Inhaltsverzeichnis

1. Einleitung .. 1

1.1. Allgemeiner Aufbau der hier vorgelegten Arbeit zu Pex1p und Pex6p ... 1

1.2. AAA⁺-ATPasen mit ähnlicher Architektur, aber unterschiedlichen zellularen Funktionen 1

1.2.1. Allgemeine Klassifizierung von AAA⁺-ATPasen .. 1

1.2.2. Pex1p und Pex6p sind klassische Typ II AAA⁺-ATPasen ... 3

1.2.3. Zellulare Funktionen verschiedener AAA⁺-ATPasen ... 6

1.3. Peroxisomen ... 8

1.3.1. Mutationen in Peroxin-Genen resultieren in peroxisomalen Erkrankungen 9

1.4. Import von Proteinen in die peroxisomale Matrix ... 11

1.4.1. Bindung des Cargos im Zytosol .. 13

1.4.2. Ausbildung der Import-Pore an der peroxisomalen Membran .. 13

1.4.3. Ubiquitinylierung der PTS-Rezeptoren und Rückführung ins Zytosol 14

1.5. Rekrutierung des AAA⁺-Motors an die peroxisomale Importmaschinerie 15

1.6. Zielsetzung dieser Arbeit ... 18

2. Material und Methoden .. 19

2.1. Materialien ... 19

2.1.1. Geräte .. 19

2.1.2. Chemikalien ... 20

2.1.3. Verbrauchsmaterialien .. 21

2.1.4. Größenstandards ... 21

2.1.5. Enzyme .. 21

2.1.6. Mikroorganismen ... 22

2.1.7. Nukleinsäuren .. 22

2.1.8. Antiseren ... 23

2.1.9. Oligonukleotide ... 24

2.1.10. Medien .. 25

2.1.11. Puffer, Lösungen und Polymere ... 25

2.2. Methoden .. 27

2.2.1. Zellbiologische Methoden ... 27

2.2.2. Analytische Methoden ... 29

2.2.3. Molekularbiologische Methoden .. 30

2.2.4. Proteinbiochemische Methoden .. 31
3. Ergebnisse .. 39

3.1. Sequenzanalyse von Pex1p und Pex6p ... 39
3.2. Isolierung des rekombinant exprimierten Pex1p/Pex6p-Komplexes aus E. coli 40
3.3. Vergleich des in E. coli und homolog in Hefe exprimierten Pex1p/Pex6p-Komplexes 42
3.4. ATPase-Aktivität des rekombinanten Pex1p/Pex6p-Komplexes 43
3.5. Struktur-Analyse des Pex1p/Pex6p-Komplexes mittels Elektronen-Mikroskopie 44
3.7. Identifizierung der für die Komplex-Stabilität verantwortlichen Walker A-Motive 48
3.8. Auswirkungen von Walker B-Mutationen auf die Pex1p/Pex6p-Komplexbildung 50
3.9. Auswirkungen von Arginin-Finger Mutationen auf die Pex1p/Pex6p-Komplexbildung 51
3.10. Auswirkungen von Mutationen innerhalb putativer ISS-Motive auf die Komplexbildung 52
3.11. Größenausschluss-Chromatographie der verschiedenen Pex1p/Pex6p-Mutanten 53
3.12. Optimierung der Pex1p/Pex6p-Isolierung für vergleichende ATPase-Aktivitätsanalysen 55
3.15. Auswirkung der Pex1p^{D797N} Walker B-Mutation auf die Pex1p/Pex6p Komplexformierung ... 61
3.16. In vitro Analysen zum Funktionsverlustes der Pex1p^{D797N} Walker B-Mutation 63
3.17. Analysen zu potentiellen Arginin-Fingern in der D1-Domäne von Pex6p 65
3.18. Nukleotid-abhängige Anbindung des Pex1p/Pex6p-Komplexes an Pex15p 67
3.19. Auswirkung der Walker B-Mutationen auf die Assemblierung der peroxisomalen Importmaschinerie ... 68
3.20. In vitro Charakterisierung der Interaktion des Pex1p/Pex6p-Komplexes zu Pex15p 70
3.21. Analysen zur Stöchiometrie des Pex1p/Pex6p/Pex15p-Komplexes 72
3.22. Größenausschluss-Chromatographie einzelnen Pex6p mit Pex15p 74
3.23. Nukleotid-abhängige Bindung des Pex1p/Pex6p-Komplexes an Pex15p 75
3.24. Durch ATP-Hydrolyse induzierte Dissoziation des Pex1p/Pex6p/Pex15p Komplexes 76
3.25. Studien zur Bindung des AAA⁺-Komplexes an Ubiquitin 78
3.26. Studien zur Bindung von Pex1p/Pex6p an ein artifizielles Ubiquitin-Pex5p Fusionsprotein ... 81
3.27. Etablierung eines Systems zur Einführung Positions-spezifischer Photo-Crosslinker 83
3.28. Synthese und Isolierung der Ub^{68pa}-Pex5p^{Δ1-6} Photo-Crosslinker 85
3.29. In vitro Photo-Crosslinking mit GST-Ub^{68pa}-Pex5p^{Δ1-6} und dem Pex1p/Pex6p-Komplex 86
3.30. In vitro Photo-Crosslinking mit Ub^{68pa}-Pex5p^{Δ1-6} nach Abspaltung der GST-Fusion 88
3.31. Einfluss von Pex15p und Ub-Pex5p auf die ATPase-Aktivität des Pex1p/Pex6p-Komplexes ... 89

