
Authentication in Ad-hoc and
Sensor Networks

Dissertation

Submitted to the Faculty of
Electrical Engineering and Information Technology

of the
Ruhr-University Bochum

for the
Degree of Doktor-Ingenieur

by

André Weimerskirch

Bochum, Germany, 2004

Author contact information:
aweimerskirch@web.de

Thesis Advisor: Prof. Christof Paar
Thesis Reader: Prof. Jean-Pierre Hubaux

to my parents

Zusammenfassung

In der nahen Zukunft werden Mikroprozessoren in nahezu allen Geräten ver-
wendet werden, angefangen vom mobilen Telefon bis hin zur Waschmaschine.
Sobald diese Geräte über einen drahtlosen Kommunikationskanal miteinan-
der verbunden werden, könnte ein extrem weit verzweigtes drahtloses Netz-
werk ohne feste Infrastruktur oder zentrale Administration entstehen. Solch
ein Netzwerk heißt Ad-hoc-Netzwerk. Es kann insbesondere dann eingesetzt
werden, wenn eine zuverlässige Infrastruktur nicht verfügbar ist, z.B. nach
einer Naturkatastrophe, oder wenn jene zu teuer ist. Wenn das Netzwerk aus
kleinen leistungsschwachen Geräten besteht, die in der Lage sind ihre Umwelt
zu überwachen, heißt ein solches Netzwerk ein Sensornetzwerk.

In dem Maße, wie Ad-hoc-Netzwerke immer mehr Teil unseres Alltags wer-
den, könnte diese Technologie auch immer größere Gefahren im Alltag verur-
sachen, wenn Sicherheit in Ad-hoc-Netzen nicht von Anfang an beachtet und
umgesetzt wird. Ein Beispiel für eine Anwendung eines Ad-hoc-Netzwerks ist
der Einsatz im Straßenverkehr, um diesen zuverlässiger und sicherer zu gestal-
ten. Wenn diese Technologie jedoch Sicherheitslücken aufweist, so ist sie offen
für Angriffe und somit eine Gefahr für die Verkehrsteilnehmer. Die Authen-
tifizierung in Ad-hoc-Netzwerken ist ein Kernaspekt für sichere Protokolle und
sichere Anwendungen in Ad-hoc-Netzen. Daher wird die Authentifizierung in
Ad-hoc-Netzwerken als übergreifendes Thema dieser Arbeit behandelt.

Die Sicherheitsprobleme von Ad-hoc-Netzwerken und Sensornetzwerken un-
terscheiden sich wesentlich von denen herkömmlicher Netzwerke. Dies kann auf
die Ressourcenbeschränkungen der mobilen Geräte und die häufigen Topolo-
giewechsel des Netzwerkes zurückgeführt werden. Insbesondere in Sensor-
netzwerken sind die Geräte darüber hinaus physikalischen Angriffen wie Seit-
enkanalattacken ausgeliefert. Daher müssen Protokolle entworfen werden, die
gegen mehrere manipulierte Geräte sowie gegen erbeutete Schlüssel immun
sind.

Zusammenfassung v

Der Inhalt und die Resultate dieser Arbeit lassen sich wie folgt zusammen-
fassen: (1) Zuerst wird ein Überblick und eine Analyse verschiedener Au-
thentifizierungsmethoden im Hinblick auf Ad-hoc-Netzwerke gegeben; (2) da-
raufhin folgt eine Analyse über die Eignung digitale Signaturen für Ad-hoc-
Netzwerke, und ein Vergleich digitaler Signaturverfahren für Ad-hoc-Netzwerke;
(3) zudem werden zwei neue extrem effiziente Authentifizierungsprotokolle für
eine gegenseitige Authentifizierung in Ad-hoc und Sensornetzwerken vorgestellt,
die hauptsächlich auf symmetrischen Kryptographieprimitiven basieren; und
(4) letztlich wird eine Anwendung der Authentifizierung beschrieben, die Kom-
ponentenidentifikation ermöglicht. Solch eine Komponentenidentifikation kann
als Maßnahme gegen gefälschte Komponenten genutzt werden, z.B. im Auto-
mobilbereich. Als weiteres Ergebnis dieser Arbeit ergeben sich die folgenden
Empfehlungen: (1) Sicherheitsprotokolle sollten so stark wie möglich auf einem
lokalen Ansatz basieren, in dem die Netzwerkknoten eine Vertrauensbasis zu
ihrer unmittelbaren Nachbarschaft aufbauen, um aufwendige authentifizierte
Rundsendungen (broadcast) zu vermeiden wie sie durch digitale Signaturen zur
Verfügung gestellt werden; und (2) Protokolle sollten die Benutzung asym-
metrische Kryptographie auf ein Minimum reduzieren. Die in dieser Arbeit
vorgestellten Protokolle sind ein erster Schritt in diese Richtung.

Abstract

In the near future microprocessors will be found almost everywhere from cel-
lular phones to washing machines and cars. Once these are connected via a
(wireless) communication channel to each other and possibly to already exist-
ing static computers this could form an extremely dynamic wireless network
which may not have access to an infrastructure or centralized administration.
Such a network is often referred to as ad-hoc network. It is particularly use-
ful where a reliable fixed or mobile infrastructure is not available – e.g., after
a natural disaster – or too expensive. If the network consists of very small
computing devices that are able to sensor their environment, such a network
is called a sensor network.

As ad-hoc and sensor networks become more a part of everyday life, they
could become a threat if security is not considered before deployment. For in-
stance, ad-hoc networks might be used to increase vehicle traffic safety. How-
ever, if there are any security vulnerabilities, this technology might be open to
attackers and thus endanger passengers. Authentication in ad-hoc networks
is a core requirement for secure protocols and secure applications of ad-hoc
networks. Thus authentication in ad-hoc networks is the focus of this work.

The security issues for ad-hoc networks and sensor networks are different
than those for fixed networks. This is due to system constraints in mobile de-
vices, frequent topology changes in the network, and the weak physical security
of low-power devices. Moreover in sensor networks, the sensors are exposed to
physical attacks such as power analysis and probing. Consequently, protocols
need to be designed that are robust against a set of malicious devices as well
as compromised secrets.

The main goals and achievements of this thesis are as follows: (1) to give
an overview of authentication schemes and analyze how well they are suited
to ad-hoc networks; (2) to analyze how well digital signature schemes can be
used in ad-hoc networks and to compare signature schemes for this purpose;

Abstract vii

(3) to propose two new extremely efficient authentication schemes for pairwise
authentication that mainly use symmetric cryptographic primitives providing
a basic form of authentication in sensor networks and certified identification in
ad-hoc networks; and (4) an application of authentication providing component
identification. Such component identification can be used as a countermeasure
to faked components, e.g., for components of automobiles. As a result of this
thesis, we recommend the following: First, protocols should be based as much
as possible on an approach where trust associations are established to the lo-
cal one-hop neighborhood only to avoid broadcast authentication schemes; and
second, to design protocols that reduce the amount of asymmetric cryptogra-
phy to a minimum. The protocols proposed in this thesis are a first step to
achieve these goals.

Preface

This thesis describes research that I conducted during the three years I worked
as a researcher at the Ruhr-University Bochum. I hope that this work is of
use and will be carried on.

The work I present in this thesis would not have been possible without the
support of several people. First of all I would like to thank my advisor Prof.
Christof Paar. He supported me all the time by his advise and by his friendship
and camaraderie, and he gave me the freedom to explore several opportunities.

I am grateful to my thesis committee, especially to Prof. Hubaux for taking
the time to review this work and giving me many valuable suggestions and
comments. I would also like to thank Dirk Westhoff for all his advise, for
giving me so many insights to wireless networks, and for supporting me at
several projects.

I would like to give special thanks to all my colleagues and friends. I thank
Jorge Guajardo and Thomas Wollinger for their friendship and for all the
fruitful discussions and exchanging ideas. I also thank Marcus Heitmann,
Sandeep Kumar, Jan Pelzl, Kai Schramm, and Marko Wolf for their support,
for their friendship, and for having much fun with them. I want to thank
all the other members of the COSY group for always contributing to a good
and warm group atmosphere. In particular, I thank Irmgard Kühn for taking
care of all the paper work hassle and being a crumple zone to the university
administration.

I want to thank Sheueling Chang Shantz, Hans Eberle, and all the other
people of Sun Labs for giving me the chance to spent a summer in sunny Cali-
fornia, for teaching me their experience, and for giving me many advises. I also
want to thank Prof. Ivan Damgård for giving me the chance to stay a semester
at Århus University together with my girl-friend Dörte, and the European
Union for giving me a stipend for the time in Denmark. Furthermore, I want
to thank everyone who in some way supported me with my research: Jonathan

Preface ix

Hammell, Katrin Höper, Uwe Hüpping, Stefan Lucks, Christian Röpke, and
Marcel Selhorst.

Finally, but most important I want to thank my parents and my girl-friend
Dörte for always supporting me and for encouraging me.

Thank you all!

André

Contents

Zusammenfassung iv

Abstract vi

Preface viii

1 Introduction 1
1.1 Motivation . 2
1.2 Main Contributions . 3

2 Ad-hoc and Sensor Networks 5
2.1 Ad-hoc Networks . 5
2.2 Sensor Networks . 9
2.3 Embedded Systems . 11
2.4 Potential Applications . 11
2.5 Security Issues . 13

2.5.1 Security Goals . 13
2.5.2 Restrictions . 14

2.6 Network and Adversary Model 17
2.6.1 Network Model . 17
2.6.2 Device Model . 18
2.6.3 Adversarial Model . 18

2.7 Categorization . 19

3 Background and Related Work 23
3.1 Authentication . 23

3.1.1 Basic Authentication Schemes 24
3.1.2 Mutual and Broadcast Authentication 28
3.1.3 Further Authentication Schemes 30
3.1.4 Overview . 33

Contents xi

3.2 Key Distribution . 35
3.2.1 Secure Channel . 35
3.2.2 Distributed Public-Key Infrastructure 37
3.2.3 Key Pre-Distribution Schemes 38

3.3 Cryptography on Embedded Systems 39
3.4 Security Protocols . 40
3.5 Existing Technology . 44
3.6 Authentication Models . 46

4 Signature Schemes in Ad-hoc Networks 50
4.1 Security Protocols and Digital Signatures 51
4.2 Performance . 54
4.3 Digital Signatures for Security Protocols 56

4.3.1 Security Model . 57
4.3.2 Required Level of Security 58
4.3.3 Performance . 60

4.4 Recommendations . 61
4.4.1 Performance . 61
4.4.2 Topology of the Network 62
4.4.3 Security Relationships 64

5 Efficient Authentication in Ad-hoc and Sensor Networks 68
5.1 Zero Common-Knowledge Recognition 69

5.1.1 Recognition . 70
5.1.2 Network And Adversarial Model 72
5.1.3 General Recognition Protocols 73
5.1.4 Zero Common-Knowledge Protocol 74

5.2 Identity Certified Authentication 79
5.2.1 Network and Adversarial Model 80
5.2.2 Outline . 81

5.3 Identity Certified Authentication Protocol 83
5.3.1 Security . 85
5.3.2 Certificate Lifespan . 86

6 Efficiency Analysis of Authentication Protocols 88
6.1 Energy Consumption . 88

6.1.1 Device Architecture . 88

Contents xii

6.1.2 Energy Model . 89
6.1.3 Energy Map of the ZCK Protocol 91
6.1.4 Energy Map of the IC protocol 93
6.1.5 Energy Map of Traditional Protocols 94

6.2 Efficiency Analysis . 97
6.3 Comparison of the Schemes . 97

6.3.1 Operational Complexity 99
6.3.2 Device Lifetime . 100
6.3.3 Comparison of the Schemes 103

7 Component Identification 107
7.1 Introduction . 107

7.1.1 Assumptions . 109
7.1.2 Adversarial Model . 111

7.2 Asymmetric Component Identification 112
7.2.1 Initialization of a Car . 115
7.2.2 Installation of a Component 116
7.2.3 The Running Vehicle . 118
7.2.4 Demounting of a Component 120

7.3 Distributed Component Identification 120
7.4 Symmetric Component Identification 123

7.4.1 Installation of a New Component 124
7.4.2 Running System and Demounting of a Component . . . 125

7.5 Features and Enhancements . 125
7.6 Security . 128
7.7 Conclusions . 129

8 Summary and Outlook 130

Bibliography 132

Curriculum Vitae 141

Index 148

List of Tables

2.1 Ad-hoc network categorization 22

3.1 Authentication protocols . 34
3.2 Protocol efficiency . 34

4.1 Key size recommendation for high security level [58, 76] 54
4.2 Execution times for signature operations based on ECDSA and

RSA . 55
4.3 Recommended key sizes for protocols on the transport layer . . 59

6.1 Energy map of the ZCK protocol per protocol step and per
involved entity . 91

6.2 Energy map of the IC protocol per protocol step and per in-
volved entity . 93

6.3 ZCK and IC properties . 97
6.4 ZCK and IC efficiency . 97
6.5 Comparison between ZCK and Guy Fawkes protocol 98
6.6 Operational complexity of ZCK and UDH 99
6.7 Operational complexity of IC and CDH 100

List of Figures

2.1 Ad-hoc network cloud . 7
2.2 Combination of ad-hoc network clouds 7

4.1 Comparison of RSA and ECDSA key sizes 55
4.2 Comparison of RSA and ECDSA signature sizes 56
4.3 Comparison of RSA and ECDSA based certificate sizes 57
4.4 Average running time per packet 61
4.5 Trade-off between RSA and ECDSA with respect to the number

of intermediate nodes n . 62
4.6 Traffic distribution per route length, e.g. with 100m vs. 250m

transmission radius . 63
4.7 Trade-off between broadcast and neighborhood approach 67

5.1 Zero Common-Knowledge message recognition protocol 75
5.2 Zero Common-Knowledge recognition protocol example 77
5.3 Zero Common-Knowledge entity recognition protocol 78
5.4 Zero Common-Knowledge mutual message recognition protocol . 79
5.5 Identity Certified authentication example 81
5.6 Time intervals for hash-chains 82
5.7 Identity Certified authentication protocol 85

6.1 Trade-off between the ZCK and UDH protocol 104
6.2 Trade-off between IC and CDH 105

7.1 Life cycle of a component . 115
7.2 Key check . 117
7.3 Proof of origin . 117
7.4 System check with one verifier 118
7.5 System check with cyclic verifier 119

List of Algorithms

3.1 Public-key message authentication 24
3.2 Public-key entity authentication 25
3.3 Symmetric server message authentication 25
3.4 Symmetric server entity authentication 25
3.5 Symmetric message authentication 26
3.6 Symmetric entity authentication 26
3.7 Hybrid message authentication 26
3.8 Hybrid entity authentication . 27
3.9 Entity authentication with time-stamp 27
3.10 Fiat-Shamir authentication . 28
3.11 Mutual entity authentication . 29
3.12 Asymmetric MAC . 29
3.13 Lamport’s one-time password 30
3.14 TESLA broadcast authentication 31
3.15 Guy Fawkes authentication . 31
3.16 Guy Fawkes bidirectional authentication 32
3.17 Remote User authentication . 33

5.1 General entity recognition protocol 74

7.1 Challenge-response identification 114
7.2 Mutual challenge-response check of a symmetric key 114
7.3 Proof of origin . 116
7.4 Demounting . 120
7.5 List distribution . 121
7.6 Selection of a random number 121
7.7 Selection of a random number by commitments 122
7.8 Selection of a random component 122
7.9 Proof of origin for the symmetric case 125
7.10 Key update . 127

1 Introduction

Today microprocessors can be found almost everywhere. It is a well estab-
lished trend to embed microprocessors in electronic devices such as cellular
phones, televisions, and video recorders. In the future, small processors might
be embedded into even more devices and structures like clothing, eyeglasses,
buildings, and barcodes. Once these devices are equipped with a wireless ra-
dio, they could form an extremely widespread network that connects many
devices of our environment, possibly including already existing computing de-
vices such as desktop computers, notebooks, and Personal Digital Assistants
(PDAs). This all-embracing network of mobile and static devices must be self-
organized and should neither rely on a fixed infrastructure nor a centralized
administration as devices may be introduced to and removed from the network
in a highly dynamic fashion. In fact, in the general case it is assumed that each
node relies on its neighboring nodes to keep the network connected, e.g., each
node routes data packets for its neighbors. Furthermore, each node might take
advantage of services offered by other nodes. This type of network is called
an ad-hoc network. It is particularly useful where a reliable fixed or mobile
infrastructure is not available – e.g., after a natural disaster – or too expensive.
If the network consists of very small computing devices that are able to sensor
their environment we call such a network a sensor network. Here, all sensors
collaborate in order to gather information based on their sensing capabilities.
The sensor devices are very low-cost and thus extremely resource constrained.
However, due to the low cost of these sensors, they can be deployed in the hun-
dreds or thousands in a small area. Sensor networks are in most cases static,
but mobile sensors are also conceivable. As for ad-hoc networks, the sensors
run self-organized without any external guidance once they are deployed.

1.1 Motivation 2

1.1 Motivation

As ad-hoc and sensor networks become a growing part of our everyday life, they
could become a threat if security is not considered carefully before deployment.
For instance, consider a possible scenario of the future road traffic. There will
be communication between cars, and between cars and roads. Cars will form a
wireless network in an ad-hoc manner. They might communicate to each other
in order to exchange information about free parking spaces or to warn about
road threats. As an example, if there is an obstacle on the highway, a car
could warn all following cars. Obviously, this information must be trustworthy
and authenticated, and this process has to be done efficiently in real-time. All
cars might have an electronic license plate embedded that identifies each car
uniquely. If the electronic license plate broadcasts a unique identifier while the
car is running, it is possible to identify the car and thus the driver of this car
in case of a hit-and-run accident. Hence, it must not be possible to forge an
electronic license plate in order to impersonate another driver and car, and it
must not be possible to manipulate the electronic license plate of a car. There
are several security goals in ad-hoc networks. The provision of authentication
is a core requirement for secure and trustworthy communication in ad-hoc
networks, and it is the focus of this work. The messages of the car warning all
following drivers must be authenticated as well as the broadcasted signal of the
electronic license plate, and the electronic license plate must be inseparably
bound to the car. Only if there is efficient authentication available in ad-hoc
networks, secure protocols and applications can be designed. IT security is
the enabler for innovative applications, and provision of authentication is the
enabler of security.

The security issues for ad-hoc and sensor networks are different than the ones
for fixed traditional networks such as local area networks (LANs) and wide area
networks (WANs). While the security requirements are the same, namely avail-
ability, confidentiality, integrity, authentication, and non-repudiation, their
provision must be approached differently for ad-hoc and sensor networks. This
is due to system constraints of mobile devices, frequent topology changes in
the network, a missing fixed infrastructure, and the weak physical security of
low-power devices. Furthermore, the main security targets differ in ad-hoc
networks. For instance, secure routing and secure stimulation of coopera-
tion are crucial issues in ad-hoc networks. The provision of authentication is

1.2 Main Contributions 3

required to implement secure protocols in ad-hoc networks such that authen-
tication might provide the basis for a secure routing or stimulation scheme.
In this thesis we clearly focus on the problem of providing efficient crypto-
graphic authentication. We apply our results to ad-hoc and sensor networks
since resource limitations and possibly a lack of central services demand such
efficient authentication protocols. Clearly, there are further security goals in
ad-hoc networks that are as important as authentication. However, in this
thesis we emphasize the importance of authentication, and we consider ad-hoc
and sensor networks as well as further security protocols as an application of
authentication schemes. The main goal of this thesis is therefore to analyze
and design efficient and flexible authentication protocols.

1.2 Main Contributions

In this thesis we focus on authentication in ad-hoc and sensor networks. While
there are several security issues in such networks as described above, authen-
tication is the core requirement for achieving integrity, confidentiality, and
non-repudiation — if you do not know who you are talking to, it does not
make sense to establish a secure channel. In the next chapter we start by
defining terms and categorizing them. In Chapter 3 we give an overview of
authentication schemes and analyze how well they are suited for ad-hoc and
sensor networks. While there are several efficient authentication schemes avail-
able, it seems to be unclear yet how to perform efficient authentication when
there is no secure channel for a key agreement available and when there were
no keys distributed before deployment. As this is the case in many real-world
applications we analyze this scenario thoroughly. We start by looking at dig-
ital signatures for ad-hoc networks in Chapter 4. We discuss which and how
well signature schemes are suited to ad-hoc networks, and we give recommen-
dations about their usage. Then we argue that an approach where nodes set
up trust associations to their neighborhood by authenticating to them and
only rely on their local neighborhood is more efficient than a global approach
where nodes use digital signatures to make messages verifiable by all network
members. Clearly, digital signatures overstrain the capabilities of sensor nodes
such that this analysis is only thought to be for ad-hoc networks. In Chapter 5
we introduce two authentication schemes as a basis for such a local neighbor-

1.2 Main Contributions 4

hood approach. The first protocol, which we call Zero-Common Knowledge
(ZCK) recognition protocol, is based on a basic form of authentication, namely
recognition, that is especially suited to ad-hoc and sensor networks consisting
of resource limited devices where there is no external guidance and no sup-
porting infrastructure available. The scheme provides an extremely efficient
recognition mechanism by using only symmetric cryptographic primitives, and
it is provably secure. The second protocol, called Identity Certified (IC) au-
thentication, provides identification based on certificates in a way that is more
efficient than using previously known approaches. However, the identifica-
tion can only be provided at the cost of some supporting infrastructure. In
Chapter 6 we analyze both protocols regarding their resource requirements,
including energy consumption, in order to prove their efficiency. In Chapter 7
we provide a solution for another security target, namely component identifi-
cation. Here, we present a scheme for identifying components as a practical
system which uses ad-hoc network mechanisms. Such component identification
provides protection against counterfeits in complex systems as well as protec-
tion against stolen components and prevents manipulation of the system and
its components. For instance, our component identification mechanism can
be used to make sure that a car is equipped with an electronic license plate,
and that these components were neither manipulated nor stolen. Finally, we
conclude with a summary and an outlook in Chapter 8.

2 Ad-hoc and Sensor Networks

In the following, we introduce the main aspects of ad-hoc and sensor networks.
Both terms are related to the area of pervasive and ubiquitous computing,
which describe the situation where all electronic devices are equipped with a
microcontroller and take over a crucial part in our everyday life. Devices that
have a microcontroller embedded are also called embedded devices. We start
by describing the main characteristics of ad-hoc and sensor networks, and then
argue why the approach to security in ad-hoc networks is different to that in
well known traditional networks. We presented parts of this chapter dealing
with security of ad-hoc and sensor networks as well as of embedded systems
in [60, 85].

2.1 Ad-hoc Networks

An ad-hoc network is made up of static and mobile hosts that communicate
mostly via wireless channels and thus do not require any fixed infrastructure.
The basic idea behind this model is not recent: as early as the 70’s, ad-hoc
networks were called packet radio networks and were investigated almost exclu-
sively for military applications – PRnet, developed by the American Defense
Advanced Research Projects Agency (DARPA), is probably the most famous
example [43]. Then, when designing the 802.11 standard for Wireless Local
Area Networks (WLAN), the IEEE replaced the term packet radio network by
ad-hoc network, hoping to forget the military connotation of the former one.
Ad-hoc networks are frequently associated with self-organization, which means
that they run solely by the operation of end-users (like the old citizen-band,
or CB, voice analog network). Although pure self-organization is not required
to form an ad-hoc network, this feature should be understood as a basic re-
quirement for decentralization: Hosts must be capable to enter and leave the
network without referring to a central authority. It is important to note that
ad-hoc networks would likely neither be a replacement nor an alternative to

2.1 Ad-hoc Networks 6

current and future infrastructure-based networks. Their scope is more to com-
plement the latter in cases where cost, environment, or application constraints
require self-organized and infrastructure-less solutions.

Ad-hoc networks include various architectures that range from fully mo-
bile and decentralized radio, access, and routing technologies – the ones being
investigated as part of the standardization work carried out by the Internet
Engineering Task Force (IETF) [56] – to more infrastructure-dependent stan-
dards that include an ad-hoc mode, e.g., IEEE 802.11 [41] and HiperLAN2 [34].
In its original meaning, ad-hoc means that the networks are instantly formed
for a specific purpose, and they only exist in this form as long as this service is
required. Note that ad-hoc networks are wireless mobile networks since devices
are mobile and communicate via wireless links. However, these two terms are
not synonym in the sense that there are wireless mobile networks that are no
ad-hoc networks. The nodes of an ad-hoc network might establish a one-to-one
relationship to another node, a one-to-many, or a many-to-many relationship.
In the natural case any device will establish relationships with several devices
such that there is a many-to-many relationship.

Figure 2.1 presents a basic ad-hoc network cloud. Device A communicates
with device F via the path (A,B, G, D, E, F). The circle around A depicts
the area that A can directly reach by radio transmission. We call this area the
neighborhood of A. Note that A could also shorten the path to F by leaving
out B. However, if G moves a little further away from A, then G would leave
the neighborhood area of A. In many applications, several ad-hoc network
clouds might be connected via a fixed infrastructure, e.g., via base stations
that are connected to the Internet. Such a case is depicted in Figure 2.2.

There exist mainly two network topologies in ad-hoc networks, namely
single-hop and multi-hop networks:

• single-hop network: Each device only communicates with its direct neigh-
borhood such that there is no need for sophisticated routing. If there is a
base station available, then each device only communicates with the base
station, e.g., as it is done in a cellular phone network. Note that then
each device needs to be in the transmission range of the base station. A
more sophisticated approach of a single-hop network with a base station
allows a device to either communicate to the base station or its direct

2.1 Ad-hoc Networks 7

Figure 2.1: Ad-hoc network cloud

Figure 2.2: Combination of ad-hoc network clouds

neighborhood.

• multi-hop network: Each device can communicate to another device via
a path that involves several hops in between. If there is a base station
available, the devices do not need to be in the transmission range of the
base station. In this case, data packets are forwarded in a multi-hop
fashion.

Here are some of the basic features one can expect to find in most ad-hoc
networks:

• Wireless links : Communication links are wireless to guarantee mobil-
ity. Accordingly, their dependability and capacity has to be carefully
reviewed.

• No fixed infrastructure: Ad-hoc networks act independently from any

2.1 Ad-hoc Networks 8

provider. However, access points to a fixed backbone network might be
available in some scenarios.

• Self organization: Ad-hoc networks are self-organizing. After the net-
work initialization, the network should maintain itself without any ex-
ternal guidance and without any central services.

• Cooperation: Because they do not rely on a fixed infrastructure mobile
nodes have to be somehow cooperative. This ranges from very simple
schemes for short-range networks to highly complex strategies in case of
multi-hop wide-area networks.

• Network topology : The network topology may be very dynamic, making
the links and routes very unstable.

• Resource limitation: Ad-hoc networks are formed by mobile low-power
devices that have very limited computing power as well as little band-
width and memory.

• Battery power : Power management is an important system design cri-
terion. Hosts have to be power-aware when performing such tasks as
routing and mobility management.

• Selfishness : Each authority of network devices will be selfish in order to
save battery power. Hence, each authority tries to minimize the sum of
the energy consumption of all its network devices. In many scenarios an
authority is a user that owns one device. However, in a military scenario
the authority controls all network devices.

• Mobility : Ad-hoc network devices might be highly mobile or mainly sta-
tic. For instance, consider a cell phone as part of an ad-hoc network that
is connected to a driving or parked car.

• Heterogeneity : The hosts might be very heterogenous regarding compu-
tational resources, mobility, and connectivity.

• Security : Finally, security is a critical issue because of the weak connec-
tivity, the constrained devices, and the limited physical protection of the
mobile hosts. Security mechanisms should not add much overhead.

2.2 Sensor Networks 9

Related to ad-hoc networks is the radio frequency identification (RFID)
technology [5]. These are simple passive devices that consist of a small mem-
ory chip and an antenna. The RFID tag can then be inquired by an external
base station. Such RFID tags might be used to replace the barcode on almost
any product to make logistics more efficient and cheaper. However, there are
several threats introduced by this technology. When RFID tags replace the
barcode, there arise serious privacy concerns. There are also plans to embed a
tiny RFID tag into bank notes. However, a criminal could then use a simple
device to detect who is carrying around a large amount of money [74]. Secu-
rity in RFID tags is closely related to security in ad-hoc networks. However,
today’s RFID tags are hardly able to perform any cryptographic computation.
Hence, possible solutions at this moment are mostly concerned with privacy
issues so we do not focus on the RFID technology in this work. Still, any au-
thentication scheme that runs efficiently on ad-hoc network devices or sensor
network devices is a step closer to authentication schemes for RFID tags.

