Contents

1 **Introduction**
 1.1 The structure of ZrO$_2$ and ZrO$_2$ in catalysis
 1.2 Cu-based catalysts
 1.3 Cu/ZrO$_2$ catalyst system
 1.4 Hydrogenation of ethyl acetate over Cu catalysts

2 **Experimental**
 2.1 Precipitation setup
 2.2 Microreactor setup
 2.3 Characterisation methods
 - 2.3.1 X-ray powder diffraction (XRD)
 - 2.3.2 N$_2$ physisorption
 - 2.3.3 Temperature-programmed reduction (TPR)
 - 2.3.4 N$_2$O reactive frontal chromatography (RFC)
 - 2.3.5 Thermogravimetry (TG)
 - 2.3.6 Inductively coupled plasma optical emission spectrometry (ICP-OES)
 - 2.3.7 Raman spectroscopy
 - 2.3.8 Transmission electron microscopy (TEM)
 - 2.3.9 X-ray photoelectron spectroscopy (XPS)
 - 2.3.10 Low-energy ion scattering (LEIS)
 - 2.3.11 Infrared spectroscopy (IR)

3 The role of Cu in the Cu/ZrO$_2$ catalyst synthesised by sol-gel precipitation
 3.1 Introduction
 3.2 Experimental
 3.3 Results
 3.4 Discussion
4 Structural effects in Cu/ZrO$_2$ catalysts generated by the modification of the sol-gel precipitation and by post-precipitation steps

4.1 The role of the pH and the ZrO$_2$ phase

4.2 The role of the temperature during precipitation

4.3 The role of washing and Na$^+$ doping

4.4 The role of the calcination temperature

5 Alternative synthesis methods for highly active Cu/ZrO$_2$ catalysts

5.1 Introduction

5.2 Experimental

5.2.1 Impregnation

5.2.2 Sol-gel synthesis

5.2.3 Deposition precipitation

5.2.4 Solid-state methods

5.3 Results

5.3.1 Impregnation

5.3.2 Deposition precipitation

5.3.3 Sol-gel synthesis

5.3.4 Solid-state methods

5.4 Discussion

5.5 Conclusions

6 Impregnation of Cu on ZrO$_2$ doped with ZnO, La$_2$O$_3$, and, Y$_2$O$_3$

7 Summary

8 Outlook

Bibliography

Appendix

List of Figures

List of Tables