, including the intermediate random values used in computing the session key. The
adversary can obtain the secure intermediate values by a RevealState-query. Each ses-
sion is identified by a (pre-specified) session identifier sID. The unique sID is externally
given to the oracles of a session at protocol start-up phase. In practice, one can define
the sID as the concatenation of the messages sent and received by the party, e.g. in the
CKHMQV model. The partnership of two oracles via the concept of matching sessions.
Two sessions (Pi, Pj , sIDi) and (Pj , Pi, sIDj) are said to be matching sessions if sIDi =
sIDj .

An active adversary A is able to issue Send, Reveal, RevealState, Corrupt and Test
queries. In contrast to the BR93 model, the CK-model considers implicit AKE security.
Informally, the security definition only satisfies session key indistinguishability property.
The adversary selects a completed session as its test session and makes a Test-query for
this session to the challenger. This query can only be issued to a session that has not been
exposed. A session is not exposed if it as well as its matching session (if it is exists) is not
revealed (i.e. no session key or intermediate secure values were revealed) and if none of
the participating parties is corrupted by the adversary. In response, the challenger returns
a random string from the session key space or the session key of the test session.

Security is defined based on a game between an adversary A and a challenger C. A
is allowed to adaptively perform Send, Reveal, RevealState and Corrupt queries. Then
A makes a Test-query to a fresh session of its choice. At the end of run the adversary
outputs a guess for Test-query. A wins the game if it can give the correct answer.

Remark 3.2. In the CKHMQV model, Krawczyk extended the CK01 mode to capture key
impersonation (KCI) security and weak perfect forward secrecy (wPFS)(i.e., passive A
in the test session), i.e., A has learned the private key of party.

3.2.3 Overview of the extended Canetti-Krawczyk Model

In 2007, LaMacchia et al. also introduced a new model known as eCK for analysis
of two-party key exchange protocols [LLM07a]. The eCK model captures exposure
of ephemeral keys attack by using ephemeral key reveal query, allowing exposure of
ephemeral secret keys of the test session and its matching session (if it is exists). Note
that the eCK is not stronger than the CKHMQV model. In other words, security in the
eCK model does not imply security in the CKHMQV model. More details can be found
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in [Ust09, Cre09]. Here we simply give an overview of the difference between the CK
and the eCK model.

In contrast to the CK01 model, the eCK07 model do not assume the existence of ex-
plicit session identifiers. They defined a session identifier as follows: A session identifier
sIDs

i of a protocol instance πsi is identified by a 4-tuple (Pi,Pj,Role,T
s
i ), where Pi is the

executing party, Pj is the other party, Role ∈ {Init.,Resp.} is Pi’s role in the protocol
execution and Tsi consists of all messages sent and received by Pi. Two sessions πsi , π

t
j

are said to be matching if πsi with (Pi,Pj, Init.,T
s
i ) matches πtj with (Pj,Pi,Resp.,T

s
i )

and vice versa.

An active adversary A is able to adaptively issue Send, EphemeralKeyReveal,
Reveal, Corrupt and Test queries. However, in eCK model EphemeralKeyReveal query
reveals the randomness (as ephemeral-key) used in computation of the session key.
For example, in ephemeral Diffie-Hellman key exchange (gx, gy) the attacker can use
EphemeralKeyReveal-query to get the ephemeral secret key x or y. However, note that in
contrast to the CK model, the ephemeral-key does not include session state that has been
calculated using the long-term secret of parties. In addition, the eCK model defines a new
definition of freshness, i.e., the adversary is allowed to perform EphemeralKeyReveal
and Corrupt queries on the test session.

3.3 Security Model for Passively-secure Key Exchange Protocol

Section 6 describes our authenticated key exchange (AKE) compilers which transform
any passively-secure key exchange (KE) protocol to an AKE protocol against an ac-
tive adversary who fully controls the communication network. Passively-secure key ex-
change protocol is the most important building block of our compilers. Thus, we give a
formal definition of passively-secure key exchange protocol and a corresponding secu-
rity model in this section.

3.3.1 Passively-secure Two-Move Key Exchange Protocols

A passively-secure two-party key exchange (KE) protocol is a protocol that enables those
two parties to compute a shared secret key in presence of a passive adversary model.
Roughly speaking, the attacker is not allowed to insert or change information transmit-
ted over the communication links between participating parties. Passively-secure key
exchange protocols have many benefits, such as more effectively design and execute and
more efficient.

In the following, we formally provide a technical definition of KE which is more
detailed than in most other works. This is solely for the purpose of deriving a technical
result on general KE protocols without long-term keys. Namely, we require that every
secret keys used to generate the session keys must be chosen freshly in each session.
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For simplicity of exposition, we only focus on the practically most important class of
two-move key exchange protocols.

A passively-secure key exchange scheme consists of three algorithms which may be
called by a party in each session, KE = (KE.Setup, KE.EphemeralKeyGen, KE.SessionKeyGen).
LetMKE be the message space, SSK be the session key space, R be the random value
space, and EPK × ESK be the space for ephemeral public/secure key. Let T be the
transcript of all messages exchanged in a KE protocol instance (see Figure 3.1).

• ΠKE ← KE.Setup(1κ): This probabilistic polynomial time algorithm (PPT) takes as
input the security parameter κ and outputs a set of system parameters ΠKE, defin-
ing the message space MKE, identity space IDS, session key space SSK, and
ephemeral key space EPK × ESK.

• (eskPID, epkPID,M
PID
out )

$← KE.EphemeralKeyGen(ΠKE,MPID
in ;ω): The probabilistic

polynomial time algorithm takes as input the system parameters ΠKE, a random
value ω ∈ R and message MPID

in ∈ MKE and outputs an ephemeral key pair
(eskPID, epkPID), where eskPID ∈ ESK and epkPID ∈ EPK and a message MPID

out

∈ MKE that requires to be sent in a protocol move, e.g. including ephemeral pub-
lic keys. The execution of this algorithm might be determined by the input message
(MPID

in ) which could be any information including for example identities of session
participants, ephemeral public key or just empty string ∅. If MPID

out = ∅, for simplicity
we may write (eskPID, epkPID)

$← KE.EphemeralKeyGen(ΠKE,MPID
in ;ω).

• k ← KE.SessionKeyGen(eskPID,T): The session key generator is a deterministic
polynomial time algorithm which takes as input eskPID of a session participant PID
and transcript T of all messages exchanged in this session, and outputs a session key
k.

PIDA PIDB

(eskPIDA , epkPIDA ,M
PIDA
out )

$←
KE.EphemeralKeyGen(ΠKE,MPIDA

in ;ωA)

(eskPIDB , epkPIDB ,M
PIDB
out )

$←
KE.EphemeralKeyGen(ΠKE,MPIDB

in ;ωB)

−
MPIDA

out−−−−−−−−−−−−−→

←−
MPIDB

out−−−−−−−−−−−−−
T = MPIDA

out ||MPIDB
out T = MPIDA

out ||MPIDB
out

accept accept

k := KE.SessionKeyGen(eskPIDA ,T) k := KE.SessionKeyGen(eskPIDB ,T)

Fig. 3.1. General Two-move KE Protocol
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CORRECTNESS. For consistency, we require the correctness properties. For all (eskPIDA
,

epkPIDA
, MPIDA

out ) $← KE.EphemeralKeyGen(ΠKE, MPIDA
in ; ωA), and all (eskPIDB

, epkPIDB
,

MPIDB
out ) $← KE.EphemeralKeyGen(ΠKE, MPIDB

in ; ωB), where (MPIDA
out , MPIDB

out ) = T and (ωA,
ωB) ∈ R we have

Pr
[
KE.SessionKeyGen(eskPIDA

,T) = KE.SessionKeyGen(eskPIDB
,T)
]

= 1.

We observe that in a passively-secure key exchange protocol where we do not rely
on long-term keys it is necessary that the ephemeral values epkPIDA

and epkPIDB
are

non-empty. To our knowledge most prominent two-party passively-secure key exchange
protocols satisfy our generic definition. In many protocols, such as ephemeral Diffie-
Hellman key exchange (EDHKE) protocol [DH76], the algorithm KE.EphemeralKeyGen
is executed without any additional message, i.e., MPIDA

in = MPIDB
in = ∅, and the generated

messages such that MPIDA
out = epkPIDA

and MPIDB
out = epkPIDB

. However, if only one party
PIDd ∈ {PIDA,PIDB} decides on the session key k, (k = eskPIDd , i.e., key transport
mechanism, such as RSA-based one-time key exchange protocol), then the shared ses-
sion key k has to securely be transferred to the other party (PIDd̃) via some form of
encryption of k. In order to guarantee that only the single party PIDd̃ can decrypt the
session key k, the encryptor has to encrypt the session key k using an ephemeral public
key of PIDd̃. As we do not rely on long-term keys, PIDd̃ has to generate this ephemeral
key freshly and send epkPID

d̃
to PIDd in the first move of the key exchange protocol,

resulting in PIDd̃ = PIDA and PIDd = PIDB. In encrypted key transport with freshly
chosen key material, in which case we could instantiate those messages in Figure 3.1 as:
MPIDA

in = ∅, MPIDB
in = MPIDA

out = epkPIDA
2.

3.3.2 Security Model

Key indistinguishability (KI) with respect to passive execution environment is the basic
security requirement for key exchange security. In this subsection, we give a formal
security model for passively-secure key exchange protocols.

EXECUTION ENVIRONMENT. Assume that each party Pi is characterized by a polyno-
mial number of oracles {πsi }, where s ∈ [d], d ∈ Poly(κ) and i ∈ [`], ` ∈ Poly(κ) is the
number of parties. An oracle πsi represents a process in which the party Pi executes the
s-th protocol instance. We define that πsi maintains a list of independent internal state
variables as described in Table 3.1.

The internal state of each oracle πsi is initialized as (Φsi , K
s
i , ESK

s
i , T

s
i ) = (∅, ∅, ∅,

∅), where ∅ denotes the empty string. We assume that the session key is assigned to the
variable Ksi such that Ksi 6= ∅ if and only if each oracle completes the execution with an
internal state Φsi = accept.
2 Moreover, we also stress that the key pairs (eskPIDA , epkPIDA) and (eskPIDB , epkPIDB) may have distinct forms

depending on specific KE protocol, which are also determined by the forms of messages (MPIDA
in , MPIDB

in ) while
running KE.EphemeralKeyGen.
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Variable Decryption
Φsi denotes Φsi ∈ {accept, reject}
Ksi records the session key Ksi ∈ K

ESKsi records some ephemeral secret values used to compute the session key Ksi
Tsi records all messages sent and received in the order of appearance by oracle πsi

Table 3.1. Internal States of Oracles for passive KE Model

ADVERSARY MODEL. In order to model passive attacks in which the adversary is
passive during the execution of the target session, we define two queries, Execute,
EphemeralKeyReveal queries which model the adversary capability in passive execution
environment.

• (T, K)← Execute(πsi , π
t
j): An instance of KE protocol is honestly executed between

πsi and πtj . For successful execution, Φsi = Φtj = accept, Tsi = Ttj = T and Ksi = Ktj
= K. We allow the adversary obtain the transcript T exchanged during the honest
execution of the protocol and the session key K by this query. The adversary can use
Execute-query to perform passive attacks in which the attacker initiates and eaves-
drops on honest executions between parties i and j, where i, j ∈ [`] and s, t ∈ [d].

• esksi ← EphemeralKeyReveal(πsi ): Oracle πsi responds to this query with the contents
of variable ESKsi to A. This query models the attacks that loss of ephemeral secret
values of a session should not be damaging to other sessions.

SECURITY GAME. The security of a passively-secure key exchange protocol KE =
(KE.Setup, KE.EphemeralKeyGen, KE.SessionKeyGen) via the following game that is
played between a challenger C and an adversary A.

1. First, the challenger C generates the public parameters using ΠKE ← KE.Setup(1κ),
and a set of identities {PID1, . . . ,PID`} for potential protocol participants where
` ∈ N.

2. A is given the public parameters ΠKE and all identities as input and is allowed to
interact with C via making Execute and EphemeralKeyReveal queries. As response,
C returns (T, K) and esk to A.

3. At some point, A supplies a fresh protocol instance (πsi , π
t
j) as its test instance (i.e.,

A does not issue Execute and EphemeralKeyReveal queries to πsi and πtj) and sends
them to C. Given the test instance (πsi , π

t
j), the challenger C runs a new protocol

instance by calling Execute-query, i.e., (T, K0)← Execute(πsi , π
t
j). Then, C samples

K1 ∈ SSK uniformly at random from the session key space SSK of the protocol,
and tosses a fair coin b ∈ {0, 1}. Then C returns (T,Kb) to A.

4. After that A may continually perform Execute and EphemeralKeyReveal queries.
However, A can not be allowed to make these queries for the test instance. Finally,
A may terminate with returning a bit b′ as output.
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5. At the end of the security experiment, A wins if b′ = b.

We call Pr [b = b′] the success probability of the adversary A in winning the above
security game. We call |Pr [b = b′]− 1/2| the advantage of the adversary A.

Definition 3.3 (Passively-secure Key Exchange). We say that KE is a (tKE, εKE) pas-
sively secure key exchange scheme, if for all probabilistic polynomial-time adversary A
running in time tKE in the above security game has an advantage of at most εKE, i.e.,

Pr [b = b′] ≤ 1/2 + εKE,

while the number of allowed queries is upper bounded by tKE.

3.4 Extended Bellare-Rogaway Model

In this section we describe the (active) security models used for our AKE compilers and
tightly-secure AKE protocol. These models can be seen as an extension of the BR93-
model, named here as eBR model. We extended the BR93 model since it is unsuitable
for security analysis of our protocols. First, the original BR93 model does not consider
many practical attacks. Second, the BR93 model allows the adversary to make only a
single Test query, but for our tightly-secure AKE protocol we allow the adversary to
make multiple adaptive Test queries. Hence, it makes sense to extend the BR93 model
for these additional security requirements.

Our model follows the important line of research that was initiated by Bellare and
Rogaway [BR93a], and later modified and extended in [BWJM97, Sho99a, BPR00,
CK01, Kra05a, LLM07a]. We model security according to two games, one for key in-
distinguishability, and one for entity authentication based on matching conversation.
In order to additionally cover session-state leakage security, we use a similar query
“RevealState” as described in Paper [LLM07a] in our model. Moreover, we also model
some practical attacks, i.e. PKI-related attacks described in [BWM99c, Oka07, MU09],
by using RegCorruptParty query. The adversary can register arbitrary valid public at a
certificate authority (CA), and dose not require to perform "proof of knowledge“ of the
secret key.

In our model, we model an adversary A by providing an “execution environment”,
explain how parties behave in a real execution of an AKE scheme with environment and
adversaryA. In the real world, the environment and the adversaryA can consists of sev-
eral computers that work in sequential and parallel. In the following, we first describe
the execution environment. Then we show how an adversary A interacts with the chal-
lenger C in the environment, i.e., the power of the adversary. Finally, we give the security
definition of authenticated key exchange protocols.
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3.4.1 Execution Environment

Let K be the key space of session keys, and {PK,SK} be key spaces of long-term
public/private keys respectively. Fix a set of honest parties { P1, . . ., P` } for ` ∈ Poly(κ),
where each honest party Pi ∈ { P1, . . ., P` } is a potential protocol participant and has
a pair of long-term public/private key (pki, ski) ∈ (PK,SK) that corresponds to its
identity i.

In order to formalize several sequential and parallel executions of the protocol, each
party Pi is characterized by a polynomial number of oracles {πsi }, where s ∈ [d] and
d ∈ Poly(κ). An oracle πsi represents a process in which the party Pi executes the s-th
protocol instance with access to the long-term key pair (pki, ski) of party Pi and to all
public keys of the other parties. Moreover, we assume that each oracle πsi maintains a
list of independent internal state variables as described in Table 3.2.

Variable Decryption
PIDs

i records the identity j ∈ {1, . . . , `} of intended communication partner Pj
Φsi denotes Φsi ∈ {accept, reject}
Ksi records the session key Ksi ∈ K

Statesi records some secret states used to compute the session key Ksi
Tsi records all messages sent and received in the order of appearance by oracle πsi

Table 3.2. Internal States of Oracles for extended BR model

Note that for better comparison with BR93 model we will subsequently use boxes
to highlight state variables that are essentially new in our model.

The internal state of each oracle πsi is initialized as (PIDs
i , Φ

s
i , K

s
i , State

s
i , T

s
i ) = (∅, ∅,

∅, ∅, ∅), where ∅ denotes the empty string 3. We assume that the session key is assigned
to the variable Ksi such that Ksi 6= ∅ if and only if each oracle completes the execution
with an internal state Φsi = accept.

3.4.2 Adversarial Model

An active adversaryA interacts with the execution environment by issuing the following
queries.

Note that for better comparison with BR93 model we will subsequently use boxes
to highlight state variables that are essentially new in our model.

• Send(πsi ,m):A can use this query to send any messagem of his own choice to oracle
πsi . The oracle will respond according to the protocol specification and depending on

3 Note that in case of one-side authentication AKE protocol we also allow that the space PID contains a special
bit-string called ./. I.e., if a party does not need to authenticate its intended partner, it can set the variable PID =
./.
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its internal state. If m consists of a special symbol > (m = >), then πsi will respond
with the first protocol message.

• Corrupt(Pi): Oracle π1
i responds with the long-term private key ski of party Pi. If

Corrupt(Pi) is the τi-th query issued by A, then we say that Pi is τi-corrupted. For
parties that are not corrupted we define τi :=∞.

• RegCorruptParty(pkc,Pc) : This query allows A to register a new party Pc, with
a valid public key pkc on behalf of Pc. If the same party Pc is already registered
(either via RegCorruptParty-query or c ∈ [`]), a failure symbol ⊥ is returned to
A. Otherwise, Pc is registered, the pair (Pc, pkc) is distributed to all other parties,
and a symbol of success M is returned. This query formalizes a malicious insider
setting which can be used to model unknown key share (UKS) attacks and other cho-
sen public key attacks [BWM99c, Oka07, MU09]. We here formalize the arbitrary
key registration policy via this query. Parties established by this query are called
corrupted or adversarially-controlled. Note that the adversary can register arbitrary
valid public keys (even public keys of honest parties) on half of adversary-controlled
parties. If parties Pc were adversary-controlled, then the adversary is not allowed to
issue Corrupt-queries to Pc.

• Reveal(πsi ): Oracle πsi responds to this query with the contents of variable Ksi to A.
This query models the attacks that loss of a session key should not be damaging to
other sessions. Note that we have Ksi 6= ∅ if and only if Φsi = accept.

If Reveal(πsi ) is the τ -th query issued byA, πsi is called τ -revealed. If Reveal(πsi ) has
never been issued by A, then we say that oracle πsi is∞-revealed.

• RevealState(πsi ) : Oracle πsi responds with the contents of the secret state stored
in variable Statesi . Note that for our tightly-secure AKE protocol described in 5.2
(named as tAKE) the variable is always set as ∅, Statesi := ∅. I.e., we do not allow the
adversary to make the query for tightly-secure AKE protocol.

If RevealState(πsi ) is the τ -th query issued by A, πsi is called τ -state-revealed. If
RevealState(πsi ) has never been issued by A, then we say that oracle πsi is∞-state-
revealed.

• Test(πsi ): Oracle πsi handles this query as follows: if the oracle has state Φsi 6=
accept, then it returns some failure symbol ⊥. Otherwise it flips a fair coin b, sam-
ples a random element k0

$← K, sets k1 = Ksi to the “real” session key, and returns
kb. If Test(πsi ) is the τ -th query issued by A, we called πsi τ -tested. If Test(πsi ) has
never been issued by A, then we say that oracle πsi is∞-tested.

3.4.3 Security Definitions

We model the partnership of two oracles via the concept of matching conversations
which was first introduced by Bellare and Rogaway [BR93a] and later refined in [JKSS12].
In this thesis, we use the refined definition of [JKSS12].
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Let Tsi denote the transcript of messages sent and received by oracle πsi . We assume
that messages in a transcript Tsi are represented as binary strings. Let |Tsi | denote the
number of the messages in the transcript Tsi . Assume there are two transcripts Tsi and
Ttj , where w := |Tsi | and n := |Ttj|. We say that Tsi is a prefix of Ttj if 0 < w ≤ n and
the first w messages in transcripts Tsi and Ttj are pairwise equivalent as binary strings.

Definition 3.4 (Matching Conversations). We say that πsi has a matching conversation
to oracle πtj , if

• πsi has sent the last message(s) and T tj is a prefix of T si , or

• πtj has sent the last message(s) and T si is a prefix of T tj .

We say that two oracles πsi and πtj have matching conversations if πsi has a matching
conversation to process πtj or vice versa.

Definition 3.5 (Correctness). We say that a two-party AKE protocol, Σ, is correct if for
any two oracles, πsi and πtj , that have matching conversations it holds that Φsi = Φtj =

accept, PIDs
i = j and PIDt

j = i and Ksi = Ktj .

SECURITY GAME. We formally consider the following security experiment that is
played between an adversaryA and a challenger C and that is parametrized by two num-
bers, ` denoted here as the number of honest identities and d as the maximum number
of protocol executions per identity.

1. At the beginning of the game, C generates public parameters Π that are specified
by the protocol and ` ∈ Poly(κ) long-term key pairs (sk(i), pk(i))

$← KeyGen(1κ),
i ∈ [`]. Then C implements a collection of oracles oracles {πsi : i ∈ [`], s ∈ [d]}. It
passes to A all public keys, pk(1), . . . , pk(`), and the public parameters Π.

2. ThenAmay adaptively issue Send, RevealState, Corrupt, Reveal and RegCorruptParty
queries 4.

3. At any point during its run A may choose a (single) accepted oracle πsi , i.e., one
that already produced the session key, as its test session, and issue Test(πsi )-query to
C. Note that we allow the adversary to make multiple adaptive Test queries for our
tightly-secure AKE protocol as described in Section 5.2.1.

4. C samples a random bit b ∈ {0, 1}, returns a test value kb to A.

5. A can then continue running Send, RevealState, Corrupt, Reveal and RegCorruptParty
queries.

6. At the end of run A outputs a guess b′. A wins if b′ = b.

In this thesis, we prove our generic AKE compilers and tightly-secure AKE protocol
in two different security models, eBRC and eBRT. However, there are many similarities
4 For our tightly-secure AKE protocol, we do not allow A to supply a RevealState-query.
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between both models. Thus, in order to clearly describe the difference between the two,
we give separate security definitions as follows.

3.4.3.1 Security Definition for AKE Compilers

In order to capture the security goals for our authenticated key exchange compilers
(eBRC), we need the notion of freshness.

Definition 3.6 (Freshness-Rules). Let πsi be an accepting oracle held by a party Pi with
intended partner Pj . Meanwhile, let πtj be an oracle (if it exists), such that πsi and πtj have
matching conversations. Then the oracle πsi is said to be τ -fresh when the adversary A
issues its τ -th query and none of the following conditions holds:

• Pi or Pj has been established by the adversary A via the RegCorruptParty query;

• Pi is τi-corrupted with τi ≤ τ or Pj is τj-corrupted with τj ≤ τ ;

• πsi is τi-state-revealed, where τi ≤ τ ;

• πsi is τi-revealed, where τi ≤ τ ;

• If there is an oracle, πtj , that has matching conversation to πsi , then πtj is τj-state-
revealed, where τj ≤ τ ;

• If there is an oracle, πtj , that has matching conversation to πsi , then πtj is τj-revealed,
where τj ≤ τ ;

We define the security of AKE protocols in our strongly extended Bellare-Rogaway
model (eBRC) in two stages: (1) secure authentication property using matching conver-
sation5, and (2) session key indistinguishability, i.e., an adversary can not distinguish a
fresh session key from a random key except with negligible probability.

Definition 3.7 (Security Definition). We say that a two-party AKE protocol Σ is (t, ε)-
secure in eBRC model , if for all adversaries A running the above security game within
time t, it holds that:

1. WhenA terminates, there exists no τ -fresh oracle πsi (except with probability ε), such
that

• πsi has internal states Φsi = accept and PIDs
i = j, and

• there is no unique oracle πtj such that πsi and πtj have matching conversations.

Otherwise, we say that πsi accepts maliciously.

2. When A returns b′ such that

• A has issued a Test-query to oracle πsi , and

• the oracle πsi is τ -fresh throughout the security game,
5 The CK-model captures only implicit authentication.
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then the probability that b′ equals the bit b sampled by the Test-query is bounded by

|Pr[b = b′]− 1/2| ≤ ε.

Remark 3.8. In contrast to previous works, we explicitly model the revelation of state in-
formation of sessions (via RevealState) and strong and practical PKI-based attacks (via
RegCorruptParty) like the public key substitution attack (PKS) [BWM99c, MS04] or
the duplicate-signature key selection (DSKS) attack [MS04, KM11]. We believe that the
revelation of state information is much more realistic than (just) the revelation of keys.
To model strong and practical PKI-related attacks we use the RegCorruptParty query
into our models that allows attackers to register adversarially chosen public keys and
identities. Observe that the adversary does not have to know the corresponding secret
key. In practice, most certification authorities (CAs) do not require the registrant to de-
liver proofs of knowledge of the secret key. Using RegCorruptParty-query the adversary
may easily register a public key which has already been registered by another honest
party. Since the public keys are equal, all the authenticated messages that are produced
by this honest party can be re-used by the adversary. Such attacks can have serious se-
curity effects [BWM99c, MS04, KM11]. Our model also formalizes perfect forward
secrecy. Forward secrecy is a very strong form of security which guarantees that past
sessions remain secure even if the long-term keys get exposed in later sessions. We use
a formal definition of forward secrecy that is adopted from [JKSS12].

3.4.3.2 Security Definition for Tightly-secure AKE Protocol

We construct the first Authenticated Key Exchange (AKE) protocol whose security does
not degrade with an increasing number of users and sessions. In order to capture the
security goals for our AKE protocol with a tight reduction (tAKE), we consider a very
strong extended Bellare-Rogaway security model, named eBRT model, which allows
adaptive corruptions of long-term secrets, adaptive reveals of session keys, and multiple
adaptive Test queries. Our Model provides perfect forward secrecy (PFS) [BWJM97,
Kra05b] and key-compromise impersonation (KCI) attacks [JV96, BWM99a, GBN09].
However, an attacker is not allowed to reveal the internal states or intermediate results
of computations. In the following we give a formal security definition of our security
model, eBRT.

Definition 3.9 (Freshness-Rules). Oracle πsi is said to be τ -fresh when any adversary
A issues its τ -th query and the following conditions holds:

• Pi or Pj has not been established by the adversaryA via the RegCorruptParty query;

• πsi has τi-accepted, where τi ≤ τ .

• πsi is τi-revealed, where τi > τ .

• If there is an oracle, πtj , that has matching conversation to πsi , then πtj is∞-revealed
and∞-tested.
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• If Pidsi = j then Pj is τ (j)-corrupted with τ (j) > τ .

Definition 3.10 (tAKE Security Definition). We say that a two-party tAKE protocol Σ
is (t, ε)-secure in eBRT model, if for all adversaries A running the above security game
within time t, it holds that:

1. WhenA terminates, there exists no τ -fresh oracle πsi (except with probability ε), such
that

• πsi has internal states Ωs
i = accept and Ψ si = j, and

• there is no unique oracle πtj such that πsi and πtj have matching conversations.

Otherwise, we say that πsi accepts maliciously.

2. When A returns b′ such that

• A has issued a Test-query to oracle πsi , and

• the oracle πsi is a τ -fresh oracle that is∞-revealed throughout the security game
as described above,

then the probability that b′ equals the bit b sampled by the Test-query is bounded by

|Pr[b = b′]− 1/2| ≤ ε.

Remark 3.11. Note that for our tAKE protocol that comes with tight security proof under
the standard assumptions we allow adaptive corruptions of long-term secrets, adaptive
reveals of session keys, and multiple adaptive Test queries.

We allow the adversary to also corrupt Pi before πsi accepts, i.e., τ (i)-corrupted with
τ (i) < τ . According to Definition 3.9, the adversary can be allowed to corrupt a τ -
fresh oracle πsi and its corresponding oracle πtj . This allows us to model perfect forward
secrecy (PFS) and key-compromise impersonation (KCI) attacks. Moreover, the adver-
sary do not need to supply a proof of knowledge of a matching secret key if it issues
a RegCorruptParty-query. It implies that we also model strong and practical PKI-based
attacks (via a RegCorruptParty query) [BWM99c, MS04, MS04, KM11]. Finally, we
note that the adversary may issue more than one Test-query throughout the security
game described above. Simultaneously, it may also issue Reveal-query, even if the test
oracle is tested.

3.5 Extended ACCE Security Model

In 2012, Jager et al. introduced a new formal security model for two-party authenticated
and confidential channel establishment (ACCE) protocol, and provided security analysis
of the cryptographic protocol “TLS_DHE” in this model. A two-party authenticated and
confidential channel establishment protocol is a protocol that enables those two parties
to compute a shared secret key and provide secure channels. In contrast to the security
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of AKE protocols, one requires ciphertext indistinguishability for the security of ACCE
protocols.

In this section, we present an extension of the formal security model for two
party authenticated and confidential channel establishment protocols introduced by
JKSS [JKSS12], namely eACCE model. Since the original ACCE model is unsuitable
for the security analysis of TLS-PSK ciphersuites, we require an extended ACCE model.
First, the original ACCE model does not consider scenarios with pre-shared, symmetric
keys. We extended the ACCE model for hybrid settings. Seconds, the ACCE model dose
not address the practical PKI-related attacks. Finally, we require a variant of forward
secrecy called asymmetric perfect forward secrecy, that captures the protocol sessions
of the TLS-PSK protocols. Hence, it makes sense to extend the ACCE model for these
additional security requirements.

In this model, while emulating the real-world capabilities of an active adversary,
we provide an “execution environment” for adversaries following the tradition of the
seminal work of Bellare and Rogaway [BR93a] and its extensions [BWJM97, CK01,
Kra05a, LLM07b, JKSS12, KPW13, GKS13, BDK+14].

3.5.1 Execution Environment

In the following let `, d ∈ Poly(κ) be positive integers. In the execution environment,
we fix a set of ` honest parties {P1, . . . ,P`}. Each party is either identified by index i in
the security experiment or a unique string PIDi with fixed length (which might appear
in the protocol flows).

LONG-TERM KEYS. To cover authentication with symmetric keys, we extend the state of
each party to also include pre-shared keys. Each party holds (symmetric) pre-shared keys
with all other parties. We denote with PSKi.j = PSKj,i the symmetric key shared be-
tween parties Pi and Pj . Each party Pi with i ∈ {1, . . . , `} also has access to a long-term
public/private key pair (pki, ski). Formally, all parties maintain several state variables as
described in Table 3.3.

Variable Description
ski stores the secret key of a public key pair (pki, ski)

PSKi a vector which contains an entry PSKi,j per party Pj
τi denotes, that ski was corrupted after the τi-th query of A
fi a vector denoting the freshness of all pre-shared keys,

containing one entry fi,j ∈ {exposed, fresh} for each entry in PSKi

Table 3.3. Internal States of Parties for extended ACCE model

Note that for better comparison with the original ACCE model we will subsequently
use boxes to highlight state variables that are essentially new in our model.
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The first two variables, ski and PSKi, are used to store keys that are used in the
protocol execution while the remaining variables are solely used to define security, see
below. (When defining security the latter are additionally managed and updated by the
challenger.) The variables of each party Pi will be initialized according to the following
rules:

• The long-term key pair (pki, ski)
$← KeyGen(1κ) and pre-shared key vector PSKi are

chosen randomly from the key space. For all parties Pi,Pj with i, j ∈ {1, . . . , `} and

with i 6= j, and pre-shared keys PSKi
$← {0, 1}κ it holds that PSKi,j = PSKj,i and

PSKi,i := ∅.
• All entries in fi are set to fresh, i.e., fi = ∅.
• τi is set to τi :=∞, which means that all parties are initially not corrupted.

In the following, we will call party Pi uncorrupted iff τi =∞. Thus, we do not consider
a dedicated variable that holds the corruption state of the secret key ski.

Each honest party Pi can sequentially and concurrently execute the protocol multiple
times. This is characterized by a collection of oracles {πsi : i ∈ [`], s ∈ [d]}. Oracle πsi
behaves as party Pi carrying out a process to execute the s-th protocol instance with some
partner Pj (which is determined during the protocol execution). All oracles of Pi have
access to the long-term keys ski and PSKi with j ∈ {1, . . . , `}. Moreover, we assume
each oracle πsi maintains a list of independent internal state variables as described in
Table 3.4.

Variable Description
Φsi denotes the execution-state

Φsi ∈ {negotiating, accept, reject}
PIDs

i stores the identity of the intended communication partner
ρsi denotes the role ρsi ∈ {Client, Server}

Ksi = (kenc, kdec) stores the application keys Ksi
Stsi = (u, v, ste, std, C) stores the current states of the authenticated encryption scheme6.

Tsi records the transcript of messages sent and received by oracle πsi
kstsi denotes the freshness kstsi ∈ {exposed, fresh} of the session key
bsi stores a bit b ∈ {0, 1} used to define security

Table 3.4. Internal States of Oracles for extended ACCE model

Note that for better comparison with the original ACCE model we will subsequently
use boxes to highlight state variables that are essentially new in our model.

The variables Φsi , PID
s
i , ρ

s
i , K

s
i , ste, std, and Tsi are used by the oracles to execute the

protocol. The remaining variables are only used to define security. As in [JKSS12], , u
and v are simple counters used for defining security, ste and std hold the state informa-
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tion of the symmetric encryption system. C represents a list of ciphertexts that can be
indexed by u and v. The variables of each oracle πsi will be initialized with the following
rules:

• The execution-state Φsi is set to negotiating.