2.2 Sensor Networks

Wireless sensor networks (WNS) are a particular class of ad-hoc networks that
attract more and more attention both in academia and industry. The sensor
nodes themselves are typically of low cost and have a very small form factor.
They consist of an application specific sensor, a wireless transceiver, a simple
processor, and an energy unit which may be battery driven or which may
harvest energy from the environment, e.g., through solar cells. Such sensor
nodes are envisioned to be spread out over a geographical area to form a
multi-hop network in a self-organizing manner. All sensor nodes cooperate
without any external guidance in order to achieve a common goal which would
be unattainable for the individual nodes. Most frequently, such WSNs are
stationary although also mobile WSNs are possible. Well known examples of
sensor networks are the Smart Dust devices of the University of California
Berkeley [84], which are expected to be as small as a grain in the future,
as well as the Mica Motes [17]. Sensor networks mainly have the following
characteristics:

• Constraints : The devices (sensors) are low-cost devices and thus are

2.2 Sensor Networks 10

computationally very constrained (4- or 8-bit CPU, or only a state ma-
chine).

• Wireless links : For interaction purposes, the sensors are equipped with
radio frequency communication capabilities.

• Packet size: The packet size is very limited (in the range of 100 Bytes
or less).

• Battery power : The devices are powered by a battery, or by solar energy
or other autonomous means. Once the battery is empty, the sensor might
be replaced since the battery may be the most valuable part of the device.

• Mobility : While the location of sensors is usually static, the sensor net-
work still changes its topology frequently due to the replacement of nodes
or the extension of the network.

• No fixed infrastructure: Once the sensors are deployed there is no ex-
ternal guidance available anymore. Sensors then collaborate in order to
achieve their main purpose.

• Network topology : Sensor networks might communicate in a multi-hop
fashion with any other node of the network, or they might only com-
municate with their direct neighborhood in a single hop fashion. We
call the first scenario a global approach whereas the second one is a lo-
cal neighborhood approach. For instance, the local approach is used in
the distributed virtual shared information space (dvSIS) [8] where all
information is flooded in the network and sensors decide whether to for-
ward this information. This eliminates the need for a multi-hop routing
protocol.

• homogeneity : Usually, all deployed sensors are equal, i.e., there is no hi-
erarchy and no external supervision involved. However, sensors might be
divided into clusters. Furthermore, often there is a base station (aggrega-
tor) that collects and evaluates the aggregated data. The base station is
more powerful and might be physically secured. The nodes then establish
communication channels to the base station in a multi-hop fashion.

• Security : Finally, security must be considered before deployment. The
security architecture demands lightweight cryptographic algorithms, and

2.3 Embedded Systems 11

execution time must not disrupt the sensor’s main task. As the energy
is strictly limited, transmitted messages should not be extended signifi-
cantly in size.

2.3 Embedded Systems

Ad-hoc networks will be formed mainly by embedded devices. Already today,
98% of all microprocessors produced are used for embedded devices whereas
only 2% are used as a CPU of an interactive computer such as a PC [23]. We
give an informal definition of an embedded system as a traditional device that
is equipped with a microcontroller. Typical properties of an embedded device
are the following:

• the device is intended for mainly one purpose such as a washing machine
or automobile,

• the device is equipped with a microcontroller,

• the computation is transparent to the user, i.e., the device operates in
an intuitive way without any interaction to the user such as a keyboard,

• the device cannot be re-programmed by the user.

These microcontrollers function in a mostly non-interactive way without
any interaction to the user as opposed to traditional workstation PCs. For
instance, embedded devices include sophisticated coffee machines, driving aid
technologies in automobiles such as ABS and ESP, as well as smart phones.
There are several security issues in embedded devices that are identical to the
security issues of ad-hoc network devices. We will go into more details below.

2.4 Potential Applications

As ad-hoc networks have been developed initially for military purposes, po-
tential applications are very often associated with critical situations such as
scenarios of battlefields and damaged areas. Other prospective applications are
still at an early stage. For instance, let us again consider the vehicle example.
Highway toll might be charged without the need to stop the car but just by

2.4 Potential Applications 12

passing a toll collector sensor. Furthermore, as cars are extremely mobile they
might be used to route messages between any two points. For instance, main-
tenance sensors in a bridge might send information about the bridge’s status
by using passing cars which forward the packets to the central maintenance
station. In case that there is no route available, a car might buffer the message
and send it again once it approaches a more connected area. We give a brief
overview of further applications in the following list. We believe that in the
future ad-hoc networks will be deployed almost anywhere in our everyday life.

• Distributed networks for data collection and device monitoring: sensor
networks, home networks, inter-vehicle communications, supply chain
management, ...

• Military applications: Communication between soldiers, soldiers moni-
toring, sensor networks for target detection and identification, ...

• Emergency situations where the existing network infrastructure is not
reliable or has been damaged due to geopolitical instability, a natural or
man-made disaster, ...

• Provision of wireless connectivity in locations where cellular networks
present insufficient coverage, are more expensive, or are wanted to be
by-passed (e.g. for privacy reasons).

• Creation of instant and temporary networks for ad-hoc meetings, confer-
ences, or brainstorming.

Sensor networks mainly find applications in the first mentioned field of dis-
tributed data collection and device monitoring. Already today, sensor networks
are used in battlefield areas to sensor an area and send information via satellite
to the main station. In the future, the extremely expensive satellite connec-
tion might be replaced by a multi-hop fashion communication network. Sensor
networks will also be deployed for the readings of environmental conditions of
any kind such as temperature and lightning to detect a forest fire or to adjust
climate controls.

2.5 Security Issues 13

2.5 Security Issues

The security issues of ad-hoc networks and embedded systems are different to
those of traditional computer systems. The latter are well known, and there
exist several security solutions such as encryption software, secure communica-
tion protocols such as SSL, firewalls, virtual private networks (VPN), intrusion
detection systems (IDS), and so on. Furthermore, the network properties of
ad-hoc networks restrict possible solutions.

2.5.1 Security Goals

We see the following main security goals:

• Authentication: Authentication is one of the main security goals in all
networks. Also in ad-hoc and sensor networks it is the basis for secure
protocols. Authentication can easily be provided if a key agreement or
key distribution scheme is available. However, there are authentication
schemes available that do not require these. We go into more detail of
authentication in the next chapter.

• Confidentiality : Confidentiality is another main security goal in all kind
of networks. Confidentiality can only be provided if a key agreement or
key distribution scheme is available by means of an encryption scheme.
We consider key agreement and key distribution schemes in the next
chapter, too.

• Secure routing : Secure routing is necessary in ad-hoc and sensor networks
as a basic security protocol in order to guard against attacks such as
malicious routing misdirection. Since there is no fixed infrastructure
and due to the mobility, traditional routing schemes are vulnerable to
malicious attacks. The design of secure routing protocols is difficult to
achieve due to the same reasons and furthermore due to the resource
constraints of the network devices. For instance, it is not possible to
digitally sign each data packet in order to validate its origin as this is
too resource demanding. On the other hand, as a node’s neighborhood
changes frequently, performing a costly key-agreement scheme in order to
use efficient symmetric schemes for authenticating data packets might be

2.5 Security Issues 14

too demanding as well. Furthermore, using a public-key infrastructure
(PKI) contradicts the idea of a decentralized and self-organized network.
As there might always be malicious or compromised nodes in an ad-hoc
network, the malfunction of these nodes should not endanger the routing
capabilities of the entire network. The situation for sensor networks is
slightly different. Here, nodes are mainly static such that routes can be
set up initially and extended at the introduction of new sensors.

• Stimulation of cooperation: Besides routing the stimulation of coopera-
tion is another main security goal. Since the resources of the network
devices are constraint devices tend to be selfish. Hence, some kind of
stimulation is required to motivate cooperation in the network. Several
approaches work by giving incentives for a successful cooperation whereas
other approaches punish selfish behavior. Clearly, such a scheme must be
secure against malicious manipulation. Otherwise, devices will be selfish
enough to cheat in order to save battery power, especially if their gain is
higher than their effort.

The latter two security goals are clearly based on the properties of ad-hoc
and sensor networks, namely the lack of a fixed infrastructure and the need for
cooperation. We see secure routing and stimulation of cooperation as crucial
security protocols in ad-hoc and sensor networks. However, these kind of
protocols will in most cases be based on a cryptographic authentication scheme
and possibly on an encryption scheme. Hence, in this thesis we focus our main
interest on the cryptographical aspects of authentication in ad-hoc and sensor
networks as existing solutions are not satisfactory yet. We will consider secure
routing and stimulation of cooperation protocols only briefly as an application
of the underlying authentication schemes.

2.5.2 Restrictions

The properties of ad-hoc networks limit possible solutions to provide authen-
tication and other security goals such that traditional solutions can apply very
little here. The constraints that heavily influence possible approaches are as
follows:

2.5 Security Issues 15

• Resource constraints : Most of the devices are heavily resource con-
strained. The devices are usually equipped with an 8 or 16-bit CPU
and have only little memory and bandwidth. Sensor devices are even
more restricted. Furthermore, there is only little battery power available.
While the deployed cryptographic algorithms are nearly irrelevant on a
desktop PC due to the large available computing resources, the situation
for embedded devices as they are used for ad-hoc networks is completely
different. Here, it is important to use extremely efficient algorithms both
regarding algorithmic efficiency as well as power efficiency. Of particu-
lar importance is the fact that the energy consumption caused by CPU
execution time as well as radio transmission is considerable relative to
resources available. Thus, the running time as well as the transmission
overhead should be minimized. Often desktop PCs are faster than em-
bedded devices by a factor of 1000. Hence, asymmetric cryptography
should be avoided since it requires very demanding arithmetic opera-
tions such as 1024-bit long number operations. As there is sometimes
no alternative to using asymmetric cryptography, it should only be used
rarely and asymmetric algorithms should be implemented very carefully.
This is especially important for applications with real-time requirements
where the execution time has to be considered thoroughly. A main goal
of our proposed protocol is to approach asymmetric functionality with
mainly symmetric methods to minimize the resource requirements.

• Physical security : The basic components of security protocols are crypto-
graphic algorithms. Asymmetric and symmetric cryptographic methods
are based on the fact that the executing device, e.g., the ad-hoc network
node, uses a secret key that cannot be compromised by an adversary.
However, the devices used in ad-hoc networks are highly exposed to
the user and maintenance staff, both of whom may want to compro-
mise the system. This is even more prevalent for sensor devices as they
are deployed by the thousands in untrustworthy environments. To com-
promise such a system, a reverse engineering attack or a side-channel
attack might be applied. Side-channel attacks use information discov-
ered through analysis of the power consumption, time behavior, electric
and magnetic field (EMF) radiation of a cryptographic device, and fault
introduction to induce knowledge about the secret key. These attacks

2.5 Security Issues 16

were introduced in the 1990’s, and there are several countermeasures
known both in software and hardware. The countermeasure usually ob-
fuscate cryptographic algorithms by performing additional operations.
Hence, they use more power and result in higher running times. How-
ever, it is unclear today whether it is possible to implement a general
countermeasure that makes any side-channel attack impossible, or if new
countermeasures need to be introduced once a new attack gets known.
Another kind of physical attack are reverse engineering attacks. Here,
the structure of a hardware chip is re-engineered in order to obtain any
secret key. For instance, the content of a flash memory chip might be
analyzed, or the communication bus between CPU and memory might
be eavesdropped. Tamper resistant hardware modules deny access to the
inside data. However, it is believed that building perfectly tamper resis-
tant hardware is impossible [1, 3]. Furthermore, as devices are intended
to be very cheap, only a few countermeasures against physical attacks
are implemented. Thus, protocols always have to be designed in such
a way that the effort of a successful attack is larger than the gain. For
instance, the compromise of one device should only affect this device but
must not give any advantage in compromising another device.

• Limited maintenance: Security flaws are published almost every day for
today’s software technology. After a security leak becomes known, soft-
ware patches are installed, and virus scanners are loaded with a new defi-
nition file. However, sensor networks and also ad-hoc networks might not
be connected to the Internet and might not provide the functionality for
software updates. This is especially pertinent if an update is impossible
such as when the devices are not programmable, or when the security
functionality is provided in hardware. Thus, careful security engineering
during the design is necessary to keep the risk of security flaws as small
as possible. The possibility of security leaks must be considered before
deployment especially for embedded devices but also for sensor nodes
where often standard operating systems such as Embedded Linux are
used.

Sensor networks face the same kind of security issues as ad-hoc networks
but are even more challenging. Sensor devices are more resource constrained,
provide less physical security and are usually easily accessible, and are even

2.6 Network and Adversary Model 17

harder to maintain. Physical security cannot be established at a high level with
today’s technology, and it is unclear how a security update can be installed.

2.6 Network and Adversary Model

In this thesis our main focus is the cryptographic authentication. For this
reason, we assume ad-hoc networks and sensor networks of the most general
case when not stated otherwise. Authentication schemes that satisfy such a
general scenario also work in more specific scenarios. A main goal of this thesis
is to provide efficient authentication schemes for constrained devices where
there possibly is no central service available. Ad-hoc networks and sensor
networks are the most popular applications for such efficient authentication.
Hence, we often consider ad-hoc and sensor networks simultaneously although
these networks might differ considerably in their structure and properties. Note
that the main security goal is to provide authentication. In several scenarios
using the presented schemes it is also easily possible to provide a confidential
channel. However, this is not necessarily always the case.

2.6.1 Network Model

The physical layer of a wireless network is vulnerable to denial of service attacks
such as radio jamming. Such attacks on the physical layer have extensively
been studied and countermeasures were proposed such as the spread spectrum
mechanism [65]. Since this thesis mainly considers cryptographic solutions on
the application layer we do not take into account physical layer attacks here.
The same holds for attacks on Medium Access Control protocols.

We assume that devices communicate in a multi-hop fashion to many other
devices. Communication is done via wireless links, and the links are symmetric,
i.e., the nodes have the same transmission range and the established communi-
cation channel is always bidirectional. The network links do not guarantee re-
liable delivery of packets such that data packets might be dropped, corrupted,
reordered, or duplicated. If a device A wants to establish an authenticated
channel to a device B usually there are several nodes in between the path
from A to B. Hence, a key exchange over the insecure channel is only possi-
ble by an asymmetric key agreement scheme but not by the direct handover

2.6 Network and Adversary Model 18

of a key (e.g., by physical contact). There are no channels available between
devices besides the digital communication channel. In particular, there are no
so-called side-channels such as provided by information exchange of devices’
users.

2.6.2 Device Model

The devices are heterogenous, and there are no base stations involved. The
devices abilities might vary greatly from nodes with little computational power
to powerful devices with a large memory. Our goal is to design authentication
protocols that work in general such that we always assume that a resource
limited device authenticates to another resource limited device. Thus, the
considered device class is not able to perform digital signatures frequently, or
it is even not able to perform digital signatures at all. The keys are set up
in different ways according to the protocol security goals. The keys might be
distributed before the deployment of the devices or there might be asymmetric
cryptography schemes be used to set up keys. However, in the most general
case the devices are not able to perform any asymmetric cryptography and
there might be no infrastructure available to pre-distribute keys.

2.6.3 Adversarial Model

In general, we assume an active adversary here. An active adversary is able to
eavesdrop and manipulate all messages. More precisely, the adversary has full
control of the communication channel. He is able to read messages, modify
and delay messages or send them multiple time, and inject new messages. The
adversary is always computationally polynomial bound.

The main goal of the adversary is the forgery of an authentication. We
assume that the adversary aims for an existential forgery in a chosen message
scenario where Alice authenticates to Bob. The adversary can choose any
message that Alice authenticates. The adversary is successful if Bob accepts
a message that was not authenticated by Alice before but was created by the
adversary.

As there might be many independent attackers we assume that all adver-
sary instances are controlled by only one powerful adversary. Note that this

2.7 Categorization 19

approach of colluding attackers is stronger than assuming many independent
adversaries. The adversary is able to claim multiple identities at the same
time and to change identities at will 1. The adversary has full control over all
compromised devices and full access to any data stored in the device including
any cryptographic keys. We assume that the adversary is able to overcome
any tamper resistant hardware module. However, the adversary is rational
such that he will only attack a system and overcome security restrictions in
order to gain knowledge of secret key material if the gain is larger than the
effort. We do not take into account denial of service attacks on the application
layer as almost all authentication schemes are vulnerable to such an attack.
Furthermore, if there is any trusted central authority available in the network
we do not consider the case in which an adversary compromises this trusted
authority since then the entire network is compromised.

2.7 Categorization

Finally, we can point out that ad-hoc and sensor networks appear in a variety
of settings. These can be distinguished in several dimensions. We classify ad-
hoc and sensor networks according to the following categories, and summarize
consequences:

• Network

– Connection quality: The network channels might be reliable, or
packet loss might occur frequently.

– Infrastructure: There are various types of different network topolo-
gies. For instance, we call a network without any central services
nor any pre-established knowledge a pure network. Furthermore,
we call a temporary network a network where there is no perma-
nent connection to a central service available but a temporary one.
This could be a network that is connected to a base station once in
a while. There might also be a permanent Internet connection or
a connection to some central server available. For instance, there

1This attack is known as Sybil attack [21]. The attack can also be exploited to attack
routing and resource allocation schemes that can be encountered though [59].

2.7 Categorization 20

might be a designated base station that can be reached by most
nodes via a multi-hop connection.

– Communication strategy: The devices might use different strate-
gies for communication. They might communicate in a multi-hop
fashion with any other node of the network, or they might only com-
municate with their direct neighborhood in a single-hop fashion.

– Device class: The devices might be homogeneous such that they
are equal without any hierarchy. It is also possible that devices are
clustered in such a way that there is a more powerful master device
for each cluster.

– Mobility: Devices might be static or mobile. In latter case, new
trust associations need to be established frequently.

• Devices

– Tamper resistance: Protocols might be designed in such a way that
they require some kind of tamper resistance. However, such as-
sumption should always be done very carefully since all devices can
be broken. Devices might have no kind of tamper resistance build
in, or they might implement some limited countermeasures.

– Computational power: The devices abilities regarding its computa-
tional power, memory storage, and bandwidth limit possible proto-
cols.

– Battery resources: The battery resources are a valuable good caus-
ing selfish behavior of nodes.

• Applications

– Infrastructure resources: Applications determine the available in-
frastructure. This includes everything from a trusted third party
(TTP) such as a certificate authority to a permanent or temporary
communication channel in order to update devices.

– Key distribution: The key distribution often depends on the avail-
able infrastructure. To use pre-distributed key schemes often some
infrastructure is required in order to renew or revoke keys. Other-
wise, schemes are required to agree on keys at running time.

2.7 Categorization 21

– Number of devices: Networks might consist of a few devices only as
in a home setting, or of millions in a battlefield scenario. Further-
more, devices might be added to the network or replaced.

– Response time: The application might require a real-time response
of the devices, or the response time might not matter at all.

– Number of authorities: The application might involve several au-
thorities each having one or some devices, or it might only involve
a single or a few authorities each having several devices.

Before choosing or designing security protocols, all properties of the ad-hoc
network including the application scope should be considered before appropri-
ate authentication protocols are selected based on the categorization. Table 2.1
gives an overview of the property categories.

2.7 Categorization 22

Table 2.1: Ad-hoc network categorization

Network connection quality reliable
packet loss

infrastructure pure network
temporary network
Internet availability

communication strategy global approach
local neighborhood approach

device class homogenous
heterogenous

mobility static
mobile

Devices tamper resistance none / some
computational power able to perform frequent/sporadic/

none PK operations
able to send certificates
able to store certificates

battery resources able to add cryptographic overhead
Applications infrastructure resources trusted authority

network infrastructure
key distribution at running time / pre-distribution
number of devices little / many

static / dynamic
response time real-time / non real-time
number of authorities one / many

3 Background and Related Work

We now present work related to authentication and security in ad-hoc and sen-
sor networks. We start by giving an overview of authentication and the closely
related topic of key-distribution. Then we give a brief overview of embedded
systems and security applications. Furthermore, we describe existing technolo-
gies in the context of ad-hoc networks. Finally, we give an overview of today’s
scenarios and analyze how well existing solutions suit to these scenarios.

3.1 Authentication

Authentication comes in several flavors, and there are various methods known
to provide authentication. There is entity authentication as well as message
authentication. Authentication can be provided in a unilateral, mutual (pair-
wise), or broadcast fashion. We start by stating a definition of these terms
provided in [53].

Definition 3.1.1 Data origin authentication is a type of authentication whereby
a party is corroborated as the (original) source of specified data created at some
(typically unspecified) time in the past.

By definition, data origin authentication includes data integrity.

Definition 3.1.2 Message authentication is a term used analogously with data
origin authentication. It provides data origin authentication with respect to the
original message source (and data integrity, but no uniqueness and timeliness
guarantees).

Definition 3.1.3 Entity authentication is the process whereby one party is
assured (through acquisition of corroborative evidence) of the identity of a sec-
ond party involved in a protocol, and that the second has actually participated
(i.e., is active at, or immediately prior to, the time the evidence is acquired).

3.1 Authentication 24

Entity authentication is also often referred to as entity identification or only
identification. Message authentication is closely related to entity authenti-
cation and recognition. The difference between message authentication and
entity authentication is the lack of a timeliness guarantee in the former with
respect to when a message was created. This follows from the fact that pro-
viding a message authentication gives no guarantee that the message authen-
tication was created immediately prior to sending the message. Thus a major
difference between entity authentication and message authentication is that
entity authentication involves two parties communicating actively. To provide
this requirement an entity authentication scheme has to involve some kind of
clock or timeliness.

3.1.1 Basic Authentication Schemes

Entity as well as message authentication is provided by public-key schemes
as digital signature and by symmetric-key scheme as message authentication
code (MAC).

Asymmetric Authentication: In a public-key scenario each entity has a
certificate 〈PK〉 issued by a certificate authority (CA) and an assigned pub-
lic/private key pair. A unilateral message authentication works as presented
in Algorithm 3.1. Let SIG(m,SK) be a signature of the message m by the
private key SK, and V ER(S, m, PK) be the verification of the signature S to
the message m by the public key PK. V ER(S,m, PK) is valid if S is the sig-
nature of m by the corresponding secret key of PK, i.e. if S = SIG(m,SK),
and it is invalid otherwise.

Algorithm 3.1 Public-key message authentication
1: A signs a message m as S := SIG(m,SK) and sends m,S, 〈PK〉 to B.
2: B verifies whether 〈PK〉 ?

= valid and whether V ER(S, m, PK)
?
= valid.

This can easily be converted into an entity authentication process by intro-
ducing a random challenge r and using a challenge-response method as shown
in Algorithm 3.2. Here, the challenge r guarantees the timeliness.

Symmetric Authentication: In a symmetric-key scheme there is a mutually
agreed trusted server S which establishes the trust relationship between A and
B. Each entity shares a secret key with the server. First, A asks S to establish

3.1 Authentication 25

Algorithm 3.2 Public-key entity authentication
1: B sends a random number r to A.
2: A signs the random number and sends SIG(r, SK), 〈PK〉 to B.
3: B verifies whether 〈PK〉 ?

= valid and whether V ER(S, m, PK)
?
= valid.

a relationship to B. Then S sends A and B a session key K which these can
use for authentication. This is denoted in Algorithm 3.3. Here, E(m,K) is
the encryption of a message m by the key K, MAC(m,K) is the message
authentication code of a message m by a key K, and KA is the shared key
between the server S and A.

Algorithm 3.3 Symmetric server message authentication
1: A sends a hello message to S.
2: S sends E(K, KA) to A.
3: S sends E(K, KB) to B.

For each authentication, do the following:
4: A computes M := MAC(m,K) and sends m,M to B.
5: B checks whether M

?
= MAC(m,K).

As before, this can easily be converted into an entity authentication scheme
by introducing a random challenge r as shown in Algorithm 3.4.

Algorithm 3.4 Symmetric server entity authentication
1: A sends a hello message to S.
2: S sends E(K, A) to A.
3: S sends E(K, B) to B.

For each authentication, do the following:
4: B sends r to A.
5: A computes M := MAC(r,K) and sends M to B.
6: B checks whether M = MAC(r,K).

The public-key scheme provides a signature, whereas the symmetric key
scheme provides a key agreement by a central server, and then an authenti-
cation process. Hence, in the Algorithms 3.3 and 3.4 Steps 1 − 3 only need
to be performed once for each pair A and B if the entities store the shared
key K, whereas the remaining steps are performed for each authentication
process. Note that pre-distributed key schemes are a special variant of this
scheme. Consequently, if all devices share the same key, or if there are pre-
distributed keys, we only need to perform Steps 4 − 5 and 4 − 6 of above
protocols, respectively. This is presented in Algorithms 3.5 and 3.6.

3.1 Authentication 26

Algorithm 3.5 Symmetric message authentication
1: A computes M := MAC(m,K) and sends m,M to B.
2: B checks whether M

?
= MAC(m,K).

Algorithm 3.6 Symmetric entity authentication
1: B sends r to A.
2: A computes M := MAC(r,K) and sends M to B.
3: B checks whether M

?
= MAC(r,K).

Hybrid Authentication: In a public-key scenario, an equivalent approach
is to use a key agreement scheme such as Diffie-Hellman (DH) followed by a
symmetric MAC scheme for each authentication process. In practice, often
such hybrid schemes are used as presented in Algorithms 3.7 and 3.8. Here,
a and b denote the private keys, and KA := a · G and KB := b · G with
base element G denote the public keys of A and B, respectively. Note that
computation of K is done in an abelian additive group such that K = a ·KB =

a(bG) = b(aG) = b ·KA.

Algorithm 3.7 Hybrid message authentication
1: A sends B its public key KA.
2: B sends A its public key KB.
3: A computes K := a ·KB.
4: B computes K := b ·KA.

For each authentication, do the following:
5: A computes M := MAC(m,K) and sends m,M to B.
6: B checks whether M

?
= MAC(m,K).

Time-Stamp Authentication: To obtain entity authentication, interaction
as proven by some timeliness is required. This might be done by a challenge-
response method as described before, or by a time-stamp as presented in Algo-
rithm 3.9. Note that here it is mandatory to include the receiver’s identification
in the authenticated message to prevent replay attacks. The current time t is
part of the authentication tag.

Zero-Knowledge Proofs: Another method of providing authentication and
digital signatures are zero-knowledge proofs. We describe the Fiat-Shamir
identification scheme [25] adapted to our scope. Let n = pq be a modulus with
p and q prime. Let ID be a string describing the identity of Alice, and f be
a pseudo random function which maps bit-strings to the range {0, . . . , n− 1}.

3.1 Authentication 27

Algorithm 3.8 Hybrid entity authentication
1: A sends B its public key KA.
2: B sends A its public key KB.
3: A computes K := a ·KB.
4: B computes K := b ·KA.

For each authentication, do the following:
5: B chooses a random value r and sends it to A.
6: A computes M := MAC(r,K) and sends M to B.
7: B checks whether M

?
= MAC(r,K).

Algorithm 3.9 Entity authentication with time-stamp
1: A computes M := E(t||B,K) and sends M to B.
2: B verifies that the time-stamp t is acceptable and that the received iden-

tifier is its own.

A trusted authority CA which knows p and q issues certificates. Therefore
CA computes the square root id of f(ID)−1 such that id2 = f(ID)−1. Note
that the square root can easily be computed by the knowledge of p and q

whereas otherwise its extraction is computationally infeasible if the parameters
are chosen carefully. We can assume that f(ID)−1 is a square number by
attaching some bits to the identification string. Alice now obtains the secret
key id as well as the certificate ID. In order for Alice to authenticate herself
to Bob, she performs Algorithm 3.10. Alice first chooses a random value r

and sends r2 to Bob. Bob then challenges Alice by a bit e. Alice computes
t := r · ide and sends t to Bob. If Bob sent the challenge e = 0, he verifies
whether t2

?
= T , otherwise he verifies whether t2

?
= T · ID. This check will

always be successful if Alice knows the secret id and computes correctly, since
t2 = r2(ide)2 = r2(id2)e = r2IDe = T · IDe. There is a probability of 1/2 that
Alice succeeds in the proof without knowing the secret id. For instance, she
guesses that Bob will challenge her with e = 0. She then chooses a random
r and sends t = r. Hence, this protocol sequence is repeated n times in
order to obtain a sufficient level of security. An interactive proof provides an
active communication such that n = 30 is supposed to be sufficient for entity
authentication. These can be performed in parallel.1

The Fiat-Shamir scheme can also provide a digital signature for a message
m. Here, Alice chooses n random values ri and computes Ti := r2

i . She then

1Note that the parallel version cannot be shown to be a zero-knowledge proof anymore.
However, there are no security issues known.

