Zusammenhang zwischen Immunsystem und Neurodegeneration in Tiermodellen des retinalen Zelluntergangs

Dissertation

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)
an der Fakultät für Chemie und Biochemie
der Ruhr-Universität Bochum

vorgelegt von

Sandra Kühn

geb. in Gera

Bochum, Juni 2015
Die vorliegende Arbeit wurde in der Zeit vom Januar 2011 bis Juni 2015 am Experimental Eye Research Institute, Knappschaftskrankenhaus, Ruhr-Universität Bochum unter der Leitung von PD Dr. med. Joachim angefertigt.

Vorsitzender: Prof. Dr. rer. nat. Patrick Nürnberger
Referent: PD Dr. med. Stephanie C. Joachim
Korreferent: Prof. Dr. rer. nat. Rolf Heumann
„Genie ist 1% Inspiration und 99% Transpiration.“

(Thomas Alva Edison)

Für meine Eltern
Inhaltsverzeichnis

Abkürzungsverzeichnis...IX

1. Einleitung ..1

1.1. Aufbau Auge, Retina und Sehnerv1

1.2. Immunologische Veränderungen im Auge..................3

1.2.1. Die Gliazellen ..3

1.2.1.1. Definition und Funktion der Makroglia3

1.2.1.2. Definition und Funktion der Mikroglia4

1.2.2. Immunzellinfiltration in neuronales Gewebe5

1.3. Neurodegeneration der Retina6

1.3.1. Definition der Neurodegeneration6

1.3.2. Zytokin-induzierte Apoptose-Mechanismen6

1.3.3. Exzitatorische Überstimulation8

1.3.3.1. Wirkungsweise von Glutamat und N-Methyl-D-Aspartat 8

1.3.3.2. Pathologische Mechanismen des Calciums9

1.3.4. Das Glaukom ...10

1.3.4.1. Glaukom-Formen10

1.3.4.2. Risikofaktoren für die Glaukom-Entwicklung11

1.3.4.3. Anzeichen von autoimmunen Mechanismen beim Glaukom 12

1.4. Tiermodelle der Retina-Degeneration13

1.4.1. Glaukom-Modelle basierend auf akuten oder chronischen Druckerhöhungen 13

1.4.2. Druckunabhängige Modelle der Retina Degeneration 14
<p>| 1.4.2.1. | Systemische Applikation von okulären Antigenen | 14 |
| 1.4.2.2. | Intraokuläre Injektion von NMDA | 15 |
| 1.5. | Fragestellung | 17 |
| 2. | Materialien und Methoden | 18 |
| 2.1. | Materialien | 18 |
| 2.1.1. | Allgemeine Laborgeräte | 18 |
| 2.1.2. | Verbrauchsmaterialien | 19 |
| 2.1.3. | Materialien zur Induktion der Tiermodelle | 20 |
| 2.1.4. | Chemikalien | 21 |
| 2.1.5. | Antikörperlist für Histologie und Western Blot | 23 |
| 2.1.5.1. | Primäre Antikörper | 23 |
| 2.1.5.2. | Sekundäre Antikörper | 24 |
| 2.1.6. | FACS-Antikörper | 24 |
| 2.1.7. | Software | 25 |
| 2.1.8. | Puffer | 26 |
| 2.2. | Tierexperimentelle Methoden | 28 |
| 2.2.1. | Versuchstiere | 28 |
| 2.2.2. | Experimentelles Autoimmunes Glaukom-Modell | 28 |
| 2.2.3. | Intraokuläre Injektion von N-Methyl-D-Aspartat | 29 |
| 2.2.4. | Messung des Augeninnendrucks | 30 |
| 2.2.5. | Ausmessung der Milz | 30 |
| 2.3. | Zellbiologische Methoden | 30 |
| 2.3.1. | Immunhistologie | 30 |
| 2.3.1.1. | Präparation der Organe | 30 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1.2</td>
<td>Flachpräparate der Retina .. 31</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Übersichtsfärbungen ... 31</td>
</tr>
<tr>
<td>2.3.1.4</td>
<td>Immunhistologische Färbungen von Gewebeschnitten 33</td>
</tr>
<tr>
<td>2.3.1.5</td>
<td>Spezifische Färbungen der retinalen Flachpräparate 34</td>
</tr>
<tr>
<td>2.3.1.6</td>
<td>Auswertung der spezifischen Strukturen 35</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Präparation der Organzellsuspensionen 39</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Bestimmung der Lymphozyten und Granulozyten im FACS 40</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Färbung für die FACS-Messung .. 40</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Auswertung der FACS-Messung ... 41</td>
</tr>
<tr>
<td>2.4</td>
<td>Proteinanalyse ... 42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Proteinisolierung ... 42</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Western Blot ... 43</td>
</tr>
<tr>
<td>2.4.3</td>
<td>ELISA .. 44</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Multiplex Zytokin-Analyse ... 45</td>
</tr>
<tr>
<td>2.5</td>
<td>Statistische Auswertungen ... 45</td>
</tr>
<tr>
<td>3</td>
<td>Ergebnisse .. 46</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimentelles Autoimmunes Glaukom-Modell 46</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Konstanter Augeninnendruck ... 46</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Untergang der retinalen Ganglienzellen 47</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Degeneration der Sehnerven-Strukturen 49</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Entwicklung der Apoptose-Signale in Retina und Sehnerven 52</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Veränderungen der glialen Reaktion 55</td>
</tr>
<tr>
<td>3.1.5.1</td>
<td>Degenerationsbedingte Makroglia-Reaktion 56</td>
</tr>
<tr>
<td>3.1.5.2</td>
<td>Zeitlich begrenzte Reaktion der Mikroglia 59</td>
</tr>
</tbody>
</table>
3.1.6. Unveränderte Lymphozyten Populationen in der Retina62
3.1.7. Veränderung in den sekundären lymphoiden Organen64
3.1.7.1. Kurzzeitige und antigenabhängige Milzvergrößerung64
3.1.7.2. Großtenteils antigenunabhängige Veränderungen der Lymphozyten und Granulozyten Population ...65
3.1.7.3. Geringe T-Zell Aktivität in Milz und Lymphknoten67
3.1.7.4. Temporärer Anstieg der Makrophagen Anzahl in der Milz68
3.1.8. Unveränderter Zytokingehalt ..71

3.2. Veränderungen von Retina und Sehnerven im N-Methyl-D-Aspartat-Modell72
3.2.1. Konstanter Augeninnendruck ..72
3.2.2. Struktureller Verlust der Retina ...73
3.2.3. Dosisabhängiger Ganglienzelluntergang ..74
3.2.4. Degeneration der Sehnerven-Strukturen ..76
3.2.5. Unterschiede in der Apoptose-Rate in Retina und Sehnerven78
3.2.1. Veränderungen der glialen Reaktionen ..83
3.2.1.1. Dosisabhängige Makroglia-Reaktion in Retina und Sehnerven83
3.2.1.2. N-Methyl-D-Aspartat induzierte Mikroglia-Einstrom und -Aktivierung 86

4. Diskussion ..90
4.1. Konstanter Augeninnendruck ..90
4.2. Unterschiede und Gemeinsamkeiten bei der neuronalen Degeneration91
4.2.1. Unterschiedliche Degeneration der retinalen Ganglienzellen91
4.2.2. Ähnliche Apoptose-Mechanismen in beiden Modellen95
4.3. Varianzen in der glialen Antwort ..99
4.3.1. Makrogliose als Reaktion auf apoptotische Prozesse99
Inhaltsverzeichnis

4.3.2. Mikroglia-Aktivierung als gemeinsame Komponente ... 102

4.4. Kein starker Einfluss von retinalen Lymphozyten im Experimentellen 107

4.5. Ausschluss einer starken systemischen Reaktion im Experimentellen 110

4.5.1. T-Zellen und Makrophagen Antwort ... 110

4.5.2. Antigen unabhängige und reziproke Veränderung in der B-Zell- und Granulozyten-Population ... 111

4.5.3. Kurzzeitige und antigenabhängige Milzvergrößerung 113

4.6. Schlussbetrachtung und zukünftige Perspektiven ... 115

5. Zusammenfassung .. 119

6. Abstract ... 121

7. Literaturverzeichnis .. 123

8. Anhang ... 142

9. Danksagung ... 144

10. Eidesstattliche Erklärung .. 146
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-488</td>
<td>Alexa Fluor 488</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptose induzierender Faktor</td>
</tr>
<tr>
<td>AMPA</td>
<td>3-amino-3-hydroxy-5-methyl-4-isoxazolepropionische Säure</td>
</tr>
<tr>
<td>AMWAP</td>
<td>aktivierten Mikroglia/Makrophagen saures Molkeprotein</td>
</tr>
<tr>
<td>ARVO</td>
<td>Association for Research in Vision and Ophthalmology</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninsäure</td>
</tr>
<tr>
<td>Bcl</td>
<td>B-Zell Lymphoma Familie</td>
</tr>
<tr>
<td>Brn-3a</td>
<td>Transkriptionsfaktor der Neurone</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>Calcium</td>
</tr>
<tr>
<td>CBA</td>
<td>Cytometric Bead Array</td>
</tr>
<tr>
<td>Co</td>
<td>Kontrolle</td>
</tr>
<tr>
<td>Cy3</td>
<td>Cyaninfarbstoff 3</td>
</tr>
<tr>
<td>DAPI</td>
<td>Kernfarbstoff</td>
</tr>
<tr>
<td>EAG</td>
<td>Experimentelles Autoimmunes Glaukom</td>
</tr>
<tr>
<td>ED1</td>
<td>Makrophagen spezifischer lysosomaler Marker (CD68)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraessigsäure</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>FasL</td>
<td>Fas Ligand</td>
</tr>
<tr>
<td>FasR</td>
<td>FasRezeptor</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>GCL</td>
<td>Ganglienzellschicht</td>
</tr>
<tr>
<td>GFAP</td>
<td>saures Gliafaserprotein</td>
</tr>
<tr>
<td>H&E</td>
<td>Hämalaun/Eosin (Zellfärbung)</td>
</tr>
<tr>
<td>H₂O dest.</td>
<td>entsalztes Wasser</td>
</tr>
<tr>
<td>Iba1</td>
<td>Ionisierter Kalzium bindendes Adaptermolekül 1</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>INL</td>
<td>innere Körnerschicht</td>
</tr>
<tr>
<td>iNOS</td>
<td>induzierbare Nitrid Oxid Synthase</td>
</tr>
<tr>
<td>IOD</td>
<td>intraokuläre Druck</td>
</tr>
<tr>
<td>IPL</td>
<td>innere plexiforme Schicht</td>
</tr>
<tr>
<td>LFB</td>
<td>Luxol Fast Blue</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>miRNA</td>
<td>mikro-RNA</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NFL</td>
<td>Nervenfaserschicht</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-Aspartat</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffoxid</td>
</tr>
<tr>
<td>ON</td>
<td>Sehnerv</td>
</tr>
<tr>
<td>ONA</td>
<td>bovines Sehnervhomogenat</td>
</tr>
<tr>
<td>ONL</td>
<td>äußere Körnerschicht</td>
</tr>
<tr>
<td>OPL</td>
<td>äußere plexiforme Schicht</td>
</tr>
<tr>
<td>p53</td>
<td>Transkriptionsfaktor, Induktion Apoptose</td>
</tr>
<tr>
<td>PARP</td>
<td>poly-ADP-ribose-polymerase, Transkriptionsfaktor</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate gepufferte Salzlösung</td>
</tr>
<tr>
<td>PE</td>
<td>Phykoerithin</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>RGZ</td>
<td>retinale Ganglienzellen</td>
</tr>
<tr>
<td>ROS</td>
<td>radikale Sauerstoffspezies</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute (Zellkulturmedium)</td>
</tr>
<tr>
<td>S100</td>
<td>Gruppe aus kalziumbindenden Proteinen</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler</td>
</tr>
<tr>
<td>Tcyt</td>
<td>zytotoxische T-Zellen</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transformierender Wachstumsfaktor beta</td>
</tr>
<tr>
<td>Th</td>
<td>T-Helfer-Zellen</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Nekrose Faktor alpha</td>
</tr>
<tr>
<td>WHO</td>
<td>Weltgesundheitsorganisation (World Health Organization)</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1. Aufbau Auge, Retina und Sehnerv

Abb. 1: Schematischer Aufbau von Auge, Retina und Sehnerv

Eine Unterbrechung dieser Signalweiterleitung, z.B. durch die Degeneration einer oder mehrerer retinaler Strukturen oder des Sehnervens, kann zur Einschränkung oder Verlust der Sehfähigkeit führen.

1.2. Immunologische Veränderungen im Auge

1.2.1. Die Gliazellen

Die Gliazellen gehören nicht zu den neuronalen Zellen des Zentralen Nervensystems (ZNS). Sie werden in zwei große Hauptpopulationen eingeteilt, den Makro- und Mikroglia. Während die Makroglia ektodermalen Ursprungs sind, sind die Mikroglia mesodermalen Ursprungs [7].

1.2.1.1. Definition und Funktion der Makroglia

1.2.1.2. Definition und Funktion der Mikroglia

oder dem Glaukom [31], konnte eine Beteiligung der Mikroglia-Zellen ermittelt werden. Im Zusammenhang damit steht auch die Wirkung von Apoptose-fördernden Zytokinen, dazu gehört z.B. Fas Ligand (FasL), was durch überstimulierte Mikroglia seziiert werden kann [32]. Diese Zytokine sind Liganden von zellständigen Rezeptoren. Eine Aktivierung dieser Rezeptoren löst die Apoptose der Zielzelle aus (Kapitel 1.2.3.).

Die spezifischen Proteine für den Nachweis von Mikroglia-Zellen sind sehr vielfältig. Die beiden wichtigsten, die die Gesamtheit der Mikroglia anzeigen, sind Iba1 und CD11b. Iba1 ist das ionisierte Kalzium bindende Adaptermolekül 1, welches die Aktinverbindung des Zytoskeletts reguliert [33]. CD11b (Ox-42) hingegen ist ein Integrin und Oberflächenprotein [34]. Es gibt aber auch eine Vielzahl von Aktivitätsmarkern für die Mikroglia. Das weitaus wichtigste Protein, welches von aktiven Mikroglia im Lysosom hochreguliert wird, ist ED1 (CD68), ein Makrophagen spezifischer lysosomaler Marker [35]. MHC II [36], Fcγ-Rezeptor II/III (CD16/32) [37, 38] und iNOS [39] zeigen auch die Aktivität der Mikroglia-Zellen an, sind aber nicht spezifisch für die Mikroglia.

1.2.2. Immunzellinfiltration in neuronales Gewebe

Um das Auge vor irreparablen Entzündungsreaktionen zu schützen, bilden, wie schon erwähnt, Makroglia und Endothelzellen eine Blut-Retina-Schranke. Das soll eine Einwanderung von Immunzellen verhindern [4]. Doch so strikt, wie es postuliert worden ist, ist diese Schranke nicht. Denn Immunzellen, insbesondere undifferenzierte T-Zellen, durchdringen diese Schranke in sehr kleiner Anzahl auf ihrem Weg durch den Körper [40-42].

sehr schnell ablaufenden Prozesse die Untersuchung von Lymphozyten in der Retina und deren Beteiligung an der retinalen Degeneration schwierig.

1.3. Neurodegeneration der Retina

1.3.1. Definition der Neurodegeneration

Eine Neurodegeneration ist eine fortschreitende Dysfunktion von Neuronen und deren Verlust führt zu neurologischen Defiziten [47]. Neurodegenerative Erkrankungen sind eine heterogene Gruppe aus verschiedenen Krankheiten mit ausgeprägten klinischen Phänotypen und teilweise genetischer Prädisposition [48]. Größtenteils spielt bei ihrer Entwicklung ein fehlreguliertes Immunsystem eine Rolle. Die Apoptose verläuft dabei unkontrolliert weiter, was zu einem andauernden Verlust der Neurone führt. Dies gilt für die Neurone des Gehirns und genauso für die in der Retina.

1.3.2. Zytokin-induzierte Apoptose-Mechanismen

Wie schon erwähnt, sezernieren sowohl Glia-Zellen als auch Lymphozyten Zytokine als immunologische Mediatoren. Im gesunden Gewebe werden meistens entzündungshemmende Zytokine, wie Interleukin (IL) 4, IL10 oder TGF-β, sezerniert, welche starke Entzündungsreaktionen unterdrücken. Bei Neurodegenerationen werden aber mehr entzündungsfördernde Zytokine ausgeschüttet, wie das FasL aus der Tumornekrosefaktor (TNF) Familie. Denn FasL kann durch die Bindung des Fas Receptors (FasR) auch bei den Immunzellen und anderen potentiell infiltrierenden Zellen die Apoptose auslösen, was wichtig für den Erhalt der Blut-Retina-Schranke ist. Zu diesem Zweck wird FasL von der Hornhaut exprimiert [49, 50]. Doch im Krankheitsfall wird es nicht nur von der Hornhaut, sondern auch von den Mikroglia in der Retina produziert. Dann wirkt es eher zerstörerisch für die retinalen Zellen [51, 52]. Doch vielleicht sind es nicht nur die Mikroglia, die das FasL in die Umgebung abgeben, sondern auch die zytotoxischen T-Zellen, welche auch als eine der wenigen FasL-Produzenten bekannt sind [53]. Doch FasL ist nicht das
einzige pro-inflammatorische Zytokin. TNF-α, IL1 und IL6 sowie Interferon-γ (IFN-γ) sind entzündungsauflösende Zytokine, die mit neuronalen Erkrankungen und insbesondere Mikroglia-Zellen in Verbindung stehen [54]. Diese Zytokine wirken als Ligand ihrer Rezeptoren und lösen den extrinsischen Apoptose-Weg aus (Abb. 2). Dabei kommt es nach der Rezeptorbindung zu dessen Di- bzw. Trimerisierung, was dazu führt, dass diese Rezeptorkomplexe jetzt ein Adaptermolekül binden und aktivieren können. Diese Adaptermoleküle besitzen eine Bindedomäne für die Caspase 8. Caspasen sind konstitutiv vorhandene Cysteinproteasen, welche aber über eine pro-Sequenz inaktiv gehalten werden. Sobald mehrere Caspase 8-Moleküle in einem Komplex mit dem Adapterprotein aggregieren, wird der pro-Anteil abgeschnitten und somit die Caspase-Kaskade eingeschaltet [55]. Caspase 8 aktiviert ihrerseits die Schlüssel-Caspase 3 und kann noch durch weitere Moleküle den intrinsischen Weg über das Mitochondrium anschalten. Dies geschieht soweit bis die exekutiven Caspasen 3, 7 oder 9 im Zellkern die Apoptose-Prozesse über z.B. p53 und der poly-ADP-ribose-polymerase (PARP) einschalten (Abb. 2) [56].

Abb. 2: Zytokin-induzierte Caspase-Kaskade
Durch die Bindung eines pro-apoptotischen Zytokins an einen Rezeptor auf der Zielzelle (grün) wird eine Caspasen-Kaskade angeschaltet. Das wird als extrinsischer Apoptose-Weg bezeichnet (schwarze Pfeile). Das Zytokin bindet an seinen Rezeptor, was zur dessen Di- bzw. Trimerisierung führt und somit zur Anlagerung eines Adaptermoleküls, welches seinerseits die Caspase 8 aktiviert. Die Caspase 8 aktiviert die Caspase 3 oder führt über den intrinsischen Apoptose-Weg (braune Pfeile)
zur Aktivierung der Caspase 9, welches wiederum die Caspase 3 aktivieren kann. Caspase 3, 7 und 9 sind die ausführenden Caspasen, die im Zellkern die Apoptose-Prozesse einschalten.

1.3.3. Exzitatorische Überstimulation

1.3.3.1. Wirkungsweise von Glutamat und N-Methyl-D-Aspartat

Depolarisation führt zur Öffnung eines Kanals in der Zelle für Kationen, wie Natrium-, Kalium- und Calcium (Ca\(^{2+}\))-Ionen [69]. Ca\(^{2+}\)-Ionen sind als wichtige sekundäre Botenstoffe bekannt, welche die intrazellulären Prozesse stark beeinflussen. Aus diesem Grund ist eine enge Regulation des Einstroms wichtig [70].

NMDA ist kein natürlich vorkommendes Molekül (Abb. 3). Zwischen dem Glutamat und dem NMDA gibt es zwei wichtige Unterschiede (Abb. 3 rot). Zuerst ist das NMDA eine D-Aminosäure und nicht, wie Glutamat, eine L-Aminosäuren, welche die natürlich vorkommende Form ist. Des Weiteren wurde an dem Stickstoff-Ion eine Methylgruppe gebunden (Abb. 3). Das NMDA bindet somit etwas länger als das Glutamat an dem NMDA-Rezeptor, da der natürliche Abbau dieses synthetischen Moleküls nicht so schnell erfolgt [71]. Das bewirkt wiederum einen langanhaltenden Einstrom von Ca\(^{2+}\)-Ionen und somit einen negativen Einfluss auf die Zelle.

Abb. 3 Chemische Strukturen von NMDA und Glutamat
Glutamat ist eine natürlich vorkommende L-Aminosäure. NMDA hingegen ist ein synthetisch hergestelltes Glutamat-Analogon. NMDA unterscheidet sich zum einen dadurch, dass es sterochemisch das D-Enantiomer des Glutamats ist (rot), welches nicht natürlich vorkommt. Des Weiteren ist eine Methylgruppe (rot) kovalent an der Aminogruppe gebunden.

1.3.3.2. Pathologische Mechanismen des Calciums

Ein rasanter Anstieg des intrazellulären Ca\(^{2+}\)-Levels induziert verschiedene Prozesse, die zum neuralen Zelltod führen. Zum einen aktiviert Ca\(^{2+}\) die intrinsische Apoptose-Kaskade [72]. Es ist bekannt, dass durch die Applikation von NMDA eine Caspase unabhängige Apoptose eingeleitet wird [73, 74]. Doch im weiteren Verlauf der NMDA Wirkung wird das
Einleitung

Apotosom gebildet [73], welches die Apoptose-Mechanismen noch verstärkt und die Caspase 3 aktiviert [75]. Zum anderen versucht das Mitochondrium die Ca^{2+}-Ionen aus dem Zytosol aufzunehmen [76], doch das führt bei großen Mengen zu einer Depolarisation [77] und damit zur mitochondrialen und energetischen Dysfunktion [78, 79]. Das wiederum induziert eine fehlerhafte Regulation in der Atmungskette, was eine Vielzahl von radikalen Sauerstoffspezies (ROS) entstehen lässt [79-81]. Weitere Zellschäden erhöhen den oxidativen Stress noch zusätzlich [82-85] und aktivieren somit die Glia-Zellen [86].

1.3.4. Das Glaukom

Das Glaukom ist ein Sammelbegriff für neurodegenerative Augenerkrankungen, die einem ähnlichen Krankheitsverlauf unterliegen: ein kontinuierlicher Untergang der retinalen Ganglienzellen und deren Axone wird von einer typischen Schädigung der Papille und damit einhergehender Gesichtsfeldausfälle begleitet [87, 88]. Diese langsam fortschreitende Erkrankung zählt zu einer der häufigsten Ursachen für die irreversible Erblindung weltweit [89]. Bis zum Jahre 2020 werden ca. 80 Millionen Menschen in der Welt davon betroffen sein [90]. Alleine in Deutschland wird es eine deutliche Zunahme an Neuerblindungen von heute mit ca. 10.000 Menschen auf ungefähr 12.900 im Jahre 2030 geben, davon werden ca. 14% an einem Glaukom erkrankt sein [91].

1.3.4.1. Glaukom-Formen

Eine weitere Glaukom-Form, bei der der IOD keine Rolle spielt, ist das Normaldruckglaukom. Es treten die gleichen Schäden auf wie bei den anderen Formen. Ungefähr 30% der Glaukom-Patienten entwickeln ein Normaldruckglaukom [94]. Das bedeutet, der erhöhte IOD alleine kann nicht die Ursache der Erkrankung sein.

1.3.4.2. Risikofaktoren für die Glaukom-Entwicklung

Es ist also notwendig die Pathogenese dieser Erkrankung besser zu verstehen, um sie effektiver behandeln zu können. Dafür werden die molekularen Mechanismen, die während der Degeneration ablaufen, intensiv untersucht.

1.3.4.3. Anzeichen von autoimmunen Mechanismen beim Glaukom

Eine direkte Beteiligung dieser Immunkomponenten an dem Prozess der Ganglienzelldegeneration in Glaukom-Patienten muss noch belegt werden. Denn es stellt sich auch weiterhin die Frage, ob die Immunmechanismen vom Schaden ausgelöst wurden.
oder die Schäden auf Grund der immunologischen Reaktion entstanden sind. Mit der vorliegenden Arbeit sollen diese Fragen beantwortet werden.

1.4. Tiermodelle der Retina-Degeneration

Basierend auf den molekularen Veränderungen, welche bei der Degeneration der Retina auftreten, wurden verschiedene Tiermodelle für eine einfachere Untersuchung etabliert. Es gibt eine Vielzahl von Tiermodellen, die zu einer retinalen Degeneration führen [115].