• The variable kstsi is set to fresh.

• The bit bsi is chosen at random.

• The counters u, v are initialized to 0.

• All other variables are set to only contain the empty string ∅.

At some point, πsi completes the execution with a state Φsi ∈ {accept, reject}.
Furthermore, we will always assume (for simplicity) that Ksi = ∅ if an oracle has not
reached accept-state (yet). To formalize the notion that two oracles engage in an on-
line communication, we use matching conversations as proposed by Bellare and Rog-
away [BR93a]. We use the variant by JKSS described above in Section 3.4.

To keep our definition of ACCE protocols general we do not consider protocol-
specific definitions of partnership like for example [KPW13] who define partnership
of TLS sessions using only the first three messages exchanged in the handshake phase
(see Remark 3.12 below).

3.5.2 Adversarial Model

An adversary A in our model is a PPT taking as input the security parameter 1κ and
the public information, which may interact with these oracles by issuing the following
queries. For better comparison with the original ACCE model we will subsequently use
boxes to highlight the queries that are essentially new in our model.

Sendpre(πsi ,m): This query sends message m to oracle πsi . The oracle will respond with
the next message m∗ (if there is any) that should be sent according to the protocol
specification and its internal states.

After answering a Sendpre query, the variables (Φsi ,PID
s
i , ρ

s
i ,K

s
i , T

s
i ) will be updated

depending on the protocol specification. This query is essentially defined as in JKSS.

RegisterParty(µ, pkµ, [
−−→
PSK]) : This query allows A to register a new party with a new

identity µ and a static public key (pkµ) to be used for party Pµ. In response, if the
same identity µ is already registered (either via a RegisterParty-query or µ ∈ [`]), a
failure symbol⊥ is returned. Otherwise, a new party Pµ is added with the static pub-
lic key pkµ. The secret key skµ is set to the empty string ∅. The parties registered by
this query are considered corrupted and controlled by the adversary. If RegisterParty
is the τ ′-th query of the adversary, Pµ is initialized with τµ = τ ′. If the adversary
also provides a pre-shared key PSK, then this key will be implemented for every
party Pi with i ∈ [`] as key PSKi,µ. Otherwise, the simulator chooses a random key
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PSK
$← {0, 1}κ and sets PSKi,µ = PSKµ,i := PSK for all parties Pi before out-

putting PSK. The corresponding entries fi,µ in the vectors of the other parties Pi
with i ∈ [`] are set to exposed. Via this query we extend the ACCE model of JKSS to
also model key registration. Note that if parties were adversary-controlled, then the
adversary is not allowed to issue Corrupt-queries to these parties.

RevealKey(πsi ): Oracle πsi responds to a RevealKey-query with the contents of variable
Ksi , the application keys. At the same time the challenger sets kstsi = exposed. If
at the point when A issues this query there exists another oracle πtj having match-
ing conversation to πsi , then we also set ksttj = exposed for πtj . This query slightly
deviates from JKSS to cover the attacks mentioned in Remark 3.12 7.

Corrupt(Pi, [Pj]) : Depending on the second input parameter, oracle π1
i responds with

certain long-term secrets of party Pi. This query extends the corruption capabilities
of JKSS to symmetric keys.

• If A queries Corrupt(Pi) or Corrupt(Pi, ∅) 8, oracle π1
i returns the long-term se-

cret key ski of party Pi. If this query is the τ -th query issued by A, then we say
that Pi is τ -corrupted and π1

i sets τi := τ .

• If A queries Corrupt(Pi,Pj), oracle π1
i returns the symmetric pre-shared key

PSKi,j stored in PSKi and sets fi,j := exposed.

• If A queries Corrupt(Pi,>), oracle π1
i returns the vector PSKi and sets fi,j :=

exposed for all entries fi,∗ ∈ fi.
Encrypt(πsi ,m0,m1, len,Hd): This query takes as input two messages m0 and m1,

length parameter len, and header data Hd. If Φsi 6= accept then πsi returns ⊥. Other-
wise, it proceeds as depicted in Figure 3.2, depending on the random bit bsi

$← {0, 1}
sampled by πsi at the beginning of the game and the internal state variables of πsi .

Decrypt(πsi , C,Hd): This query takes as input a ciphertext C and header data Hd. If πsi
has Φsi 6= accept then πsi returns⊥. Otherwise, it proceeds as depicted in Figure 3.2.
This query is essentially defined as in [JKSS12].

Note that (u, v, bsi , ρ, k
ρ
enc, k

ρ
dec, C) denote the values stored in the internal variables

of oracle πsi .

Remark 3.12. In the execution environment we need the state variable kstsi because we
have to cope with a theoretical attack caused by the RevealKey query. Consider the sit-
uation when an uncorrupted server oracle πsi accepts and just sends out the encrypted
finished message CS to its partner oracle πtj which up to now has matching conversation
(which is defined in 3.4) with πsi . However at this point an adversary A may reveal the
session key of πsi , drop CS and computes a ciphertext C ′S which encrypts the same fin-
ished message but differs from CS . Next, A sends C ′S to πtj . The problem is that now πtj

7 JKSS implicitly located the specification of when to set ksttj = exposed into the security definition.
8 The party Pi is not adversarially controlled.
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Encrypt(πsi ,m0,m1, len,Hd): Decrypt(πsi , C,H):
u := u+ 1 v := v + 1

(C(0), st
(0)
e )

$← StE.Enc(kρenc, len,Hd,m0, ste) If bsi = 0, then return ⊥
(C(1), st

(1)
e )

$← StE.Enc(kρenc, len,Hd,m1, ste) (m, std) = StE.Dec(kρdec,Hd, C, std)
If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv or Hd 6= Hdv,
(Cu,Hdu, ste) := (C(b),Hd, st

(b)
e ) then phase := 1

Return Cu If phase = 1 then return m

Fig. 3.2. Encrypt and Decrypt oracles in extended ACCE security experiment.

still accepts, although it does not have matching conversation to πsi . To thwart this attack,
we modify the RevealKey query and the corresponding security definition as compared
to JKSS. In our definition, the challenger in the security game simply keeps track of
which session keys have been queried by the adversary via kstsi (and ksttj) and does not
allow the adversary to break the security of any oracle whose session key has been re-
vealed. We find our solution very natural. JKSS use a very similar solution. Roughly
speaking, they specify when a session key has been revealed by a partner oracle in the
security definition whereas we use the definition of the RevealKey query to do so. We
stress that the problem is not restricted to our analysis of TLS-PSK but rather seems
fundamental to security protocols in general (similar to the problem that an adversary
may always drop the last protocol message which makes one party end up accepting
although the transcript of its partner oracle is actually different). We also remark that
by using a distinct definition of partnership, we could seemingly avoid this problem,
for example by using the definition of [KPW13] (or an adapted form) that only spans
the first three messages of TLS. However, this would come at the cost of generality of
our definition and we refrain from doing so. Also, we remark that when providing a
new partnership definition that is specific to some protocol, for example a truncated ver-
sion of the transcript, there must be some additional formal evidence that this definition
actually uniquely identifies sessions.

Definition 3.13 (Correctness). We say that an ACCE protocol Π is correct, if for any
two oracles πsi , π

t
j that have matching conversations with PIDs

i = j and PIDt
j = i and

Φsi = accept and Φtj = accept it always holds that Ksi = Ktj .

3.5.3 Security Definition

We define security via an experiment played between a challenger C and an adversary
A.
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SECURITY GAME. Assume there is a global variable ΛACCE which stores the role in-
formation of each party for the considered protocol Π .9 In the game, the following steps
are performed:

1. Given the security parameter κ the challenger implements the collection of oracles
{πsi : i, j ∈ [`], s ∈ [d]} with respect to Π , according to the protocol specification. In
this process, the challenger generates long-term keys PSKi,j for all pairs of parties.
Next it additionally generates long-term key pairs (pki, ski) for all parties i ∈ [`]
that require them (e.g. if the corresponding party is a server in the TLS_RSA_PSK
protocol). Finally, the challenger gives the adversary A all identifiers {PIDi}, all
public keys {pki}, i ∈ [`], (if any) and ΛACCE as input.

2. Next the adversary may start issuing Sendpre, RevealKey, Corrupt, Encrypt, Decrypt,
and RegisterParty queries.

3. At the end of the game, the adversary outputs a triple (i, s, b′) and terminates.Awins
if b′ = bsi .

In the following, we provide a general security definition for ACCE protocols. It
will subsequently be referred to when providing specific definitions for ACCE protocols
that provide no forward secrecy, perfect forward secrecy or asymmetric perfect forward
secrecy. We have tried to keep the details of the execution environment and the definition
of security close to that of JKSS. Intuitively, our security definition mainly differs from
JKSS in that it considers adversaries that also have access to the new RegisterParty query
and the (extended) Corrupt query.

Definition 3.14 (ACCE Security). We say that an adversary A (t, εACCE)-breaks an
ACCE protocol, if A runs in time t, and at least one of the following two conditions
holds:

1. When A terminates, then with probability at least εACCE there exists an oracle πsi
such that

• πsi accepts with PIDs
i = j when A issues its τ0-th query, and

• both Pi and its intended partner Pj 10 are not corrupted throughout the security
game described above and

• πsi has internal state kstsi = fresh, and

• there is no unique oracle πtj such that πsi has a matching conversation to πtj .

If πsi accepts in the above sense, then we say that πsi accepts maliciously.

2. When A terminates and outputs a triple (i, s, b′) such that

9 This information is simply used to determine which party also holds asymmetric key pairs besides the shared
symmetric keys.

10 The party Pj is not adversarially corrupted, i.e., j ∈ [`]. This means that Pj has not been registered by a
RegisterParty query. Otherwise A may obtain all corresponding secure keys and trivially make oracle πsi accept.
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• πsi accepts with a unique oracle πtj such that πsi has a matching conversation to
πtj when A issues its τ0-th query, and

• A did not issue a RevealKey-query to πsi nor to πtj , i.e., kstsi = fresh, and

• Pi is τi-corrupted and Pj is τj-corrupted,

then the probability that b′ equals bsi is bounded by

|Pr[bsi = b′]− 1/2| ≥ ε.

If A outputs (i, s, b′) such that b′ = bsi and the above conditions are met, then we say
that A answers the encryption-challenge correctly.

Let us now define security more concretely. We consider three levels of forward
secrecy. We start with a basic security definition for protocols that do not provide any
form of forward secrecy.

Definition 3.15 (ACCE Security without Forward Secrecy). We say that an ACCE
protocol is (t, εNoFSACCE)-secure without forward secrecy (NoFS), if it is (t, εNoFSACCE)-secure
with respect to Definition 3.14, i.e., τi = τj =∞.

Definition 3.16 (ACCE Security with Perfect Forward Secrecy). We say that an
ACCE protocol is (t, εPFSACCE)-secure with perfect forward secrecy (PFS), if it is (t, εPFSACCE)-
secure with respect to Definition 3.14 with τi, τj > τ0.

In the following, we provide our new definition of asymmetric perfect forward se-
crecy which is similar to that of classical perfect forward secrecy except that only the
client is allowed to be corrupted after it has accepted. Server oracles may not be cor-
rupted after accepting (such that for them security holds only in the basic sense of Def-
inition 3.15). We will later show that TLS-RSA-PSK fulfills this extended definition of
security.

Definition 3.17 (ACCE Security with Asymmetric Perfect Forward Secrecy). We say
that an ACCE protocol is (t, εAPFSACCE)-secure with asymmetric perfect forward secrecy
(APFS), if it is (t, εAPFSACCE)-secure with respect to Definition 3.14 and it holds that τi =∞
and τj > τ0 if πsi has internal state ρ = Server or τi > τ0 and τj =∞ if πsi has internal
state ρ = Client.

3.6 Relations among the Security Models

In this section, we discuss the exact relation between these security models described
above. We classify the differences into two categories: security definition requirements
and adversary capabilities. Figure 3.3 lists the terms and abbreviations that are used in
Figure 3.4. We summarize the differences in Figure 3.4. The symbol “ • ” at Table 3.4
means that the model captures this property. Otherwise, “×”.
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In this chapter we prove the security of Transport Layer Security Pre-Shared Key ci-
phersuites (TLS-PSK). TLS-PSK is a set of cryptographic protocols that provide secure
communication based on pre-shared keys (PSKs). These pre-shared keys are symmetric
keys shared in advance among the communicating parties. There are several cipher-
suites: The first set of ciphersuites uses only symmetric key operations for authentica-
tion. The second set uses a Diffie-Hellman key exchange authenticated with a pre-shared
key. The third set combines public key authentication of the server with pre-shared key
authentication of the client. In various environments, TLS-PSK handshake is an inter-
esting alternative for remote authentication between servers and constrained clients like
smart cards, for example for mobile phone authentication, EMV-based payment trans-
actions or authentication via electronic ID cards.

The content of this chapter was brought forth in a cooperation with Sven Schäge,
Zheng Yang, Jörg Schwenk and Florian Kohlar. The result is published in the proceed-
ings of the International Conference on Practice and Theory of Public-Key Cryptogra-
phy (PKC) 2014 [LSY+14b] and in the IACR archive ePrint [LSY+14c]. The authors
main contribution within this joined work is double pseudo-random function DPRF and
the security analysis.

SUMMARY OF OUR CONTRIBUTIONS.
The work presented in this chapter provides security analysis of all three TLS-PSK

ciphersuites. Similar to classical TLS, it is provably impossible to show that the keys
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produced by TLS-PSK are indistinguishable from random keys. We describe our contri-
bution as follows:

• Extended ACCE model for hybrid settings: As one of our main contributions, we
introduce the first definition of ACCE security for authentication protocols with pre-
shared keys as described in Section 3.5. We do not propose a separate model but
rather an extension of the ACCE model of JKSS as described in [JKSS12] to also
cover authentication via pre-shared keys. Our definition is naturally combined to ac-
commodated hybrid settings where some types of parties authenticate based on pre-
shared keys and others authenticate based on public keys. Note that eACCE model
described in Section 3.5 is used for our security analysis of TLS-PSK ciphersuites.

• Double Pseudo-Random Function: To prove our results on TLS_RSA_PSK and
TLS_DHE_PSK, we introduce a new variant of pseudo-random functions (PRFs),
called double pseudo-random function (DPRF). Roughly speaking, a DPRF takes as
input two keys only one of which is generated randomly and kept secret from the
attacker (as in classical PRFs). However, when the adversary makes its queries, not
only the message but also the other key can entirely be specified by the adversary.
Our notion of DPRF nicely abstracts the crucial mechanism in TLS-PSK that is re-
quired to guarantee (asymmetric) perfect forward secrecy. In our security proofs, we
assume that TLS’s key derivation function provides a suitable DPRF in the standard
model. Existing results on the security of HMAC directly support this assumption
for TLS 1.1 when the pre-shared key has a specific bit length.

• Asymmetric Perfect Forward Secrecy: we introduce a strengthened variant of for-
ward secrecy definition called asymmetric perfect forward secrecy (APFS), that cap-
tures that protocol sessions of ACCE protocols with pre-shared keys, see 3.17. APFS
guarantees a strong level of confidentiality even if the long-term secrets of the client
are exposed after the protocol run. Asymmetric perfect forward secrecy is a strong
security notion that can hold for protocols that do not fulfill the standard notion of
perfect forward secrecy. This allows us to prove the security of such protocols in
a stronger security model as it was previously possible. We show that TLS_PSK
is ACCE secure (without forward secrecy), TLS_RSA_PSK is ACCE secure with
asymmetric perfect forward secrecy and TLS_DHE_PSK is secure with (classical)
perfect forward secrecy. Informally, our results say that TLS-PSK guarantees confi-
dentiality and integrity of all messages exchange between client and server, unless
the adversary has learned the pre-shared key or corrupted one of the parties to learn
the application/session key. In TLS_DHE_PSK the communication remains confi-
dential even if the adversary corrupts the pre-shared secret later on. In contrast, in
TLS_RSA_PSK the communication remains confidential even if the adversary man-
ages to corrupt the pre-shared key or the server’s long-term key later on, but not both
of them.

Note also, that for the TLS_PSK and TLS_DHE_PSK ciphersuites we neither have to
rely on non-standard assumptions like the PRF-ODH assumption nor the random or-
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acle model. However, if we want to prove the ACCE security of TLS_RSA_PSKwith
asymmetric perfect forward secrecy in the standard model we need to assume that
the public key encryption scheme is IND-CCA secure, similar to [KPW13, KSS13].
We remark that [KPW13] were also able to prove security of the classical TLS ci-
phersuites based on RSA key transport in the random oracle model. We provide an
overview of our results in Figure 4.1. Note that if only the standard definition of
pseudo-random function (PRF) is used in the security analysis, we can prove all the
ciphersuites in the eACCE model, but without forward secrecy.

DDH assumption holds

hash function is coll.-resist.

PKE is IND-CCA secure

PRFTLS is a secure DPRF

PRFTLS is a secure PRF

TLS PSK is ACCE secure
without forward secrecy

TLS DHE PSK is ACCE secure
without forward secrecy

TLS RSA PSK is ACCE secure
without forward secrecy

TLS DHE PSK is ACCE secure
with perfect forward secrecy

TLS RSA PSK is ACCE secure
with asymmetric perfect for-
ward secrecy

symmetric encryption scheme
is sLHAE secure

security assumptions results

&

&

Fig. 4.1. Summary of Results for Security Analysis of TLS-PSK Ciphersuites

ORGANIZATION. First, we introduce all ciphersuite families of TLS-PSK, i.e., TLS-
PSK, TLS-DHE-PSK and TLS-RSA-PSK, in Section 4.1. Next, we present a variant
of pseudo-random functions (PRFs), called double pseudo-random function (DPRF).
Finally, we prove that all ciphersuite families of TLS-PSK meet our strong notion of
ACCE security in Sections 4.3, 4.4 and 4.5 respectively.
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4.1 Transport Layer Security-Pre-shared Key Ciphersuites

In this section we describe a variant of TLS that assumes pre-shared symmetric keys
between client and server. The corresponding ciphersuite family is termed TLS with
pre-shared keys (TLS-PSK) and available in many TLS releases and libraries [Ope13,
MJ, Bot13, Pau13, Pee13, Pet13, Tod13, Bou13].

RELATED WORK ON THE SECURITY OF TLS. Since the introduction of its prede-
cessor SSL, the security of TLS has often been the focus of security researchers and
attackers worldwide. Over the time, several attacks on TLS have been published. Most
of these attacks do not directly attack the cryptographic core of TLS, but rather ex-
ploit side-channels or vulnerabilities in associated technologies, like the famous Ble-
ichenbacher attack [Ble98], or attacks on the domain name system or the public-
key infrastructure [KSJG10, DAT12, MS13]. However, despite that no serious attacks
on the cryptographic core of the current TLS protocol are known, determining ex-
actly what security guarantees TLS provides has been an elusive problem for many
years. This is partly due to the fact that the popular TLS ciphersuites provably do
not provide security in the classical sense of authenticated key exchange (AKE) pro-
tocols, the classical and very strong standard notion of security of key exchange proto-
cols [MQV95, Sho99b, LMQ+03, JKL04, Ust08]. Until recently only security anal-
yses of modified versions of TLS were published [JK02, GMP+08, MSW10]. At
CRYPTO 2012, Jager, et al. [JKSS12] were the first to present a detailed security analy-
sis of the unmodified version of one of TLS’s ciphersuite families. They showed that the
cryptographic core of ephemeral Diffie-Hellman with mutual authentication is a prov-
ably secure authenticated and confidential channel establishment (ACCE) protocol in the
standard model. ACCE is a new security notion that is particularly well suited to capture
what protocols like TLS intuitively want to achieve: the establishment of a secure chan-
nel between client and server. Among its features, it not only formalizes confidentiality
and integrity of messages exchanged between client and server, but also covers replay
and re-ordering attacks. Very recently, Krawczyk, Paterson, and Wee (KPW) [KPW13]
and independently Kohlar, Schäge, Schwenk [KSS13] presented, while relying on dif-
ferent cryptographic assumptions and security models 1, extensions of the JKSS result
to the remaining ciphersuite families. In particular, they show that TLS-RSA and TLS-
DH also constitute ACCE protocols when used for mutual authentication and that TLS-
RSA, TLS-DH, and TLS-DHE are ACCE secure in the practically important setting
of server-only authentication (for which they provide new formal security definitions).
When proving security in the standard model, both KPW and KSS assume that the public
key encryption system used for key exchange in TLS-RSA is IND-CCA secure. How-
ever, KPW also gave a proof of security in the random oracle model where the public key
encryption is only required to be one-way cryptosystem secure under plaintext-checking
attacks (OW-PCA).
1 The security models and complexity assumptions differ mainly with respect to the capabilities granted to the

adversary when corrupting and registering new parties and the application of the random oracle model.
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Unfortunately, all previous results on the (ACCE) security of TLS are based on ei-
ther i) new, non-standard security assumption like the PRF-ODH assumption introduced
in [JKSS12] and refined in [KPW13, KSS13] or ii) strong idealizations such as mod-
eling TLS’s key derivation function as a random oracle [BR93c] or assuming that the
public-key encryption scheme in TLS-RSA is substituted with a IND-CCA secure one.
Looking somewhat ahead, for the TLS ciphersuites with pre-shared keys, fortunately the
situation is different, i.e., security can be based on standard assumptions only.

TLS WITH PRE-SHARED KEYS. The original specifications of the TLS protocol [DA99,
DR06, DR08] do not explicitly include ciphersuites that support authentication and key
exchange using pre-shared keys. However, since 2005 there exists an extension called
“Pre-Shared Key Ciphersuites for Transport Layer Security” (TLS-PSK) which specif-
ically describes such ciphersuites in RFC 4279 [ET05]. (Yet another extension termed
“TLS Pre-Shared Key (PSK) Ciphersuites with NULL Encryption” proposes variants
of the TLS-PSK ciphersuites that can be used only for authentication, i.e., when chan-
nel encryption is disabled [BG07].) The TLS-PSK standard specifies three ciphersuites,
TLS_PSK, TLS_RSA_PSK and TLS_DHE_PSK, each of which derives the master se-
cret in a different way. In TLS_PSK, the master secret is solely based on the secret
pre-shared keys. In the remaining ciphersuites the computation of the master secret
is additionally dependent on freshly exchanged secrets via encrypted key transport in
TLS_RSA_PSK or Diffie-Hellman key exchange in TLS_DHE_PSK. The intuition is
that as long as either the pre-shared key or the freshly exchanged secret is not compro-
mised, then the Handshake layer yields a secure application key. All three ciphersuites
assume that the client only has a pre-shared key for authentication. Although it is not as
widespread as TLS with RSA key transport, several interesting and important scenarios
for TLS with pre-shared keys exist.

• Since November 2010, the new electronic German ID (eID) card supports online re-
mote authentication of the eID card holder to some online service (eService). The
most important network channel involved in the eID online authentication mech-
anism is a TLS channel, where the eID card shares symmetric keys with the au-
thentication endpoints. Here TLS-PSK is applied to perform mutual authentication
between the card holder and some online service. A technical report by the Ger-
man Federal Office for Information Security (BSI) [fISB05] describes in detail how
the pre-shared key known to the eID-Server and the eService is bound to the TLS
channel.

• As a second example, we mention the application of TLS-PSK in the Generic Au-
thentication Architecture, the 3GGP mobile phone standard for UMTS and LTE.
According to ETSI TR 133 919 V11.0.0 (2012-11), TLS-PSK can be used to secure
the communication between server and user equipment (e.g., hand held telephone or
laptop with a mobile broadband adapter).
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• An IETF draft from 2009 for EMV smart cards describes an authentication proto-
col based on TLS-PSK [PUM11]. EMV chips are widely deployed and are used
commonly for secure payment transactions [CTM12]. The draft describes how the
identity information and pre-shared keys stored on the EMV chip can be used to
establish a TLS-PSK channel.

The main advantage of TLS-PSK over the standard ciphersuites (with self-signed
certificates) is that it avoids computationally expensive public key operations. This par-
ticularly pays off in systems with energy-constrained devices like mobile phones or mo-
bile payment stations. Often, in such systems the end points are initialized with pre-
shared keys in some secure environment. At the same time, the network layout is hier-
archical such that clients technically only directly communicate with a trusted central
server that in turn routes their messages to the intended communication partner. This
keeps the size of the key material that has to be stored in the clients small and virtu-
ally static. Its efficiency makes TLS-PSK a much more attractive alternative in these
scenarios than, for example, TLS with self-signed certificates.

4.1.1 A Brief Introduction to TLS-PSK Ciphersuites

Client Server
m1 : ClientHello

m2 : ServerHello

m3 : ServerCertificate

m4 : ServerKeyExchange

m5 : ServerHelloDone

m6 : ClientKeyExchange

m7 : ChangeCipherSpec

m8 : ClientFinished

m9 : ChangeCipherSpec

m10 : ServerFinished

pre-accept phase:

post-accept phase:

Stateful Symmetric Encryption

Fig. 4.2. TLS handshake for the PSK key exchange algo-
rithm and associated ciphersuites

This section describes the three sets of ci-
phersuites specified in TLS-PSK: TLS_-
PSK, TLS_RSA_PSK and TLS_DHE_-
PSK. In each of these ciphersuites, the
master secret is computed using pre-
shared keys which are symmetric keys
shared in advance among the communi-
cating parties. The main differences are in
the way the master secret is computed. As
sketched before, in TLS_RSA_PSK the
computation of the master secret is ad-
ditionally dependent on a random value
produced by the client that is sent to the
server encrypted with its public key. In
TLS_DHE_PSK the master secret is com-
puted using the pre-shared keys and a
fresh Diffie-Hellman key that is exchanged between client and server. The following
description is valid for all TLS_PSK versions.

The TLS handshake protocol consists of 10 messages, whose content ranges from
constant byte values to tuples of cryptographic values. Not all messages are relevant for
our security proof, we list them merely for completeness. All messages are prepended
with a numeric tag that identifies the type of message, a length value, and the version
number of TLS. Also, all messages are sent through the ‘TLS Record Layer’, which at
startup provides no encryption nor any other cryptographic transformations.
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CLIENTHELLO. Message m1 is the ClientHello message. In this message, one or
more TLS-PSK ciphersuites that are supported by the client are included. For our anal-
ysis the only important value is rClient, the random value chosen by the client. It consists
of 32 bytes (256 Bits), where 4 Bytes are usually used to encode the local time of the
client. The remaining 28 Bytes are chosen randomly by the client. If the client wants
to resume a previous TLS session, he may optionally include a TLS session ID value
received from the server in a previous session. (This value is not protected cryptograph-
ically and should thus not be confused with session IDs used in formal security proofs.)
This is followed by a list cs-list of ciphersuites, where each ciphersuite is a tuple
of key exchange method, signing, encryption and MAC algorithms, coded as two bytes.
Data compression is possible before encryption and is signaled by the inclusion of zero
or more compression methods.

SERVERHELLO. The ServerHello message m2 has the same structure as Clien-
tHello. The TLS-server can select one of the PSK ciphersuites specified by the client
and includes this ciphersuite in the ServerHello message. In our analysis the value
rServer is important which is drawn randomly by the server.

SERVERCERTIFICATE. For TLS_PSK and TLS_DHE_PSK, the message is not in-
cluded. In TLS_RSA_PSK certServer contains a public key that is bound to the server’s
identity.

SERVERKEYEXCHANGE. Since clients and servers may have pre-shared keys with
many different parties, in the ServerKeyExchange message m4, the TLS-Server
provides a PSKIdentityHint pointing to the PSK used for authentication. However,
for ephemeral Diffie-Hellman key exchange, the Diffie-Hellman (DH) key exchange pa-
rameters are also contained in the ServerKeyExchange messages including infor-
mation on the DH group (e.g. a large prime number p), and the DH share TServer (TServer
= gtServer , where tServer is a random value in Zq). (We implicitly assume that the client
checks whether the received parameters are valid, in particular if TServer is indeed in the
group generated by g.)

SERVERHELLODONE. The ServerHelloDone message m5 does not contain any
data, but consists only of a constant tag with byte-value ‘14’ and a length value ‘0’. The
server sends this message in order to inform the client to proceed with the next phase of
the protocol.

CLIENTKEYEXCHANGE. Message m6 is called ClientKeyExchange. We de-
scribe the contents of this message for TLS_DHE_PSK, TLS_PSK and TLS_RSA_PSK
separately:

• For TLS_PSK, the message is not included.

• For ephemeral Diffie-Hellman key exchange TLS_DHE_PSK, it contains the Diffie-
Hellman share TClient of the client, i.e., TClient = gtClient .
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• For the RSA-based key exchange TLS_RSA_PSK, it uses the public key of the server
certificate of the server to authenticate the server, in addition to using a PSK. The
client selects a 46-byte random value R and sends a 2-byte version number V and the
46-byte random value R encrypted under the server’s RSA public key to the server.

Also, the client send an identifier for the pre-shared key it is going to use when commu-
nicating with the server. This information is called PSK-Identity.

CHANGECIPHERSPEC. To signal the ‘start of encryption’ for the server, the client
sends message m7 (ChangeCipherSpec) that simply contains the byte value ‘1’ to
the server.

CLIENTFINISHED. The next data to be sent is the ClientFinished message, m8,
which consists of an encryption CClient of FinClient concatenated with a MAC value. The
messages CClient and FinClient are computed as follows:

• FinClient := PRF(ms, label3||H(m1|| . . . ||m7));

• CClient := StE.Enc(KClient
ENC , len,Hd,FinClient, ste).

The application key KClient
ENC and the master secret ms are described below.

CHANGECIPHERSPEC. To signal the ‘start of encryption’ to the server, message m9

ChangeCipherSpec solely contains byte value ‘1’.

SERVERFINISHED. After the server has received messages m8, the server can also
compute pms, ms, the encryption and MAC keys, and the ServerFinished message
FinServer. It can then decrypt m8 and check FinClient by computing the pseudo-random
value on the messages sent and received by the server. If this check fails, the server
‘rejects’ and aborts the handshake. If the check is successful, it ‘accepts’ and sends
the message m9 containing CServer which is the encryption of FinServer to the client. The
messages CServer and FinServer are computed as follows:

• FinServer := PRF(ms, label4||H(m1|| . . . ||m9));

• CServer := StE.Enc(KServer
ENC , len,Hd,FinServer, stENC).

COMPUTING THE PRE-MASTER SECRET. Here, we give a detailed description of
pre-master secret pms of all cases (TLS_PSK, TLS_DHE_PSK, and TLS_RSA_PSK)
as follws:

• TLS_PSK case: For TLS_PSK version, the client/server is able to compute the mas-
ter secret ms using the pre-master secret pms, from which all further secret values
are derived. If the PSK is N bytes long, the pms consists of the 2-byte representation
of the integer value N, N zero bytes, the 2-byte representation of N once again, and
the PSK itself,
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pms := N||0...0||N||PSK. (4.1)

Since the first half of pms is constant for any PSK we get for TLS_PSK that the
entire security of PRFTLS only relies on the second half of pms.

• TLS_DHE_PSK case: Let Z be the value produced for DH-based ciphersuites, Z
=gtServertClient = T tServerClient = T tClientServer. The pre-master key pms consists of a concatenation of
four values: lenZ indicating the length of Z, Z itself, lenPSK showing the length of the
PSK, and the PSK itself,

pms := lenZ||Z||lenPSK||PSK. (4.2)

• TLS_RSA_PSK case: First, the pre-master secret concatenates the constant C = 48,
the 2-byte version number V and a 46-byte random value R, lenPSK containing the
length of the PSK, and the PSK itself,

pms := C||V||R||lenPSK||PSK. (4.3)

COMPUTING THE MASTER SECRET. According to the original specification, released
as RFC 4279 [ET05], the key derivation function of TLS, denoted here as PRFTLS, is
used when constructing the master secret. PRFTLS takes as input a secret, a seed, and
an identifying label and produces an output of arbitrary length. We first describe the
generic computation of the master secret ms for all ciphersuites using pre-shared keys.
The master secret ms is computed as follows:

ms := PRFTLS(pms, label1||rClient||rServer) (4.4)

COMPUTING THE APPLICATION KEYS. After computing the master secret ms, it is
stored for the lifetime of the TLS session, and the pre-master key pms is erased from
memory. The master secret ms is subsequently used, together with the two random
nonces and another fixed label2, to derive all encryption and MAC keys. The follow-
ing four application keys (encryption and MAC keys for each direction) are computed
by using PRFTLS, where the inputs are now the master secret ms, label2 and rClient, rServer.
More precisely, the key material KClient

ENC := (KC→Senc ,KC→Smac ) and KClient
DEC := (KS→Cenc ,KS→Cmac )

is computed as

KC→Senc ||KS→Cenc ||KC→Smac ||KS→Cmac := PRFTLS(ms, label2||rClient||rServer), (4.5)

where KClient
ENC is used to encrypt and authenticate data sent from the client to the server,

and KClient
DEC is used to decrypt and verify data received from the server.
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4.2 Double Pseudo-Random Functions

To prove our results on TLS_RSA_PSK and TLS_DHE_PSK, we introduce a new vari-
ant of pseudo-random functions, called double pseudo-random function (DPRF). In this
subsection, we give a detailed describtion of DPRF.

Double pseudo-random functions can be thought of as a class of PRFs with two
keys. Let DPRF : KDPRF1×KDPRF2×MDPRF → RDPRF denote a family of deterministic
functions, where KDPRF1 ,KDPRF2 is the key space,MDPRF is the domain and RDPRF is
the range of PRF.