3.1 Authentication 28

Algorithm 3.10 Fiat-Shamir authentication
1: for i = 1 to n do
2: A randomly chooses r ∈ Zn and sends T := r2 to B.
3: B randomly chooses the challenge e ∈ {0, 1} and sends e to A.
4: A sends t := r · ide to B.
5: B verifies whether t2 · IDe ?

= T .
6: end for

computes h(m||T1|| . . . ||Tn) and uses the first n bits as challenges ei. Alice
then computes ti := ri · idei and sends the signature (m, e1, . . . , en, t1, . . . , tn)

to Bob. Bob now verifies the signature by computing ci := t2i · IDei and
verifying whether the first n bits of f(m, c1, . . . , cn) equal (e1, . . . , en). For
ad-hoc networks the data overhead of this scheme can be immense even when
using efficiency improvements. For instance, only the first n bits of T need to
be sent, and several parallel versions can be performed. However, there are
several elements of Zn sent over the wireless link. As n is in the range of a
1024-bit number, this scheme demands high bandwidth resources. Note that
a key-exchange in zero-knowledge proofs is possible [6].

3.1.2 Mutual and Broadcast Authentication

Until now we considered unilateral authentication. We now introduce mutual
authentication, which we also call pairwise authentication, as well as broadcast
authentication. Mutual authentication is an authentication process whereby
both involved parties provide a proof of authentication.

Basic Mutual Authentication: Mutual authentication can be achieved by
performing a unilateral authentication twice. However, in this case there is no
logical connection between these. Thus mutual authentication can be achieved
as presented in Algorithm 3.11. The number of exchanged messages is reduced
compared to doing a unilateral authentication twice. Obviously, mutual au-
thentication can be provided by digital signatures in a very similar way [53].

Basic Broadcast Authentication: Broadcast authentication is the process
where one entity authenticates messages to several parties. A symmetric
scheme requires that keys are distributed pairwise whereas in an asymmet-
ric scheme each entity has a public/private key pair. Hence, a MAC only
provides mutual (pairwise) authentication whereas a digital signature also
provides broadcast authentication. For instance, an entity is able to sign a

3.1 Authentication 29

Algorithm 3.11 Mutual entity authentication
1: B sends random rB to A.
2: A computes MA := MAC(rB||rA, K) and sends MA, rA to B.
3: B checks whether MA

?
= MAC(rB||rA, K), computes

MB := MAC(rA||rB, K) and sends MB to A.
A checks whether MB

?
= MAC(rA||rB, K).

message which is then verified by several receivers. Broadcast authentication
is often coupled with non-repudiation because an authenticated message can
be verified by a third party.

Asymmetric MAC Broadcast Authentication: There is a symmetric
approach of providing broadcast authentication due to Canetti et al. [11]. They
propose an asymmetric MAC scheme which is based on multiple symmetric
keys and MACs for n receiving parties as presented in Algorithm 3.12. The
goal is to achieve the same capabilities as a digital signature with symmetric
MACs only. Let S be a set of keys. Each entity then gets a subset of the keys
Si := {k1, . . . , kn} ∈ S at initialization time. The main set and the subsets
are chosen in such a way that the probability that each two subsets have at
least one key in common is high. If Alice wants to authenticate a message
m, she computes the MAC over the message by each key of her subset Mi :=

MAC(m, ki) for all ki ∈ Si, and broadcasts m,M1, . . . , Mn. Due to the design
of the subsets Si, each receiver is able to find at least one key that she shares
with Alice in order to verify m. This approach provides a computationally
efficient broadcast authentication scheme where a key-agreement has to be
performed before deployment. However, due to the large message overhead
this approach is not easily applicable to ad-hoc networks where bandwidth is
very restricted.

Algorithm 3.12 Asymmetric MAC
1: Provide each party with a subset of keys Si := {k1, . . . , kn} ∈ S.

For each authentication, do the following:
2: A computes Mi := MAC(m, ki) for all ki ∈ Si and broadcasts

m, M1, . . . ,Mn.
3: Each receiver B determines a key kj that he shares with A and verifies

whether Mj
?
= MAC(m, kj).

3.1 Authentication 30

3.1.3 Further Authentication Schemes

In the following we present further authentication schemes.

Lamport’s one-time passwords: We start with Lamport’s one-time pass-
word scheme [53] that is based on hash-chains. Here, Alice randomly chooses
a secret w. A hash function h is used to define a sequence of passwords
w, h(w), h(h(w)), . . . , ht(w) where hi(w) is the repeated i-th iteration of h.
The password for the i-th authentication is defined as wi = ht−i(w). Then the
protocol works as presented in Algorithm 3.13. It should be clear that this
scheme does not overcome the need for an authenticated initial key-exchange.
By the definition of entity authentication, Lamport’s one-time passwords do
not provide entity authentication as there is no proof of an active communi-
cation included. However, as hash-chains are very popular for authentication
schemes in ad-hoc networks, we present the scheme here.

Algorithm 3.13 Lamport’s one-time password
1: Initial Phase: A transfers w0 in an authentic manner to B. B stores w0

and initializes its counter j ← 1.
2: for each authentication i = 1 to t do
3: A sends wi, i to B

4: B checks whether i
?
= j and h(wi)

?
= wi−1. If the checks succeed, B

stores wi and j ← j + 1 for the next session.
5: end for

TESLA: TESLA [63] is a protocol for broadcast authentication of messages.
As presented before, the asymmetric MAC scheme by Canetti et al. induces a
large message overhead. Performing a unilateral message authentication with
each receiver as presented in Algorithm 3.7 is inefficient. TESLA follows a
different approach by introducing a clock. Here, the sender Alice first generates
a hash-chain with temporary keys kn, kn−1 = h(kn), . . . , k0 = h(k1). First, the
final element k0 is broadcasted to all receivers over a secure channel, e.g., by
signing it. Then Alice sends messages mi authenticated by ki in time interval
ti. Such a message is only accepted during the time interval ti but not later.
In the next time interval, Alice opens ki and the receivers verify mi. The
protocol works as presented in Algorithm 3.14. Note that the receiver has to
buffer messages before they can be verified. Furthermore, there needs to be
time synchronization between the sender and receiver. Otherwise, after a key
was opened an attacker could use that key to forge messages. Gong points out

3.1 Authentication 31

that maintaining synchronization of clocks requires a secure authentication
scheme [31]. Consequently, basing an authentication (or recognition) scheme
on clock synchronization requires another authentication scheme to validate
the time. There is also a version called µTESLA that is part of the SPINS
protocol suite for sensor networks [64]. Here, a pre-distributed key is used for
the initial authentication of the final hash-chain key k0.

Algorithm 3.14 TESLA broadcast authentication
1: Initially, A signs S := SIG(k0, SK) and broadcasts S. Each verifier verifies

S.
2: for message mi in time interval ti, i = 1 to n do
3: A computes Mi := MAC(mi, ki) and broadcasts Mi,mi.
4: Each receiver checks whether he received Mi,mi in time interval ti and

buffers it.
5: end for
6: for message mi in time interval ti+1, i = 1 to n do
7: A broadcasts ki.
8: Each receiver checks whether Mi

?
= MAC(mi, ki).

9: end for

Guy Fawkes: The Guy Fawkes protocol [2] uses key commitments by a hash
function h to provide message authentication as presented in Algorithm 3.15.
The sender Alice first commits to a key k0 by broadcasting h(k0). In each au-
thentication step, she commits to a new key h(ki) and computes the MAC over
mi and h(ki) under ki−1. After broadcasting the MAC, Alice opens ki−1 such
that all receivers can verify the message mi. The Guy Fawkes protocol does
not use a hash-chain but a commitment chain: Each authenticated message
includes a commitment to the key used for the next authentication step. The
protocol requires that Alice makes the commitment ai public, and that Alice
knows that Bob received ai.

Algorithm 3.15 Guy Fawkes authentication
1: A chooses a random key k0 and sends h(k0) to B.
2: for message mi, i = 1 to n do
3: A chooses a key ki and commits to ai := MAC(mi||h(ki), ki−1)
4: A makes ai public
5: A sends (mi, h(ki), ki−1) to B

6: B checks whether ai
?
= MAC(mi||h(ki), ki−1) and whether ki−1 is indeed

the codeword committed to in the last round
7: end for

3.1 Authentication 32

In the original scheme the commitment would be published in a newspa-
per such that the commitment would be stored in a public directory with
a time-stamp and could be verified at any time. However, in an ad-hoc
network, in most cases there is no such central directory to provide time-
stamps, so an explicit acknowledgement of the receipt is necessary for the
security of the protocol. This can be provided for signing a bidirectional
stream as presented in Algorithm 3.16. Here, Alice and Bob want to sign
a stream of messages m0,m1, . . . ,mn and m′

0,m
′
1, . . . , m

′
n, respectively. Again,

let ai := MAC(mi+1||h(ki+1), ki) be the commitment to the following message
mi+1 and h(ki+1) under ki. Note that this scheme only requires a secure relay
channel for the initial step but no confidential channel.

Algorithm 3.16 Guy Fawkes bidirectional authentication
1: A chooses a random key k0 and sends m0, a0, h(k0), SIG(m0, h(k0)) to B.
2: B chooses a random key k′0 and sends m′

0, b0, h(k′0), SIG(m′
0, h(k′0)) to A.

3: A sends h(b0, k0) to A.
4: B sends h(a0, k

′
0) to B.

5: for messages mi,m
′
i, i = 1 to n do

6: A chooses a key ki, commits to ai and sends mi, ai, h(ki), ki−1 to B.
7: B chooses a key k′i, commits to bi and sends m′

i, bi, h(k′i), k
′
i−1 to A.

8: A sends h(bi, ki) to B.
9: B sends h(ai, k

′
i) to A.

10: end for

Remote User Authentication: The remote user authentication protocol
overcomes this problem [55] as presented in Algorithm 3.17. First, there is
an initial set up phase where Alice wishing to authenticate to Bob sends a
random string X and a set of MACs S := {MAC(X, ki) for all i} keyed by
a set of secrets ki. Each time she wishes to authenticate to Bob, a new set
of secrets must be generated and MACs of subsets of these keys are passed
back and forth. Bob challenges Alice to prove knowledge of a subset of keys.
The protocol could be adapted to authenticate messages instead of users. A
selection of 17 out of 35 committed values is recommended which leads to a
large message overhead. Note that the scheme does only require a reliable
relay for the initial message and no confidential channel.

3.1 Authentication 33

Algorithm 3.17 Remote User authentication
1: A chooses random keys ki, i ∈ S and a random string X and sends Ui :=

MAC(X, ki) for all i to B.
2: for succeeding authentication phase j do
3: A chooses random keys k′i and a random X ′ and computes

U ′
i := MAC(X ′, k′i) for all i. She then sends Wi := MAC(Vi, ki) for all

i to B.
B chooses a subset S ′ ⊂ S and sends S ′ to A.
A sends the subset of keys ki, i ∈ S ′ as well as all U ′

i and X ′.
B now verifies the subset Ui, i ∈ S ′ as well as Wi, i ∈ S ′.
B sets X ← X ′ and Ui ← U ′

i , A furthermore sets ki ← k′i.
8: end for

3.1.4 Overview

At the end of this section we give an overview of the presented authentication
protocols in Table 3.1. There are two main columns, requirements as well as
provisions of the authentication protocols. Let us first consider requirements.
There are the requirements of a secure relay channel, key pre-distribution, a
trusted third party (TTP) or public-key infrastructure (PKI), and time syn-
chronization. A ’-’ means that the protocol does not require the service whereas
a ’x’ means that it is required. Note that the Guy Fawkes protocol requires
a method to provide a reliable acknowledgement. Most protocols require a
TTP to provide authentication. In case of digital signature schemes and Zero
Knowledge schemes, the TTP is required to issue certificates. The provisions
are organized similarly. It is presented whether a protocol provides entity au-
thentication, unilateral and pairwise message authentication, and broadcast
message authentication. Finally, it is stated whether protocols can be applied
in a self-enforcing manner. Protocols can be used in such a way if there is no
active central guidance involved. However, it is up to the higher-level security
protocols to implement self-enforcement. A ’+’ states that a protocol pro-
vides this feature, otherwise it does not. Note that all protocols require some
timeliness to provide entity authentication. Hence, all entity authentication
protocols except the Time Stamp scheme are based on interaction. Table 3.2
states the efficiency of the protocols regarding computation and bandwidth.
The entries represent efficiency in ascending order: ªª, ª, ⊕, and ⊕⊕. A
protocol with entries ⊕⊕ has negligible computational cost and induces little
bandwidth overhead whereas a protocol with entries ªª can only be performed

3.1 Authentication 34

rarely or on powerful devices.

None of the presented protocols is able to provide authentication without a
TTP or a key pre-distribution scheme in an efficient way. We believe that this
scenario frequently emerges in practical applications. Later on in Chapter 5
we will present two authentication protocols for this scenario.

Table 3.1: Authentication protocols
requires provides

message auth.
secure key pre- TTP / time entity unil. / broad- self-
relay dist. PKI sync. auth. pairw. cast enforc.

Digital Signature − − x − + + + +
Zero Knowledge − − x − + + + +
Hybrid − − x − + + − +
Symmetric Server − x x − + + − −
MAC − x − − + + − +
Time Stamp (MAC) − x − x + + − +
Asymmetric MAC − x x − + + + +
TESLA (µTESLA) − − (x) x x + + + +
Lamport x − − − − + − +
Guy Fawkes x† − − − − + − +
Remote User x − − − + + − +

† := secure acknowledgement

Table 3.2: Protocol efficiency
Low Computations Low Bandwidth

Digital Signature ªª ⊕
Zero Knowledge ª ªª

Hybrid ª ª
Symmetric Server ⊕ ⊕

MAC ⊕⊕ ⊕⊕
Time Stamp (MAC) ⊕⊕ ⊕⊕
Asymmetric MAC ⊕ ªª
TESLA (µTESLA) ª(⊕⊕) ⊕⊕

Lamport ⊕⊕ ⊕⊕
Guy Fawkes ⊕⊕ ⊕⊕
Remote User ⊕⊕ ªª

3.2 Key Distribution 35

3.2 Key Distribution

Closely related to authentication is key-agreement — if a key can be exchanged
authentication can be provided efficiently by a MAC. Key distribution can be
performed before deployment of a network or at the actual time when a key is
required. We distinguish this as follows:

• at running time by a

– secure channel, and by a

– distributed public-key infrastructure

• before deployment by

– key pre-distribution

In the following we discuss these three main mechanisms.

3.2.1 Secure Channel

If a secure channel is available, a secret key can obviously be exchanged. This
can be done in several ways.

Password-Based Key Agreement: The work by Asokan and Ginzboorg [4]
addresses the scenario of a group of people who want to set up a secure session
in a meeting room without any supporting infrastructure. There are three main
requirements for such a solution here: (1) only those entities that know the
initial password are able to learn the session key; (2) the session key is formed
of contributions from all entities such that no entity is able to reduce the key
space; and (3) the protocol must not be vulnerable to an attacker who is able
to insert messages. The work describes and introduces several password-based
key-exchange methods that meet these requirements. The core idea of the
protocol is as follows. A weak password is sent to the group members. Each
member then contributes part of the key and signs this data by using the weak
password. Finally, a secure session key is derived without any central trust
authority or supporting infrastructure.

This model works perfectly for small groups. Authentication is done outside
of the digital communication system, e.g., the group members authenticate

3.2 Key Distribution 36

themselves by showing their passports, or authentication is based on common
knowledge.2 The model does not suffice for more complicated environments,
though. Groups of people who do not know each other, or pairs of people who
want to communicate confidentially without anyone else of the group being
able to eavesdrop on the channel, are two examples.

This model that uses a trusted side-channel to agree on a key is also known
in slightly different form in Bluetooth. Here, a PIN – essentially a symmetric
key – is entered into two devices by a keyboard in order to derive a strong
key for a pairwise relationship. This model has similar drawbacks as the first
approach.

Resurrecting Duckling: The resurrecting duckling policy was introduced by
Stajano et al. in [75] and extended in [73]. The fundamental authentication
problem is solved by a secure transient association between two devices estab-
lishing a master-slave relationship. The master is also referred to as mother
duck whereas the slave is referred to as duckling. The relationship between
mother duck and duckling is secure in the sense that they share a common
secret, and transient because the association can be terminated by the master
only. A master can always identify its slave in a set of similar devices. A
shared key is exchanged via a secure channel, e.g., by physical contact once a
device is initialized. This security model can be applied to very large ad-hoc
networks such as networks consisting of smart dust devices [84]. A possible
scenario is a battlefield of smart dust soldiers (acting as ducklings or siblings)
and their general (acting as the mother duck). The mother allows its ducklings
to communicate by uploading to each of them a highly flexible policy so that
sibling entities become masters or slaves for a short time, enough to perform
one transaction. The mother duck gives the ducklings credentials that allow
them to authenticate themselves.

The Resurrecting Duckling scheme is an appropriate security model for a
well defined hierarchy of trust relationships. It particularly suits inexpensive
devices that are not equipped with a display or a powerful processor.

2In this case friendship or just knowing each other is considered common knowledge.

3.2 Key Distribution 37

3.2.2 Distributed Public-Key Infrastructure

Key management for public-key infrastructures (PKI) requires a trusted en-
tity called Certificate Authority (CA). The CA issues certificates by binding
a public key to a node’s identity. The CA should always be available because
certificates might be renewed or revoked. Replicating the CA improves avail-
ability. However, such a central service runs contrary to the decentralized
structure of ad-hoc networks.

Distributed CA: Zhou and Haas [96] propose to distribute the CA to a set
of nodes by letting them share the key management service, in particular the
ability to issue certificates. This is done using threshold cryptography [20]. An
(n, t + 1) threshold cryptography scheme allows n parties to share the ability
to perform a cryptographic operation so that any t + 1 parties can perform
this operation jointly whereas it is infeasible for at most t parties to do so.
Using such a scheme the private key k of the CA is divided into n shares
(s1, s2, . . . , sn), each share being assigned to a special node. Using this share
a set of t + 1 special nodes is able to generate a valid certificate. As long
as t or less special nodes are compromised and behave malicious the service
can operate. Even if compromised nodes deliver incorrect data, the service
is able to sign certificates. Threshold cryptography can also be applied to
well known signature schemes like the Digital Signature Standard (DSS) [28].
Another work describing a distributed certification scheme using threshold
cryptography was presented by Kong et al. [44] and extended by Luo et al. [50].
To enable ubiquitous services, the certification service is performed by localized
sets of nodes. The papers describe threshold functions for key renewal and
key revocation but also secret share update. Special attention is spent on
networking issues like scalability, mobility, network dynamics, and malicious
nodes.

Self-Organized PKI: Another approach by Hubaux et al. presents a self-
organized PKI [39]. The system replaces the centralized CA by certificate
chains. Users issue certificates if they are confident about the owner’s identity,
i.e., if they believe that a given public key belongs to a given user. Each
user stores a list of certificates in its own repository. To obtain the certificate
of another entity the requester builds a certificate chain using his repository
list and implicitly trusted entities’ lists until it finds a path to an entity that
has the desired certificate in its repository. It is assumed that the certificate

3.2 Key Distribution 38

requester trusts each node in the recommendation chain, i.e., trust is inherited
via indirect relationships. A significant amount of computing power and time
is consumed to obtain a certificate going through the certificate chain. Each
node in the chain has to perform public-key operations, first to check the
received certificate for authentication (signature verification) and then to sign
it before forwarding it (signature generation). This cannot be done in parallel
but only one after the other until the certificate went along the entire chain.

Despite its centralized nature, a central CA is preferable for applications
with high-security demands. Entities in an ad-hoc network then need to wait
until they can connect to a CA in order to perform a secured transaction.
To ensure high availability, the CA can be replicated, where the replicated
CAs are as secure as the original CA as long as the replication process is not
vulnerable to attacks. The private key of the CA does not become weaker
because of the replication.

3.2.3 Key Pre-Distribution Schemes

Basic Scheme: The most basic key pre-distribution scheme is the deployment
of only one secret key on all network devices. In that way, all entities can use
this master key to generate a new shared key. However, once one device is
compromised, the entire network is compromised. Another possibility is to use
a PKI as described before which requires some sort of centralized or distributed
directory. To overcome this problem, entities could share a key pairwise, i.e.,
each device would have N − 1 keys if there are N devices in the network. For
large networks, such an approach is infeasible because of the limited memory
storage of devices.

Random Key-Ring Scheme: There are several proposals to reduce the
number of stored keys in order to establish pair-wise keys, e.g., [22, 15]. In the
approach by Eschenauer and Gligor [22] each entity is given a random set of
keys called a key-ring out of a very large pool of keys. A set of 75 keys drawn
out of a pool of 10,000 keys should suffice such that the probability that each
two entities share at least one key is larger than 1/2. Then, if Alice and Bob
want to agree on a key, they check if they have a key in common in their set
of keys. If they do not share a common key, they set up a secure chain via
their neighborhood. In the easiest case there is a node in the neighborhood

3.3 Cryptography on Embedded Systems 39

of Alice and Bob that shares a secret key with both Alice and Bob to bridge
the gap between Alice and Bob. The scheme provides key revocation and
key renewal, incremental addition of further nodes, and it is robust against a
set of compromised nodes. If the number of compromised nodes is below a
certain threshold, the probability that any other nodes are affected besides the
compromised ones is negligible. However, if the number of nodes is very large
or if the probability that two nodes share a key should be close to one, the key
pool as well as the size of individual key-rings must be increased.

3.3 Cryptography on Embedded Systems

As said before, ad-hoc and sensor networks are mainly formed by embedded
systems. To design security protocols for such networks, it is important to
estimate running times for cryptographic primitives. While symmetric prim-
itives can be implemented very efficiently and have a running time of a few
milliseconds even on very constrained devices, asymmetric primitives that are
needed for key agreement and digital signatures are by far more demanding.
Hence, it is important to get a feeling for the running times of asymmetric
primitives. In the following, we present our work in this respect.

Elliptic curve cryptography (ECC) provides efficient asymmetric cryptogra-
phy and is a good fit for embedded devices as it requires operands that are
far shorter than the ones used for RSA. In [87] we presented an ECC imple-
mentation over binary curves of a 163-bit NIST curve on a Palm OS device.
This device has a 16 MHz CPU with 2 MB of memory. Such a device is a
representative of ad-hoc network devices at the lower end. We were able to
implement an elliptic curve point multiplication for a random point in 1.5 s

and for a fixed point in 0.9 s. Thus, an ECDSA [52] signature verification can
be done in 2.4 s, a Diffie-Hellman key agreement takes 1.5 s, and a signature
generation takes about 0.9 s. Note that a 163-bit curve is considered to be
roughly as secure as 1024-bit RSA. This security level is supposed to be secure
enough for the next few years, i.e., such a security level can be used for appli-
cations that do not require encrypted data to be still confidential in the next
decade.

Another work we presented is an ECC implementation for an 8051 processor
which is used as a sensor device. The device consists of an 8-bit 8051 CPU,

3.4 Security Protocols 40

a radio transceiver, and a power supply. We presented in [45] a prototype
that provides a Diffie-Hellman key exchange using ECC with a stationary
device. The ECC library uses OEFs, that are a special form of extension fields
especially fitted to the register size of the hardware. In this case, a curve over
GF (p17) was used with p ≈ 28 such that the curve supports a key length of 2134

which provides an appropriate security level for short-term applications. To
perform an ECC point multiplication, the device requires around 3 s. Hence,
a key agreement takes around 3 s.

Above implementations do not take into account side-channel attacks. Hence,
it is to expect that an implementation that implements countermeasures for
all known attacks is slower. Symmetric cryptography can be expected to be
faster than asymmetric cryptography by a factor of 1000. Asymmetric crypto-
graphic algorithms can be sped up extremely by using a hardware coprocessor.
Using such a device, signature operations can be performed in less than 50 ms.
However, this coprocessor raises the cost of a device such that it will be heavily
application dependent whether such a coprocessor is available or not. We do
not believe that hardware coprocessors will be implemented in typical future
devices used for ad-hoc and sensor networks. Clearly, future devices will be-
come more powerful according to Moore’s law. At the same time, devices will
become smaller at constant computing power.

3.4 Security Protocols

On top of basic cryptographic protocols such as authentication, more complex
security protocols can be built. We will give a brief overview of secure routing
and secure cooperation based schemes.

Secure Routing: Routing is a crucial protocol in ad-hoc networks and has
several facets. In an ad-hoc network, each node acts as a router. To route
packets from a source to a destination, the nodes depend on each other in
forwarding the traffic. Wired network routing protocols do not handle well
the frequent topology changes of ad-hoc networks due to the device’s mobility.
Hence, the design of ad-hoc network routing protocols is a challenging quest.
Most routing protocols for ad-hoc networks have been studied in a trusted
environment where there are no adversaries and where nodes play fair. In a
more realistic setting an adversary might try to disrupt the communication.

3.4 Security Protocols 41

Since data forwarding diminishes the battery power the nodes might also be
tempted not to participate. Other nodes might act in a malicious way to
compromise the network. Thus routing should be robust against malicious,
compromised, and selfish nodes. Since we focus on the cryptographic basis to
provide authentication we do not consider further security problems in routing
schemes besides authentication. Obviously, any secure routing scheme must be
based on authenticated data packets to uniquely identify the source of the data
packets. A simple approach is to let the sender sign its data packets whereas
each intermediate node as well as the receiver verify the signature. However,
such an approach is unrealistically due to the limited computational power of
devices such that more efficient schemes are needed.

Secure routing schemes have been proposed mainly as extension of to well
established routing schemes such as DSR and AODV. The intuitive approach
is to incorporate security to an existing ad-hoc network routing protocol. The
SEAD (Secure Efficient Ad-hoc Distance vector) routing protocol proposed by
Hu et al. [36] is based on the Destination-Sequenced Distance-Vector (DSDV)
ad-hoc network routing protocol. The protocol is based on efficient one-way
functions only and does not require asymmetric algorithms. SEAD is robust
against multiple uncoordinate active attackers such that it provides an efficient
and practical routing protocol. However, SEAD adds overhead and latency to
the network.

A secure on-demand routing scheme called ARIADNE was also proposed by
Hu et al. [38]. ARIADNE is a secure version of the Dynamic Source Routing
(DSR) protocol. It discovers routes dynamically when they are needed on de-
mand. ARIADNE is efficient as it only requires symmetric cryptographic prim-
itives for authentication. As underlying authentication the efficient TESLA
scheme can be used. ARIADNE prevents attackers to tamper with uncompro-
mised routes consisting of benign nodes only. While ARIADNE assumes secu-
rity associations between all involved nodes, BISS by Capkun and Hubaux [12]
reduces this assumption to requiring only the destination node to have security
assocations with all nodes on the route.

Efficient security mechanisms for routing protocols were again presented by
Hu et al. [37]. This scheme secures the exchange of routing table entries by
using hash tree chains that are similar to hash-chains. This method provides a
basis to secure schemes such as secure distance vector and path vector routing

3.4 Security Protocols 42

protocols. As the methods are based on hash-chains they are very efficient and
especially suited to networks of low-power devices.

Papadimitrados and Haas propose a secure route discovery protocol that
provides the nodes with accurate connectivity information in a hostile envi-
ronment [61]. Another approach that does not avoid malicious behavior but is
able to detect it was presented by Paul and Westhoff. They propose a mech-
anism to detect routing misbehavior in DSR based ad-hoc networks and to
spread the information of malicious nodes in the network [62].

