

Contents

1. Introduction
 1.1 Lithium-ion batteries
 1.2 Active insertion materials for negative electrodes
 1.3 Active insertion materials for positive electrodes
 1.4 Electrolyte components: solvents and salts
 1.4.1 Solvents
 1.4.2 Electrolyte salts
 1.4.3 Electrochemical stability of electrolytes: the solid-electrolyte interphase
 1.4.4 SEI on negative electrodes
 1.4.5 SEI on positive electrodes
 1.5 Established in-situ/ex-situ techniques for the SEI investigation
 1.5.1 X-ray photoelectron spectroscopy (XPS)
 1.5.2 Scanning electron microscopy (SEM)
 1.5.3 Fourier transform infrared spectroscopy (FTIR)
 1.5.4 Raman spectroscopy
 1.5.5 X-ray diffractometry (XRD)
 1.5.6 Differential electrochemical mass spectrometry (DEMS)
 1.5.7 Atomic force microscopy (AFM)
 1.6 Scanning electrochemical microscopy (SECM)
 1.6.1 Feedback mode of SECM
 1.7 Aim of the work

2 Experimental
 2.1 Materials and electrodes preparation
2.2 SECM and AFM setup

2.3 SECM: local electrochemical measurements

3 Results and discussion

3.1 Developing and enabling the technology
 3.1.1 Combined AFM/SECM on glassy carbon electrodes
 3.1.2 Development of the electrochemical cell for SECM analysis
 3.1.3 Redox couples evaluation for the feedback mode SECM in organic solutions
 3.1.4 Specifically designed counter electrodes development
 3.1.5 Summary

3.2 SEI formation on TiO$_2$-based paste electrodes: preliminary analysis and establishment of the method
 3.2.1 Preliminary analysis
 3.2.2 Detection of lithium (de-)insertion and SEI formation through area mapping
 3.2.3 Time and potential resolution: in-operando measurements
 3.2.4 In-operando measurements: effect of the scan rate
 3.2.5 Validation of the electric field influence on the feedback current
 3.2.6 Summary

3.3 SEI formation on carbonaceous materials: ideal system
 3.3.1 Influence of the applied potential range on the SEI stability
 3.3.2 Influence of the cation on the SEI insulating character
 3.3.3 Summary

3.4 SEI formation on carbonaceous materials: real system
 3.4.1 VC-free electrolytes
 3.4.2 VC-containing electrolytes
 3.4.3 Spatiotemporal stability of the SEI on graphite electrodes
 3.4.4 Summary

3.5 Surface layer on high voltage operating positive electrodes
3.5.1 Effect of the redox couple on the behavior of LiNi$_{0.5}$Mn$_{1.5}$O$_4$ 101

3.5.2 Evaluation of the electronic character of the surface layer formed on LiNi$_{0.5}$Mn$_{1.5}$O$_4$ 103

3.5.3 Evaluation of the electronic character of the surface layer formed on Li$_{1+x}$(Ni$_{1/3}$Mn$_{1/3}$Co$_{1/3}$)$_{1-x}$O$_2$ 109

3.5.4 Summary 111

4 Conclusions 114

Bibliography 118

Publications and conference contributions 127

Acknowledgments 129