Table of Content

Chapter 1: Introduction

1.1 The world of lighting technology
1.2 Organic electroluminescence
1.3 Light Emitting Electrochemical Cells (LECs)
1.4 Device operation mechanisms of LECS
1.5 Transition metals in iTMC-LECs from a spectroscopic view: the importance of Iridium
1.6 Photophysical properties of Ir-iTMCs
1.7 Structural stability of Ir-iTMCs
1.8 Synthesis of Ir-iTMCs
1.9 LEC operating conditions and figure of merits
 1.9.1 Constant voltage driving
 1.9.2 Pulse current driving
1.10 Motivation
1.11 References

Chapter 2: The Ligands: Designs toward efficient and stable Ir-iTMCs

2.1 Introduction
2.2 Approaches to improve the efficiency of LEC devices through structural modification of the Ir-iTMCs
2.3 Improving the lifetime of LEC devices through structural modification of the Ir-iTMCs
2.4 Result and discussion
2.5 Conclusions
2.6 Solid state structures
2.7 Experimental and Methods
 2.7.2 General synthetic method for the ligands with a C-C bond formation: Suzuki coupling
 2.7.3 General synthetic method for the ligands with a C-N bond formation: Ullman coupling
2.8 References
Chapter 3: Red LEC devices based on red emitting Ir-iTMCs

3.1 Introduction

Result and discussions

3.2 New designs for red emitting Ir-iTMCs

3.2.1 Red emitting Ir-iTMCs with extended aromatic systems

3.2.2 Fluorinated Ir-iTMCs with red emission: towards stability improvement

3.2.3 Fluorinated Ir-iTMCs with red emission: towards stability and efficiency improvements

3.3 Photophysical properties

3.3.1 Absorption studies

3.3.2 Photoluminescence studies

3.4 Electrochemical studies

3.5 Electroluminescence studies

3.6 Conclusions

3.7 Solid state structures

3.8 Experimental

3.8.1 Synthesis and characterization

3.8.2 Characterization techniques used for the Ir-iTMCs

3.8.3 Summarized description of LEC device fabrication and characterization

3.8.4 General synthetic procedure for the dichloro-bridged intermediate diiridium complexes

3.8.5 General synthetic procedure for the light emitting Ir-iTMCs

3.9 References

Chapter 4: Yellow to deep green LECs: more focus in the green region

4.1 Introduction

Result and Discussions

4.2 Fluorinated Ir-iTMCs with yellow to deep green emissions

4.2.1 Ir-iTMCs based on 2-(4-fluorophenyl)pyridine (4Fppy) C^N ligands

4.2.2 Ir-iTMCs based on 2-(3-fluorophenyl)pyridine (3Fppy) C^N ligands

4.2.3 Ir-iTMCs with two fluorine substituents on the phenyl ring of the C^N ligands

4.2.4 Ir-iTMCs with fluorinated pyridine ring of the C^N ligands
4.2.5 Introducing the pi-pi stacking in Ir-iTMCs with fluorine substituted C^N ligands --- 102
4.3 Benzoquinoline C^N ligands based complexes --- 103
4.4 Photophysical properties --- 105
 4.4.1 Absorption studies --- 105
 4.4.2 Photoluminescence studies --- 108
4.5 Electrochemical studies -- 118
4.6 Electroluminescence studies --- 122
 4.6.1 The influence of electron donating groups on the N^N ligand on the EL performance of complexes with single fluorinated C^N ligands--- --------------------------------- 122
 4.6.2 Introducing the π-π intramolecular stacking to Ir-iTMCs with fluorinated C^N ligands --- 131
 4.6.3 Do fluorinated pyridine rings of the C^N ligands also lead to LEC device lifetime improvement for greenish emitting Ir-iTMCs? --- 132
4.7 Conclusions --- 133
4.8 Solid state structures --- 137
4.9 Experimental --- 144
 4.9.1 Synthesis and characterizations --- 144
4.10 References --- 160

Chapter 5: Toward blue LECs

5.1 Introduction --- 163

Result and discussions
5.2 Ir-iTMCs with expected sky blue to deep blue emissions ------------------------------------- 164
5.3 Photophysical properties --- 168
 5.3.1 Absorption studies--- 168
 5.3.2 Photoluminescence studies--- 170
 5.3.3 Understanding the colour shift in the emission spectra of the bis(diphenylphosphino)benzene complexes--- 174
 5.3.4 PLQY and phosphorescence lifetime studies of the bis(diphenylphosphino)benzene complexes --- 175
5.4 Electrochemical properties --- 177
 5.4.1 Phenylpyrazole (ppz) based Ir-iTMCs--- 177
 5.4.2 Bis(diphenylphosphino)benzene (dppb) based complexes----------------------------- 179
 5.4.3 Bis(diphenylphosphino)propane (dppp) based complexes-------------------------------- 180
5.5 Electroluminescence studies --- 181
5.6 Conclusion --- 182

x
Chapter 6: A deeper look into LEC devices

6.1 Introduction

Results and discussions

6.2 Dependence of LEC device efficiency and stability on the current density and duty cycle of the applied pulsed current

6.2.1 Exceptional red LEC device performances

6.2.2 Toward efficient and stable green, greenish yellow and yellow LEC devices

6.2.3 Unprecedented LEC device performances with green emission

6.3 Evidence of the recombination zone movement within the emissive layer of LEC devices

6.4 Dependence of LEC device lifetime on the charge transporting property of the Ir-iTMC

6.5 Are ionic liquids (ILs) required for LEC devices driven under the pulsed current mode?

6.6 Conclusion

6.7 Experimental

6.8 References

Chapter 7: Conclusions and outlooks

7.1 Conclusions and outlooks

7.2 References

Appendix

Absorption spectra

Photoluminescence spectra

Cyclic voltammograms

Electroluminescence spectra