Clearly, all approaches that only rely on symmetric cryptography require a
key pre-distribution scheme. Zhou and Haas [96] as well as Zapata [94] pro-
posed the use of asymmetric cryptographic authentication to secure ad-hoc
network routing protocols. However, as we mentioned above such an approach
is only suitable if the devices are able to frequently perform demanding asym-
metric cryptographic operations.

Stimulation of Cooperation: Closely related to routing is the stimulation
of nodes in order to induce cooperation, e.g., to participate in the routing
process. There are two intuitive approaches here: (1) to detect malicious
and selfish nodes in order to punish them, e.g., by spreading this informa-
tion to the network; and (2) to reward participating nodes. It seems clear
that such approaches can only be provided if there is a mechanism available
for a trustworthy message exchange. Furthermore, nodes need to build trust
associations with their environment to evaluate messages. For instance, if in-
formation about a malicious node is spread in the network, all receivers have
to decide whether this information is trustworthy since this information might
originate from another malicious node. As this is out of scope of this thesis,
we point the interested reader to the CONFIDANT project by Buchegger et
al. [7].

Ben Salem et al. proposed a charging and rewarding scheme for packet for-
warding in multi-hop cellular networks [72]. They present a set of protocols
to stimulate cooperation. The solution is efficient since it relies on symmetric
cryptography only. Hubaux and Buttyan proposed a scheme for stimulating
cooperation in ad-hoc networks [10]. They use virtual currency called nuglets.
These nuglets are stored in a security module that is embedded into all devices.
When a device sends a packet, the nuglet counter is decreased, whereas it is
increased when a device forwards a packet. Nodes are stimulated in the sense

3.4 Security Protocols 43

that they can only send packets if their counter is larger than zero. Clearly,
the security module should be tamper resistant to prevent manipulation of the
nuglet counter. Authenticated messages might be used to reduce the require-
ments of the security module. Then the security module authenticates each
message and adjusts the nuglet counter such that the security modules of other
devices are able to check whether the message is authentic. This prevents that
devices send packets and declare them as forwarded packets such that they get
a reward instead of being charged.

Lamparter et al. propose the secure charging protocol (SCP) in so called
ad-hoc stub networks [47]. Here, the ad-hoc network cloud is connected to
the Internet via a base station. The base station is able to authenticate the
nodes either directly or by an authentication server in the Internet. SCP is
a motivation based protocol for supporting charging and billing in multi-hop
ad-hoc networks. There is a service provider (SP) that provides a reliable
connection in the ad-hoc network and that might also provide an Internet
service by an access point. Each node that forwards foreign data packets gets
a reward whereas the sender and also the receiver are charged by the SP.
Note that devices of the ad-hoc network that do not use the base station can
still communicate without using the services of the SP. However, since the
devices might be selfish, the SP introduces cooperation and thus adds quality
of service to the network. Note that the traffic is not routed via the base station
but directly from the sender to the receiver. Each sender generates a digital
signature for a packet or a bundle of packets, and each intermediate node
and the receiver verifying the signature. Furthermore, there are hash-chain
operations involved that are negligible compared to public-key operations.

Zhong et al. proposed the SPRITE scheme to reward forwarding nodes and
charge sending nodes [95]. They rely on a central authority to collect receipts
from the forwarding nodes. These schemes are based on the strategy that
a node only routes packets if its packets are forwarded. Note that all these
approaches are based on the underlying cryptographic protocols using some
mixture of symmetric and asymmetric methods. Furthermore, most of the
schemes assume that the hardware cannot be tampered with.

3.5 Existing Technology 44

3.5 Existing Technology

We now present available technology of wireless networks. We start by giving
a brief overview of standards for ad-hoc networks, and then present sensor
networks that are ready for deployment. Security can be provided on the
application layer as well as the link layer. Solutions on the link layer are
transparent to the user and more efficient than on the application layer as they
induce less data overhead and can be implemented partly in hardware. On the
other hand, security on the application layer is well known from the desktop
PC area. For instance, there is PGP available for Palm OS, and modern PDAs
run under Linux such that they are able to establish SSL based communication
channels. However, as there might be no central trust authority available, e.g.,
a PGP certificate directory, there might arise security issues here.

Standards for Wireless Networks: Bluetooth enables mobile devices to
connect to each other or to stationary devices. For instance, Bluetooth is
used to connect a head set to a mobile phone. It provides security on the
link layer or the application layer. The security on the link layer provides
pairwise confidentiality and authentication. A PIN (essentially a symmetric
key) is entered into two devices by a keyboard, i.e., a secure external channel
is used for the key agreement. This PIN is used to obtain a symmetric key
for authentication and encryption. Bluetooth uses sophisticated mechanisms
to derive a symmetric key. However, once the entered PIN as well as all
communication between the devices is known to an adversary, he is able to
compromise the system. This procedure can work for a small number of devices
such as for home-entertainment and telecommunication devices. However, the
security scheme does not scale well. Once there is a large number of devices,
a complete key distribution requires that each of n devices has to store n− 1

keys. As entering and remembering a large PIN number is inconvenient there
is the danger that short PIN numbers are used. If a device does not have a
keyboard build in, often fixed PIN numbers are hard-coded which obviously
weakens the security level. Furthermore, there are some attacks known to the
Bluetooth security algorithm [27] which are, however, infeasible for today’s
technology.

The IEEE standard 802.11b/g, also often called wireless LAN (WLAN), was
developed to enhance local area networks (LAN) by a wireless link. Hence,

3.5 Existing Technology 45

802.11 was never thought of as an ad-hoc technology. However, it is flexible
enough to realize ad-hoc networks. As Bluetooth, WLAN offers security based
on a pairwise trust association on the link layer by a mechanism called wired
equivalent privacy (WEP). Here, a 104-bit key is provided to both devices
which in turn is used to encrypt the communication data. WEP has been
broken and cannot be used to provide a secure communication channel [26].
Thus, for WLAN, confidentiality and data integrity must be provided on the
application layer.

MICA Motes and TinyOS: The MICA motes are popular sensor nodes
developed by the University of California at Berkeley that run under TinyOS.
They consist of a low power processor, a radio transceiver, and a battery
pack. The current Mica2 Motes are equipped with an 8-bit CPU running
at 8 MHz with 128 KB flash memory and 4 KB SRAM [17]. TinyOS has
built-in security enabled [80] such that all communication is encrypted and
protected against manipulation. Since the available bandwidth, packet size
and computing power is very constrained, all motes share one symmetric key
for message authentication and encryption. This key is made known to all
devices before deployment. Hence, if any device is compromised, the entire
network is broken.

SPINS: SPINS [64] is a suite of security protocols for sensor networks. It con-
sists of two protocols that use only symmetric primitives, SNEP and µTESLA.
SNEP provides data confidentiality, two-party data authentication, and evi-
dence of data freshness using traditional symmetric key methods. The other
protocol, µTESLA, is a lean version of TESLA for highly constrained envi-
ronments in order to provide authenticated broadcasts. SPINS assumes a net-
work architecture that consists of a base station and sensors. The base station,
which is more powerful than the sensors, shares a secret key with each sensor.
Hence sensors can only communicate via the base station to other sensors in
a multi-hop manner such that the base station acts as a central server. If a
sensor wants to broadcast a message, it needs to do this via the base station.
Deploying several base stations introduces some redundancy to diminish the
risk of a single point of failure.

3.6 Authentication Models 46

3.6 Authentication Models

After presenting several approaches for authentication in ad-hoc and sensor
networks, it is clear that there is no single model that provides security for
all flavors of such networks. Depending on the situation the system designers
should choose an appropriate authentication scheme. The main questions to
ask here are as follows:

1. Is it possible to use a key pre-distribution scheme, and does it suffice the
application constraints?

2. Is it possible to use a distributed PKI?

3. Is there any supporting infrastructure available, e.g., a secure channel or
a base station?

4. Is there only a single authority, or are there several authorities involved?

In the following, we list application scenarios and analyze possible approaches
for authentication. Of course, the following discussion is based on generaliza-
tions, and an actual application in any of the scenarios might have different
requirements.

Military Applications: Often there will be only one authority that controls
all devices, and solutions do not need to be cost efficient such that support-
ing infrastructure can be provided. Hence, a pre-distribution of keys in the
initialization phase can be performed, or a central server might be deployed
to realize a PKI. The devices can be powerful enough to perform symmetric
and asymmetric cryptographic operations. Since there is only one authority,
the major number of devices will collaborate. However, there might be single
compromised nodes in the network to which an adversary has full access in-
cluding all secret key data. Especially as the gain of a successful attack might
be high, a small set of compromised nodes must not endanger the security of
the entire network. Clearly, this scenario is an authority based approach.

Home-Entertainment: Again, there is only one authority, the user of the
devices. As the size of the network is usually small, supporting infrastructure
is available as an external secure side channel provided by the user. Hence,
symmetric cryptography can be used. For instance, a symmetric key can be

3.6 Authentication Models 47

exchanged by entering a PIN code into the devices as this is done by Bluetooth.
More elegant is a key exchange by physical contact at initialization time as
proposed by the resurrecting duckling model.

Meeting: At a meeting, e.g., at a hotel, a group of people want to establish an
ad-hoc network in order to exchange files without depending on any external
infrastructure. There is no single authority available here, and furthermore
it is not possible to automatically distribute keys at initialization time of the
network such that a self-organized approach is appropriate. Hence, a password
based key agreement could be used that is based on an external secure side
channel, e.g., by interaction of the users. This works fine for a small group.
For very large groups more sophisticated approaches are needed, probably
including supporting fixed infrastructure.

Sensor Network: A simple solution is to deploy a base station that shares a
secret key with each sensor device as implemented by SPINS. Whenever new
devices are introduced to the network, a new key between node and base station
is generated. The base station is then updated with the new key. Sensors are
able to agree on a shared key via the base station. However, the base station is
a single point of failure and attack. Furthermore, the nodes might be mobile,
or the base station might not be available permanently. Clearly, the area of
sensor networks induces several different authentication models. Basically, any
of the other described authentication models also works in the sensor network
setting.

Ad-hoc Stub Network: An ad-hoc stub network consists of an ad-hoc net-
work cloud that includes a base station that is connected to the Internet. De-
vices of the ad-hoc network cloud are not necessarily able to directly reach the
base station. However, they are able to reach the base station in a multi-hop
fashion. In this scenario, it is possible to apply well known schemes based on
Internet services. However, in most cases the devices must be able to perform
public-key operations. Then each node holds a unique certificate that binds
the node’s identity to its public key. The certificate can be issued by the base
station or by any CA in the Internet. The base station can verify a device’s
certificate by relying on certificate chains of other CAs. Also each node of
the ad-hoc network cloud can verify a certificate via the base station and its
Internet access. Due to the base station also efficient symmetric key schemes
are possible. Then the base station hands over a set of secret keys to a node

3.6 Authentication Models 48

at initialization time. All presented authentication schemes can efficiently be
applied to this scenario.

Single Manufacturer Ad-hoc Network: The ad-hoc network has no sup-
porting infrastructure but all devices are produced by a single manufacturer
or a consortium. Thus, there is an off-line central authority available here.
The manufacturer equips all devices with certificates binding a unique iden-
tity to a public key. Each node then can identify to another node by proving
knowledge of the corresponding secret key. We will present an efficient authen-
tication scheme for this scenario that is able to provide frequent authentication
processes in Chapter 5. A key pre-distribution approach is also possible for a
single manufacturer ad-hoc network at the cost of high bandwidth resources
such as presented in Algorithm 3.12. However, since there is no central on-
line authority available, key revocation has to be considered especially in this
scenario [68].

Pure Ad-hoc Network: This is the most general case for ad-hoc networks.
There are various authorities running several devices, and the devices are het-
erogenous. The network is fully self-organized such that there is no infrastruc-
ture and no central authority, no central trusted third party, no central server,
and no secret share dealer even in the initialization phase. Each device owner
is its own authority domain. Furthermore, in the most general case there are
no secure side channels available to perform a key agreement such as provided
by physical contact, but devices are not powerful enough to agree on keys by
means of asymmetric schemes. Today it seems that there is no general ap-
proach for establishing authentication in pure ad-hoc networks. We will go
into more detail in Chapter 5 by introducing a new security classification and
an appropriate protocol that we call ZCK recognition protocol that is able to
provide a basic level of authentication in such an environment. This protocol
is also an appropriate protocol for sensor networks.

To guarantee secure transactions at a very high security level the appro-
priate choice is to use a public-key system involving the hassle of obtaining
certificates, using devices that are able to perform such operations, and find-
ing a reliable connection to the CA in order to check for revoked certificates.
Such an approach does not only provide secure authentication but also legal
non-repudiation.

3.6 Authentication Models 49

Using no security at all is an acceptable approach for a variety of applica-
tions. A good illustration is a huge network of cell phones where free calls can
be made. Instead of a phone service provider that provides infrastructure in
a cellular based fashion, the cell phones are connected in a multi-hop manner
without any central infrastructure. Once the network has enough nodes and
enough redundant connections, the no-security approach might be the best one
since every user benefits from routing other users’ data packets so that selfish
behavior vanishes. However, using no security at all should be a deliberate
decision by the application designers but not a lack of knowledge or effort.

After presenting these scenarios, we conclude that there is the need for more
efficient authentication protocols. It seems that only the hybrid scheme as
presented in Tables 3.1 and 3.2 is flexible enough to support the single man-
ufacturer as well as the pure ad-hoc network in a somewhat efficient manner.
However, in many situations it is not efficient enough. We present new au-
thentication protocols in Chapter 5 for these scenarios. But first, we analyze
how well digital signatures are suited to ad-hoc networks beside all drawbacks
in the next chapter.

4 Signature Schemes in Ad-hoc Networks

In the following, we analyze signature schemes for ad-hoc networks. We focus
on standardized signature schemes that are widely deployed and accepted by
standard bodies, especially RSA [69] and ECDSA (elliptic curve digital signa-
ture algorithm) [52]. Intuitively, one would argue that ECC is more suited to
security applications in constrained environments as the operands’ length is
far shorter. The larger operands’ length does not only affect execution time
but also bandwidth and memory requirements. However, RSA is known for its
extremely fast signature verification whereas ECDSA provides signature gen-
eration efficiently. A main goal of this chapter is an analysis of the trade-off
between RSA and ECDSA for application in ad-hoc networks, and a recom-
mendation which scenarios are suited to the different signature schemes. Such
signature schemes can be based on a distributed PKI or a distributed certificate
repository. Note that part of this chapter was presented in [46].

We analyze the digital signature schemes in the context of a security proto-
col on the transport layer. Such a security protocol might be a secure routing
or a secure stimulation of cooperation protocol. We consider such secure pro-
tocols on an abstract level with regard to authentication. Hence we argue
that each secure protocol between two entities Alice and Bob requires Al-
ice to authenticate to Bob and possibly also to each intermediate node on
the path from Alice to Bob. Using digital signatures Alice needs to generate
a signature whereas Bob and each intermediate node needs to verify Alice’s
signature. In the following we consider an abstract security protocol. For in-
stance, such might be a secure routing protocol. However, we do not consider
further security issues of routing protocols here that are well researched in
literature [36, 38, 37, 61, 62, 96].

We argued that asymmetric cryptography should not be used frequently in
ad-hoc networks. Clearly, there are applications for which no pure symmetric
cryptographic solution is known yet. Furthermore, many ad-hoc network de-
vices used today, e.g. PDAs, are already in the range of a slow PC, i.e., their

4.1 Security Protocols and Digital Signatures 51

CPU runs at a few 100 MHz so that occasional public-key operations are
possible yet no frequent ones. Still, it should be a trend to reduce asymmetric
cryptography to a minimum in ad-hoc networks as more and more small and
less powerful devices are introduced to ad-hoc networks.

4.1 Security Protocols and Digital Signatures

In order to deploy secure protocols that are robust against malicious and selfish
users, a method for authenticating data packets is necessary. Without going
into detail, security protocols in general usually have the following properties:

1. protocols in a multi-hop network environment require the explicit in-
volvement of more than two entities along the path in a broadcast fash-
ion,

2. the security level of an authentication scheme for messages are rather
relaxed concerning their durability, and

3. each entity may be in different roles at different moments.

The first property gives us an argument for using digital signatures in such an
environment instead of MACs. The second property states that authenticated
messages for most security protocol purposes do not require a security level
that is used for highly confidential or integrity-proven messages. The receiver
only wants to verify the origin of the message. For our purposes we can limit
the life-span of a key to a few days since we do not require a long durability
of the authentication scheme. Hence, the key size can be chosen in a way
that it resists an attack for a few days only. Note that we only consider the
authentication of data packets here and not of its content. If a user wishes to
authenticate his message he has to do this on the application layer in a way
that there is a long durability guaranteed. The third property states that a
node sometimes is in the role of sending, forwarding, or receiving a data packet.
Thus a node needs to generate signatures and verify them. Before we design an
appropriate model for this scenario, we first consider digital signature schemes
in more detail and evaluate their performance.

There are various digital signature schemes known in literature. There are
schemes that move the computational load to a powerful server. For ad-hoc

4.1 Security Protocols and Digital Signatures 52

networks this approach is not appropriate, though. The NTRU signature
scheme NTRUSign might be an appropriate fit. Its security is not clear yet
after it was broken in the past and revised [29, 78]. Even, Goldreich and Mi-
cali [24] introduced the notion of on-line/off-line signatures. Their scheme is
based on integer factorization and has an ordinary and a one-time signature
scheme as ingredients. In the off-line phase the ordinary scheme is used to
pre-compute the signature of the one-time verification keys which are used to
sign the messages during the on-line phase. This results in a signature scheme
which is very efficient for both signing and verifying but with a signature size
that might be too demanding for ad-hoc networks. Finally, we take a look at
signature schemes based on zero-knowledge proofs as presented in Section 3.1.
These are computationally efficient but use large operand sizes such as RSA.
However, the size of the public-key as well as the signature size is by far larger
than in the case of RSA. In [11], Canetti et al. propose an asymmetric MAC
scheme which is based on multiple symmetric keys and MACs for n receiving
parties. The scheme is efficient but the signature size is very large as described
in Section 3.1.

There were many signature schemes proposed in literature that are more ef-
ficient than ECDSA and RSA. However, all of them make trade-offs regarding
memory and bandwidth requirements, depend on an available powerful server,
or are based on further assumptions. Thus for many applications traditional
signature schemes are still appropriate. We consider RSA and ECDSA here
as they are well established and standardized. The digital signature standard
DSS [81] is based on El Gamal such as ECDSA. However, as DSS operates
on large operands such as RSA and performs slower than ECDSA, we do not
consider DSS. In order to reduce the performance gap of digital signatures
compared to MACs we suggest to secure more data, i.e., several packets, with
only one signature. In [30] and [93] hash values from several packets are in-
tegrated into one that is protected by a digital signature. Hence, to protect
l packets only one digital signature has to be generated by the sender, and
verified by the receiver and all intermediate nodes. To make this approach
robust against burst packet losses, redundant hash information is spread over
a sequence of packets. Even in case of packet loss over the wireless channel,
the verifying node thus has enough information to start the verify operation.
Hash values that require 10-20 bytes are attached to the packets, and not more

4.1 Security Protocols and Digital Signatures 53

than two hash values are attached to each packet, such that there is only little
data overhead in each packet. Unfortunately, this approach does not take the
jitter into account. For real-time traffic it is mandatory to guarantee an almost
continuous flow from the source to the destination. Since the schemes have
to buffer a bundle of packets either at the source or at the destination, this
affects the jitter from the source to the destination. Another approach by Ro-
hatgi [70] prevents jitter and is thus applicable to real-time conversations. It
uses the idea of one-time signatures that are only applicable once but perform
extremely efficient. This is extended to k-time signatures that allow k signa-
tures and still perform efficiently. Adapted to an ad-hoc network, the idea is
to sign a k-time public key with the ordinary certified key. The receiver and all
intermediate nodes can then check if this public-key was signed by a certified
key. Now the sender uses his k-time secret key to sign the next k packets.
Finally, another k-time public-key is signed to authenticate the next k pack-
ets, and so on. As mentioned above, this scheme does not require buffering
of packets such that packets can be signed and verified in real-time. However,
the data overhead is high. For each packet, at least 270 bytes are required
for the signature of a 1024-bit RSA security level which is more than twice as
much as an RSA signature and more than six times as much as an ECDSA
signature. It becomes clear that the first approach is suited to reduce data
and computational overhead at the cost of jitter, whereas the second approach
reduces the computational overhead only.

We now consider RSA and ECDSA in detail. We use RSA with short ex-
ponent here, e.g., e = 3 or e = 216 + 1, to speed up the RSA signature
verification. Consider RSA with an s-bit modulus and ECDSA with an r-bit
modulus. Then an RSA signature has a size of s bits whereas ECDSA requires
2r bits. As the operand size of ECDSA is far shorter than RSA, an ECDSA
signature will be smaller. To verify a signature, a receiver has to obtain the
certificate of the sender. A certificate basically consists of the sender’s public
key, a time and life-span value as well as a unique identifier. This information
is signed by the CA. As the sender’s public key is the main content we omit the
other values for our analysis here. An RSA public key consists of a modulus
m and the public exponent e. As we said before, we assume short exponents
e such that a certificate basically consists of the modulus m, which is s bits in
size, and the signature of the CA. Hence, an RSA certificate has a size of 2s

4.2 Performance 54

bits. An ECDSA certificate requires a public key of size r + 1 bits by using
point compression as well as a signature of size 2r bits such that an ECDSA
certificate has a size 3r + 1 bits.

4.2 Performance

Before looking at performance numbers, we first consider key sizes. There
are several recommendations available for key sizes, e.g., the NIST Key Man-
agement Guideline [58]. They incorporate future more powerful and cheaper
hardware, and future progress in cryptanalysis. Table 4.1 shows a selection
of recommended future RSA and ECDSA key sizes. For instance, data that
is to be protected until 2015 requires 1024-bit RSA or 160-bit ECC. Fur-
thermore, the standard for efficient cryptography group (SECG) [76] proposes
512-bit RSA and 112-bit ECDSA for applications with low security require-
ments. Figure 4.1 compares ECDSA and RSA key sizes that are considered to
be equivalent in security.

Table 4.1: Key size recommendation for high security level [58, 76]

Year RSA key size ECDSA key size
- 512 113

present – 2015 1024 160
2016 – 2035 2048 224

2036 and beyond 3072 256

Today 1024-bit RSA is a standardized security level and is considered to be
equivalent in its security to 160-bit ECC. There are several comparisons of the
running time of the RSA signature scheme and ECDSA available. Depending
on the platform and the implementation, ECDSA signature generation is 5−8

times faster than RSA signature generation, whereas RSA verification is 6−30

times faster than ECDSA signature generation [71, 92, 32]. However, ECDSA
uses shorter operands and has a smaller signature size that saves transmission
bandwidth and leads to smaller silicon implementations.

As reference timings for RSA and ECC we use an implementation provided
by Riedel in [67]. Here, a high end PDA is used that has a StrongARM CPU at
206 MHz. The OpenSSL RSA implementation is used as it is considered to be

4.2 Performance 55

Figure 4.1: Comparison of RSA and ECDSA key sizes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

R
S

A
 k

ey
 s

iz
e

[b
its

]

ECDSA key size [bits]

key size

fast, whereas ECC was optimized for the reference platform. Table 4.2 presents
the running times. Here, general standardized NIST and SECG [76, 57] elliptic
curves are considered according to comparable security levels. Clearly, RSA
signature verification performs faster than ECDSA verification, and ECDSA
signature generation runs faster than RSA signature generation. However, a
113-bit ECDSA generation is around 5 times faster than RSA whereas for 233-
bit the ratio increases to 72. On the other hand, ECDSA signature verification
is around 6 times slower than RSA for 113-bit curves whereas the ratio shrinks
to a factor of only 2 for a 233-bit curve.

Table 4.2: Execution times for signature operations based on ECDSA and RSA

Security level [bit] Time for signature Time for signature
generation [ms] verification [ms]

ECC RSA ECC RSA Ratio ECC RSA Ratio
113 512 2.8 13.7 4.9 7.5 1.3 5.7
131 704 3.8 32.4 8.5 11.5 2.5 4.6
163 1024 5.7 78.0 13.6 17.9 4.3 4.1
193 1536 7.6 251.9 33.0 26.0 9.7 2.6
233 2240 10.1 731.8 72.0 37.3 20.4 1.8

4.3 Digital Signatures for Security Protocols 56

Besides the running time, we also want to consider the data overhead. Thus
we need to look at the data volume of signatures and certificates. Figure 4.2
compares the signature size of ECDSA and RSA whereas Figure 4.3 compares
the certificate size. The x-axis represent the comparable ECDSA key size, i.e.,
x = 160 represents 160-bit ECDSA and 1024-bit RSA. For instance, 163-bit
ECDSA signatures have a size of 326 bits whereas the corresponding 1024-bit
RSA generates signatures of 1024 bits. ECC outperforms RSA for large key
sizes both in running time and signature size. However, as we are looking at
signatures with short life-span, we cannot give such a clear statement anymore.

Figure 4.2: Comparison of RSA and ECDSA signature sizes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

S
ig

na
tu

re
 s

iz
e

[b
its

]

ECDSA key size [bits]

ECC Signature Size
RSA Signature Size

4.3 Digital Signatures for Security Protocols

We now analyze how well ECDSA and RSA are suited for security protocols in
ad-hoc networks at the example of an abstract security protocol. Note that the
results we obtain for such a model can easily be generalized to many security
protocols that require a digital signature.

4.3 Digital Signatures for Security Protocols 57

Figure 4.3: Comparison of RSA and ECDSA based certificate sizes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250

C
er

tif
ic

at
e

si
ze

 [b
its

]

ECDSA key size [bits]

ECC Certificate Size
RSA Certificate Size

4.3.1 Security Model

Our model that has the main purpose of analyzing the efficiency of different
signature schemes for a secure protocol that runs in the transport layer of an
ad-hoc network is simple but powerful. We assume that there is a device that
generates a signature, there are n intermediate nodes that verify the signature,
and there is a receiver that verifies the signature. A signature is attached to
a single data packet or a bundle of data packets. Assume Alice sends a data
packet to Bob over a multi-hop route path. We assume that there is already
a route available between Alice and Bob, and we do not consider any further
protocol steps here to encounter further security issues. Our simple model
then looks as follows:

• each message sent by Alice requires her to perform a signature generation

• each forwarded message by an intermediate node requires them to per-
form a signature verification

• each received message by Bob requires him to perform a signature veri-
fication

4.3 Digital Signatures for Security Protocols 58

This should fit to almost any security protocol based on digital signatures.
Note that we consider and compare more complex models later.

We consider digital signature schemes on the transport layer of ad-hoc net-
works. The main goal in applying security is to make the protocol robust
against malicious users and selfish users in order to establish a reliable proto-
col even in an unfriendly network setting. We assume a network as described
in Section 2.6.1. The network incorporates an on-line or off-line central au-
thority that issued certificates for each network node. The certificates bind
a node’s identity to its public key. Each node is able to generate and verify
digital signatures, and to verify the certificates. The certificates have a short
life-span only, say one day, such that there is no key revocation scheme needed.

We assume an adversary as described in Section 2.6.3. The adversary’s goal
is to forge a digital signatures. We assume that the applied digital signature
scheme imposes no known security leaks. We assume that the adversary uses
known algorithms to forge a digital signature such that the adversary has to
obtain the secret key corresponding to a node’s certificate by its computational
resources, i.e., the adversary has polynomial bound computational power. For
that purpose the adversary has access to a powerful computer that is not
necessarily part of the ad-hoc network. We do not consider any further kind
of attack such as a physical attack or an attack where the adversary steals
the secret key by another means. Note that the certificate is only used to
authenticate control data of the network. It is not used to authenticate or
encrypt data on the application layer such as confidential data. Hence, after
the certificate expired the secret key has no value anymore. Since we assume
a very short life-span of the certificates the adversary has only little time to
compromise a node’s certificate.