1.4.1. Glaukom-Modelle basierend auf akuten oder chronischen Druckerhöhungen

Es gibt Tiermodelle, die durch die Erhöhung des IODs eine retinale Degeneration hervorrufen [115, 116]. Es wird zwischen chronischen Modellen mit einem langanhaltenden erhöhten IOD und den akuten Modellen, bei dem ein kurzer sehr hoher IOD erreicht wird, unterschieden. Die chronischen Modelle sind teilweise vergleichbar mit dem primären Offenwinkelglaukom beim Menschen. Die bekanntesten chronischen Modelle sind die Injektion einer hypertonen Salzlösung in die episklerale Vene, um den Kammerwasserabfluss zu behindern [117, 118], das Venenkauterisieren mit einem Laser [119, 120] und die Injektionen von Substanzen in die vordere Augenkammer [121, 122]. Nicht zu vergessen ist das genetische Mausmodell, die DBA/2J Maus, bei der der Kammerabfluss durch die natürliche Pigmentauflösung und Irisatrophie blockiert wird [123, 124]. Zu den akuten Modellen gehört das Ischämie-Reperfusions-Modell, bei dem es durch einen kurzen sehr hohen Anstieg des IODs zu einer Unterversorgung mit Blut kommt und über die Reperfusion oxidative Prozesse eingeschaltet werden, was zur Degeneration der Retina führt [125].

Doch alle diese Modelle führen zu einem erhöhten IOD, welcher aber beim Menschen nicht die alleinige Ursache der Degeneration ist. Aus diesem Grund sind Tiermodelle, bei denen der IOD im Normbereich bleibt von größerem Interesse für diese Arbeit.
1.4.2. Druckunabhängige Modelle der Retina Degeneration

1.4.2.1. Systemische Applikation von okulären Antigenen

Basierend auf den schon erwähnten immunologischen Veränderungen bei Glaukom-Patienten (Kapitel 1.3.4.3.), besonders dem veränderten Antikörperprofil gegen einige okuläre Antigen [109-111], wurde ein Tiermodell entwickelt. Denn es wurde vermutet, dass ein Teil der detektierten Antigene an der Krankheitsentstehung beteiligt sind. Demnach könnte vielleicht die Verwendung dieser okulären Antigene eine Immunantwort induzieren.

Zur Induktion der Zelldegeneration in der Retina wurden bisher kleine Hitzeschockproteine (HSPs) [53, 130, 134], ein Homogenat aus RGZ [135] oder aus Sehnerven (ONA) verwendet [136], was zum Untergang der RGZ führte, ohne den IOP zu beeinflussen.

Möglicherweise haben diese Mechanismen einen Anteil am Untergang der RGZ. Vielleicht ist es so möglich, die Rolle der B-Zellen bei der RGZ-Degeneration zu definieren.

1.4.2.2. **Intraokuläre Injektion von NMDA**

Bei der intraokulären Injektion von potentiell toxischen Substanzen induziert die Substanz den Zelltod und dies aktiviert weitere molekulare Prozesse, was entweder den Zelltod hält oder verstärkt. Zu diesen toxischen Substanzen gehört, wie schon erwähnt, das Glutamat oder als Glutamat-Analogon das NMDA. So ist es möglich die Wirkung dieser Substanzen, welche man als schädigenden Faktor bei den neurodegenerativen Erkrankungen gefunden hat, genau zu untersuchen. Der Vorteil gegenüber dem EAG-Modell ist, dass der systemische Effekt hierbei nicht berücksichtigt werden muss und keine Trägerstoffe benötigt werden. Bei dieser Methode entsteht jedoch durch die Injektion ein Einstich in die Sklera. Die Gefahr besteht, dass auch die Retina getroffen werden kann. Der Einstich in die Retina sollte...
aber vermieden werden. Außerdem ist die Konzentration der injizierten Stoffe sehr viel höher als die physiologische Konzentration oder es ist im Fall von NMDA überhaupt nicht vorhanden. Zusätzlich bindet NMDA nicht spezifisch an den RGZ, so dass ein Untergang andere Neurone in der Retina sehr wahrscheinlich ist.

Es ist bekannt, dass die NMDA-Injektion zu einer sehr schnellen RGZ-Degeneration führt. Schon ein Tag nach der Injektion tritt ein signifikanter RGZ-Verlust auf [143]. Jedoch ist nicht sehr viel über die gliale Reaktion nach der intraokuläre NMDA-Injektion bekannt. Es konnte gezeigt werden, dass Mikroglia-Zellen drei Tage nach der NMDA-Injektion hochreguliert waren [144]. Doch stellen sich in diesem Zusammenhang noch viele Fragen, z.B. ob die gliale Reaktion zeitlich begrenzt ist, wie es für andere Modelle gilt. Wichtig ist auch zu wissen, ob die Zerstörungsmechanismen reguliert werden oder ob sich der Schaden weiter akkumuliert.

Die wichtigsten Erkenntnisse können aber erst durch den Vergleich des EAG- und NMDA-Modells gewonnen werden. Sollte es einen oder mehrere Faktoren geben, die in beiden Modellen hochreguliert oder verändert sind, könnte das ein wichtiger Hinweis für die Ursache der Degeneration sein. Alle diese Fragen und Zusammenhänge sollen in der vorliegenden Arbeit untersucht werden.
1.5. Fragestellung

Für diese Arbeit wurden die immunologischen und apoptotischen Prozesse zweier unterschiedlicher retinaler Degenerationsmodelle miteinander verglichen: das Experimentelle Autoimmune Glaukom-Modell (EAG) und das intraokuläre NMDA-Modell.

Im Rahmen dieser Dissertation wurden die oben genannten Komponenten des Immunsystems in zwei Tiermodellen genauer untersucht, um einen besseren Einblick in den Mechanismus der Entstehung eines Glaukoms zu erhalten. Nur wenn die Ursachen bekannt sind, können in Zukunft wirksame Therapien entwickelt werden.
2. Materialien und Methoden

2.1. Materialien

2.1.1. Allgemeine Laborgeräte

<table>
<thead>
<tr>
<th>Geräte</th>
<th>Modell/ Name</th>
<th>Hersteller, Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abzug</td>
<td>Abzug TA1200x900</td>
<td>Vinitex, Coswig, Deutschland</td>
</tr>
<tr>
<td>Apotom Mikroskop</td>
<td>Apotom M2</td>
<td>Zeiss, Deutschland</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Heraeus Function Line B6 Hera Cell</td>
<td>Kendro Laboratory Products, Deutschland</td>
</tr>
<tr>
<td>ELISA Reader</td>
<td></td>
<td>AESKU.Diagnostics</td>
</tr>
<tr>
<td>Immunfluoreszenz-Mikroskop</td>
<td>Axio Imager M1</td>
<td>Zeiss, Deutschland</td>
</tr>
<tr>
<td>Lichtmikroskop</td>
<td>Axiovert 40C</td>
<td>Zeiss, Deutschland</td>
</tr>
<tr>
<td>Messschieber (elektronisch)</td>
<td></td>
<td>Promat</td>
</tr>
<tr>
<td>Mikrotom (Kryostat)</td>
<td>Microm HM560</td>
<td>Thermo Scientific, Deutschland</td>
</tr>
<tr>
<td>Mikrowaage</td>
<td>BP 310 S ACJ 220-4M</td>
<td>Sartorius, Deutschland</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>inoLab 100</td>
<td>inoLab, Deutschland</td>
</tr>
<tr>
<td>Photometer</td>
<td>Libra S11</td>
<td>Biochrom, USA</td>
</tr>
<tr>
<td>Rührer inkl. Heizplatte</td>
<td>HTS 1003</td>
<td>LMS, Japan</td>
</tr>
<tr>
<td>Schüttler</td>
<td>Minuteni Blot Mixer</td>
<td>VWR, Deutschland</td>
</tr>
<tr>
<td>Shandon Coverplates</td>
<td>Shandon Coverplate TM</td>
<td>Thermo Scientific, England</td>
</tr>
<tr>
<td>Stereomikroskop</td>
<td></td>
<td>Novex</td>
</tr>
<tr>
<td>Stereomikroskop</td>
<td></td>
<td>Zeiss</td>
</tr>
<tr>
<td>Tischzentrifuge</td>
<td>Centrifuge 5415R</td>
<td>Eppendorf, Deutschland</td>
</tr>
<tr>
<td>TonoLab</td>
<td></td>
<td>Icare, Finnland</td>
</tr>
<tr>
<td>Ultraschallgerät</td>
<td>UW 2070</td>
<td>Bandelin electronic,</td>
</tr>
</tbody>
</table>
Materialien und Methoden

Vortexer VTX-3000L, LMS, Japan
Wasserbad Memmert, Deutschland
Wet Westernblot Kammer, X Cell sure Lock, Invitrogen, USA
Elektrophorese Kammer X Cell sure Lock, Invitrogen, USA
Mikroschere Geuder AG, Deutschland
Neubauer Zählkammer VWR
Homogenisatorstempel NeoLab
Mikropinzette Outils Rubis SA, Schweiz
Chirurgische Pinzetten B.Braun
Scheren VWR

2.1.2. Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Materialien</th>
<th>Form</th>
<th>Hersteller, Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>NuPage 12% Bis-Tris-SDS Gele</td>
<td>1 mm</td>
<td>Novex, USA</td>
</tr>
<tr>
<td>Blotting-Pads</td>
<td>580x600 mm</td>
<td>NeoLab, Deutschland</td>
</tr>
<tr>
<td>Deckglas</td>
<td>24 x 60 mm</td>
<td>Menzel GmbH, Deutschland</td>
</tr>
<tr>
<td></td>
<td>24 x 40 ml</td>
<td></td>
</tr>
<tr>
<td>Einbettkassetten</td>
<td>Cryomold intermediate</td>
<td>Tissue-Tek® Sakura, USA</td>
</tr>
<tr>
<td></td>
<td>15x15x5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cryomold Standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25x20x5 mm</td>
<td></td>
</tr>
<tr>
<td>UV-Einmalküvetten</td>
<td>Halbmikro (1,5 ml)</td>
<td>Brand</td>
</tr>
<tr>
<td>Histobond Objekträger</td>
<td>76 x 26 x 1 mm</td>
<td>Paul Marienfeld GmbH,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deutschland</td>
</tr>
</tbody>
</table>
Materialien und Methoden

SuperFrost + Objektträger
- Thermo Fisher

Einbettmedium
- NEG 50
 - Thermo Fisher

Kanülen (Sterican)
- 0,4 x 12 mm (27 G)
 - B.Braun
- 0,45 x 12 mm (26 G)
 - B.Braun
- 0,9 x 38 mm (20 G)
 - B.Braun

Nitrocellulose Membran
- 0,2 µM
 - Whatman, Deutschland

(Whatman)

Parafilm
- Parafilm
 - Bemis, USA

PBS
- Pulver
 - Santa Cruz,

Petrischalen
- Ø 18 cm
 - Orange Scientific,
 - Deutschland

Pipetten
- Serologische Pipette, steril,
 - 10 ml /25
 - VWR, Belgien
 - Eppendorf Pipetten,
 - 10µl/100µl/200µl/1ml/ 5ml
 - Eppendorf AG, Deutschland

Spritzen
- LuerLock, 1 ml und 3 ml
 - BD
- Injekt F 1 ml
 - B.Braun
- 10 ml, 20 ml
 - B.Braun

Skalpell
- Einmal
 - B.Braun

Zellsiebe
- 40 und 70 µm
 - BD Biosciences

2.1.3. Materialien zur Induktion der Tiermodelle

<table>
<thead>
<tr>
<th>Material</th>
<th>Konzentration</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketamin</td>
<td>50 mg/ml</td>
<td>Ratiopharm</td>
</tr>
<tr>
<td>Conjuncain</td>
<td>4 mg/ml</td>
<td>Bausch&Lomb</td>
</tr>
</tbody>
</table>
Materialien und Methoden

2.1.4. Chemikalien

<table>
<thead>
<tr>
<th>Name</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>Merck</td>
</tr>
<tr>
<td>BCA</td>
<td>Thermo Fisher</td>
</tr>
<tr>
<td>Bicine</td>
<td>Applichem</td>
</tr>
<tr>
<td>Bis-Tris</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Bovines Serumalbumin</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Collagenase I</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Coomassie</td>
<td>Applichem</td>
</tr>
<tr>
<td>DAPI</td>
<td>Serva</td>
</tr>
<tr>
<td>Dithiothreitol (50 mM)</td>
<td>NeoLab</td>
</tr>
<tr>
<td>DNase</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>D-Saccharose</td>
<td>VWR</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Eosin</td>
<td>Merck</td>
</tr>
<tr>
<td>Eselsserum</td>
<td>Millipore</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Merck</td>
</tr>
<tr>
<td>Materialien und Methoden</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Ethanol (70, 96, 100 %)</td>
<td></td>
</tr>
<tr>
<td>Eukitt</td>
<td>VWR</td>
</tr>
<tr>
<td>Fetales Kälbeserum</td>
<td>Biochrom</td>
</tr>
<tr>
<td>Hämatoxilin</td>
<td>Merck</td>
</tr>
<tr>
<td>Lithiumcarbonat</td>
<td>Roth</td>
</tr>
<tr>
<td>Luxol Fast Blue (LFB)</td>
<td>Reactives RAL</td>
</tr>
<tr>
<td>Magermilchpulver</td>
<td>Applichem</td>
</tr>
<tr>
<td>Methanol</td>
<td>Roth</td>
</tr>
<tr>
<td>MOPS</td>
<td>Neolab</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Novex Ladepuffer</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Novex Sharp Pre-StainedProtein Standard</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>NuPage Antioxidant</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Paraformaldehyde</td>
<td>Merck</td>
</tr>
<tr>
<td>PBS</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Ponceau S</td>
<td>Applichem</td>
</tr>
<tr>
<td>Probenpuffer</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Proteaseinhbitor Tabletten</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>RIPA Puffer</td>
<td>Cell Signaling Technology</td>
</tr>
<tr>
<td>Shandon Immu-Mount</td>
<td>Thermo Fisher</td>
</tr>
<tr>
<td>Sodiumdodecylsulfat (SDS)</td>
<td>NeoLab</td>
</tr>
<tr>
<td>TNF-α ELISA</td>
<td>eBiosciences</td>
</tr>
<tr>
<td>Tris Base</td>
<td>NeoLab</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Typhanblau</td>
<td>Sigma Aldrich</td>
</tr>
<tr>
<td>Xylol</td>
<td>J.T.Baker</td>
</tr>
<tr>
<td>Ziegenserum</td>
<td>GeneTex</td>
</tr>
</tbody>
</table>
2.1.5. Antikörper-List für Histologie und Western Blot

2.1.5.1. Primäre Antikörper

<table>
<thead>
<tr>
<th>Epitope</th>
<th>Wirt</th>
<th>Hersteller</th>
<th>Produkt-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktive Caspase 2</td>
<td>Hase</td>
<td>Abcam</td>
<td>ab179519</td>
</tr>
<tr>
<td>Aktive Caspase 3</td>
<td>Hase</td>
<td>Sigma-Aldrich</td>
<td>C8487</td>
</tr>
<tr>
<td>Brn-3a</td>
<td>Ziege</td>
<td>Santa Cruz</td>
<td>sc-31984</td>
</tr>
<tr>
<td>ED1</td>
<td>Maus</td>
<td>Millipore</td>
<td>MAB1435</td>
</tr>
<tr>
<td>FasL</td>
<td>Hase</td>
<td>Abcam</td>
<td>ab15285</td>
</tr>
<tr>
<td>FasR</td>
<td>Maus</td>
<td>Abcam</td>
<td>ab19456</td>
</tr>
<tr>
<td>FasR</td>
<td>Ziege</td>
<td>Abcam</td>
<td>ab110021</td>
</tr>
<tr>
<td>GFAP</td>
<td>Huhn</td>
<td>Millipore</td>
<td>AB5541</td>
</tr>
<tr>
<td>GFAP-A-488</td>
<td>Maus</td>
<td>Millipore</td>
<td>MAB3402X</td>
</tr>
<tr>
<td>Iba1</td>
<td>Hase</td>
<td>Wako</td>
<td>019-19741</td>
</tr>
<tr>
<td>Maus IgG1,κ A-488</td>
<td>Maus</td>
<td>Biolegend</td>
<td>400132</td>
</tr>
<tr>
<td>NeuN</td>
<td>Huhn</td>
<td>Millipore</td>
<td>ABN91</td>
</tr>
<tr>
<td>SMI-32</td>
<td>Maus</td>
<td>Convance</td>
<td>SMI-32P</td>
</tr>
<tr>
<td>Vimentin</td>
<td>Maus</td>
<td>Sigma-Aldrich</td>
<td>V2258</td>
</tr>
<tr>
<td>β-Aktin</td>
<td>Maus</td>
<td>Sigma-Aldrich</td>
<td>04-1116</td>
</tr>
<tr>
<td>β-Aktin</td>
<td>Hase</td>
<td>Cell Signalling</td>
<td>8H10D10</td>
</tr>
</tbody>
</table>
2.1.5.2. Sekundäre Antikörper

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
<th>Produkt-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esel anti-Ziege A-488</td>
<td>Dianova</td>
<td>705-545-147</td>
</tr>
<tr>
<td>Esel anti-Ziege Cy3</td>
<td>Abcam</td>
<td>ab-6949</td>
</tr>
<tr>
<td>Esel anti-Maus DL-488</td>
<td>Dianova</td>
<td>715-485-150</td>
</tr>
<tr>
<td>Ziege anti-Maus A-488</td>
<td>Invitrogen</td>
<td>A11029</td>
</tr>
<tr>
<td>Ziege anti-Maus A-555</td>
<td>Invitrogen</td>
<td>A21424</td>
</tr>
<tr>
<td>Esel anti-Huhn Cy3</td>
<td>Millipore</td>
<td>AP194C</td>
</tr>
<tr>
<td>Ziege anti-Hase Cy3</td>
<td>Linaris</td>
<td>ZRV1159</td>
</tr>
<tr>
<td>Ziege anti-Hase A-488</td>
<td>Invitrogen</td>
<td>A11008</td>
</tr>
<tr>
<td>Esel anti-Hase A-555</td>
<td>Invitrogen</td>
<td>A31572</td>
</tr>
<tr>
<td>Esel anti-Maus Dylight 800</td>
<td>Thermo-Fisher</td>
<td>SA5-10032</td>
</tr>
<tr>
<td>Esel anti-Hase Dylight 800</td>
<td>Thermo-Fisher</td>
<td>SA5-10032</td>
</tr>
<tr>
<td>Hase anti-Ziege A-680</td>
<td>Invitrogen</td>
<td>A-21084</td>
</tr>
<tr>
<td>Esel anti-Maus A-680</td>
<td>Invitrogen</td>
<td>A10038</td>
</tr>
<tr>
<td>Esel anti-Huhn IR680RD</td>
<td>LICOR</td>
<td>926-68075</td>
</tr>
</tbody>
</table>

2.1.6. FACS-Antikörper

<table>
<thead>
<tr>
<th>Verwendung</th>
<th>Epitop-Farbstoff</th>
<th>Wirt</th>
<th>Verdünnung</th>
<th>Hersteller/Produkt-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primär</td>
<td>CD3-FITC</td>
<td>Maus</td>
<td>1:2</td>
<td>eBioscience 11-0030</td>
</tr>
</tbody>
</table>
Materialien und Methoden

<table>
<thead>
<tr>
<th>Primär</th>
<th>CD45R-PE</th>
<th>Maus</th>
<th>1:1</th>
<th>eBioscience 12-0460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primär</td>
<td>Granulozyten-FITC</td>
<td>Maus</td>
<td>1:2</td>
<td>eBioscience 11-0570</td>
</tr>
<tr>
<td>Isotyp (CD3)</td>
<td>Kein FITC</td>
<td>Maus IgG3,κ</td>
<td>1:2,5</td>
<td>eBioscience 11-4742</td>
</tr>
<tr>
<td>Isotyp (CD45R)</td>
<td>Kein PE</td>
<td>Maus IgG2b,κ</td>
<td>1:1</td>
<td>eBioscience 12-4732</td>
</tr>
<tr>
<td>Isotyp (Granulozyten)</td>
<td>Kein FITC</td>
<td>Maus IgM,κ</td>
<td>1:2</td>
<td>eBioscience 11-0570</td>
</tr>
<tr>
<td>Fc-Block</td>
<td>CD32</td>
<td>Maus</td>
<td>1:1</td>
<td>BD Pharmingen 550271</td>
</tr>
</tbody>
</table>

2.1.7. Software

<table>
<thead>
<tr>
<th>Programmname</th>
<th>Hersteller</th>
<th>Verwendungszweck</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxioVision Rel 4.8</td>
<td>Zeiss</td>
<td>Software des Axio Imagers M1</td>
</tr>
<tr>
<td>Ant Renamer</td>
<td>Freeware</td>
<td>Datei Umbenennung</td>
</tr>
<tr>
<td>ChemBioDraw Ultra 14</td>
<td>Cambridge Software</td>
<td>Zeichnungsprogramm</td>
</tr>
<tr>
<td>Corel Draw X5</td>
<td>Corel</td>
<td>Bildbearbeitungsprogramm</td>
</tr>
<tr>
<td>Corel PaintShop Photo Pro X3</td>
<td>Corel</td>
<td>Bildbearbeitungsprogramm</td>
</tr>
<tr>
<td>Dir it</td>
<td>Tools & More</td>
<td>Bildverzeichnis erstellen</td>
</tr>
<tr>
<td>Endnote X4</td>
<td>Thomson Reuter</td>
<td>Literaturverwaltungsprogramm</td>
</tr>
<tr>
<td>FCAP Array v3.0</td>
<td>BD BD Pharmingen</td>
<td>CBA Analyse Programm</td>
</tr>
<tr>
<td>Flomax 2.7</td>
<td>Partec</td>
<td>Cyflo FACS Programm</td>
</tr>
<tr>
<td>Flowing Software 2.5.1</td>
<td>University of Turku, Finland</td>
<td>Bearbeitung FCS Dateien (FACS Dateien)</td>
</tr>
<tr>
<td>Gen5 2.0</td>
<td>AESKU.Diagnostics</td>
<td>ELISA Auswerteprogramm</td>
</tr>
</tbody>
</table>
2.1.8. Puffer

Tabelle 9: NuPage MOPS SDS-Laufpuffer

<table>
<thead>
<tr>
<th>Lagerlösung (20x)</th>
<th>Arbeitslösung (1x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mM MOPS</td>
<td>950 ml H₂O dest.</td>
</tr>
<tr>
<td>50 mM Tris Base</td>
<td>50 ml Lagerlösung</td>
</tr>
<tr>
<td>0,1% SDS</td>
<td>200 ml der Arbeitslösung</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>+ 0,5 ml Antioxidanz</td>
</tr>
<tr>
<td>in 500 ml H₂O dest.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: NuPage Transferpuffer

<table>
<thead>
<tr>
<th>Lagerlösung (20x)</th>
<th>Arbeitslösung (1x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mM Bicine</td>
<td>750 ml H₂O dest.</td>
</tr>
<tr>
<td>25 mM Bis Tris (free base)</td>
<td>50 ml Lagerlösung</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>150 ml Methanol</td>
</tr>
<tr>
<td>1% SDS</td>
<td>1 ml Antioxidanz</td>
</tr>
<tr>
<td>in 125 ml H₂O dest.</td>
<td></td>
</tr>
</tbody>
</table>
Coomassie Lösung
0,2 g Coomassie
80 ml Ethanol (100%)
20 ml Essigsäure
auf 200 ml mit \(\text{H}_2\text{O} \) dest. auffüllen

Ponceau S
1:10 verdünnen

Luxol Fast Blue
0,1 g LFB in 100 ml 95%iges Ethanol + 0,5 ml Essigsäure

Lithiumcarbonat (LiCO\(_3\))
0,005 g LiCO\(_3\) in 100 ml \(\text{H}_2\text{O} \) dest.
2.2. Tierexperimentelle Methoden

2.2.1. Versuchstiere

Für das Experimentelle Autoimmune Glaukom-Modell (EAG) wurden Lewis-Ratten und für das NMDA-Modell Wistar-Ratten von Charles River verwendet (176-200 g; Sulzfeld, Deutschland). Beides sind Albinorattenstämmen, wobei die Wistar-Ratte der unveränderte heterozygote Ausgangsstamm der Lewis-Ratte (Inzuchtstamm) ist.

Die Tiere wurden regelmäßig auf mögliche neurologische Ausfälle und Schädigungen der Augen untersucht.

2.2.2. Experimentelles Autoimmunes Glaukom-Modell

Das EAG-Modell ist ein Tiermodell, in dem durch systemische Antigeninjektion der Untergang der RGZ induziert wird. Als okuläre Antigene wurden das bovine Sehnervhomogenat Antigen (ONA) und das S100B eingesetzt. Die Konzentrationen beider Antigene wurden in vorangegangenen Studien etabliert [136, 139].