Intuitively, security requires that the output of the DPRF is indistinguishable from
random as long as one key remains hidden from the adversary even if the adversary is
able to adaptively specify the second key and the input message. To formalize security
we consider the following security game played between a challenger C and an adversary
A. Let RFDPRF(·, ·) denote an oracle implemented by C, which takes as input a key
kj ∈ KDPRFj (where j is specified by the adversary via an Initiation query) and message
m ∈MDPRF and outputs a value z ∈ RDPRF.

1. The adversary first runs Initiation(j) with j ∈ {1, 2} to specify the key kj ∈ KDPRFj

that he wants to manipulate.

2. The challenger C samples b̂ $← {0, 1}, and sets u = (j mod 2) + 1. If b̂ = 0, the
challenger samples ku ∈R KDPRFu and assigns RFDPRF(·, ·) to either DPRF(·, k2, ·)
or DPRF(k1, ·, ·) depending on the value of u. For instance, if u = 2 then the random
function RFDPRF is assigned to DPRF(·, k2, ·), and the A is allowed to specify k1
arbitrarily in each query. If b̂ = 1, the challenger assigns RFDPRF to RF(·, ·) which
is a truly random function that takes as input key kj and message m and outputs a
value in the same rangeRDPRF as DPRF(·, ·, ·).

3. The adversary may adaptively make queries kj,i, mi for 1 ≤ i ≤ q to oracle RFDPRF

and receives the result of RFDPRF(kj,i,mi), where kj,i denotes the i-th key kj chosen
by A.

4. Finally, the adversary outputs its guess b̂′ ∈ {0, 1} of b̂. If b̂ = b̂′ the adversary wins.

As before, we let Pr
[
b̂ = b̂′

]
denote the success probability of the adversary and∣∣∣Pr

[
b̂ = b̂′

]
− 1/2

∣∣∣ its advantage.

Definition 4.1. We say that DPRF is a (q, t, εDPRF)-secure double pseudo-random func-
tion, if any adversary running in probabilistic polynomial time t has at most an advan-
tage of εDPRF to distinguish the DPRF from a truly random function, i.e.,

Pr
[
b̂ = b̂′

]
≤ 1/2 + εDPRF,

where the number of allowed queries q is upper bounded by t.
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4.2.1 Analysis of the Relationship between DPRF and PRF

To prove (asymmetric) perfect forward secrecy in TLS_DHE_PSK and TLS_RSA_PSK
we assume that PRFTLS constitutes a secure DPRF (in the standard model) where the
key space of the DPRF consists of the key space of the pre-shared key PSK and the key
space of the freshly generated RSA or Diffie-Hellman secret. In this section we analyze
the relationship between double pseudo-random function (DPRF) defined in Section 4.2
and plain PRF defined in Section 2.2.2, and give a practical construction of a DPRF
from PRFs.

Observe that any (t, εDPRF)-secure DPRF trivially gives rise to a plain PRF: if the
DPRF is secure after adaptive message queries – even when one of the keys can be
specified by the adversary – it remains of course secure when both keys are chosen at
random and kept secret from the adversary. However, such a function can be viewed
as a PRF where the key space consist of all possible pairs of keys (k1, k2). Also, if
the DPRF can generate output values which are indistinguishable from random if the
adversary adaptively specifies keys and messages, it remains secure if the adversary is
only allowed to specify messages. The following lemma holds for any message space
and output space.

Lemma 4.2. Suppose that DPRF(k1, k2,m) is a (q, t, εDPRF)-secure DPRF with key
spaces KDPRF1 and KDPRF2 according to Definition 4.1. Then DPRF(k1, k2,m) is a
(q, t, εPRF)-secure PRF for key space KDPRF1 , key space KDPRF2 , or KDPRF1 ×KDPRF2 .

Proof. To show that DPRF(k1, k2,m) is a (t, εPRF)-secure PRF for key spaceKDPRF1 (or
key space KDPRF2) we can imagine a PRF simulator that simply queries Initiation(0) (or
Initiation(1)) to its DPRF challenger and subsequently only relays the message queries
and responses. To show that DPRF(k1, k2,m) is a (t, εPRF)-secure PRF for key space
KDPRF1 × KDPRF2 we use that it is a PRF for KDPRF1 and key space KDPRF2 . So as
long as either k1 or k2 is chosen uniformly at random DPRF(k1, k2,m) is a PRF even
independent of the choice of the other key. However it of course remains a PRF if the
other key is chosen uniformly as well. ut

4.2.2 A Practical Construction of a DPRF from PRFs.

There is a simple way to construct a DPRF from two PRFs with the same message
space. Assume we have two PRFs PRF(·, ·) : KPRF ×MPRF → RPRF and PRF′(·, ·) :
KPRF′ ×MPRF → RPRF′ . We can then construct a DPRF with KDPRF1 = KPRF and
KDPRF2 = KPRF′ and message space MDPRF = MPRF. On input k1 ∈ KDPRF1 and
k2 ∈ KDPRF2 and message m ∈MDPRF, the DPRF proceeds as follows:

DPRF(k1, k2,m) := PRF(k1,m)⊕ PRF′(k2,m).
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Lemma 4.3. Suppose that PRF and PRF′ are (q, t, εPRF)-secure pseudo-random func-
tions according to Definition 2.4. Then the above DPRF is (q, t′, εDPRF)-secure accord-
ing to Definition 4.1 with t ≈ t′ and εDPRF ≤ 2εPRF.

Proof. The proof proceeds in a sequence of games, following [Sho04, BR06]. The first
game is the real security experiment, assumed there exists an adversary A that breaks
the security of DPRF. Then, we describe several intermediate games that step-wisely
modify the original game. Finally we prove that (under the stated security assumptions),
no adversary A can break the security of DPRF.

Let break(Ind)δ denote the event that b̂′ = b̂ in Game δ. Let Advδ := |Pr[break
(Ind)
δ ]−

1/2| denote the advantage of A in Game δ and Pr[break
(Ind)
δ ] its success probability.

Consider the following sequence of games.

GAME 0. This game equals the DPRF security experiment. Thus, for some εDPRF we
have

Pr[break
(Ind)
0 ] = 1/2 + εDPRF.

GAME 1. Assume the adversary queries Initiation(j) with j ∈ 1, 2. Let u = (j
mod 2) + 1. In this game, C either change the function PRF(k∗1, ·) to a truly random
function RF(·) (if u = 1) or the function PRF′(k∗2, ·) (if u = 2). As before the challenger
loses 2 factor for target-PRF-guessing. If there exists a polynomial time adversary A
that can distinguish this game from the previous game, we can construct an algorithm B
using A that breaks the security of PRF (or PRF′). Exploiting the security of PRF (or
PRF′), we have that

|Pr[break
(Ind)
0 ]− Pr[break

(Ind)
1 ]| ≤ 2εPRF.

Since DPRF’s output is computed as

DPRF(k1, k2,m) := PRF(k1,m)⊕ PRF′(k2,m)

we also have that even when the adversary entirely and adaptively specifies either
PRF(k1,m) or PRF′(k2,m) via the q queries granted in the DPRF game, the output
DPRF(k1, k2,m) is still indistinguishable from random as the other output (PRF′(k2,m)
or PRF(k1,m)) remains random. Therefore, if only one pseudo random function (PRF
or PRF′) is exchanged with a truly random function, the entire function DPRF(k1, k2,m)
behaves like a truly random function. We have

Pr[break
(Ind)
1 ] = 1/2⇔ Adv1 = 0.

To show that this game is indistinguishable from the previous one observe that B can
simulate the RFDPRF(kj, ·) queries made by A as πPRF ⊕ PRF(kj, ·) where πPRF is the
oracle in the PRF security experiment. If πPRF = RF(·) then B’s simulation yields a
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distribution that is equal to this game, otherwise it is equal to the previous game. Finally,
B can simply forward A’s response to its challenger in the PRF game.

Summing up the probabilities from Game 0 to Game 1, we proved Lemma 4.3, i.e.,

εDPRF ≤ 2εPRF

ut

4.2.3 Security Overview of PRFTLS in TLS Protocols

In our security proof of TLS_PSK we assume that the pseudo-random function of TLS
(PRFTLS) that is used for the computation of the master-secret constitutes a secure PRF
in the standard model when applied with the pre-master key pms as the key. However,
to prove perfect forward secrecy in TLS_DHE_PSK and asymmetric perfect forward
secrecy in TLS_RSA_PSK we assume that PRFTLS constitutes a secure DPRF (in the
standard model) where the key space of the DPRF consists of the key space of the pre-
shared key and the key space of the freshly generated RSA or Diffie-Hellman secret. In
the following we will analyze the plausibility of these assumptions in the light of existing
results. What considerably complicates our analysis is that TLS 1.1 and TLS 1.2 specify
different implementations of PRFTLS. We therefore start with a detailed description of
PRFTLS in TLS 1.1 and TLS 1.2.

IMPLEMENTATION OF PRFTLS IN TLS 1.1. In TLS 1.1, the output of the key deriva-
tion is computed as:

PRFTLS(pms,m) = HMAC_MD5′(pms1,m)⊕ HMAC_SHA′(pms2,m) (4.6)

where pms1 is the first half of the pre-master secret and pms2 is the second half, i.e.,
pms = pms1||pms2. As described in detail before, in TLS-PSK the input message m is
derived from some constant, public label and the messages exchanged in the protocol
so far (depending on the ciphersuite used). HMAC_MD5′ is computed from several
concatenations and iterations of HMAC_MD5 that all use the same input key pms1.

Similarly, HMAC_SHA′ is computed from several concatenations and iterations of
HMAC_SHA that again all use the same input key pms2. In general, the data expansion
function HMAC_X′(k,m) for key k and message m is defined as

HMAC_X′(k,m) = HMAC_X(k,A(1)||m) || HMAC_X(k,A(2)||m) || . . . , (4.7)

where the A(i) are defined as

A(0) = m, (4.8)
A(i) = HMAC_X(k,A(i− 1)). (4.9)
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In the above, we use HMAC_X to refer to the standard HMAC algorithm that uses
X as the underlying hash function [KBC97]. TLS allows to generate arbitrary out-
put lengths for HMAC_X′ (that are not necessarily multiples of the output length of
HMAC_X). To this end, one simply computes an HMAC_X′ output that is (slightly)
larger than the target length via Equation 4.7. Next, the last output bits of this result are
just discarded (until we meet the target length).

IMPLEMENTATION OF PRFTLS IN TLS 1.2. The definition of PRFTLS in TLS 1.2 is
different from TLS 1.1. First, the new standard allows client and server to negotiate
the underlying hash function. However, SHA-256 is used in all pre-defined ciphersuites
specified in the TLS standard and generally recommended. Second, the computation of
PRFTLS no longer relies on two different hash functions but only on a single one. For
SHA-256 the function thus simply looks like

PRFTLS(pms,m) = HMAC_SHA-256′(pms,m). (4.10)

EXISTING RESULTS ON THE SECURITY OF PRFTLS. Let now us give a brief sum-
mary of the most important theoretical results. In [Bel06], Bellare proved that HMAC is
a pseudo-random function when the underlying compression function of the hash func-
tion is a PRF when keyed by either the data input or the chaining value. In 2008, Foque,
Pointcheval, and Zimmer (FPZ) showed that, while relying on [Bel06], for any key dis-
tribution with high min-entropy, HMAC [DGH+04] is a good strong randomness extrac-
tor under security assumptions that are related to the fact that the compression function
of the underlying hash function behaves like a pseudo-random function [FPZ08]. In
2010, Fischlin, Lehmann, and Wagner (FLW) [FLW10] specifically analyzed the key
derivation function of TLS 1.1. In their analysis, FLW show that HMAC_X′ is a secure
PRF if HMAC_X is a secure PRF. FLW rely on [Bel06] (who showed that HMAC_X
is pseudo-random) to base the security of PRFTLS on the security of the compression
functions of the underlying hash functions. Very recently, Koblitz and Menezes gave a
separation result showing that the proof of [Bel06] actually does not apply to the stan-
dardized version of HMAC [KBC97] without modifications (of the security assump-
tions). They also present a new proof of security of HMAC as standardized in [Nat02]
that holds in the uniform model of complexity. However, due to its large tightness loss,
Koblitz and Menezes doubt that even their new and strengthened security proof is “good
enough to serve as a convincing real-world guarantee of security of HMAC”.

APPLICATION TO PRFTLS. Unfortunately, none of these results directly proves that
PRFTLS as used in TLS-PSK behaves like a DPRF. Nevertheless, they might in some
cases serve as a strong indicator of the security of PRFTLS.

• When using TLS_PSK, the security of PRFTLS only relies on the secret key PSK,
which is located in the last bits of pms. The results of FLW on the pseudo-
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randomness of HMAC_X′ do not only make it appear plausible that PRFTLS con-
stitutes a PRF in TLS 1.1 but also in TLS 1.2.2

• As another important example, consider the security of PRFTLS as specified in
TLS 1.1 when using TLS_DHE_PSK and TLS_RSA_PSK. Recall that in TLS_-
DHE_PSK the pre-master secret is computed as pms := lenZ||Z||lenPSK||PSK. As-
sume that the length of PSK is such that lenZ||Z and lenPSK||PSK have equal bit
length. When splitting pms in two halves, we now get that pms1 = lenZ||Z and
pms2 = lenPSK||PSK are independent random keys. At this point, we may again
rely on the results of FLW (and Lemma 4.2) to deduce that if an adversary may not
reveal both, Z and PSK, the output of PRFTLS remains indistinguishable from a ran-
dom value. In this case, PRFTLS practically constitutes a DPRF if HMAC_MD5 is
a secure PRF for the key space lenZ||Z (with random Z) and HMAC_SHA is a se-
cure PRF with key space lenPSK||PSK (for random PSK). We obtain an analogous
result for TLS_RSA_PSK if the length of PSK is such that pms1 = C||V||R and
pms2 = lenPSK||PSK.

However, in general PSK may have arbitrary size. In TLS_DHE_PSK for example, if
PSK is relatively small it is likely that pms2 also consists of several bits of Z. In this
case, HMAC_SHA′ is used with a key that not only consists of random bits of PSK
but also of possibly adversarially manipulated bits of Z. Thus parts of the key bits of
HMAC_SHA′ may be specified by the adversary. It is not clear if the results of FLW
transfer to these situations as well.

4.3 Security Analysis of TLS-PSK Ciphersuite

In this section we prove that the proposed TLS-PSK ciphersuite (TLS_PSK) as de-
scribed in 4.1 is secure in the sense of the security guarantees as specified in Section 3.15
in the standard model.

Theorem 4.4. Let µ be the output length of pseudo-random function of TLS protocol
PRFTLS and let λ be the length of the nonces rClient and rServer. Assume that PRFTLS

is a (t, εPRF)-secure pseudo-random function PRF with respect to Definition 2.4 when
keyed with the pre-master secret pms described in 4.1 or the master secret ms described
in 4.4. Suppose that the hash function is (t, εCRHF)-collision-resistant with respect to Def-
inition 2.2.1.1, and the sLHAE scheme is (t, εStE)-secure with respect to Definition 2.2.7.

Then for any adversaryA that (t′, εpsktls )-breaks the TLS with pre-shared key protocol
(TLS-PSK) in the sense of Definition 3.15 with t ≈ t′ it holds that

εpsktls ≤ (d`)2
(

1

2λ−1
+ 6 · εPRF + 2 · εCRHF +

1

2µ−1
+ 6 · εStE

)
.

2 Technically, the key spaces of HMAC_X′ need to be defined distinctly. In TLS 1.2, HMAC_X′ is required to be
a PRF for the key space that consist of all N||0...0||N||PSK with random PSK while in TLS 1.1 the key space
would consist of all N||PSK.
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We prove this theorem 4.4 in two stages. First, we partition the set of all adversaries
into two categories:

1. Adversaries that succeed in making an oracle accept maliciously. We call such an
adversary an authentication-adversary AAuth.

2. Adversaries that do not succeed in making any oracle accept maliciously, but which
answer the encryption-challenge. We call such an adversary an encryption-adversary
AEnc.

We show that the TLS-PSK protocol is a secure authenticated and confidential channel
establishment (ACCE) protocol except for probability εauth, that is, the protocol fulfills
security property 1.) of the ACCE definition 3.15. In the next step, we show that the
ciphertext of the ACCE protocol is secure except for probability εenc in the sense of the
Property 2.) of the ACCE definition 3.15.

We prove Theorem 4.4 by the following two lemmas. Lemma 4.5 bounds the proba-
bility εAuth that an authentication-adversary succeeds, Lemma 4.7 bounds the probability
εEnc that an encryption-adversary succeeds. Then we have

εpsktls ≤ εAuth + εEnc.

Lemma 4.5. For any adversary AAuth running in time t′ ≈ t, the probability that there
exists an oracle πsi that accepts maliciously is at most

εAuth ≤ (d`)2 ·
(

1

2λ
+ 2εPRF + εCRHF +

1

2µ
+ 2εStE

)
,

where all quantities are defined as stated in Theorem 4.4.

Note that εAuth is an upper bound on the probability that there exists an oracle that
accepts maliciously.

Proof. Let break(Auth)δ be the event that there exists a τ and a τ -fresh oracle πs∗i∗ that has
internal state Φs∗i∗ = accept and PIDs∗

i∗ = j∗, but there is no unique oracle πt∗j∗ such
that πs∗i∗ and πt∗j∗ have matching conversations, i.e., it accepts maliciously in the sense of
Definition 3.15, in Game δ.

GAME 0. This game equals the ACCE security experiment described in Section 3.15.
Thus, we have

Pr[break
(Auth)
0 ] = εAuth.

GAME 1. This game is similar to the previous game. However, in this game we add an
abort rule. The challenger aborts, if there exists any oracle πs∗i∗ that chooses a random
nonce rs∗i∗ or rt∗j∗ which is not unique.
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Pr[break
(Auth)
0 ] ≤ Pr[break

(Auth)
1 ] +

(d`)2

2λ
.

Note that now each oracle has a unique nonce rs∗i∗ or rt∗j∗ , which is included in the signa-
tures. We will use this to ensure that each oracle that accepts with non-corrupted partner
has a unique partner oracle.

GAME 2. In this game, the challenger tries to guess which oracle will be the first oracle
to accept maliciously and its partner oracle. If its guess is incorrect, then the challenger
aborts this game. Technically, this game is identical to previous game, except for the fol-
lowing modifications. The challenger guesses the random indices ((i∗, j∗), (s∗, t∗))

$←
[`]2 × [d]2. If there exists an oracle πsi that ‘accepts’ maliciously with intended commu-
nication partner PIDj (i.e., oracle πtj), and (i, s) 6= (i∗, s∗) and (j, t) 6= (j∗, t∗), then the
challenger aborts the game. Note that if πsi is the first oracle that ‘accepts’ maliciously,
then with probability 1/(d`)2 we have (i, s) = (i∗, s∗) and (j, t) = (j∗, t∗), and thus

Pr[break
(Auth)
1 ] ≤ (d`)2 · Pr[break

(Auth)
2 ].

GAME 3. In this game, we replace the master secret ms∗ computed by πs
∗
i∗ with an

independent random value m̃s∗. Moreover, if πt∗j∗ computes the master key using the
same nonces rs∗i∗ ||rt

∗
j∗ as πs∗i∗ , then we set its master key to m̃s∗ as well. We make use

of the fact that the pre-shared keys PSK are chosen uniformly at random from the key
space of PRFTLS. Distinguishing Game 3 from Game 2 implies an algorithm breaking
the security of the pseudo-random function PRFTLS, thus

Pr[break
(Auth)
2 ] ≤ Pr[break

(Auth)
3 ] + εPRF.

GAME 4. In this game, we replace the pseudo-random function PRF used by the test
oracle πs∗i∗ with a truly random function RF. Note that if oracle πs∗i∗ and oracle πt∗j∗ use
the same master secret m̃s∗, then PRF used by πt∗j∗ is replaced as well. Distinguishing
Game 4 from Game 3 implies an algorithm breaking the security of the pseudo-random
function PRFTLS, thus

Pr[break
(Auth)
3 ] ≤ Pr[break

(Auth)
4 ] + εPRF.

GAME 5. In Game 4 we have replaced the function PRF(m̃s∗, ·) used by πs∗i∗ with a ran-
dom function RF. Thus, the Finished message is RF(m̃s∗, label3||CRHF(m1|| . . .)),
where (m1|| . . .) denotes the transcript of all messages sent and received by oracle πs∗i∗ .
In this game, the challenger proceeds exactly like the challenger in Game 4, except that
we add an abort rule. We abort the game, if oracle πs∗i∗ ever evaluates the random func-
tion RF on an input m∗ such that CRHF(m∗) = CRHF(m1|| . . .), where (m∗ 6= m1|| . . .).
Since CRHF(m∗) = CRHF(m1|| . . .) implies that a collision for the hash function CRHF
is found, we have
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Pr[break
(Auth)
4 ] ≤ Pr[break

(Auth)
5 ] + εCRHF.

GAME 6. Finally we use that the full transcript of all messages sent and received is
used to compute the Finished messages, and that Finished messages are com-
puted by evaluating a truly random function that is only accessible to πs∗i∗ and (possibly)
πt
∗
j∗ due to Game 5. This allows to show that any adversary has probability at most 1

2µ

of making oracle πs∗i∗ accept without having a matching conversation to πt∗j∗ . The Fin-
ishedmessages are computed by evaluating a truly random function RF(m̃s∗, ·), which
is only accessible to oracles sharing m̃s∗, and the full transcript containing all previous
messages is used to compute the Finished messages. If there is no oracle having a
matching conversation to πs∗i∗ , the adversary receives no information about RF(m̃s∗, ·).
Therefore we have

Pr[break
(Auth)
5 ] ≤ Pr[break

(Auth)
6 ] +

1

2µ
.

GAME 7. In this game we show that any successful adversary can be used to break the
sLHAE-security of the encryption system. This step is necessary, as an adversary can vi-
olate the matching conversations definition (and thus make an oracle accept maliciously)
by creating a new, valid encryption (CClient orCServer) of one of the Finishedmessages
(FinClient or FinServer), which is distinct from the ciphertext output by the corresponding
oracle (client or Server) or of any other messages sent later. Therefore, we need to make
sure that the adversary is not able to generate new, valid symmetric encryptions of the
Finished messages. To this end we exploit the properties of the sLHAE scheme. The
forged ciphertexts produced by the adversary are either computed using KClient

ENC or using
KServer

ENC . The challenger can guess which of the two keys are used with probability at
least 1/2. On failure, it simply aborts. On success, the challenger can embed the sLHAE
challenge into this key.

Pr[break
(Auth)
6 ] ≤ 2 Pr[break

(Auth)
7 ].

Claim 4.6.
Pr[break

(Auth)
7 ] = εStE.

Proof. According to the sLHAE security of the symmetric encryption scheme, A has
advantage at most εStE in breaking the sLHAE security. The access to the oracles in
the sLHAE security game can directly be used to implement the Encrypt and Decrypt
queries of the ACCE security game. Observe that the values generated in this game are
exactly distributed as in the previous game. We have Pr[break

(Auth)
7 ] = εStE.

ut

Summing up the probabilities from Game 0 to Game 7, we proved Lemma 4.5, i.e.,
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εAuth ≤ (d`)2 ·
(

1

2λ
+ 2εPRF + εCRHF +

1

2µ
+ 2εStE

)
.

ut

Lemma 4.7. For any adversary AEnc running in time t′ ≈ t, the probability that AEnc

answers the encryption-challenge correctly in the sense of Definition 3.15 is at most
1/2 + εEnc with

εEnc ≤ εAuth + (d`)2 (2εPRF + 2εStE) ,

where εAuth is an upper bound on the probability that there exists an oracle that accepts
maliciously in the sense of Definition 3.15 (cf. Lemma 4.5) and all other quantities are
defined as stated in Theorem 4.4.

Proof. Assume thatAEnc always outputs (i∗, s∗, b′) such that all conditions in Property 2
of Definition 3.15 are satisfied. Let break(Enc)δ denote the event that b′ = bs

∗
i∗ in Game δ,

where bs∗i∗ is the random bit sampled by the test oracle πs∗i∗ , and b′ is the bit output by
AEnc. Let Advδ := Pr[break

(Enc)
δ ] − 1/2 denote the advantage of the adversary AEnc in

Game δ.

GAME 0. This game equals the ACCE security experiment described in Section 3.15.
We have

Pr[break
(Enc)
0 ] =

1

2
+ εEnc = 1/2 + Adv0.

GAME 1. The challenger in this game proceeds as before, but it aborts if the test oracle
accepts without a unique partner oracle. In other words, in this game, we make the same
modifications as in Game 0 to Game 7 in the proof of Lemma 4.5. Thus we have

Adv0 ≤ Adv1 + εAuth.

We note that at this this point we have now excluded active adversaries between and,
moreover, for all τ and any τ -fresh oracle πs∗i∗ there is a unique oracle πt∗j∗ such that πs∗i∗
and πt∗j∗ have matching conversations. Therefore, any accepting oracle has an uniquely
identified partner oracle.

GAME 2. Technically, this game is identical to the previous game, except for the follow-
ing modifications. The challenger aborts if it fails to guess the oracle πs∗i∗ (and its partner
πt
∗
j∗) that the adversary attacks. The probability that the challenger guesses correctly is

at least 1/(d`)2 we have
Adv1 ≤ (d`)2 · Adv2.

GAME 3. In this game we replace the master secret ms∗ computed by πs
∗
i∗ with an

independent random value m̃s∗. Moreover, if πt∗j∗ compute the master key using same
nonces rs∗i∗ ||rt

∗
j∗ as πs∗i∗ , then we set its master key as m̃s∗. We make use of the fact
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that each pre-shared key is chosen uniformly at random from the key space of PRFTLS.
Distinguishing Game 3 from Game 2 implies an algorithm breaking the security of the
pseudo-random function PRFTLS, thus

Adv2 ≤ Adv3 + εPRF.

GAME 4. As in Game 4 in the proof of Lemma 4.5, we replace the function PRF(m̃s∗, ·)
used by πs∗i∗ and πt∗j∗ to compute the application keys with a random function RF(m̃s∗, ·).
In particular, this function is used to compute the key material as

KC→Senc ||KS→Cenc ||KC→Smac ||KS→Cmac := RF(m̃s∗, label2||rs
∗
i∗ ||rt

∗
j∗)

Distinguishing Game 4 from Game 3 again implies an algorithm breaking the security
of the pseudo-random function PRFTLS, thus we have

Adv3 ≤ Adv4 + εPRF.

GAME 5. In this game, we use that the key material KC→Senc ||KS→Cenc ||KC→Smac ||KS→Cmac used
by πs∗i∗ and πt∗j∗ is uniformly random and independent of all TLS Handshake messages
exchanged. The challenger can again guess (with probability at least 1/2) the key that is
used to create the ciphertexts which the adversary attacks (either KClient

enc or KServer
enc ) and

embeds the sLHAE challenge in this key, similar to Game 7 of Lemma 4.5. If there exists
a successful ACCE adversary A, then we can construct an algorithm BsLHAE that uses
A to break the security of the sLHAE scheme (see Section 2.2.7). Informally, BsLHAE

using its encryption oracle OENC and decryption oracle ODEC interacts with the sLHAE
challenger CsLHAE described in 2.2.7. Simultaneously, BsLHAE acts as an ACCE challenger
for A in this game. BsLHAE embeds the sLHAE experiment by simply forwarding all
Encrypt(πs

∗
i∗ , ·) queries to the encryption oracle OENC, and all Decrypt(πt∗j∗ , ·) queries to

the decryption oracle ODEC. As before we have

Adv4 = 2 · Adv5.

Claim 4.8.
Pr[break

(Auth)
5 ] = εStE.

Proof. If A outputs a triple (i∗, s∗, b′), then BsLHAE forwards b′ to the sLHAE chal-
lenger CsLHAE. Otherwise it selects a random bit b′ $← {0, 1} and outputs b′. BsLHAE

essentially forwards all messages supplied by A. Therefore, if A has advantage ε in
winning the above game against the challenger, then BsLHAE can succeed in breaking
the sLHAE security with probability at least 1/2 + ε. Since by assumption in 2.2.7 any
polynomial-time attacker has advantage at most εStE in breaking the sLHAE security,
we have Adv5 ≤ εStE.

ut
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Summing up the probabilities from Game 0 to Game 5, we proved Lemma 4.7.
Finally, Summing up the probabilities from Lemmas 4.5 and 4.7, we obtain

εPSKtls ≤ (d`)2
(

1

2λ−1
+ 6 · εPRF + 2 · εCRHF +

1

2µ−1
+ 6 · εStE

)
,

which proves Theorem 4.4. ut

4.4 Security Analysis of TLS-DHE-PSK Ciphersuite

In this section we prove that the proposed TLS-DHE-PSK ciphersuite (TLS_DHE_-
PSK) as described in 4.1 is secure in the sense of the security guarantees as specified in
Section 3.16 in the standard model.

Theorem 4.9. Let µ be the output length of pseudo-random function of TLS protocol
PRFTLS and let λ be the length of the nonces rClient and rServer. Assume that the key
derivation function PRFTLS is a (t, εDPRF)-secure DPRF with respect to Definition 4.1
when keyed with the pre-master secret pms described in 4.2 Assume that PRFTLS is a
(t, εPRF)-secure PRF with respect to Definition 2.4 when keyed with the master secret ms
described in 4.4. Suppose that the collision resistant hash function is (t, εCRHF)-secure
with respect to Definition 2.2.1.1, the DDH-problem is (t, εDDH)-hard in the group G
used to compute the TLS pre-master secret pms, and that the sLHAE scheme is (t, εStE)-
secure with respect to Definition 2.2.7.

Then for any adversary A that (t′, εpsk−dhetls )-breaks the TLS-DHE with pre-shared
key protocol (TLS-DHE-PSK) in the sense of Definition 3.16 with t ≈ t′ holds that

εpsk−dhetls ≤ (d`)2
(

1

2λ−1
+ 3 · εDPRF + 3 · εPRF + 2 · εCRHF +

1

2µ−1
+ εDDH + 6 · εStE

)
.

Similar to the previous proof given in Section 4.3, we prove Theorem 4.9 via
two lemmas. Lemma 4.10 bounds the probability εAuth that an authentication-adversary
AAuth succeeds, Lemma 4.12 bounds the probability εEnc that an encryption-adversary
AEnc succeeds. Then we have

εpsk−dhetls ≤ εAuth + εEnc.

Lemma 4.10. For any adversary AAuth running in time t′ ≈ t, the probability that there
exists an oracle πsi that accepts maliciously in the sense of Definition 3.16 is at most

εAuth ≤ (d`)2 ·
(

1

2λ
+ εDPRF + εPRF + εCRHF +

1

2µ
+ 2εStE

)
,

where all quantities are defined as stated in Theorem 4.9.
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Proof. We use the same notions as defined in the proof of Lemma 4.5. The proof pro-
ceeds in a sequence of games as in [Sho04, BR06].

GAME 0. This game equals the ACCE security experiment described in Section 3.16.
Thus, for some εAuth we have

Pr[break
(Auth)
0 ] = εAuth.

GAME 1. In this game, the challenger aborts, if there exists any oracle πs∗i∗ that chooses a
random nonce rs∗i∗ or rt∗j∗ which is not unique, i.e., nonce collision. This game corresponds
to Game 1 in the proof of Lemma 4.5. With the same arguments we have

Pr[break
(Auth)
0 ≤ Pr[break

(Auth)
1 ] +

(d`)2

2λ
.

GAME 2. In this game, the challenger tries to guess which oracle will be the oracle to
accept maliciously and its partner oracle. This game corresponds to Game 2 in the proof
of Lemma 4.5. With the same arguments we have

Pr[break
(Auth)
1 ] ≤ (d`)2 · Pr[break

(Auth)
2 ].

GAME 3. In this game, we replace the master secret ms∗ that is generated by πs∗i∗ with
an independent random value m̃s∗. Moreover, if πs∗i∗ and πt∗j∗ have computed the same
random nonces and the same Diffie-Hellman value Z, we set the master secret of πt∗j∗ to
m̃s∗ as well. Otherwise we compute the master secret of πt∗j∗ as specified in the protocol.
We exploit that PRFTLS is a (t, εDPRF)-secure DPRF by showing that any adversary A
that recognizes our modification can be used to build a successful attacker BDPRF against
the DPRF properties of PRFTLS as described in 4.1. BDPRF acts as a challenger for A in
this game.

Suppose that in the DPRF security game the simulator first calls Initiation(1), indi-
cating that it wants to specify the Diffie-Hellman value (Z) as its target key when making
its DPRF queries. Furthermore it will use the queries granted in the DPRF security game
to compute the outputs of PRFTLS. Now, if b̂ = 0 in the DPRF security game, we are
in the previous game of the proof. In case b̂ = 1 we are in the current game of the
proof. Note that according to the security definition described in Section 3.16 A is al-
lowed to obtain pre-shared key PSK by calling Corrupt-query. So, any adversary A that
distinguishes Game 3 from Game 2 implies a DPRF-adversary BDPRF that breaks the
DPRF-security of PRFTLS. We get that

Pr[break
(Auth)
2 ] ≤ Pr[break

(Auth)
3 ] + εDPRF.

GAME 4. In this game, we replace this pseudo-random function PRF with a truly ran-
dom function RF. This game corresponds to Game 4 in the proof of Lemma 4.5. With
the same arguments we have
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Pr[break
(Auth)
3 ] ≤ Pr[break

(Auth)
4 ] + εPRF.

GAME 5. This game is similar to the previous game except that we add an abortion rule,
i.e., we aborts whenever hash-collisions occurs. With the same arguments described in
Game 5 we have

Pr[break
(Auth)
4 ] ≤ Pr[break

(Auth)
5 ] + εCRHF.

