Contents

Danksagung ... iii

Publications incorporated in this thesis iv

1 Introduction ... 1
 1.1 Motivation ... 1
 1.2 Research focus .. 4
 1.3 Thesis outline .. 4

2 Background ... 7
 2.1 Capacitively coupled atmospheric pressure plasmas (CCAPP) ... 7
 2.1.1 Breakdown and ignition of glow discharges in helium 7
 2.1.2 Discharges processes and modes in rf-excited helium CCAPP .. 11
 2.1.3 Instabilities and arc formation 13
 2.2 The self-pulsing micro-scaled atmospheric pressure plasma jet (SP-µ-APPJ) ... 15
 2.2.1 The experimental device 15
 2.2.2 Terms and features concerning pulsing 16

3 Diagnostics and methods .. 19
 3.1 Electrical measurements ... 19
 3.1.1 Setup for electrical characterisation 19
 3.1.2 Determination of dissipated discharge power 20
 3.2 Optical emission spectroscopy (OES) 21
 3.2.1 Collisional-radiative model for helium at atmospheric pressure 21
 3.2.2 Investigation of electron-driven discharge processes 26
 3.2.3 Investigation of rotational temperatures 27
 3.3 Phase-resolved optical emission spectroscopy (PR-OES) 28
 3.3.1 Setup for µs time resolution 30
Contents

3.3.2 Setup for ns time resolution 32
3.3.3 Gating and synchronisation 34
3.3.4 Setup for species identification 34
3.4 Tunable diode laser absorption spectroscopy (TDLAS) 35
3.4.1 Setup for synchronised metastable measurements 35
3.4.2 Determination of absolute densities 37
3.4.3 Experimental densities determination in self-pulsing operation 38
3.5 Two-photon absorption laser-induced fluorescence (TALIF) 40
3.5.1 Absolute calibration at atmospheric pressure 40
3.5.2 Setup for synchronised atomic oxygen measurements 44

4 Operation regimes and the discharge modes of the SP-µ-APPJ 47
4.1 Current-Voltage diagram (I-V) and Current-Power diagram (I-P) 47
4.2 CW-operation regime 48
4.2.1 (Pure) alpha-mode (A-B) 48
4.2.2 Region C-D 53
4.2.3 Hybrid-mode or α-γ transition (E-F) 55
4.3 Self-pulsing operation regime 57
4.3.1 Constricted discharge 59
4.4 Conclusions 64

5 Characterisation of the self-pulsing cycle of the γ-mode-like discharge 67
5.1 The self-pulsing cycle 67
5.2 Ignition dynamics 70
5.2.1 Conditions for the ignition of a γ-mode-like discharge 70
5.2.2 Ignition and formation of a stable discharge 72
5.3 Propagation dynamics 77
5.3.1 Propagation velocity 79
5.3.2 Temperature dynamics 81
5.3.3 Propagation / sustainment mechanisms 83
5.4 Extinction dynamics 86
5.4.1 End of the discharge 86
5.4.2 Afterglow and re-ignition 88
5.5 Conclusions 90

6 Ignition- and sustainment mechanisms of the γ-mode-like discharge on the ns time-scale 93
6.1 Primary ignition at the start of the self-pulsing cycle 93
6.2 Subsequent ignition at positions of wider gap distances and coexistence 95
 6.2.1 Transition into γ-mode-like discharge (region A): pre-discharge . 95
 6.2.2 Electron-driven ignition and sustainment dynamics of the γ-mode-
 like discharge (region B) ... 98
 6.2.3 Decay of the γ-mode-like discharge (region C): post-discharge . 100
6.3 Comparison to the gliding arc discharge ... 102
6.4 Conclusions ... 103

7 Atomic oxygen dynamics in the SP-µ-APPJ ... 105
 7.1 Influence of admixtures to the feed gas on self-pulsing operation 105
 7.1.1 The constricted discharge with oxygen admixture 106
 7.2 Atomic oxygen densities in the two operation regimes 109
 7.3 Atomic oxygen density dynamics in the constricted discharge 112
 7.3.1 Bulk vs. sheath production of atomic oxygen 114
 7.3.2 0-dim model: Atomic oxygen production mechanisms 116
 7.4 Conclusions ... 119

8 Conclusions and outlook .. 121

Bibliography ... 125

A List of publications

B Conference contributions