Für die Herstellung von ONA wurden bovine Sehnerven vom Schlachthof (Gelsenkirchen) verwendet. Die Myelin-Schicht wurde mit Skalpell und Schere entfernt. Danach wurden die Sehnerven in kleine Stücke zerschnitten und mit Pistill und Mörtel sowie flüssigem Stickstoff mechanisch zu Pulver verarbeitet. Das Pulver wurde mit PBS suspendiert und die Proteinkonzentration mittels Bicinchoninsäure-Test (BCA) bestimmt. Die ONA-Konzentration wurde auf 8 mg/ml eingestellt.

Das reine S100B war kommerziell erhältlich (Sigma-Aldrich) und mittels PBS wurde eine Konzentration von 1 mg/ml eingestellt.
1 ml der ONA-Lösung oder 200 µl von S100B wurden Lewis-Ratten intraperitoneal verabreicht. Beide Antigene wurden zusammen mit Freund’s Adjuvants (500 µl in ONA, 200 µl in S100B) und Pertussis Toxin (PTx; ONA/S100=3 µg) eingesetzt. Freund’s Adjuvants wird als Trägerstoff für die Antigene verwendet und das PTx permeabilisiert die Blut-Gehirn- und Blut-Retinaschranken [145]. Der Kontrollgruppe (Co) wurde 1 ml Natriumchlorid (NaCl) zusammen mit 500 µl Freund’s Adjuvants und 3 µg PTx verabreicht, während der Naïven Gruppe 1,62 ml NaCl injiziert wurde.

Nach 14 (n=7/Gruppe) bzw. 28 Tagen (n=6/Gruppe) wurden die Ratten mittels Kohlenstoffmonoxid getötet und die Organe entnommen.

2.2.3. Intraokuläre Injektion von N-Methyl-D-Aspartat

Die intraokuläre Injektion von NMDA wurde an Wistar-Ratten vorgenommen. Es handelt sich um ein etabliertes Tiermodell einer frühen Retina-Degeneration [143, 146, 147].

2.2.4. Messung des Augeninnendrucks

Der Augeninnendruck (IOD) wurde nicht invasiv mittels eines TonoLab Tonometers gemessen. Dieses Gerät ist spezifisch für Kleintiere ausgelegt [149]. Es funktioniert elektronisch, indem ein beweglicher Messkopf beim Betätigen des Startknopfes herausschießt und auf die Oberfläche des Auges trifft. Es misst nicht den tatsächlichen IOD, sondern den Grad der Verformbarkeit der Hornhaut, welcher auf der Härte der Hornhaut und der Flüssigkeitsdrücke im Auge basiert. Durch eine innere Kalibrierung wird der Druckwert in Millimeterquecksilbersäule (mmHg) angegeben. Pro Auge und Zeitpunkt wurden zehn Messungen durchgeführt und gemittelt. Bei dem EAG-Modell wurde einmal pro Woche und bei dem NMDA-Modell alle drei bis vier Tage eine IOD-Messung vorgenommen.

2.2.5. Ausmessung der Milz

Im EAG-Modell wurden 14 und 28 Tage nach der systemischen Applikation von S100 und ONA die Organe entnommen. Die Milz wurde direkt nach der Entnahme gewogen und die drei Dimensionen, Länge (L), Breite (B) und Höhe (H), der Milzen mit einem elektronischen Messschieber gemessen. Daraus wurde das Volumen der Milzen mit der Formel einer gestreckten Ellipse berechnet: \(V = \frac{\pi}{6} \times L \times B \times H \). Dies ist eine etablierte Formel um das Volumen von soliden Organen, wie von humane Milzen, zu bestimmen [150].

2.3. Zellbiologische Methoden

2.3.1. Immunhistologie

2.3.1.1. Präparation der Organe

Für die histologischen Untersuchungen wurden die Augen und Milzen in 4%igem Paraformaldehyd (PFA) für 60 min und die Sehnerven für 120 min fixiert und über Nacht mit 30%iger Saccharose behandelt. Die zervikalen Lymphknoten (cLK) blieben unbehandelt. Alle
Organe wurden im Anschluss in NEG-50 Tissue Tek Medium in kleinen Plastikschälchen (Cryomolds) kryokonserviert und bei -80°C gelagert.

Mittels eines Kryotoms wurden aus den Organblöcken Querschnitte (Augen=10 µm, Milzen=5 µm, cLK=8 µm) bzw. Longitudinalschnitte (Seherven=4 µm) angefertigt und mit einem Objektrträger aufgenommen. Zur Fixierung und Verringerung späterer Hintergrundsignale wurden die Schnitte für 10 min in eiskaltes Aceton gestellt, getrocknet und bei -80 °C eingefroren.

2.3.1.2. Flachpräparate der Retina

Drei Tage nach der NMDA-Injektion wurden aus den Retinae ganze Flachpräparate präpariert. Dafür wurden die Augen für 120 min in 4%igem PFA fixiert und danach bei 4 °C in PBS gelagert. Die Präparation erfolgte in einer Zellkulturschale mit PBS unter einem Stereomikroskop. Nach dem Entfernen der Hornhaut und der Linse wurde die Retina von der Sklera getrennt. Vier Schnitte in der Peripherie der Retina führten dazu, dass sich die Retina flach und eingeteilt in vier Sektionen auf eine Nitrozellulosemembran mit schwarzem Gitter (0,45 µm) legen konnte. Mit einem Pinsel und einer Pinzette wurde der Glaskörper vorsichtig entfernt. Um die Retina an die Membran anhaften zu lassen, wurde die Membran mit der Retina für 90 Sekunden (s) luftgetrocknet. Daraufhin wurde sie in einer 12-well Platte auf einem Schüttler angefärbt [53].

2.3.1.3. Übersichtsfärbungen

Die Querschnitte der Retinae wurden mit einer unspezifischen Hämalaun und Eosin (H&E) Lösung angefärbt und die Longitudinalschnitte der Seherven mit Luxol Fast Blue (LFB).

Hämalaun und Eosin-Färbung der Retina

Es wurden jeweils zwei Schnitte pro Auge mit H&E behandelt. Dabei färbt Hämalaun die Zellkerne blau-violett und Eosin das Zytoplasma und die Interzellularräume rot an [151]. Bei der Färbevorgang wurde ein Standardprotokoll verwendet [152]. Die retinalen Querschnitte

Luxol Fast Blue Färbung

Abb. 4: Aufnahmebereiche bei Retina und Sehnerven

32
2.3.1.4. Immunhistologische Färbungen von Gewebeschnitten

Es wurden sechs Schnitte pro Retina und Sehnerv angefärbt und, wie unter 2.3.1.3. beschrieben, in einer 400x Vergrößerung aufgenommen. Von den Milzen wurden fünf Schnitte angefärbt und jeweils drei Fotos im Keimzentrum und außerhalb des Keimzentrums über die Milzfläche verteilt aufgenommen. Von den cLN wurden jeweils fünf Schnitte (pro Schnitt mehrere cLN) angefärbt und fünf Fotos pro Schnitt angefertigt.
Tabelle 11: Verdünnung der für die Histologie verwendeten Antikörper

<table>
<thead>
<tr>
<th>primärer Antikörper</th>
<th>Verdünnung</th>
<th>sekundärer Antikörper</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktive Caspase 3</td>
<td>Retina: 1:300</td>
<td>Esel anti-Hase A-555</td>
<td>1:500</td>
</tr>
<tr>
<td></td>
<td>Sehnerv: 1:100</td>
<td>Esel anti-Hase A-555</td>
<td>1:400</td>
</tr>
<tr>
<td>Brn-3a</td>
<td>Querschnitt: 1:100</td>
<td>Esel anti-Ziege A-488</td>
<td>1:400</td>
</tr>
<tr>
<td></td>
<td>Flachpräparat: 1:200</td>
<td>Esel anti-Ziege A-488</td>
<td>1:400</td>
</tr>
<tr>
<td>ED1</td>
<td>Retina: 1:250</td>
<td>Esel anti-Maus DL-488</td>
<td>1:300</td>
</tr>
<tr>
<td></td>
<td>Sehnerv: 1:250</td>
<td>Ziege anti-Maus A-555</td>
<td>1:500</td>
</tr>
<tr>
<td>FasL</td>
<td>Retina: 1:100</td>
<td>Esel anti-Hase A-555</td>
<td>1:700</td>
</tr>
<tr>
<td></td>
<td>Sehnerv: 1:100</td>
<td>Esel anti-Hase A-555</td>
<td>1:650</td>
</tr>
<tr>
<td>FasR</td>
<td>Sehnerv: 1:200</td>
<td>Ziege anti-Maus A-488</td>
<td>1:500</td>
</tr>
<tr>
<td>FasR</td>
<td>Retina: 1:100</td>
<td>Esel anti-Ziege A-488</td>
<td>1:500</td>
</tr>
<tr>
<td>GFAP-A488</td>
<td>Retina: 1:1200</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Sehnerv: 1:3500</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Maus IgG1, κ A488</td>
<td>Retina: 1:240</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Sehnerv: 1:700</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>GFAP</td>
<td>Retina: 1:400</td>
<td>Esel anti-Huhn Cy3</td>
<td>1:500</td>
</tr>
<tr>
<td>Iba1</td>
<td>Retina Querschnitt: 1:400</td>
<td>Ziege anti-Hase Cy3</td>
<td>1:500</td>
</tr>
<tr>
<td></td>
<td>Retina Flachpräparat: 1:500</td>
<td>Ziege anti-Hase Cy3</td>
<td>1:500</td>
</tr>
<tr>
<td></td>
<td>Sehnerv: 1:400</td>
<td>Ziege anti-Hase A-488</td>
<td>1:500</td>
</tr>
<tr>
<td>SMI-32</td>
<td>Sehnerv: 1:6000</td>
<td>Esel anti-Maus A-488</td>
<td>1:400</td>
</tr>
<tr>
<td>Vimentin</td>
<td>Retina: 1:500</td>
<td>Ziege anti-Maus A-488</td>
<td>1:500</td>
</tr>
</tbody>
</table>

2.3.1.5. Spezifische Färbungen der retinalen Flachpräparate

Die retinalen Flachpräparate des NMDA-Modells wurden direkt nach der Präparation mit Brn-3a und Iba1 angefärbt. Dabei wurden unspezifische Epitope der Präparate mit 10% Eselsserum, 0,5% TritonX-100 in PBS für 90 min geblockt. Danach wurden die Retinae gewaschen und mit der primären Antikörpermischung aus Brn-3a (1:200), Iba1 (1:400) und der Blockierungsmixtur über Nacht auf einem Schüttler behandelt. Nach dem Waschen mit PBS wurden die sekundären Antikörper Esel-anti-Ziege-A488 (1:300) und Esel-anti-Hase-A555 (1:500) für 120 min inkubiert. Nach einem weiteren Waschschritt wurde der Zellkernfarbstoff DAPI (0,01 µg) für drei min auf den Präparaten inkubiert. Danach wurden
die Präparate mit der Membran auf einen Objekträger gelegt und mit Shandon-mount eingedeckt.

Das Flachpräparat ist durch das Einschneiden in vier Sektionen unterteilt. Vier Fotos pro Sektion (ein zentrales Foto, zwei Fotos in der Mitte und ein peripheres Foto) wurden mit dem Apoptom.M2 in einer 400x Vergrößerung aufgenommen (Abb. 5).

![Abb. 5: Aufnahmebereiche eines Flachpräparates](image)

Abb. 5: Aufnahmebereiche eines Flachpräparates

Linksseitig ist eine schematische Darstellung eines Flachpräparates dargestellt, bei dem die vier Aufnahmebereiche, einmal zentral und peripher und zweimal in der Mitte, markiert sind. Herausvergrößert ist daraus ein Beispielfoto einer Co-Retina von der Färbung mit Brn-3a (grün), Iba1 (rot) und DAPI (blau). Maßstab=20 µm

2.3.1.6. Auswertung der spezifischen Strukturen

Es wurden drei Analyseverfahren verwendet, um eine Aussage über die Veränderungen der histologisch nachgewiesenen Strukturen zu erhalten (Abb. 6).

Zellen gezählt. Die beiden Marker Iba1 und ED1 wurden ebenfalls auf der gesamten Sehnervenbildfläche markiert und ihre Anzahl bestimmt.

Das zweite Verfahren für die Auswertung von immunhistologischen Bildern war das computerbasierte Vermessen der Signalfläche mittels ImageJ. Dabei wurde das geschnittene und maskierte Bild in ein 32-Bit Grau-Bild umgewandelt, der Hintergrund dem Originalbild angepasst und der untere sowie obere Grenzwert bestimmt. Für alle Strukturen und Studien wurde dabei für jeden der drei Parameter ein Mittelwert bestimmt (Anhang Tabelle A). Diese Auswertung wurde für die Marker GFAP und Vimentin in der Retina bzw. in den Sehnerven sowie CD3 und Iba1 in der Milz und den cLN verwendet (Abb. 5 B).

Das dritte Analyseverfahren wurde nur für die Sehnerven-Strukturen benutzt. Es wurden die Strukturen der LFB gefärbten Myelin-Fasern, der SMI-32 gefärbten Neurofilamente und der DAPI-Zellordnung bewertet.

Abb. 6. Analyseverfahren der immunhistologischen Färbungen
Es wurden drei Methoden zur Auswertung der immunhistologischen Färbungen eingesetzt. A) Einzelne oder ko-локализierte Zellen wurden mittels ImageJ ausgezählt. Dafür wurde der Zellzählér
Materialien und Methoden

Die Myelinfasern wurde nach einem etablierten Bewertungsschema von: 0=intakt bis 2=vollständig zerstört, beurteilt (Tabelle 12) [152].

<table>
<thead>
<tr>
<th>Bewertungsschema für LFB gefärbtes Myelin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1,5</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Materialien und Methoden

Tabelle 13: Bewertungsschema für SMI-32' Neurofilamente

<table>
<thead>
<tr>
<th>0</th>
<th>Vollständig intakte, eng aneinandergereihte, lange Axon-Stränge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>Intakte Strukturen, >30% der Fläche Retraction Bulbs (lose, angeschwollene Axone)</td>
</tr>
<tr>
<td>1</td>
<td>Keine Löcher, 30 bis 50% der Fläche mit Retraction Bulbs</td>
</tr>
<tr>
<td>1,5</td>
<td>Verlust strukturelle Integrität: 51-85% Retraction Bulbs und möglicherweise (nicht zwingend notwendig) wenige Löcher</td>
</tr>
<tr>
<td>2</td>
<td>Verlust strukturelle Integrität mit viele große Löchern, 86-100% der Fläche mit Retraction Bulbs</td>
</tr>
</tbody>
</table>

Zusätzlich zu der Auflösung der Axone wurden auch die DAPI' Zellkerne ausgezählt und ihre Anordnung (Zellordnung, Tabelle 14) eingeschätzt, denn auch hier kann von 0= in Reihe bis 2=Zellhaufen, ein Degenerationsschema analysiert werden [39].

Für jedes der drei Bewertungsschemata wurden die verblindeten Bilder dreimal bewertet, um eine genauere Zuordnung zu realisieren.

Tabelle 14: Zellordnung der DAPI Zellen

<table>
<thead>
<tr>
<th>0</th>
<th>Reihen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>halb geordnet (bestehend aus Reihen und einzelne Zellen</td>
</tr>
<tr>
<td>1</td>
<td>halb geordnet, teilweise fragmentiert</td>
</tr>
<tr>
<td>1,5</td>
<td>ungeordnet</td>
</tr>
<tr>
<td>2</td>
<td>ungeordnet, fragmentierte Zellen</td>
</tr>
</tbody>
</table>
2.3.2. Präparation der Organzellsuspensionen

14 Tage nach EAG-Induktion wurden die Lymphozyten und Granulozyten der sekundären lymphoiden Organe, wie Milz, zervikale Lymphknoten und Blut, isoliert. Dies wurde auch für die retinalen Lymphozyten durchgeführt. Dafür wurden Einzelzellsuspensionen der Gewebe hergestellt.

Blut

Es wurden ca. 6 ml Blut pro Tier durch eine Herzpunktion entnommen. Um das Agglutinieren zu verhindern wurde das Blut mit Ethylendiamintetraessigsäure (1 mg/ml, EDTA) versetzt und für eine Dichtegradient-Zentrifugation auf 6 ml Histopaque 1083 geschichtet. Für die weiteren Schritte wurden die Angaben des Herstellerprotokolls befolgt. Die trübe Interphase und der obere Teil der Histopaque-Phase wurden nach mehrmaligem Waschen mit serumfreiem PBS weiterverwendet, da sich dort die Lymphozyten und teilweise auch Granulozyten ablagerten. Zum Schluss wurde das Zellpellet mit 5 ml Waschpuffer (PBS/3% FCS/1% EDTA 0,2M) aufgenommen und bis zur weiteren Verarbeitung auf Eis gelagert.

Zervikale Lymphknoten und Milz

Sowohl die zervikalen Lymphknoten (cLN) als auch die Milz wurden durch ein Zellsieb (cLK=40 µm, Milz=70 µm) mit einem Spritzenstempel in ein 50 ml Zentrifugen-Röhrchen gepresst und mit PBS/10% FCS gespült. Danach wurden beide Zellsuspensionen zentrifugiert (400 g, 6 min, 4 °C) und der Überstand verworfen. Das Zellpellet der cLK wurde sofort mit 4 ml Waschpuffer, bestehend aus PBS/3% FCS/1% EDTA (0,2 mol), aufgenommen und auf Eis gestellt. Bei den Milzen wurde eine Erythrozytenlyse durchgeführt. Dabei wurden 15 ml H₂O dest. verwendet, das Röhrchen mit PBS/10% FCS aufgefüllt und zentrifugiert (400 g, 6 min, 4 °C). Der Überstand wurde verworfen und das Zellpellet mit 20 ml Waschpuffer resuspendiert. Die Zellsuspension wurde auf Eis gelagert.
Materialien und Methoden

Isolation der infiltrierenden Zellen der Retina

Es wurde ein kombiniertes Protokoll nach den Beschreibungen von Copland et al. [156] und Luger et al. [157] erstellt. Die Retinae beider Augen eines Tieres wurden entnommen, in 1 ml eines RPMI/10% FCS Mediums mittels einer Pipette mechanisch aufgelöst und auf 6 ml aufgefüllt. Die 6 ml wurden zentrifugiert (1200 rpm, 4 min, 4 °C) und das Zellpellet wurde mit einer Enzymlösung, bestehend aus Collagenase I (1 mg) und DNase (0,2 mg), in 3 ml Medium aufgenommen und gut vermischt. Diese Zell-EnzymSuspension wurde für 60 min zum Verdau in einen 37 °C Inkubator gestellt. Danach wurde die Suspension über ein 40 µm Zellsieb in ein Zentrifugen-Röhrchen überführt, mit 2 ml des Mediums gespült und zentrifugiert (1200 rpm, 6 min, 4 °C). Das Zellpellet wurde mit 5 ml Waschpuffer aufgenommen.

Zellzählung

2.3.3. Bestimmung der Lymphozyten und Granulozyten im FAC

2.3.3.1. Färbung für die FACS-Messung

Für die FACS-Färbung wurden 1x10^5 Zellen pro FACS-Röhrchen von jeder Zellsuspension (Blut, cLK, Milz und Retina) pipettiert. Nach dem Waschen mit Waschpuffer (1200 rpm, 10 min, 4 °C), wurde das Zellpellet mit dem CD32-Fc-Blockierungsantikörper behandelt (10 min, 4 °C), um eine Fehlbindung der Antikörper mit dem Fc-Bereich zu verhindern. Es wurde wieder gewaschen und danach wurden die Zellen mit CD3-FITC (2,5 µg, T-Zellen) und CD45R-PE (0,25 µg, B-Zellen) gefärbt (Triplett pro Marker). Zusätzlich wurde für beide
Marker eine Isotypkontrolle verwendet (Maus IgG3, κ-FITC, 2,5 µg und Maus IgG2b, κ-PE, 0,2 µg). Alles zusammen wirkte für 30 min (4°C, im Dunkeln) auf die Zellen ein. Die Granulozyten wurden separat mit dem Granulozytenmarker-FITC (0,25 µg) oder der Isotypkontrolle Maus, IgM, κ-FITC (0,25 µg) für 30 min verwendet (4°C, im Dunkeln). Die Zellsuspension wurde wiederum gewaschen. Der Überstand wurde verworfen und die Zellen mit 500 µl PBS und 500 µl 3%igem PFA aufgenommen und über Nacht bei 4 °C (im Dunkeln) im Kühlschrank gelagert.

2.3.3.2. Auswertung der FACS-Messung

Die Zellzahlen der verschiedenen Populationen (B-Zellen, T-Zellen und Granulozyten) wurden mit einem Cyflow-FACS-Gerät und der FloMax 2.7 Software bestimmt. An einem Beispiel für die Lymphozyten in cLK wird die Auswertung der FACS-Daten erklärt (Abb. 7). Für die Bestimmung der Zellzahl wurden zwei Auswahlbereiche im Forward-Scatter (Zellgröße, FSC) und Sideward-Scatter (Zellgranularität, SSC) Diagramm gelegt (Abb. 6 A). Der erste Bereich (R2) schloss die toten Zellen an den Rändern des Diagramms aus und der zweite (R1) umschließt die Lymphozyten mit mittlerer Größe und geringer Menge an Granula. Im zweiten Diagramm wurden die beiden Fluoreszenzkanäle FITC gegen PE basierend auf den Auswahlbereich R1 aufgetragen (Abb. 7 B). Die T-Zellen wurden mit CD3-FITC markiert und waren im Quadranten (Q) 4 zu sehen, während die B-Zellen, durch CD45R-PE gelabelt, im Q1 zu finden waren. Die Zellen des Q3 waren unmarkierte Zellen im R1, die weder CD3 noch CD45R exprimierten. Q2 zeigte die Zellen an, die beide Zellmarker trugen. Hier war aber auch eine Streuung aus Q1 und Q3 sehr wahrscheinlich (Abb. 7 B). Die so erhaltene prozentuale Zellzahl wurde zu einer absoluten Zellzahl umgerechnet, wobei die Isotypkontrolle von jedem Wert abgezogen worden ist.
Materialien und Methoden

Abb. 7: FACS-Auswertung

A) Bei der FACS-Messung wurden die Zellgröße im FSC (Abszisse) und die Granularität einer Zelle im SSC (Ordinate) in einem Diagramm dargestellt. Es wurden zusätzlich zwei verschiedene Gates gelegt, um die Zellpopulationen voneinander abzutrennen. Das erste Gate R2 grenzt die toten Zellen aus und wird deshalb als Lebendzellgate bezeichnet. Das zweite Gate liegt um die Lymphozytenpopulation (R1). Das sind Zellen mittlerer Größe und geringer Granularität.

B) In dem Diagramm wurde nur noch die Lymphozytenpopulation aus R1 berücksichtigt. Die CD3-FITC markierten T-Zellen sind entlang der Abszisse im Quadranten 4 (Q4) und die CD45R-PE markierten B-Zellen entlang der Ordinate im Q1 Gate zu sehen.

2.4. Proteinanalyse

2.4.1. Proteinisolierung

50 µl der vorbereiteten Proben bzw. der Standardreihe wurden mit 1 ml des BCA Reagens vermischt und bei 37 °C für 30 min inkubiert. Der Proteingehalt wurde am Photometer in Einmalküvetten bei einer Wellenlänge von 562 nm bestimmt.

2.4.2. Western Blot

Für die Western Blots wurden die Retina Proben auf 20 µg Protein/12 µl eingestellt. Diese 12 µl enthielten außerdem 25% Probenpuffer und 10% Dithiothreitol und wurden bei 70 °C für 10 min inkubiert. Danach konnten die Proben weiterverwendet oder bei -20°C gelagert werden.

Für eine Gelektrophorese wurden 12 µl des Retinalysats pro Spur eines 12% Bis-Tris-Sodiumdodecylsulfat (SDS) Gels aufgetragen. Für die Gelektrophorese unter reduzierenden Bedingungen (50 min, 200V) wurde ein MOPS-SDS-Puffer verwendet. Danach wurden die Gelbanden im Transferpuffer mit einem Wet-Blotter auf eine Nitrozellulosemembran (0,2 µm) übertragen. Dabei wurden auf ein Spongepad sieben Blotting Pads gelegt. Darauf wurden das Gel und darüber die Membran platziert. Wiederum wurden auf die Membran sieben Blotting Pad und ein Spongepad gelegt. Das ganze wurde in einem Wet-Blotter deponiert und mit dem Transferpuffer aufgefüllt. Nach 60 min wurde der Blot-Prozess beendet und die Membran entweder sofort weiter verwendet oder bei -20°C gelagert.