GAME 6. This game proceeds as Game 6 in the proof of Lemma 4.5. With same argu-
ments, we have that the adversary cannot successfully compute finished messages except
for some negligible probability. We have

Pr[break
(Auth)
5 ] ≤ Pr[break

(Auth)
6 ] +

1

2µ
.

GAME 7. In this game we will show that if there exists a successful adversaryA break-
ing the ACCE protocol, we can use it to construct an algorithm to break the sLHAE-
security of the encryption system as defined in 2.2.7. This game proceeds as Game 7 in
the proof of Lemma 4.5. With the same arguments, we have

Pr[break
(Auth)
6 ] ≤ 2 · Pr[break

(Auth)
7 ]

Claim 4.11.
Pr[break

(Auth)
7 ] ≤ εStE.

Proof. With the same arguments as 7, we have Pr[break
(Auth)
7 ] ≤ εStE. ut

Summing up the probabilities from Game 0 to Game 7, we proved Lemma 4.10, i.e.,

εAuth ≤ (d`)2 ·
(

1

2λ
+ εDPRF + εPRF + εCRHF +

1

2µ
+ 2εStE

)
.

ut

Lemma 4.12. For any adversary AEnc running in time t′ ≈ t, the probability that AEnc

answers the encryption-challenge correctly in the sense of Definition 3.16 is at most
1/2 + εEnc with

εEnc ≤ εAuth + (d`)2 (εDDH + εDPRF + εPRF + 2εStE) ,

where εAuth is an upper bound on the probability that there exists an oracle that accepts
maliciously in the sense of Definition 3.16 (cf. Lemma 4.10) and all other quantities are
defined as stated in Theorem 4.9.
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Note that Definition 3.16 for the TLS-DHE with pre-shared key protocol (TLS-
DHE-PSK) captures perfect forward secrecy (PFS).

Proof. We use the same notions as defined in the proof of Lemma 4.7. Consider the
following sequence of games.

GAME 0. This game equals the ACCE security experiment described in Section 3.16.
For some εEnc we have

Pr[break
(Enc)
0 ] =

1

2
+ εEnc = 1/2 + Adv0.

GAME 1. The challenger in this game proceeds as before, but it aborts and chooses
b′ uniformly random, if there exists any oracle that accepts maliciously in the sense of
Definition 3.16. Thus we have

Adv0 ≤ Adv1 + εAuth,

where εAuth an upper bound on the probability that there exists an oracle that accepts
maliciously in the sense of Definition 3.16 (cf. Lemma 4.10).

Recall that we assume that AEnc always outputs (i∗, s∗, b′) such that all conditions
in Property 2 of Definition 3.16 are satisfied. In particular it outputs (i∗, s∗, b′) such that
πs
∗
i∗ ‘accepts’ after the τ0-th query of AEnc with intended partner PIDj∗ , where PIDj∗ is
τj∗-corrupted with τj∗ > τ0. Note that in Game 1 for any such oracle πs∗i∗ there exists a
unique ‘partner oracle’ πt∗j∗ such that πs∗i∗ has a matching conversation to πt∗j∗ . Otherwise,
this game is aborted.

GAME 2. The challenger in this game proceeds as before, but in addition guesses the
indices ((i∗, j∗), (s∗, t∗))

$← [`]2 × [d]2 of the oracle πs∗i∗ for which the adversary will
correctly answer the encryption challenge and its corresponding partner oracle πt∗j∗ . It
aborts on failure and proceeds otherwise. Thus,

Adv1 ≤ (d`)2 · Adv2.

GAME 3. Let T s∗i∗ = gu denote the Diffie-Hellman share chosen by πs∗i∗ , and let T t∗j∗ = gv

denote the share chosen by its partner πt∗j∗ . Both oracles compute a shared secret Z =
(T s

∗
i∗ )v = (T t

∗
j∗ )

u = guv. Thus, the pre-master secret is computed as pms∗ = lenZ ||Z||
lenPSK|| PSKi∗,j∗ . The challenger in this game proceeds as before, but it replaces the

Diffie-Hellman shared key Z of πs∗i∗ and πt∗j∗,i∗ with a random element Z∗ = gw for w $←
Zq. We then have that p̃ms∗ = lenZ ||Z∗|| lenPSK ||PSKi∗,j∗ . Recall that by assumption the
Diffie-Hellman shared key will at no time be revealed by the adversary (in contrast to
the pre-shared keys). In order to model perfect forward secrecy property, the adversary
is allowed to make Corrupt-query to test oracle πs∗i∗ after it accepts. 3

3 In the previous proof we excluded active adversaries. The result shows that as long as the pre-shared keys remain
uncorrupted before the oracles accept, authentication can be guaranteed. In this proof we show that even if the
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In this game, we will show that if there exists an adversary A distinguishing this
game from the previous game, we then can construct an algorithm BDDH solving the
DDH problem as follows.

Assume that BDDH receives as input (g, gu, gv, gz) from the DDH challenger. Then,
BDDH acts as the challenger for AEnc, and implements the challenger as in Game 2, ex-
cept that it sets Ti∗,s∗ := gu, Tj∗,t∗ := gv, and the pre-master secret of πs∗i∗ and πt∗j∗ equal to
pms := lenZ||gz||lenPSK||PSKi∗,j∗ . Note that BDDH can simulate all messages exchanged
between πs∗i∗ and πt∗j∗ properly, in particular the finished messages using knowledge of
pms. Since all other oracles are not modified, BDDH can simulate these oracles properly
as well. If z = uv, then the view of A when interacting with BDDH is identical to the
previous game, while if z $← Zq (i.e., z 6= uv) then it is identical to this game. If A
can distinguish this Game from the previous game, BDDH can break the DDH problem.
Due to the DDH assumption, the advantage of A in distinguishing between Game 3 and
Game 2 is bound by εDDH. Thus, we have

Adv2 ≤ Adv3 + εDDH.

GAME 4. In this game we replace the master secret ms∗ computed by πs∗i∗ and πt∗j∗ with
an independent random value m̃s∗. Recall that πs∗i∗ computes the master secret as ms∗

= PRFTLS(pms∗, label1 ||rs∗i∗ ||rt
∗
j∗), where pms∗ = lenZ∗ ||Z∗ ||lenPSK ||PSKi∗,j∗ is the pre-

master key, and Z∗ is a random group element of DH group. By security assumption we
have that PRFTLS constitutes a secure double pseudo random function DPRF when at
least one of the values Z∗ or PSKi∗,j∗ is random and not revealed. If any adversary A
can distinguish this Game from the previous game, we can break the security of DPRF.
Due to the security of PRFTLS, we have

Adv3 ≤ Adv4 + εDPRF.

GAME 5. We now replace the function PRFTLS(m̃s∗, ·) used by πs∗i∗ and πt∗j∗ to derive the
application keys with a random function RF(m̃s∗, ·). Of course the same random func-
tion is used for both oracles πs∗i∗ and πt∗j∗ . In particular, this function is used to compute
the key material as

KC→Senc ||KS→Cenc ||KC→Smac ||KS→Cmac := RF(m̃s∗, label2||rs
∗
i∗ ||rt

∗
j∗).

Distinguishing Game 5 from Game 4 again implies an algorithm breaking the security
of the pseudo-random function PRFTLS, thus we have

Adv4 ≤ Adv5 + εPRF.

pre-shared keys are revealed after the oracles have accepted, no adversary can break the perfect forward secrecy
(PFS) of encryption-challenge.
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Note that in Game 5 the key material KC→Senc ||KS→Cenc ||KC→Smac ||KS→Cmac of oracles πs∗i∗ and πt∗j∗
is uniformly random and independent of all TLS Handshake messages exchanged in the
pre-accept phase.

GAME 6. From Game 5 we know that the key material KC→Senc ||KS→Cenc ||KC→Smac ||KS→Cmac

used by πs∗i∗ and πt∗j∗ in the stateful symmetric encryption scheme is uniformly random
and independent of all TLS Handshake messages.

In this game, we construct a simulator BsLHAE that uses a successful ACCE attacker
A to break the security of the underlying sLHAE secure symmetric encryption scheme
as defined in 2.2.7. This game proceeds as Game 5 in the proof of Lemma 4.7. With the
same arguments, we have

Pr[break
(Enc)
5 ] ≤ 2 · Pr[break

(Enc)
6 ],

Claim 4.13.
Pr[break

(Enc)
6 ] ≤ εStE.

Proof. With the same arguments as 5, we have Pr[break
(Enc)
6 ] ≤ εStE. ut

Summing up the probabilities from Game 0 to Game 6, we proved Lemma 4.12.
Finally, summing up probabilities from Lemmas 4.10 and 4.12, we obtain

εpsk−dhetls ≤ (d`)2
(

1

2λ−1
+ 3 · εDPRF + 3 · εPRF + 2 · εCRHF +

1

2µ−1
+ εDDH + 6 · εStE

)
,

which proves Theorem 4.9. ut

4.5 Security Analysis of TLS-RSA-PSK Ciphersuite

In this section we will analyze the security of TLS-RSA-PSK ciphersuite with the fol-
lowing theorem.

Theorem 4.14. Let µ be the output length of pseudo-random function of TLS protocol
PRFTLS and let λ be the length of the nonces rClient and rServer. Assume that the key
derivation function PRFTLS is a (t, εDPRF)-secure double pseudo-random function with
respect to 4.1 when keyed with the pre-master secret pms described in 4.3. Assume that
PRFTLS is a (t, εPRF)-secure PRF with respect to 2.4 when keyed with the master secret
ms described in 4.4. Suppose the collision resistance hash function is (t, εCRHF)-secure
with respect to Definition 2.2.1.1, the public key encryption scheme PKE is (t, εPKE)-
secure with respect to Definition 2.7. Suppose that the sLHAE scheme is (t, εStE)-secure.
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Then for any adversary A that (t′, εpsk−rsatls )-breaks TLS-RSA with pre-shared key
protocol (TLS-RSA-PSK) (where the key transport mechanism is implemented via PKE)
in the sense of Definition 3.17 with t ≈ t′ it holds that

εpsk−rsatls ≤ (d`)2
(

1

2λ−1
+ εPKE + 3 · εDPRF + 3 · εPRF + 2 · εH +

1

2µ−1
+ 6 · εStE

)
.

We show that the TLS-RSA-PSK protocol is a secure ACCE protocol, and give a
formal security analysis in ACCE model as described in 3.5. Similar to the previous
proofs described in Section 4.3 and in Section 4.4, we also prove Theorem 4.14 via the
following lemmas:

• Lemma 4.15 bounds the probability εAuth that an authentication-adversaryAAuth suc-
ceeds;

• Lemma 4.17 bounds the probability εEnc that an encryption-adversaryAEnc succeeds.

Then we have
εpsk−rsatls ≤ εAuth + εEnc.

Lemma 4.15. For any adversary AAuth running in time t′ ≈ t, the probability that there
exists an oracle πsi that accepts maliciously in the sense of Definition 3.17 is at most

εAuth ≤ (d`)2 ·
(

1

2λ
+ εDPRF + εPRF + εCRHF +

1

2µ
+ 2εStE

)
where all quantities are defined as stated in Theorem 4.14.

The bound on εAuth is derived almost exactly like in the proof of Lemma 4.10, and
therefore we only give a sketch of the proof.

Proof. We use the same notions as defined in the proof of Lemma 4.5.

GAME 0. This game equals the ACCE security experiment described in Section 3.17.
Thus, for some εAuth we have

Pr[break
(Auth)
0 ] = εAuth.

GAME 1. In this game, the challenger aborts, if there exists any oracle πs∗i∗ that chooses
a random nonce rs∗i∗ or rt∗j∗ which is not unique, i.e., nonce collision. With the same
arguments described in Game 1, we have

Pr[break
(Auth)
0 ≤ Pr[break

(Auth)
1 ] +

(d`)2

2λ
.



88 4 Security Analysis of TLS-PSK Ciphersuites in the Standard Model

GAME 2. In this game, the challenger tries to guess which oracle will be the oracle to
accept maliciously and its partner oracle. Therefore, we have

Pr[break
(Auth)
1 ] ≤ (d`)2 · Pr[break

(Auth)
2 ].

GAME 3. In this game, we replace the master secret ms∗ by an independent random
m̃s∗. Note that in contrast to TLS-DHE-PSK ciphersuite, RSA-encrypted key transport
scheme with freshly chosen key material R is used in TLS-RSA-PSK ciphersuite. This
game corresponds to Game 3 in the proof of Lemma 4.10. With the same arguments we
have

Pr[break
(Auth)
2 ] ≤ Pr[break

(Auth)
3 ] + εDPRF.

GAME 4. In this game, we replace this pseudo-random function PRF with a truly ran-
dom function RF. This game corresponds to Game 4 in the proof of Lemma 4.10. With
the same arguments we have

Pr[break
(Auth)
3 ] ≤ Pr[break

(Auth)
4 ] + εPRF.

GAME 5. This game is similar to the previous game except that we add an abortion rule,
i.e., hash-collision. Therefore, we have

Pr[break
(Auth)
4 ] ≤ Pr[break

(Auth)
5 ] + εCRHF.

GAME 6. This game proceeds as Game 6 in the proof of Lemma 4.10. With same
arguments, we have that the adversary cannot successfully compute finished messages
except for some negligible probability. We have

Pr[break
(Auth)
5 ] ≤ Pr[break

(Auth)
6 ] +

1

2µ
.

GAME 7. In this game we will show that if there exists a successful adversaryA break-
ing the ACCE protocol, we can use it to construct an algorithm to break the sLHAE-
security of the encryption system as defined in 2.2.7. With the same arguments as de-
scribed in Game 7 of Lemma 4.12, we have

Pr[break
(Auth)
6 ] ≤ 2 · Pr[break

(Auth)
7 ]

Claim 4.16.
Pr[break

(Auth)
7 ] ≤ εStE.

Proof. With the same arguments as 7, we have Pr[break
(Auth)
7 ] ≤ εStE. ut
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Summing up the probabilities from Game 0 to Game 7, we proved Lemma 4.15, i.e.,

εAuth ≤ (d`)2 ·
(

1

2λ
+ εDPRF + εPRF + εCRHF +

1

2µ
+ 2εStE

)
.

ut

Lemma 4.17. For any adversary AEnc running in time t′ ≈ t, the probability that A
answers the encryption-challenge correctly in the sense of Definition 3.17 is at most
1/2 + εenc with

εenc ≤ εauth + (d`)2 (εPKE + εDPRF + εPRF + 2εStE)

where εauth is an upper bound on the probability that there exists an oracle that accepts
maliciously in the sense of Definition 3.17 (cf. Lemma 4.15) and all other quantities are
defined as stated in Theorem 4.14.

Note that Definition 3.17 for the TLS-RSA with pre-shared key protocol (TLS-RSA-
PSK) captures asymmetric perfect forward secrecy (APFS).

Proof. We use the same notions as defined in the proof of Lemma 4.7. Let Advδ :=

Pr[break
(Enc)
δ ] − 1/2 denote the advantage of AEnc in Game δ. Consider the following

sequence of games.

GAME 0. This game equals the ACCE security experiment. For some εEnc we have

Pr[break
(Enc)
0 ] =

1

2
+ εEnc = 1/2 + Adv0.

GAME 1. The challenger in this game proceeds as before, but it aborts and chooses
b′ uniformly random, if there exists any oracle that accepts maliciously in the sense of
Definition 3.17. Thus we have

Adv0 ≤ Adv1 + εAuth,

where εauth an upper bound on the probability that there exists an oracle that accepts
maliciously in the sense of Definition 3.17 (cf. Lemma 4.15).

Recall that we assume that AEnc always outputs (i, s, b′) such that all conditions in
Property 2 of Definition 3.17 are satisfied. Note that in Game 1 for any such oracle πsi
there exists a unique ‘partner oracle’ πtj such that πsi has a matching conversation to πtj ,
as the game is aborted otherwise.

GAME 2. The challenger in this game proceeds as before, but in addition guesses the
oracle πs∗i∗ (and its partner oracle πt∗j∗) for which the adversary breaks the encryption
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challenge by drawing random the indices (i, j) × (s, t)
$← [`]2 × [d]2. With probability

1/(d`)2 we have (i, s) × (j, t) = (i∗, s∗) × (j∗, t∗), and thus

Adv1 ≤ (d`)2 · Adv2.

GAME 3. In this game we replace the ciphertext c∗ sent by the client oracle πs∗i∗ , by a
random ciphertext c′ of a truly random message. However, the oracle πs∗i∗ and its partner
oracle (if it exists) use a random nonce R∗ which is independent of c′ to compute the
master key. More precisely, since the challenger implements all server oracles it can,
whenever the ciphertext c′ is received by any server oracle of Pj∗ , make it use R∗. We
show that this modification is indistinguishable from the previous game when the PKE is
secure. If there exists an adversary A who can distinguish these two games, we can use
it to construct an algorithm BPKE to break the security of the PKE scheme as described
in 2.7.

Assuming that an adversary BPKE using its encryption oracle OENC and decryption
oracle ODEC interacts with the challenger CPKE. BPKE acts as a challenger for A in this
game. We show that the simulation of BPKE perfectly simulates the challenger in this
game from the adversary’s point of view. At the beginning of the simulation game, we
embed the challenge public key of the PKE challenger in pkj∗ . BPKE obtains the public
parameters and the public key pk′ of the challenger CPKE and sets pkj∗ = pk′. For all
other oracles πtj∗ of PIDj∗ with t ∈ [d] and t 6= t∗, BPKE can use its decryption oracle
to simulate the protocol executing, i.e., BPKE use the decryption queries granted by the
PKE challenger to decrypt the ciphertexts. Further, BPKE obtains R∗ after it is drawn by
the client and selects a random message R sends (R∗, R) to the PKE challenger who
returns a ciphertext c′. Next BPKE send c′ to the server oracle πt∗j∗ . Observe that if c′ is an
encryption of R∗ we are in the previous game. However, if c′ encrypts an independently
drawn random message R we are in the current game. So any attacker that distinguishes
these two games can directly be used to break the security of the PKE scheme.

Adv2 ≤ Adv3 + εPKE.

GAME 4. Recall that πs∗i∗ computes the master secret as ms∗ = PRFTLS(pms∗, label1 ||rs∗i∗
||rt∗j∗), where pms∗ is the pre-master key. In this game we replace the master secret ms∗

computed by πs∗i∗ with an independent random value m̃s∗. Moreover, as πt∗j∗ receives as
input the same ciphertext c′ that was sent from πs

∗
i∗ , we set the master secret of πt∗j∗ equal

to m̃s∗ as well. We exploit that by assumption PRFTLS is a (t, εDPRF)-secure DPRF.
Therefore, as long as at least one of the values R∗ and PSKi∗ are chosen at random and
are not revealed, the master secret is indistinguishable from random. Any adversary that
recognizes our modification can be used to break the security of PRFTLS. Therefore, we
have

Adv3 ≤ Adv4 + εDPRF.
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GAME 5. We now replace the function PRFTLS(m̃s∗, ·) used by πs∗i∗ and πt∗j∗ to derive
the application keys with a truly random function RF. This game proceeds as the same
as the Game 5 in the proof of Lemma 4.12. With the same arguments, we have

Adv4 ≤ Adv5 + εPRF.

GAME 6. In this game, we prove the security by showing that, if there is a successful
ACCE attacker A, then there exists a probabilistic polynomial-time algorithm BsLHAE

that can break the security of sLHAE scheme as defined in 2.2.7. This game proceeds as
the same as the Game 6 in the proof of Lemma 4.12. With the same arguments, we have

Adv5 ≤ 2Adv6

Claim 4.18.
Adv6 = εStE.

Proof. With the same arguments as 5, we have Adv6 = εStE. ut

Summing up the probabilities from Game 0 to Game 6, we proved Lemma 4.17.
Finally, summing up probabilities from Lemmas 4.15 and 4.17, we obtain

εpsk−rsatls ≤ (d`)2
(

1

2λ−1
+ εPKE + 3 · εDPRF + 3 · εPRF + 2 · εH +

1

2µ−1
+ 6 · εStE

)
,

which proves Theorem 4.9. ut
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In this chapter, we construct the first secure Authenticated Key Exchange (AKE)
protocol, called tAKE, in standard model whose security does not degrade with an in-
creasing number of participating parties and sessions. We describe a generic three-pass
AKE protocol and prove its security in an enhanced Bellare-Rogaway security model
under the standard assumption. Our construction is modular and enjoys a tight security
reduction.

The content of this chapter was brought forth in a cooperation with Christoph Bader,
Dennis Hofheinz, Tibor Jager and Eike Kiltz. The result is published in the proceed-
ings of the International Conference on Theory of Cryptography Conference (TCC)
2015 [BHJ+15] and in the IACR archive ePrint [BHJ+14]. The authors main contri-
bution within this joined work is authenticated key exchange protocol and the security
analysis. The content of this chapter was brought forth in a cooperation with Christoph
Bader and Tibor Jager.

SUMMARY OF OUR CONTRIBUTIONS.
The work presented in this chapter provides the first tightly-secure authenticated key

exchange protocol whose security is proved in an enhanced Bellare-Rogaway security
model described in 3.4.3.2, which allows adaptive corruptions of long-term secret keys,
adaptive reveals of session keys and multiple adaptive Test queries. We describe our
contribution as follows:

• The first provably-secure AKE with tight reduction: We construct the first authen-
ticated key exchange protocol whose security does not degrade with an increasing
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number of users and sessions. We give a three-message AKE protocol and prove its
security in an enhanced version of the classical Bellare-Rogaway-93 security model.
Our construction is generic and modular, moreover, can be instantiated efficiently
from standard assumptions. For instance, we give an SXDH-based protocol whose
communication complexity is only 14 group elements and 4 exponents.

• The new, strong security definitions for digital signature and KEM: We develop
new security definitions for digital signatures and key encapsulation mechanisms,
i.e existential unforgeability under adaptive chosen-message attacks in the multi-
user setting with adaptive corruptions (MU-C-EUF-CMA), and indistinguishability
under chosen plain-text attacks in the multi-user setting with corruptions (MU-C-
IND-CPA). Moreover, in paper [BHJ+15] we also show how to construct efficient
schemes that satisfy the new definitions under standard assumptions.

ORGANIZATION. First, we will elaborate on the importance and difficulty of con-
structing tightly-secure AKE in Section 5.1. Then, in Section 5.2 we describe our AKE-
protocol. Finally, we give a tight proof of security in an enhanced Bellare-Rogaway-93
security model in Section 5.3. Note that the security model eBRT described in Sec-
tion 3.4.3.2 is used for our security analysis of our tightly-secure AKE protocol.

5.1 Importance and Difficulty of Constructing Tightly-secure AKE

The security reduction for AKE protocols only guarantees that no poly-time adversary
can break the security properties of AKE protocols with sufficiently high probability. The
comparisons of the efficiency of AKE protocols must take into account the efficiency of
the security reduction. The quality of a reduction can be measured by its efficiency: the
running time and success probability. The reduction is considered as tight, if the reduc-
tion in which an adversary who breaks an AKE protocol with probability ε in time t can
be used to break the underlying hard problem with probability ε′ ≈ ε in time t′ ≈ t. It
has been well known that besides theoretical interest, a tight reduction is of utmost prac-
tical importance. An AKE protocol with a non-tight reduction has to necessarily require
larger parameters sizes (e.g. key sizes) to provide the same security level as a protocol
with a tight security reduction. Nature, as we often say, obtaining a reasonable level of
security from an AKE protocol with a non-tight reduction is completely impractical. We
used a simplified example as in paper [GJKW07] to illustrate the point. For simplicity,
we only consider DLOG based public key schemes. Assume that any poly-time adver-
sary requires time t to break an AKE protocol with probability at most ε = R· (2−c)L,
where R > 0 is a factor of the reduction, L is the bit-length of the system parameters
for AKE protocol and c > 0 is a constant and implies the exoteric factors, including e.g.
the attacker computational power and it’s memory. If an AKE system requires a security
level of probability ε in time t against a poly-time adversary, we compute the bit-length

of the system parameters L =
[log2

(
ε−1

R

)
]

−c .
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For simplicity of exposition, suppose that ε = 2−60 against any poly-time adversary
should require 1 month of attack effort, for ε = 2−70 required approximate 1 year and
ε = 2−80 required approximate 10 year. Suppose that c = 1

15
. If an AKE system requires

a security level of 260 (i.e., probability of adversary ε = 2−60) against any poly-time
adversary investing time t = 1 month, for a tight-reduction R = O(1) we need to set
L ≈ 900. However, for a non-tight reduction, e.g. R = 260, L ≈ 1800. Table 5.1 shows
a comparison of the length of system parameters between tight reduction and non-tight
reduction. From this table it is clear that in contrast to a tight reduction an AKE system
with a non-tight reduction implies a huge decrease in efficiency (time and space) to the
same security complexity. Therefore, developing efficient AKE protocols with security

Security
Level

Reduction
Factor: R

Constant:
c

Time: t Length:
L

Security
Level

Reduction
Factor: R

Constant:
c

Time: t Length:
L

260 1 month

230

260

290

1
15

≈ 1350

≈ 1800

≈ 2250
260 1 month O(1) 1

15 ≈ 900

270 1 year O(1) 1
15 ≈ 1050

280 10 years O(1) 1
15 ≈ 1200

270 1 year

230

260

290

1
15

≈ 1500

≈ 1950

≈ 2400

280 10 years

230

260

290

1
15

≈ 1650

≈ 2100

≈ 2550

Fig. 5.1. Comparison of the Length of System Parameters between Tight Reduction and Non-tight Reduction

reduction as tight as possible is the most important for many practical applications of
key exchange.

Tightly-secure authenticated key exchange protocol is a challenging problem. To
the best of our knowledge, there was no tightly-secure AKE scheme under standard as-
sumptions, though there are multiple well-known AKE schemes in the literature. In this
subsection, we introduce two main difficulties with proving tight security of authenti-
cated key exchange protocols, which we would like to explain with concrete example.

• To illustrate the first main difficulty, suppose that a set of honest parties in an AKE
scheme, where each honest party Pi, i ∈ [`], has long-term public/secret key pair
(pki, ski) for an authentication scheme, e.g. a digital signature scheme. In the secu-
rity proof of AKE, we must use the security of the authentication scheme as a security
argument for a reduction to the security of the AKE protocol. In other words, we give
a reduction from forging an authentication scheme to breaking the AKE protocol.

In general, in security proof for AKE protocol the reduction implements the chal-
lenger CAKE in order to take advantage of the adversary A. In the most commonly
used security models, e.g. BR, CK or eCK models, the adversary A is allowed to
learn the long-term secret of all parties, except for communication partner of the
test oracle selected by A. Assume that CAKE firstly guesses the partner identity of
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the test oracle Pj , j ∈ [`]. The challenger takes a security parameter and runs the
setup algorithm to generate public parameter pki, i ∈ [`] and i 6= j. In oder to use
the security of the authentication scheme as an argument, CAKE can get a challenge
public key pk∗ from the security experiment of the authentication scheme and em-
bed the public key pkj = pk∗ in the AKE security experiment. Finally, CAKE gives
all the public keys to A. During the security experiment A can learn the long-
term secrets of all parties (except for the partner of its test session ) using Corrupt
queries. Note that CAKE can not answer the Corrupt(Pj)-query made by the adver-
sary. Therefore, this strategy works only if CAKE can correctly guess the partner iden-
tity of test oracle selected by A, which occurs with probability ≥ 1

`
. In our tightly-

secure AKE scheme we used double-key technique with a non-interactive proof sys-
tem [Gro06, GOS06, GS08, Gro10, AFG+10, HJ12] in a way somewhat related to
the Naor-Yung paradigm [NY90] to avoid this guessing.

• To clarify the second main difficulty, we use signed Diffie-Hellman (signed-DH)
protocol as an example. We first give a sketch of signed-DH protocol in Figure 5.2.
Then, we explain the second main difficulty for a tightly-secure AKE protocol.

Pi

(vki, ski)
$← SIG.Gen(1κ)

Pj

(vkj , skj)
$← SIG.Gen(1κ)

αi
$← Zp, Γi = gαi αj

$← Zp, Γj = gαj
σi := SIG.Sign(ski,Pi||Pj ||Γi) σj := SIG.Sign(skj ,Pi||Pj ||Γj))

−
Γi, σi

−−−−−−−−−−−−→

←−
Γj , σj

−−−−−−−−−−−−
accept if

SIG.Vfy(vkj ,Pi||Pj ||Γj , σj) = 1
accept if

SIG.Vfy(vki,Pi||Pj ||Γi, σi) = 1

session key: Ki,j := (Γj)
αi session key: Ki,j := (Γi)

αj

Fig. 5.2. Signed-DH Protocol

In Paper [CK01], Canetti and Krawczyk proved the security of Signed-DH proto-
col based on the decisional Diffie-Hellman assumption and the security of signature.
Even though the DDH problem can be random self-reducible, However, it seems im-
possible to avoid guessing the test oracle. To explain this, suppose that an adversary
A in the AKE security model described in Section 3.4 establishes a session on parties
Pi and Pj . For simplicity, we describe the protocol execution by oracles πsi and πtj .
According to the protocol specification in Figure 5.2, πsi sends the messages (Γ s

i , σsi )
to πtj . In the AKE security proof, the challenger wants to reduce the AKE security
to the DDH assumption, it has to embedded the given DDH-instance (g, gx, gy, gz)
in the protocol messages. If the DDH-instance (gx or gy) is not embedded in Γ s

i .
However, A selects oracle πsi as its test oracle, then the challenger is not able to take
advantage of A. The reason is simple: the DDH-instance is not embedded in the test
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session. Otherwise, if the challenger embeds the DDH-instance (gx or gy) in Γ s
i , but,

A does not select πsi as its test oracle, it is able to make the simulation to fail. First,A
issues a Corrupt-query to Pj to learn the long-term secret skj . Note that sinceA does
not select πsi as its test oracle, according to the security definition 3.10 it is allowed to
issue a Corrupt-query to party Pj .A selects αj

$← Zp, and computes gαj and a (valid)
corresponding signature σsi using skj . Then, it sends (gαj , σsi ) to πsi . π

s
i receives (gαj ,

σsi ) and verifies the signature σsi . Since σsi is valid, oracle πsi accepts. Because πsi is
not selected as test oracle, A issues a Reveal(πsi )-query to πsi . The challenger does
not know the ephemeral secrets x or αj , it can not respond with a correct session
key Ki,j = (g)xαj to A. However, A is able to correctly compute Ki,j = (Γi)

αj with
αj . If the challenger responds with an incorrect Ki,j , A can check the validity of the
challenger’s response whether (Γi)

αj ?
= Ki,j . The simulation will fail to run.

From the above analysis it seems that the challenger has to guess in advance (at
least) one oracle that participates in the test-session. It leads to a loss factor of ( 1

d`
)

in the reduction. Note that the loss factor of ( 1
d`

) indicates the number of sessions. In
practice, it can become very large.

5.2 Authenticated Key Exchange Protocol

In this section, we describe an AKE-protocol which is proved with a tight reduction,
named here as tAKE. Our tAKE protocol uses a key transport mechanism that consists
of three messages to authenticate both participating parties and to establish a shared
session key between both parties. It takes as input the following building blocks:

• A key encapsulation mechanism scheme in the multi-user setting with corruptions
described in 2.2.5.1;

• A digital signature scheme in the multi-user setting with corruptions described
in 2.2.6.3;

• A strong one-time signature scheme in the multi-user setting without corruptions
described in 2.12.

Roughly speaking, the key encapsulation mechanism guarantees that session keys are
indistinguishable from random keys. The signature scheme is used to guarantee authen-
tication: the long-term keys of all parties consist of verification keys of the signature
scheme. Finally, the one-time signature scheme prevents oracles from accepting without
having a unique partner oracle. In our paper [BHJ+15], we showed how to construct ef-
ficient schemes that satisfy the new definitions with tight security proofs under standard
assumptions.
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5.2.1 Protocol Description

We construct a tight AKE protocol tAKE, which is based on three building blocks:
a key encapsulation mechanism as specified in Section 2.9 KEMC

MU=(KEM.GenCMU,
KEM.EncapCMU, KEM.DecapCMU), a signature scheme as specified in Section 2.11 SIGC

MU

= (SIG.GenMU, SIG.SignMU, SIG.VfyMU) and a one-time signature scheme as specified in
Section 2.12 OTSIGMU= (OTSIG.GenMU, OTSIG.SignMU, OTSIG.VfyMU).

The tAKE protocol between two parties Pi and Pj proceeds as follows, which is also
depicted in Figure 5.3.

1. The first step: Party Pi generates the key encapsulation mechanism keys and one
time signature keys by calling (skiKEM, pkiKEM) $← KEM.GenCMU(1κ) and (vkiOTS,

skiOTS) $← OTSIG.GenMU(1κ) and computes the signature of vkiOTS: σi = SIG.SignMU

(ski, vkiOTS). It defines the partner identity PIDPartner
i = j and T1 := (vkiOTS, σi, pkiKEM,

PIDPartner
i , i) and transmits T1 to Pj .

2. The second step: upon receiving T1, party Pj parses T1 as the tuple (vkiOTS, σi,
pkiKEM, PIDPartner

i , i). Then it checks whether PIDPartner
i = j and SIG.VfyMU (vki,

vkiOTS, σi) = 1. If at least one of both check is not passed, then Pj outputs ⊥ and
rejects. Otherwise it generates one-time signature keys by calling (vkjOTS, skjOTS)
$← OTSIG.GenMU(1κ) and (K,CKEM)

$← KEM.EncapCMU(pkiKEM) and computes σj :=
SIG.SignMU(skj , vkjOTS). Then it sets T2 := (vkjOTS, σ

j,CKEM) and computes a one-
time signature σjOTS := OTSIG.SignMU(skjOTS, (T1,T2)) and transmits the tuple (T2,
σjOTS) to party Pi.