4. Diskussion .. 92

4.1. Expressions- und Reinigungsprozeduren zur Isolierung des Pex1p/Pex6p-Komplexes 92
4.2. Nukleotid-abhängige Formierung des hetero-hexameren Pex1p/Pex6p-Komplexes 93
 4.2.1. Effekte von Walker A-Mutationen auf die Pex1p/Pex6p-Komplexbildung 94
 4.2.2. Die Wahl der für Walker B-Mutations-Analysen geeigneten Aminosäure 96
 4.2.3. Asymmetrische Effekte von Arginin-Finger- und ISS-Motiv-Mutationen auf die Pex1p/Pex6p-Komplexbildung ... 98
4.3. Die ATPase-Aktivität des Pex1p/Pex6p-Komplexes .. 99
 4.3.1. Asymmetrischer Beitrag von Pex1p und Pex6p zur ATPase-Aktivität des Komplexes 100
 4.3.2. Einfluss der D1 AAA⁺-Domänen auf die ATPase-Aktivität von Pex1p/Pex6p 102
4.4. Struktur und Dynamik des Pex1p/Pex6p-Komplexes ... 103
 4.4.1. EM-Analyse des Pex1p/Pex6p-Komplexes in verschiedenen Nukleotid-Zuständen 103
 4.4.2. Strukturelle Analyse der Pex1p/Pex6p Walker B-Varianten .. 105
 4.4.3. Bewegungen der Pore-Loops in Abhängigkeit des Nukleotid-Status 106
 4.4.4. Koordination der ATP-Hydrolyse Ereignisse im AAA⁺-Ring 108
4.5. Dynamische Anbindung des Pex1p/Pex6p-Motors an die peroxisomale Importmaschinerie. 110
4.6. Ubiquitin-abhängige Bindung von Pex5p an den Pex1p/Pex6p-Komplex 113
 4.6.1. Optimierung des Photo-Crosslinkings zur Identifizierung der Ub-Pex5p Bindestelle 115
4.7. Modell des Pex5p Exports basierend auf den aktuellen Forschungs-Ergebnissen 116
5. Zusammenfassung .. 120
6. Referenzen ... 122
7. Anhang .. 134
8. Danksagung ... 137
9. Lebenslauf und Publikationen ... 139