Für das Färben des Blots wurden kleine Plastikschalen benutzt. Diese wurden zunächst mit einem Magermilchpuffer aus 5% Magermilchpulver in einer 0,05%pigen PBS/Tween 20 Lösung (PBS-T), behandelt. Daraufhin wurden die Blots mit PBS-T zweimal gewaschen und dann für 60 min (alle extrazellulären Marker) oder 120 min (alle intrazellulären Marker) geblockt. Nach drei Waschschritten wurde der primäre Antikörper (Tabelle 15) im Magermilchpuffer angesetzt und über Nacht bei 4 °C inkubiert. Die Überreste der Antikörper wurden dreimal mit PBS-T abgewaschen. Der sekundäre Antikörper, auch in Magermilchpuffer angesetzt, wurde für 60 min bei Raumtemperatur inkubiert. Dieser wurde wiederum dreimal mit PBS-T gewaschen und die spezifischen Banden der Membranen

Da die Möglichkeit bestand zwei unterschiedliche Protein-Signale auf einem Blot zu messen, wurde β-Aktin bei jedem Blot zur Normierung der Signale gefärbt. β-Aktin ist ein globulär und ubiquitär exprimiertes Strukturprotein, welches immer nachweisbar ist und damit zusätzlich zur Kontrolle der Protein-Übertragung dient.

Tabelle 15: Auflistung der Western Blot Antikörper

<table>
<thead>
<tr>
<th>Primärer Antikörper</th>
<th>Verdünnung</th>
<th>Sekundärer Antikörper</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Aktin</td>
<td>1:6000</td>
<td>Esel anti-Maus Dylight 800</td>
<td>1:2000</td>
</tr>
<tr>
<td>β-Aktin</td>
<td>1:1000</td>
<td>Esel anti-Hase Dylight 800</td>
<td>1:2000</td>
</tr>
<tr>
<td>Brn-3a</td>
<td>1:100</td>
<td>Hase anti-Ziege A-680</td>
<td>1:5000</td>
</tr>
<tr>
<td>GFAP</td>
<td>1:3000</td>
<td>Esel anti-Huhn IR680RD</td>
<td>1:20.000</td>
</tr>
<tr>
<td>Aktive Caspase 3</td>
<td>1:500</td>
<td>Esel anti-Hase A680</td>
<td>1:5000</td>
</tr>
<tr>
<td>Aktive Caspase 2</td>
<td>1:500</td>
<td>Esel anti-Hase A680</td>
<td>1:5000</td>
</tr>
</tbody>
</table>

2.4.3. ELISA

28 Tage nach der systemischen Injektion wurde der TNF-α Gehalt im Serum der EAG-Tiere (n=6/Gruppe) bestimmt. Dieser Test wurde zweimal durchgeführt. Es wurde nach der Anleitung des Herstellers vorgegangen und die zum Kit gehörende Standardkurve, welche von 0 bis 1500 pg/ml ging, verwendet. Diese wurde zusammen mit den Serum-Proben als
Duplekts auf die 96 well-Platte aufgetragen und im ELISA Reader gemessen. In Relation zur Standardkurve wurde mit dem Gen5 2.0 Programm, die Konzentration von TNF-α in den Serum-Proben bestimmt.

2.4.4. Multiplex Zytokin-Analyse

2.5. Statistische Auswertungen

Die Unterschiede sind ab einem p<0,05 statistisch signifikant und wurden mit einem Stern (*) gekennzeichnet. Zwei Sterne (**) wurden ab p<0,01 und drei Sterne (***) mit einem p<0,001 vergeben. Die Standardabweichungen wurden durch einen Fehlerbalken und die Mittelwerte in den Balkendiagrammen durch eine horizontale Linie gekennzeichnet.
3. **Ergebnisse**

3.1. **Experimentelles Autoimmunes Glaukom-Modell**

3.1.1. **Konstanter Augeninnendruck**

Über den längsten Zeitraum des Experimentes (28 Tage) wurde eine nicht invasive Messung des Augeninnendruckes (IOD) an allen drei Gruppen (Co, ONA und S100) mit dem Tonolab vorgenommen. Dabei wurde ein Basiswert vor der Immunisierung (Tag 0) und dann einmal pro Woche eine Messung durchgeführt. Der Basiswert, der vor der Immunisierung gemessen wurde, lag bei der Co-Gruppe bei 9,1±0,4 mmHg. Die Werte der ONA-Gruppe mit 9,3±0,3 mmHg (p>0,9) und der S100-Gruppe mit 9,2±0,3 mmHg (p>0,9) waren vergleichbar mit dem Wert der Co-Gruppe. Zu keinem Zeitpunkt konnte eine Veränderung des IODs im Vergleich zur Co-Gruppe in den beiden immunisierten Gruppen beobachtet werden (Anhang Tabelle B). Auch nach 27 Tagen, am Ende des Experimentes, blieb der IOD der ONA-Gruppe, welcher 9,8±0,3 mmHg betrug, stabil gegenüber der Co-Gruppe mit einem IOD von 10±0,1 mmHg (p=0,4). Das Gleiche galt auch für den IOD der S100-Gruppe (9,7±0,1 mmHg, p=0,08).
3.1.2. Untergang der retinalen Ganglienzellen

Nach 28 Tagen wurden die Retinae auf einen möglichen Verlust der RGZ untersucht, indem Brn-3a mittels Western Blot und Immunhistologie nachgewiesen wurde (Abb. 8). Die Brn-3a-Proteinbande wurde bei 47 kDa detektiert. Zur Normierung der Brn-3a-Signalintensität wurde β-Aktin, welche eine Proteingröße von 42 kDa hat, verwendet. Es konnte eine Verringerung der Signalintensität der Brn-3a-Bande in den beiden immunisierten Gruppen, ONA und S100, festgestellt werden, während die β-Aktin-Banden unverändert blieben (Abb. 8 A). Die normierten Werte der immunisierten Gruppen wiesen im Vergleich mit der Co-Gruppe mit einer relativen Signalstärke von 3,5±0,4 Units eine Abnahme, sowohl in der ONA-Gruppe (1,7±0,2 Units; p=0,004, Abb. 8 B) als auch in der S100-Gruppe (1,1±0,2 Units; p=0,0004, Abb. 8 B), auf.

Dieses Ergebnis wurde in der Immunhistologie mit Brn-3a verifiziert. Nach 28 Tagen wurden in der GCL der ONA- und S100-Gruppe größere Lücken festgestellt, welche bei der Co-Gruppe nicht sichtbar waren (Abb. 8 C). Durch die ONA-Immunisierung blieben nur noch 72,7±4,1% der Brn-3a⁺ Zellen im Vergleich zur Co-Gruppe übrig (100±6.2%; p=0,0002, Abb. 8 D). Die Immunisierung mit S100 hatte sogar einen stärkeren Effekt auf die RGZ, denn nur 64,7±5,6% der Brn-3a⁺ Zellen waren nach 28 Tagen noch vorhanden (p<0,0001, Abb. 8 D).
Abb. 8: Untergang der retinalen Ganglienzellen

A) Für die Analyse der RGZ-Zahl wurde Brn-3a mittels Western Blot, bei einer Proteingröße von 47 kDa detektiert. Mittels β-Aktin, welches eine Proteingröße von 42 kDa hat, wurden diese Signalwerte normiert.

B) Es konnte eine Abnahme der Signalintensität der Brn-3a-Banden in beiden immunisierten Gruppen festgestellt werden (ONA: p=0.004; S100: p=0.0004).

C) Auch in der Immunhistologie wurde Brn-3a (rot) zusammen mit dem Zellkernfarbstoff DAPI (blau) eingesetzt. Die Brn-3a⁺ Zellen in der GCL der Co-Gruppe sind eng aneinandergereiht, während bei den immunisierten Gruppen größere Lücken zu sehen waren.

D) Dieser sichtbare Verlust der RGZ konnte auch statistisch nachgewiesen werden (ONA: p=0,0002; S100 p<0,0001). N=5-6/Gruppe; MW±SEM; Maßstab=20 µm, Student’s t-Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht). C und D wurde unter Mithilfe von Rozina Noristani erstellt.
3.1.3. Degeneration der Sehnerven-Strukturen

Das Myelin der immunisierten Gruppen sah nach 14 Tagen noch vollständig intakt und geordnet aus, während nach 28 Tagen in der ONA- und S100-Gruppe eine starke Lochbildung und Unordnung der Myelin-Fasern sichtbar war (blau, Abb. 9 A). Die Struktur des Myelins der ONA-Gruppe wurde mit 0.3 ± 0.06 ($p=0.6$ Abb. 9 B) und die der S100-Gruppe mit 0.4 ± 0.06 ($p=0.2$; Abb. 9 B) bewertet. Beide Gruppen waren somit nach 14 Tagen noch vergleichbar mit der Co-Gruppe, deren Wert bei 0.3 ± 0.05 lag (Abb. 9 B). Dies änderte sich nach 28 Tagen. Im Vergleich mit der Co-Gruppe (0.6 ± 0.1), war eine löchrige Auflösung, sowohl in der Myelin-Struktur der ONA (1.1 ± 0.08; $p=0.0003$) als auch der S100-Sehnerven, nachweisbar (1.2 ± 0.1; $p=0.0008$; Abb. 9 A, B).

Daraufhin wurden die Veränderungen im Neurofilament bewertet. Für die Neurofilament-Struktur der ONA-Gruppe galt das Gleiche wie schon für das Myelin. Nach 14 Tagen blieb der Wert mit 0.7 ± 0.06 ähnlich dem Wert der Co-Gruppe, welcher bei 0.6 ± 0.05 lag ($p=0.9$, Abb. 9 A, C). Nach 28 Tagen jedoch wurden aus den intakten Axonen, welche noch in der Co sichtbar waren (0.8 ± 0.07), vollständig durchlöcherte (rote Pfeile) und mit Retraction Bulbs durchsäte (weiße Pfeilköpfe) Sehnerven-Strukturen (1.5 ± 0.05; $p<0.0001$; Abb. 9 A, C). Die Neurofilamente der S100-Gruppe hingegen wiesen schon nach 14 Tagen die Ausbildung von Retraction Bulbs und Löchern auf, was zu einem Wert von 0.9 ± 0.05 führte ($p=0.006$, Abb. 9 A, C). Nach 28 Tagen erhöhte sich der Wert der S100-Gruppe auf 1.3 ± 0.07 ($p<0.0001$, Abb. 9 A, C). Jedoch bildeten sich mehr Retraction Bulbs als Löcher, was den etwas niedrigeren Wert gegenüber der ONA-Gruppe erklärt.

Ein weiteres Kriterium für die Zerstörung der Sehnerven-Strukturen ist die Veränderung der Zellordnung von Reihen zu Zellhaufen. Wie bei den beiden Kriterien zuvor, war nach 14 Tagen kein Unterschied zwischen der ONA-Gruppe (0.7 ± 0.06) und der Co-Gruppe (0.6 ± 0.05) ersichtlich ($p=0.7$; Abb. 9 D). Erst nach 28 Tagen hatten sich im Gegensatz zur
Ergebnisse

Co-Gruppe (0,8±0,07) die anfänglichen Reihen der ONA-Gruppe verstärkt zu Zellhaufen umgeordnet, was den Wert auf 1,5±0,07 erhöhte (p<0,0001). Bei der S100-Gruppe konnten, wie schon beim Neurofilament, die ersten Zellhaufen nach 14 Tagen detektiert werden. Damit lag der Zellordnungsgrad bei 1,1±0,2 und war somit fast doppelt so hoch wie bei der Co-Gruppe (0,6±0,1; p=0,02). Auch dieser Wert erhöhte sich geringfügig für die S100-Gruppe auf 1,2±0,08 nach 28 Tagen (p=0,0006; Abb. 9 D).

Weitere Anzeichen für eine Degeneration und Infiltration von Zellen sind Veränderungen in Zellordnung und Zellzahl der Sehnerven (Abb. 9 E). Sowohl in der ONA- (26,7±1,1 Zellen/Ausschnitt; p=0,3) als auch in der S100-Gruppe (29,6±1,2 Zellen/Ausschnitt; p=0,4) konnten nach 14 Tagen keine Unterschiede zur Co-Gruppe (28,2±1 Zellen/Ausschnitt) detektiert werden. Nach 28 Tagen wurde in der ONA-Gruppe mit 24,4±1 Zellen/Ausschnitt etwas mehr Zellen als in der Co-Gruppe mit 20,2±1 Zellen/Ausschnitt gezählt (p=0,003). Bei der S100-Gruppe (20,6±1 Zellen/Ausschnitt) blieb der Wert aber vergleichbar mit der Co-Gruppe (p=0,8).

Das bedeutet, dass die Sehnerven der ONA-Gruppe nach 14 Tagen noch intakt waren und erst später, aber dafür sehr schnell, degenerierten. Die Sehnerven der S100-Gruppe hingegen wiesen erste Anzeichen für die Auflösung der Axone schon nach 14 Tagen auf, während das Myelin erst später zersetzt wurde.
Abb. 9 Strukturveränderungen der Sehnerven

A) 14 und 28 Tage nach der Immunisierung wurden die Myelin-Fasern der Sehnerven mit LFB (blau),
die Neurofilament Fasern mit SMI-32 (grün) und die Zellkerne mit DAPI (blau) sichtbar gemacht. Die
Struktur beider Fasern und der Ordnungsgrad der Zellkerne wurden bewertet. Löcher im Gewebe
wurden mit roten Pfeilen und Retraction Bulbs mit weißen Pfeilköpfen markiert. B) In der Co-Gruppe
waren zu beiden Zeitpunkten durchgehende, parallel verlaufende und eng aneinander liegende
Sehnerven-Strukturen zu sehen. 14 Tage nach der Immunisierung galt dies auch für die ONA (p=0,6)
und S100-Gruppe (p=0,2). Doch nach 28 Tagen wiesen beide immunisierten Gruppen starke
Auflösungserscheinungen der Myelin-Strukturen auf (ONA/S100: p<0,0001). C) Auch die Zerstörung
Ergebnisse

der ONA Neurofilament-Struktur war erst nach 28 Tagen erkennbar (p<0,0001), während nach 14 Tagen alles noch intakt war (p=0,9). Erste Auflösungerscheinungen der Neurofilament-Strukturen der S100-Gruppe waren schon nach 14 Tagen sichtbar (p=0,006), was sich nach 28 Tagen noch verstärkt (p<0,0001). D) Der gleiche Zeitverlauf der Degeneration war auch für die Zellordnung ersichtlich. Normalerweise waren die Zellkerne in parallelen Reihen angeordnet, jedoch nach 14 Tagen waren erste Anzeichen für eine Zellhaufenbildung in der S100-Gruppe (p=0,02) bemerkbar, welche sich nach 28 Tagen noch verstärkte (p=0,0006). Die Veränderungen in der ONA-Gruppe fanden hingegen erst zwischen 14 und 28 Tagen statt. Nach 14 Tagen war die Zellordnung noch vergleichbar mit der Co-Gruppe (p=0,7), während nach 28 Tagen fast ausschließlich Zellhaufen zu finden waren (p<0,0001). E) Die strukturelle Zerstörung der Sehnerven betraf nur geringfügig die Anzahl der Zellkerne. Nach 14 Tagen veränderte sich deren Anzahl in den beiden immunisierten Gruppen nicht (ONA: p=0,3; S100: p=0,4) und auch nach 28 Tagen gab es nur in der ONA-Gruppe einen Anstieg der Zellzahl (p=0,003). In der S100-Gruppe blieb die Anzahl hingegen stabil (p=0,8). N=4-5/Gruppe, MW±SEM, Maßstab=20 µm, Student’s t-Test.

3.1.4. Entwicklung der Apoptose-Signale in Retina und Sehnerven

Die Apoptose-Mechanismen können durch viele Wege eingeschaltet werden. Entzündungsfördernde Zytokine, wie z.B. IL1, TNF-α oder FasL, sind externe Liganden, welche über die Bindung ihrer zellständigen Rezeptoren eine extrinsische Signalkaskade auslösen. Diese Signalkaskaden führen alle zur Aktivierung der Caspase 3, das Schlüsselproteins der Caspasen-Kaskade. Aus diesem Grund ist es sinnvoll einen der Liganden, wie das FasL, und die Caspase 3 zu untersuchen. FasL wurde histologisch in der Retina und in den Sehnerven angefärbt. Das FasL-Signal war über die gesamte Retina in allen Schichten verteilt. Nach 28 Tagen war das FasL-Signal nur noch in sehr geringer Anzahl vorhanden. Größtenteils war das Signal im äußeren Segment zu finden. Die Verteilung des FasL-Signals über die gesamte Retina (nicht dargestellt) korreliert mit den Daten der GCL (Abb. 10 A). Zwischen der Co-Gruppe mit 5,2±1,9 FasL⁺ Zellen/GCL und der ONA-Gruppe mit 3,5±0,5 FasL⁺ Zellen/GCL wurde kein Unterschied gefunden (p=0,4; Abb. 10 B). Auch die S100-Gruppe wies keine Veränderung im FasL-Signal auf (2,8±1 FasL⁺ Zellen/GCL; p=0,3; Abb. 10 B).
Das Ganze änderte sich aber bei der Analyse der Sehnerven. Komplementär mit den nach 14 Tagen auftretenden strukturellen Verlusten der Sehnerven in der S100-Gruppe, konnte auch ein erhöhter prozentualer Anteil von FasL an DAPI* Zellen in den Sehnerven der S100-Gruppe (38,0±5,4%; p=0,007), im Vergleich mit der Co-Gruppe (17,4±2,8%; Abb. 10 C, D), beobachtet werden. Nach 28 Tagen war der Anteil an FasL in den Sehnerven der S100-Gruppe mit 12,0±1,1% wieder vergleichbar mit der Co-Gruppe (19,3±3,7%; p=0,1; Abb. 10 D). In den Sehnerven der ONA-Gruppe war zu beiden Zeitpunkten keine Erhöhung der FasL-Signale beobachtbar. Mit 6,2±0,5% FasL/DAPI* Zellen konnte sogar eine Verringerung der FasL-Signale in den Sehnerven nach 14 Tagen festgestellt werden (p=0,009; Abb. 10 D). Nach 28 Tagen war dieser Wert mit 18,3±3,5% FasL/DAPI* Zellen aber wieder vergleichbar mit der Anzahl der Co-Gruppe (p=0,2; Abb. 10 D).
Abb. 10: FasL-Signale in Retina und Sehnerv

A) Nach 28 Tagen wurde FasL (rot) zusammen mit Brn-3a (grün) und dem Zellkernmarker DAPI (blau) angefärbt. B) Es wurde kein Unterschied zwischen der Co- und den immunisierten Gruppen festgestellt (ONA: p=0,4; S100: p=0,3). C) Nach 14 und 28 Tagen wurden FasL (rot) und DAPI⁺ Zellkernen (blau) auf longitudinalen Schnitten der Sehnerven zusammen angefärbt und der FasL-Anteil an den DAPI⁺ Zellen berechnet. D) Nach 14 Tagen waren weniger FasL/DAPI⁺ Zellen in den Sehnerven der ONA-Gruppe (p=0,009) im Vergleich zur Co-Gruppe vorhanden, während sich die Anzahl der apoptotischen Zellen in der S100-Gruppe verdoppelte (p=0,007). Jedoch wurde nach 28 Tagen wieder eine Normalisierung der FasL/DAPI⁺ Zellzahlen in den beiden immunisierten Gruppen gegenüber der Co-Gruppe festgestellt (ONA: p=0,2; S100: p=0,1). Retina: n=5-6/Gruppe, Sehnerven: n=4-5/Gruppe, MW±SEM, Maßstab=20 µm, Student's t-Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht.

Nachdem keine Veränderungen im FasL-Signal der Retinae der immunisierten Gruppen festgestellt werden konnten, wurde die aktive Caspase 3 nach 28 Tagen mittels Western Blot und Immunhistologie untersucht. Die Bandenintensität der aktiven Caspase 3 bei 17 kDa wurde gegen die des β-Aktins bei 42 kDa normalisiert. Doch auch bei diesem Apoptose-Marker konnte, obwohl ein Trend vorhanden war, weder in der ONA-Gruppe (0,7±0,2 Units; p=0,5) noch in der S100-Gruppe (0,9±0,2 Units; p=0,2) ein signifikanter Unterschied zur Co-Gruppe (0,5±0,2 Units) mittels Western Blot detektiert werden (Abb. 11 A, B). Die immunhistologischen Daten bestätigten dieses Ergebnis. Es wurde der prozentuale Anteil der aktive Caspase 3 an den Brn-3a⁺ Zellen in der Retina bestimmt. Der Anteil der aktiven Caspase 3 der Co-Gruppe betrug 9,8±4,6%. Es konnte zwar ein prozentualer Anstieg in beiden immunisierten Gruppen (ONA: 17,2±2,9%; S100: 13,6±3,9%) ermittelt werden, doch war er in beiden Gruppen nicht signifikant (ONA: p=0,2; S100: p=0,6; Abb. 11 C, D).
Ergebnisse

Abb. 11: Keine Veränderung der aktiven Caspase 3 in der Retina

A) Nach 28 Tagen wurde mittels Western Blot der Protein-Level des Apoptose-Markers aktive Caspase 3 detektiert, welches eine Proteingröße von 17 kDa hat.

B) Die Bandenintensität der aktiven Caspase 3 wurde gegen die des β-Aktins, welches eine Proteingröße von 42 kDa aufweist, normalisiert. Es konnte kein Unterschied zwischen den immunisierten und der Co-Gruppe gefunden werden (ONA: p=0,5; S100: p=0,2).

C) Der gleiche Antikörper wurde auch in der Immunhistologie verwendet. Dabei wurden die RGZ mit Brn-3a (grün) angefärbt und der Anteil der aktiven Caspase 3 (rot) an den RGZ ausgewertet.

D) Es war eine Tendenz zu mehr apoptotischen RGZ sichtbar, aber in beiden immunisierten Gruppen war kein signifikanter Unterschied messbar (ONA: p=0,2; S100: p=0,6). N=4-5/Gruppe, MW±SEM, Maßstab=20 µm, Student’s t-Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht. C und D wurde unter Mithilfe von Rozina Noristani erstellt.

3.1.5. Veränderungen der glialen Reaktion

Sowohl die Mikro- als auch die Makroglia reagieren während der Degeneration der Retina. Wie schon beschrieben agieren die Mikroglia sehr früh, während die Makroglia-Reaktion als sekundär bezeichnet wird.
3.1.5.1. Degenerationsbedingte Makroglia-Reaktion

Auf Grund der späten Reaktion der Makroglia wurden sie auch erst zu einem späteren Zeitpunkt in der Retina untersucht. Das bedeutet, 28 Tage nach der Immunisierung wurden mittels Western Blot und Immunhistologie die Makroglia nachgewiesen. Das GFAP, ein Intermediärfilament der Astrozyten, wurde bei 55 kDa detektiert. Für die Normierung der GFAP-Signalwerte wurde β-Aktin (42 kDa) verwendet. Zu diesem späteren Zeitpunkt wurde nur eine geringe Erhöhung der Bandenintensität in der ONA-Gruppe beobachtet, während bei der S100-Gruppe keine Veränderung festgestellt wurde (Abb. 12 A). Diese Entwicklungen wiesen auch die relativen Signalintensitätswerte auf. Der Basiswert der Signalintensität lag bei der Co-Gruppe bei 1,8±0,1 Units. Nach der Immunisierung mit ONA stieg dieser Wert auf 3,3±0,6 Units (p=0,04). Das GFAP-Signal der S100-Gruppe blieb mit einem Wert von 2,0±0,2 Units unverändert (p=0,5).

In der Immunhistologie wurde eine Doppelfärbung der beiden Intermediärfilamente, GFAP und Vimentin, verwendet. Im Mischbild war besonders in der ONA-Gruppe auch eine teilweise Überlagerung der beiden Marker in Gelb zu sehen, welche in der S100-Gruppe fast nicht erkennbar war (Abb. 12 A). Die Signalunterschiede wurden mit der Auswertung der Signalfäche bestätigt. Die GFAP⁺-Fläche der ONA-Gruppe betrug 4,7±0,6%, was fast einer Verdopplung der Fläche der Co-Gruppe mit 2,6±0,6% bedeutete (p=0,04; Abb. 12 B). Jedoch blieb die GFAP⁺ Fläche der S100-Retinæ weitgehend unverändert (3,0±1,2%; p=0,8; Abb. 12 B). Damit wurden die Western Blot-Daten bestätigt. Eine ähnliche Entwicklung wurde auch für das Vimentin, welches eher von Müllerzellen exprimiert wird, beobachtet. Nur in der ONA-Gruppe war eine Erhöhung von 0,1±0,06% in der Co-Gruppe auf 1,2±0,5% in der ONA-Gruppe sichtbar (p=0,047; Abb. 12 C). Ebenfalls wies die Vimentin-Färbung der S100-Gruppe mit 0,9±1,2% eine Tendenz zu einer Müllerglia-Reaktion auf, jedoch wurde keine signifikante Veränderungen in der Retina gemessen (p=0,2; Abb. 12 C).