4.3.2 Required Level of Security

A typical application scenario of a security protocol is the offering of wire-
less multi-hop Internet access at public places, for instance a cafe, an airport
terminal, or a railway station. Such places have in common that the users
do not stay longer than several hours at that place. Consequently, most user
certificates as well as private and public keys only need to be valid for a short
time, say 24 hours. In case of a longer stay, one could simply enforce a certifi-

4.3 Digital Signatures for Security Protocols 59

cate renewal. An attacker may try to get uncharged network access; however,
the amount of money involved can be expected to be rather low. Thus, the
financial harm of successfully breaking a pair of keys is less than a few 100
Euro. Consequently, one can expect that an attacker will not spend a large
amount of money to break a key. Note that breaking a key can only be used to
compromise the node that owns the key. No secret information will be revealed
though; the attacker may forge only signatures of the compromised node.

So far, the largest RSA Challenge Number that has been factored in RSA
Security’s Factoring Challenge [71] in December 2003 is a 576-bit number. 576-
bit RSA is considered to be slightly more secure than a 113-bit elliptic curve.
In November 2002, Certicom announced that the ECC p-109 challenge has
been solved using a large network of 10,000 computers within 549 days [14].
By taking into account Moore’s law, an elliptic curve "looses" 2 bits of security
each 18 months. That is if a curve of at most r-bits can be broken today, a
curve of r+2 bits can be broken in 18 months. We halve this time to take into
consideration cryptanalytic improvements1. Then we obtain recommended
key sizes for ECDSA as presented in Table 4.3. The key sizes of RSA that are
considered to be roughly equivalent in their security to ECDSA were obtained
by the NIST and SECG guidelines [58, 76]. We believe that today a curve
in the range of 130-bit provides a sufficient security level to protect data for
a short time interval. Note that these values are almost equivalent with the
NIST recommended key sizes of Table 4.1. In the following, we choose 131-bit
ECDSA as well as 704-bit RSA as appropriate scheme.

Table 4.3: Recommended key sizes for protocols on the transport layer

Year RSA key size ECDSA key size
1999 512 113
2006 704 129
2015 1024 153
2026 1536 183
2039 2240 218

1Note that we only take into consideration improvements like algorithmic advance but no
ground breaking new methods.

4.3 Digital Signatures for Security Protocols 60

4.3.3 Performance

When sending a data packet or a bundle of packets, the sender generates a
signature over the packet content whereas each intermediate forwarding node
as well as the receiver verify the signature. We now estimate the average
running time for RSA and ECDSA. Let tg and tv be the running time of
a signature generation and verification, respectively, and n be the average
number of involved intermediate nodes of a single communication process.
Then the running time t of a device X on average is given by

t(X) = P (X = S)tg +
n∑

i=1

P (X = Ni)tv + P (X = D)tv (4.1)

On average, the probability P (.) at which a device X is either in role of S,
Ni (i = 1, . . . , n), or in role of D is uniformly distributed such that we obtain

t(X) = (tg + (n + 1)tv)/(n + 2). (4.2)

The average running time of a device X is presented in Figure 4.4 assuming
704-bit RSA and 131-bit ECDSA with the running times of Table 4.2. When
there are more than n = 2 intermediate nodes, it is more efficient to use RSA
instead of ECDSA regarding computational running time.

We now take a look into the future. We assume that a security level is used
that suffices Table 4.3, i.e., today in 2004 a 512-bit RSA is used, in 2010 a 704-
bit RSA is used, and in 2020 a 1024-bit RSA is used. Furthermore, we assume
that the available hardware becomes more powerful as stated by Moore’s law.
The execution times of Table 4.2 were measured in 2003 whereas each 1.5 years
later the running times half. Hence 15 years later the operations are performed
1024 times faster than stated here. Figure 4.5 presents the trade-off for the
number of intermediate nodes n where security protocols using either RSA or
ECDSA perform equally fast when looking into the future. The x-axis describes
the considered year whereas the y-axis presents the number of intermediate
nodes n for which RSA and ECDSA run equally fast. Below the curve, ECDSA
performs faster whereas above the curve RSA performs faster. For instance, in
2010 if on average there are more than n = 2 forwarding intermediate nodes
involved on the path from the sender to the receiver then RSA performs faster

4.4 Recommendations 61

Figure 4.4: Average running time per packet

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
pe

r
pa

ck
et

 [m
s]

Number of intermediate nodes n

131-bit ECDSA
704-bit RSA

whereas ECDSA performs faster if less than n = 2 intermediate nodes are
involved. For n = 2, ECDSA and RSA run equally fast. One can see that in
the near future the trade-off point is in the range of very low n, i.e., in the
range of n = 2. Until the year 2015 the number of intermediate nodes is in the
range of n = 4. Later on, the number n rapidly increases to more than 10.

4.4 Recommendations

We now generalize our results in order to establish recommendations for the
usage of digital signatures in multi-hop ad-hoc networks. As said before, our
results are applicable to all kinds of security protocols.

4.4.1 Performance

Our earlier discussion showed that there is no clear winner in the RSA vs.
ECDSA decision regarding the average running time. As in a multi-hop net-
work it can be expected that on average there are far more signature verifica-
tion operations performed than signature generations, thus RSA benefits by
its efficient signature verification as presented in Table 4.5. However, as the

4.4 Recommendations 62

Figure 4.5: Trade-off between RSA and ECDSA with respect to the number of
intermediate nodes n

number of average hops n in an ad-hoc network is expected to be fairly low in
the range of n = 5, the average execution times are close. When considering
Figure 4.5 RSA has advantages today whereas ECDSA will outrun RSA in the
far future. Obviously, ECDSA has clear advantages regarding the signature
size and certificate size. We expect that the available bandwidth and memory
size also increases in the future, although not as fast as computational power
does, such that the signature size gets less important. Finally we can say that
the decision whether to use RSA or ECDSA depends on the application and
the network characteristics. If there is a large number of intermediate nodes n

than RSA is a good match. Otherwise, due to its advantages in signature and
certificate size, ECDSA is the better choice. It is important to note here that
ECDSA is not always the better choice for constrained devices.

4.4.2 Topology of the Network

In a conventional architecture which is characterized by a single wireless hop
between a restricted mobile client and a powerful server the digital signature
generation at the client side to authenticate towards the server is the only time-
critical and CPU wasting operation. In contrast, in the context of multi-hop

4.4 Recommendations 63

ad-hoc networks the operations signature generation and signature verification
become coequal operations. Both operations need to be executed by devices
that tend to have lower power. For an appropriate choice of a digital signature
related to its minimum total execution time t(X) with X ∈ {S, D, Ni}, we
propose considering the occurring traffic within the ad-hoc network. More
precisely, the distribution of the whole network traffic with respect to the
required number of intermediate nodes to reach the final destinations needs to
be considered.

To estimate the traffic distribution for two exemplary network topologies,
we used the ns-2 simulator version 2.1b9 [79]. Nodes move according to the
random waypoint model. Initially, 100 nodes are uniformly distributed in a
1000m ·1000m area. Subsequently, nodes choose new locations and move with
a uniform velocity of 1–2 m/s until they reach their destination. The process
is repeated unless the simulation time has elapsed. In our scenario, eight
concurrent connections send five packets with 512 bytes per second where the
average duration of a connection is 30 sec. The routing protocol is AODV.
At the end of the connection a new source destination pair is immediately
chosen. To obtain realistic data, each scenario was simulated 120 times with
different source and destination pairs. To show that the calculated values are
reasonable approximations of the mean values, the 95% confidence interval is
depicted in Figure 4.6.

Figure 4.6: Traffic distribution per route length, e.g. with 100m vs. 250m
transmission radius

As can be derived from Figure 4.6, in case of a transmission radius of 250m

4.4 Recommendations 64

, about 90% of all successfully received traffic passes less than five nodes. For
such a network topology ECC-based signatures are preferable. In contrast,
for a transmission radius of 100m only 41.5% of the arising network traffic is
forwarded over less than five intermediate nodes. For such a topology, RSA
turns out to be the faster digital signature choice. Summing it up: For the
appropriate choice of a digital signature scheme related to its total execution
times, we need to understand the traffic distribution per route length within
the ad hoc network.

4.4.3 Security Relationships

As we already stated there are several security relationships possible that im-
ply the necessary type of authentication. The most basic one is a unilateral
and a mutual relationship. Here, a mutual or pairwise authentication scheme
is appropriate that is provided by MACs. However, in some scenarios a sin-
gle entity has relationships with several other entities such that a broadcast
authentication scheme is necessary. As of today, only digital signatures are
able to provide a broadcast authentication. Here, an entity signs a message
that can be verified by each receiver. We suggest to use digital signatures in a
careful manner for applications where a broadcast authentication is required.
A better approach that is especially suited to sensor networks where digital
signatures might be too demanding, is to design security protocols that work
with pairwise relationships only. For instance, a device might establish pair-
wise relationships to its neighborhood, and then base higher level protocols on
these. However, in ad-hoc networks of mobile devices with a steadily changing
topology, the neighborhood might vary so quickly that establishing security
associations to all neighborhood devices might be too demanding as well. Let
us call these two approaches global and local neighborhood approach.

We now want to compare these two approaches. The first approach is based
on broadcast authentication provided by digital signatures. We assume that
on average the sender sends a packet or a bundle of packets secured by a digital
signature via n intermediate nodes. Each node keeps a repository of foreign
certificates. A sender attaches his certificate to a data packet. However, a
sender does not attach its certificate to all packets but on average only to
p out of 100 messages if the receiver or the intermediate nodes do not have
the certificate in their repository list. As the storage space is limited, devices

4.4 Recommendations 65

will delete certificates from their repository once in a while. We use ECDSA
with a security level of 160-bits and assume that a certificate has a size of
61 Bytes whereas a signature has a size of 40 Bytes. In the neighborhood
approach, each node only communicates with its one-hop neighborhood. A
key-agreement based on the elliptic curve Diffie-Hellman (ECDH) is performed
with the neighborhood in order to use a MAC later on to secure messages. We
assume that a MAC requires 20 Bytes, and that a new key-agreement needs to
be performed every q out of 100 messages due to the changing neighborhood
cloud. We summarize the scenario as follows:

1. global scenario:

• each message sent requires a signature generation

• each forwarded and received message requires a signature verifica-
tion

• the signature size is 40 Bytes

• p% of sent messages require an attached certificate

• An ECDSA signature generation requires one elliptic curve point
multiplication (PM) whereas a signature verification requires two
PMs

2. local neighborhood scenario:

• each MAC requires 20 Bytes

• Generation and verification of a MAC is negligible compared to a
public-key operation

• q% of the sent, received and forwarded messages require a key-
agreement

• An ECDH key agreement requires a certificate exchange and certifi-
cate verification (two PMs) as well as another point multiplication
for each involved node.

We now investigate the required resources with respect to computational
power and bandwidth for these two scenarios. Let wB and wN be the required
average bandwidth for the broadcast and neighborhood scenario, respectively,

4.4 Recommendations 66

and cB and cN be the average required computational resources. By applying
above assumptions, we obtain the following values:

wB = 61/p + 40 [Bytes]

cB = (3 + 2n)/(n + 2) [PMs]

wN = 122/q + 20 [Bytes]

cN = 3/q [PMs]

We are interested when wN < wB and cN < cB. Obviously, it is cN < cB

for q > 2 [%] such that the local neighborhood approach almost always wins
regarding computational complexity. Figure 4.7 depicts the trade-off between
the local neighborhood scenario and the global scenario where the required
bandwidth is equal. The x-axis represents the ratio p of data packets with
attached certificate, and the y-axis represents the ratio q of messages that
require the execution of a key-agreement. The curve presents the trade-off
where wN = wB. For instance, when p = 20 [%] and q = 5 [%] then both the
global and local scenario require the same bandwidth. Above the curve, it is
wN < wB such that the neighborhood scenario performs more efficient than the
global one. For q > 6 [%] the bandwidth required by the local neighborhood
approach is always smaller.

We presented a simple comparison between the global and the neighbor-
hood scenario. We induce that security protocols should be based on pairwise
authentication instead of broadcast authentication. Such schemes are already
applied for sensor networks, e.g., by the distributed virtual shared informa-
tion space (dvSIS) [8]. This approach is almost always better regarding the
computational efficiency as well as bandwidth requirements. The bandwidth
requirements also affect the energy consumption due to the radio transmis-
sion that often is even more power demanding than computations. Hence,
in the following chapter we will present an extremely efficient mechanism for
establishing pairwise associations that can be used for a local based approach.

4.4 Recommendations 67

Figure 4.7: Trade-off between broadcast and neighborhood approach

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

P
ro

ba
bi

lit
y

of
 N

ei
gh

bo
rh

oo
d

K
ey

-E
xc

ha
ng

e
[%

]

Probability of Broadcast Certificate p [%]

Bandwidth

5 Efficient Authentication in Ad-hoc and

Sensor Networks

We are now prepared for proposing two new efficient pairwise authentication
schemes for ad-hoc and sensor networks: (1) a protocol that we call Zero
Common-Knowledge (ZCK) recognition protocol 1 to provide a basic form of
authentication, namely recognition, and (2) a proof of identity at the cost of
some external infrastructure that we call Identity Certified (IC) authentication
protocol. The ZCK protocol is an extremely efficient and provably secure
authentication protocol for sensor networks as it uses only hash-chains, whereas
IC is an efficient identification protocol closing the gap to asymmetric solutions.
We analyze the ZCK and IC protocol with respect to their overhead including
operational complexity and energy consumption.

Our new protocols suffice the following environment properties:

• no key pre-distribution

• dynamic network topology

• no trusted third party

• no tamper resistance

The ZCK protocol works in any network environment. As defined in Chap-
ter 2, we call such a network without any supporting infrastructure a pure
network. Nodes are possibly tiny and cheap such that demanding arithmetic
operations may overstrain their capabilities. For the IC protocol we weaken
above limitations to introduce a single manufacturer. Furthermore, we re-
quire a loose global time synchronization of devices that are able to perform
a public-key operation once in a while. Hence, our protocols provide efficient

1Note that ZCK does not relate to zero-knowledge proofs in any kind.

5.1 Zero Common-Knowledge Recognition 69

solutions for the Pure Ad-hoc network and the Single Manufacturer scenario
as introduced in Chapter 3.

We now explain the main idea of our protocols. Imagine two foreigners that
meet in the real world. Usually, people identify each other by showing their
passports. Assuming there is nobody else available to ask about the opposite’s
reputation or passport validity, the best both can do is to establish step-by-
step a trust relationship built on their personal experiences. To do so, it is
mandatory that these two people recognize each other the next time they meet.
In our model we do not assume geographical proximity, however. We call this
form of authentication entity recognition.

The above approach aims at sensor and ad-hoc networks without any kind
of infrastructure. However, it lacks the possibility of establishing a trust re-
lationship based on the identity (which probably is not possible to provide at
all without any infrastructure or previous knowledge). The IC authentication
protocol provides identity authentication. We assume that there are some stor-
age resources available and that nodes are loosely time synchronized. We use
the term identification and identity certified authentication in the sense that
an entity A is able to prove its identity to an entity B assuming that both
entities trust some third party, usually the common manufacturer.

We introduced these protocols in [90, 89]. They did, however, contain a
security flaw discovered by Lucks et al. [49]. In the same paper, we introduced
an improved version that is provably secure and which is the basis of the
following protocols. We presented further parts of this chapter in [91] and [33].

5.1 Zero Common-Knowledge Recognition

We start by defining a new security classification regarding entity recognition
and message recognition and then present our new protocol. For instance, our
solution is suited to cooperation and motivation based schemes [47, 10, 95]
as well as secure routing methods. These schemes require a large number of
authentication steps though. We believe that our ZCK recognition protocol
suffices the requirements of these protocols such that they can run efficiently.
Our scheme is also applicable for client-server and peer-to-peer relations.

5.1 Zero Common-Knowledge Recognition 70

5.1.1 Recognition

In a low-power environments, entity authentication might be too costly. Fur-
thermore, in many scenarios it is unnecessary and perhaps even impossible
to achieve. We define the following term to refer to a new classification of
authentication protocols:

Definition 5.1.1 Entity recognition is the process whereby one party after
having initially met, can be assured in future recognitions that it is communi-
cating with the same second party involved in a protocol, and that the second
party has actually participated (i.e. is active at, or immediately prior to, the
time the evidence is acquired).

Note that entity recognition is a weaker form of entity authentication. Hence,
a protocol which performs entity authentication has, implicitly, performed en-
tity recognition. The reverse of this is not true. In addition to entity recogni-
tion, we define a process which builds on this.

Definition 5.1.2 Identity accumulation is the process whereby one party can
obtain a level of trust (through the acquisition of corroborative evidence) such
that the party is reasonably certain of the identity of the second party involved
in a protocol.

To perform identity accumulation, entity recognition has to be assured, i.e.,
a party has to be certain that it is communicating with the same person it
thought it was. Identity accumulation used with entity recognition can bring
two communicating parties close to — but not fully attain — entity authenti-
cation. During the first recognition A cannot be sure that it is communicating
with the correct entity B, however, the more information that A receives that
it expected B to have, the more certain A can be that it is correct. How-
ever, identity accumulation is very situational dependent and requires further
methods to evaluate trust which we do not focus on here. Similar to entity
recognition, Definition 5.1.3 defines message recognition from message authen-
tication.

Definition 5.1.3 Message recognition provides data integrity with respect to
the original message source and assures the data origin is the same in future
recognitions, but does not guarantee uniqueness and timeliness.

5.1 Zero Common-Knowledge Recognition 71

As for entity and message authentication, the difference between message
recognition and entity recognition is the lack of a timeliness guarantee in the
former with respect to when a message was created. Finally, we define non-
repudiation in the context of recognition.

Definition 5.1.4 Recognition non-repudiation is the service which prevents
an entity from denying a commitment or action chain.

In our case, this means that an entity A is able to prove to a third party
that a number of actions or commitments were taken by the same (probably
unknown) entity B. The following presents some informal results of entity
authentication and recognition.

Conjecture 5.1.5 Entity authentication over a network with the no key pre-
distribution requires a trusted third-party.

Remark 1 Suppose that there does not exist a trusted third-party. Given that
there is no key pre-distribution, an entity A receiving a message from an entity
B will have no prior knowledge of the identity of B. That is, the source B

is anonymous to receiver A. Then B will have to send some identification
information2 to A. To verify this identification information, A, who has no
prior knowledge, must ask a third-party C for confirmation. Now C is acting
as a trusted third-party, thus giving a contradiction.

Conjecture 5.1.5 proposes that entity authentication is impossible in envi-
ronments where there is neither key pre-distribution nor a trusted third-party
provided. However, entity recognition combined with identity accumulation
can approach the security of entity authentication. Note that entity recogni-
tion prevents a man-in-the-middle attack after the first recognition, hence if
C was modifying information, C would have to have been in the middle from
the beginning (and hence, A has been recognizing C, not B). A reliable relay
channel for the first recognition process is a requirement in a formal model.
Such a reliable relay channel provides integrity of messages and ensures that
all messages are received in order to prevent manipulation or interception of
2For example, the identification information could be just the network address in the
message source or it could be a secret to be shared.

5.1 Zero Common-Knowledge Recognition 72

messages. In many applications, the initial contact and with it the requirement
of a reliable relay channel might become meaningless, though. Here, A is never
able to distinguish whether the other party is B or C. A will accumulate trust
based on the interaction with its communication partner such that the initial
contact, i.e., the question whether A is talking to B or C, becomes irrelevant.
For instance, if A is communicating with C, and C is able to provide A with all
services needed, it is not important for A whether C was a man-in-the-middle
at the initial contact that was supposed to happen between A and B.

5.1.2 Network And Adversarial Model

Our approach of providing recognition makes sense in a network without any
central authority, both on-line and off-line. We assume a network, devices, and
adversarial model as described in Sections 2.6.1, 2.6.2, and 2.6.3. Furthermore,
we assume the following.

The devices communicate in a multi-hop fashion over wireless links. The
network links are not guaranteed to be reliable such that data packets might
be dropped and manipulated. If a device A wants to establish an authenticated
channel to a device B usually there are several nodes in between the path from
A to B. Hence, a key exchange over the insecure channel is only possible by an
asymmetric key agreement scheme but not by the direct handover of a key (e.g.,
by physical contact). There are no channels available between devices besides
the digital communication channel. In particular, there are no side-channels
available for a secure key exchange.

The devices are computationally very slow. In most cases, the communica-
tion will be performed between two computationally weak devices. However,
there might also be communication between computationally weak and com-
putationally powerful devices. In particular, the devices are in general not
able to perform any public-key operations. There are no pre-distributed keys
available in the network, and also there is no central authority available. As
we argued before, it seems reasonable to assume that there is no entity au-
thentication possible in such a network. However, it is possible to provide
recognition in such a network, e.g., by using a hybrid approach as presented in
Algorithm 3.8 where there are no certificates used but the public key of each

5.1 Zero Common-Knowledge Recognition 73

entity is exchanged over the insecure channel 3. However, all known techniques
to provide such a solution today require the use of asymmetric cryptography
that we disallowed here. Our goal is to provide a protocol that allows for this
scenario without the usage of public-key methods. Since we restricted the sce-
nario to low-power devices we do not only meet the properties of an ad-hoc
network but also of a sensor network.

We use a standard adversary model. We assume that the adversary has full
control over the communication channel between an entity pair Alice and Bob.
In particular, he is able to read all messages, modify, delay, and send them
twice, and to inject new messages. As we argued before, it seems impossible to
provide identification in our scenario. In order to provide recognition, we have
to make one exception. For the initial phase we assume that Alice and Bob can
exchange a message using a faithfully relay channel. Without some faithfully
relayed initial messages, the entire notion of recognition protocols would not
make sense. Thus, we assume an initial phase (typically with one message from
Alice to Bob, and a second message from Bob to Alice), where the adversary
can read messages but relays them faithfully. Note that as we argued before,
this assumption does not limit our scenario. At the initial message exchange
there cannot be any man-in-the-middle attack since both Alice and Bob do
not even know about the identity of the other entity.

The main goal of the adversary is to forge an authentication. We assume
that the adversary aims for an existential forgery in a chosen message scenario
where Alice authenticates to Bob. The adversary can choose any message that
Alice authenticates. The adversary is successful if Bob accepts a message that
was not authenticated before by Alice but was created by the adversary.

5.1.3 General Recognition Protocols

We now present a simple example to clarify recognition based on a digital
signature scheme. Here, B sends his public key PK to A. Then B signs his
messages which A can verify. Algorithm 5.1 presents entity recognition by
introducing a challenge r.

Remarks:

3This is also sometimes called an uncertified authentication

5.1 Zero Common-Knowledge Recognition 74

Algorithm 5.1 General entity recognition protocol
1: B generates SK/PK at random
2: B sends PK to A

Repeat Steps 3 to 5 for each recognition process
3: A sends random r to B
4: B computes S := SIG(r, SK) and sends S to A

5: A checks if V ER(S, r, PK)
?
= valid

If ’yes’, A accepts, otherwise she rejects

• Steps 1–2 need to be performed once for each communication pair A and
B.

• Steps 3–5 have to be performed for each recognition process.

We consider as main objective of this scheme the capability to ensure that
entities are able to re-recognize another entity in order to receive a service
they requested. Hence the public key PK always has to be sent together with
the offered service, i.e., service and key have to be bound together to avoid
a malicious entity injecting his public key into a service that he did not offer
at all. Instead of a confidential and secure channel for the initial message
(key-exchange), we only require a reliable relay channel for the initial entity
recognition (key exchange).

In contrast to PKI scenarios where there is a logical central certificate direc-
tory, A has to store B’s public key (together with B’s ID string) to be able to
recognize B. After A deletes B’s public key from her memory, A is not able
to build a connection anymore to a previous relationship with B. Note that in
many applications a mutual authentication process is required. The above pro-
tocol can easily be extended for this case. Obviously, Algorithm 5.1 provides
entity recognition as well as recognition non-repudiation. However, devices
must be computationally powerful to perform the digital signature operations.
We now introduce our new scheme that overcomes these limitations.

5.1.4 Zero Common-Knowledge Protocol

Our new protocol for recognition only requires one-way hash functions but no
expensive public-key operations. Doing so the scheme is extremely efficient
and orders of magnitudes faster than any public-key scheme.

5.1 Zero Common-Knowledge Recognition 75

Figure 5.1: Zero Common-Knowledge message recognition protocol

Transmitting: Processing:
For key exchange, do Steps 1–2 only once:
1. A → B : an B : P(an)
2. B → A : bn A : P(bn)
For each recognition process, repeat Steps 3–7:
3. A knows bi

B knows aj

4. A → B : m, M := MAC(m, aj−1)
5. B → A : bi−1 A : h(bi−1)

?= bi

6. A → B : aj−1 B : h(aj−1)
?= aj ,MAC(m, aj−1)

?= M
7. A : P(bi−1)

B : P(aj−1)

Consider the case where Alice wants to send authenticated messages to Bob.
We define a hash-chain, which is also known as Lamport’s hash-chain [53], as
xi+1 = h(xi) with x0 being the anchor and h being an unkeyed one-way hash
function. Alice chooses randomly an anchor a0 and computes the final element
an of the hash-chain. We call an the public key and a0 the secret key of Alice.
Bob is doing likewise to obtain b0 and bn. We use a chain value as key to
generate an authenticated message by a MAC. The core idea of the protocol
is as follows: first exchange a value ai which the receiver will tie together with
some experience. Then prove knowledge of the pre-image of ai, i.e. aj with
j < i, in order to authenticate by establishing a relationship to ai and the past
experience. In order to repeat the authentication step arbitrarily many times,
a hash-chain based on a one-way hash function is used. The protocol works
as illustrated in Figure 5.1. Here, P(.) represents the storage of some data. If
any comparison ?

= fails, the protocol flow is interrupted. The protocol can
then only be resumed at the same position.

Remarks:

• Steps 1–2 ensure the exchange of public-keys which is done only once
per pair A and B. Note that if the network settings does not provide a
reliable relay channel at initialization time the keys’ integrity could be
ensured by using a digital signature. For instance, then Alice would send
SIG(an) to Bob.

• Steps 3–7 are done for each recognition.

• For each recognition of each communication pair we assume that A stores

5.1 Zero Common-Knowledge Recognition 76

B’s key bi and that B stores A’s key aj (Step 3). Hence, after the
initial key exchange A stores bn and B stores an. After each successful
recognition, A and B replace aj and bi by aj−1 and bi−1, respectively.
Furthermore, A stores the private key a0 that she created especially for
Bob, and Bob is doing likewise.

• The exchanged message is guaranteed to be fresh since both parties are
involved actively.

• The message sent in Step 4 can be read but is not authenticated at this
moment. Messages can only be checked after the keys were opened in
Step 6, i.e., there is a message buffer required.

• If A opens a key which B does not receive due to network faults, A can
send the key again without endangering the security of the scheme. The
same holds for keys opened by B.

• A man-in-the-middle attack at initialization time is possible. However,
once the public keys an and bn were exchanged, messages cannot be
forged.

• The scheme is not resistant to denial-of-service attacks. A malicious
entity can try to overflow the message buffer. Thus, an implementation
must take care of an appropriately sized message buffer.

• The scheme is provably secure if its building blocks h and MAC are
secure [49]. In particular, our scheme is secure in the model as outlined
in Section 5.1.2.

• When a key a0 is compromised, only the security of the communication
channel between Alice and Bob is affected.

• To save memory and to avoid extensive computations, short hash-chains
can be used. These can be renewed by transmitting a new final element
as an authenticated message in order to keep the trust association.

• The public key is only sent once. A message recognition requires three
messages, each of them a t-bit string. Using an efficient hash-chain al-
gorithm as presented in [16], an element of the hash-chain can be com-
puted by 1/2 log2(n) hash iterations with storage of log2(n) hash-chain
elements. In the following, we let n = 100 which should suffice most
applications. Then there is storage required for 7 elements each t-bits in
size, and 4 hash iterations are needed to obtain an element of the chain.

5.1 Zero Common-Knowledge Recognition 77

Note that the execution of a hash function has very low running time
compared to any asymmetric operation.

• For each communication pair of A with any B, she needs to store B’s
public key bi of t bits. Thus altogether, for each communication partner
there is storage needed of 7 hash-chain elements as well as the public key
resulting in t Bytes.

For a better understanding, we illustrate our protocol again in Figure 5.2.
Here, the initial key exchange as well as two recognition processes are depicted.
First, Alice and Bob exchange keys bn and an. In the first recognition, Alice
authenticates message m to Bob by key an−1. After a successful message
recognition, Alice and Bob store keys bn−1 and an−1, respectively. At any
time later on, if Alice wishes to authenticate another message m′ to Bob she
computes the MAC over m′ by key an−2, and follows the ZCK recognition
protocol. After the initial key exchange, any number of recognition processes
can be performed between Alice and Bob.