3. The third step: upon receiving (T2, σjOTS), party Pi parses T2 as (vkjOTS, σ
j,CKEM)

and checks whether SIG.VfyMU (vkj , vkjOTS, σj) = 1 and OTSIG.VfyMU (vkjOTS,
(T1,T2), σjOTS) = 1. If at least one of both check is not passed, then party Pi out-
puts ⊥ and rejects. Otherwise it computes σiOTS := OTSIG.SignMU (skiOTS, (T1,T2))
and sends σiOTS to party Pj . Finally, party Pi computes and outputs the session key
Ki,j := KEM.DecapCMU (skiKEM, CKEM).

4. The final step: upon receiving σiOTS, party Pj checks whether OTSIG.VfyMU(vkiOTS,
(T1,T2), σiOTS) = 1. If this fails, then ⊥ is returned. Otherwise party Pj outputs the
session key Ki,j := K.

5.3 Security Analysis of Tightly-Secure AKE Protocol

In this section we prove that the proposed authenticated key exchange protocol as de-
scribed in 5.2 is secure in the sense of the security guarantees as specified in Section 3.10
in the standard model.
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Party Pj Party Pi
(vkj , skj) (vki, ski)

(vkiOTS, sk
i
OTS)

$← OTSIG.GenMU(1
κ)

(vkjOTS, sk
j
OTS)

$← OTSIG.GenMU(1
κ)

(pkiKEM, sk
i
KEM)

$← KEM.GenMU(1
κ)

σi
$← SIG.SignMU(sk

i, vkiOTS)

PIDPartner
i = j

T1 = (vkiOTS, σ
i, pkiKEM, i,PID

Partner
i )T1

x ← SIG.VfyMU(vk
i, vkiOTS, σ

i)

y ← PIDPartner
i = j

Parse T1 = (vkiOTS, σ
i, pkiKEM, i,PID

Partner
i )

If Not(x ∧ y) Return ⊥
σj

$← SIG.SignMU(sk
j , vkjOTS)

(K,CKEM)
$← KEM.EncapMU(pk

i
KEM)

T2 = (vkjOTS, σ
j ,CKEM)

σjOTS
$← OTSIG.SignMU(sk

j
OTS, (T1,T2)) T2, σ

j
OTS

x ← SIG.VfyMU(vk
j , vkjOTS, σ

j)

Parse T2 = (vkjOTS, σ
j ,CKEM)

y ← OTSIG.VfyMU(vk
j
OTS, (T1,T2), σ

j
OTS)

If Not(x ∧ y) Return ⊥
σiOTS

$← OTSIG.SignMU(sk
i
OTS, (T1,T2))

K← KEM.DecapMU(sk
i
KEM,CKEM)

Return Ki,j and accept;

Ki,j = K

σiOTS
x ← OTSIG.VfyMU(vk

i
OTS, (T1,T2), σ

i
OTS)

If Not x Return ⊥

Return Ki,j and accept;

Ki,j = K

The First Step:

The Second Step:

The Third Step:

The Final Step:

Fig. 5.3. Three-Message AKE-Construction for Extended BR-Security

Theorem 5.1. Assume that the key encapsulation mechanism KEMC
MU is a (d, `, t,

εKEMC
MU

)-secure with respect to Definition 2.9, the signature scheme SIGC
MU is a (qSIG,

`, t, εSIGC
MU

)-secure with respect to Definition 2.11, and the one-time signature is a (1, `,
t, εOTSIGMU

)-secure with respect to Definition 2.12. Then the protocol described in Sec-
tion 5.2.1 is a (t′, εtAKE)-secure authenticated key exchange protocol tAKE in the sense
of Definition 3.10 with t′ ≈ t and

εtAKE ≤ 4εOTSIGMU
+ 2εSIGC

MU
+ εKEMC

MU
.

We prove Theorem 5.1 in two stages. First, we show that the AKE protocol is a
secure authentication protocol except for probability εauth, that is, the protocol fulfills
security property 1.) of the AKE definition 3.10 by Lemma 5.2. In the next step, we show
that the session key of the AKE protocol is secure except for probability εInd in the sense
of the Property 2.) of the AKE definition 3.10 by Lemma 5.4. Thus, we have

εtAKE ≤ εAuth + εInd.
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5.3.1 Authentication Property

Lemma 5.2. For any adversary AAuth running in time t′ ≈ t, the probability that there
exists an oracle πsi that accepts maliciously in the sense of Definition 3.10 is at most

εAuth ≤ εSIGC
MU

+ 2εOTSIGMU
,

where all quantities are defined as stated in Theorem 5.1.

Proof. Let break(Auth)δ be the event that there exists a τ and a τ -fresh oracle πs∗i∗ that has
internal state Φs∗i∗ = accept and PIDs∗

i∗ = j∗, but there is no unique oracle πt∗J∗ such that
πs
∗
i∗ and πt∗j∗ have matching conversations, in Game δ.

GAME 0. This is the original security game. Thus we have that

Pr[break
(Auth)
0 ] = εAuth.

GAME 1. In this game, the challenger proceeds exactly like the challenger in Game 0,
except that we add an abortion rule. The challenger raises event abortSIGC

MU
and aborts if

the following condition holds:

• there exists a τ and a τ -fresh oracle πs∗i∗ that has PIDs∗
i∗ = j∗ and Φs∗i∗ = accept,

• the signature σt∗j∗ received by πs
∗
i∗ that is computed over the one-time public key

vkt
∗
j∗,OTS and verified correctly under the long-term public key vkj∗ ,

• but there is no unique oracle πt∗j∗ which has previously output a valid signature σt∗j∗
over this one-time public key vkt∗j∗,OTS.

Clearly, we have

Pr[break
(Auth)
0 ] ≤ Pr[break

(Auth)
1 ] + Pr[abortSIGC

MU
].

If the event abortSIGC
MU

happens, then we construct a signature forger FSIGC
MU

against
the MU-C-EUF-CMA security of signature scheme SIGC

MU as follows.

Firstly, FSIGC
MU

receives the public keys { vki
SIGC

MU
, i ∈ [`] } from the SIGC

MU chal-

lenger CSIGC
MU

as input, and runs the adversaryAAuth as a subroutine simulating the chal-
lenger CAKE forAAuth. It sets vki

SIGC
MU

as public key for party with the identity i ∈ [`], and

sends the public keys to the adversary AAuth. If FSIGC
MU

needs to sign a message under
vki

SIGC
MU

, it can use its signature oracle OSIGC
MU

to generate a signature of that message.

If the adversary issues Corrupt-query to FSIGC
MU

, it can forward this query to its SIGC
MU

challenger, and forwards the response back to AAuth. Except for this, FSIGC
MU

proceeds
exactly like the challenger in Game 0. Using its SIGC

MU challenger, FSIGC
MU

can answer
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all Corrupt queries made by FSIGC
MU

, and does not need to guess which party will be cor-
rupted by AAuth beforehand. If the event abortSIGC

MU
is raised, then this means that AAuth

has a valid forgery (vkt∗j∗,OTS, σt∗j∗) on behalf of an uncorrupted party Pj∗ , and it was not
output by any oracle πt∗j∗ . Since FSIGC

MU
has never requested a signature for this one-time

public key vkt∗j∗,OTS from its challenger CSIGC
MU

, it can use this forgery to break the MU-
C-EUF-CMA security of signature scheme SIGC

MU. Therefore, we have Pr[abortSIGC
MU

]≤
εSIGC

MU
, i.e.,

Pr[break
(Auth)
0 ] ≤ Pr[break

(Auth)
1 ] + εSIGC

MU
.

GAME 2. In this game, the challenger CAKE proceeds exactly like the challenger in
Game 1, except that we add an abortion rule abortcollision. We let abortcollision be the event
that two oracles sample the same verification key vkOTS for the one-time signature in
multi-user setting without corruptions (MU-OTS-EUF-CMA).

Clearly, we have

Pr[break
(Auth)
1 ] ≤ Pr[break

(Auth)
2 ] + Pr[abortcollision].

If the event abortcollision happens, then we could construct a one-time signature forger
FOTSIGMU

against the MU-OTS-EUF-CMA security of OTSIGMU as described in Sec-
tion 2.12 as follows. Note that FOTSIGMU

proceeds exactly like the challenger in Game 1,
except that it does not generate the one-time verification keys { vk1OTS, · · · , vkd`OTS } on
its own, but instead receives them from its OTSIGMU challenger COTSIGMU

. With probabil-
ity Pr[abortcollision], there exists two oracles which have the same verification key, vkaOTS

= vkbOTS for a 6= b and a, b ∈ [d`]. If this event abortcollision is raised, then FOTSIGMU

sends a sign query OTSIGMU with (a,T) to its challenger COTSIGMU
, and then obtains a

signature σOTS from COTSIGMU
. Since FOTSIGMU

has never requested a one-time signature
for T from its challenger COTSIGMU

, it outputs (b, T, σOTS ) as its valid forgery against
the MU-OTS-EUF-CMA security of signature scheme OTSIGMU. Therefore, we have
Pr[abortcollision] ≤ εOTSIGMU

, i.e.,

Pr[break
(Auth)
1 ] ≤ Pr[break

(Auth)
2 ] + εOTSIGMU

.

GAME 3. In this game, the challenger proceeds exactly like the challenger in Game 2,
except that we add an abortion rule. The challenger raises event abortOTSIGMU

and aborts
if the following condition holds:

• there exists a τ and a τ -fresh oracle πs∗i∗ that has PIDs∗
i∗ = j∗ and Φs∗i∗ = accept,

• the one-time signature σt∗j∗,OTS received by πs∗i∗ that is computed over the transcript T
= (T1,T2) and verified correctly under the long-term public key vkj∗,OTS,

• but there is no unique oracle πt∗j∗ which has previously output a valid signature σt∗j∗,OTS

over the transcript T = (T1,T2).
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Clearly, we have

Pr[break
(Auth)
2 ] ≤ Pr[break

(Auth)
3 ] + Pr[abortOTSIGMU

].

If the event abortOTSIGMU
happens, then we could construct a one-time signature forger

FOTSIGMU
against the MU-OTS-EUF-CMA security of signature scheme OTSIGMU as

described in Section 2.12. Firstly, FOTSIGMU
receives the one-time verification key from

its OTSIGMU challenger COTSIGMU
and sends it to the adversary. If FOTSIGMU

needs to
compute a one-time signature, it can ask its OTSIGMU challenger COTSIGMU

. If the event
abortOTSIGMU

is raised, then it means that the adversaryAAuth has a valid forgery σt∗j∗,OTS

of the transcript T on behalf of an uncorrupted party Pj∗ , and it was not output by any
oracle πt∗j∗ . Since FSIGC

MU
has never requested a one-time signature for T from its chal-

lenger CSIGC
MU

, it can use this forgery to break the MU-OTS-EUF-CMA security of the
one-time signature scheme OTSIGMU. Therefore, we have Pr[abortOTSIGMU

] ≤ εOTSIGMU
,

i.e.,
Pr[break

(Auth)
2 ] ≤ Pr[break

(Auth)
3 ] + εOTSIGMU

.

Claim 5.3. Pr[break
(Auth)
3 ] = 0

Proof. Note that break(Auth)3 occurs only if there exists a τ and a τ -fresh oracle πs∗i∗ that
has internal state Φs∗i∗ = accept and PIDs∗

i∗ = j∗, but there is no unique oracle πt∗j∗
such that πs∗i∗ and πt∗j∗ have matching conversations. Due to Game 1 there exists at least
one uncorrupted oracle πt∗j∗ which has output a valid one-time signature σt∗j∗,OTS over
vkt

∗
j∗,OTS received by oracle πs∗i∗ , otherwise the execution is aborted. Due to Game 2

the one-time verification key vkt∗j∗,OTS generated by πt∗j∗ is unique. If πs∗i∗ accepts, it muss
receive a valid one-time signature σt∗j∗,OTS over the transcript T = (T1, T2). From Game 3,
we know that there must exist an oracle which has generated σt∗j∗,OTS over T. Since T

contains vkt∗j∗,OTS. Therefore, if πs∗i∗ accepts, then it must have a matching conversation
to oracle πt∗j∗ . Therefore we have

Pr[break
(Auth)
3 ] = 0.

ut

Summing up the probabilities from Game 0 to Game 3, we proved Lemma 5.2, i.e.,

εAuth ≤ εSIGC
MU

+ 2εOTSIGMU
.

ut
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5.3.2 Key Indistinguishability

Lemma 5.4. For any adversary AInd running in time t′ ≈ t, the probability that AInd

answers the test-challenge correctly in the sense of Definition 3.10 is at most (1/2+εInd)
with

εInd ≤ εSIGC
MU

+ 2εOTSIGMU
+ εKEMC

MU
.

All quantities are defined as stated in Theorem 5.1.

Proof. Let break(Ind)δ denote the event that the AAKE correctly guesses the bit b′ sam-
pled by the Test-query in Game δ, and Test(πs

∗
i∗ ) is the τ -th query of AAKE, and

πs
∗
i∗ is a τ -fresh oracle that is ∞-revealed throughout the security game. Let Advδ :=

|Pr[break
(Ind)
δ ] − 1/2| denote the advantage of AAKE in Game δ1 We proceed in games

as in [Sho04, BR06].

GAME 0. This is the original security game. Thus we have that

Pr[break
(Ind)
0 ] = εInd + 1/2 = Adv0 + 1/2.

GAME 1. The challenger CAKE in this game proceeds as before, which aborts if the test
oracle πs∗i∗ accepts, i.e., Φs∗i∗ = accept and PIDs∗

i∗ = j∗, but there is no unique partner
oracle πt∗j∗ such that πs∗i∗ and πt∗j∗ have matching conversations. This is exactly the event
break

(Auth)
0 from the proof of 5.3.1. Thus we have

Adv0 ≤ Adv1 + εAuth ≤ Adv1 + (εSIGC
MU

+ 2εOTSIGMU
),

where εAuth is an upper bound on the probability that there exists an oracle that accepts
without unique partner oracle in the sense of Definition 3.10 (cf. Lemma 5.2).

Lemma 5.5. Adv1 ≤ εKEMC
MU

.

Proof. We show in this game if there exists an adversaryAAKE who can correctly answer
the Test-query, then we use it to construct an algorithm FKEMC

MU
to break the MU-IND-

CPA security of key encapsulation mechanism KEMC
MU as described in Section 2.9.

Assuming that an adversary FKEMC
MU

using its Corrupt and Encaps oracles interacts
with CKEMC

MU
that is a challenger in the security game of the KEMC

MU scheme as in Sec-
tion 2.9. Then, FKEMC

MU
acts as a challenger for the AKE adversary AAKE in this game.

We show that the simulation of FKEMC
MU

perfectly simulates the challenger CAKE in this
game from the adversary’s point of view, i.e., (I) showing how FKEMC

MU
simulates proto-

col execution environment by a polynomial number of oracles; (II) showing howFKEMC
MU

can perfectly answer to all queries issued by AAKE; (III) Finally, if the adversary AAKE

1 For simplicity, assume that Pr[break
(Ind)
δ ] ≥ 1

2
.
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can correctly output a bit b′ for Test-query, FKEMC
MU

can use it to break the security of
KEMC

MU.

Simulation-Step I:

We firstly describe this simulation for protocol execution environment. FKEMC
MU

uses
oracles to simulate the execution environment as follows:

• At the beginning of the simulation game, FKEMC
MU

implements the collection of or-
acles {πsi : i ∈ [`], s ∈ [d]}, and honestly generates all system parameters and all
long-term verification/private key pairs (vkPIDi , skPIDi) for each honest party PIDi,
i ∈ [`] according to the protocol specification, and sends all public parameters as
well as all long-term verification keys to the adversary.

• In case of the computation of ephemeral KEMC
MU key pairs for each session, FKEMC

MU

asks its challenger CKEMC
MU

and gets d` ephemeral public keys and sets (p̃k
s

i,KEMC
MU

,
s̃k

s

i,KEMC
MU

= ∅) as the ephemeral KEMC
MU key pairs. We denote EPKSet

KEMC
MU

= {
p̃k

s

i,KEMC
MU

, i∈ [`] and s∈ [d] } as the set of ephemeral public keys from the challenger
CKEMC

MU
.

• Then, FKEMC
MU

simulates the protocol process as follows.

– Firstly, FKEMC
MU

simulates the first step of the protocol specification as described
in Section 5.2.1, denoted as the initiator oracle πsi . It proceeds exactly like in
previous game, except for in case of the computation of ephemeral KEMC

MU key
pairs for each session. I.e. FKEMC

MU
randomly selects p̃k

s

i,KEMC
MU
∈ EPKSet

KEMC
MU

as
ephemeral public key for each session. Note that sinceFKEMC

MU
does not know the

corresponding ephemeral secret keys, it sets s̃k
s

i,KEMC
MU

= ∅. This will not affect
our simulation since all legitimate queries supplied by the adversaryAAKE can be
correctly answered by FKEMC

MU
.

– ThenFKEMC
MU

simulates the second step of the protocol specification as described
in 5.2.1, denoted as the response oracle πtj . It proceeds exactly like in previous
game, except for in case of the computation of KEMC

MU ciphertext for each ses-
sion.

Let T1 = (vksi,OTS, σi, pks
i,KEMC

MU
, PIDPartner

i , i) be the message that oracle πtj re-
ceives. FKEMC

MU
simulates the oracle πtj as follows. We consider two cases:

· Case 1: The ephemeral public key pks
i,KEMC

MU
is generated by the challenger

CKEMC
MU

, pks
i,KEMC

MU
∈ EPKSet

KEMC
MU

. In this case FKEMC
MU

asks its challenger

CKEMC
MU

to compute (K, C) as (K̃t
j,KEMC

MU
, C̃t

j,KEMC
MU

) $←OKEMC
MU(pki

KEMC
MU

). We

denote CSSet
KEMC

MU
= { C̃t

j,KEMC
MU

, j ∈ [`] and t ∈ [d] } as the set of KEMC
MU ci-
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phertexts from the challenger CKEMC
MU

. Note that C̃t
j,KEMC

MU
is a valid ciphertext

for pks
i,KEMC

MU
. However, K̃t

j,KEMC
MU

is either a random session key or a cor-

responding (valid) KEMC
MU session key. The K̃t

j,KEMC
MU

is used to respond to
Test-query.

· Case 2: The ephemeral public key pks
i,KEMC

MU
is generated by the adversary

AAKE, i.e., pks
i,KEMC

MU
/∈ EPKSet

KEMC
MU

. In this caseFKEMC
MU

can generate a cipher-

text Ct
j,KEMC

MU
along with a KEMC

MU session key Kt
j,KEMC

MU
by calling the encap-

sulation algorithms, (Kt
j,KEMC

MU
,Ct
j,KEMC

MU
) $← KEM.EncapCMU(pks

i,KEMC
MU

). Note
that FKEMC

MU
knows the corresponding session key Kt

j,KEMC
MU

for the ciphertext
Ct
j,KEMC

MU
.

– Next, FKEMC
MU

simulates the third step of the protocol specification as described
in 5.2.1, i.e., πsi .

FKEMC
MU

has received (T2, σjOTS), where T2 := (vkjOTS, σ
j,Ct

j,KEMC
MU

) and σjOTS is
a one-time signature over (T1, T2), it first checks the validity of the signatures.
If all signatures are verified successfully, FKEMC

MU
will compute a one-time signa-

ture according to the protocol specification and accept. For Ct
j,KEMC

MU
received by

oracle πsi we also consider the following two cases:

· Case 1: The ciphertext Ct
j,KEMC

MU
received by oracle πsi is generated by the

adversary AAKE, Ct
j,KEMC

MU
/∈ CSSet

KEMC
MU

. In this case FKEMC
MU

can perform

Corrupt-query and obtain the corresponding secure KEMC
MU key skt

j,KEMC
MU

.
Then, it can decrypt the ciphertext Ct

j,KEMC
MU

and compute the session key
Kt
j,KEMC

MU
. Note that FKEMC

MU
knows the corresponding session key Kt

j,KEMC
MU

for the ciphertext Ct
j,KEMC

MU
. This implies that FKEMC

MU
performs a ciphertext

validity check for Ct
j,KEMC

MU
/∈ CSSet

KEMC
MU

. If the ciphertext Ct
j,KEMC

MU
is not valid,

FKEMC
MU

aborts and terminates the simulation.

· Case 2: The ciphertext Ct
j,KEMC

MU
received by oracle πsi is generated by the

challenger CKEMC
MU

, Ct
j,KEMC

MU
∈ CSSet

KEMC
MU

. In this case FKEMC
MU

does not know
the corresponding session key and sets Kt

j,KEMC
MU

= ∅. However, this will
not affect our simulation since all legitimate queries supplied by the adver-
sary AAKE can be correctly answered by FKEMC

MU
. We will later describe that

FKEMC
MU

can perfectly simulate the tAKE challenger for the adversary AAKE.

– Finally,FKEMC
MU

simulates the final step of the protocol specification as described
in 5.2.1, i.e., πtj .

FKEMC
MU

has received one-time signature σiOTS over (T1, T2), it first checks the
validity of the signatures. If the one-time signature is verified successfully, then
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it accepts. Recall that T1 = (vksi,OTS, σi, pks
i,KEMC

MU
, PIDPartner

i , i) and T2 :=

(vkjOTS, σ
j,Ct

j,KEMC
MU

). We also consider the following two cases:

· Case 1: The ephemeral public key pks
i,KEMC

MU
that is received by oracle

πtj in the second step is generated by the challenger CKEMC
MU

, pks
i,KEMC

MU
∈

EPKSet
KEMC

MU
. In this case FKEMC

MU
does not know the corresponding session key

and sets Kt
j,KEMC

MU
= ∅. However, this will not impact our simulation since all

legitimate queries issued by AAKE can be correctly answered by FKEMC
MU

.

· Case 2: The ephemeral public key pks
i,KEMC

MU
that is received by oracle πtj in

the second step is generated by the adversary AAKE, pks
i,KEMC

MU
/∈ EPKSet

KEMC
MU

.
In this case FKEMC

MU
knows the corresponding session key Kt

j,KEMC
MU

for the
ciphertext Ct

j,KEMC
MU

and sets Ktj = Kt
j,KEMC

MU
.

Simulation-Step II:

Next, we describe the simulation of the challenger of AKE security experiment for
the adversary AAKE, and show that FKEMC

MU
can perfectly answer all queries issued by

AAKE as follows:

• Corrupt(PIDi): FKEMC
MU

answers to this query exactly as the previous game. It re-
sponds with the long-term private key ski of party PIDi.

• RegCorruptParty(pkc,Pc): FKEMC
MU

answers to this query exactly as the previous
game.

• Reveal(πsi ): If the adversary AAKE issues a Reveal(πsi )-query and oracle πsi has in-
ternal state Φsi = accept, then FKEMC

MU
responds to this query with the contents of

variable Ksi to AAKE. For this query we consider the following two cases:

– Case 1: Ct
j,KEMC

MU
∈ CSSet

KEMC
MU

: In this case the ciphertext Ct
j,KEMC

MU
is com-

puted by the challenger CKEMC
MU

and FKEMC
MU

does not know the corresponding
session key. In order to respond to this query, FKEMC

MU
can issue a Corrupt-

query to its KEMC
MU challenger CKEMC

MU
and receive its corresponding secret

key from CKEMC
MU

. Then it can decapsulate the ciphertext Ct
j,KEMC

MU
and com-

pute the session key, i.e., skt
j,KEMC

MU

$← OKEMC
MU

Corrupt (pkt
j,KEMC

MU
) and Kt

j,KEMC
MU

$←
KEM.DecapCMU(skt

j,KEMC
MU

,Ct
j,KEMC

MU
). Finally,FKEMC

MU
responds to this query with

Kt
j,KEMC

MU
to AAKE.

– Case 2: Ct
j,KEMC

MU
/∈ CSSet

KEMC
MU

: In this case, FKEMC
MU

knows the contents of the
session keys, and can simply returns the session key to AAKE.

• Test(πsi ): In our security model we allow the adversary AAKE to issue this query
if oracle πsi τ -fresh at the point in time that this query is issued by AAKE. Due to
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Game 0 we can conclude that πsi has a unique partner oracle πtj . By the definition
of freshness, the party PIDj is τ (j)-corrupted with τ (j) > τ . Moreover, from the
simulation of protocol execution of the second step we can conclude that Ct

j,KEMC
MU

∈ CSSet
KEMC

MU
. The KEMC

MU challenger CKEMC
MU

responds with (K̃t
j,KEMC

MU
, C̃t

j,KEMC
MU

) to

FKEMC
MU

. Note that K̃t
j,KEMC

MU
is a challenge key computed by the KEMC

MU challenger

CKEMC
MU

in KEMC
MU experiment.

Simulation-Step III:

Finally, AAKE terminates. We show that if there exists an adversary AAKE that can cor-
rectly guess a bit b of Test-query,FKEMC

MU
is able to use it to break the security of KEMC

MU

scheme. We denote that (b′, i, s) is the output of the adversary AAKE for the Test-query
Test(πsi ). According to the security definition as described in Section 3.4.3.2,AAKE wins
only if there is τ such that test oracle πsi is τ -fresh and b′ = b. We also consider the fol-
lowing two cases:

• Case 1: πsi is an initiator oracle: In this case it means that it’s KEMC
MU public key

pks
i,KEMC

MU
that is used to encapsulate the session key by its partner oracle πtj is gen-

erated by the KEMC
MU challenger CKEMC

MU
, pks

i,KEMC
MU
∈ EPKSet

KEMC
MU

. Recall that the

simulation of oracle πtj , C̃
t
j,KEMC

MU
is sent to the initiator oracle πsi . FKEMC

MU
is able to

respond with the session key K̃t
j,KEMC

MU
that was generated by its KEMC

MU challenger
to AAKE. If AAKE terminates with outputting b′, FKEMC

MU
can simply forward AAKE’s

response to its challenger CKEMC
MU

.

• Case 2: πsi is an response oracle: In this case πsi generates a ciphertext for a KEMC
MU

public key pkt
j,KEMC

MU
that was sampled by its partner oracle πtj . Due to freshness-

rules as described in 3.9, party PIDj is τ -uncorrupted. Therefore pkt
j,KEMC

MU
is gen-

erated by the KEMC
MU challenger CKEMC

MU
, pkt

j,KEMC
MU
∈ EPKSet

KEMC
MU

. FKEMC
MU

can is-

sue an Encaps-query and ask its challenger to get a pair (K̃s
i,KEMC

MU
, C̃s

i,KEMC
MU

) $←
OKEMC

MU(pkt
j,KEMC

MU
). FKEMC

MU
is able to respond a Test-query Test(πsi ) with the ses-

sion key K̃s
i,KEMC

MU
that was generated by its KEMC

MU challenger to AAKE. If AAKE

terminates with outputting b′, FKEMC
MU

can simply forward AAKE’s response to its
challenger CKEMC

MU
.

Observe that in either case, if AAKE can correctly guess the value b used to answer
the Test-query, FKEMC

MU
is able to break the security of KEMC

MU scheme. Exploiting the
security of the KEMC

MU, we obtain that

Adv1 ≤ εKEMC
MU
.
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Summing up the probabilities, we yield Lemma 5.4, i.e.,

εInd ≤ εSIGC
MU

+ 2εOTSIGMU
+ εKEMC

MU
.

ut

Collecting probabilities from Lemma 5.2 and Lemma 5.4, we conclude that

εtAKE ≤ εAuth + εInd ≤ 4εOTSIGMU
+ 2εSIGC

MU
+ εKEMC

MU
.

This is the same advantage as in Theorem 5.1 and hence Theorem 5.1 follows. This
completes the proof of the theorem.

ut
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In this chapter we present two new efficient compilers that generically turn pas-
sively secure key exchange protocols (KE) into authenticated key exchange protocols
(AKE) where security also holds in the presence of active adversaries.

The content of this chapter was brought forth in a cooperation with Sven Schäge,
Zheng Yang, Jörg Schwenk and Christoph Bader. The result is published in the proceed-
ings of the International Conference on Applied Cryptography and Network Security
(ACNS) 2014 [LSY+14a]. The results from [LSY+14a] were also published in Zheng’s
Dissertation [Yan13]. The authors main contribution with this joined work was the pas-
sive key exchange model and the eBRC model and the PKE-based compiler. Therefore,
we present this compiler here again.

This chapter is structured as follows: We first give a short overview of related au-
thenticated key exchange compilers in Section 6.1. In Section 6.2, we show collision
probability for ephemeral public keys of a passively-secure key exchange protocol. The
result is useful for the security analysis of our compilers. The corresponding definition
of passively-secure key exchange and the security model are described in Section 3.3. In
Section 6.3 we present a PKE based authenticated key exchange compiler, and close the
chapter with a comparison of the efficiency of popular AKE compilers to our compilers
in Section 6.4.

SUMMARY OF OUR CONTRIBUTIONS.
We present two efficient compilers that construct secure AKE systems from authen-

tication protocols (AP) and passively secure key exchange protocols (KE). It relies on
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signature schemes and only requires two additional moves in which signatures are ex-
changed. The second compiler relies on public key encryption systems. Although the
first compiler is more efficient, the second compiler accounts for scenarios where the
parties do not have (certified) signature keys but only encryption keys. This can often
occur in practice. The security model eBRC described in Section3.4.3.1 is used for our
security analysis of our AKE compilers.

• Modular Design. Our compilers only require the public transcript of the key ex-
change protocol, and do not require any modifications in the underlying (passive)
KE protocols. Previous compilers as described in [BCK98, KY07, JKSS10] require
costly modifications on the key exchange protocol. Namely, either the messages have
to be modified or the secret session key K of the underlying KE must be input to the
compiler. Thus, our compilers are easily applicable to existing systems, what makes
them very useful in practice. Figure 6.1 shows modular construction of our compil-
ers.

AKE Protocol

Passive KE CompilerTranscript
T

K

AcceptSession Key
K

AND

AKE Protocol

Fig. 6.1. Generic Construction of the AKE Compilers

• Efficiency. Our efficiency improvements rely on the following techniques:

– We use a form of implicit key confirmation instead of explicit key confirmation.

– As our second efficiency improvement, we formally show that for security we do
not have to exchange uniformly random nonces after the key exchange protocol.

– Finally, our compilers do not need to compute a new session key for AKE session.
Our approach helps us to save the additional computation of a new session key
for an AKE system.

6.1 Related Work of AKE Compilers

In 1998, Bellare, Canetti and Krawczyk were the first to consider a modular way for
the development of AKE protocols [BCK98]. In this paper, they deal with two kinds
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of network, i.e., a ideal authenticated network and a more realistic unauthenticated net-
work. They propose to first design a protocol in the authenticated link model (AM) in
which the adversary is limited to manage the delivery of the messages exchanged by the
communication parties, and to corrupt some of them. But it can not inject, delete or ma-
nipulate messages. It implies that all messages generated by the party are authenticated.
Then they transform a key exchange protocol proved secure in AM into an AKE protocol
which is also secure in the unauthenticated link model (UM), in which the adversary has
full powers on the communication channels, so it can change and forge new message,
i.e., a real adversary environment. They used a so-called authenticator.

In 2007, Katz and Yung presented a generic compiler for group key agreement [KY07].
The KY compiler first adds an initial round to a passively secure group key exchange
protocol, i.e., each party selects a nonce and broadcasts it to its communication partner.
Then the compiler computes a signature for every message of the original group key
exchange protocol and the random values that have been changed in the initial phase.
In contrast to the BCK compiler, each message sent does not need to be authenticated
interactively. The KY compiler only accounts for a single change-nonce phase that is
added to the original protocol. However, the compiler still modifies each message sent
in the original key exchange protocol by basically adding a signature to that message. It
leads to the additional signature generation and verification operations, inefficient.

In 2010, Jäger et al. [JKSS10] also presented an elegant compiler in standard model
which is independent of the key exchange protocol (a constant number of additional
messages to be exchanged). Informally, the communication parties first exchange ran-
dom nonces. Then, they compute signatures over the nonces and the transcript of key
exchange protocol. Finally, two MAC values are computed over all the previous mes-
sages. JKSS10 compiler needs to use the session key from the passively secure key
exchange in order to generate the corresponding MAC key.

6.2 Passively Secure Key Exchange Protocols

Passively-secure key exchange protocol (KE) is a central building block for our AKE
compilers. In Section 3.3, we give a formal definition of KE protocol and a correspond-
ing security model. In this section, we show collision probability for ephemeral public
keys of a passively-secure key exchange protocol. The result is useful in the security
proofs of our compilers to show that our compilers do not have to exchange additional
random values after the passively-secure key exchange protocol run is finished.

6.2.1 Collision Property for Passively Secure KE Protocols

Our compilers require a passively-secure key exchange KE protocol. Before we now
give the proof, we need to show that for every passively-secure key exchange protocol
after polynomially calls to KE.EphemeralKeyGen there cannot be any collisions among



112 6 New Efficient Compilers for Authenticated Key Exchange

the ephemeral public keys generated by certain type of KE.EphemeralKeyGen. Note that
the following lemma will be useful in the security proofs of our compilers to show that
a compiler does not have to exchange additional random values after the KE run to guar-
antee that the transcripts which are authenticated with the authentication mechanism are
unique. We can therefore discard the random values which are used in the JKSS compiler
[JKSS10]. For simplicity reasons, we only describe a simple case, i.e., two-move and
two-party passive KE scheme. Note that for a two-move and two-party (PIDA and PIDB)
KE-protocol there exist at most two types of KE.EphemeralKeyGen algorithms which
may be determined by input messages MPIDA

in and MPIDB
in . We here explicitly classify the

algorithm KE.EphemeralKeyGen into two types denoted by KE.EphemeralKeyGenPIDA

for party PIDA and KE.EphemeralKeyGenPIDB
for party PIDB.