Im Gegensatz zur Retina wurden die GFAP-Veränderungen in den Sehnerven schon nach 14 Tagen untersucht, da zu diesem Zeitpunkt bereits Degenerationsanzeichen in der S100-Gruppe beobachtet wurden. Strukturell konnte eine GFAP-Reaktion in beiden immunisierten
Ergebnisse

Gruppen schon nach 14 Tagen ausgemacht werden. Das GFAP-Signal der S100-Sehnerven war stärker verzweigt und schien an Fläche zugenommen zu haben. Die Veränderungen in den ONA-Sehnerven waren eher entgegengesetzt. Die GFAP⁺-Stränge, die die Sehnerven der Co-Gruppe in Strukturrichtung durchziehen, waren in der ONA-Gruppe fast nicht mehr sichtbar (Abb. 12 D). Diese Beobachtung wurde durch eine Flächenanalyse bestätigt. Die GFAP-Fläche der S100-Sehnerven stieg von dem Grundwert in der Co-Gruppe mit 15,3±1,1% auf 23,8±1,1% GFAP⁺-Fläche/Ausschnitt an (p<0,0001; Abb. 12 E). Die Sehnerven der ONA-Gruppe wiesen wiederum mit 9,9±0,9% GFAP⁺-Fläche/Ausschnitt eine Abnahme des GFAP-Signals auf (p=0,0004; Abb. 12 E). Diese Veränderung war zeitlich beschränkt, da nach 28 Tagen ähnlich ausgebildet GFAP-Stränge in der Co- und in der ONA-Gruppe erkennbar waren. Auch in der S100-Gruppe entwickelte sich das GFAP-Signal wieder zurück, wobei eine leicht ungeordnete Struktur zurück blieb (Abb. 12 D). Auch bei der Flächenanalyse wurde kein Unterschied mehr zwischen der GFAP-Fläche der Co-Gruppe mit 16,1±1,3%, der ONA-Gruppe mit 16,6±1% (p=0,8) und der S100-Gruppe mit 14,7±1,1% GFAP⁺-Fläche/Ausschnitt detektiert (p=0,4; Abb. 12 E).
Ergebnisse

A

50 KDa
42 kDa
Co ONA S100

GFAP
β-Aktin

B

MW\:SEM

GAP\[\text{\textregistered}\] / Aktin

Co ONA S100

C

28 Tage

GCL
IPL
INL
Co ONA S100

GFAP + Vimentin + DAPI

D

MW\:SEM

GAP\[\text{\textregistered}\] Fläche [%]\text{\textregistered}\] ausgewertet

Co ONA S100

E

MW\:SEM

Vimentin Fläche [%]\text{\textregistered}\] ausgewertet

Co ONA S100

F

14 Tage
28 Tage

GFAP + DAPI

G

MW\:SEM

GAP\[\text{\textregistered}\] Fläche [%]\text{\textregistered}\] ausgewertet

14 Tage 28 Tage
Ergebnisse

Abb. 12: Makrogliale Veränderungen in Retina und Sehnerven

A) Die Proteinexpression des Makroglia-Filaments, GFAP (55 kDa), wurde mittels Western Blot in den Retinae analysiert. Zur Normierung des Signals wurde β-Aktin (42 kDa) auf den Blots verwendet. B) Nur in der ONA-Gruppe konnte ein Anstieg der GFAP-Expression gemessen werden (p=0,04). Das GFAP-Signal der S100-Gruppe blieb unverändert (p=0,5). C) Histologisch wurde nicht nur GFAP (Astrozyten) angefärbt, sondern auch das Vimentin (Müllerglia) sichtbar gemacht. D) Bei der Flächenanalyse des GFAP-Signals der ONA-Gruppe konnte eine Ausdehnung des Signals beobachtet werden (p=0,04), während die GFAP-Fläche in der S100-Retinae stabil blieb (p=0,8). E) Die gleiche Entwicklung konnte auch für das Vimentin gezeigt werden. Die ONA-Retinae verzeichneten einen geringen Anstieg der Fläche (p=0,047), während die Vimentin-Fläche der S100-Gruppe vergleichbar mit der Co-Gruppe blieb (p=0,2). F) Bei den Sehnerven war eine zeitlich begrenzte Veränderung im GFAP-Signal sichtbar. Nach 14 Tage waren die GFAP-Stränge in der ONA-Sehnerven verringert, während sie in den S100-Sehnerven verdicker und verzweigter waren. Nach 28 Tagen war diese Entwicklung bei beiden wieder aufgehoben. G) In der Flächenauswertung wurde nach 14 Tagen eine Abnahme der GFAP-Fläche in den ONA-Sehnerven (p=0,0004) und eine Zunahme in der S100-Gruppe analysiert (p<0,0001). Doch schon nach 28 Tagen entsprach der GFAP-Flächenwert der beiden immunisierten Gruppen dem der Co-Gruppe (ONA: p=0,8; S100: p=0,4). Western Blot: n=4-5/Gruppe, Retina Histologie: n=5/Gruppe, Sehnerven: n=4-5/Gruppe, MW±SEM, Maßstab=20 µm, Student’s t-Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht. C und D wurde unter Mithilfe von Rozina Noristani erstellt.

3.1.5.2. Zeitlich begrenzte Reaktion der Mikroglia

Nach 14 Tagen wurde ein erhöhtes Vorkommen der Mikroglia-Population in den drei innersten Schichten der ONA- und S100-Retinae verzeichnet (Abb. 13 A). Es stieg also die Anzahl der Iba1⁺ Zellen von 8,7±0,7 Iba1⁺ Zellen/mm in der Co-Gruppe auf 22,1±1,9 Iba1⁺ Zellen/mm in der ONA- (p<0,0001) und 14,1±0,9 Iba1⁺ Zellen/mm in der S100-Gruppe (p<0,0001; Abb. 13 B). Es wurde aber nicht nur eine Vermehrung der Mikroglia in die Retinae der immunisierten Tiere beobachtet, sondern auch eine erhöhte Aktivität dieser
Ergebnisse

Mikroglia. Das galt besonders für die Retinae der ONA-Tiere mit 5,6±1,2 ED1⁺ Zellen/mm verglichen zu 0,3±0,1 ED1⁺ Zellen/mm bei den Co-Tiere (p=0,0002; Abb. 13 C). Auch die S100-Gruppe wies mit 0,9±0,2 ED1⁺ Zellen/mm vermehrt aktive Mikroglia auf (p=0,005; Abb. 11 A, C). Dieser Peak war aber zeitlich begrenzt, nach 28 Tagen war die Iba1⁺ Zellzahl in den ONA-Retinae (12,5±0,8 Iba1⁺ Zellen/mm) wieder vergleichbar mit denen der Co-Gruppe (11,1±0,7 Iba1⁺ Zellen/mm; p=0,2; Abb. 13 A, B). In der S100-Gruppe war die Zellzahl mit 9,0±0,5 Iba1⁺ Zellen/mm sogar leicht verringert (p=0,02). Es waren aber nicht nur weniger Mikroglia in den beiden immunisierten Gruppen, diese Mikroglia waren auch größtenteils inaktiv. Es wurden nur 0,5±0,1 ED1⁺ Zellen/mm in der ONA-Gruppe (p=0,2) und 0,1±0,03 ED1⁺ Zellen/mm in der S100-Gruppe (p=0,06) gezählt, was den Zellzahlen der Co-Gruppe (0,3±0,1 ED1⁺ Zellen/mm) entsprach (Abb. 13 A, C).

In den Sehnerven hingegen wurde zu keinem Zeitpunkt eine Veränderung der Mikroglia-Population beobachtet. Die Werte der Co-Gruppe waren nach 14 Tagen mit 4,1±0,3 Iba1⁺ Zellen/mm analog zur Anzahl in den ONA-Sehnerven mit 4,1±0,3 Iba1⁺ Zellen/mm (p=0,9) und der S100-Gruppe mit 4,3±0,2 Iba1⁺ Zellen/mm (p=0,7; Abb. 13 D, E). Auch nach 28 Tagen war kein signifikanter Unterschied zwischen den Gruppen erkennbar. Die Sehnerven der Co-Gruppe wiesen immer noch 4,0±0,3 Iba1⁺ Zellen/mm auf, was zu den Zellzahlen der S100-Gruppe mit 3,4±0,3 Iba1⁺ Zellen/mm passte (p=0,1; Abb. 13 D, E). Die ONA-Gruppe wies mit 5,2±0,7 Iba1⁺ Zellen/mm einen leichten Trend zu einer Erhöhung im Mittelwert der Mikroglia-Zellzahl auf (p=0,1; Abb. 13 D, E).
Ergebnisse

Abb. 13: Verlauf der mikroglialen Antwort in Retina und Sehnerven

A) Die retinalen Mikroglia (Iba1, rot) in ihrem aktiv en Zustand (ED1, grün) wurden nach 14 und 28 Tagen in den Retinae untersucht. Die Ko-Lokalisierung der beiden Marker wurde mit einem weißen Pfeil markiert. B) Es wurde eine erhöhte Iba1⁺ Mikroglia-Anzahl in den Retinae beider immunisierter Gruppen nach 14 Tagen verzeichnet (ONA/S100: p<0.0001). Nach 28 Tagen jedoch entsprach der Mikroglia-Level in den ONA-Retinae wieder dem Niveau der Co-Gruppe (p=0,2), während die Mikroglia-Population in der S100-Gruppe sogar leicht verringert war (p=0,02). C) Das ED1 war in den Co-Retinae fast gar nicht vorhanden, dafür wurde ein starker Anstieg des Markers sowohl in der ONA-Gruppe (p=0,0002) als auch in der S100-Gruppe (p=0,005) nach 14 Tagen detektiert. Dieser Peak war, analog zu dem Iba1⁺-Zellen, nach 28 Tagen rückläufig, so dass die Anzahl der ED1⁺ Zellen in beiden immunisierten Gruppen vergleichbar mit der Co-Gruppe war (ONA: p=0,2; S100: p=0,06). D) Die Iba1⁺ Mikroglia wurden auch in den Sehnerven zu den gleichen Zeitpunkten nachgewiesen. E) Doch hier war weder nach 14 (ONA: p=0,9; S100: p=0,7) noch nach 28 Tagen (ONA/S100: p=0,1) ein signifikanter Unterschied in den Zellzahlen beobachtbar. Retina: n=4-6/Gruppe, Sehnerven: n=4-5/Gruppe, MW±SEM, Maßstab=20 µm, Student's t-Test, weißer Pfeil=Ko-Lokalisierung von Iba1 und ED1, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht. A-C wurden von Rozina Noristani erstellt.

3.1.6. Unveränderte Lymphozyten Populationen in der Retina

7811±651 T-Zellen weder zur Co-Gruppe (p=0,6), noch zur Naïven-Gruppe (p=0,3), ein Unterschied zu erkennen (Abb. 14 A, B). Nach 28 Tagen wurden die T-Zellen mit dem gleichen CD3-Marker auch histologisch nachgewiesen. Doch es konnten nur sehr wenige und vereinzelte Signale detektiert werden, welche daher nicht auszählbar waren (Abb. 14 C).

Abb. 14: Geringe und antigenabhängige Veränderungen der retinalen T-Zellzahl

A) Die T-Zellzahl in den Retinae wurde via FACS-Analyse nach 14 Tagen bestimmt, in dem die Zellen mit einem CD3-FITC Antikörper markiert wurden. Eine Überlagerung im Histogramm zeigte nur einen geringen Unterschied der ONA-Gruppe zu allen anderen Gruppen. **B)** Nach 14 Tagen war ein Trend zur T-Zelleinwanderung in Folge der ONA-Immunisierung im Vergleich mit der Co-Gruppe erkennbar (p=0,06), zur Naïven-Gruppe war der Unterschied signifikant (p=0,03). Die Anzahl der T-Zellen in der S100-Gruppe blieben, verglichen mit der Co (p=0,6) und der Naïven-Gruppe (p=0,3), unverändert. **C)** Nach 28 Tagen konnten in den Retinae histologisch nur noch sehr wenige und vereinzelte Signale (weißer Pfeil) nachgewiesen werden. N=7/Gruppe, MW±SEM, Maßstab=20 µm Student’s t-Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht.
3.1.7. Veränderung in den sekundären lymphoiden Organen

3.1.7.1. Kurzzeitige und antigenabhängige Milzvergrößerung

Die Veränderungen in den Milzmaßen sind wichtige Hinweise für eine systemische Immunzellaaktivierung, deshalb wurden zu beiden Zeitpunkten, 14 und 28 Tage nach der Immunisierung, das Volumen und die Masse der Milzen gemessen.

Das Volumen der Co-Milzen betrug nach 14 Tagen 382,7±14,4 mm³ und das Gewicht lag bei 538,8±10,8 g. Es nahmen sowohl das Milzvolumen der ONA-Tiere mit 464,8±29,1 mm³ (p=0,03; Abb. 15 B) als auch das Gewicht mit 687±53,8 (p=0,02; Abb. 15 C) leicht zu. Beide Werte zeigten somit eine Milzvergrößerung der ONA-Tiere an. Die Milzvergrößerung war aber nur ein kurzzeitiges Phänomen, denn nach 28 Tagen entsprach das Volumen bei den ONA-Tieren mit 452,6±27,2 mm³ dem Wert der Co-Gruppe mit 407,1±17,4 mm³ (p=0,2; Abb. 15 B). Das Gleiche galt auch für das Gewicht der ONA-Milzen (620,5±16,6 g), das wieder vergleichbar mit den Co-Milzen mit 590±17,9 g war (p=0,3; Abb. 15 C). Die Immunisierung mit S100 hingegen veränderte zu keinem Zeitpunkt das Volumen (14 Tage: 364,2±16,8 mm³; p=0,4; 28 Tage: 410,3±14,5 mm³; p=0,9; Abb. 15 B) oder das Gewicht der Milzen (14 Tage: 517,6±17,3 g; p=0,3; 28 Tage: 579,2±13,6 g; p=0,6; Abb. 15 C).
Ergebnisse

Abb. 15: Veränderung von Volumen und Masse der Milzen

A) Das Vermessen der drei Dimensionen einer Milz mit Länge (L), Breite (B) und Höhe (H), wurde zur Volumenbestimmung verwendet. B) Nach 14 Tagen konnte in der ONA-Gruppe im Vergleich zur Co-Gruppe eine leichte Vergrößerung der Milzen analysiert werden (p=0,03). Diese Milzvergrößerung war eine temporäre Reaktion, da nach 28 Tagen das Volumen wieder dem der Co-Gruppe (p=0,2) entsprach. Jedoch veränderten sich die Milzen in der S100-Gruppe weder nach 14 Tagen (p=0,4) noch nach 28 Tagen (p=0,9). C) Analog zur Volumenbestimmung waren die Milzen der ONA-Gruppe nur nach 14 Tagen etwas schwerer (p=0,02), was sich aber nach 28 Tagen wieder revidierte (p=0,3). Während sich auch das Gewicht bei der S100-Gruppe zu beiden Zeitpunkten nicht veränderte (14 Tage: p=0,3; 28 Tage: p=0,6). N=4-5/Gruppe, MW±SEM, Student’s t-Test.

3.1.7.2. Größtenteils antigenunabhängige Veränderungen der Lymphozyten und Granulozyten Population

Ergebnisse

Ergebnisse

Tabelle 16: p-Werte der sekundären lymphoiden Organe

<table>
<thead>
<tr>
<th>T-Zellen</th>
<th>B-Zellen</th>
<th>Granulozyten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milz</td>
<td>Blut</td>
</tr>
<tr>
<td>Naïve/Co</td>
<td>0,07</td>
<td>0,08</td>
</tr>
<tr>
<td>Naïve/ONA</td>
<td>0,02</td>
<td>0,06</td>
</tr>
<tr>
<td>Naïve/S100</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Co/ONA</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Co/S100</td>
<td>0,6</td>
<td>0,4</td>
</tr>
</tbody>
</table>

3.1.7.3. Geringe T-Zell Aktivität in Milz und Lymphknoten

Im FACS zeigte sich nach 14 Tagen, dass es keinen Einfluss der Antigene auf die periphere T-Zellzahl gab. Dieses Ergebnis wurde noch einmal mittels Immunhistologie verifiziert. Dafür wurde die CD3⁺ Fläche der Milzen und cLK ermittelt. Es wurden mehr T-Zellen in den cLK als in den Milzen gefunden, wobei die ONA-Gruppe in beiden Organen die wenigsten T-Zellen aufwies (Abb. 16 A). In den Co-Milz betrug die CD3⁺ Fläche 0,12±0,05%, welche sowohl in der ONA- (0,04±0,02%; p=0,1), als auch den S100-Milzen (0,15±0,05; p=0,8) unverändert blieb (Abb. 16 B). Das Gleiche wurde auch in den cLK beobachtet. Die 0,3±0,1%ige CD3⁺ Fläche der Co-Gruppe wurde in annähernd gleicher Fläche in den cLK der ONA- (0,2±0,04%; p=0,4) und S100-Gruppe (0,6±0,3%; p=0,3) nachgewiesen (Abb. 16 C).
Ergebnisse

Abb. 16: Unveränderte periphere T-Zell Population

A) Es wurden nach 14 Tagen vereinzelnde CD3⁺ Signale in den Milzen und cLK detektiert, wobei kein Unterschied zwischen den Gruppen gesehen wurde. B) Die Analyse der CD3⁺ Fläche in der Milz ergab keinen Unterschied zwischen den beiden immunisierten Gruppen und der Co-Gruppe (ONA: p=0,1; S100: p=0,8). C) Auch bei der Flächenanalyse in den cLK war die CD3⁺ Fläche der drei Gruppen vergleichbar (ONA: p=0,4; S100: p=0,3). N=4-5/Gruppe, MW±SEM, Student's t-Test.

3.1.7.4. **Temporärer Anstieg der Makrophagen Anzahl in der Milz**

Die Makrophagen-Population der Milzen wurde immunhistologisch analysiert, indem die Iba1⁺ Fläche am Tag 14 und 28 gemessen wurde (Abb. 17 A). Zusätzlich wurden die cLK auch mit Iba1 angefärbt und die Flächenentwicklung der Makrophagen am Tag 14 überprüft (Abb. 17 C).

Nach 14 Tagen konnte nur eine geringe Fläche von Iba1⁺ Makrophagen in der Milz detektiert werden. Nach 14 Tagen wurde eine Iba1⁺ Fläche von 5,0±0,6% in den Co-Milzen gemessen,
welche sich nach 28 Tagen auf 11,9±1,0% verdoppelte (Abb. 17 B). In den immunisierten Gruppen war nach 14 Tagen, im Gegensatz zur Retina, keine Veränderung der Makrophagen-Population erkennbar. Die ONA-Gruppe, mit einer Fläche von 5,3±0,9% (p=0,8), und die S100-Gruppe, mit 6,2±0,7% (p=0,2), wiesen keine nennenswerten Unterschiede zur Co-Gruppe auf (Abb. 17 B). Dies änderte sich jedoch nach 28 Tagen. Die Iba1⁺ Fläche der Co-Gruppe hatte sich verdoppelt, aber die Fläche der ONA-Milzen hatte sich mehr als verdreifacht (18,8±1,7%; p=0,008), was ebenfalls für die S100-Gruppe galt (16,8±1%; p=0,008; Abb. 17 B).

Die Iba1⁺ Fläche in den cLK zeigte nach 14 Tagen keine Veränderung zwischen der Fläche der Co-Gruppe (0,4±0,3%), der ONA-Gruppe (0,2±0,2%; p=0,6) sowie der S100-Gruppe (0,1±0,06%; p=0,4; Abb. 17 C, D).
Ergebnisse

Abb. 17: Späte systemische Makrophagen-Reaktion

A) Es wurden Milzen mit Iba1 (rot) nach 14 und 28 Tagen angefärbt, um die Makrophagen-Population sichtbar zu machen. B) Nach 14 Tagen konnte keine Veränderung der Makrophagen-Population durch die Immunisierung festgestellt werden (ONA: p=0,8; S100: p=0,2), was sich aber für beide immunisierten Gruppen nach 28 Tagen veränderte. Zu diesem Zeitpunkt war ein vermehrter Einstrom der Makrophagen in die Milzen verzeichnet worden (ONA/S100: p=0,008). C) Als zweites peripheres Organ wurden die cLK mit Iba1 (rot) angefärbt und deren Fläche nach 14 Tagen ausgewertet. D) Auch hier gab es zu dem frühen Zeitpunkt keine durch die Immunisierung ausgelöste Reaktion (ONA: p=0,6; S100: p=0,4). Milz: n=5-7/Gruppe, cLK: n=4-5/Gruppe, MW±SEM, Student’s t-Test. Die 28 Tage Daten wurden unter Mithilfe von Rozina Noristani erstellt.
3.1.8. Unveränderter Zytokingehalt

Eine Reaktion der Makrophagen nach 28 Tagen implementiert die These einer peripheren Immunreaktion zu diesem Zeitpunkt. Daraufhin wurde der Gehalt des pro-inflammatorischen Zytokins, TNF-α, im Serum bestimmt, welches bei vielen Immunreaktionen vermehrt ausgeschüttet wird. Jedoch lag der Serumtiter vom TNF-α nach 28 Tagen unterhalb des Detektionsbereiches des ELISA-Kits (Daten nicht aufgeführt). Daraufhin wurde in einem Pilotprojekt mit einem CBA-Kit untersucht, ob auch schon nach 14 Tagen in der Retina ein pro-inflammatorisches Milieu aufgetreten war, denn die Mikroglia waren in beiden Gruppen zu diesem Zeitpunkt sehr aktiv. Doch auch zu diesem Zeitpunkt lag die Zytokin-Konzentration von TNF-α, IFN-γ, IL 1β, 4, 5 und 10 unterhalb des Detektionslevels des Kits (Daten nicht aufgeführt).
3.2. Veränderungen von Retina und Sehnerven im N-Methyl-D-Aspartat-Modell

Zusätzlich wurde in dieser Arbeit ein weiteres Tiermodell, das NMDA-Modell, bei dem intraokulär NMDA injiziert wird, etabliert. Der Hintergrund dazu ist, dass das humane Glaukom seinen Ursprung direkt im Auge hat, während im EAG-Modell eine intraperitoneale Injektion der Antigene eine systemische Immunreaktion hervorruft. Um die direkte Wirkung einer toxischen Substanz, in dem Fall NMDA, auf das Auge zu untersuchen, wurde die Substanz intraokulär verabreicht. Dabei wurden drei verschiedene Konzentrationen, 20, 40 und 80 nmol, verwendet, um zu überprüfen, ab wann das NMDA eine degenerative Wirkung ausübt und ob sich diese Toxizität linear zur Konzentration verhält. Diese NMDA-Konzentrationen wurden mit einer scheinimmunisierten Gruppe verglichen, die nur PBS erhalten hatte. Zusätzlich wurde eine unbehandelte Gruppe mitgeführt.

Die Reaktion begann damit im Auge und die dadurch entstandene Frage ist, ob die bis jetzt detektierten immunologischen Veränderungen im EAG-Modell ähnlich waren oder anders ausfallen, wenn der systemische Bereich nicht über die direkte Antigengabe angesprochen wurde.

3.2.1. Konstanter Augeninnendruck

Beim NMDA-Modell wurde der IOD gemessen, da es hierzu noch keine publizierten Daten für dieses Modell gibt. Für den Zeitraum von 13 Tagen wurden der IOD alle drei bis vier Tage bestimmt (Anhang Tabelle D). Der Basiswert, der vor der Injektion gemessen wurde, lag bei der unbehandelten Gruppe bei 9,5±0,2 mmHg und bei der PBS-Gruppe bei 9,9±0,2 mmHg. Die Werte der NMDA-Gruppen (20 nmol: 9,9±0,3 mmHg; 40 nmol: 9,8±0,2 mmHg; 80 nmol: 10±0,4 mmHg) waren vergleichbar mit der PBS-Gruppe (p>0,05; Anhang Tabelle D). Der IOD blieb über den gesamten Zeitraum der 13 Tage stabil (p>0,05; Anhang Tabelle D).
3.2.2. Struktureller Verlust der Retina

NMDA ist kein spezifisch wirkendes Neurotoxin. Es wirkt auf alle Strukturen, die einen NMDA-Rezeptor exprimieren. Aus diesem Grund wurde nach 14 Tagen die morphologische Veränderung in Form einer Schichtdickenanalyse der H&E gefärbten Retinae vorgenommen. Es schien, dass nur die 40 und 80 nmol NMDA einen negativen Effekt auf die inneren Retinaschichten hatten, was damit die Gesamtretinadicke reduzierte (Abb. 18 A). Die unbehandelte Gruppe wies im Mittel eine Retinadicke von 139,6±11,8 mm auf und die PBS-Gruppe von 122,1±12,7 mm (Abb. 18 B). Das PBS hat somit keine negative Wirkung auf die Retinastrukturen. Im Vergleich mit der PBS-Gruppe hatte die Injektion von 20 nmol auch keinen Effekt auf die Retinadicke, welche 127,4±11,9 mm betrug (p=0,99; Abb. 18 B). Jedoch verringerten die 40 nmol die Retinadicke auf 82,6±2,2 mm (p=0,03), aber 80 nmol verstärkte diesen Effekt nicht. Auch hier konnte eine Dicke von 84,1±2,2 mm (p=0,04) gemessen werden (Abb. 18 B).