Figure 5.2: Zero Common-Knowledge recognition protocol example

Alice
 Bob

a
n

b
n

Initial Key

Exchange

m, M:=MAC(m, a
n-1
)

b
n-1

a
n-1

h(b
n-1
) =? b
n

h(a
n-1
) =?
a
n

MAC(m, a
n-1
) =? M

First

Recognition

Second

Recognition

m', M’:=MAC(m’, a
n-2
)

b

n-2

a
n-2

h(b
n-2
) =?
b
n-1

h(a
n-2
) =?
a
n-1

MAC(m’, a
n-2
) =? M’

…

 .

5.1 Zero Common-Knowledge Recognition 78

Figure 5.3: Zero Common-Knowledge entity recognition protocol

Transmitting: Processing:
For key exchange, do Steps 1–2 only once:
1. A → B : an B : P(an)
2. B → A : bn A : P(bn)
For each recognition process, repeat Steps 3–8:
3. A knows bi

B knows aj

4. A randomly chooses r
5. A → B : M := MAC(r, aj−1), r
6. B → A : bi−1 A : h(bi−1)

?= bi

7. A → B : aj−1 B : h(aj−1)
?= aj ,MAC(r, aj−1)

?= M
8. A : P(bi−1)

B : P(aj−1)

Our scheme also provides entity recognition as presented in Figure 5.3. Note
that timeliness is provided by the active involvement of Alice and Bob. Con-
trary to usual entity authentication schemes such as presented in Algorithm 3.2
and Algorithm 3.9, we neither require a challenge nor a time-stamp to intro-
duce timeliness. Hence we save both the initial challenge message and the
global time synchronization.

Let t be the output size of the MAC and the hash function. It is widely be-
lieved that computing a collision to a given message (target collision resistance)
in a one-way hash function that maps strings to t = 80 bits is approximately
as hard as factoring an RSA modulus of 1024-bits [58]. We believe that target
collision resistance is sufficient for our application whereas collision resistance
(finding any pair of colliding messages) requires twice the number of bits. An
attack which finds any pre-image of an opened key ai has a complexity of
around 2t. Hence we assume t = 80 in the following. We believe that an av-
erage hash-chain of length n = 100 should meet the lifespan demands of most
security associations.

The above scheme provides unilateral recognition. A mutual recognition can
also be provided as presented in Figure 5.4. The number of exchanged messages
increases to four. Here, Alice must start each round of the authentication.

5.2 Identity Certified Authentication 79

Figure 5.4: Zero Common-Knowledge mutual message recognition protocol

Transmitting: Processing:
For key exchange, do Steps 1–2 only once:
1. A → B : an B : P(an)
2. B → A : bn A : P(bn)
For each recognition process, repeat Steps 3–8:
3. A knows bi

B knows aj

4. A → B : mA,MA := MAC(mA, aj−1)
5. B → A : mB ,MB := MAC(mB , bi−2), bi−1 A : h(bi−1)

?= bi

6. A → B : aj−1 B : h(aj−1)
?= aj ,MAC(mA, aj−1)

?= MA

7. B → A : bi−2 A : h(bi−2)
?= bi−1,MAC(mB , bi−2)

?= MB

8. A : P(bi−2)
B : P(aj−1)

5.2 Identity Certified Authentication

We now extend our previous scheme to provide identification. We assume that
the devices are able to perform a signature verification which is reasonable
in the case of RSA with short exponent. However, the devices do not need
to perform signature verifications frequently, but only once in a while. We
further assume that devices are loosely time synchronized to a global time.
Our goal here is to extend the ZCK recognition protocol in such a way that
it provides identification to entities that do not know each other nor had any
contact in the past. This can be seen similar as the exchange of a certificate
in the public-key scenario. Once the identity proof was performed the ZCK
recognition protocol can be used which ensures that this level of trust in the
other’s identity is maintained.4 Thus an exchange of keys that can be used
for the ZCK recognition protocol for future identification or message authen-
tication processes is included in our new scheme. For each communication
pair A and B, the certificate exchange only needs to be performed once for
proving identity whereas later on only the ZCK recognition protocol needs to
be executed for identification based on the identity proven level of trust.

4The ZCK recognition scheme improves or maintains the level of trust between two entities.
Since the proof of identity is the highest trust level we can achieve here, in this case the
ZCK recognition maintains this level.

5.2 Identity Certified Authentication 80

5.2.1 Network and Adversarial Model

The goal in our setting is now not only to provide recognition but to provide
identification at the cost of further infrastructure. Hence we change the un-
derlying model of Section 5.1.2 used in the recognition setting to suffice the
new security goal.

The devices communicate in a multi-hop fashion over a wireless link. The
network links are not guaranteed to be reliable. A key exchange is not possible
via physical contact or a side-channel. The devices have moderate computing
power. In most cases, the communication will be performed between two ho-
mogeneous devices. However, there might also be communication between
devices with moderate and high computing power. The devices are not able
to perform frequent public-key operations. However, they are able to perform
an asymmetric operation once in a while, in particular an RSA signature ver-
ification where a short exponent is used. There are no pre-distributed keys
available in the network. However, there is an off-line certificate authority
available that issues certificates for each device. The certificates bind a de-
vice’s public key to its identity. We do not consider key revocation here as
it would require a central directory 5. Once a device is deployed there is no
central authority available anymore. Such a scenario can easily be provided
by using a standard hybrid scheme as presented in Algorithm 3.8 where there
are certificates exchanged. However, in our setting we assume that frequent
public-key operations are not possible. In order to still be able to design a
solution that fulfills our requirements we furthermore assume more infrastruc-
ture. In particular, we assume that all devices are loosely time synchronized.
In particular, devices are synchronized at deployment and do not need any
further synchronization methods to stay synchronized. Since we only require
that devices are synchronized in the order of a few seconds this assumption is
reasonable with today’s technology, even in low-cost devices.

As before, we use a standard adversarial model. However, this time we do not
make any assumptions about the initial contact between Alice and Bob. We
assume that the adversary has full control over the communication channel at
any time. The main goal of the adversary is to forge an authentication. In our
setting this induces that the main goal of the adversary is the impersonation

5A simple approach to address this issue is to use certificates of a short life-span.

5.2 Identity Certified Authentication 81

of Alice. The adversary is successful if Bob believes him to be Alice.

5.2.2 Outline

The idea of the IC protocol is to divide time into intervals and let a set of
keys of a hash-chain only be valid for one time interval, similar to the idea of
TESLA [64]. Figure 5.5 presents the main idea. A certificate that includes the
final hash-chain element xi is issued at time interval I0. The element xi−1 is
then valid for time interval I1, xi−2 is valid for interval I2, and so on. If Alice
wants to identify to Bob during time interval I3, she sends her certificate to
Bob and proves knowledge of xi−3. If Bob now tries to use the obtained values
to impersonate Alice to John, time progresses and John will require a proof of
knowledge of xi−4.

Figure 5.5: Identity Certified authentication example

I
0,
Issue of

Certificate

x
i
 x
i-1

….
x
i-2
 x
i-3
 x
0

I
1
 I
2
 I
3
 I
i

h
h
h
h

Let us now go into more detail. Let ai+1 = h(ai) be a hash-chain, a0 be
the anchor of the chain and a2(n−1)+1 be the final element of the hash-chain.
We let two keys of the chain be valid in a time interval. Let ti be a point in
time which we assume to be the starting time, L be the length of the time
intervals, and Ij−1 be the j-th time interval. We assume that time is divided
into time intervals of length L, i.e., there are time values ti, ti+1, ti+2, and
so on, such that the time difference between tj and tj+1 is L, and the time
difference between tj and tj+m is mL. The k-th time interval Ik−1 lasts from
ti+k−1 to ti+k. Let ds be the time difference measured in interval lengths L

between the current time tc and the time ts, i.e., ds = c − s. Assume the
starting point is ti and the keys valid during the corresponding interval I0

are a2(n−1) and a2(n−1)+1 such that there are keys for n time intervals in the
hash-chain. This fact is depicted in Figure 5.6. Then a2(n−1) and a2(n−1)+1

are keys for the first time interval I0 between time ti and ti+1, a2j and a2j+1

are keys valid for the time interval In−1−j, and a0 and a1 are the keys valid in

5.2 Identity Certified Authentication 82

Figure 5.6: Time intervals for hash-chains

….

t

n-1+i

time
 key-chain

t
n-2+i

t
i

t
n-1-j+i

x
0
 x
1

x
2
 x
2+1

x
2j
 x
2j+1

….

x

2(n-1)

x

2(n-1)+1

interval

I
0

I
n-1-j

I

n-2

I
n-1

the final time interval In−1. Furthermore, the interval difference between the
current time tc and starting time ti is di = c − i such that the current time
interval is Idi

, and the keys valid for this interval are Ac = a2(n−1−di) as well
as Ac+1 = a2(n−1−di)+1.

Assume Alice wants to identify herself to Bob. Then Alice holds a secret
anchor a0 and the public value PKA = a2(n−1)+1. Bob likewise holds b0 and
PKB = b2(n−1)+1. The public values are signed by the manufacturer MF at
some time interval tu and tv, respectively, such that Alice and Bob obtain
certificates 〈tu, PKA〉 and 〈tv, PKB〉. Now, if Alice wants to prove her identity
to Bob she sends Bob her certificate. Assume Bob determines the current time
as tBj and Alice as tAi . These two timings might be different since we do not
require a strict time synchronization. Then Alice and Bob determine the time
difference between the current time they measure and the certificate time so
that they obtain the interval differences dA

u = i − u, dA
v = i − v, dB

v = j − v,
and dB

u = j − u. Alice then opens the key Ac+1 = a2(n−1−dA
u)+1. Bob now

checks whether h2dB
u±{0,1}(Ac+1) = PKA where hi(x) is the i-th iteration of the

hash function. We allow that Bob’s determined time tBj differs from Alice’s
determined time tAi by one interval length L, i.e., Alice’s and Bob’s determined
times may each differ from the actual global time by L.6 Hence, Bob will
6Note that the required level of time synchronization only depends on the size of the time

5.3 Identity Certified Authentication Protocol 83

tolerate that he got a chain element that is one position behind or before the
element he expected. We express this as a correction term ’±{0, 1}’ in the
formula.

We now want to reduce the risk that Bob uses key values he just obtained
to impersonate Alice (or vice-versa). To prevent such an attack where Bob
obtains the hash-chain value for some time interval and then uses it to negotiate
with a third entity, we introduce a random seed. Alice and Bob select a random
seed rA and rB. Both Alice and Bob have a set of pre-computed certificates
in the form 〈tA, r, PKA〉 and 〈tB, r, PKB〉 for all possible r which they obtain
from the manufacturer. Now Bob can only impersonate Alice to a third party
John if John uses for some time interval the same random seed as Alice. Since
this is an interactive proof system we expect that a small set for the seeds r

suffices, e.g., r being an 8-bit number. In that case each entity has to store 28

pre-computed certificates. If we would set the time interval to be one minute,
Bob had to ask on average 27 entities in two minutes to find an entity using
the same random seed as Alice. Further possibilities to increase the security
level are given below.

5.3 Identity Certified Authentication Protocol

Assume Alice wants to authenticate to Bob and starts the authentication
process. The mutual ZCK protocol of Figure 5.4 is used as basis here in
order to pairwise exchange a certified hash-chain. The IC protocol is illus-
trated in Figure 5.7. The core idea here is that for each time interval there
is a different key. One has to prove knowledge of the appropriate key for a
given time interval. However, a third party cannot use this captured key for
an impersonation attack since time moves forward and the captured key is not
valid anymore. The protocol has several phases. First there is the certificate
exchange (Steps 0–3). Then Alice and Bob determine the difference between
current time and issuing time of the certificates (Step 4), and perform the ZCK
key exchange (Steps 5–6). Now Alice and Bob prove knowledge of a previous
hash-chain element by opening keys (Steps 7–8). Finally, if the knowledge
proof was successful, Alice and Bob store the exchanged ZCK key for further

intervals.

5.3 Identity Certified Authentication Protocol 84

identification processes performed by the ZCK protocol. For a better under-
standing, we explain the phases in more detail.

Certificate exchange: (Steps 0–3)
A sends a hello message to B which responses by sending a random seed rB

to A. A now chooses a seed rA and sends it as well as the pre-computed
certificate 〈tu, idA, rB, PKA〉MF with PKA = xA

2(nA−1)+1 to B. B verifies the
signature of the manufacturer, and subsequently sends the pre-computed cer-
tificate 〈tv, idB, rA, PKB〉MF with PKB = xB

2(nB−1)+1 to A. A verifies the
signature of the manufacturer.

Compute time differences: (Step 4)
Assume A determines its current time tAi with dA

u = i− u and dA
v = i− v, and

B determines its current time tBj with dB
v = j − v and dB

u = j − u.

ZCK-key exchange: (Steps 5–6)
A chooses a hash-chain with final element yA

n′A
and sends an authenticated

session key for the ZCK recognition protocol with time key kA
c = xA

2(nA−1−dA
u)

as (yA
n′A

)kA
c

to B. Then B chooses a hash-chain with final element yB
n′B

and
sends an authenticated session key for the ZCK recognition protocol with time
key kB

c+1 = xB
2(nB−1−dB

v) as (yB
n′B

)kB
c
to A.

Knowledge proof: (Steps 6–8)
B starts opening keys by sending kB

c+1 as part of the last message in Step 5.
A then checks whether h2dA

v ±{0,1}(kB
c+1) is equal to PKB. Then A opens her

key by sending kA
c to B. Now B checks if PKA is equal to h2dB

u +1±{0,1}(kA
c).

Finally B opens another key to be checked by A.

Store ZCK-key: (Step 9)
If all checks hold, Alice and Bob store the ZCK-key. Subsequently, both parties
use the certified session keys for message authentication as described in the
ZCK recognition protocol. If any check fails, A and B stop the execution and
restart it from the beginning.

We observe the following characteristics of the IC protocol:

• Once a session key of a hash-chain is exchanged and authenticated, this
key is used as described in the basic ZCK protocol, i.e., it is used for
all further identification and message authentication procedures for the
entity pair Alice and Bob.

5.3 Identity Certified Authentication Protocol 85

Figure 5.7: Identity Certified authentication protocol

Transmitting: Processing:
Certificate Exchange:
0. A → B : hello
1. B → A : rB

2. A → B : rA, 〈tu, idA, rB , PKA〉 B: verify certificate
3. B → A : 〈tv, idB , rA, PKB〉 A: verify certificate
Compute Time Differences:
4. A: determine tAi with dA

u = i− u, dA
v = i− v

B: determine tBj with dB
v = j − v, dB

u = j − u

Key Exchange:
5. A → B : a′n, MAC(a′n, Ac)
6. B → A : b′n, MAC(b′n, Bc), Bc+1 A: h2dA

v ±{0,1}(Bc+1)
?= PKB

Knowledge Proof:

7. A → B : Ac B: h2dB
u +1±{0,1}(Ac)

?= PKA

8. B → A : Bc A: h(Bc)
?= Bc+1

Store ZCK-Key:
9. A: P(b′n)

B: P(a′n)

• For the public-key certificate an arbitrary signature scheme might be
used. We assume an RSA like scheme because it performs signature
verification very efficiently.

• The scheme is vulnerable to a denial-of-service attack by sending invalid
certificates. To the author’s knowledge there is no solution known when
using asymmetric cryptography for this problem in general, though.

5.3.1 Security

If we set the interval length L to be infinitely small and the bit size of the
challenge r to an appropriate security level, it is clear that this scheme is as
secure as the ZCK protocol. However, the loose time synchronization as well as
a small security parameter lr for r introduce weaknesses. We see the following
two attacks. An adversary Mallory starts an authentication process with Alice
to obtain her certificate and a key of the hash-chain for the seed rA. He then
uses these values for Bob to obtain his certificate and one of Bob’s keys for
the seed rB. Now he uses Bob’s key and certificate against Alice who has to
use the same seed rA again such that the adversary obtains the second key for
the current time interval. Mallory is then able to impersonate Alice against

5.3 Identity Certified Authentication Protocol 86

Bob in the current time interval. In the second attack, Mallory eavesdrops an
authentication process between Alice and Bob to obtain a certificate and the
keys for the current time interval. He then tries to impersonate Alice against
a third entity John with these values in that same time interval. In both cases
Mallory uses the fact that he knows keys that are valid in the current time
interval. Hence he has at most two time intervals to impersonate Alice because
of the time tolerance we allow. However, in both cases Mallory has to find an
entity that uses the same random seed rA as Alice since the keys he obtained
are only valid for this seed. It becomes clear that by increasing the bit-size
of the seed r and shortening the time-intervals the security level can be set
arbitrarily high.

For a higher security level it is possible to perform several authentication
processes in parallel. In such a case, all messages of the parallel processes are
sent at once such so number of exchanged messages does not increase whereas
the data, computation, and storage overhead increases linearly. Note that the
used certificates need to be distinguishable, i.e., for two parallel processes there
need to be two distinguishable sets of certificates for each r. For instance,
when performing three processes in parallel, an adversary Mallory has two
minutes to find an entity requiring the proper nonce which on average takes
him 223 = 8388608 authentication processes. Then there have to be three
distinguishable sets of certificates. Hence there is memory space required for
p · 2r certificates, where p is the number of parallel instances.

5.3.2 Certificate Lifespan

The certificate lifetimes depend on the application and the available infrastruc-
ture. If certificates can be renewed once in a while, the lifetime can be chosen
quite short. In many applications a temporary network will be available to
support certificate renewal. Other applications may require that the certifi-
cate lifetime exceeds the device’s lifetime. In the following, we consider a
sensor network scenario because of our intention to analyze the energy con-
sumption which is of special interest in sensor networks. We assume that the
IC hash-chain has n = 1000 elements at a time interval length of five minutes
such that the certificate life-time is more than three days. Using the methods
of [16], such a hash-chain can be computed with 1/2 log2(n) computations at
the storage of log2(n) elements, i.e., if 10 elements are stored, each element

5.3 Identity Certified Authentication Protocol 87

can be recovered by 5 hash function iterations. The verifier has to iterate
the hash-chain to the public-key, i.e., on average he has to run n/2 iterations.
Since an element has 10 Byte in size, there is storage needed of 100 Byte for
each hash-chain. Furthermore, each 1024-bit RSA certificate requires memory
of 128 + 10 = 138 Byte. Thus, using a certificate set of 28, there is memory
space required of 256 · (138+100) Byte ≈ 60 KB. When using the IC protocol
for a static sensor network, it is reasonable to limit the number of successful
IC authentications to one per time interval. Thus an adversary Mallory has
less than 5 minutes time left to impersonate Alice when there are 28 different
challenges r, i.e., Mallory’s probability of a successful impersonation is 2−7

which for some applications might be sufficient for an interactive proof system
in the considered network class. However, it is not appropriate for applica-
tions such as financial transactions of significant value. Clearly, if there is
more memory space and computational power available, e.g., in a more power-
ful device such as a sensor aggregator or a more powerful device in an ad-hoc
network, there could be used 6 parallel sessions with a certificate set of r = 5.
Thus the complexity of an attack would increase to 230 which is considered
to be a high security level for interactive proof systems. In ad-hoc networks
with more powerful devices the certificate life-time can be chosen far higher
by lengthen the hash-chains. Furthermore, recent research by M. Fischlin sug-
gests to include further information with the public key to reduce the effort
for the verifier [54]. Hence, we believe that chain lengths of n = 1, 000, 000 can
be chosen to support a certificate lifetime of several years in ad-hoc networks.

In the next chapter we analyze the efficiency of our protocols. Therefore
we assume parameters for the IC protocol suited for a lifetime of several days
using a certificate set of r = 8, i.e., there is a memory space requirement of
60 KB. On low-power devices with highly constrained memory resources we
could instead use r = 6 resulting in 14 KB of required memory space at a
lower security level.

6 Efficiency Analysis of Authentication

Protocols

We now analyze the efficiency of our protocols from the previous chapter and
compare it to the hybrid authentication protocol (Algorithm 3.7) which is a
standard authentication protocol. Efficiency can be evaluated regarding the
energy consumption as well as computational complexity. We start by con-
sidering the energy consumption of the authentication protocols, then analyze
their efficiency, and finally compare them. Parts of this chapter were presented
in [91].

6.1 Energy Consumption

We introduce a simple energy model that suffices for our purpose. We hereby
consider the energy consumption that results of radio transmission and proces-
sor activity due to the cryptographic overhead. A more sophisticated energy
model was introduced by Carman et al. [13]. Actual comparisons of the energy
consumption of standard cryptographic algorithms can be found in [66, 35].

6.1.1 Device Architecture

For the subsequent estimation of the arising energy cost we consider a highly
constrained homogeneous network consisting of devices equipped with an 8-bit
CPU, and small memory and bandwidth capacity. For our analysis, we use the
Mica Motes of Crossbow [17] as reference platform. The Mica2 has 128 KB

programmable flash memory, 4 KB SRAM, and runs at 8 MHz. Hence, it is
already a relatively high powered sensor device. A less costly sensor might have
a 4-bit CPU at less than 4 MHz, and might thus be an order of magnitude
slower. The packet size is 36 Byte of raw data, and 28 Byte of data without
header at 38.4 Kbaud and a transmission range of at most 150m. The Mica
Motes run under TinyOS [80].

6.1 Energy Consumption 89

Asymmetric cryptographic primitives, e.g. digital signatures, require quite
some execution time and thus cause much energy consumption. In some cases,
asymmetric methods might be too demanding at all. A 134-bit ECC opera-
tion on an 8-bit 8051 processor which is roughly comparable to our considered
hardware platform and our security level takes 2998 ms for a point multipli-
cation [45]. Thus, the execution time for a signature verification is about 6s

(two point multiplications). We can estimate that a 1024-bit RSA signature
verification is more than 10 times faster than an ECC verification at a similar
security level [92]. Thus we expect an RSA verification to run in 0.5s [48].
For the subsequent estimation of the protocols’ energy consumption we chose
RC5 for both, computing the MAC and the hash-chain since it is already part
of TinySec, the security module of TinyOS. An additional scheme would cost
additional storage space. On the Mica Motes an RC5 based hash function
H has a running time of 2.22 ms and a CBC − MAC based on RC5 takes
4.18 ms [19].

6.1.2 Energy Model

There are two operation modes of sensor nodes which largely reduce the battery
charge, namely processor activities and the transmission of data. The number
of CPU operations for the IC and the ZCK protocol is fixed and so is the
resulting battery consumption for processing. However, the energy cost for
data transmissions is variable for both protocols. They increase linearly with
the packet size, and proportionally to the square of the transmitting distance.
In particular, the latter means that with a varying node density in the network,
the energy cost for transmission will significantly vary.

Our subsequent estimation of the total energy consumption for the ZCK
protocol and the IC protocol is based on the following assumptions. All values
are derived of the Mica2 Motes specification [17]. At a speed of 38.4 Kbaud,
the transmission of one packet of 36 Byte takes about 10 ms. The Motes are
powered by 2 AA batteries which supply around 2200 mAh [51]. For computa-
tion, we assume that the energy consumption requires a current consumption
of 8000 nA such that computation of one millisecond costs 0.0022 nAh. Receiv-
ing a data packet also has a current of 8000 nA, i.e., receiving of a packet which
takes 10ms costs 0.022 nAh. Transmitting at maximum power requires a cur-
rent of 25 mA, i.e., transmitting a packet which takes 10ms costs 0.07 nAh.

6.1 Energy Consumption 90

The Mica Motes specification gives a maximum distance of 150 m. As this
value is for outdoors in a perfect environment, we assume a distance of 50m

here at maximum transmission power. We now give an overview of our as-
sumptions:

Processing Energy EP

• the energy consumption EP for processing a basic operation ζ is linear
to its execution time tζ :

• EP (tζ) := tζ · EP (1).

Transmitting Energy ET

• Let p(η) be the number of packets required to send a message η. The
energy consumption ET for transmitting a message η for a given dis-
tance d is linear to the number of packets p(η). Furthermore, the energy
consumption ET for transmitting a given message η is quadratic to its
transmission distance d:

• ET (d, η) := d2 · p(η) · ET (1, 1).

Receiving Energy ER

• the energy consumption ER for receiving a message η is linear to the
number of packets p(η):

• ER(p(η)) = p(η) · ER(1).

Note that for the device architecture introduced before it holds that

• EP (r ms) = 0.0022 · r nAh,

• ET (d m, p(η) packets) = 0.07 (d/50)2 · p(η) nAh, and

• ER(p(η)) = p(η) · 0.022 nAh

We are aware that the Mica Motes do not allow dynamic adjustment of the
transmission power. However, as future motes might allow this we include this
possibility in our model. A node’s energy consumption in idle, sleep or receive
mode is negligible compared to transmission and processing energy. In the
reminder, we use the following values:

6.1 Energy Consumption 91

Table 6.1: Energy map of the ZCK protocol per protocol step and per involved
entity

Alice Ni(∀i = 1, · · · , n) Bob
1. 100EP (H) + ET (d,H) ER(H) + ET (d,H) ER(H) + EP (P)
2. ER(H) + EP (P) ER(H) + ET (d,H) 100EP (H) + ET (d,H)
3. - - -
4.‡ 4EP (H) - -
5.‡ ER(H) + EP (H) ER(H) + ET (d,H) 4EP (H) + ET (d,H)
6. ET (d,H) ER(H) + ET (d,H) ER + EP (H)
7. EP (P) - EP (P)

‡ := message exchange

operations ζ tζ EP (ζ)

V ERRSA 0.5s 1.1 nAh

H 2.22ms 0.0049 nAh

P negligible -

messages η size (Bytes) p(η) ET (d m, η) ER(η)

H 10 1 0.07 · (d/50)2 nAh 0.022 nAh

certRSA 138 5 0.35 · (d/50)2 nAh 0.11 nAh

r 1 1 0.07 · (d/50)2 nAh 0.022 nAh

Clearly, our model assumes an ideal environment. One may argue that our
model simplifies unrealistically. Nevertheless, we believe that it is well suited
as a basic metric to decide under which circumstances protocols like the ZCK
and the IC protocol are applicable to sensor networks.

6.1.3 Energy Map of the ZCK Protocol

We now list the energy consumption of the ZCK protocol of Figure 5.1 per each
protocol step and per each involved sensor node. We are using the notations
of the previous section. Steps 1 and 2 are done only once and include the
computation of the public keys an and bn, respectively. Steps 4 and 5 include
the authentication of the message for which the right key of the hash-chain
needs to be computed. For hash-chains of length n = 100, there are 4 iterations
of the hash function necessary.