Let collision denote the event that: after a polynomial number q of executions of
KE.EphemeralKeyGen there exist at least two ephemeral public keys epk and epk∗ gen-
erated by KE.EphemeralKeyGen are identical, where the number q is determined by time
tKE. Let εcollision denote the probability of the event collision occurred within time tKE. We
say all ephemeral keys generated by KE.EphemeralKeyGen are (q, tKE, εcollision)-distinct
if those ephemeral keys are generated by KE.EphemeralKeyGen after q times execu-
tion of KE.EphemeralKeyGen within time tKE and there exists no collision among those
ephemeral keys except for probability εcollision.

Lemma 6.1. Assume KE is a (tKE, εKE)-passively secure key exchange scheme with-
out long-term key as defined above. Then all ephemeral public keys generated by
KE.EphemeralKeyGen in the runs of KE scheme are (q, tKE, εcollision)-distinct such that
εcollision ≤ q · εKE.

Proof. We consider the case that the ephemeral keys are generated by different types of
ephemeral key algorithms. Obviously, in this case there is no collision (except negligible
probability) between ephemeral keys epksPIDA

and epktPIDB
, s, t ∈ [q], because those keys

are assumed to be generated from different key spaces. For simplicity, we say that εcollision
is negligible.

We evaluate the collision probability εcollision for ephemeral keys generated by the
same type of ephemeral key algorithms. We assume that with probability εcollision there
will be a collision among the epksPIDA

(or epktPIDB
), s, t ∈ [q], after q protocol runs. Ac-

cording to the protocol specification, all values epksPIDA
are computed by randomized

runs of KE.EphemeralKeyGenPIDA
while the epktPIDB

values have been computed by ran-
domized runs of KE.EphemeralKeyGenPIDB

. In particular, the computation of the epksPIDA

and epktPIDB
are deterministic in system parameters ΠKE, message Min

PIDA,s (resp.
Min

PIDB,t) and the random value ωsPIDA
(resp. ωtPIDB

) used by KE.EphemeralKeyGenPIDA

(resp. KE.EphemeralKeyGenPIDB
). The ωsPIDA

and ωtPIDB
are selected uniformly random

and in particular independently.

Let epk∗PIDA
and epk∗PIDB

be the ephemeral public keys that are exchanged in the
test session and given, together with the challenge key k∗b and transcript T∗, to the ad-
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versary. Let esk∗PIDA
and esk∗PIDB

be the corresponding ephemeral secret keys. These
ephemeral public/secret keys can be computed using the ephemeral key algorithms
KE.EphemeralKeyGenPIDA

(resp. KE.EphemeralKeyGenPIDB
) with the public parame-

ters ΠKE, the random value ω∗PIDA
(resp. ω∗PIDB

) and MPIDA,∗
in (resp. MPIDB,∗

in ). The ad-
versary first guesses whether the collision occurs among the set of ephemeral public
keys {epkPIDA

} or {epkPIDB
} with probability ≥ 1/2. In the first case, the adversary

can re-run KE.EphemeralKeyGenPIDA
(q − 1) times with ωsPIDA

and Min
PIDA,s to output

{esksPIDA
, epksPIDA

} for s ∈ [1; q − 1] in time less than tKE. With the same probabil-
ity εcollision it obtains two values epk′PIDA

, epk′′PIDA
among the q values epk∗PIDA

, epk1PIDA
,

. . ., epk(q−1)PIDA
with epk′PIDA

= epk′′PIDA
. Since it holds with probability ≥ 2/q that ei-

ther epk′PIDA
= epk∗PIDA

or epk′′PIDA
= epk∗PIDA

. In this case the adversary knows one
pair (ω′PIDA

, MPIDA,
′

in ) or (ω′′PIDA
, MPIDA,

′′
in ) that maps to epk∗PIDA

. Let esk′PIDA
be the cor-

responding ephemeral secret key. We now have to show that esk′PIDA
helps us to break

the passive security. This simply follows from the determinism of KE.SessionKeyGen
and correctness of KE. Since we have perfect correctness the adversary A can compute
the session key k′ by using the ephemeral secret key esk′PIDA

and transcript T∗. Next the
adversary A can compare whether k∗b = k′ and correctly guess the value b. In case there
is a collision among the set {epkPIDB

} the situation is similar. Hence, due to the security
of KE protocol, we have that the probability bound εcollision ≤ q · εKE.

ut

6.3 AKE Compiler from Public Key Encryption

In this section we will present a public key encryption based AKE compiler that turns
passively-secure key exchange protocols as defined above to AKE protocols fulfilling
the security guarantees as specified in Section 3.4. The compiler accounts for scenarios
where the parties do not have (certified) signature keys but only encryption keys. This
can often occur in practice. For example, the most efficient (for the client) and most
wide-spread key exchange mechanism in TLS is RSA key transport. Here the server
certificate only contains an RSA encryption key. In Section 6.3.1, we firstly give a de-
scription of our PKE-Based AKE compiler, and in Section 6.3.2 we analyzed its security
in the eBRC model described in Section 3.4.3.1.

6.3.1 Description of PKE-Based AKE Compiler

The PKE-compiler takes the following building blocks as input: a passively-secure
key exchange protocol KE, a public encryption scheme PKE, a collision resistant hash
function CRHF and a one-time message authentication scheme OTM. During the ini-
tialization phase, the hash key is generated as hkCRHF

$← CRHF.KG(1κ). Each party
P is assumed to possess a pair of long-term private and public keys generated as
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(skP, pkP)
$← PKE.KGen(1κ), P ∈ {A,B}. In the sequel, we use the superscript “P”

to highlight the message recored at party P ∈ {A,B}.

A
(pkA, skA)

$← PKE.KGen(1κ)

B
(pkB, skB)

$← PKE.KGen(1κ)

←−
KE

−−−−−−−−−−−−−−−→
obtain K and set TA

1 := TA
KE||A||B obtain K and set TB

1 = TB
KE||A||B

NA = CRHF(TA
1)

KA,OTM
$← OTM.KGen(1κ)

NB = CRHF(TB
1)

KB,OTM
$← OTM.KGen(1κ)

CA
$← PKE.Enc(pkB,KA,OTM||NA) CB

$← PKE.Enc(pkA,KB,OTM||NB)

−
CA,PID

Partner
A ,A

−−−−−−−−−−−−−−−→
KB

A,OTM||N
B
A := PKE.Dec(skB,C

B
A)

reject if NB
A 6= NB and PIDPartner

A 6= B

TB
2 = TB

1 ||CB
A||CB, RB = CRHF(TB

2)
MB = OTM.Tag(KB

A,OTM, “2”||RB)

←−
CB,MB,PID

Partner
B ,B

−−−−−−−−−−−−−−−−
TA
2 = TA

1 ||CA||CA
B,

RA := CRHF(TA
2)

reject if

PIDPartner
B 6= A

MA
B 6= OTM.Tag(KA,OTM, “2”||RA)

KA
B,OTM||N

A
B = PKE.Dec(skA,C

A
B)

reject if NA 6= NA
B

MA = OTM.Tag(KA
B,OTM, “1”||RA)

accept

−
MA

−−−−−−−−−−−−−−−→
accept if

MB
A = OTM.Tag(KB,OTM, “1”||RB)

session key: Ki,j := K session key: Ki,j := K

Fig. 6.2. AKE Compiler from PKE and OTM

Protocol Execution: The compiled protocol between two parties A and B proceeds as
follows. It is also depicted in Figure 6.2.

• First, A and B run the passive key exchange protocol KE, then both parties obtain the
key K from the key exchange phase (as the session key of AKE protocol) and record
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the transcripts as TA
KE and TB

KE, where TP
KE consists of the list of all messages sent

and received by party P ∈ {A,B}.
• A sets the transcript TA

1 := TA
KE || A || B and computes NA := CRHF(TA

1 ). Then, it runs

KA,OTM
$← OTM.KGen(1κ) and computes a ciphertext CA

$← PKE.Enc(pkB, KA,OTM

|| NA) under B’s public key pkB. Finally, A defines the partner identity PIDPartner
A = B

and transmits (CA, PIDPartner
A , A) to B.

• Meanwhile, B sets TB
1 := TB

KE || A || B and computes NB := CRHF(TB
1 ). It runs

KB,OTM
$← OTM.KGen(1κ) and computes CB

$← PKE.Enc(pkA, KB,OTM || NB) under
A’s public key pkA.

• Upon receiving the ciphertext (CB
A, PIDPartner

A , A), B sets TB
2 := TB

1 || CB
A || CB and

computes RB := CRHF(TB
2 ). It decrypts CB

A (i.e., KB
A,OTM || NB

A := PKE.Dec(skB, CB
A)).

Then B checks whether PIDPartner
A = B and NB

A = NB. If the check is not passed, then
B rejects. Otherwise, it sets the partner identity PIDPartner

B = A and computes MB :=
OTM.Tag(KB

A,OTM, “2” || RB) and transmits (CB, MB, PIDPartner
B , B) to A.

• Upon receiving messages (MA
B, CA

B, PIDPartner
B , B), A sets TA

2 := TA
1 || CA || CA

B and
computes RA := CRHF(TA

2 ). A rejects if MA
B 6= OTM.Tag(KA,OTM,“2” || RA) and

PIDPartner
B 6= A. If the check is passed, then it decrypts the ciphertext CA

B (i.e., KA
B,OTM

|| NA
B := PKE.Dec(skB, CA

B)) and checks whether NA = NA
B. If the check is not passed,

then A rejects. Otherwise, A computes MA := OTM.Tag(KA
B,OTM, “1” || RA), and

sends MA to B. Finally, A accepts the session and outputs the session key Ki,j := K.

• Upon receiving MB
A, B accepts if and only if MB

A = OTM.Tag(KB,OTM, “1”||RB), and
outputs the session key Ki,j := K.

Session States: We assume that the session state of a session owned by A contains
ephemeral secret keys eskA used in each KE protocol instance and random one-time
MAC-key KA,OTM. The intermediate values (eskA and KA,OTM) will be stored in the
variable State. Similarly, the session state of a session owned by B contains ephemeral
secret keys eskB and random one-time MAC-key KB,OTM.

6.3.2 Security Analysis of PKE-Based AKE Compiler

In this section we prove that the proposed public key encryption based authenticated
key exchange compiler is secure in the sense of the security guarantees as specified in
Section 3.4 in the standard model.

Theorem 6.2. Assume that the key exchange protocol KE without long-term key is
(t, εKE)-secure with respect to Definition 6.2, the public key encryption scheme is
(qPKE, t, εPKE)-secure (IND-CCA2) with respect to Definition 2.2.4, the hash function
is (t, εCRHF)-secure with respect to Definition 2.2.1.1 and the one-time message authen-
tication code scheme is (1, t, εOTM)-secure with respect to Definition 2.2.3.1. Then the
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above protocol is a (t′, εAKE)-secure authenticated key exchange protocol AKE in the
sense of Definition 3.7 with t′ ≈ t and

εAKE ≤
(d`)2

2(λ−1) + 2d`εKE + d`2(2εCRHF + 2εPKE + 2εOTM) + (d`)2εKE.

We prove Theorem 6.2 in two stages. First, we show that the AKE protocol is a
secure authentication protocol except for probability εAuth, that is, the protocol fulfills
security property 1.) of the AKE definition 3.7. In the next step, we show that the session
key of the AKE protocol is secure except for probability εInd in the sense of the Property
2.) of the AKE definition 3.7. Then we have the overall probability εAKE that an adversary
breaking the protocol is at most εAKE ≤ εAuth + εInd. To prove the following lemmas, we
proceed in games as in [Sho04, BR06].

Let AAKE be an adversary against the security of the AKE compiler scheme. We
consider a sequence of games and each game involving an adversary AAKE and a chal-
lenger CAKE. Then, we modify Game 0 (i.e., a real security experiment) step-by-step,
and argue that each game is computationally indistinguishable from the previous one.
Roughly speaking, if an adversary can distinguish Game (i-1) from Game i with a non-
negligible advantage, then we can use it to construct a (polynomial-time) algorithm to
break some complexity assumptions. Finally, we argue that any adversary cannot win
the real security experiment denoted by Game 0 with non-negligible probability.

6.3.2.1 Authentication Property

Lemma 6.3. For any adversaryA running in time t′ ≈ t, the probability that there exists
an oracle πsi that accepts maliciously in the sense of Definition 3.7 is at most

εAuth ≤
(d`)2

2λ
+ d`εKE + d`2(εCRHF + εPKE + εOTM),

where all quantities are as the same as stated in the Theorem 6.2.

Proof. Let break(Auth)δ be the event that there exists a τ and a τ -fresh oracle πs∗i∗ that has
internal state Φs∗i∗ = accept and PIDs∗

i∗ = j∗, but there is no unique oracle πt∗J∗ such that
πs
∗
i∗ and πt∗j∗ have matching conversations, in Game δ.

GAME 0. This is the original security game. Thus, we have that

Pr[break
(Auth)
0 ] = εAuth.

GAME 1. In this game, the challenger proceeds exactly like the challenger in Game 0,
except that we add an abortion rule. The challenger raises event abortephemeral and aborts,
if two oracles output the same ephemeral keys. Thus, the event abortephemeral occurs with
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probability Pr[abortephemeral] ≤ d`εKE by Lemma 6.1. From the result of Lemma 6.1, we
know that the collision probability among ephemeral keys is related to the polynomial
number of execution of KE.EphemeralKeyGen and the probability εKE. Since there are
d` oracles, therefore the event aborteph occurs with probability Pr[aborteph] ≤ d` · εKE.
We have that

Pr[break
(Auth)
0 ] ≤ Pr[break

(Auth)
1 ] + d` · εKE.

GAME 2. In this game, the challenger CAKE proceeds exactly like the challenger in
Game 1, except that we add an abortion rule abortOTM

collision. We let abortOTM
collision be the event

that two oracles sample the same one-time MAC key KOTM for the one-time message
authentication code as described in Section 2.6. Assume that each one-time MAC key
KOTM from {0, 1}λ. Thus, the probability that a collision occurs is bounded by ( (d`)

2

2λ
).

Clearly, we have

Pr[break
(Auth)
1 ] ≤ Pr[break

(Auth)
2 ] +

(d`)2

2λ
.

GAME 3. This game proceeds exactly as before, but the challenger aborts if it fails
to guess the first fresh oracle πs∗i∗ and its intended partner PIDj∗ which accepts without
matching conversation, where (i∗, j∗) ∈ [`]2 and s∗ ∈ [d]. According to the definition
described in 3.4.2, we allow the adversary to register a new party Pc, with a valid public
key pkc on behalf of Pc 1. However, note that by our freshness definition πs∗i∗ is fresh and
thus PIDi∗ and PIDj∗ must not be adversarially controlled. Thus, we have that

Pr[break
(Auth)
2 ] ≤ d`2 · Pr[break

(Auth)
3 ].

GAME 4. This game proceeds as the previous game, except that we add an abort con-
dition abortCRHFcollision and the challenger aborts if there are two distinct inputs to the CRHF
that map to the same output value. Obviously we have the Pr[abortCRHFcollision] ≤ εCRHF and

Pr[break
(Auth)
3 ] ≤ Pr[break

(Auth)
4 ] + εCRHF.

GAME 5. This game proceeds exactly as before, but instead of encrypting the message
(Ks∗i∗,OTM || Ns∗i∗ ), we encrypt a random message R∗ for PKE scheme2.

We apply the same modification to the oracle πt∗j∗ which shares the same transcript
T1 with oracle πs∗i∗ . The party PIDj∗ is uncorrupted and there is no collision among
the hashed transcripts (due to the previous games). If there exists an adversary AAKE

who can distinguishes this game from the previous game, we can use it to construct an
algorithm BPKE to break the security of the PKE scheme as described in 2.2.4.
1 Parties established by this query are called adversarially-controlled.
2 Note that we still use the one-time MAC key to compute the MAC value as the previous game. However, it will be

independent of the ciphertext of PKE.
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Assuming that an adversary BPKE using its encryption oracle OENC and decryption
oracle ODEC interacts with the challenger CPKE. BPKE acts as a challenger for AAKE in
this game. We show that the simulation of BPKE perfectly simulates the challenger CAKE
in this game from the adversary’s point of view.

At the beginning of the simulation game, BPKE obtains the public parameters and
the public key pk′ of the challenger CPKE. Then using the identity PIDj∗ (as the in-
tended partner of the test oracle πs∗i∗ ) it sets pkj∗ = pk′. Moreover, BPKE implements the
collection of oracles {πsi : i ∈ [`], s ∈ [d]}, and honestly computes all other long-term
public/private key pairs (pkPIDi , skPIDi)

$← PKE.KGen for each honest party PIDi, i ∈ [`]
and i 6= j∗. Simultaneously, it also generates one-time MAC keys as the previous game.
AAKE receives the public parameters and all long-term public keys { pkPID1 , . . ., pkPID∗j ,
. . ., pkPID` } as input. Obviously, BKE can honestly answer all oracle queries supplied
by AAKE. Meanwhile, BPKE generates the challenge ciphertext Cs∗

i∗ with the transcripts
(Ks∗i∗ ||Ns

∗
i∗ , R∗). The challenger CPKE responds with the ciphertext Cs∗

i∗ to BPKE. For other
oracles of the party PIDj∗ , BPKE can use its decryption oracle to simulate the protocol
executing. Obviously, this is a perfect simulation of CPKE. BPKE can always correctly
answer all queries made by AAKE. If AAKE can correctly distinguish this game from the
previous game, BPKE can break the security of the PKE scheme as described in 2.2.4.
Due to the security of the PKE scheme, the advantage ofAAKE in distinguishing between
this game and the previous game is bound by εPKE. Thus, we have that

Pr[break
(Auth)
4 ] ≤ Pr[break

(Auth)
5 ] + εPKE.

GAME 6. This game proceeds exactly like the previous game except that the challenger
aborts if the fresh (test) oracle πs∗i∗ accepts a confirmation MAC message Mt∗

j∗ but it has
not been sent by any oracle of its intended partner PIDj∗ . The key K̃s∗

i∗ of the OTM in
computation of πs∗i∗ is a random value which is independent of the ciphertext Cs∗

i∗ and
only would be used once at most to authenticate the transcript T(i∗,s∗)

2 . Applying the
security of OTM we have that

Pr[break
(Auth)
5 ] ≤ Pr[break

(Auth)
6 ] + εOTM.

Claim 6.4. Pr[break
(Auth)
6 ] = 0

Proof. Note that break(Auth)6 occurs only if there exists a τ and a τ -fresh oracle πs∗i∗ that
has internal state Φs∗i∗ = accept and PIDs∗

i∗ = j∗, but there is no unique oracle πt∗j∗
such that πs∗i∗ and πt

∗
j∗ have matching conversations. Due to the previous games there

exists (only one) oracle πt∗j∗ which has output the confirmation one-time MAC message
Mt∗
j∗ received by oracle πs∗i∗ , otherwise the execution will be aborted. Thus, if oracle πs∗i∗

accepts, then it must have a matching conversation to oracle πt∗j∗ . Therefore we have

Pr[break
(Auth)
6 ] = 0.
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ut

Summing up the probabilities from Game 0 to Game 6, we proved Lemma 6.3, i.e.,

εAuth ≤
(d`)2

2λ
+ d`εKE + d`2(εCRHF + εPKE + εOTM).

ut

6.3.2.2 Key Indistinguishability

Lemma 6.5. For any adversaryA running in time t′ ≈ t, the probability thatA correctly
answers the Test-query is at most 1/2 + εInd with

εInd ≤
(d`)2

2λ
+ d`εKE + d`2(εCRHF + εPKE + εOTM) + (d`)2εKE,

where all quantities are as the same as stated in the Theorem 6.2.

Proof. Let break(Ind)δ denote the event that the adversary AAKE correctly guesses the bit
b′ sampled by the Test-query in Game δ, and Test(πs

∗
i∗ ) is the τ -th query of AAKE, and

πs
∗
i∗ is a τ -fresh oracle that is ∞-revealed throughout the security game. Let Advδ :=

Pr[break
(Ind)
δ ] − 1/2 be the advantage of AAKE in Game δ. The proof proceeds using a

sequence of games including steps similar to [Sho04, BR06].

GAME 0. This is the original security game. Thus, we have that

Pr[break
(Ind)
0 ] = εInd + 1/2 = Adv0 + 1/2.

GAME 1. The challenger in this game proceeds as before, but it aborts if the test oracle
accepts without unique partner oracle. Applying the security of authentication property
of this protocol, we thus have

Adv0 ≤ Adv1 + εauth.

GAME 2. This game is similar to the previous game. However, the challenger CAKE
now guesses the partner oracle πt∗j∗ that stays fresh and participates with πs∗i∗ in the test
session. CAKE aborts if its guess is not correct. Thus, we have

Adv1 ≤ (d`)2Adv2.

GAME 3. Finally, we replace the session key k∗ of the test oracle πs∗i∗ and its partner
oracle πt∗j∗ with the random value k̃∗. If there exists an adversary AAKE who can distin-
guish this game from the previous game, then we use it to construct an algorithm BKE to
break the passive security of the key exchange protocol described in Section 3.3.



120 6 New Efficient Compilers for Authenticated Key Exchange

Assuming that an adversary BKE using its Execute and EphemeralKeyReveal oracles
interacts with CPassiveKE that is a challenger in the security game of the passively secure KE
scheme as in Section 3.3.2. Then, BKE acts as a challenger forAAKE in Game 3. We show
that the simulation of BKE perfectly simulates the challenger CAKE in this game from the
adversary’s point of view, i.e., (i) showing how BKE simulates the protocol execution
environment; (ii) showing how BKE can perfectly answer to all queries issued by AAKE

and (iii) showing that if the adversary AAKE can correctly output a bit b′ to answer the
Test-query, BKE can use it to break the security of KE. We describe this simulation as
follows:

• At the beginning of the simulation game, BKE implements a collection of oracles
{πsi : i ∈ [`], s ∈ [d]}, and honestly computes all long-term verification/private key
pairs (pkPIDi , skPIDi)

$← PKE.KGen for each honest party PIDi, i ∈ [`], by calling
the key generation algorithm PKE.KGen. Similarly, it also generates one-time MAC
keys as before. The adversaryAAKE receives all honestly generated long-term public
keys { pkPID1 , . . ., pkPID` } as input.

• Then, BKE has to guess test oracle πs∗i∗ and its partner oracle πt∗j∗ supplied by AAKE.
BKE can answer all oracle queries honestly except for the test oracle πs∗i∗ and its
partner oracle πt∗j∗ as follows: In response to Corrupt queries made byA, BKE returns
the contents of long-term private keys to AAKE. Further, BKE can answer to Reveal
and RevealState queries made by A by just forwarding them to the CKE challenger
and using the MAC keys. Note that this strategy works only if BKE guesses the test
oracle πs∗i∗ and its partner oracle πt∗j∗ .

• For Test query made by AAKE, BKE can first query CKE for executing a fresh test
instance and obtains (Kb,TKE) from CKE. Then, BKE simulates the test oracle which
accept using the transcript TKE and returns Kb to A. After that A may continually
perform the queries.

• Finally, AAKE terminates with outputting b′. BKE returns b′ supplied by AAKE to CKE.

Obviously, this is a perfect simulation of BKE. BKE can always correctly answer all
queries made by AAKE. If AAKE correctly guesses the value b used to answer the Test
query, BKE can break the passive security of the KE scheme. Exploiting the security of
passively-secure key exchange protocol KE, we obtain that

Adv2 ≤ Adv3 + εKE.

Further, in Game 3 the adversary always receives a uniformly random session key
in response to Test query, i.e it receives no information about b used to answer the Test
query. Thus, we have Adv3 = 0.

Finally, we obtained the advantage ofAAKE shown in Lemma 6.5 by putting together
all probabilities from Game 0 to Game 3, i.e.,
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εInd ≤
(d`)2

2λ
+ d`εKE + d`2(εCRHF + εPKE + εOTM) + (d`)2εKE.

Collecting probabilities from Lemma 6.3 and Lemma 6.5, we conclude that

εAKE ≤
(d`)2

2(λ−1) + 2d`εKE + d`2(2εCRHF + 2εPKE + 2εOTM) + (d`)2εKE.

This is the same advantage as in Theorem 6.2 and hence Theorem 6.2 follows. This
completes the proof of the theorem. ut

6.4 Efficiency Comparison with other popular Compilers

In this section we compare the efficiency of other popular compiler described in [BCK98,
KY07, JKSS10] to our compilers and summarize the differences in Figure 6.3. The sym-
bol “•” means that the model captures this property. Otherwise, “×”.
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Fig. 6.3. Efficiency Comparison of other popular Compilers to our Compilers

Remark 6.6. The symbol “|m|” is the number of messages of key exchange protocol.
In the BCK compiler, for every message from original KE protocol there exists some
additional communication with the receiver PR in which PR first sends a random nonce
to the sender PS, and PS responds with an application of an authentication mechanism
(e.g. a digital signature scheme or public key crypto-system) on the message with this
nonce. It leads to an additional communication complexityO(|m|). The KY07 compiler
also adds to every message of the original key exchange protocol a signature which
is also computed over all the random values that have been generated in the exchange
of nonces phase. In contrast to BCK98 compiler, each message sent does not need to
be authenticated interactively. However, the compiler still modifies each message sent
in the original key exchange protocol by basically adding a signature to that message.
It leads to the additional signature generation and verification operations, inefficient,
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additional time complexity O(|m|). However, JKSS10 and our compilers account only
for a constant number of additional messages to be exchanged, i.e., it is independent
of the original key exchange protocol. It only leads to the additional computation and
communication complexity O(1).



Chapter 7

SessionIDs in Key Exchange Protocols and No-Match
Attacks

Contents
7.1 Discussion on Three Ways to Define Session IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1.1 Pre-specified Unique Session IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.2 Session IDs based on partial Transcripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.1.3 Session IDs based on Matching Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 New Theoretical Attacks on AKE Protocols in Security Models . . . . . . . . . . . . . . . . . 126
7.2.1 Overview of No-Match Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.2 Class 1 Attacks: Integrity Protection – MACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.3 Class 2 Attacks: Authentication via Digital Signatures . . . . . . . . . . . . . . . . . . . . 129
7.2.4 Class 3 Attacks: Authentication via Public Key Encryption . . . . . . . . . . . . . . . . 130
7.2.5 Summary: Affected AKE Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.1 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.2 Session Key Derivation Compiler for No-Match Attacks . . . . . . . . . . . . . . . . . . 134
7.3.3 Discussion of our Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

In this chapter, we present a theoretical attack for key exchange protocols, named
here no-match attacks, and show that proving security under the matching conversations
as session IDs (MC-based sID) is a delicate issue. In particular, we provide several exam-
ples of protocols that claim to be secure under a security definition based on MC-based
sID but where the security proof is actually flawed. We show that no-match attacks are
often hard to avoid without costly modifications of the original protocol, moreover, give
several ways to thwart no-match attacks. The content of this chapter was brought forth
in a cooperation with Sven Schäge and Zheng Yang.

SUMMARY OF OUR CONTRIBUTIONS. We provide evidence that providing sound se-
curity analyzes for key exchange protocols is difficult and error-prone. Simultaneously,
we present a new theoretical attack for key exchange protocols, named here no-match
attacks, and show that proving security under the matching conversations as session IDs
(MC-based sID) is a delicate issue. In particular, we show that the security proofs of
several existing (and recent) security protocols are flawed. Finally, we provide several
ways to thwart no-match attacks.

ORGANIZATION. This chapter is structured as follows: First, we informally describe
the most widely used session identifiers (sID) definitions and give a discussion on draw-
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backs of these definitions in Section 7.1. In Section 7.2 we present no-match attacks,
and provide several examples of protocols that claim to be secure under a security def-
inition based on MC-based sID but where the security proof is actually flawed. Finally,
we discuss several ways to thwart no-match attacks in Section 7.3.

7.1 Discussion on Three Ways to Define Session IDs

It is well known that the security definition depends on the notions of partnership of
oracles. The most recent definition of partnership is based on session identities, sIDs1.
There are three most widely used ways to define session identity.

7.1.1 Pre-specified Unique Session IDs

The first one is based on (pre-specified) unique session IDs which are externally given
to the oracles of a session at protocol start-up [CK01, CK02b] 2. When analyzing prac-
tical protocols this approach is often problematic. Most of the important protocols do
not feature a special session ID generation phase. Thus, to make them provable in any
security model that is based on external session IDs one actually would have to run an
additional protocol (or rely on a trusted party) to generate the session identifier before
the protocol starts (and hand it over to the original protocol). This is, however, not what
is done in practice and requires considerable changes to protocols.

7.1.2 Session IDs based on partial Transcripts

Secondly, the session identifier sID is based on partial transcripts from the exchanged
messages. In some security models for key exchange the exact definition of session ID
is not further specified. In fact, its form may even be protocol-dependent. Usually such a
session ID is then defined when analyzing concrete protocols as a truncated or a partial
transcript of the messages exchanged between the communication partners [KPW13,
BDK+14]. This means that not all the messages are part of the session ID, in contrast
to the definition of MC-based sID. We believe that when using partial transcripts, there
should at least be an argumentation for the choice of messages that are included in
the definition of session ID. Or to put it another way, authors should explain why they
deviate from matching conversations and why their choice of session ID does not lead
to weak security results.

1 Note that the BR93 Model [BR93a] defines partnership using the notion of matching conversation. Partnership in
the BR95 [BR95] model is defined using the notion of a partner function, but in there is no generic definition of
partner function fixed for any key exchange protocol.

2 Note that for more information on external session identifier, see [CK01, CK02b].
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Naturally, the definition of which messages have to be part of the session ID is highly
protocol-dependent. In other words, an inadvisable selection of (partial-transcripts-
based) sID can lead to disastrous effects for security analysis. Let us highlight this in
a brief example. For example, imagine two protocols, the first of which consists of an
two-move exchange of signed DH shares followed by the two-move exchange of two
unprotected nonces. The second protocol is similar except that the order of exchange of
DH shares and nonces is reversed, i.e. first the parties exchange nonces, then the signed
DH-shares. In both cases the session key is computed as the DH key of the two DH
shares if the verification of the received signature succeeds. Now assume, the session ID
is defined to be the partial transcript of the first two moves of the protocol. In spite of
their similarities both protocols have totally different security properties in the security
model. In the first protocol an adversary can simply alter one of the nonces exchanged,
say the one sent from Alice’s oracle to Bob’s. Now, according to the definition both or-
acles do not have the same session ID, i.e. they are unrelated. This allows the adversary
to query Bob’s oracle for the session key. If the adversary now chooses Alice’s oracle to
be the Test-oracle it can simply use Bob’s key to trivially break key indistinguishability.
This attack however, cannot be launched against the second protocol. Intuitively, this is
because whenever the adversary modifies the DH shares, it breaks the security of the un-
derlying signature scheme or replay values that have previously been generated by any
of the parties. However, in the latter case the keys computed by Alice and Bob will be
derived from different DH shares that all have been drawn honestly and independently
(by either Alice and Bob). Therefore revealing Bob’s session key will reveal nothing
about Alice’s key.

In summary, this approach “partial transcripts as sID” is also problematic for the
analysis of key exchange protocols. First, it is highly protocol-dependent. Normally,
cryptographic security definitions should be abstract and applicable to all concrete in-
stantiations of the considered protocol class. This simplifies comparisons between dif-
ferent instantiations of the protocol. It allows to abstractly treat key exchange protocols
when using them as a building block in more complex protocols. Otherwise, not only is
it inconvenient for the analysts to adapt to new specific session IDs each time they an-
alyzes a new key exchange protocol but it also makes schemes harder to compare. The
second reason, developing a new definition of session identifier sID specifically crafted
for a certain scheme is arguably more error-prone than having a general definition that
is verified once and for all.

7.1.3 Session IDs based on Matching Conversations

Finally, one always may consider to use the entire message flow - the transcript - between
two parties as the session identifier, namely MC-based sID. Informally speaking, two
oracles are said to have matching conversations (MC) if every message sent by the first
one has actually been received by the second one and vice versa. The great advantage of
the MC-based notion is that it can be applied to any key exchange protocol as the session
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identifier. Moreover, it is not generated externally but as part of the protocol itself 3.
Thus, many papers [BPR00, BCPQ01, JKL04, Kra05a, JKL06, KY07, LLM07a, ZY10,
SEVB10, CF12, ABS14] define the notion of session identifiers (sIDs) using matching
conversations, i.e., the concatenation of messages exchanged during the protocol run. To
model the real world implementation, the MC-based sIDs seem most natural. However,
the natural things being considered: “Is this an appropriate choice if we use the notion of
MC-based sID to prove the security of key exchange protocols?” To answer this question,
we present a theoretical attack, no-match attack, and show that proving security under
MC-based sID is a delicate issue as follows.

7.2 New Theoretical Attacks on AKE Protocols in Security Models

In this subsection we first introduce a special attack strategy that we denote no-match
attacks. Moreover, we will present several variants of our no-match attacks together with
existing protocols in the literature that are vulnerable when proving security using MC-
based sID. We give some examples of existing protocols and security analyses that are
affected. Note that all our attacks apply to security models which allows the adversary to
corrupt the long-term keys of the owner of the test session or its partner, e.g. in order to
model perfect forward secrecy (PFS) or key compromise impersonation (KCI) attacks.
Let us sketch our attacks.