![Diagramm A](image)

![Diagramm B](image)
Ergebnisse

Abb. 18: Verringerung der Retinadicke durch NMDA

A) Die unspezifische H&E-Färbung wurde für eine Schichtenanalyse benutzt. Nur die 40 und 80 nmol NMDA hatten einen destruktiven Effekt auf die Retinäe. **B)** Es bestand kein Unterschied zwischen der 20 nmol und der PBS-Gruppe (p=0,99), während die 40 und die 80 nmol einen ähnlich starken degenerativen Effekt auf die Retinäe ausübten (40 nmol: p=0,03; 80 nmol: p=0,04). N=6/Gruppe, MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht, OPL=äußere plexiforme Schicht, ONL=äußere Körnerschicht. A und B wurden unter Mithilfe von Cara Rodust erstellt.

3.2.3. Dosisabhängiger Ganglienzelluntergang

Von der Analyse der unspezifischen Strukturfärbung wurde auf eine spezifische Markierung der RGZ mit Brn-3a, einem Transkriptionsfaktor, gewechselt. Als erstes wurden in einem Pilotprojekt, bei dem nur 40 nmol NMDA verwendet worden war, schon nach drei Tagen retinale Flachpräparate der gesamten Retina mit Brn-3a angefärbt (Abb. 19 A). Es wurde kein Unterschied zwischen den 100,0±3,7% der unbehandelten Gruppe und den 95,7±3,9% der PBS-Gruppe festgestellt (Abb. 19 B). Dementsprechend hatte PBS auch keinen nennenswerten Effekt auf die RGZ. Die 40 nmol hingegen führten zu einer Verringerung der Zellzahl um 33,3±5,8% (p<0,0001; Abb. 19 B). Daraufhin wurden Querschnitte der Retinäe nach 14 Tagen mit Brn-3a angefärbt, wobei die NMDA-Konzentrationsreihe verwendet wurde. Wie schon bei den H&E-Bildern wurde kein Unterschied zwischen den beiden Kontrollen und der 20 nmol Gruppe gemessen, doch diese intakte Reihung der RGZ war bei den beiden höheren NMDA-Konzentrationen nicht mehr vorhanden (Abb. 19 A). Die PBS-Gruppe wies mit 104,1±4,3% keinen Unterschied zur unbehandelten Gruppe auf (100,0±3,2%; Abb. 19 C). Die Injektion der 20 nmol NMDA hatte auch keinen Effekt auf die Anzahl der RGZ (102,5±3,8%; p>0,99; Abb. 19 C). Die 40 nmol zeigten dagegen mit 86,9±3,2% (p=0,008) und die 80 nmol mit 79,7±3,8% Brn-3a⁺ Zellen (p<0,0001) einen negativen Effekt auf die RGZ. Dementsprechend führte die längere Einwirkzeit von drei auf 14 Tagen nicht zu einer Akkumulation der Degenerationsschäden.
Abb. 19: NMDA induzierte Degeneration der Ganglienzellen

A) Die RGZ wurde mit Brn-3a (grün) zusammen mit dem Zellkernfarbstoff DAPI (blau) angefärbd. In einer Pilotstudie wurde der Effekt von 40 nmol NMDA auf die Retinae nach drei Tagen getestet, in dem das Brn-3a auf retinalen Flachpräparaten verwendet worden war. Nach 14 Tagen wurden Querschnitte der Retinae von den verschiedenen NMDA-Konzentrationen angefärbd. B) Die 40 nmol führten sowohl nach drei Tagen (p<0,0001), als auch C) nach 14 Tagen (p=0,008) zum Zellverlust. Nach 14 Tagen hatten die 80 nmol gegenüber der 40 nmol Gruppe einen größeren Effekt (p<0,0001), während die Injektion von 20 nmol keinen Unterschied zur PBS-Gruppe aufwies (p>0,9). 3 Tage: n=3/Gruppe, 14 Tage: n=6/Gruppe, MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht, OPL=äußere plexiforme Schicht, ONL=äußere Körnerschicht. Die 14 Tage Daten wurden von Cara Rodust erstellt.
3.2.4. Degeneration der Sehnerven-Strukturen

Nach 14 Tagen kam es in der 40 und 80 nmol NMDA-Gruppe zum signifikanten Untergang der RGZ, daher wurde überprüft, ob es auch zu einer Degeneration der Sehnerven-Fasern kam. Das Myelin wurde mit LFB und das Neurofilament mit SMI-32 angefärbt und bewertet (Abb. 20 A). Das Myelin war bei allen behandelten Gruppen noch intakt. Die Werte der NMDA-Gruppen (20 nmol: 0,26±0,06; p=0,9; 40 nmol: 0,46±0,05; p=0,4; 80 nmol: 0,33±0,06; p>0,9) entsprachen den Werten der PBS- (0,33±0,04) und der unbehandelten Gruppe (0,28±0,05; Abb. 20 B). Doch das galt nicht für das Neurofilament. Die Neurofilamente der beiden Kontrollgruppen waren sehr strukturiert, mit langen, parallel angeordneten Nervenfasern (Abb. 20 A). Die PBS-Gruppe (0,7±0,05) unterschied sich kaum von der unbehandelten Gruppe (0,5±0,04; Abb. 20 B). In der 20 nmol Gruppe konnten erste Verdickungen und Verkürzungen der Axone bemerkt werden, was aber die Bewertung kaum beeinflusste, denn dieser Wert lag bei 0,9±0,05 (p=0,1). Wie schon in der Retina waren die Veränderung in den Sehnerven erst ab 40 nmol NMDA signifikant. Bei beiden hohen NMDA-Konzentrationen waren Löcher (rote Pfeile, Abb. 20 A) und Retraction Bulbs zu sehen (weiße Pfeilköpfe; Abb. 20 A), so dass sich ein Wert von 1,4±0,05 für beide Gruppen ergab (40/80 nmol: p=0,0009).

Zusätzlich zu der strukturellen Einschätzung wurden noch die DAPI⁺ Zellen gezählt. Im Vergleich zur PBS-Gruppe stieg die Anzahl der Zellen kontinuierlich mit jeder weiteren Konzentration an (Abb. 20 C). So betrug die Zellzahl der unbehandelten Gruppe 29,1±1,4 Zellen/Ausschnitt, was vergleichbar mit der PBS-Gruppe war (31±1,8 Zellen/Ausschnitt). In der 20 nmol Gruppe waren es schon 36,5±2,4 Zellen (p=0,03), in der 40 nmol Gruppe 37,9±3 Zellen (p=0,001) und in der 80 nmol Gruppe waren es 39,4±2,5 Zellen/Ausschnitt (p<0,0001, Abb. 20 C). Das ist ein Trend für eine Einwanderung oder Proliferation von Zellen und damit ein weiterer Faktor für eine Sehnerven-Degeneration.
Ergebnisse

A

14 Tage

LFB
unbehandelt PBS 20 nmol 40 nmol 80 nmol

SMI-32 + DAPI

B

LFB Bewertung/Ausschnitt

unbeh PBS 20 40 80

C

SMI-32 Bewertung/Ausschnitt

unbeh PBS 20 40 80

D

DPh* Zellen/Ausschnitt

unbeh PBS 20 40 80

MW±SEM
Abb. 20: NMDA induzierte Axonschädigung

A) Die LFB gefärbte Myelin-Struktur (blau) aller Gruppen war unverändert, jedoch nicht die SMI-32+ Neurofilament-Struktur (grün). Aus den langen und parallel verlaufenden Axonen der unbehandelten und PBS-Gruppe wurden bei den höheren NMDA-Konzentrationen durchlöcherte Fasern (rote Pfeile) mit einer Anhäufung der Retraction Bulbs (weiße Pfeilköpfe). B) Die Bewertung der LFB-Struktur wies keine Unterschiede zwischen den Gruppen auf (p>0,05). C) Die Injektion von 20 nmol hatte keinen signifikanten Effekt im Vergleich zur PBS-Gruppe (p=0,1), während die Injektion von sowohl 40 als auch 80 nmol zu einer Degeneration der Sehnerven führte (40/80 nmol: p=0,0009). C) Ein Anstieg der Zellzahl ist auch ein Zeichen für eine Degeneration. Es konnte eine kontinuierliche Zunahme der DAPI+ Zellzahl in Folge der höheren NMDA-Konzentration erfasst werden (20 nmol: p=0,03; 40 nmol: p=0,001; 80 nmol: p<0,0001). N=5-6/Gruppe; MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test.

3.2.5. Unterschiede in der Apoptose-Rate in Retina und Sehnerven

Es zeigte sich, dass die Injektion von 40 oder 80 nmol zur Degeneration der Retinae und des Neurofilaments in den Sehnerven führte. Dementsprechend wurde überprüft, ob dieser Zelluntergang durch die Apoptose bedingt war. Dafür wurden der extrinsische Ligand, das FasL, und sein Rezeptor Fas (FasR) angefärbt. Als Schlüssel-Caspase der Apoptose-Kaskade wurde die aktive Form der Caspase 3 zusammen mit dem RGZ Marker Brn-3a sichtbar gemacht.

FasL und FasR wurden histologisch in der Retina und in den Sehnerven angefärbt. NMDA hatte keinen Einfluss auf das retinale FasL-Signal nach 14 Tagen (Abb. 21 A). Jedoch führte die Injektion von PBS, verglichen mit der unbehandelten Gruppe (2,3±0,5%; p=0,1; Abb. 21 B), zu einer Verdreifachung der FasL+ Zellen in der GCL (7,3±1,4%). Die Werte der GCL waren repräsentativ für die gesamte Retina (Daten nicht aufgeführt). NMDA hingegen veränderte die Anzahl an FasL+ Zellen in der GCL nicht (20 nmol: 6,1±0,9%; p>0,9; 40 nmol: 7,3±1,3, p>0,9; 80 nmol: 7,6±0,8, p=0,8; Abb. 21 B). Eine ähnliche Entwicklung wurde für die Zahl, der FasL mit FasR ko-lokalisierten Zellen, gemessen (weiße Pfeile, Abb. 21 A). Die PBS-Gruppe alleine wies doppelt so viele FasL & FasR+ Signale (10,8±1,8%) gegenüber der unbehandelten Gruppe auf (5,1±1,3%; p=0,02; Abb. 21 C). Weder die 20 nmol (11,0±0,9%; p>0,9), die 40 nmol (12,5±1,6%; p>0,9) noch die 80 nmol NMDA (13,6±2,3%; p>0,9)
Erhöhten nach 14 Tagen den Anteil an FasL & FasR ko-lokalisierten Zellen in der GCL (Abb. 21 C).

Dies änderte sich aber bei der Analyse der Sehnenvenen (Abb. 21 D). Die PBS-Injektion (30,7±4,0%) hatte gegenüber der Retina keinen Effekt auf den prozentualen Anteil der FasL⁺ DAPI Zellen (unbehandelt: 32,8±1,9%; p>0,9). Jedoch galt das Gleiche auch für die NMDA-Injektionen (20 nmol: 30,3±4,0%; p>0,9; 40 nmol: 29,0±3,7%; p>0,9; 80 nmol: 36,0±3,0%; p=0,8, Abb. 21 E). Worauf die NMDA-Injektionen aber einen Einfluss hatten war der Anteil an FasL & FasR ko-lokalisiert DAPI⁺ Zellen (weiße Pfeile, Abb. 21 D). Sowohl in der unbehandelten Gruppe (12,0±0,9%) als auch in der PBS-Gruppe (11,9±1,0%) waren ähnliche Werte analysiert worden (p=1,0, Abb. 21 F). 20 nmol (9,7±1,0%; p=0,7) und 40 nmol NMDA (10,4±1,1%; p=0,8) hatten darauf einen eher negativen Effekt, aber die Sehnenven der 80 nmol Gruppe wiesen mit 16,7±1,1% einen erhöhten Anteil an FasL & FasR an DAPI⁺ Zellen auf (p=0,01, Abb. 21 F).
Abb. 21: FasL induzierte Apoptose-Mechanismen in den Sehnerven

A) In der Retina wurde nach 14 Tagen der Anteil an FasL (rot) und FasR (grün) ko-lokalisierten Zellen in der GCL ausgewertet (weiße Pfeile). B) Die PBS-Injektion führte zu einem erhöhten Trend des FasL-Anteils an den Zellen der GCL (p=0,1). Die einzelnen NMDA-Konzentrationen an sich ergaben aber keine Veränderung der Apoptose-Rate in der Retina nach 14 Tagen (20 /40 nmol: p>0,9; 80 nmol: p=0,8). C) Das Gleiche galt auch für die FasL & FasR ko-lokalisierten Zellen in der GCL. Hierbei erhöhte sich der Wert der PBS-Gruppe signifikant (p=0,02), aber dafür nicht in den NMDA-Gruppen.
Ergebnisse

(20 /40 /80 nmol: p>0,9). **D)** In den Sehnerven wurde der Anteil an FasL⁺ und FasL & FasR⁺ DAPI Zellen (weiße Pfeile) ausgewertet. **E)** Für das FasL konnten keine Unterschiede in den Zellzahlen gefunden werden (20 /40 nmol: p>0,9; 80 nmol: p=0,8). **F)** Jedoch vergrößerte sich der Anteil an FasL & FasR⁺ DAPI Zellen in der 80 nmol Gruppe (p=0,01), was aber nicht für die anderen beiden NMDA-Gruppen galt (20 nmol: p=0,7; 40 nmol: p=0,8). Retina: n=6/Gruppe, Sehnerven: n=4-6/Gruppe; MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht.

Es wurde also keine signifikant veränderte retinale FasL-Reaktion nach 14 Tagen festgestellt. Daraufhin wurde der Anteil an aktiver Caspase 3⁺ RGZ bestimmt (weiße Pfeile, Abb. 22 A), welcher sich komplementär zu den FasL-Daten verhielt. Dieser aktive Caspase 3-Anteil an RGZ stieg zwar in den Gruppen mit den höheren NMDA-Dosen etwas an (Abb. 22 A), jedoch führte alleine die Injektion von PBS zu einer verstärkten Apoptose der RGZ (18,2±2,1% active Caspase3⁺ Brn-3a Zellen), so dass ein Unterschied zur unbehandelten Gruppe (7,1±1,0%) nach 14 Tagen messbar war (p=0,002; Abb. 22 B). Dahingegen haben alle drei NMDA-Konzentrationen nach 14 Tagen keinen signifikanten Einfluss mehr auf diesen Apoptose-Marker verglichen zur PBS-Gruppe. Die 20 nmol Gruppe war mit einem aktive Caspase 3-Anteil an den RGZ von 18,6±2,1% fast identisch mit der PBS-Gruppe (p>0,99). Die 40 nmol Gruppe hatte mit 21,2±2,3% (p=0,9), wie auch die 80 nmol Gruppe mit 22,1±2,5% apoptotische RGZ (p=0,8), keinen Einfluss auf die Apoptose-Rate (Abb. 22 B).

Für die Sehnerven wurde die Anzahl an aktiver Caspase 3⁺ Zellkerne bestimmt. Es wurde besonders bei der 40 nmol Gruppe ein verstärktes aktives Caspase 3-Signal bemerkt (Abb. 22 C). Der Einstich alleine führte im Gegensatz zur Retina zu keiner Erhöhung der Apoptose-Rate, denn die unbehandelte Gruppe konnte einen aktive Caspase 3-Anteil von 6,8±0,7% verzeichnen, was fast den 5±0,8% der PBS-Gruppe entsprach. In den 20 nmol Sehnerven konnte kein Anzeichen für eine Caspase 3-Aktivität gefunden werden, denn hier betrug der Anteil 7,3±1% (p=0,5; Abb. 22 D). Dies stimmte auch mit den unveränderten Strukturdaten dieser Gruppe überein. Mit einem aktive Caspase 3-Anteil von 11,5±1,2% ist der höchste Wert in der 40 nmol Gruppe gefunden worden (p=0,0002; Abb. 22 D). Doch auch die
Sehnerven der 80 nmol Gruppe mit einem Anteil von 10,5±1,0% wiesen noch aktive apoptotische Mechanismen auf (p=0,003; Abb. 22 D).
Ergebnisse

Abb. 22: Auf die Sehnerven begrenzte Apoptose-Reaktion

A) Für die Retina wurde der Anteil der aktiven Caspase 3 (rot) an den Brn-3a+ RGZ (grün) nach 14 Tagen angefärbt (weiße Pfeile). B) Die PBS-Injektion führte zu einer Erhöhung des aktiven Caspase 3-Anteils an den RGZ. Die NMDA-Konzentrationen isoliert betrachtet ergaben aber keine Veränderung der Apoptose-Rate in der Retina nach 14 Tagen (20 nmol: p>0,99; 40 nmol: p=0,9; 80 nmol: p=0,7). C) In den Sehnerven wurde die aktive Caspase 3 zusammen mit DAPI gefärbt. D) Zwischen der 20 nmol und PBS-Gruppe gab es keinen Unterschied (p=0,5). Doch die Injektion von 40 nmol führte zur höchsten Apoptose-Rate aller Gruppen (p=0,0002), aber auch die 80 nmol induzierten ein stärkeres aktives Caspase 3-Signal (p=0,003). Retina: n=6/Gruppe, Sehnerven: n=4-6/Gruppe; MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht. A und B wurden von Cara Rodust erstellt.

3.2.1. Veränderungen der glialen Reaktionen

Wie schon für das EAG-Modell wurden auch im NMDA Modell die Glia-Zellen in Makroglia und Mikroglia unterschieden.

3.2.1.1. Dosisabhängige Makroglia-Reaktion in Retina und Sehnerven

Die Makroglia wurden wieder durch die Marker, GFAP und Vimentin, in Astrozyten und Müllerglia differenziert. Beide Marker waren nach 14 Tagen in allen Gruppen in geringer Menge exprimiert. Nur in den beiden höheren NMDA-Gruppen konnte eine Ko-Lokalisation (gelb) der beiden Markern beobachtet werden (Abb. 23 A). Während die GFAP-Fläche der unbehandelten Gruppe mit 0,2±0,04% sehr gering war, stieg der Wert auf 0,6±0,8% in der PBS-Gruppe (p=0,07; Abb. 23 B). Die GFAP+ Fläche der 20 nmol Gruppe war mit 0,4±0,05% mit der PBS-Gruppe vergleichbar (p=0,5). Die beiden höheren NMDA-Gruppen hatten dafür einen stärkeren Effekt auf die GFAP-Fläche. Zwar konnte bei der 40 nmol Gruppe nur ein Trend für eine Vergrößerung der GFAP-Fläche (1,0±0,1%; p=0,06; Abb. 23 B) detektiert werden, dafür verdoppelte sich diese Fläche in der 80 nmol Gruppe (1,3±0,1%; p<0,0001; Abb. 23 B).

Bei der Vimentin+ Fläche lagen alle Werte, ob von der unbehandelten (0,5±0,09%), der PBS (0,6±0,1%), der 20 nmol (0,7±0,07%), der 40 nmol (0,7±0,08%) oder der 80 nmol Gruppe
Ergebnisse

(0,5±0,06%) im ähnlichen Bereich (Abb. 23 C). Es konnte kein Unterschied zwischen den NMDA-Gruppen und der PBS-Gruppe detektiert werden (20/40/80 nmol: p>0,9; Abb. 23 C). Somit wurde durch die Injektion von 80 nmol NMDA eine retinale Astrogliose ausgelöst, alle anderen Dosen zeigten keinen Effekt nach 14 Tagen.

Abb. 23: Dosisabhängige Astrogliose in der Retina

A) Die Makroglia in der Retina wurden mit GFAP (rot) und Vimentin (grün) nach 14 Tagen angefärbt. Zusätzlich ist ein Mischbild dargestellt, das die Ko-Lokalisation beider Marker (gelb) in der 40 und 80 nmol Gruppe demonstriert. B) Die geringste GFAP-Fläche wurde in der unbehandelten Gruppe gemessen. Die PBS-Gruppe wies keine signifikante Veränderung auf (p=0,07), wie es auch für den GFAP-Flächenwert der 20 nmol NMDA-Gruppe galt (p=0,5). Die 40 nmol Gruppe wies eine Vergrößerung der GFAP-Fläche auf, doch war diese nicht signifikant (p=0,06). Jedoch in der 80 nmol Gruppe wurde eine retinale Astrogliose detektiert (p<0,0001). C) Beim Vimentin Signal hingegen konnten gar keine Unterschiede zwischen den Gruppen festgestellt werden (20/40/80 nmol: p>0,9).
Ergebnisse

N=5-6/Gruppe; MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht. Die Abb. wurde unter Mithilfe von Cara Rodust erstellt.

Da die GFAP⁺ Astroglia in der Retina dosisabhängige Veränderung aufwiesen, wurden auch auf den Sehnerven die GFAP-Strukturen angefärbt (Abb. 22 A). Für die Sehnerven war eine ähnliche dosisabhängige Reaktion der Astroglia zu beobachten. Diesmal korrelierten die beiden Kontrollgruppen, unbehandelt (12,3±0,8% GFAP⁺ Fläche) und PBS (12,8±0,9% GFAP⁺ Fläche, p>0,9), deutlich miteinander, aber das GFAP-Signal der 20 nmol Gruppe war mit 8,5±0,8% herunterreguliert (p=0,008; Abb. 24 B). Die GFAP-Fläche der 40 nmol Gruppe war mit 12,1±0,8% der Fläche wieder analog zur PBS-Gruppe (p=0,99). Wie schon in der Retina beobachtet, führte die Injektion von 80 nmol zu einer Erhöhung der Signalfläche auf 16,5±1,0% GFAP (p=0,03).

Abb. 24: Veränderte makrogliale Antwort in den Sehnerven

A) Das GFAP (grün) wurde in den Sehnerven nach 14 Tagen angefärbt. Nur in der 80 nmol Gruppe war eine Makroglia-Reaktion erkennbar. B) Die 20 nmol Gruppe wies eine Verringerung in der GFAP-Signalfläche gegenüber der PBS-Gruppe auf (p=0,008), während die 40 nmol Gruppe die gleiche
Menge an GFAP exprimiert, wie die PBS-Gruppe (p>0,9). Nur in der 80 nmol Gruppe war eine leichte
Gliose beobachtbar (p=0,03). N=5-6/Gruppe; MW±SEM; Maßstab=20 µm, One-way ANOVA mit
Tukey Post-hoc Test.

3.2.1.2. N-Methyl-D-Aspartat induzierte Mikroglia-Einstrom und -Aktivierung

Wie schon beschrieben, sind Mikroglia Immunzellen, die sehr früh in der Pathogenese einer
Krankheit reagieren. Aus diesem Grund wurden sie in einem Pilotprojekt nach drei Tagen mit
Iba1 auf Flachpräparaten angefärbt (Abb. 25 A). Nach 14 Tagen wurde Iba1 in Kombination
mit ED1 auf Querschnitten eingesetzt, um die aktiven Mikroglia anzufärben (weiße Pfeile,
Abb. 25 B). Sowohl nach drei Tagen (Abb. 25 A) als auch nach 14 Tagen (Abb. 25 B) wurde
eine erhöhte Menge an Iba1⁺ Mikroglia in den Retinae der NMDA-Gruppen detektiert. Die
Mikroglia waren schon in den unbehandelten Augen nach drei Tagen vorhanden (303,7±9,2
Iba1 Zellen/mm²; Abb. 25 C). Die PBS-Injektion erhöhte den Wert auf 410,9±12,2 Iba1⁺
Zellen/mm² (p<0,0001). Die Injektion von 40 nmol NMDA führte zu einer nochmaligen
Erhöhung der Iba1⁺ Mikroglia-Zellzahl auf 521,4±17,0 Iba1⁺ Zellen/mm² (p<0,0001; Abb. 25
C). Nach 14 Tagen führte alleine die PBS-Injektion fast zu einer Verdreifachung der Iba1⁺
Mikroglia-Population in der Retina. Die PBS-Gruppe konnte im Mittel 10,2±0,7 Iba1⁺
Zellen/mm verzeichnen und die unbehandelte Gruppe dagegen nur 3,8±0,4 Zellen/mm
(p<0,0001; Abb. 25 D). Selbst die 20 nmol erhöhten den Einstrom der Mikroglia-Zellen auf
14,3±1,0 Zellen/mm (p=0,01). Die 40 nmol verstärkten diesen Effekt auf die Mikroglia noch
weiter, in dem 17,5±1,1 Iba1⁺ Zellen/mm gemessen wurden (p>0,0001; Abb. 25 D). Die 80
nmol veränderten an dieser Mikroglia-Anzahl nichts mehr, der Wert stagnierte bei 17,2±1,1
Iba1⁺ Zellen/mm (p>0,0001; Abb. 25 D). Doch die erhöhte Anwesenheit von Mikroglia sagt
noch nichts über ihre Aktivität aus, daher wurde der Marker ED1 für aktive Mikroglia
verwendet (weiße Pfeile, Abb. 25 B). In den unbehandelten Tieren wurden nach 14 Tagen
mit 0,7±0,2 ED1⁺ Zellen/mm fast gar keine aktiven Mikroglia in der Retina detektiert. In der
PBS-Gruppe waren es dagegen 4,0±0,5 ED1⁺ Zellen/mm (p=0,005; Abb. 25 D). Doch die 20
nmol hatten keinen großen Einfluss auf die Aktivität der Mikroglia im Vergleich zur PBS-
Gruppe, da der Wert bei 5,9±0,8 ED1⁺ Zellen/mm lag (p=0,3). 40 und 80 nmol hatten
wiederum einen gleich starken Aktivierungseffekt auf die Mikroglia. In den Retinae der 40 nmol Gruppe konnten 7,9±0,9 ED1⁺ Zellen/mm (p=0,0004) gefunden werden, was dem Wert der 80 nmol Gruppe mit 7,8±0,8 ED1⁺ Zellen/mm (p=0,0006) sehr ähnlich war (Abb. 25 D).