In Table 6.1 we present a node’s total energy consumption when running the
ZCK protocol. We only consider the energy overhead here and not the energy
consumption for normal messages or the MAC as this needs to be transmitted

6.1 Energy Consumption 92

in every scheme to obtain a basic security level. Obviously, the energy con-
sumption depends on a node’s role within the authentication process. If a node
is in the role of Alice, Bob or an intermediate node, its energy consumption is
EA, EB, or EN . For the key exchange, the following energy cost is necessary
only initially (Steps 1-2):

E ′
A = E ′

B = ER(H) + ET (d,H) + EP (P) + 100EP (H) (6.1)

= 0.506 + 0.07(d/50)2 nAh

E ′
N = 2ER(H) + 2ET (d,H) (6.2)

= 0.044 + 0.14(d/50)2 nAh

For each recognition process, there is the following energy necessary (Steps 3-
7):

EA = EB = ER(H) + ET (d,H) + EP (P) + 5EP (H) (6.3)

= 0.0462 + 0.07(d/50)2 nAh

EN = 2ER(H) + 2ET (d,H) (6.4)

= 0.044 + 0.14(d/50)2 nAh

Let x be the number of message authentication processes that are performed
between a pair Alice and Bob. Thus the total energy can be computed as
Ê = E ′ + x · E. Hence we obtain:

ÊA = ÊB = (x + 1)ER(H) + (x + 1)ET (d,H) + (x + 1)EP (P) (6.5)

+(100 + 5x)EP (H)

= x 0.0462 + 0.506 + (x + 1) 0.07(d/50)2 nAh

ÊN = 2(x + 1)ER(H) + 2(x + 1)ET (d,H) (6.6)

= (x + 1) 0.044 + (x + 1) 0.14(d/50)2 nAh

6.1 Energy Consumption 93

Table 6.2: Energy map of the IC protocol per protocol step and per involved
entity

Alice Ni(∀i = 1, · · · , n) Bob
1. ER(r) ET (d, r) + ER(r) ET (d, r)
2. ET (d, r + certRSA) ET (d, r + certRSA)+ ER(r + certRSA)+

ER(r + certRSA) EP (V ERRSA)
3. ER(certRSA)+ ET (d, certRSA)+ ET (d, certRSA)

EP (V ERRSA) ER(certRSA)
4. - - -
5. ET (d, 2H) + 110EP (H) ET (d, 2H) + ER(2H) ER(2H)
6. ER(3H) + 500EP (H) ET (d, 3H) + ER(3H) ET (d, 3H) + 110EP (H)
7. ET (H) ET (d,H) + ER(H) ER(d,H) + 500EP (H)
8. ER(H) + EP (H) ET (d,H) + ER(H) ET (d,H)
9. EP (P) - EP (P)

6.1.4 Energy Map of the IC protocol

We now derive the energy consumption of the IC protocol of Figure 5.7 as
presented in Table 6.2. Again, the energy that is required by Alice, Bob and
intermediate nodes is divided into the different columns. The pre-computation
that is done by a workstation is not part of this analysis. We assume that the
hash-chains have n = 1000 elements. On average there are 10 hash iterations
computed by Alice and 500 by Bob to verify the public key (Steps 6 and 7).
Furthermore, we assume that the ZCK hash-chain, which is created and trans-
mitted in Steps 5 and 6, has a length of n′ = 100 elements such that altogether
500 + 100 + 10 = 610 hash iterations are performed both by Alice and Bob in
Steps 5–7. Note that the 100-element chain is used for the subsequent ZCK
protocol whereas the 1000-element chain is used for the IC only. When using
the ZCK protocol afterwards, the initial phase of the ZCK protocol does not
need to be redone.

From this energy map we derive the following equations which represent the
sensor node’s energy consumption of the IC protocol for the different roles.

E ′′
A = ET (d, r + certRSA + 3H) + ER(r + certRSA + 4H) + (6.7)

EP (611H + V ERRSA + P)

= 0.63 (d/50)2 + 4.3072 nAh

E ′′
N = ET (d, 7H + 2r + 2certRSA) + ER(7H + 2r + 2certRSA) (6.8)

6.1 Energy Consumption 94

= 1.33 (d/50)2 + 0.418 nAh

E ′′
B = ET (d, r + certRSA + 4H) + ER(r + certRSA + 3H) + (6.9)

EP (610H + V ERRSA + P))

= 0.7 (d/50)2 + 4.2804 nAh

After the identification phase and the exchange of a ZCK key, the ZCK
protocol can be used for message authentication. Again, let x be the number of
message authentications that are performed afterwards. Then we can compute
the total energy as Ê = E ′′ + x · E by combining Equations (6.3) and (6.4)
with Equations (6.7) to (6.9).

ÊA = ET (d, r + certRSA + (3 + x)H) + ER(r + certRSA + (4 + x)H) + (6.10)

EP ((111 + 5x)H+ V ERRSA + (1 + x)P)

= (x 0.07 + 0.63) (d/50)2 + x 0.0462 + 4.3072 nAh

ÊN = ET (d, (7 + 2x)H+ 2r + 2certRSA) + ER((7 + 2x)H+ 2r + 2certRSA)(6.11)

= (x 0.14 + 1.33) (d/50)2 + x 0.044 + 0.418 nAh

ÊB = ET (d, r + certRSA + (4 + x)H) + ER(r + certRSA + (3 + x)H) + (6.12)

EP ((110 + 5x)H+ V ERRSA + (1 + x)P))

= (x 0.07 + 0.7) (d/50)2 + x 0.0462 + 4.2804 nAh

6.1.5 Energy Map of Traditional Protocols

With respect to the following comparisons we now want to present an energy
consideration of alternative traditional protocols using hybrid methods as pre-
sented in Algorithm 3.7. We presented the ZCK and the IC protocol to provide
recognition and identification, respectively. Alternatively, one can use a sin-
gle shared key for all devices which does not cause any overhead. However,
then all the devices had to be under the control of the same authority, and
the entire network depends on the security of each of the devices, i.e., if one
devices gets broken or tampered with, all the devices are insecure. A pairwise
pre-distribution of symmetric keys overcomes some of these problems, but it
does not allow the network to be extended and thus is limited to only a few au-
thorities. Thus we consider the following two protocols which are comparable

6.1 Energy Consumption 95

to the ZCK and IC protocol.

(1) Uncertified DH (UDH): uncertified Diffie-Hellman key exchange with
subsequent symmetric authentication ↔ ZCK

(2) Certified DH (CDH): certified Diffie-Hellman key exchange with subse-
quent symmetric authentication ↔ IC + ZCK

The first one, an uncertified DH key exchange, is used to exchange a sym-
metric key which in the following is used to authenticate messages or entities
by a symmetric MAC scheme. The second one, a certified DH key exchange,
implements a key exchange using certificates to provide identification of the
participating parties. Both schemes work as presented in Algorithm 3.7. How-
ever, in UDH a public key is first computed and then exchanged whereas in
CDH the public key is exchanged as part of a certificate. The UDH proto-
col provides recognition and is equivalent to using the ZCK protocol, and the
CDH protocol provides the functionality of the IC+ZCK protocol, i.e., using
IC for a ZCK key exchange and then using ZCK for message authentication.
To derive the energy consumption, we extend our previous assumptions. We
assume that elliptic curve cryptography (ECC) is used for the key exchange
(ECDH) as it is far more efficient for this task than RSA. An ECC certificate
certECC consists of an ECDSA signature of 40 Byte and a public key PKECC

of 21 Byte when using point compression such that 3 packets are required to
transmit an ECC certificate. A point multiplication OPECC , which is the core
operation on an elliptic curve, takes 3s as described before, such that a signa-
ture generation SIGECC takes 3s and a signature verification V ERECC takes
6s. Altogether we obtain:

operations ζ tζ EP (ζ)

OPECC 3s 6.6 nAh

SIGECC 3s 6.6 nAh

V ERECC 6s 13.2 nAh

messages η size (Bytes) p(η) ET (d ft, η) ER(η)

certECC 61 3 0.21 · (d/50)2 nAh 0.066 nAh

PKECC 21 1 0.07 · (d/50)2 nAh 0.022 nAh

6.1 Energy Consumption 96

We now derive the energy equations for the UDH protocol. To be able to
act anonymously such as it is provided by the ZCK protocol, i.e., to change
identity, we cannot assume that the public key is pre-computed but needs to
be computed once in a while. Here, for the ECDH each party performs an
ECC operation OPECC to obtain a public key, submits this value and then
performs another ECC operation to obtain the shared secret. Hence we obtain
the energy consumption of the protocol flow for each of the involved entities.

EA = EB = 2 EP (OPECC) + ET (PKECC) + ER(PKECC)

= 0.07 (d/50)2 + 13.222 nAh

EN = 2 ET (d, PKECC) + 2 ER(PKECC)

= 0.14 (d/50)2 + 0.044 nAh

If the CDH protocol is used, the certificate also needs to be checked, thus
requiring another signature verification on each side. Contrary to the uncerti-
fied version, here the public key is pre-computed as it is part of the certificate.
Thus, the signature step is omitted, but another verification step for the cer-
tificate is included. Therefore we can derive the energy consumption of the
protocol flow for each of the involved entities as follows:

EA = EB = ET (certECC) + ER(certECC) + EP (OPECC + V ERECC)

= 0.21 (d/50)2 + 19.866 nAh

EN = 2 ET (d, certECC) + 2 ER(certECC)

= 0.42 (d/50)2 + 0.132 nAh

Since we only consider the overhead caused in addition to a basic security
level by using a MAC when using UDH or CDH, there is no additional overhead
for the following message authentications. Hence for the total energy it is
Ê = E in this case.

6.2 Efficiency Analysis 97

6.2 Efficiency Analysis

We now consider the efficiency of our new protocols. First, we give a summary
of the ZCK and IC protocol properties following Tables 3.1 and 3.2. Tables 6.3
and 6.4 clearly show that our protocols provide efficient authentication. We
are now prepared to compare the ZCK and IC protocol in more detail to the
hybrid schemes CDH and UDH, respectively. In the following, we first compare
the operational complexity, and then we analyze how the ZCK and IC protocol
compare to UDH and CDH regarding the energy consumption.

Table 6.3: ZCK and IC properties
requires provides

entity message recogn./auth.
secure key pre- Single time recogn./ unil. / broad- self-
relay dist. Manuf. sync. auth. pairw. cast enforc.

ZCK x - - - + / - + / - - / - +
IC - - x x + / + + / + - / - +

† := secure acknowledgement

Table 6.4: ZCK and IC efficiency
Low Computations Low Bandwidth

ZCK ⊕⊕ ⊕
IC ⊕ ª

6.3 Comparison of the Schemes

We now want to compare the ZCK and IC protocol to other protocols. In
Chapter 3 we considered several authentication protocols. Obviously, the sce-
nario we are considering here can also be provided by the Guy Fawkes and the
TESLA protocol that use similar approaches.

We first compare the ZCK to the Guy Fawkes protocol. Both protocols
require a reliable relay channel for the initial phase. ZCK is based on hash-
chains whereas the Guy Fawkes protocol is based on commitment schemes
based on hash values. Both the protocols are extremely efficient. Comparing
the case of mutual message authentication, the protocols have the following
complexity as presented in Table 6.5.

6.3 Comparison of the Schemes 98

Table 6.5: Comparison between ZCK and Guy Fawkes protocol
ZCK Guy Fawkes

exchanged messages 4 4
exchanged bytes 50 80
computational effort - -

One can see that both the schemes require negligible computations. How-
ever, the Guy Fawkes protocol requires more exchanged bytes. Furthermore,
the Guy Fawkes protocol is more complex. If Alice only wants to authenticate
a single message m0 she needs to perform two iterations of the Guy Fawkes
protocol since the key for the authenticated message is opened in the next
iteration. If the ZCK protocol is used a single protocol run is sufficient to
authenticate a single message.

Furthermore, we want to compare the ZCK and IC protocol to TESLA [64].
Both approaches are based on Lamport’s hash-chains. The IC protocol even
couples hash-chains with with a loose time synchronization mechanism as does
TESLA. However, there are the following major differences between TESLA
and our protocols:

• ZCK protocol: The ZCK protocol does not require any time synchro-
nization whereas TESLA does. TESLA is based on time intervals in
order to enlarge the number of messages that can be authenticated by
only one signature. TESLA is providing a mechanism that even allows
to provide message authentication for a broadcast stream. On the other
side the ZCK protocol uses hash-chains in order to provide authentica-
tion by interaction without any requirement for a time synchronization.
The difference becomes apparently when applying the ZCK and TESLA
protocol in order to authenticate a single message. Then TESLA degen-
erates to authentication by a digital signature (or in the case of µTESLA
by a pre-distributed shared secret) whereas the ZCK protocol does not
require public-key algorithms or a pre-distributed shared secret.

• IC protocol: The IC protocol is similar to the TESLA protocol. However,
in contrast to TESLA our IC protocol applies hash-chains in combination
with pre-computations 1 at initialization time in order to minimize the

1Note that these pre-computations do not induce the pre-deployment of secret shared keys

6.3 Comparison of the Schemes 99

Table 6.6: Operational complexity of ZCK and UDH
ZCK UDH

init public-key size (Bytes) 10 21
exchanged messages 2 2
exchanged bytes 20 42

computational effort - 4 PK Op.
authentication exchanged messages 3 1

exchanged bytes 30 10
computational effort - -

code size 35 KB -

required computation later on. Hence, the hash-chain is used in order to
agree on a key that is later on used as key in the ZCK protocol without
actually computing it but by leading it back to a pre-computed certificate
value. Again, consider the case of a single message authentication. As
said before, TESLA degenerates to the basic signature scheme where the
sender generates a digital signature of the message whereas the receiver
verifies the signature. In contrast, the IC protocol only requires the
verification step in order to authenticate a message.

6.3.1 Operational Complexity

We now consider the operational complexity of above protocols for message
recognition and message authentication, respectively. We assume the same
parameters as above. Table 6.6 gives an overview of the complexity of the
ZCK and UDH protocols. It is distinguished in the initialization phase and
the recognition phase. Note that contrary to the previous considerations here
the transmission of the MAC for each recognition is also considered. We im-
plemented the ZCK protocol on the Mica2 Motes. A preliminary version has
a code size of around 35 KB. Since a hash function has negligible complexity
compared to a public key operation we omit it here. Note that for both the
ZCK and the UDH protocol a full distribution of all the public keys requires
n(n − 1) keys as there is no central directory of public keys as there is for a
public-key infrastructure.

We now present the operational complexity of the IC and the CDH in Ta-

but computational pre-computations.

6.3 Comparison of the Schemes 100

Table 6.7: Operational complexity of IC and CDH
IC CDH

init certificate size (bytes) 138 61
exchanged messages 7 2
exchanged bytes 348 122

computational effort 2 PK Op. 4 PK Op.
authentication exchanged messages 3 1

exchanged bytes 30 10
computational effort - -

code size 45 KB -

ble 6.7. Note that the IC protocol needs quite some memory storage for pre-
computation. An implementation of the IC protocol is to be expected at
around further 10 KB for the RSA verification such that we estimate a code
size of 45 KB. Again, we distinguished the initialization phase and the authen-
tication phase. The number of exchanged bytes for the IC can be computed as
2 · 138 Byte for the certificates, further 70 Byte for the hash and MAC values
as well as 2 Byte for the seeds, such that we obtain 348 Byte altogether.

6.3.2 Device Lifetime

We define the lifetime of a device as the duration of time the node works
with a given power supply (e.g. battery) once it is deployed until the energy
resources are exhausted and the device needs to be re-charged or replaced.
For simplicity we are considering a flat and homogeneous network, i.e., each
node has the same hardware characteristics and there is no clustering structure
within the network. Note that for the energy efficiency of the ZCK and the
IC protocol, a flat homogeneous network is the most challenging architecture
since here the total initial energy load of the network is most restricted. We
now consider the lifetime of a network when using our new protocols. Let
n be the average number of forwarding nodes, x be the average number of
message authentication processes between each pair of parties that established
a communication channel, and p be the average number of channels that a
party establishes to other parties. Then the average energy consumption of an
involved node Ẽ can be computed as follows:

6.3 Comparison of the Schemes 101

Ẽ = p(ÊA + n · ÊN + ÊB)/(n + 2) (6.13)

For the ZCK protocol, by applying Equations (6.5) and (6.6) we obtain

ẼZCK = p/(n + 2) (n(x + 1) 0.14(d/50)2 + n(x + 1) 0.044 + (6.14)

(x + 1) 0.14(d/50)2 + x 0.0924 + 1.012) [nAh]

Note that for simplicity we do not consider additional costs resulting from
retransmission over the wireless. Let D be the average distance between Alice
and Bob over several hops, and d be the distance of a node to its neighbor node,
i.e., D = (n + 1)d. For a given D, Ẽ will obviously be minimal for small d as
this goes into Equation (6.14) with square complexity. The battery of a sensor
node has a capacity of around 2200mAh of energy. For instance, if D = 50m,
d = 10m, n = 4, and x = 1000, a sensor node can establish trust associations
to p > 40, 000 different parties before the energy is exhausted. If D = 100m,
d = 50m, n = 1, and x = 1000 this decreases to around p = 15, 000.

We now consider the lifetime of a sensor network when using the IC protocol
to establish identified channels and afterwards ZCK to authenticate messages.
The average energy consumption of an involved node can be computed by
Equations (6.10) to (6.12) as follows:

ẼIC = p(ÊA + n · ÊN + ÊB)/(n + 2) (6.15)

= p/(n + 2) (((n + 1)0.14x + (n + 1)1.33)(d/50)2 +

nx 0.044 + n 0.418 + x 0.0924 + 8.5876) [nAh]

Since the IC protocol requires more computational resources than the ZCK
protocol, we assume that a node only establishes identified relationships to its
neighborhood. Thus we pick a random node Alice and consider the neighbor-
hood of this node. All nodes that are reachable by at most l hops are in the
l-hop neighborhood of our node. We denote by c the connectivity of nodes,
i.e., the number of nodes that a node can directly reach without any interme-
diate nodes. The number p(l, c) of l-hop neighbors in a c-connected network

6.3 Comparison of the Schemes 102

for 3 ≤ c ≤ 6 is then computed as

p(l, c) = c

l+1∑
i=1

i. (6.16)

Next, we need to know how many intermediate nodes are on average involved
on the route from our node to a node of its neighborhood. All nodes that
are reachable by one hop do not involve any intermediate nodes. All nodes
that are reachable by two hops involve one intermediate node, and so on.
Thus altogether the number of intermediate nodes n(l, c) involved in pairwise
authentication in a c-connected network within an l-hop neighborhood of our
node Alice can be computed as follows for 3 ≤ c ≤ 6:

n(l, c) = (c
l+1∑
i=1

(i− 1)i)/p(l, c). (6.17)

Note that with respect to their position nodes need to be counted multiple
times to take into account that their involvement in multiple authentications
with varying communication partners from the l-hop neighborhood.

Thus, we can compute the total average energy of a node within its neighbor-
hood by plugging in values p and n of Equations (6.16) and (6.17) into (6.13).
For instance, consider a homogeneous network that is 4-connected with d =

20m. When using the IC protocol to establish a identified channel to the 1-hop
neighborhood, i.e. to p(1, 4) = 12 nodes, and on average there are x = 1000

messages exchanged, then n(1, 4) = 2/3. By inserting these values into Equa-
tion (6.15) we obtain an energy consumption of Ẽ = 757 nAh which is less
than 0.04% of the total battery capacity of 2200 mAh.

Clearly, the energy consumption of the CDH and UDH protocols also de-
pends on the overall distance D and the distances d between each two nodes.
As argued above, the energy consumption is minimal for a small distance d as
it goes into the energy consumption with a square complexity. The average
total energy can easily be obtained for the UDH protocol as

6.3 Comparison of the Schemes 103

ẼUDH = p/(n + 2) ((n + 1)0.14(d/50)2 + n 0.044 + 26.444) [nAh] (6.18)

and for the CDH as

ẼCDH = p/(n + 2) ((n + 1)0.42(d/50)2 + n 0.132 + 39.732) [nAh] (6.19)

6.3.3 Comparison of the Schemes

Finally, we want to compare our new schemes to the hybrid ones. We first em-
phasize the benefits of the ZCK protocol: (1) it is computationally extremely
efficient; (2) it is provably secure; (3) it works between two low power devices;
and (4) it allows a party easily to start fresh (anonymity). First, it seems
clear that for recognition our ZCK protocol is computationally far more effi-
cient than any asymmetric scheme, and it is nearly as efficient as a message
authentication scheme using a MAC. Hence, for time critical applications, or
when there is the need of establishing new channels often, ZCK should be the
first choice. If the number of intermediate nodes is small, ZCK is also from
an energy perspective a good solution. If identification is needed, IC performs
well in some scenarios. If the network is reliable and packets do not get lost
frequently the large certificate size only has moderate impact. Furthermore,
if very low-power devices are used, e.g., sensors that are equipped with a 4-
bit CPU at less than 4 MHz, IC might be the only possibility to perform an
identification since an ECC key agreement is too demanding for these devices.
Again, if there are time critical applications, it might be a good idea to use IC
since it is operationally more efficient than an ECC solution.

We now want to compare the energy consumption in more detail. Thus
we compare the energy consumption for ZCK to the UDH, and IC+ZCK to
the CDH. Namely, we compare Equation (6.14) to (6.18) and Equation (6.15)
to (6.19). Hence we are interested when

ZCK ↔ UDH : n(x + 1) 0.14(d/50)2 + n(x + 1) 0.044 + (x + 1) 0.14(d/50)2

6.3 Comparison of the Schemes 104

Figure 6.1: Trade-off between the ZCK and UDH protocol

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

m

es
sa

ge
 a

ut
he

nt
ic

at
io

ns

d [m]

"ZCK_UDH_n=0"
"ZCK_UDH_n=1"
"ZCK_UDH_n=2"
"ZCK_UDH_n=3"
"ZCK_UDH_n=4"

+ x 0.0924 + 1.012 < (n + 1)0.14(d/50)2 + n 0.044 + 26.444

and

IC + ZCK ↔ CDH : ((n + 1)0.14x + (n + 1)1.33)(d/50)2 + nx 0.044

+ n 0.418 + x 0.0924 + 8.5876 < ((n + 1)0.42(d/50)2) + n 0.132 + 39.732

Figure 6.1 illustrates the trade-off between the ZCK and the UDH protocol.
There are five graphs for fixed n = 0 . . . 4 that determine the trade-off of
messages x for different distances d, i.e. the number of messages x where the
ZCK and UDH protocols are equivalent regarding their energy consumption.
Below the curve, the ZCK protocol requires less energy than the UDH protocol.

Figure 6.2 illustrates the trade-off between the IC+ZCK and the CDH pro-
tocol in the same manner. For instance, let us consider the first case for a
scenario where d = 20 m and n = 4. If on average there are at most x = 66

message authentications performed, ZCK requires less energy then the UDH,
otherwise it requires more energy. For a network where d = 50 m and n = 0,
ZCK is more energy efficient for x ≤ 109. Now let us compare the IC+ZCK

6.3 Comparison of the Schemes 105

Figure 6.2: Trade-off between IC and CDH

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50

m

es
sa

ge
 a

ut
he

nt
ic

at
io

ns

d [m]

IC+ZCK_CDH_n=0
IC+ZCK_CDH_n=1
IC+ZCK_CDH_n=2
IC+ZCK_CDH_n=3
IC+ZCK_CDH_n=4

to the CDH. Then for d = 20m and n = 4, IC+ZCK is more energy efficient
for x ≤ 77, and for d = 50 m and n = 0 it is for x ≤ 131.

It now becomes clear that the ZCK protocol and also the IC protocol are
very energy efficient for a small average number of hops n in the network and a
small number of message exchanges x per communication pair. Hence, we fore-
see applications in highly mobile networks. Furthermore, when computational
efficiency is of importance, e.g. in time critical applications, our protocols are
by far more efficient than any solution using intensive asymmetric cryptogra-
phy. On the other hand our ZCK protocol requires caching of a message before
it can be verified. Thus the scheme is vulnerable to a message overflow attack.
Due to the increased number of messages compared to other schemes our ZCK
as well as our IC protocol might be less powerful in unreliable networks. If
data packets get lost frequently, the number of re-sent messages will decrease
network performance.

We believe that our schemes close the gap of symmetric protocols to asym-
metric protocols. We provided efficient solutions for several scenarios when
there is no TTP nor key pre-distribution available. In particular, the ZCK pro-
tocol provides mutual recognition solutions for Pure Ad-hoc networks whereas
the IC is suited to Single Manufacturer networks. When used with trust ac-

6.3 Comparison of the Schemes 106

cumulation schemes, ZCK is able to provide almost the functionality of entity
authentication and message authentication. We believe that this the optimum
to achieve in a Pure Ad-hoc network. Our schemes become especially power-
ful in combination with a local neighborhood approach of higher-level security
protocols.

7 Component Identification

After considering several issues related to authentication in ad-hoc networks
and presenting new authentication protocols, we now present an application
of ad-hoc network protocol techniques in order to provide component iden-
tification in complex systems. Our component identification provides theft
protection as well as protection of counterfeits and manipulation. Our solu-
tion might be applied to systems where such security goals are crucial and an
enabler for safety, e.g., in automobiles and airplanes. We present our protocol
in the context of automobiles because new technologies are quickly introduced
to this industry sector. Parts of this chapter were presented in [86, 88].

7.1 Introduction

As the ad-hoc network technology matures it also becomes increasingly inter-
esting for the vehicle industry. Ad-hoc networks of cars could considerably
make driving a car more comfortably and more safe. Several scenarios and
protocols regarding security of smart vehicles were introduced by Hubaux et
al. in [40]. For instance, cars will communicate to exchange information about
free parking spaces and about threats. A basic enabler for such a technology
is a unique identifier for each car. This would be the electronic counterpart to
today’s license plate. If this electronic license plate broadcasts its identifica-
tion while the car is running, this information could be used by toll systems,
by police, or in case of a hit-and-run accident. A core requirement is that
the hardware module that implements the electronic license plate cannot be
manipulated nor faked or stolen in order to install it in another car. The same
requirements hold for all security related components of a car. As a car is
entirely accessible by its owner, the approach of ensuring such security goals is
not obvious. The straightforward idea is to have a tamper resistant hardware
module that implements all security mechanisms. For instance, this security
module would implement the electronic license plate in order to broadcast a

7.1 Introduction 108

unique identification string over a built-in radio. However, an adversary could
just steal the security module and build it into his car for impersonation, or
he could remove the security module from his car. Thus, there needs to be
a bond between components and the vehicle. Now, if an adversary manip-
ulates or removes any security related part of the vehicle, the vehicle could
stop working. Even more, if an adversary manipulates any device that is re-
lated to safety, e.g. the airbag or brake system, the vehicle will stop working.
We propose a scheme for providing component identification in order to bind
security and safety related parts of a vehicle to a central security module.
Only if there is any such mechanism implemented in a car, security of ad-hoc
networks between cars can be implemented in a way that suffices legal require-
ments. Otherwise, if a car owner is able to manipulate his car in a way that
it broadcasts malicious messages, traffic might be affected or endangered. For
instance, if a car driver sends messages about a non-existing threat, drivers
of following cars might initiate an emergency brake and endanger their life.
Hence, our scheme is an enabler for security of ad-hoc networks between cars.
On the other hand, all components form an ad-hoc network by itself. New
components can be added and replaced, and components are provided with a
secure communication channel.

To the author’s knowledge there is no system yet that provides component
identification using cryptographic methods. Traditional methods use tags, e.g.
holographic stickers, that are supposed to be unforgeable. However, as it can
be seen in the airplane industry, such tags can easily be bought on the black
market [9]. A watermark can nicely be embedded into a component by a DNA
fingerprint. A unique special DNA sequence is composed by means of modern
biological mechanisms. Then the DNA is mixed with ink which in turn is
printed onto the component. A special pen filled with the counterpart to the
DNA sequence is then used to validate the component. More about seals and
stickers can be found at [82]. Another way of providing a basic protection
against counterfeits and theft is ensured by mechanical countermeasures. For
instance, there are car radios of special size such that they only fit into cars
of a single manufacturer. However, the owner cannot keep his radio after
buying a new car so that this solution is uncomfortably. Ensuring component
integrity of cars was already considered by automotive companies [18, 83].
They propose to load the vehicle identification number into each component.

7.1 Introduction 109

System integrity is ensured by checking whether all components use the same
vehicle identification number and whether all components are still in the car.
An authorized mechanic performs any changes at the car. If a component is
installed or demounted by the authorized mechanic, on-line access is required.
Clearly, there is a considerable threat due to non-trustworthy mechanics.

In the following we present a scheme to bind crucial components to a car. We
use component identification to secure all components of a car against cloning
(faked parts), manipulation, and theft. In particular, our scheme protects
the car owner of bogus parts that endanger the operation of the car, and it
minimizes the financial damage of suppliers. This damage is estimated to be
as high as 250 billion Euros worldwide [42]. Our first protocol is based on a
central security module which we call High Security Module (HSM). An HSM
is a tamper resistant security module that is able to perform cryptographic
operations. The key data is stored inside of the HSM. Trying to compromise
the HSM in order to get a key will destroy the HSM and delete its memory
such that the keys are lost. Since building such a module is hard to achieve
and costly the second protocol we present gets rid of the HSM by distributing
the task of the HSM to all components. Our solution is very general and easy
to apply. There is no need to adjust components before they are installed,
and all processes can be executed automatically. Furthermore, our scheme
does not only provide a secure environment for the owner of a car but for all
involved parties such as the manufacturer and the mechanics. Our solution is
applicable to cars but also to other transportation vehicles such as trains and
airplanes. Furthermore, our work is applicable to other systems which consist
of components that need protection against cloning, manipulation, and theft.