7.2.1 Overview of No-Match Attack

In a no-match attack, the adversary does not actively modify the messages exchanged
between two oracles except for some subtle changes. These changes are introduced in
such a manner that both parties still compute the same key (or at least two related keys).
However, as a result of the modifications they do not have matching conversations. By
the definition of security, the adversary can now reveal the session key of one oracle
and use it to distinguish the key of the other oracle (as test oracle) from a random key.
We stress that since both oracles do not have matching conversations revealing the key
of the first oracle formally does not violate the winning conditions of the adversary in
the key indistinguishability definition. Nevertheless, it is a trivial attack since the key
is delivered by a Reveal query. Our strategy emphasizes how crucial the definition of
session ID (sID) is. We stress that our attack does not lead to practical attacks on the
protocol. It is rather a theoretical attack that proposes an obstacle in security reductions.
In the following, we give an informal definition of no-match attack.

3 We note that the terminology here is ambiguous. In fact some papers use ’external’ session IDs just as place-holders
for any fitting definition of session IDs. In these context, external session IDs do not have to be pre-specified. In
this way, one can refer to protocols in general and independent of their specification of session-ID. We note that,
typically, these papers use matching conversations as the default instantiations of session IDs in practical settings.
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Definition 7.1 (No-match Attack). We say that an adversaryA defined by an adversar-
ial model has successfully launched a no-match attack if there is a pair of oracles such
that they have computed the same session key but the two oracles do not have the same
session identifier.

The type of no-match attacks is applicable to protocols that are shown to provide
security against key compromise impersonation (KCI) or forward secrecy (FS). In these
scenarios the adversary is additionally provided with at least one long-term key, either
that of the Test-oracle or that of the oracle it communicates with. Note that many widely
used models in [Kra05a, LLM07a, JKSS12, BFS+13, KPW13] allow the adversary to
perform this action. Intuitively we present attackers that use knowledge of this secret
key to slightly modify one of the messages sent by communication parties. Usually, the
modification consists of a simple re-application of some cryptographic primitive F us-
ing fresh randomness. As a consequence, both oracles from communication parties will
accepts and still compute the same session key for this session. At the same time, due to
the subtle modification, they will not have matching sessions. This allows the adversary
to select one oracle as its Test-oracle and make a Reveal-query to another one for the
session key. Then, the adversary is able to use it to win the key indistinguishability ex-
periment of the Test-oracle. For simplicity, we suppose that a protocol message contains
a cryptographic value v. The general attack proceeds in three steps:

1. A intercepts a protocol message which contains a cryptographic value v.

2. The adversary computes a distinct cryptographic value v′ 6= v that makes communi-
cation party A compute the same key as when using v.

3. Finally, A sends the message and v′ to A.

Figure 7.1 shows a generic attack process of no-match attacks against AKE protocols. We
present no-match attacks on existing protocols (with claimed provable security) when F
is a digital signature scheme, a message authentication code, or a public key encryption
system.

7.2.2 Class 1 Attacks: Integrity Protection – MACs

The first class of attacks deals with protocols where A and B first establish a common
secret key. Further assume that both parties use their long-term secret keys to derive a
secret MAC key that is used to guarantee integrity protection of the transcript by ex-
changing tags over all previous protocol messages in the final two protocol messages.
Recently, Dodis, Kiltz, Pietrzak and Wichs introduced efficient algebraic probabilistic
MACs [DKPW12]. We informally show that employing such MACs for integrity pro-
tection is problematic. Assume that A sends a tag over all previous messages as a pro-
tocol message of the protocol. Now if the security definition also allows to reveal the
long-term secret key of A the adversary could first create the MAC key, intercept this
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protocol message, and compute a new tag on the same message using fresh random with
the revealed key. This new tag is now sent to B instead of the original one. Both oracles
(πsA, πtB) of parties A and B accept although they do not have matching sessions (due to
the subtle modification). Note that the MC-based sID is used in the security proof. This
allows the adversary to select one oracle (πsA) as its Test-oracle and make a Reveal-query
to another one (πtB) for the session key K. Then, the adversary is able to use K to answer
the Test-oracle.

7.2.2.1 Jeong-Katz-Lee One-Round AKE Protocol T S3 (ACNS’04)

In 2004, Jeong, Katz and Lee presented a provably-secure one-round authenticated key
exchange protocol named T S3 [JKL04] which claims to provide forward secrecy with-
out random oracle. However, the T S3 protocol is vulnerable to a MAC-based no-match
attack. Essentially in the protocol message a party sends a tag over the messages ex-
changed so far. This tagging algorithm is probabilistic. The key for the MAC is com-
puted as the Diffie-Hellman value of the long-term public keys of the communication
parties. In particular, it can be computed by the adversary if a single secret key is cor-
rupted. An adversary intercepts the protocol message. Then, it may corrupt a party and
obtain the secret key of the party. With this secret key the adversary can compute the
MAC key and re-apply the MAC to the entire transcript with fresh randomness. This
value is sent to its partner. Now both parties compute the same key although they have
distinct session identifiers, i.e. no match sessions. Details on the protocol, the security
model, and an illustration of our attack can be found in Appendix A.1.
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7.2.2.2 Joeng-Kwon-Lee KAM Protocol (CANS’06)

In 2006, Jeong, Kwon and Lee [JKL06] introduced a new protocol, named KAM, that
also relies on probabilistic and strongly secure MACs. Here a similar no-match attack is
possible. Suppose Alice wishes to communicate with Bob. In the protocol message of the
KAM protocol Alice sends to Bob a tag computed over her data. The key for the tagging
algorithm is derived from Alice’s long-term secret and Bob’s ephemeral public key. Thus
when considering KCI attacks, where the adversary is granted access to the long-term
secret of the holder of the Test-session, the adversary can compute the MAC key on its
own before Bob’s accepts. It can thus intercept Alice’s protocol message and substitute it
with a new tag that is computed over the same messages but using distinct randomness.
We stress that the KAM protocol also admits another type of no-match attacks. In this
attack variant the adversaries obtains the secret MAC key by computing the ephemeral
secret key of Bob via a RevealState query. Using this key and Alice’s long term public
key, the adversary can easily compute the MAC key used to authenticate messages sent
from Alice to Bob. The rest of the attack proceeds as before. We emphasize that the
attack works although no long-term secrets are exposed. Details on the KAM protocol,
the security model and an illustration of our attack can be found in Appendix A.2.

7.2.3 Class 2 Attacks: Authentication via Digital Signatures

To illustrate our second attack, assume A sends a probabilistically generated digital sig-
nature on message m to B during the protocol execution. The adversary first intercepts
this value, corrupts A to obtain its secret key, and then generates a new signature on m.
With overwhelming probability this signature will differ from the original one. Finally,
it sends the new signature to B who checks its validity and on success sends some other
values to A. The adversary will not interfere anymore. At the end of the protocol, A
will accept although there is no matching conversation with B. This allows the adver-
sary to select one oracle as its Test-oracle and make a Reveal-query to another one for
the session key. Then, the adversary is able to use it to win the key indistinguishability
experiment of the Test-oracle.

7.2.3.1 Beyond eCK: Perfect Forward Secrecy under Actor Compromise and
Ephemeral-Key Reveal (ESORICS’12)

In 2012, Cremers and Feltz [CF12] presented a signature-based compiler which achieve
perfect forward secrecy (PFS) in two-message or one-round key exchange protocols
that satisfy stronger security properties than provided by eCK model [LLM07a]. PFS
is considered in the presence of adversary that is allowed to reveal ephemeral secret
keys and the long-term secret keys of the actor of a session. Paper [CF12] refers to four
models, Mw, eCKw, M-PFS, eCK-PFS. In contrast with (eCKw, eCK-PFS), Mw and M-
PFS do not consider the EphemeralKey query which reveals the ephemeral secret keys
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of protocol sessions. Note that in paper [CF12], Cremers and Feltz considered a special
case of randomized digital signature in which an efficient adversary A can find out the
secret signature key if A can obtain the corresponding public signature key, a valid
signature and the random coins involved in this signature generation learned through an
EphemeralKey query. Therefore, they specified the signature scheme to be deterministic.
In theory, if the random coins involved in the signature are not defined as the contents of
the secret state or there exists no EphemeralKey query in the security model, randomized
signature schemes could be applied to the Cremers-Feltz’s compiler. The authors also
claimed in [CF12] (Remark 1) that the signature-based compiler could be a randomized
(SUF-CMA) signature scheme when the EphemeralKey query is not included in the
security models. Unfortunately, even if the security models include these restrictions, the
signature-based compiler is still not secure due to our no-match attacks. For simplicity,
we only show one case in which no EphemeralKey query can be considered.

In Appendix A.3 we provide more details: we first give an informal overview of
the used security model when the EphemeralKey query is not included, M-PFS. (More
information on the remaining proposed models, can be found in [CF12].) Then, we de-
scribe the SIG(NAXOS) protocol which is generated by applying the signature-based
compiler to the well-known protocol NAXOS [LLM07a]. (For more details on NAXOS
we refer to [LLM07a].) Note that Cremers and Feltz first define DH2 as the class of all
two-message key exchange protocols. As examples of protocols that belong to this class,
they list NAXOS [LLM07a], NAXOS+ [LP08b], NETS [LP08a] and CMQV [Ust08].

7.2.3.2 Signed Diffie-Hellman using NAXOS Transformation Protocol (SCN’10)

In 2010, Sarr et al. [SEVB10] constructed a signed Diffie-Hellman protocol that uses the
NAXOS transformation protocol, denoted here as SIGDHNAXOS (in the original paper it
is referred to as Protocol 2), and claimed that if the ephemeral keys are defined to be the
nonces ri and rj selected by parties Pi and Pj and the signature scheme is secure against
chosen message attacks (UF-CMA), this protocol can be proved secure in the eCK model
(relying on the same arguments as in the NAXOS security proof [LLM07a]). However, if
randomized signature schemes are applied to the SIGDHNAXOS protocol, it is vulnerable
to our no-match attacks. As before we defer all detail to Appendix A.4.

7.2.4 Class 3 Attacks: Authentication via Public Key Encryption

A similar attack can be launched if B sends an encrypted message to A which has to
be decrypted and checked using As secret key. The adversary may corrupt A, intercept
the ciphertext, decrypt it and compute a new ciphertext on the same message. If the
encryption system is probabilistic (what is required for even CPA security) the ciphertext
will differ from the original one with overwhelming probability. However, A will accept
the new ciphertext and accept without having a matching conversation with B.
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7.2.4.1 Affected Protocols: PKE-Based Key Exchange Protocol π (ACISP’14)

In 2014, Alawatugoda et al. [ABS14] presented a leakage model for key agreement pro-
tocols called the continuous after-the-fact leakage model (CAFL model, and showed a
generic construction of a protocol π that is claimed to be secure in the CAFL model.
Informally, the CAFL model is an after-the-fact leakage model for key exchange proto-
cols, i.e. the leakage happens after the test session is activated. The protocol π is a key
agreement protocol based on a public key encryption scheme which is additionally se-
cure under adaptively chosen ciphertext after-the-fact leakage (CCLA2). In the protocol
π, each party randomly chooses its ephemeral secret key, encrypts it with the public key
of its intended party using the (CCLA2) encryption function and sends the ciphertext to
its intended partner. The authors provided a purported proof of the protocol π secure in
the CAFL model. Unfortunately, our no-match attack can be applied to the protocol π in
the CAFL model. As before, we postpone the details to Appendix A.5.

Remark 7.2. Our no-match attack can also be performed for against the signature-based
π protocol which is described in Paper [ASB14]. The signature-based π protocol is based
on a signature scheme with the UF-CMLA security property (unforgeability against
chosen message leakage attacks) and uses the NAXOS trick for computing the pseudo-
ephemeral secret key. It is proved secure in After-the-fact Leakage-eCK (AFL-eCK)
model and guarantees Leakage-eCK security. In this model, partnership is defined using
matching conversations approach. And the adversary is allowed to corrupt the owner of
the test session, in addition to obtaining bounded amount of leakage from the partner of
the test session. Note that according to the definition of leakage-resilient signature, the
signature algorithm might be randomized. The adversaryA performs the similar actions
as described above: A first intercepts the signature σi on message m, corrupts Pi to
obtain its secrete key ski. Then, A generates a new signature σ∗i on the same message
m and sends σ∗i to party Pj who checks its validity. At the end of the protocol, Pi will
accept although there is no matching session with Pj . A selects oracle πsi as its Test-
oracle and make a Reveal-query to πtj for the session key Ki,j . Finally, A can use it to
win the key indistinguishability experiment of the Test-oracle.

7.2.5 Summary: Affected AKE Protocols

In this subsection, we give a summary of the affected AKE protocols described above.
We classify the differences into three categories: authentication via message authenti-
cation code, authentication via signature and authentication via digital signature. Fig-
ure 7.2 below shows the summary of affected protocols described above.
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7.3 Solutions

Let us stress that the above attacks do seemingly not harm the practical security of the
above protocols in any meaningful way. However, strictly speaking their security proofs
are not sound (when considering session IDs based on matching conversations). Ideally
our solutions should be as less invasive as possible to make them easily applicable to
existing protocol implementations as well (either via only minor modifications of the
protocol or no modification at all). In the following we propose several solutions to cope
with the above attacks. One can either modify the protocols or the security definitions
to re-obtain provable security. Firstly, we analyze what properties primitives like sig-
nature schemes, MACs must satisfy. The rationale is that in some protocols where the
used primitives can be decided upon one could simply choose primitives that make the
protocol withstand no-match attacks. In this sense the overall protocol implementation
could remain unaltered. Our second approach proposes a general transformation from a
protocol that is vulnerable to no-match attacks to one which isn’t. The transformation is
formulated in form of a simple protocol compiler that can use a key exchange protocol
in a black-box manner. That is, it only requires the message transcript and the session
key computed in a protocol run as input. Advantageously, our compiler is very efficient.

7.3.1 Uniqueness

The first and probably most simple solution is to only use unique primitives in primitives,
such as digital signature or MAC scheme. The advantage of this solution is that it does
not necessarily modify the protocol. In the following, we first explain why uniqueness
property must be required for thwart no-match attacks.
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7.3.1.1 Insufficiency of Strong Security and Deterministic Computation of v

It is relatively obvious that our no-match attacks succeed if the cryptographic value v
is computed using a probabilistic algorithm. For example, if v is a digital signature, an
attacker that obtains the secret signing key can simply re-sign the message to compute v′.
With high probability we have v′ 6= v. What is more subtle is that our attacks also work if
the signature scheme used to compute v provides strong security or even is deterministic.
This is exactly the point where many security proofs fail. Let us go into more detail
for our running example, signed Diffie-Hellman. Recall that the security definition of
strongly secure signatures gives the adversary access to the public key and a signing
oracle. The winning condition is that the adversary can produce a new message/signature
pair. Now consider an attempt to reduce the security of signed Diffie-Hellman to the
strong security of the signature scheme. The crucial point is that in no-match attacks the
adversary is also given the secret key. In particular, the security definition of strongly
secure signatures does not exclude that the adversary may produce a new signature on a
previously queried message when the secret key is given.

Quite similarly, it is not enough to require that the signature scheme has a determinis-
tic signing procedure. The problem is that this only guarantees that the signing algorithm
specified by the signature scheme outputs a single signature v per message m. However,
there may exist other algorithms that output, given m, a signature v′ 6= v such that both
(m, v) and (m, v′) pass the signature verification positively. We remark that the defini-
tions of deterministic signatures and unique signatures refer to different algorithms of
the signature scheme [GO93, Cor02, KK12]. Whereas a deterministic signature scheme
refers to a signature scheme with a deterministic signing algorithm, unique signatures
refer to signature schemes whose verification algorithm meets the uniqueness property.
The same argument can be applied to MAC scheme.

Remark 7.3. This may be impossible for public key encryption. Note that the well-
known fact that to even meet the weak notion of IND-CPA-security, any PKE scheme
must be probabilistic [GM84]. We are aware that for PKE-based authentication, secu-
rity protocols usually require the stronger notion of IND-CCA security (or some related
notion with restricted access to a decryption oracle). Interestingly, if the adversary also
holds the secret key of the encryption system in a no-match attack, there is no obvi-
ous way to protect the ciphertext against a no-match attack. It uses the secret key to
decrypt the ciphertext and obtain the plaintext. Next the plaintext is re-encrypted with
fresh randomness. Similarly, if the adversary obtains the plaintext message of the ci-
phertext, there is no way to prevent her from re-encrypting it with a fresh randomness.
Thus it seems that no-match attacks on IND-CCA-secure public key encryption cannot
be protected against by an appropriate choice of the scheme from some subclass since
IND-CCA-secure PKE must always provide probabilistic encryption.
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7.3.1.2 Unique Verification

We propose a way to prevent no-match attacks that requires unique primitives. In this
subsection, we give the formal definition of uniqueness.

Definition 7.4 (Unique Verification). A verification algorithm Vfy defined over (K,M,
V , X aux) is an efficient algorithm: K × M × V × X aux → {0, 1} described as a
deterministic Turing Machine. The set K is called the key space, the set M is called
the message space, the set V is called verification message space and X aux is called
the auxiliary information space. We say that Vfy provides unique verification if for all
k ∈ K, all messages m ∈M and all aux ∈ X aux we always have that

|{v ∈ V|Vfy(k,m, v, aux) = 1}| ≤ 1.

We require that the space X aux contains a special bit-string called the empty string
denoted ∅.

A verification function enables one to evaluate V (k,m, v, aux) given the inputs k,
m, v and aux, where k ∈ K, m ∈ M, v ∈ V and aux ∈ X aux. In the above definition
we generally consider algorithms that are keyed with some key k. Depending on the
primitive this key can be a symmetric, public, or secret key.

7.3.2 Session Key Derivation Compiler for No-Match Attacks

All our solution aim at being applicable to existing implementations of key exchange
protocols. The above solutions attempt to not modify the protocol. In the following we
will also consider solutions that change it. However, we try to keep as less invasive as
possible. To us an ideal solution is a compiler that only requires the secret session key of
the original key exchange protocol and the completely exchanged messages between the
sender and the receiver. In this spirit, we present a general solution to protect protocols
against no-match attacks in the form of a protocol compiler. Assume we have a key
exchange protocol that is only susceptible to no-match attacks but secure otherwise. In
other words, the session keys of the original protocols should be indistinguishable from
random with respect to the security model in which no-match attacks are not considered.
To formally capture this, we could for example define the class of such protocols to be
all protocols which are secure when using unique signatures (or MACs) but insecure
when using non-unique signatures. To thwart the protocol also against no-match attacks
we propose the following efficient transformation. Let OTPRF be a one-time PRF (i.e.,
a PRF that is secure only if the adversary can query a single message to the PRF oracle).
Let K be the key that is output by the original protocol. We now provide a modified key
derivation routine. Given K, the new session key is computed as K∗ = OTPRF(K,TC)
where TC is the transcript consisting of all the messages sent and received by some



7.3 Solutions 135

communication party C ∈ {A,B} in chronological order (possibly after applying some
deterministic sorting of messages in each protocol move) 4.

Clearly, the attacker still can exchange the cryptographic value v with a new one
v′ on the same message. Further, the two partners will also not have a matching con-
versation. However, the attacker cannot use the Reveal-query to successfully answer the
Test-query. This is because our transformation OTPRF involves the whole transcript of
all messages sent and received by oracles. Instead of sending v, the no-match attacker
sends v′ to oracle πsA, see Figure 7.1. It is easy to see that in this case the transcript T′A
of πsA does not match the transcript TB of πtB. As a result, the communication oracles do
not share the same session key after this attack, i.e., OTPRF(K, T′A) 6= OTPRF(K, TB)
where T′A 6= TB. Thus, the attacker cannot win the security experiment of the Test oracle
via the Reveal-query. Figure 7.3 shows our generic compiler against no-match attacks
against. We can instantiate the one-time PRF very efficiently using pairwise-independent

Efficient Compiler

Original
AKE

(K,TC)

K∗ $← OTPRF(K,TC)

Compute:

Session Key: K

New Session Key: K∗Transcript: TC, C ∈ {A,B}

Fig. 7.3. Efficient Compiler for No-Matching Attacks

hash functions [GL89]. As an advantage, pairwise-independent hash functions provide
statistical security (i.e., security even against unbounded adversaries) in contrast to gen-
eral PRFs. As a result no additional complexity assumptions are required in the security
proof of the modified protocol. As an advantage, the above compiler is computationally
very efficient and does not add any security assumptions to the protocol. However, it
does modify the key derivation function of the protocol. Typically, the key derivation
function is fixed in protocol suites whereas sometimes users can choose the concrete
algorithms used to produce the protocol messages like for example in TLS where the
users can choose among a predefined set of algorithm-combinations, the ciphersuites.
Thus for existing implementations it may be possible for the protocol participants to
agree on a unique signature scheme whereas there is no way to modify the key deriva-
tion of the protocol. Another disadvantage of the protocol as presented above is that each
user has to store the actual state of the transcript until the handshake phase is finished.
In more complex protocols this could be exploited to launch denial of service attacks

4 Note that only the key K from the original key exchange protocol is indistinguishable from random, we can then
actually reduce security to that of the OTPRF. The proof is straight-forward.
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on the protocol. A simple way to reduce the state held by the communication partners
is to use a cryptographic hash function Hash to hash the transcript in a step-by-step
fashion. In this way, the transcript Ti after the i-th exchanged message mi consists of
Ti = Hash(Ti−1,mi) where T0 is defined to some constant string.

7.3.3 Discussion of our Solutions

We give several efficient ways to thwart no-match attacks. However, the solutions de-
scribed above have distinct advantages and disadvantages. Such as using unique prim-
itives, the advantage of this solution is that it does not necessarily modify the original
protocol. Nevertheless, requiring uniqueness of verification severely restricts the class of
suitable cryptographic primitives, in particular when relying on digital signatures. It is
true that probabilistic signature schemes can be made deterministic by using some gen-
eral transformations, e.g., by deriving the necessary randomness via a pseudo-random
function (PRF). Since PRFs can be built from one-way functions it does not increase the
theoretical complexity of the constructions. However, deterministic signatures cannot
be easily mapped to unique signatures via some “efficient” approaches, e.g. PRFs. Fur-
thermore, several theoretical results [GO93, Cor02, BPR+08, FS12, KK12] indicate that
there is no “simple” transformation from deterministic signatures to unique signatures.
For our compiler solution, we require the (original) secret session key and the complete
transcripts. From another point of view, we modify the original protocols, although the
transformation is very efficient. By nature, it is the best solution if we can improve the
existing generic security model to avoid some trivial attacks. However, it seems not so
easy to get a generic solution. As open problem, it would be interesting to develop a new
formal generic definition of session identifier, or to improve the generic definition of
matching conversation-based session identifier to remove some non-meaningful attacks
in the security proofs.
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Conclusion

In this chapter we conclude the thesis by discussing our main results. First, we discuss
the security of all the TLS-PSK ciphersuites which are often used for remote authen-
tication between servers and constrained clients like smart cards or new electronic ID
card, and give the first formal security proof in the standard model. Then, we construct
the first secure Authenticated Key Exchange (AKE) protocol, called tAKE, in standard
model whose security does not degrade with an increasing number of participating par-
ties and sessions. Moreover, we show how to modularly construct secure, efficient and
reliable AKE systems. At the same time, we also present two efficient AKE-compilers.
Finally, we present a theoretical attack for an authenticated key exchange, named here
no-match attack, and show that proving security under the matching conversations as
session IDs (MC-based sID) is a delicate issue.

8.1 Discussion of our Security Analysis of TLS-PSK ciphersuites

We prove the security of Transport Layer Security Pre-Shared Key ciphersuites (TLS-
PSK) in Chapter 4. The TLS-PSK is very important for remote authentication between
servers and constrained clients, like smart cards or new electronic ID card, and so forth.
We give the first formal security analysis for TLS-PSK ciphersuites. In order to analyze
these protocols, we introduce the first definition of ACCE security for authentication pro-
tocols with pre-shared keys. We do not propose a separate model but rather an extension
of the ACCE model of JKSS as described in [JKSS12] to also cover authentication via
pre-shared keys. Then, we introduce a new variant of pseudo-random functions (PRFs),
called double pseudo-random function (DPRF) for the security analysis of TLS_RSA_-
PSK and TLS_DHE_PSK. Finally, we show that TLS_PSK is ACCE secure (without
forward secrecy), TLS_RSA_PSK is ACCE secure with asymmetric perfect forward se-
crecy and TLS_DHE_PSK is secure with (classical) perfect forward secrecy.

LIMITATIONS FOR OUR RESULTS.
In our work, we give a dedicated security analysis for TLS-PSK ciphersuites. We

believe that it is possible to give a more modularized analysis, similar to [KPW13] who
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analyzed the classical ciphersuites of TLS by abstracting the handshake phase into a
Constrained-CCA-secure (CCCA) key encapsulation mechanism that is combined with
a secure authenticated encryption scheme.

We stress that when showing that TLS_RSA_PSK provides asymmetric perfect for-
ward secrecy, we do not consider TLS-RSA with RSA-PKCS encryption as it is cur-
rently used in practice. Instead we rather assume that it uses a generic IND-CCA secure
encryption scheme that is secure in the standard model. It would be interesting to show
that the results of [KPW13] on TLS-RSA with RSA-PKCS encryption can be transferred
to show that TLS-PSK with RSA-PKCS based key transport provides asymmetric per-
fect forward secrecy in the random oracle model.

8.2 Discussion of our Tightly-Secure AKE Protocol

In Chapter 5, we construct the first secure Authenticated Key Exchange (AKE) proto-
col, called tAKE, in standard model whose security does not degrade with an increasing
number of participating parties and sessions. We describe a generic three-pass AKE pro-
tocol and prove its security in an enhanced Bellare-Rogaway security model under the
standard assumption. Our construction is modular and enjoys a tight security reduction.
Moreover, it can be instantiated efficiently from standard assumptions. For instance, we
give an SXDH-based protocol whose communication complexity is only 14 group ele-
ments and 4 exponents.

LIMITATIONS AND OPEN PROBLEM FOR OUR RESULTS.
Our enhanced Bellare-Rogaway security model provides perfect forward secrecy

(PFS) and key compromise impersonation (KCI) attacks. Moreover, we model also prac-
tical PKI-related attacks. We allow the adversary to issue more than one Test-query. On
the other hand, we do not allow the adversary to reveal the internal states or intermediate
results of the computation of the session key, i.e., no RevealState-query as described in
the Canetti-Krawczyk model. It would be interesting to show the existence of a tightly
secure construction in such a security model with RevealState-query.

8.3 Discussion of our efficient AKE-Compilers

In Chapter 6, we describe our efficient AKE-compilers that generically turn passively
secure key exchange protocols (KE) into authenticated key exchange protocols (AKE)
where security also holds in the presence of active adversaries. Our first compiler is very
efficient. It relies on signature schemes and only requires two additional moves in which
signatures are exchanged. The second compiler relies on public key encryption systems.
Although the first compiler is more efficient, the second compiler accounts for scenarios
where the parties do not have (certified) signature keys but only encryption keys. This
can often occur in practice.
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From a modular processing perspective, our compilers only require the public tran-
script T of the key exchange protocol, and do not require any modifications in the un-
derlying KE protocols. Thus, our compilers are easily applicable to existing systems,
what makes them very useful in practice. Considering efficiency evaluation, our effi-
ciency improvements rely on the following techniques as follows. We first use a form of
implicit key confirmation instead of explicit key confirmation. As our second efficiency
improvement, we formally show that for security we do not have to exchange uniformly
random nonces after the key exchange protocol. Finally, our compilers do not need to
computer a new session key for AKE session. In summary, it only leads to the additional
computation and communication and complexity O(1).

8.4 Discussion of our No-Match Attacks

In Chapter 7, we present a new theoretical attack for key exchange protocols, named
here no-match attack, and show that proving security under the matching conversations
as session IDs (MC-based sID) is a delicate issue. Moreover, we provide also several
examples of protocols that claim to be secure under a security definition based on MC-
based sID but where the security proof is actually flawed. We show that no-match attacks
are often hard to avoid without costly modifications of the original protocol. Finally, we
discuss several ways to thwart no-match attacks.

LIMITATIONS OF OUR RESULTS ON No-Match ATTACK.
In our work, we give several efficient ways to thwart no-match attacks. However,

these solutions have distinct advantages and disadvantages. Such as using unique primi-
tives in the key exchange protocols, the advantage is that it does not necessarily modify
the original protocols. However, requiring uniqueness of verification severely restricts
the class of suitable cryptographic primitives, in particular when relying on digital sig-
natures. As our second solution, we need to modify the original protocols. As open
problem, it would be interesting to develop a new formal generic definition of session
identifier, or to improve the generic definition of matching conversation-based session
identifier to remove some non-meaningful attacks in the security proofs.
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Chapter A

Appendix: No-Match Attacks on AKE Protocols

In this section, we show several examples of existing AKE protocols that claim to be
secure under a security definition based on MC-based session identifier (sID) but where
the security proof is actually flawed.

A.1 The Jeong-Katz-Lee Protocol T S3

This T S3 protocol is not immune to our no-match attack. We first give an overview
of their security model. Then, we describe the T S3 protocol. Finally, we show our no-
match attacks against this protocol. More information on T S3 protocol, see [JKL04]

• Jeong-Katz-Lee Model.
In Jeong-Katz-Lee model (named JKL04 Model), they consider forward secrecy (FS)
for two-party key exchange protocol. We will not describe the JKL04 model in detail
here. Instead we only point out some of its main features since these notions are
necessary to explain our no-match attacks. For more information on JKL04 model,
see [JKL04].

ADVERSARY MODEL. Without loss of generality, each party Pi is defined by a set
of oracles, πsi which represents the s-th protocol instance of player Pi, where s ∈ [d]
is an index for a range such that d ∈ N. An active adversary A is able to issue the
following queries:

– Initiate(i, j): Pi to initiate execution of the protocol with Pj;

– Execute(Pi,Pj): Parties Pi and Pj execute the protocol;

– Send(πsi ,m), Reveal(πsi ), Corrupt(Pi) and Test(πsi ) queries are similar to those
as described in 3.4.2.

A session identifier of an protocol instance sIDs
i is a string different from those of

all other sessions in the system. In paper [JKL04], session identifier (sID) is defined
as the transcript of the conversations between comminication parties Pi and Pj in
protocol. JKL04 partnership definition is based on the notion of session identifiers
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(sIDs). The following definition describes the definition of partnership in the JKL04
model.

Definition A.1 (JKL04 Model Partnership). Consider oracle πsi of party Pi. We
say that πsi and πtj are partnered if sIDs

i = sIDt
j , Pi is the partner of πtj and Pj is the

partner of πsi .

Definition A.2 describes freshness, which depends on the respective notion of part-
nership described above.

Definition A.2 (JKL04 Model Freshness). An oracle πsi is fresh if the following
conditions are true:

– The adversary A has not queried Reveal(πsi ),

– The adversary A has not queried Reveal(πtj), if πsi is partnered with πtj .

– If the adversary A has queried Corrupt(Pi) or Corrupt(Pj), then it has never
queried Send(πsi ,m).

SECURITY GAME. The security in the model is defined using the security experi-
ment, played between an adversary A and a challenger C. The security experiment
is similar to that described in 3.4.3.

Definition A.3 (JKL04 Model Security Definition). We say that a two-party key
exchange protocolΣ is (t, ε)-secure in JKL06 model, if for all adversariesA running
the above security game within time t, it holds that: When A returns b′ such that

– A has issued a Test-query to oracle πsi , and

– the oracle πsi is fresh throughout the security game,

then the probability that b′ equals the bit b sampled by the Test-query is bounded by

|Pr[b = b′]− 1/2| ≤ ε.

The Joeng-Katz-Lee Key Agreement Protocol T S3 is shown in Figure A.1. They
presented a formal proof of security in the JKL04 model described above.

• Protocol Description.

– Setup: Assume Pi wants to establish a session key with Pj . Party Pc has a public-
/private key pair: (pkc = gxc , skc = xc), c ∈ {i, j}. Let MAC be an strongly
unforgeable message authentication code (MAC) scheme.

– Round 1: Party Pi computes a MAC key ki,j = pkxij = gxixj . Then, Pi selects a

random number αi
$← Zq, computes gαi and calculates an authentication tag τi

by evaluating some probabilistic MAC.Tag function under the established MAC
key ki,j with internal random coins ri over the publicly known input (i||j||gαi),
τi := MAC.Tag(ki,j, ri; i||j||gαi). Pi sends gαi and τi to Pj . Party Pj behaves as
similarly as Pi.
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– Computation of session key: Party Pi verifies the tag of the received message.
If the check is passed, Pi computes the session key Ki,j := gαiαj . The session
identifier sIDi = aαi || τi || aαj || τj . Party Pj behaves as similarly as Pi.

Pi
(pki = gxi , ski = xi)

Pj
(pkj = gxj , skj = xj)

αi
$← Zq , compute gαi αj

$← Zq , compute gαj

ki,j = pkxij ,
τi := MAC.Tag(ki,j , ri; i||j||gαi )

ki,j = pk
xj
i ),

τj := MAC.Tag(ki,j , rj ; i||j||gαj )

−
gαi , τi

−−−−−−−−−−−−−−→

←−
gαj , τj

−−−−−−−−−−−−−−
accept if

MAC.Vfy(ki,j , i||j||gαj , τj) = 1
accept if

MAC.Vfy(ki,j , i||j||gαi , τi) = 1

sIDi = aαi || τi || aαj || τj sIDj = aαi || τi || aαj || τj

Ki,j := gαiαj Ki,j := gαiαj

Fig. A.1. The description of T S3 Protocol

• No-Match Attack against Joeng-Katz-Lee (T S3) Protocol.
Figure A.2 shows our no-match attack against the T S3 Protocol. The adversary A
performs the actions as follows:

– According to the protocol specification, party Pi computes gαi and an authenti-
cation tag τi and sends (gαi , τi) to Pj . Party Pj behaves as similarly as Pi.

