TABLE OF CONTENTS

Abstract

Part I

1. Introduction

1.1 PD in general

1.2 The LRRK2 protein; domains of LRRK2, founder mutations, epidemiology and possible mechanisms of LRRK2’s induced neurotoxicity in PD

1.3 Important phosphosites of the LRRK2 protein and their biological importance

1.4 Protein Phosphatase 2A in general

1.5 The role of PP2A in alpha-synuclein correlated PD

1.6 The role of PP2A regarding Tau phosphorylation levels and Alzheimer’s Disease

1.7 Phosphatases of LRRK2

1.8 Neuronal Ras activation is able to protect against chemically-induced parkinsonian mouse models

1.9 PP2A is able to activate the Ras pathway through dephosphorylation of Ksr and Raf

1.10 Aim of this study

2. Materials and Methods

2.1 Bacterial protein expression and GST pull down of the ROC protein

2.2 Staining of SDS gels by Coomassie Brilliant Blue R-250
2.3 GFP-TRAP for immunoprecipitation of GFP-fusion proteins 28
2.4 GST-RBD pull down 29
2.5 Immunoprecipitation of LRRK2 protein from SH-SY5Y and Hela cells 29
2.6 Confocal Microscopy and Proximity ligation assay for Hela cells 30
2.7 Immunohistochemistry 31
2.8 Cell culture transfection and cell lysis 31
2.9 Transfection reagents for secondary cell lines 32
2.9.1 GenJet for N2A cells 32
2.9.2 Xfect transfection reagent for Hela/HEK293T cells 32
2.9.3 Lipofectamine LTX for SH-SY5Y/HEK293T cells 32
2.10 Calcium phosphate transfection for cortical neurons 33
2.11 Protein determination by DCTM Protein Assay 33
2.12 SDS polyacrylamide gel electrophoresis 34
2.13 Protein transfer to nitrocellulose membrane 35
2.14 Western blotting 36
2.15 Primary antibodies 36
2.16 Given plasmids and shRNA plasmids targeting PP2Ac 37
2.17 Midi Prep plasmid purification 37
2.18 Agarose gel electrophoresis 38
2.19 DNA digestion by restriction enzymes 38
2.20 DNA ligation 39
2.21 Transgenic Mice and cortical neurons culture 39
2.22 Genotyping of BAC-LRRK2-G2019S mice 39
2.23 Insertion of WT-LRRK2 and R1441C-LRRK2 DNA sequence to pCDNA3.0 vector 40
2.24 PCR for GST-ROC-WT and GST-ROC-R1441C proteins 41
2.25 PCR for EGFP-ROC-WT and EGFP-ROC-R1441C proteins 41
2.26 Cell death and cell viability assay
2.27 Sodium selenate treatment for the Ras pathway activation
2.28 Mant GTPγS binding assay of the ROC proteins
2.29 Statistics

3. Results
3.1 The ROC domain of LRRK2 is sufficient for interaction with PP2A
3.2 LRRK2 and PP2Aa are interacting in the perinuclear region of Hela cells
3.3 Knockdown of the catalytic subunit of PP2A (PP2Ac, alpha and beta isoforms)
 results in aggravated cell death in transiently R1441C-LRRK2-transfected
 SH-SY5Y cells and G2019S-expressing cortical neurons
3.4 Activation of PP2A by sodium selenate partially rescues transiently R1441C-LRRK2-
 transfected SH-SY5Y cells, while there no statistically significant effect of sodium
 selenate in G2019S cortical neurons
3.5 Sodium selenate treatment is able to activate the Ras downstream pathway in SH-
 SY5Y cells and G2019S cortical neurons

4. Discussion
4.1 The ROC domain of LRRK2 is efficient to bind PP2A
4.2 The WT- and the R1441C-ROC of LRRK2 binds equally to PP2A,
 while LRRK2 interacts with PP2A in the perinuclear region of cells
4.3 Elimination of PP2Ac aggravates parkinsonian-cell death in neuronal models,
 while chemically-induced activation of PP2A protects from the toxic
 LRRK2 mutants
4.4 Correlation of shRNA-PP2Ac and sodium selenate systems
 with biological systems
4.5 Mechanisms of neuroprotection by sodium selenate in toxic LRRK2
 parkinsonian models
4.6 Possible future experiments to be done
Part II

1. Introduction
 1.1 VDAC in general
 1.2 Role of the mitochondrial VDAC/VDAC-1 in the apoptosis pathway
 1.3 Plasma membrane VDAC-1 and its link to apoptosis
 1.4 Plasma membrane VDAC-1 and Ras neuroprotectivity
 1.5 Aim of the study

2. Materials and Methods
 2.1 Plasmids
 2.2 Knockdown of VDAC-1 -Western Blotting
 2.3 Ferricyanide reductase assay
 2.4 Statistics

3. Results
 3.1 The ROC domain of LRRK2 is able to interact with VDAC/VDAC-1
 3.2 The plasma membrane VDAC-1 is the main enzyme responsible for the reductase activity of plasma membrane enzymes in HEK293T cells
 3.3 The ROC-WT protein is able to reduce the reductase activity of the plasma membrane enzymes of HEK293T cells, while the ROC-R1441C is also reducing the reductase activity levels of the plasma membrane VDAC-1 in a lesser extent
4. Discussion

4.1 Association of VDAC/VDAC-1 with the ROC domain of LRRK2 and reduction of plasma membrane VDAC-1 activity in the presence of WT ROC indicate a chaperone-like function of LRRK2 towards plasma membrane VDAC-1

4.2 Future experiments to be done

5. General hypothesis of the neuroprotective role of PP2A and pl-VDAC-1 in LRRK2-induced Parkinson’s Disease

6. References

7. Appendix

7.1 Curriculum Vitae

7.2 List of Publications

7.3 Invited Oral speaker in Conferences and Workshops

7.4 Poster speaker in Conferences and Workshops

7.5 Acknowledgments