Table of contents:

Chapter 1

1. Introduction
 1.1 Os-complex modified redox polymers 3
 1.2 Redox enzymes 5
 1.2.1 General features 5
 1.2.2 Redox enzymes kinetics 7
 1.2.3 Glucose oxidase (GOD) 10
 1.2.4 Pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) 11
 1.2.5 Periplasmic aldehyde oxidoreductase (PaoABC) 12
 1.3 pH responsive polymers and on-off systems 12
 1.4 Urea biosensors 15
 1.5 Electron transfer kinetics inside redox polymers 16
 1.6 Microgels 21
 1.7 Multisine ac voltammetry 23

Chapter 2

2. Aim of the Thesis 25

Chapter 3

3. Results
 3.1 Electron transfer properties of Os-complex modified poly(vinyl)imidazole 31
 3.1.1 Scan rate dependent cyclic voltammetry 32
 3.1.2 Interdigitated array electrodes 38
 3.1.3 Electrochemical impedance spectroscopy 40
 3.1.4 Multisine ac voltammetry 41
 3.2 Detection of redox inactive catalytic reactions by control of pOs-VI charge 47
 3.2.1 Triggering polymer properties via enzymatic reactions 47
 3.2.2 Glucose oxidase signal amplification 51
 3.2.3 Glucose dehydrogenase for electrochemical signal generation 57
 3.2.4 Mechanism of the on-off transition 59
 3.3 Detection of redox inactive catalytic reactions by control of pOs-VI solvation 60
 3.3.1 Electrocatalytic activity for the pH responsive PaoABC/pOs-VI polymer film. 61
 3.3.2 Off-on switch triggered from esterase induced pH shift 64
 3.3.3 Biofuel cell for self-powered sensors 66
 3.4 Study of the effect of the counter ion in the detection of redox processes via multisine ac voltammetry 68
 3.4.1 Chlorides 68
 3.4.2 Fluorides 74
 3.4.3 Sulphides 78
 3.5 Multi-stimuli responsive redox microgels 81
 3.5.1 Synthesis of Os-modified poly(NIPAM)phenylboronic acid microgel 81
 3.5.2 Molecular recognition inside a poly(NIPAM)phenylboronic acid microgel 86
 3.5.3 Poly(NIPAM)phenylboronic acid microgel for the detection of redox inactive enzymatic reactions 90

Chapter 4

4. Conclusions and future perspectives 93
 4.1 Conclusions 95
 4.2 Future perspectives 99

Chapter 5

5. Experimental part 101

References 109
List of publications and communications at conferences

Acknowledgements