– The adversary A makes a Corrupt(Pi) query and obtains the long-term private
key of party Pi, ski = xi.

– Assume that the adversary A controls all communications between parties and
deletes the τi generated by Pi. ThenA computes ki,j = pkxij using the private key
xi and generates a fresh authentication tag τ ∗ with internal random coins r∗ (r∗ 6=
ri), τ ∗ := MAC.Tag(ki,j, r

∗; i||j||gαi). Finally, A sends (gαi , τ ∗) to Pj . Note that
the adversary A has queried Corrupt(Pi), then it has never queried Send(πsi ,m).
According to the fresh definition oracle πsi is fresh.

– Computation of session key: Parties Pi and Pj accept and compute the same
session key Ki,j := gαiαj .

– The adversary A queries Test(πsi ) and gets Kb from oracle πsi . Then, A makes
Reveal(πtj) and obtains the session key Ki,j . Note that according to the definition
of partnership πsi and πtj are not partnered, i.e., sIDs

i 6= sIDt
j . Therefore, A is

allowed to make Reveal(πtj) to oracle πtj . Finally, If Ki,j = Kb, then A returns
b = 1; Otherwise, returns b = 0.
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Remark A.4. Since the adversary A forces the same session key Ki,j to be computed
in two non-matching sessions, then it can choose the former as its test session and
win the distinguishing game.

Pi A Pj

(πsi ) (πtj)

(gxi , xi) (gxj , xj)
Using Corrupt(Pi),

Obtain ski = xi

αi
$← Zq , gαi αj

$← Zq , gαj

ki,j = gxjxi ki,j = gxjxi ki,j = gxixj
τi :=

MAC.Tag(ki,j , ri; i||j||gαi )
τ∗ :=

MAC.Tag(ki,j , r∗; i||j||gαi )
τj :=

MAC.Tag(ki,j , rj ; i||j||gαj )

−
gαi , τi
−−−−−−−−−→

−
gαi , τ∗
−−−−−−−−−→

←−
gαj , τj
−−−−−−−−−

←−
gαi , τi
−−−−−−−−−

Compute: ki,j Compute: ki,j
accept if

MAC.Vfy() = 1
accept if

MAC.Vfy() = 1

Ki,j=gαiαj Ki,j=gαiαj

←−
Test(πsi )
−−−−−−−−−

−
Kb

−−−−−−−−−→

−
Reveal(πtj)
−−−−−−−−−→

←−
Ki,j

−−−−−−−−−
If Ki,j = Kb,
then b = 1;

Otherwise, b = 0;

←−
b

−−−−−−−−−

Fig. A.2. No-Match Attack against T S3 Protocol

A.2 The Jeong-Kwon-Lee KAM Protocol

The key agreement protocol KAM introduced by Jeong, Kwon and Lee [JKL06] shown
in Figure A.3 carries a formal proof of security in their model. In this subsection, we
first give an informal overview of their security model. Then, we provide a description
of the KAM protocol. Finally, we present a no-match attack that can be launched against
this protocol.

• Jeong-Kwon-Lee Model.
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In the security model used by the Jeong-Kwon-Lee paper (hereafter named JKL06
model), the adversary A is in control of all communications between parties and
allowed to intercept, delay, delete, and modify any messages.The JKL06 model also
considers perfect forward secrecy (PFS) and key compromise impersonation (KCI)
attacks. We only give an informal overview of the Jeong-Kwon-Lee model. More
details can be found in [JKL06].

ADVERSARY MODEL. Assume that each party holds a pair of private and public
keys. As described above, party Pi is also defined by a set of oracles, {πsi }. An active
adversary A is able to issue Initiate, Send, Reveal, Corrupt, RevealState and Test
queries. The mentioned queries are similar to those as described in A.1.

The security definition depends on the notions of partnership of oracles. The JKL06
partnership definition is based on the notion of session identifiers (sIDs). Before we
begin to describe the definition of partnership, we first give the original definition of
session identifier sID as described in [JKL06].

Definition A.5 (JKL06 Model Session Identifier). A session identifier sIDs
i is sug-

gested to be the concatenation of all messages sent and received by a particular
protocol instance πsi , where the order of these message is determined by the lexico-
graphic ordering.

The following definition A.6 describes the definition of partnership in the JKL06
model.

Definition A.6 (JKL06 Model Partnership). Consider oracle πsi of party Pi. The
partner of this oracle is party Pj . We say that two oracles πsi and πtj are partnered,
if the following conditions are true: sIDs

i = sIDt
j , Pi is the partner of πtj and Pj is the

partner of πsi .

Any key exchange protocol should satisfy the correctness condition, i.e. two part-
nered oracles have accepted the same session key.

Definition A.7 describes freshness, which depends on the respective notion of part-
nership described above. The JKL06 model considers perfect forward secrecy (PFS),
key compromise impersonation (KCI) and the reveal of intermediate random values
used when computing the session key. However, the following definition of freshness
we concentrate on the notion of key compromise impersonation (KCI) attacks since
this notion is necessary to launch and explain our no-match attack. Informally, the
adversary is allowed to ask a Corrupt query to A (the owner of the Test oracle). More
information can be found in [JKL06].

Definition A.7 (JKL06 Model Freshness). An oracle πsi is fresh if the following
conditions are true:

– The adversary A has not queried Reveal(πsi ),
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– The adversary A has not queried Reveal(πtj), if πsi is partnered with πtj .

– The adversary A does not control Pj , if Pj is the partner of πsi . In other words,
Pj is not generated by the adversary A.

– KCI (Key Compromise Impersonation): the adversaryA has queried all Send(πsi ,m)
after Corrupt(Pi) and its partner Pj has not corrupted.

SECURITY GAME. The security is defined using a security experiment, played be-
tween an adversary A and a challenger C. The security experiment is similar to that
described in 3.4.3. The security definition of the JKL06 model is essentially that of
Appendix A.3.

The Jeong-Kwon-Lee Key Agreement Protocol KAM is shown in Figure A.3. They
presented a formal proof of security in the JKL06 model described above.

• Protocol Description.
– Setup: Each party Pc has a public-/private key pair: (pkc = gxc , ski = xc), c ∈
{i, j}. Let MAC be a strongly unforgeable message authentication code (MAC)
scheme. Let Hash be a hash function such that Hash: {0, 1}∗→ {0, 1}κ, where κ
is a security parameter.

– Round 1: Party Pi selects a random number αi
$← Zq, computes Γi = gαi and

sends Γi to Pj . Party Pj behaves as similarly as Pi.

– Round 2: Party Pi performs a group membership test of Γj . If the test is suc-
cessful, Pi computes the MAC key ki,j = Hash(Γ xi

j ) = Hash(gαjxi). Then, Pi
calculates an authentication tag τi by evaluating some probabilistic MAC.Tag
function under the established MAC key ki,j with internal random coins ri over
the publicly known input (i||j||gαi), τi := MAC.Tag(ki,j, ri; i||j||gαi), where ri
is defined as internal randomness. Pi sends τi to Pj . Party Pj behaves as similarly
as Pi.

– Computation of session key: Party Pi computes the MAC key kj,i = Hash(pkαij ) =
Hash(gxjαi) and verifies MAC.Vfy(kj,i, i||j||gαj , τj) = 1. If the check is passed,
Pi computes the session key Ki,j := Hash(pkxij ) ⊕ Hash(Γαi

j ). Party Pj behaves
as similarly as Pi.

• No-Match Attack against the Jeong-Kwon-Lee (KAM) Protocol.
Figure A.7 shows our no-match attack against the KAM protocol. The adversary A
performs the following actions:

– The adversary A makes a Corrupt(Pi) query and obtains the long-term private
key of party Pi, ski = xi.

– According to the protocol specification, party Pi computes Γi and send Γi to Pj .
Party Pj behaves as similarly as Pi.

– Then, party Pi computes an authentication tag τi and sends τi to Pj . Since the
adversary A controls the entire communication flows between the parties, it can
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Pi
(pki = gxi , ski = xi)

Pj
(pkj = gxj , skj = xj)

αi
$← Zq , Γi = gαi αj

$← Zq , Γj = gαj

−
Γi

−−−−−−−−−−−−−−→

←−
Γj

−−−−−−−−−−−−−−
ki,j = Hash(Γxij ),

τi := MAC.Tag(ki,j , ri; i||j||gαi )

kj,i = Hash(Γ
xj
i ),

τj := MAC.Tag(kj,i, rj ; i||j||gαj )

−
τi

−−−−−−−−−−−−−−→

←−
τj

−−−−−−−−−−−−−−
Compute: kj,i = Hash(pkαi

j ) Compute: ki,j = Hash(pk
αj

i )

accept if
MAC.Vfy(kj,i, i||j||gαj , τj) = 1

accept if
MAC.Vfy(ki,j , i||j||gαi , τi) = 1

Ki,j := Hash(pkxij ) ⊕ Hash(Γαi
j ) Ki,j := Hash(pk

xj
i ) ⊕ Hash(Γ

αj

i )

Fig. A.3. Description of the KAM Protocol

easily intercept and drop the last message τi generated by Pi. Then A computes
ki,j = Hash(Γ xi

j ) using the private key xi and generates a fresh authentication tag
τ ∗ with internal random coins r∗ (r∗ 6= ri), τ ∗ := MAC.Tag(ki,j, r

∗; i||j||gαi).
Finally, A sends τ ∗ to Pj .

– Party Pj behaves similar to Pi. Pj computes an authentication tag τj and sends τj
to Pi.

– Computation of session key: parties Pi and Pj accept and compute compute the
same session key Ki,j := Hash(pkxij ) ⊕ Hash(Γαi

j ).

– The adversary A queries Test(πsi ) and gets Kb from oracle πsi . Then, A asks
Reveal(πtj) and obtains the session key Ki,j . Note that according to the definition
of partnership πsi and πtj are not partnered, i.e. sIDs

i 6= sIDt
j . Therefore, A is al-

lowed to make Reveal(πtj) to oracle πtj . Oracle πsi is fresh. Finally, if Ki,j = Kb,
then A returns b = 1; Otherwise, returns b = 0.

A.3 Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal

• Cremers-Feltz Model: M-PFS. In original paper [CF12] there are four new game-
based security models for key exchange protocols, Mw, eCKw, M-PFS and eCK-PFS.
We will only describe the M-PFS model (no EphemeralKey query) here and point
out some of its main features relevant to perfect forward secrecy (PFS) since these
notions are necessary to explain our no-match attacks. For more information on all
these models, see [CF12].
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Pi A Pj

(πsi ) (πtj)

(gxi , xi) (gxj , xj)
Using Corrupt(Pi),

Obtain ski = xi

αi
$← Zq , Γi = gαi αj

$← Zq , Γj = gαj

−
Γi

−−−−−−−−−→

−
Γi

−−−−−−−−−→

←−
Γj

−−−−−−−−−

←−
Γj

−−−−−−−−−
ki,j = Hash(Γxij ),

τi :=
MAC.Tag(ki,j , ri; i||j||gαi )

ki,j = Hash(Γxij ),
τ∗ :=

MAC.Tag(ki,j , r∗; i||j||gαi )

kj,i = Hash(Γ
xj
i ),

τj :=
MAC.Tag(kj,i, rj ; i||j||gαj ))

−
τi

−−−−−−−−−→

−
τ∗

−−−−−−−−−→

←−
τj

−−−−−−−−−

←−
τj

−−−−−−−−−
Compute: kj,i Compute: ki,j

accept if
MAC.Vfy() = 1

accept if
MAC.Vfy() = 1

Ki,j=Hash(pkxij ) ⊕
Hash(Γαi

j )

Ki,j=Hash(pk
xj
i ) ⊕

Hash(Γ
αj

i )

←−
Test(πsi )
−−−−−−−−−

−
Kb

−−−−−−−−−→

−
Reveal(πtj)
−−−−−−−−−→

←−
Ki,j

−−−−−−−−−
If Ki,j = Kb,
then b = 1;

Otherwise, b = 0;

←−
b

−−−−−−−−−

Fig. A.4. No-Match Attack against KAM Protocol by Corrupt-query

ADVERSARY MODEL. For simplicity, we use the same notions as described in the
original paper. Party Pi is defined by a set of sessions. Let session s at party Pi
denote as the tuple (Pi, s) ∈ P × N. An active adversary A is able to issue Send,
SessionKey, Corrupt and Test queries. The mentioned queries are similar to those as
described in 3.4.2.

Let the variables sactor, speer denote the identities of the actor and intended peer of
the session s. Let srole be the role of the session execution (i.e., initiator or responder)
and ssent, srecv be the concatenation of timely ordered messages as sent and received
by sactor during the protocol instance s. Each session s is associated with a quintuple
of variables (sactor, speer, srole, ssent, srecv).
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Pi A Pj

(πsi ) (πtj)

(gxi , xi) (gxj , xj)

αi
$← Zq , Γi = gαi αj

$← Zq , Γj = gαj

−
Γi

−−−−−−−−−→

−
Γi

−−−−−−−−−→

←−
Γj

−−−−−−−−−

←−
Γj

−−−−−−−−−
ki,j = Hash(Γxij ),

τi :=
MAC.Tag(ki,j , ri; i||j||gαi )

kj,i = Hash(Γ
xj
i ),

τj :=
MAC.Tag(kj,i, rj ; i||j||gαj ))

Using
RevealState(πtj),

Obtain αj
ki,j =

Hash((gxj )αj ),
τ∗ :=

MAC.Tag(ki,j , r∗; i||j||gαi )

−
τi

−−−−−−−−−→
−

τi
−−−−−−−−−→

←−
τj

−−−−−−−−−

←−
τ∗

−−−−−−−−−
Compute: kj,i Compute: ki,j

accept if
MAC.Vfy() = 1

accept if
MAC.Vfy() = 1

Ki,j=Hash(pkxij ) ⊕
Hash(Γαi

j )

Ki,j=Hash(pk
xj
i ) ⊕

Hash(Γ
αj

i )

−
Test(πtj)
−−−−−−−−−→

←−
Kb

−−−−−−−−−

←−
Reveal(πsi )
−−−−−−−−−

−
Ki,j

−−−−−−−−−→
If Ki,j = Kb,
then b = 1;

Otherwise, b = 0;

−
b

−−−−−−−−−→

Fig. A.5. No-Match Attack against KAM Protocol by RevealState-query

Definition A.8 (Cremers-Feltz12 Model Matching Sessions). Two completed ses-
sion s and s′ are said to be matching if sactor = s′peer and speer = s′actor and ssent =
s′recv and s′sent = srecv and srole 6= s′role.

Cremers and Feltz in paper [CF12] presented a new concept of origin session. It al-
lows the adversary to corrupt the long-term secret key of the intended communication
partner of the test session s if an origin-session s′ for test session s exists.
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Definition A.9 (Cremers-Feltz12 Model Origin-Session). A (possibly incomplete)
session s′ is an origin-session for a completed session s when s′sent = srecv.

Definition A.10 describes freshness, which depends on the respective notions of
matching sessions and origin-session described above.

Definition A.10 (Cremers-Feltz12 Model Freshness). A completed session s is said
to be fresh if the following conditions are true:

– The adversary A has not queried SessionKey(s),

– The adversary A has not queried SessionKey(s∗), if s∗ matches s,

– If there exists no origin-session for session s, thenA does not query a Corrupt(speer)
before the completion of session s.

SECURITY GAME. The security in the model is defined using the security experi-
ment, played between an adversary A and a challenger C. The security experiment
is similar to that as described in 3.4.3.

Definition A.11 ( Model Security Definition). The security definition is similar to
that described in A.3.

For similarly, we only describe the SIG(NAXOS) protocol as an example in Fig-
ure A.10 and show our no-match attack against this protocol.

• Protocol Description.

– Setup: Each party Pc has two independent valid long-term secret/public key
pairs, one key pair from protocol NAXOS: (pkc = gxc , ski = xc) and one pair
(pksigc , sksigc )) for a randomized digital signature scheme, where c ∈ {i, j}. Let
H1:{0, 1}∗ → Zp and H2:{0, 1}∗ → {0, 1}κ be two hash functions, where κ is a
security parameter. Let SIG be a signature scheme (SUF-CMA).

– Party Pi selects a random number αi
$← Zq, computes Γi = gH1(αi,ski). Then, Pi

computes a signature σi by evaluating some probabilistic SIG.Sign function under
the private key sksigi with internal random coins ri over the publicly known input
(Γi||Pj), σi := SIG.Sign(sksigi , ri;Γi||Pj). Finally, Pi sends (Γi, σi) to Pj .

– Party Pj behaves as similarly as Pi. Party Pj selects a random number αj
$← Zq,

computes Γj and σj , and sends (Γj , σj) to Pi.

– Computation of session key: Party Pi verifies SIG.Vfy(pksigi , Γj||Γi||Pi, σj) =
1. If the check is passed, Pi computes the session key as follows: Ki,j :=
H2(Γ

ski
j , pk

H1(αi,ski)
j , Γ

Hash1(αi,ski)
j , i, j). Party Pj behaves as similarly as Pi,

• No-Match Attack against the SIG(NAXOS) Protocol.
Figure A.7 shows our no-match attack against the KAM Protocol. The adversary A
performs the actions as follows:
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Pi
(pki, ski), (pk

sig
i , sk

sig
i )

Pj

(pkj , skj), (pk
sig
j , sk

sig
j )

αi
$← Zq , compute Γi = gH1(αi,ski ) αj

$← Zq , compute Γj = gH1(αj ,skj )

σi := SIG.Sign(sksigi , ri;Γi||Pj) σj :=

SIG.Sign(sksigj , rj ;Γj ||Γi||Pi)

−
gαi , σi

−−−−−−−−−−−−−−→

←−
gαj , σj

−−−−−−−−−−−−−−
accept if

SIG.Vfy(pksigi , Γj ||Γi||Pi, σj) = 1

accept if
SIG.Vfy(pksigi , Γi||Pj , σi) = 1

Ki,j :=

H2(Γ
ski
j , pk

H1(αi,ski)
j , Γ

Hash1(αi,ski)
j , i, j)

Ki,j :=

H2(Γ
H1(αj ,skj)

i , pk
skj
i , Γ

Hash1(αj ,skj)

i , i, j)

Fig. A.6. The description of the SIG(NAXOS) Protocol

– The adversary A makes a Corrupt(Pi) query and obtains the long-term private
key of party Pi, sk

sig
i .

– According to the protocol specification, Party Pi computes Γi = gH1(αi,ski). Then,
Pi computes a signature σi with internal random coins ri over (Γi||Pj), σi :=

SIG.Sign(sksigi , ri;Γi||Pj). Finally, Pi sends (Γi, σi) to Pj .

– Assume that the adversary A controls all communications between parties and
deletes the σi generated by Pi. ThenA computes a fresh signature σ∗ with internal
random coins r∗ (r∗ 6= ri), σi := SIG.Sign(sksigi , r

∗;Γi||Pj). Finally,A sends (Γi,
σ∗) to Pj .

– Party Pj behaves as similarly as Pi. Pj computes (Γj , σj) and sends them to Pi.

– Computation of session key: Parties Pi and Pj accept and compute the same
session key Ki,j .

– The adversaryA queries Test(s) and gets Kb from s. Then,Amakes SessionKey(s′)
and obtains the session key Ki,j . Note that according to the definition of partner-
ship s and s′ are not partnered, i.e., ssent 6= s′recv. Therefore, A is allowed to
make the query SessionKey(s′). Session s is also fresh. Finally, if Ki,j = Kb, then
A returns b = 1; Otherwise, returns b = 0.

A.4 Signed Diffie-Hellman under the NAXOS Transformation

• Extended Canetti-Krawczyk Model (eCK). In Paper [SEVB10], Sarr et al. pre-
sented a signed Diffie-Hellman protocol using NAXOS transformation, and claimed
this protocol is secure in the eCK model. We use the same description of eCK as
described in 3.2.3.

• Protocol Description.
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Pi A Pj

Session: s Session: s′

(pki, ski) (pkj , skj)

(pksigi , sk
sig
i ) (pksigj , sk

sig
j )

αi
$← Zq , compute Γi
= gH1(αi,ski )

αj
$← Zq , compute Γj
= gH1(αj ,skj )

σi :=
SIG.Sign(sksigi , ri;Γi||Pj)

σj :=

SIG.Sign(sksigj , rj ;Γj ||Γi||Pi)

−
gαi , σi
−−−−−−−−−→

Using Corrupt(Pi),
Obtain sksigi
σ∗ :=

SIG.Sign(sksigi , r
∗;Γi||Pj)

−
gαi , σ∗
−−−−−−−−−→

←−
gαj , σj
−−−−−−−−−

←−
gαj , σj
−−−−−−−−−

accept if
SIG.Vfy(pksigi , Γj ||Γi||Pi, σj) =

1

accept if
SIG.Vfy(pksigi , Γi||Pj , σ

∗) =
1

accept if
MAC.Vfy() = 1

accept if
MAC.Vfy() = 1

Ki,j Ki,j

←−
Test(s)
−−−−−−−−−

−
Kb

−−−−−−−−−→

−
Reveal(s′)
−−−−−−−−−→

←−
Ki,j

−−−−−−−−−
If Ki,j = Kb,
then b = 1;

Otherwise, b = 0;

←−
b

−−−−−−−−−

Fig. A.7. No-Match Attack against SIG(NAXOS) Protocol

– Setup: Each party Pc has two independent valid long-term secret/public key pairs,
one pair: (pkc, ski) and one pair (pksigc , sksigc )) for a randomized digital signature
scheme, where c ∈ {i, j}. Let H1:{0, 1}∗→ Zp and H2:{0, 1}∗→ {0, 1}κ be two
hash functions, where κ is a security parameter. Let SIG be a signature scheme.

– Party Pi selects a random number αi
$← [1, q−1], computes Xi = gH1(αi,ski). Then,

Pi computes a signature σi by evaluating some probabilistic SIG.Sign function
under the private key sksigi with internal random coins ri over (Pj||Xi), σi :=

SIG.Sign(sksigi , ri;Pj||Xi). Finally, Pi sends (Pj , Xi, σi) to party Pj .

– Party Pj verifies that Xi ∈ G∗ and σi is valid. If the check is not passed, then Pj
rejects. Otherwise, party Pj behaves as similarly as Pi. Party Pj selects a random

number αj
$← [1, q−1], computes Yj = gH1(αj ,skj). Then, Pj computes a signature
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σj , σj := SIG.Sign(sksigj , rj;Yj||Pj||Xi). Finally, Pj sends (Yj , Pj , Xi, σj) to Pi.

Pj computes the session key Ki,j := H2(X
H1(αj ,skj)
i ).

– Party Pi verifies that Yj ∈ G∗ and σj is valid. If the check is passed, Pi computes
the session key Ki,j := H2(Y

H1(αi,ski)
j ).

Pi
(pki, ski), (pk

sig
i , sk

sig
i )

Pj

(pkj , skj), (pk
sig
j , sk

sig
j )

αi
$← [1, q − 1]

Xi = gH1(αi,ski )

σi := SIG.Sign(sksigi , ri;Pj ||Xi)

−
Pj ,Xi, σi

−−−−−−−−−−−−−−→
Verify that Xi ∈ G∗

Verify that σi is valid

αj
$← [1, q − 1]

Yj = gH1(αj ,skj )
σj :=

SIG.Sign(sksigj , rj ;Yj ||Pj ||Xi)
Ki,j := H2(X

H1(αj ,skj)

i )

←−
Yj ,Pj ,Xi, σj
−−−−−−−−−−−−−−

Verify that Yj ∈ G∗
Verify that σj is valid

Ki,j := H2(Y
H1(αi,ski)
j )

Fig. A.8. The description of the SIGDHNAXOS Protocol

• No-Match Attack against the SIGDHNAXOS Protocol.
Figure A.9 shows our no-match attack against the SIGDHNAXOS Protocol. The adver-
sary A performs the actions as follows:

– The adversary A makes a Corrupt(Pi) query and obtains the long-term private
key of party Pi, sk

sig
i .

– According to the protocol specification, Party Pi computes Xi = gH1(αi,ski). and
a signature σi with internal random coins ri over (Pj||Xi). Finally, Pi sends (Pj ,
Xi, σi) to Pj .

– Assume that the adversary A controls all communications between parties and
deletes the σi generated by Pi. ThenA computes a fresh signature σ∗ with internal
random coins r∗ (r∗ 6= ri), σ∗ := SIG.Sign(sksigi , r

∗;Pj||Xi). Finally,A sends (Pj ,
Xi, σ∗) to Pj .

– Party Pj verifies that Xi ∈ G∗ and σi is valid. If the check is passed, party Pj
behaves as similarly as Pi. Party Pj computes Yj and σj and sends (Yj , Pj , Xi,
σj) to Pi. Pj computes the session key Ki,j := H2(X

H1(αj ,skj)
i ).
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– Party Pi verifies that Yj ∈ G∗ and σj is valid. If the check is passed, Pi computes
the session key Ki,j := H2(Y

H1(αi,ski)
j ). Note that Pi and Pj have the same session

key Ki,j .

– The adversary A queries Test(πsi ) and gets Kb from oracle πsi . Then, A makes
SessionKey(πtj) and obtains the session key Ki,j . Note that according to the defi-
nition of partnership of eCK model πsi and πtj are not partnered, i.e., sIDs

i 6= sIDt
j .

Therefore, A is allowed to make SessionKey(πtj) to oracle πtj . Oracle πsi is fresh.
Finally, if Ki,j = Kb, then A returns b = 1; Otherwise, returns b = 0.

A.5 The PKE-based Key Exchange Protocol π

• Continuous After-the-Fact Leakage Model (CAFL model). In paper [ABS14],
Alawatugoda et al. introduced a new leakage model for key exchange protocols. We
informally give the description of the CAFL model. For simplicity, we use the same
notions as described in the original paper.

ADVERSARY MODEL. Party Pi is defined by a set of sessions. Let πsi,j represent
the s-th session at party Pi, with intended partner Pj . An active adversary A is able
to issue Send, SessionKey, Corrupt, EphemeralKey and Test queries. The mentioned
queries are similar to those as described in 3.4.2. Note thatA can also use Send query
to activate a new protocol session as an initiator with m and f . More information on
the leakage function f , see [ABS14]. By issuing leakage function f embedded with
the Send query A can get λ-bounded amount of leakage information about the long-
term secret key of party.

Definition A.12 (CAFL Model Partnership). Two oracles πsi,j and πti′,j′ are said to
be partners if

– πsi,j and πti′,j′ have computed session keys and

– (πsi,j)sent = (πti′,j′)received and

– (πti′,j′)sent = (πsi,j)received and

– i = j′ and j = i′ and

– If (πsi,j)role = initiator, then (πs
′
i′,j′)role = responder, or vise versa.

Definition A.13 describes freshness, which depends on the respective notions of
matching sessions and origin-session described above.

Definition A.13 (CAFL Model Freshness). A completed session s is said to be λ-
CAFL-fresh if the following conditions are true:

– The adversary A has not queried SessionKey(πsi,j),

– The adversary A has not queried SessionKey(πtj,i), if pitj,i) is its partner oracle,
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Pi A Pj

(πsi ) (πtj)

(pki, ski) (pkj , skj)

(pksigi , sk
sig
i ) (pksigj , sk

sig
j )

αi
$← [1, q − 1]

Xi = gH1(αi,ski )
σi :=

SIG.Sign(sksigi , ri;Pj ||Xi)

−
Pj ,Xi, σi
−−−−−−−−−→

Using Corrupt(Pi),
Obtain sksigi
σ∗ :=

SIG.Sign(sksigi , r
∗;Pj ||Xi)

−
Pj ,Xi, σ∗
−−−−−−−−−→

Verify that Xi ∈ G∗
Verify that σ∗ is valid

αj
$← [1, q − 1]

Yj = gH1(αj ,skj )
σj :=

SIG.Sign(sksigj , rj ;Yj ||Pj ||Xi)

Ki,j :=H2(X
H1(αj ,skj)

i )

←−
Yj ,Pj ,Xi, σj
−−−−−−−−−−−

←−
Yj ,Pj ,Xi, σj
−−−−−−−−−−−

Verify that Yj ∈ G∗
Verify that σj is valid

Ki,j :=H2(Y
H1(αi,ski)
j )

←−
Test(πsi )
−−−−−−−−−

−
Kb

−−−−−−−−−→

−
Reveal(πtj)
−−−−−−−−−→

←−
Ki,j

−−−−−−−−−
If Ki,j = Kb,
then b = 1;

Otherwise, b = 0;

←−
b

−−−−−−−−−

Fig. A.9. No-Match Attack against the SIGDHNAXOS Protocol

– If the partner oracle πtj,i exists, the adversary A does not query none of the fol-
lowing combinations:

· Corrupt(Pi) and Corrupt(Pj),

· Corrupt(Pi) and EphemeralKey(πsi,j),

· Corrupt(Pj) and EphemeralKey(πtj,i),

· EphemeralKey(πsi,j) and EphemeralKey(πtj,i).
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– If the partner oracle πtj,i does not exist, the adversary A does not query none of
the following combinations:

· Corrupt(Pj),

· Corrupt(Pi) and EphemeralKey(πsi,j).

– For each Send(πsi,j) or Send(πtj,i) query, the ouput of the leakage function is at
most λ bits.

SECURITY GAME. The security in the model is defined using the security experi-
ment, played between an adversary A and a challenger C. The security experiment
is similar to that as described in 3.4.3.

Definition A.14 ( CAFL Model Security Definition). The security definition is sim-
ilar to that described in A.3.

• Protocol Description.
– Setup: Each party Pc has a valid long-term secret/public key pairs (pkc, skc)

for a (CCLA2) public-key scheme, where c ∈ {i, j}. Let KDF be a secure key
derivation function.

– Party Pi selects a random number αi
$← {0, 1}κ, computes a ciphertext Ciphi

by evaluating some probabilistic Enc function under the public key pkj of its
extended partner with internal random coins ri over αi, Ciphi = Enc(pkj, ri;αi).
Finally, Pi sends (Pi, Ciphi) to party Pj .

– Party Pj decrypts Ciphi and updates the secret state skj to sk′j , (sk′j, αj) =

Dec(skj,Ciphi) and skj← sk′j . Then, Pj selects a random number αj
$← {0, 1}κ,

computes a ciphertext Ciphj under the public key pki with internal random coins
rj over αj , Ciphj = Enc(pki, rj;αj). Finally, Pj sends (Pj , Ciphj) to party Pi.

– Party Pi behaves as similarly as Pj . It decrypts Ciphj and updates the secret state
ski to sk′i, (sk′i, αj) = Dec(ski,Ciphj) and ski← sk′i.

– Pi and Pj compute the same session key Ki,j := KDF(Pi,Pj, αi, αj).

• No-Match Attack against the Protocol π.
Figure A.11 shows our no-match attack against the protocol π. The adversary A
performs the actions as follows:

– The adversary A makes a Corrupt(Pi) query and obtains the long-term private
key of party Pi, ski.

– According to the protocol specification, Pi selects a random number αi
$←

{0, 1}κ, computes a ciphertext Ciphi and sends (Pi, Ciphi) to Pj .

– Party Pj decrypts Ciphi and updates the secret state skj to sk′j , Then, it selects a

random number αj
$← {0, 1}κ, computes a ciphertext Ciphj and sends (Pj , Ciphj)

to party Pi.
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Pi

(pki, ski)
$← KeyGen(1κ)

Pj

(pkj , skj)
$← KeyGen(1κ)

αi
$← {0, 1}κ αj

$← {0, 1}κ
Ciphi = Enc(pkj , ri;αi)

−
Pi,Ciphi

−−−−−−−−−−−−−−→
(sk′j , αi) = Dec(skj ,Ciphi)

Update the state skj to sk′j
Ciphj = Enc(pki, rj ;αj)

←−
Pj ,Ciphj

−−−−−−−−−−−−−−
(ski, αj) = Dec(ski,Ciphj)

Update the state ski to sk′i
Ki,j := KDF(Pi,Pj , αi, αj) Ki,j := KDF(Pi,Pj , αi, αj)

Fig. A.10. The description of the Protocol π

– Assume that the adversary A controls all communications between parties and
deletes the Ciphj generated by Pj . A decrypts Ciphj and obtains the random
number αj . Then, it computes a fresh ciphertext Ciph∗ with internal random coins
r∗ (r∗ 6= rj), Ciph∗ := Enc(pki, r

∗;αj). Finally, A sends (Pj , Ciph∗) to Pi.

– Party Pi decrypts Ciph∗ and updates the secret state ski to sk′i. Finally, Pi and Pj
computes the session key Ki,j := KDF(Pi,Pj, αi, αj).

– The adversary A queries Test(πsi,j) and gets Kb from oracle πsi,j . Then, A makes
SessionKey(πtj,i) and obtains the session key Ki,j . Note that according to the defi-
nition of partnership of CAFL model πsi,j and πtj,i are not partnered, i.e., (πtj,i)sent
6= (πsi,j)received. Therefore, A is allowed to make SessionKey(πtj,i) to oracle πtj,i.
Oracle πsi,j is fresh. Finally, if Ki,j = Kb, thenA returns b = 1; Otherwise, returns
b = 0.
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Pi A Pj
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−
Kb

−−−−−−−−−→

−
Reveal(πtj)
−−−−−−−−−→

←−
Ki,j

−−−−−−−−−
If Ki,j = Kb,
then b = 1;

Otherwise, b = 0;
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b
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Fig. A.11. No-Match Attack against the Protocol π
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