Content Table

1. Introduction ... 1

1.1 Role of HtrA2/Omi in neurodegeneration and Parkinson's disease (PD) 1

1.1.1 HtrA2/Omi protein ... 1

1.1.2 HtrA2/Omi and its mutations found in PD patients 3

1.1.3 Mouse model studies in relation to PD ... 4

1.1.4 Cell stress model in relation to PD ... 6

1.2 Protein phosphorylation and techniques for its analysis 7

1.3 MIPs for phosphoanalysis .. 10

1.4 Proteomics and applied MS techniques ... 13

1.5 Aims .. 19

2. Materials and Methods ... 20

2.1 Materials .. 20

2.1.1 Instruments, expendable items and chemicals ... 20

2.1.2 Buffers and reagents ... 24

2.1.3 Antibodies ... 25

2.1.4 Abbreviation list ... 25

2.2 Methods ... 26

2.2.1 Samples (cells, mouse brains, CSF) .. 26

2.2.2 Cell culture and cell stress experiment ... 28

2.2.3 Sample preparation ... 28

2.2.4 Protein and peptide concentration determination .. 30

2.2.5 Western blots ... 31

2.2.6 Phosphopeptide enrichment .. 32

2.2.7 Instrumentation based analytical methods ... 37

2.2.8 Label-free quantification with spectra counting ... 40

2.2.9 Data processing, databank search and pathway analysis 41

2.2.10 Phosphopeptide motif-x analysis ... 42

3. Results ... 44
3.1 Efficiency comparison of pY-MIP, TiO$_2$ and anti-pY antibodies for tyrosine phosphorylated peptides enrichment

3.1.1 Method development and optimization

3.1.2 Comparison results of PETRA and EDMA pY-MIPs

3.1.3 Comparison results of pY-MIP, TiO$_2$ and anti-pY antibodies (standard peptides)

1. Results of TiO$_2$ SPE phosphopeptide enrichment
2. Results of phosphopeptide enrichment via three anti-pY antibodies
3. Deeper understanding of the conventional anti-pY antibodies
4. Results of IP with combination of anti-pY antibodies

3.1.4 Comparison results of pY-MIP, TiO$_2$ and anti-pY antibodies (spiking experiment)

1. Results of pY-MIP performance
2. Results of TiO$_2$ SPE performance
3. Results of IP performance using 3 anti-pY antibodies

3.2 Results of pS-MIP phosphopeptide enrichment from biological samples

3.2.1 Template rebinding test

3.2.2 Results of pS-MIP SPE sample loading and elution condition test

3.2.3 Further probing for phosphopeptide recognition using pS-MIP

3.2.4 Results of pS-MIP SPE targeting the single peptide spiked in mouse brain matrix

3.2.5 Results of pS-MIP SPE application in human cell samples and comparison with TiO$_2$ SPE

3.2.6 Results of pS-MIP SPE application in clinical relevant samples

3.3 Analysis of HtrA2/Omi model studies with novel methods in relation to PD

3.3.1 Results from global proteomics analysis of transgenic mouse brain samples

1. LC-MS/MS identified proteins with different ways of regulation
2. G399S mutant HtrA2/Omi over-expression effect leading to 18 differential proteins in 6-month-old mouse brains, and 12 differential proteins in 12-month-old mouse brains
3. WT HtrA2/Omi effect leading to 8 proteins differential in 6-month-old mouse brains, and 8 differential proteins in 12-month-old mouse brains
4. Protein over-expression effect leading to 17 proteins regulated in mouse brains at 6 months old and 2 at 12 months old
5. Age effect regulated proteins in 3 types of mouse brain samples
6. Validation of protein candidate ubiquitin-conjugating enzyme E2L3 (UBE2L3) identified by LC-MS/MS .. 87
3.3.2 Results from global proteomics analysis of human HtrA2/Omi WT and mutation G399S transfected neuroblastoma SH-SY5Y cell lines ... 89
1. Stress induced SH-SY5Y cell apoptosis ... 89
2. Staurospoine induced cell stress effect on the phosphorylation state of HtrA2/Omi at serine 400 .. 91
3. LC-MS/MS identified proteins with different ways of regulation in SH-SY5Y cell samples. ... 92
4. G399S mutant HtrA2/Omi effect resulting in 95 proteins differential (protein list in the Attachment 3) ... 93
5. WT HtrA2/Omi effect resulting in 72 proteins differential (protein list in the Attachment 4) ... 93
6. Transfection effect resulting in 15 proteins differential (protein list in the Attachment 5) 94
7. Stress effect for V, WT and G399S SH-SY5Y cell line .. 94
8. Validation of protein candidate DNA replication licensing factor MCM4 identified by LC-MS/MS ... 95
4. Discussion .. 98
4.1 Development of novel imprinted polymer based phosphoenrichment techniques 98
4.1.1 Efficiency of pY-MIP, TiO2, and anti-pY antibodies enrichment of phosphopeptides 98
4.1.2 Efficiency of phosphopeptide enrichment using pS-MIP .. 101
4.2 Global proteomics study for mouse brain and cell models ... 105
4.2.1 Advantages and disadvantages in protein validation using Western blot 105
4.2.2 Discussion on different effect cases based on the proteomics data in mouse model study ... 106
4.2.3 Discussion on pathway analysis for regulated proteins in mouse brain study 107
1. Networks and canonical pathways identified by proteins having G399S HtrA2/Omi over-expression effect ... 108
2. Networks and canonical pathways identified by proteins having WT HtrA2/Omi over-expression and protein over-expression effect ... 109
3. Networks and canonical pathways identified by proteins having age effect in NT, WT and G399S HtrA2/Omi over-expressing mouse brains ... 110
4. Short review of the validated protein in mouse brain proteomics study112

4.2.4 Discussion on pathway analysis for regulated proteins in cell model study114

4.2.5 Discussion on pathway analysis for common proteins in mouse and cell model studies ...116

4.2.6 Discussion on down regulation of DNA replication licensing factor 4 MCM4118

4.2.7 Discussion on down-regulation of three key enzymes in purine nucleotide pathway .119

1. PURA2—adenylosuccinate synthetase isozyme 2..119

2. AMPD2—AMP deaminase 2 ..120

3. ADSL—adenylosuccinate lyase ...121

4.2.8 Discussion on the role of phosphor-S400 HtrA2/Omi ..123

5. Conclusion ..125

6. References ...127

7. Attachment ..138

8. Curriculum Vitae ..173