Abb. 25: Starke Mikroglia-Reaktion nach NMDA-Applikation
A) Die Mikroglia, als früh reagierende Immunzellen, wurden nach drei Tagen auf Flachpräparate der Retina mit Iba1 (rot) angefärbt. Die Injektion der 40 nmol NMDA schien einen größeren Effekt auf die Mikroglia zu haben. B) Nach 14 Tagen wurde Iba1, sowie der Aktivierungsmarker ED1, auf Querschnitten verwendet. Mit jeder neuen NMDA-Konzentration erhöht sich die Anzahl an Iba1⁺ Mikroglia und deren Aktivität. C) Schon nach drei Tagen lösten die 40 nmol eine erhöhte Mikroglia-Migration in die Retinae aus (p>0,0001). D) Nach 14 Tagen blieb diese Reaktion bestehen. Schon 20 nmol erhöhte den Einstrom von Iba1⁺ Mikroglia in die Retina (p=0,01), doch diese blieben inaktiv
Ergebnisse

(ED1: p=0,3). Die 40 nmol NMDA vergrößerten nicht nur die Iba1-Population (p>0,0001), sondern diese Mikrogliawaren auch verstärkt aktiv (p=0,0004). Die Injektion von 80 nmol hatte darauf keinen Einfluss. Der erhöhte Iba1-Einstrom in die Retinae blieb bestehen (p<0,0001) und davon waren einige aktiv (p=0,0006). 3 Tage: n=3/Gruppe, 14 Tage: n=6/Gruppe; MW±SEM; Maßstab=20 µm, One-way ANOVA mit Tukey Post-hoc Test, Abkürzungen: GCL=Ganglienzellschicht, IPL=Innere plexiforme Schicht, INL=Innere Körnerschicht. Die 14 Tage Daten wurden von Cara Rodust erstellt.

Auch für die 14 Tage Sehnerven wurden die Marker Iba1 und ED1 für den Nachweis der Mikrogliabenutzt. In allen Sehnerven waren zwar Iba1⁺ Mikroglia zu finden, aber nur in den degenerierten Sehnerven waren diese auch aktiv und exprimieren ED1 (weiße Pfeile, Abb. 24 A). Der Grundwert der Iba1⁺ Zellen der unbehandelten Gruppe entsprach mit 4,0±0,2 Zellen/Ausschnitt dem Wert der PBS-Gruppe (4,3±0,1 Iba1 Zellen/Ausschnitt; Abb. 26 B). Das Gleiche galt auch für die Mikroglia in den Sehnerven der 20 nmol Gruppe. Die Iba1⁺ Zellzahl in dieser Gruppe war mit 4,2±0,2 Zellen/Ausschnitt der PBS-Gruppe sehr ähnlich (p=0,99; Abb. 26 B). Erst in den degenerierten Sehnerven der 40 und 80 nmol Gruppen migrierten die Mikrogliaw, so dass der Iba1-Wert der 40 nmol Gruppe bei 6,2±0,3 Zellen/Ausschnitt (p>0,0001) und der der 80 nmol Gruppe bei 5,5±0,2 Zellen/Ausschnitt (p=0,005) lag (Abb. 26 B). Ähnliches galt auch für die Aktivität der Mikroglia (ED1). Der Normalwert der unbehandelten Gruppe war, wie in der Retina, sehr niedrig und betrug nur 0,5±0,01 ED1 Zellen/Ausschnitt. Weder die PBS-Injektion (0,3±0,07 Zellen/Ausschnitt) noch die Injektion von 20 nmol NMDA (0,6±0,1 ED1 Zellen/Ausschnitt; p=0,6) hatten einen Einfluss darauf. Doch 40 nmol hatten, wie in der Retina, einen aktivierenden Effekt auf die Mikroglia, sodass 2,1±0,3 ED1 Zellen/Ausschnitt exprimiert wurden (p>0,0001). Die 80 nmol hatten dahingegen einen geringeren Aktivierungseffekt (1,1±0,1 ED1 Zellen/Ausschnitt; p=0,002).
Ergebnisse

Abb. 26: Aktivierung der Mikroglia im Sehnerven durch hohe NMDA-Konzentrationen

B) Die PBS und die 20 nmol Gruppe zeigten sowohl für Iba1 (p=0,99) als auch für ED1 (p=0,6) keine Unterschiede in den Zellzahlen. Die Mikroglia reagierten somit nicht. Die Reaktion auf die 40 nmol war am stärksten, da hierbei die Population der Iba1⁺ Mikroglia anstieg (p<0,0001). Diese waren sogar vermehrt aktiv (p>0,0001). Die Injektion der 80 nmol führte auch zu einer erhöhten Migration von Iba1⁺ Mikroglia (p=0,005) im aktiven Zustand (p=0,002), jedoch waren diese Werte geringer als die der 40 nmol Gruppe.
4. Diskussion

4.1. Konstanter Augeninnendruck

4.2. Unterschiede und Gemeinsamkeiten bei der neuronalen Degeneration

Alle Antigene bzw. toxische Substanzen lösten einen Untergang der retinalen Ganglienzellen und deren Axone aus. Jedoch verlief die Degeneration bei den drei Substanzen, ONA, S100 und NMDA, unterschiedlich (Abb. 27).

4.2.1. Unterschiedliche Degeneration der retinalen Ganglienzellen

Unsere Arbeitsgruppe konnte zeigen, dass die Immunisierung mit ONA nicht nach 14 Tagen [137, 158], sondern erst nach ca. 22 Tagen [137] zur Degeneration der RGZ führte, welche sich nach 28 Tagen noch verstärkte (Abb. 8) [136]. Ähnliches galt auch für die Sehnenerven-Fasern. Sowohl das Myelin als auch das Neurofilament waren 14 Tage nach der ONA Applikation noch intakt, während beide Fasertypen nach 28 Tagen große Löcher und „Retraction Bulbs“ aufwiesen (Abb. 9). Die Degeneration begann folglich zwischen dem 14. und 28. Tag nach der ONA-Immunisierung. Welche Struktur zuerst unterging, die Sehnenerven oder die RGZ-Körper in der Retina, lässt sich jedoch nur auf Grund der Apoptose-Analysen vermuten. Es ist anzunehmen, dass erst die RGZ und dann sehr schnell die Sehnenerven degenerieren, da erste Apoptose-Mechanismen nach 14 Tagen in der Retina und nicht in den Sehnenerven der ONA-Tiere ermittelt werden konnten (Kapitel 4.2.2.).

Anders sieht es aber für die S100-Injektion aus. Es konnte zwar der gleiche Zeitverlauf für die Degeneration der Zellkörper der RGZ, wie bei der ONA-Gruppe, festgestellt werden. Das bedeutet, nach 14 Tage waren sie noch intakt [158], während sie nach 28 Tagen signifikant verringert waren (Abb. 8) [139]. Jedoch sah das für die Sehnenerven ganz anders aus. Hier waren die ersten Degenerationserscheinungen sehr früh erkennbar, vor allem durch die Bildung von Retraction Bulbs, was eine Verkürzung und Verdickung der Neurofilament Fasern bedeutete. Diese Anzeichen verstärkten sich noch zum späteren Zeitpunkt. Das betraf aber nur das Neurofilament, denn die Myelin-Schicht war zu diesem frühen Zeitpunkt
es die NO Produktion über iNOS und somit die Mikroglia stimuliert [166, 169]. Somit könnte eine systemische Immunisierung die peripheren Makrophagen aktivieren, die vielleicht direkt oder indirekt die Mikroglia gegen Strukturen, die das S100B Protein ausbilden, aktivieren. Was eine Mikroglia-basierte Zerstörung hervorrufen könnte. Bemerkenswert ist, dass ein ähnlicher Degenerationsverlauf auch in okulären Hypertensionsmodellen beobachtet wurde [170, 171]. Dieser Mechanismus scheint, unabhängig von der Art der Schädigung, weitverbreitet zu sein. Erstaunlicherweise forciert das S100, obwohl es ein Bestandteil von ONA ist, einen anderen Degenerationsprozess.

Diskussion

irgendwann überlastet, dies scheint ab 40 nmol NMDA der Fall zu sein. Eine noch höhere NMDA-Konzentration führte dabei nicht unbedingt zu einer Akkumulation des toxischen Effektes. Es könnte sein, dass durch 40 nmol NMDA eine Sättigungskurve der neuronalen Rezeptoren erreicht wurde. Auf Grund des langsamen Umsatzes des NMDAs [71] veränderte die Konzentration von 80 nmol nur noch geringfügig die Wirkung, welche schon durch die 40 nmol erreicht wurde. Aus den vorliegenden Ergebnissen wurde geschlussfolgert, auch mit Hinblick auf die Apoptose-Prozesse, dass es nach der Applikation von NMDA erst zu Schäden in der Retina und danach in den Sehnerven kam (Abb. 27). Dies lässt sich folgendermaßen erklären, die NMDA-Injektion fand intraokulär statt, somit waren erste Schäden auch dort zu erwarten. Zusätzlich bilden die Axone keine NMDA-Rezeptoren aus [176] und sind von der Myelinscheide ummantelt, die eine Barriere für die toxische Wirkung von NMDA bildet [61]. Diese Myelinscheide war nach 14 Tagen auch noch intakt (Abb. 20). Aus diesem Grund ist davon auszugehen, dass die Neurofilamente nicht aufgrund der direkten Einwirkung von NMDA degenerierten, sondern als Folge des Untergangs der RGZ-Körper in der Retina. Dementsprechend wies auch hier, wie bei der S100-Gruppe, die Sehnerven-Zerstörung Merkmale der Wallerschen Degeneration auf. Dies wurde für das NMDA-Modell bereits von Saggu et al. beschrieben [177]. Mehrere Arbeiten weisen außerdem daraufhin, dass die Axone nach ca. drei Tagen untergehen [176, 178], die Oligodendrozyten aber erst später [179], was auch den Daten dieser Arbeit und einer Waller-Degeneration entspricht.

Beide Tiermodelle führten somit zur Degeneration der RGZ und der Sehnerven-Fasern, aber auf unterschiedliche Art. Für einen besseren Vergleich der Mechanismen, wurden beide Modelle zum jeweils frühen Zeitpunkt (NMDA: drei Tage, EAG: 14 Tage, Abb. 27 A) und zum späteren Zeitpunkt (NMDA: 14 Tage, EAG: 28 Tage, Abb. 27 B) abgebildet. Die Sehnerven degenerierten jedoch durch die drei Substanzen unterschiedlich schnell. Bei der S100-Gruppe ist die Sehnervendegeneration der initiale Mechanismus für den Zellverlust, welcher in der vorliegenden Arbeit nachgewiesen wurde. Die NMDA-Injektion führte dahingegen zur

Wie es scheint, weist der Degenerationsablauf der S100-Gruppe gewisse Ähnlichkeiten mit den Mechanismen auf, welche bei vielen Glaukom-Patienten auftreten. Beim Patienten degenerierten häufig erst die Axone des Sehnervenkopfes [180-182]. Ob daraufhin die Axone der Sehnerven weiter degenerieren oder doch erst die RGZ-Körper, ist bisher noch ungeklärt. Ein weiterer Faktor, der dem Verlauf der S100-Gruppe entspricht, ist, dass auch bei der Axon-Degeneration der Patienten die Anzeichen einer Waller-Degeneration beobachtet wurden [183].

4.2.2. Ähnliche Apoptose-Mechanismen in beiden Modellen

Wie schon erwähnt, gehen den Degenerationserkrankungen verschiedene Zelltodmechanismen voraus. Dazu gehört vornehmlich die Apoptose. Das gilt auch für das Glaukom [184]. In den beiden Modellen, EAG und NMDA, wurde das FasL und die aktive Caspase 3 untersucht, um verschiedene Stadien der Apoptose-Mechanismen zu überprüfen. FasL gilt als sehr früher Apoptose Faktor und die Caspase 3 ist in der Kaskade ein späterer Faktor und wird außerdem über mehrere Wege aktiviert [56].

Aus früheren Studien ist bekannt, dass in den Retinae der ONA-Tiere nach 14 Tagen sowohl der frühe Apoptose-Marker TUNEL, als auch die Caspase 3, verstärkt exprimiert wurden. Jedoch blieb die Anzahl der RGZ noch unverändert [137]. Das bedeutet, die Retinae der ONA-Tiere begannen etwa 14 Tage nach der Immunisierung zu degenerieren (Abb. 27 A). Daraufhin wurden die intakten Sehnerven der ONA-Tiere auf das Vorhandensein von FasL untersucht. Interessanterweise wurde eine Verringerung des FasL-Signals gemessen (Abb. 10, 27 A). Daraus wurde geschlussfolgert, dass die Retinae der ONA-Tiere noch vor den

Diskussion

rückläufig. Auch die aktive Caspase 3 war nicht mehr signifikant erhöht, sondern es waren, wie bei den ONA-Tieren, nur noch leicht erhöhte Werte zu erkennen (Abb. 11). Diese Entwicklung führt zur Vermutung, dass der 28 Tage Zeitraum zu spät für die Detektion von Apoptose-Mechanismen in der S100-Gruppe war. Dies passt wiederum zu den Ergebnissen in der ONA-Gruppe. Im Allgemeinen kann man sagen, dass der Zellverlust im EAG-Modell durch Apoptose hervorgerufen wurde, was in den S100-Sehnerven u.a. durch FasL eingeleitet worden ist (Abb. 27). Für nähere Erkenntnisse muss der Zeitverlauf für beide Antigene bestimmt werden.

Es stellte sich somit heraus, dass sowohl in den Sehnerven der S100-Gruppe als auch im NMDA-Modell das FasL, als Apoptose-vermittelnder Ligand, wichtig ist (Abb. 27). Für ONA galt zu den untersuchten Zeitpunkten das genaue Gegenteil, nach 14 Tagen war das FasL sogar herunterreguliert (Abb. 27 A). Jedoch scheint es in beiden Tier-Modellen eine Reaktion des FasL zu geben. Bemerkenswert ist außerdem, dass der jeweils spätere Zeitpunkt in beiden Modellen im Hinblick auf Degeneration vergleichbar ist, besonders in Bezug auf den starken Verlust der Strukturen und der kaum noch vorhandene Apoptose-Rate in den Retinae (Abb. 27 B).

Abb. 27. Zusammenfassung der Degenerationsmechanismen beider Modelle

A) Zum frühen Zeitpunkt (14 Tage) konnten bei der S100-Gruppe des EAG-Modells erste Degenerationserscheinungen in den Axonen der Sehnerven detektiert werden. Dazu gehörte auch ein erhöhtes Level an FasL. In der Retina konnten noch keine Effekte gesehen werden. Das ONA

4.3. Varianzen in der glialen Antwort

Sowohl Makroglia als auch Mikroglia reagieren auf strukturelle Veränderungen mit einer verstärkten Aktivierung. Den Mikroglia, obwohl sie eine wichtige Aufräumfunktion ausüben, kann bei Degenerationserkrankungen eher ein zerstörerischer Effekt zugeschrieben werden [27], während die Meinung bei der Aktivierung der Makroglia geteilt ist [22, 23]. Doch stellt sich die Frage, ob die gliale Reaktion wirklich nur ein Epiphänomen ist.

4.3.1. Makrogliose als Reaktion auf apoptotische Prozesse

Unsere Arbeitsgruppe zeigte, dass 14 und 22 Tage nach der Immunisierung mit ONA sowohl apoptotische Mechanismen, als auch eine Makrogliose, in den Retinae entstehen [137]. Hierbei scheint es einen Zusammenhang zwischen der Makrogliose und der Apoptose zu geben, denn in der vorliegenden Arbeit wurde nach 14 Tagen die Abnahme an FasL in den Sehnerven der ONA-Gruppe (Abb. 10) beobachtet, die von einer Verringerung der GFAP+ Fläche (Abb. 12) begleitet wurde (Abb. 28 A). Nach 28 Tagen waren beide Werte wieder auf Normalniveau gestiegen. Auch in den Retinae konnte nach 28 Tagen nur noch eine geringe
Makroglia-Reaktion detektiert werden (Abb. 12, 28 B), was wahrscheinlich im Kontext mit der Stagnation der Apoptose-Mechanismen zu diesem Zeitpunkt stand (Abb. 10, 11). Ähnliche Zusammenhänge zwischen den apoptotischen Faktoren, FasL und Caspasen, und der Makroglia-Reaktion wurde auch in einem okulären Hypertensionsmodell ermittelt [32].

Die S100-Gruppe hingegen wies in den Sehnerven nur nach 14 Tagen eine Astrogliose auf (Abb. 12), was durch die erhöhte FasL-Expression und der anfänglichen Axon-Degeneration erklärbar wäre (Abb. 28 A). Ähnliches wurde schon in einem okulären Hypertensionsmodell beobachtet, in dem ein geringer axonaler Schaden eine Makrogliose zur Folge hatte. Im weiteren Verlauf der Degeneration wurde keine Gliose mehr nachgewiesen [159]. Diese frühe Astrogliose in den leicht degenerierten S100-Sehnerven könnte ein Anzeichen für einen Schutz- und Regenerationsmechanismus sein [18, 186], welcher nach zu starken Schäden wieder eingestellt wurde. Möglicherweise kam es auch in Folge der Degeneration zum Funktionsverlust der Astrozyten. Min et al. fanden heraus, dass der Verlust der Astrozyten-Funktion den Untergang der Neuronen noch forciert [187]. In den Retinae der S100-Gruppe waren weder nach 14 (unpublizierte Daten), noch nach 28 Tagen, makrogliale Veränderungen detektierbar (Abb. 12, Abb. 28). Jedoch fanden nach 28 Tagen auch keine Apoptose-Prozesse mehr statt, was das Ausbleiben einer makroglialen Antwort begründen könnte. Vielleicht reagieren sie in den Retinae der S100-Tiere zu einem anderen Zeitpunkt. Das muss in weiteren Versuchen noch näher untersucht werden. Bei diesen Experimenten sollte der Fokus auf den Zeitraum zwischen 14 und 28 Tagen liegen.

Nach 14 Tagen wurde im NMDA-Modell nur durch die höchste NMDA-Konzentration, 80 nmol, eine Astrogliose, sowohl in den Retinae als auch in den Sehnerven, hervorgerufen. 20 nmol führte sogar zu einer Reduktion der GFAP-Expression im Sehnerven, während 40 nmol NMDA in der Retina einen Trend zur glialen Reaktion zeigte (Abb. 23, 24). Für die Sehnerven ist belegt, dass die Astroglia-Reaktion über den Beobachtungszeitraum von sieben bis 28 Tagen immer weiter ansteigt [179]. In einem okulären Hypertensionsmodell wurde eine Korrelation zwischen der Abnahme der Axondichte und der glialen Reaktion
Diskussion

beschrieben, was vielleicht auch in dem NMDA-Modell auftrat [188]. Bemerkenswert bei den vorliegenden Ergebnissen des NMDA-Modells war, dass, wie bei der S100-Gruppe, die Astrogliese in den Sehnerven mit der erhöhten Expression von FasL & FasR und mit der aktiven Caspase 3 im Zusammenhang stand (Abb. 28). Doch diese Korrelation gab es nicht in der Retina des NMDA-Modells. Denn hier konnte nur eine Makroglia-Reaktion gemessen werden, welche unabhängig von den Apoptose-Mechanismen ablief. Vielleicht lag es daran, dass für die Retina eine Beziehung zwischen der Astrogliese und der Expression eines Neurotrophins beschrieben wurde, was somit als neuroprotektiver Mechanismus erklärt worden ist [189]. Dieser Zusammenhang unterstützt die Hypothese, dass eine Astrogliese ein Schutzmechanismus in der Retina sein könnte. Jedoch wurde auch gezeigt, dass eine reaktive Gliose in Verbindung mit Proteasen stand, die den RGZ-Verlust förderten [190]. Des Weiteren führen Zellschäden zum oxidativen Stress in neuronalen Zellen [82]. Darauf reagieren die Astrozyten mit einer erhöhten Glutamat-Freisetzung [191], was einen zerstörerischen Kreislauf entstehen lässt. Eine Astrogliese hängt somit auch beim NMDA-Modell mit den Apoptose-Mechanismen zusammen. Es ist aber noch nicht ganz klar, was diese Verbindung zu bedeuten hat.

Diskussion

4.3.2. Mikroglia-Aktivierung als gemeinsame Komponente

Es gibt zwei Szenarien, welche diese Mikroglia-Antwort erklären könnten. Die Blut-Retina-Schranke ist im Anfangsstadium der Entzündungsmechanismen permeabler [195, 196]. Die Mikroglia könnten also gegen ONA und S100 aktiviert werden, in die Retina migrieren und dort die RGZ direkt angreifen. Andererseits könnte die Immunisierung auf anderen Wegen den Tod der RGZ einleiten, was zu einer Vielzahl von Todessignalen führen könnte, wie die in den ONA-Retinae detektierte Apoptose [137]. Diese Signale wären ein chemotaktisches Zeichen für die Phagozytose der Zellbestandteile, welches die Mikroglia somit in die Retina rekrutieren würde [25, 26]. Eine anhaltende Degeneration würde aber eine Überstimulierung der Mikroglia einleiten, wodurch die noch intakten RGZ abgebaut werden könnten, was den Zellverlust noch verstärken würde [28, 30, 197]. Denn die Aktivierung von Mikroglia korreliert oft mit dem neuronalen Zellverlust [198]. Es muss in weiteren Studien also die Abfolge der Reaktionen geklärt werden. Denn es stellt sich noch immer die Frage, ob die retinalen Mikroglia ein Auslöser für die Apoptose der RGZ oder ob sie nur ein Epiphänomen sind. Zusätzlich sollte das Zytokin-Milieu in den Retinae nach 14 und 28 Tagen untersucht werden, da entzündungsfördernden Zytokine von pro-apoptotisch reagierenden Mikroglia
sezerniert werden. Eine direkte Analyse verschiedener entzündungsfördernder Zytokine, wie TNF-α, IFN-γ, IL-1α, IL10, IL4, im Retina Lysat hatte keine verwertbaren Ergebnisse ergeben (Kapitel 3.1.8). Daher sollte eine kurzzeitige in vitro Antigen-Restimulierung in Betracht gezogen werden. Ähnliches wurde schon in Multiple Sklerose Modellen durchgeführt, da es auch bei diesen Modellen unmöglich war die Zytokine auf direktem Weg zu messen [199, 200].

Die Mikroglia sezernieren nicht nur Zytokine, sie reagieren auch auf sie. Es könnte also sein, dass die retinalen Mikroglia nach 28 Tagen auf eine supprimierende Umgebung reagieren [27], ausgelöst z.B. durch eine hohe Menge von IFN-γ. Denn hohe IFN-γ-Konzentrationen verringern die zytotoxische Immunantwort [201], was ein Signal für die retinale Auswanderung der Mikroglia sein könnte. Das erklärt den Rückgang der Mikroglia-Population in den ONA-Retinae nach 28 Tagen (Abb. 13). Bei der S100-Gruppe konnte eine leichte Verringerung der Mikroglia-Anzahl gemessen werden, was eventuell dadurch begründet werden kann, dass die Mikroglia S100B exprimieren [169] und dadurch eine spätere Immunantwort gegen die Mikroglia entwickelt wurde.

Interessanterweise waren die Mikroglia in den Sehnerven des EAG-Modells zu den untersuchten Zeitpunkten nicht erhöht (Abb. 13, 28). Jedoch waren die Sehnerven beider Antigen Gruppen nach 28 Tagen degeneriert, was nach Bosco et al. mit einer frühen Mikrogliose im Sehnervenkopf zusammenhängt [202]. Son et al. postulierten wiederum eine Einwanderung der Mikroglia in bereits degenerierte Sehnerven [159]. Für das EAG-Modell wurde geschlussfolgert, dass die beiden untersuchten Zeitpunkte, 14 und 28 Tage, nicht ideal für die Mikroglia-Detektion in den Sehnerven sind. Bei der ONA-Gruppe waren die Sehnerven nach 14 Tagen noch intakt und das Apoptose-Niveau war sogar verringert, was eine Rekrutierung von Mikroglia ausschloss. Nach 28 Tagen waren die Sehnerven dann bereits so stark degeneriert, dass keine Apoptose-Mechanismen mehr vorhanden waren (Abb. 28 B). Es konnte aber ein Trend zur erhöhten Mikroglia-Anzahl analysiert werden, was ein Hinweis für eine mikrogliale Beteiligung zu einem anderen Zeitpunkt sein könnte. Es ist aber noch nicht möglich zu sagen, ob dies vor oder nach den 28 Tagen geschieht. Das
gleiche galt auch für die S100-Sehnerven. Zwar konnte keine Veränderung der Mikroglia-Anzahl, aber dafür ein Anstieg des FasL-Levels nach 14 Tagen detektiert werden (Abb. 28 A). Es ist bekannt, dass die Expression von FasL stark reguliert ist [32], da nur wenige Zellen, wie Mikroglia [52], FasL produzieren. Basierend auf diesem Wissen wurde geschlussfolgert, dass die Mikroglia zu einem früheren Zeitpunkt reagieren, da sie noch vor der Ausschüttung von FasL aktiv gewesen sein mussten. Dieser Zeitraum geht mit den Ergebnissen von Bosco et al. einher [202].

Im NMDA-Modell bewirkte die Injektion eine starke, aber zeitlich unabhängige Reaktion der Mikroglia. Sowohl nach drei als auch nach 14 Tagen war eine vermehrte Anzahl an aktiven Mikroglia in der Retina vorhanden (Abb. 25, 28), was auch schon durch Wada et al. belegt werden konnte [203]. Nach 14 Tagen bewirkte alleine die Injektion eine verstärkte Migration von aktiven Mikroglia in die Retinae der PBS-Tiere. Diese erhöhte Mikroglia-Aktivität in den Retinae könnte für den Anstieg des FasL-Levels gegenüber der unbehandelten Gruppe verantwortlich sein (Abb. 21) [52]. Das FasL wiederum führt zur Aktivierung der Caspase-Kaskade [51], was auch mit den Caspase-Ergebnissen der PBS-Gruppe übereinstimmte. Sogar die Injektion von 20 nmol NMDA hatte eine Auswirkung auf die Anzahl, aber nicht auf die Aktivität der Mikroglia (Abb. 25). Das spiegelte sich auch in dem unveränderten FasL-Signal der 20 nmol Gruppe wider (Abb. 21). Erst 40 und 80 nmol erhöhten die Proliferation bzw. Migration von aktiven Mikroglia in die Retinae. Dies scheint aber keinen Einfluss auf die Apoptose-Kaskade zu haben, denn nach 14 Tagen konnte keine erhöhte retinale Apoptose-Rate durch die verschiedenen NMDA-Konzentrationen ermittelt werden. Das bedeutet, dass der womöglich vorhandene oxidative Stress [85] und/oder das NMDA eine Wirkung auf die
Mikroglia-Zellen hatte. NMDA wirkt ebenfalls auf die Mikroglia, denn in in vivo und in vitro Experimenten wurde bewiesen, dass nicht nur Neurone und Makroglia den NMDA-Rezeptor exprimieren, sondern auch Mikroglia, wenn auch in einer geringeren Mengen [204]. Die Mikroglia, welche über den NMDA-Rezeptor aktiviert wurden, sezernierten pro-inflammatorischen Zytokine, was den Zellverlust noch verstärkte [204]. Dies konnte aber nicht für den 14 Tage Zeitpunkt dieser Arbeit beobachtet werden, da das Zytokin IL6 in nur sehr geringen Mengen in der Retina auffindbar war (nicht dargestellt) und das FasL-Signal auch nicht durch NMDA erhöht wurde (Abb. 28 B). Jedoch sind die Mikroglia in den Degenerationsprozessen involviert, welche durch NMDA ausgelöst worden sind, denn ein knock out der NMDA-Rezeptoren auf myeloiden Zellen bewirkte eine Reduzierung des neuronalen Zellverlustes [204]. In einer weiteren Zellkultur mit NMDA wurde sogar festgestellt, dass eine nicht letale Dosis von NMDA zu einer Erhöhung der Mikrogliazellen führte und das eine letale Dosis erst eine Vergrößerung Mikroglia-Population auslöste und erst danach wurden Anzeichen für den Zelltod gefunden [205]. Daher stellt sich die Frage, ob die Mikroglia nur einen sekundären Effekt in diesem Modell ausüben. Dementsprechend muss für das NMDA-Modell analysiert werden, ob die Mikroglia schon vor dem Zellverlust aktiv waren.

Abb. 28. Zusammenfassung der Gliose-Mechanismen beider Modelle

4.4. Kein starker Einfluss von retinalen Lymphozyten im Experimentellen Autoimmunen Glaukom-Modell

Das gleiche galt auch für die B-Zellen, welche 14 Tage nach der Injektion nicht in der Retina detektierbar waren. Dafür gibt es zwei mögliche Erklärungen. In den Retinae und Sehnerven der ONA-Tieren konnte erst 28 Tage nach der Immunisierung ein erhöhter Level an autoreaktiven Antikörpern analysiert werden (Abb. 29) [138]. Daraus folgt, dass B-Zellen erst später eine Rolle spielen könnten. Doch vielleicht infiltrieren die B-Zellen niemals die Retina und die Antikörper gelangen über die drainierenden Lymphknoten zu den betroffenen Bereichen.

starke Lymphozyten-Reaktion fast ausschließbar. Sollte dennoch eine erhöhte Anzahl an Lymphozyten messbar sein, wäre das für den angegebenen Zeitraum eher ein Epiphänomen und damit ein für die Benennung der Ursachen vernachlässigbare Komponente.

Abb. 29. Geringe Lymphozyten-Antwort im Experimentellen Autoimmunen Glaukom-Modell

4.5. Ausschluss einer starken systemischen Reaktion im Experimentellen Autoimmunen Glaukom-Modell

4.5.1. T-Zellen und Makrophagen Antwort

Wie schon erwähnt gab es 14 Tage nach der Immunisierung von keiner der untersuchten Zellarten eine systemische Reaktion auf die Antigene. Jedoch führte die systemische Immunisierung mit ONA und S100 erst zu einer retinalen Reaktion der Mikroglia (Abb. 13, 29). In der Milz war zu diesem Zeitpunkt keine Veränderung der Makrophagen-Population sichtbar. Erst 28 Tage nach der Immunisierung und nachdem die retinale Mikroglia-Reaktion wieder auf Normalniveau gesunken waren, konnte in der Milz eine Vermehrung der Makrophagen detektiert werden (Abb. 16, 30).

Es ist anzunehmen, dass der spätere Zeitpunkt auch für die T-Zellen in den sekundären immunologischen Organen in dem EAG-Modell galt. Abschließend festzuhalten ist, dass sie nach 14 Tagen eher herunterreguliert oder überhaupt nicht verändert waren (Anhang Tabelle C, Tabelle 16). Diese These wird dadurch gestützt, dass in einem Ischämie- [207] und in
Diskussion

einem okulären Hypertensionsmodell [216, 217] eine ähnlich frühe Mikroglia-Aktivierung in
der Retina detektiert werden konnte, die von einer späten systemischen T-Zell Antwort
gegen retinale Proteine begleitet worden ist. Generell scheint die T-Zellreaktion in Glaukom-
Modellen eher eine sekundäre Funktion zu haben, denn in Modellen mit oder ohne erhöhten
IOD [218, 219], führte der Transfer von stimulierten T-Zellen zu einer sekundären
autoimmunen Schäidigung der Retina. Zusätzlich konnte eine T-Zellen Proliferation vermehrt
denen schon ein Visus-Verlust vorlag. Das spricht folglich dafür, dass die T-Zellreaktion eine
sekundäre Funktion beim Glaukom ausübt und eher ein Epiphänomen ist.

4.5.2. Antigen unabhängige und reziproke Veränderung in der B-Zell-
und Granulozyten-Population

Zu dem 14 Tage Zeitpunkt konnte eine starke Reaktion der B-Zellen und Granulozyten der
Milz gemessen werden. Jedoch war dies keine Wirkung der beiden Antigene, sondern eine
Reaktion auf die Trägersubstanzen, Freund's Adjuvants und Pertussis Toxin. (Anhang
Tabelle C, Tabelle 16). Die Trägersubstanzen führten zu einem starken Anstieg der
Granulozyten und einer Abnahme der B-Zell Population (Abb. 30). Ein ähnliches reziprokes
Zusammenspiel der B-Zellen und Granulozyten wurde im Knochenmark von ausschließlich
mit Pertussis Toxin immunisierten Mäusen detektiert. Die Abnahme der B-Zellen wurde
durch eine Expansion der Granulozyten kompensiert [222, 223]. Zusätzlich wurde
dokumentiert, dass sich durch das Pertussis Toxin die Anzahl an zirkulierenden
Granulozyten erhöhte und dass diese nicht in der Lage waren in das entzündete Gewebe
einzuwandern [224]. Dies würde ihre Abwesenheit in der Retina und den zervikalen
Lymphknoten in dem EAG-Modell erklären (Abb. 30). Des Weiteren verändert das Pertussis
Toxin die Zytoin-Expression, was wiederum eine Auswirkung auf die beiden Immunzell-
Populationen hatte. Es ist bewiesen, dass durch die Injektion von Pertussis Toxin das TNF-α
reduziert und das IL6 erhöht wird. [225, 226]. TNF-α ist als Hauptkomponente für die
Lymphozyten-Mobilisierung vom Knochenmark in die Peripherie bekannt [223], während IL6 für die Rekrutierung der Granulozyten notwendig ist [227]. Eine Verschiebung der Zytokin-Balance, wie es für Pertussis Toxin beschrieben ist, würde also dieses reziproke Verhalten der B-Zellen und Granulozyten als Reaktion auf Pertussis Toxin erklären. Zwar wurde in Pilotstudien versucht auch im EAG-Modell verschiedene Zytokine (TNFα, IFN-γ, IL-1α, IL10, IL4) in Serum und in der Retina nachzuweisen, jedoch lag die Zytokin-Menge unterhalb des Detektionsniveaus und konnte so nicht verglichen werden. Eine Möglichkeit zur Detektion einer Zytokin-Reaktion, wäre nach Beendigung der in vivo Studie eine kurzzeitige in vitro Antigen-Restimulierung. Ein identisches Verfahren wurde schon für Multiple Sklerose Modelle angewandt, da es auch bei diesen Modellen nicht möglich war die Zytokine auf direktem Weg zu messen [199, 200]. Denn die eindeutige Immunreaktion basierend auf dem Pertussis Toxin müsste demnach eine detektierbare Veränderung des Zytokin-Milieus nach sich ziehen.

4.5.3. Kurzzeitige und antigenabhängige Milzvergrößerung

Diskussion

Eine Rolle. Jedoch gilt das nicht für die Tiere, die mit S100 immunisiert worden sind, da es hier zu keiner Veränderung der Milzmaße kam.

Abb. 30. Reaktionen der Leukozyten in den sekundären lymphoiden Organen im Experimentellen Autoimmunen Glaukom-Modell

In der Mitte des Bildes sind die lokalen, retinalen Verläufe der Lymphozyten, Glia- und Degenerationsmechanismen aus Abb. 29 zu sehen. Auf der linken Seite sind die peripheren Entwicklungen der S100 und auf der rechten von der ONA-Gruppe angeordnet. A) Der einzige Effekt auf die Milzen der S100-Gruppe nach 14 Tagen war eine Einwanderung von Granulozyten, welche auch bei der ONA-Milz sichtbar waren. Bei den ONA-Milzen kam es auch zu einer Auswanderung der
Diskussion

4.6. Schlussbetrachtung und zukünftige Perspektiven

Das Glaukom ist eine irreversible Augenerkrankung, dessen Ursachen bisher nicht vollständig bekannt sind [87]. In den letzten Jahren konnte beobachtet werden, dass sich ein Wandel in der Glaukom-Forschung vollzogen hatte. Es wurde sehr lange angenommen, dass der erhöhte Augeninnendruck die alleinige Ursache für die Entstehung des Glaukoms ist. Jedoch stellte sich heraus, dass es ein bedeutender Risikofaktor und nicht die alleinige Ursache für das Glaukom ist. Die Therapien jedoch zielen noch heute nur auf die Senkung des Augeninnendruckes ab [230], da die molekularen Grundlagen der Krankheit noch nicht ausreichend erforscht sind. Für das Glaukom wurden unter anderen einige autoreaktive Veränderungen bestimmt [101, 110], was die Frage aufwirft, ob nicht hier die Ursachen dieser Erkrankung zu finden sind.

welche auf die Apoptose-Mechanismen reagierten. Die einzige verbindende Komponente, die ein Auslöser für die Degeneration sein könnte, wären die Mikroglia, welche auch über den für die Degeneration wichtigen Faktor, FasL, wirken.

In nachfolgenden Projekten wäre es sinnvoll die Funktion der Mikroglia detaillierter zu untersuchen. Dafür gibt es zwei Möglichkeiten, erstens die Mikroglia werden pharmazeutisch gehemmt, oder zweitens die Mikroglia werden zu einem neuroprotektiven Phänotyp verändert.

AMWAP könnte vielleicht einen schützenden Prozess hervorrufen, ohne einen Signalweg blockieren zu müssen.

Verbesserung hervorrufen. Vielleicht ändert sich durch die Hemmung der entzündungsfördernden Zytokine sogar der Phänotyp der Mikroglia.

Abschließend lässt sich feststellen, dass die gliale Antwort, insbesondere die der Mikroglia, eine denkbare Ursache für die Degenerationsmechanismen in den in dieser Arbeit verwendeten Tier-Modellen ist. Das inhibieren einer frühen mikroglialen Aktivierung könnte ein potentieller Therapieansatz für die Glaukom-Behandlung sein.
Zusammenfassung

5. Zusammenfassung

Zusammenfassung

Erstmals wurden die Lymphozyten im EAG-Modell untersucht, da bei vielen Neurodegenerationen diese Immunzellen auch eine Rolle spielen. Die T-Zellen scheinen, wenn überhaupt, nur einen sekundären Effekt auf den schon entstandenen Schaden zu haben und kein Initiator für die Degeneration zu sein. Das gleiche gilt für die B-Zellen, welche eventuell gar nicht direkt an den Prozessen in der Retina beteiligt sind, sondern nur ihre Wirkung über Antikörper induzieren, die zu einem späten Zeitpunkt detektiert wurden.

Abschließend lässt sich feststellen, dass die gliale Antwort, insbesondere die der Mikroglia, die verbindende Komponente beider Modelle und eine mögliche Ursache des Zelluntergangs im EAG-Modell ist. Die Inhibition einer frühen mikroglialen Aktivierung könnte ein potentieller Therapieansatz für das Glaukom sein.
6. Abstract

Glaucoma, an irreversible degeneration of retinal ganglion cells and optic nerve fibers, is a worldwide problem. The current treatments are not really effective to stop the degeneration in the moment. Therefore, further analyses have to be performed to get new information about the causes of this disease.

In the present work, cellular alterations were investigated in two established animal models of retinal degeneration. The experimental autoimmune glaucoma model (EAG) is based on the systemic immunization with optic nerve homogenate (ONA) or the protein S100. In contrast, the N-Methyl-D-Aspartat-model (NMDA) uses the excitatory effect of intraocular injected NMDA. In both models, the degeneration process and the function of the glia cells, which could be protective or destructive, revealed unknown.

For glaucoma patients it was postulated that the known axon damage is based on a so called Wallerian degeneration. At first, the axons are affected, later on also the myelin fibers and the cell bodies. In this present work, we showed that the degeneration mechanisms developed differently. The Wallerian degeneration took place only in the S100 group. The ONA or NMDA injection induced a retinal degeneration followed by a damage of the optic nerve structures. The direct injection of NMDA induced a very fast response, while ONA led to damage through immunological mechanisms. The NMDA-model exhibited signs of a late Wallerian degeneration of the optic nerves in the present work, which is also described in the literature. A similar mechanism was assumed for the ONA-group, due to the loss of the retinal cell bodies, which could induce axonal damage at a later point in time. Although, the structural degeneration differs between the models, similar apoptosis mechanisms were detected. For example, the cytokine FasL was involved in the optic nerve degeneration process in the S100- and NMDA-group. FasL is also linked to the glia response, because microglia produced FasL. Possibly, the microglia were active before the degeneration took place. The question arises, if the glial response is only an epiphenomenon? In both models, early microglia activation could be detected, which is a typical sign for the initial state of
Abstract

neurodegenerative models. For the first time, we observed that microglia immigrate into the retina before the cell degeneration takes place in the EAG-model. Furthermore, the microglia activity was limited to early periods of this model. These are hints for a possible participation of microglia to the cell death mechanisms. Otherwise, the long lasting activation of microglia in the NMDA-model could only be an epiphenomenon with an additionally reinforced degenerative effect on the neurons. Yet, the microglia are not the only cell type, which response is based on the noted structural changes, the macroglia also play a role in this mechanism. It was verified that the macroglia activation was rather a consequence of existing apoptosis mechanisms, which correspond with the epiphenomenon theory. The cause of this reaction, protective or destructive, is still unknown. Due to the early response in the optic nerve, the macroglia reaction could be protective, since the response stagnated during the degeneration progression. Yet, the macrogliosis in the NMDA-model and in the ONA-retinae took place in apoptotic and degenerated structures at later points in time. Therefore, the macrogliosis was considered as a secondary mechanism, which pushed the damage.

For the first time, lymphocytes were investigated in the EAG-model, because these immune cells play an important role in several neurodegenerative diseases. The T-cell response seemed to be only, if at all, a secondary effect on the already existing damage and not an initiating mechanism. The similar result applies to the B-cells. Possibly, the B-cells were not directly involved in the retina, but induced their effect through antibodies, which were detected in the EAG-model later on.

In conclusion, the glial response, especially of the microglia, is the connecting element between both animal models and the possible cause of degeneration in the EAG model. The inhibition of an early microglia activity could be a potential therapy approach for glaucoma.
7. Literaturverzeichnis

[34] Robinson AP, White TM, Mason DW. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology, 1986;57:239-47.

[145] Bruckener KE, el Baya A, Galla HJ, Schmidt MA. Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J Cell Sci, 2003;116:1837-46.

[167] Ellis EF, Willoughby KA, Sparks SA, Chen T. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem, 2007;101:1463-70.

[214] Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW. Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized

[237] Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia, 2012;60:1888-95.

8. Anhang

Tabelle A: Hintergrund- und Grenzwerte der Signalflächenmessung

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Marker</th>
<th>Organ</th>
<th>Hintergrund</th>
<th>Untere Grenzwert</th>
<th>Obere Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EAG-Modell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Tage</td>
<td>CD3</td>
<td>Milz</td>
<td>35,0</td>
<td>13,0</td>
<td>80,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cLN</td>
<td>12,0</td>
<td>6,5</td>
<td>80,0</td>
</tr>
<tr>
<td></td>
<td>Iba1</td>
<td>Milz</td>
<td>35,0</td>
<td>3,5</td>
<td>80,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cLN</td>
<td>35,0</td>
<td>5,0</td>
<td>80,0</td>
</tr>
<tr>
<td></td>
<td>GFAP</td>
<td>Sehnerv</td>
<td>60,464</td>
<td>6,58</td>
<td>48,18</td>
</tr>
<tr>
<td>28 Tage</td>
<td>GFAP</td>
<td>Retina</td>
<td>21,7</td>
<td>13,4</td>
<td>84,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sehnerv</td>
<td>33,7</td>
<td>7,837</td>
<td>63,332</td>
</tr>
<tr>
<td></td>
<td>Vimentin</td>
<td>Retina</td>
<td>22,0</td>
<td>80,0</td>
<td>255,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NMDA-Modell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Tage</td>
<td>GFAP</td>
<td>Retina</td>
<td>12,159</td>
<td>3,094</td>
<td>20,973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sehnerv</td>
<td>44,44</td>
<td>12,17</td>
<td>74,9</td>
</tr>
<tr>
<td></td>
<td>Vimentin</td>
<td>Retina</td>
<td>15,856</td>
<td>3,916</td>
<td>31,825</td>
</tr>
</tbody>
</table>

Tabelle B: Messwerttabelle der Augeninnendruckmessung im EAG-Modell

<table>
<thead>
<tr>
<th>Zeit [Tage]</th>
<th>MW±SEM</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co</td>
<td>ONA</td>
</tr>
<tr>
<td>0</td>
<td>9,1±0,4</td>
<td>9,3±0,3</td>
</tr>
<tr>
<td>7</td>
<td>9,4±0,2</td>
<td>9,4±0,3</td>
</tr>
<tr>
<td>14</td>
<td>9,8±0,2</td>
<td>9,6±0,2</td>
</tr>
<tr>
<td>21</td>
<td>9,9±0,2</td>
<td>9,5±0,3</td>
</tr>
<tr>
<td>27</td>
<td>10±0,1</td>
<td>9,8±0,3</td>
</tr>
</tbody>
</table>
Tabelle C: Absolute Zellzahlen der sekundären lymphoiden Organe

<table>
<thead>
<tr>
<th>Zeit</th>
<th>T-Zellen</th>
<th>B-Zellen</th>
<th>Granulozyten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milz</td>
<td>Blut</td>
<td>cLK</td>
</tr>
<tr>
<td>MW±SEM [x10⁴]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve</td>
<td>10,6±0,9</td>
<td>19,2±2,8</td>
<td>33,2±5,2</td>
</tr>
<tr>
<td>Co</td>
<td>7,7±1,1</td>
<td>11,7±2,5</td>
<td>24,8±3,1</td>
</tr>
<tr>
<td>ONA</td>
<td>7,2±0,8</td>
<td>13,6±0,8</td>
<td>24,3±4,8</td>
</tr>
<tr>
<td>S100</td>
<td>8,6±1,2</td>
<td>14,6±2,4</td>
<td>27,7±3,0</td>
</tr>
</tbody>
</table>

Tabelle D: Messwerte des Augeninnendrucks im NMDA-Modell

<table>
<thead>
<tr>
<th>Zeit [Tage]</th>
<th>MW±SEM</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbh</td>
<td>PBS</td>
<td>20 nmol</td>
</tr>
<tr>
<td>0</td>
<td>9,5±0,2</td>
<td>9,9±0,2</td>
</tr>
<tr>
<td>4</td>
<td>9,2±0,3</td>
<td>10,2±0,2</td>
</tr>
<tr>
<td>8</td>
<td>9,9±0,1</td>
<td>9,4±0,2</td>
</tr>
<tr>
<td>13</td>
<td>10,3±0,2</td>
<td>10,7±0,2</td>
</tr>
</tbody>
</table>
9. Danksagung

Herrn Prof. Dr. Rolf Heumann danke ich für die Möglichkeit meine Daten vorzustellen, die hilfreichen Anregungen und die Übernahme des Korreferates.

Mein Dank gilt ebenfalls Herrn Dr. Marcus Peters vom Arbeitskreis für Experimentelle Pneumologie für die praktische Unterstützung bei der FACS-Messung und für die hilfreichen Vorschläge beim Schreiben des gemeinsamen Papers.

Danken möchte ich auch Björn Ambrosius aus der Arbeitsgruppe der Neuroimmunologie der Ruhr-Universität Bochum, der sich viel Zeit für mich genommen hat, auch wenn nicht so aussagekräftige Daten entstanden sind.

Des Weiteren danke ich Christina Eilert-Micus aus dem IMBL der Ruhr-Universität Bochum, die mich bei den Western Blot-Messungen sehr hilfreich unterstützt hat und für viele Fragen offen war.

Ganz besonders danken möchte ich meinen beiden Medizinstudentinnen, Rozina Noristani und Cara Rodust, für die Übernahme vieler Arbeiten, die harmonische und herzliche Zusammenarbeit und für ein paar lustige und meistens nahrhafte Momente neben der Arbeit.

Ein großes Dankeschön geht an meine Kolleginnen Marina Renner, Gesa Stute und an meine Kollegin und Büronachbarin Sabrina Reinehr für die vielen Hilfestellungen, die gegenseitige Unterstützung, die Möglichkeit den Arbeitsfrust loszuwerden und die lustigen Gespräche, welche einem über den Tag geholfen haben. Auch wenn ich Fußball nie verstehen werde.
Danksagung

Nicht zu vergessen ist Mathias Stellbogen, der mich bei einigen Projekten mit seiner Arbeitskraft und ruhigen Art unterstützt hat.

Allen Studenten, die ich betreuen durfte, möchte ich für die gute Zusammenarbeit, den interessanten Input und die meist vergnüglichen Gesprächen bedanken.

Außerdem danke ich allen aus dem Experimental Eye Research Institute für die harmonische Atmosphäre im Arbeitsalltag, für die fachlichen Diskussionen und Hinweise, die vielen netten Gespräche und einer ähnlichen Passion für Süßes und Kaffee.

Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel:

„Zusammenhang zwischen Immunsystem und Neurodegeneration
in Tiermodellen des retinalen Zelluntergangs“

selbständig verfasst und keine anderen außer den angegebenen Hilfsmittel und Quellen verwendet wurden. Weiterhin erkläre ich, dass ich die Arbeit in dieser oder ähnlicher Form bei keiner anderen Fakultät eingereicht habe.

Bochum, den 24.06.2015

Sandra Kühn