7.1.1 Assumptions

For the remaining we assume the following.

1. A simple computing tag is attached to each crucial component in such a
way that removing the tag destroys the component.

2. The HSM as well as the computing tags are able to perform cryptographic
operations.

7.1 Introduction 110

3. There is a temporary connection available between the vehicle and a
central server.

Assumption (3) can be omitted if there is no connection available. Protection
against cloned parts is then not possible, though. We present approaches where
both an HSM is used and where it can be omitted. Also we present approaches
where asymmetric cryptographic methods can be replaced by symmetric meth-
ods such that low-cost RFID tags can be attached to the components. We now
present our assumptions in more detail:

• The component tags communicate over a wireless communication chan-
nel. All components are able to communicate to each other component
either by a single-hop or multi-hop communication channel. Further-
more, all component tags are able to communicate to the car’s board
computer.

• To perform cryptographic operations and to transmit data packets the
component tags need quite some energy. Hence, we assume that they are
equipped with a battery having a life span of several years that outlasts
the lifetime of the component, or that the component is directly powered
by the component that by itself is connected to the car’s power supply
network. We also present a solution for passive RFID tags that do not
require a battery.

• There is a trusted third authority that issues certificates, e.g., a govern-
ment institution or a car manufacturer.

• The components or a central security module are able to take actions in
case that a protocol step fails. For instance, the central security module
might share a key with crucial car components. It then orders these
components to turn off in case of a failure.

• If any check in the protocol fails, an alarm is issued. For instance, the
engine stops working, or an alarm message is broadcasted.

• Each component is equipped with a small CPU tag. This tag, for instance
a smart card or RFID chip, is able to perform basic cryptographic oper-
ations. It is advantageous to bind the module to the component in such

7.1 Introduction 111

a way that removing or tampering with the module destroys the compo-
nent as well as the cryptographic secrets. For instance, a tag might be
embedded at the time when an engine is molded.

• Each component holds a unique ID as well as a cryptographic secret SK.
ID comprises a unique identification string as well as further information
such as the manufacturing date and the component’s quality class.

• The cryptographic mechanisms are well chosen and implemented. The
component tags are well embedded to the components such that it is not
possible to measure any side-channel information such as power supply
or EMF radiation. Depending on the used technology there might be
sophisticated side-channel attacks possible in order to recover the secret
data of a component tag, though.

7.1.2 Adversarial Model

For the attacker we assume the following. In short, we assume that the adver-
sary has full control over the communication channel. Hence, the adversary
can

• read all messages sent from any component,

• modify messages, delay them or send them multiple times, and

• send messages generated by himself to any component.

Furthermore, an adversary has full physical access to the car and its compo-
nents. Using sophisticated technologies the adversary might be able to recover
secret key data of the component tags. Since the lifetime of components and
tags will be a decade or so, the secret key material might be exposed to such
attacks after a while. The adversary has full control over all components, and
he can program faked component tags.

The backend system is not vulnerable to any attacks. We assume that there
are no insider attacks, that central servers and directories are not vulnerable
and cannot be read or manipulated by non-authorized entities.

The adversary has several aims:

7.2 Asymmetric Component Identification 112

1. to a given car install a component that is not an original one

2. modify or replace a component in any car by a component that is not an
original one

3. steal a component of any car and install it to another one

4. to any car install a component that is not an original one

The aims (1) and (2) can be seen as the attack of a single entity, e.g., the owner
of a car who wants to install a faked component to his car. Aims (3) and (4)
might be seen as the objectives of organized groups that want to distributed
stolen, faked, or cloned components.

7.2 Asymmetric Component Identification

The main goal is to bind components to a vehicle. We first present a solution
based on an HSM using asymmetric cryptography. The main threat for a car
arises if components are stolen, manipulated, or cloned. We define cloning as
the act of rebuilding a component up to a perfect copy, in some cases even
including secret cryptographic keys. Hence, our scheme provides piracy pro-
tection, system protection, and theft protection. Piracy protection provides
the ability to identify original parts and the possibility to detect counterfeits
and cloned components. System protection provides system integrity by mon-
itoring systems for unauthorized changes, and theft protection prevents the
use of stolen components in another system. We are considering a system in
which all components hold authentic data which can be verified via a data bus
whereby all claimants and at least one verifier are connected to the bus. There
are three phases that we consider: (1) The installation of a component into a
car, (2) the running system, and (3) the demounting of a component out of the
car. We describe our security goals by an example. Only original parts can be
built into the car. Every time the ignition key is turned the system integrity is
checked, and only in case of an unaltered system the engine starts. A display
in the dash board shows the status of all present system components. This
could be useful, e.g, to prove that the mechanics of a car garage used original
parts only. There might also be a button to manually start the check such

7.2 Asymmetric Component Identification 113

that the owner can prove integrity to a third party. For instance, the owner
can prove to police that a proper electronic license plate is built in.

We assume the following vehicle environment as above. Furthermore, we
assume the following:

• There is an HSM inside of each car that is considered to be tamper
resistant.

• The component tag is able to perform asymmetric operations.

• The HSM performs cryptographic operations and stores secret key data,
and it is able to take actions in case of malicious behavior of components.
The HSM might be a component itself. For instance, the role of the HSM
might be executed by the board computer. The HSM is able to take
actions in case of a malicious behavior of a component. For instance, the
HSM might share a special secret key with the engine in order to send
the engine a command to turn itself off.

• Each component holds a certificate 〈PK, ID〉 as well as the correspond-
ing secret key SK. ID comprises a unique identification string as well as
further information such as the manufacturing date and the component’s
quality class.

• The HSM of a vehicle holds a list UL of all components built into the
vehicle. This list is regularly synchronized with a global list GL of all
components. The synchronization is performed in a secure manner to
avoid any manipulation. Each component can be uniquely identified.

• There might be a global certificate revocation list (CRL) with all compo-
nents that were revoked. A component might be revoked if it was stolen,
or if it is known that it was cloned.

In the context of sensor networks we argued that tamper resistant hardware
modules are hard to produce and costly. In the car environment, we believe
that a tamper resistant device such as an HSM is possible, however. The cost
for the HSM can be high but it is still low relative to the car’s cost. Then a
sophisticated HSM can be used such that the effort to compromise the HSM is
extremely high and the benefit low. For the tags, we expect that they can be

7.2 Asymmetric Component Identification 114

embedded into the components by means of mechanical engineering in such a
way that removing them requires that much effort that it exceeds any gain.

All identifications are performed in a challenge-response manner. After A

presents a certificate, B needs to check whether A has knowledge of the cor-
responding secret key SK. Algorithm 7.1 provides this check.

Algorithm 7.1 Challenge-response identification
1: B → A : rB

2: A → B : rA, S := SIG(rA||rB||B, SK)

3: B checks whether V ER(S, PK)
?
= ′valid′

The check of a symmetric key K is performed in a similar way by using
a MAC. Algorithm 7.2 provides this check in a mutual way. Here, A checks
whether B knows the secret key K and also B checks whether A knows the
secret key.

Algorithm 7.2 Mutual challenge-response check of a symmetric key
1: B → A : rB

2: A → B : rA,MA := MAC(rA||rB||B, K)

3: B checks whether MAC(rA||rB||B,K)
?
= MA

4: B → A : MB := MAC(rB||rA||A,K)

5: A checks whether MAC(rB||rA||A,K)
?
= MB

Note that in general all messages of components are encrypted and authen-
ticated by a commonly shared key K.

As already mentioned there are three phases to consider when talking about
component identification which we will discuss in detail. The main idea is to
have an initial component, e.g., the HSM that is imprinted with a secret key
K. Each component holds a certificate. If a component is added to the vehicle,
the certificate is checked. Then the component obtains the secret vehicle key
K which is checked while the car is running in order to prevent manipulations
after the installation. Finally, our solution allows a controlled demounting of a
component in order to distinguish stolen components from properly demounted
ones. The life cycle of a component is depicted in Figure 7.1.

7.2 Asymmetric Component Identification 115

Figure 7.1: Life cycle of a component

Key Check

Proof of

Origin

Key

Initialization

System

Check

Disassembly

I
n

s
t

a
l

l
a

t
i

o

n

R

u

n

n
i

n

g

S

y

s
t

e
m

D

e

m

o

u

n
t

i
n

g

Period
 Procedures

7.2.1 Initialization of a Car

At initialization time, the HSM is installed into the car as first component.
Further components might be installed into the car at initialization time. If
the HSM requires means of disabling the car or issuing an alarm the HSM
exchanges secret keys with crucial components. For instance, the HSM might
agree on a key with the car’s engine and the car’s dashboard, e.g. by using the
Diffie-Hellman key agreement based on the HSM’s and components’ certificates
such that it is able to disable the car or to display warning messages. Note that
for this purpose a separate key is shared between the HSM and the component
that is only used for this purpose.

The HSM now randomly chooses a key K that becomes the vehicle key.
Assuming that the car is assembled in a trustworthy environment such as a
manufacturer plant the vehicle key K is now distributed to all installed com-
ponents. Note that here the key K is not encrypted. If there is no trustworthy
environment available then for each installed component the installation pro-
cedure can be executed as described below.

If the component tags are equipped with computationally strong CPUs a tra-
ditional key management for the formation of ad-hoc networks can be used. For
instance, a group key-agreement scheme based on the components’ certificates

7.2 Asymmetric Component Identification 116

could be used for a higher security level at higher computational costs [77].
For the devices we envision here we believe such a scheme to be too resource
demanding, though.

7.2.2 Installation of a Component

A new component is installed by adding it to an already existing set of com-
ponents that form the car. Components are added stepwise. Once a new
component is added to the car the installation phase is executed. It consists
of the following steps:

• key check: check whether the component is already part of the vehicle,
e.g., after the component was disassembled for repairing it.

• proof of origin: check whether the component has a valid certificate.

• key initialization: providing a valid component with the vehicle key K.

The key check runs as presented in Figure 7.2. First, the newly installed
component C provides its unique ID. The HSM checks whether ID ∈ UL.
This holds if C was part of this car before. If so, the HSM checks if the new
component knows K by a challenge-response authentication. Otherwise, if the
component is new, the proof of origin check is performed.

During the proof of origin, the HSM checks whether the new component
provides a valid certificate. The HSM performs the steps as presented in
Algorithm 7.3 and depicted in Figure 7.3 for a new component C.

Algorithm 7.3 Proof of origin
1: The HSM verifies the certificate 〈PK, ID〉 and checks whether C knows

the secret key SK by a challenge-response method.
2: It checks the CRL for 〈PK〉.
3: It puts C on UL with a preliminary flag.
4: After UL was synchronized with GL the preliminary flag of C is deleted.

If C was already on GL, an alarm is raised.

In the last two steps, C is put on UL in a preliminary manner. If C is on
the global built-in list GL then it is already built into another vehicle which
indicates that this component was cloned or stolen.

7.2 Asymmetric Component Identification 117

Figure 7.2: Key check

Proof of

Origin

no

On UL?

Has

Vehicle

Key?

Alarm

no

yes

Stop

yes

Figure 7.3: Proof of origin

Alarm

failed
Authen-

tication

On CRL?
 Alarm

yes

succeed

no

On UL?
 Alarm

yes

no

Key

Initialization

7.2 Asymmetric Component Identification 118

Figure 7.4: System check with one verifier

HSM

C
1

C
n

C
i

…

.
.

…

.
.

Finally, after all checks were performed successfully, C is provided with the
vehicle key K during the key initialization. For that reason, the HSM sends
E(K, PK), which is the encryption of K by the key PK, to C.

7.2.3 The Running Vehicle

We ensured that all components that are installed into the car were verified. As
trustworthy components they were initialized with the vehicle key K. However,
after they are installed they might be manipulated, exchanged, or removed.
Thus, we execute the system check in order to verify whether all components
know the vehicle key K. The system check can be executed several times:

• every time the car is started

• periodically, e.g., every 30 minutes

• initiated manually, e.g., to prove system integrity to a policeman

There are basically two methods to execute the system check. In the first
version, which is depicted in Figure 7.4, the HSM challenges all components
one after the other by a challenge-response method to check the components’
knowledge of K. Clearly, only components that are listed in UL are involved.

In the second method, which is depicted in Figure 7.5, each component of
the vehicle checks another component. The HSM starts by challenging another

7.2 Asymmetric Component Identification 119

Figure 7.5: System check with cyclic verifier

HSM

C
1

C
2

C
n

component, which in turn challenges another component, and so on, until the
security module is challenged by a component such that the circle is closed.
Here, each component holds the list UL of all installed components, and all
components have to agree on an order of being challenged. If any check fails,
the challenging component raises an alarm by sending a message to the HSM.
The HSM then takes appropriate actions. Note that if the communication
bus supports parallel communication, the system check can be performed in
parallel by all components. Then all components send their challenge and
respond to a challenge in parallel. Obviously, it is easy to prevent an attacker
from jamming the communication channel in order to delete the alarm message
by letting each component either send a positive or negative alarm message.
By using a challenge-response method, replay attacks are prevented.

Clearly the system checks are vulnerable to compromised components. A
component might always fake an authentication since all components use the
same shared key K. Furthermore, in the cyclic version a component might
"short-cut" an authentication process by skipping components in the cycle.
However, we assume here that all components that have knowledge of the
system key K play fair. If K is known the system can be considered to be
broken. The check can also be performed based on the component’s certificates
such as described in Algorithm 7.1. Such a check is not vulnerable to an insider
attack where the insider has knowledge of the system key K. However, such a
check based on asymmetric cryptography is in many cases too demanding for
the considered device class.

7.3 Distributed Component Identification 120

7.2.4 Demounting of a Component

The demounting procedure has to be performed once a component is removed
of a vehicle in order to install it into another vehicle. If a component is re-
moved and then installed again into the same car, nothing needs to be done.
Hence, the demounting procedure is performed to be able to distinguish a legal
demounting to a theft of a component. The demounting of a component C

works as presented in Algorithm 7.4.

Algorithm 7.4 Demounting
1: The HSM checks whether C knows the secret key K by a challenge-response

method.
2: Then the HSM deletes C of the UL.
3: At the next synchronization of UL, C is also deleted of the global list GL.

To remove C in a controlled way, it first has to prove that it knows the
secret vehicle key K. Then C is deleted of the system and of the built-in lists
UL and GL such that it appears like a new component. Components which
are bound to a specific car and thus must not be demounted can be marked
as such in their certificate, the UL, and the GL by a flag. The HSM will then
not allow these components to be demounted of the vehicle.

In cases where there is no GL, a component stores a flag in its memory which
indicates whether the component is installed in a car. When the component
is demounted, the flag is deleted. Components can only be installed into a
car if the flag is not set. Such a solution is also preferable in cases where the
synchronization of UL and GL is only performed rarely.

7.3 Distributed Component Identification

In above approach we assumed that there is an HSM in each vehicle. As
the HSM is a central point of failure, it probably will be the first point of
attack. Thus, the HSM is assumed to be tamper resistant. More realistic
and cheaper is a tamper evident module. Here, a manipulation of the device
cannot be avoided but detected. However, manipulation cannot be detected
in an automatic way but only by individual inspection. We now extend above
scheme such that the role of the HSM is distributed to all components, meaning

7.3 Distributed Component Identification 121

to all component tags. As before, a tag is embedded to each component. The
tags must be able to verify certificates and perform public-key operations.

We now introduce supporting procedures for our system in order to distrib-
ute the HSM’s task.

Distribution of UL: As said before, the HSM holds a list UL of built-in
components. This list is now distributed to all components. In the easiest case,
each component holds a copy of the UL. Once a component changes its UL, it
broadcasts the new version to all other components. To ensure integrity of the
broadcast and in order to prevent replay attacks, we perform Algorithm 7.5.
Here, i is an incremented counter.

Algorithm 7.5 List distribution
1: A component C increments i and computes

U := [E := E(UL||i,K),M := MAC(E, K)].
2: C broadcasts U .
3: A receiver R only accepts U if M verifies correctly and if i is larger than

its stored counter i′

4: R stores UL and updates i′ ← i.

Selection of a Random Component: Furthermore, we need a mechanism
to choose a component randomly out of all vehicle components. As said before,
we assume that all components that know the vehicle key K are trustworthy.
First, all components have to choose a random number x. This works as
presented in Algorithm 7.6.

Algorithm 7.6 Selection of a random number
1: Each component Ci chooses a random number ri and broadcasts E :=

E(ri||IDi, K) as well as M := MAC(E, K).
2: All components check whether they got input from all components and

verify the correctness.
3: Each component computes x := h(

∑
i ri).

Clearly, this scheme is vulnerable to a malicious component that knows the
vehicle key K because such a component could wait for its output until it
received input of all other components. It is not vulnerable to an external at-
tack though. An unconditionally secure version of choosing a random number
is based on commitment schemes which works as presented in Algorithm 7.7.
Assume that m is an RSA modulus, and e and d are the RSA public and

7.3 Distributed Component Identification 122

private key, respectively. Then a simple commitment function that commits
to a value x under a key d is O := commit(x, d) = xe mod m. Intuitively,
the committed value x cannot be changed since O is given, but it can easily
checked once d is published.

Algorithm 7.7 Selection of a random number by commitments
1: Each component Ci chooses a random number ri and a random key Ki,

commits to it as O := commit(ri||IDi, Ki) by key Ki, and broadcasts O.
2: After all components broadcasted their commitment, each component

opens its commitment by broadcasting ri and Ki.
3: All components verify the commitments and compute x := h(

∑
i ri).

Now, all components can choose a random component as presented in Al-
gorithm 7.8. All components know which component acts as verifier, and only
accept a new UL of the selected component.

Algorithm 7.8 Selection of a random component
1: All components together select a random number x.
2: Each component Ci computes vi := h(IDi||x) where h is a hash function.
3: The component Ci with the smallest value vi acts as verifier. As the IDs

are publicly known, all components can verify the selection.

Raising an Alarm: Finally, we need an efficient scheme for raising an
alarm in a distributed manner. This can be done as follows. Each component
that performs a check has to broadcast its result, i.e., a positive or a negative
result message. If the result is negative, each component takes action. In the
easiest case, a component stops its operation. In order to prevent that an
adversary jams the communication channel to prevent broadcasts of negative
results, we introduce a time-out of result messages. If a time-out occurs, a
component assumes a negative result and takes action. To prevent failures,
the time-out value can be chosen very large, or a component can be asked to
send its result again.

After designing these auxiliary protocols, we now consider the life cycle
phases of a component. These follow in a straightforward manner by combining
the phases installation (Section 7.2.2), running system (Section 7.2.3), and
demounting (Section 7.2.4) with the auxiliary protocols above.

Installation: For the installation of a component C, there has to be a
component acting as verifier S instead of the HSM. This component is cho-
sen randomly out of all vehicle components using Algorithm 7.8. Now, S

7.4 Symmetric Component Identification 123

performs the installation procedure, updates UL, and broadcasts it by using
Algorithm 7.5.

Running System: For the system check, a random component is chosen
by Algorithm 7.8 to initialize the check. If any check fails, a distributed alarm
is raised as described above. If the cyclic system check is performed, all com-
ponents perform the check in parallel.

Demounting: For the demounting of a component C, a random compo-
nent S is chosen by Algorithm 7.8 to act as verifier. Now, S performs the
demounting operation, updates UL, and broadcasts it by using Algorithm 7.5.

7.4 Symmetric Component Identification

After presenting an approach based on asymmetric cryptography we now
present an approach based on symmetric cryptography only. Such an approach
is especially useful if we assume that the security tags are resource limited. In
particular, the power as well as computational power might be limited. In the
optimal case, RFID (Radio Frequency Identification) tags are used to imple-
ment the security tags. These do not require a battery but are powered by
the radio waves such that the security tag’s lifespan is not limited by its power
resources. However, such low-power devices only have extremely limited com-
putational resources just enough to perform basic symmetric cryptographic
methods.

For this approach we modify our assumptions as follows:

1. There is an HSM in each car. The HSM acts as a gateway between
component tags and a central server S.

2. The HSM is temporarily connected to a central server S.

3. The HSM and S share a symmetric key KHSM .

4. A security tag, e.g. an RFID, is embedded into each component.

5. The security tags as well as the HSM are able to perform basic symmetric
cryptography such as computing a MAC but no asymmetric cryptogra-
phy.

7.4 Symmetric Component Identification 124

6. Each component Ci is equipped with a symmetric key Ki. The central
server S holds a list KL of all symmetric keys Ki.

7. Each car holds a system key K.

Hence, all challenge-response authentication processes are performed by a
symmetric scheme as described in Algorithm 7.2. We base the symmetric
approach on an HSM inside of each automobile. The HSM is temporarily
connected to a central server such that data can be exchanged whenever an
on-line connection is available. The HSM only needs to perform symmetric
cryptography but no asymmetric one. Note that the HSM mainly acts as
gateway between the car’s components and the central server such that the
HSM can be a dedicated component tag. Hence, this approach is based on
low-cost RFID tags only and does not require any expensive devices. We now
consider the life cycle of a component.

7.4.1 Installation of a New Component

As before, a new component is installed to an already existing set of compo-
nents that form the car. Again, we run through the following phases:

• key check

• proof of origin

• key initialization

The key check to check whether the new component already was part of the
car in the past is executed as presented in Section 7.2.2. The proof of origin
and key initialization need to be adapted though. During the proof of origin,
the HSM first sends a challenge r to the new component Ci to be signed by the
new component. Ci computes the MAC over r by its secret key Ki and sends
back M := MAC(r,Ki) to the HSM. The HSM accepts Ci in a preliminary
manner and waits for the next available on-line connection to the server. The
HSM then forwards M to the central server together with r and the system
key K. The server has a list of all components’ secret keys Ki. If it can
successfully verify the new component’s response, it sends the new component

7.5 Features and Enhancements 125

the encrypted system key. The server S also checks whether Ci was already
build into another car and thus is a clone. If any check fails in the algorithm,
an alarm is issued and countermeasures are taken as described above. These
steps are presented in Algorithm 7.9.

Algorithm 7.9 Proof of origin for the symmetric case
1: The HSM sends a challenge r to Ci.
2: Ci computes M := MAC(r,Ki) and sends M to HSM.
3: The HSM puts Ci on UL with a preliminary flag.
4: After a connection between the HSM and S is established, the HSM sends

Enc(M ||r||K, KHSM) to the server S.
5: S checks whether Ci is on GL.
6: If the check is negative, S obtains Ki for Ci from KL and verifies whether

MAC(r,Ki)
?
= M .

7: If the verification is successful, S computes E := Enc(K,Ki), puts Ci on
GL, and sends E to HSM.

8: The HSM forwards E to Ci and deletes the preliminary flag.
9: C and the HSM now perform a challenge-response authentication to prove

knowledge of K.

7.4.2 Running System and Demounting of a Component

The system integrity of the running system is performed based on a sym-
metric cryptographic scheme as presented in Section 7.2.3. Furthermore, the
demounting of a component is performed in the same manner as presented
in Section 7.2.4. Hence, no adaption of above algorithms is necessary for the
running system and the demounting phase.

7.5 Features and Enhancements

Our security scheme provides piracy protection, system protection, as well as
theft protection. We now consider features we can implement additionally.

Policies and Priorities: Each component certificate can include a string
about its properties and limitations. For instance, this information might
include a flag whether the component is allowed to be removed of a given car,
or if a replacement must be installed. Furthermore, it might include what
action has to be taken if the component does not act in an appropriate way

7.5 Features and Enhancements 126

or if it is missing. For instance, the other components might stop operating
if the airbag is missing, or they might display a warning message if the car
radio is missing. This additional information is stored in the UL shared by all
components.

Controller Units: If the component is already equipped with a microcon-
troller, the security tag can be combined with the component. For instance,
consider a mileage counter. These are often manipulated in order to increase
the value of used cars. The manipulation can be prevented by restricting ac-
cess to the mileage counter to those components that know the vehicle key K.
Here, it is possible to lower the requirement for a tamper resistant device to a
trusted computing platform at the same security level. Such trusted comput-
ing solutions are able to protect the microprocessor against manipulation and
thus provide a sufficient level of security.

Component History: This feature provides the opportunity to distinguish
between new and used components. We present two solutions. First, a com-
ponent holds an initial key which can only be used once. Each new component
holds a certificate Z := 〈PK, ID〉 as well as another certificate 〈PKnew,Z〉
and the secret key SKnew. When a component is installed for the first time,
it proves knowledge of SKnew. The security tag then deletes SKnew from its
memory once the component was successfully installed. If the same component
is installed into another car, it cannot prove knowledge of SKnew anymore. The
second variant is based on a central directory of all components. This direc-
tory records all information about the component including installation and
demounting date. It is straightforward to implement this directory based on
UL and GL. Clearly, this solution only works if there is a communication
channel available to synchronize UL and GL.
Key Update: Another feature deals with the update of the system key K

to increase the system’s security. The system key K should be updated peri-
odically and under certain circumstances, e.g., if an unauthorized component
is detected in the system. Another reason for updating K could be a missing
component. Only symmetric encryption is used for the key’s update. The new
system key Kt+1 is simply distributed by encryption with the old system key
Kt after all malicious components were removed from the car. This is shown
in Algorithm 7.10.

Alternatively, all components might be verified again. Hence, a new sys-

7.5 Features and Enhancements 127

Algorithm 7.10 Key update
1: Choose a random component S out of all components, or set S = HSM
2: S randomly chooses Kt+1

3: S broadcasts E := E(Kt+1, Kt) and M := MAC(E, Kt+1)

tem key K ′ is randomly chosen and then all components have to execute the
installation procedure. Also a group key-agreement scheme based on the com-
ponents’ certificates can be used for a higher security level at higher computa-
tional costs [77].

Key Initialization: The key initialization can be performed in two ways:
(1) there is a single component that founds the system to which new compo-
nents are added step by step; or (2) the system is completely assembled and
then all components are initialized at once. We now provide an example for the
latter scenario. After the assembly of all parts, e.g., after a car is completely
assembled a security engineer inserts a smart card to start the initialization.
The smart card generates a random vehicle key K and distributes this key to
all installed components. There is a smart card for each car such that each car
is initialized with another key. Alternatively, the HSM or a crucial component
like the engine generate a random key at first ignition and distribute this key
to all car components via the bus.

Key Hierarchies: In some applications there will be several groups of
different interest and authorizations. There is the owner, the mechanics of
independent and authorized garages, the suppliers of components, and the car
manufacturer. The different levels of authorization can be implemented by
the use of different keys to enable different levels of rights. Key hierarchies
provide methods to implement complex and interwoven relationships in large
systems. For instance, each owner is provided with a smart card that allows
him to replace parts of the car that are not relevant for safety. Whenever the
owner wants to install or dismount a component he has to attach the smart
card to the car. Whenever the owner gives the car to a garage for fixing
it, the mechanics use another smart card for replacing components including
safety relevant ones. Clearly, there must be no master-card with omnipotent
authorization. Even when using the smart card with the highest authorization
level, the car performs all security checks and raises an alarm if necessary.

Subgroups: We could divide all components into subgroups providing dif-

7.6 Security 128

ferent levels of security. Each subgroup holds its own system key. The higher
the security level and safety relevance of a group, the better the protection of
the assigned key, for example implemented by tamper resistant features. If a
key is compromised, only the key of one subgroup is compromised. Each sub-
group performs the system check independent of the other subgroups. Com-
munication among subgroups requires additional keys that are provided at
initialization time.

7.6 Security

We based the security of our scheme on the tamper resistance of the HSM as
well as the security tags. If these assumptions hold, our system is obviously
secure since all involved parties play fair. However, what happens if a key is
compromised?

If an adversary Mallory compromises the vehicle key K, he could equip
counterfeits with K and install them into the car. However, this attack will
only work if the counterfeits are listed on the list of built-in components UL
that is stored by the HSM or distributed to all components. Hence, Mallory
has to compromise the HSM which is assumed to be especially protected.
In a distributed solution, Mallory could compromise a component and force
a broadcast of the modified UL list. However, the broadcast will only be
accepted by the remaining components after an installation or demounting
procedure, and the new ULmust origin from the component that was randomly
selected as verifier for the installation or demounting procedure. If the random
selection is based on commitments, Mallory can only add a new component to
UL if his compromised component is chosen as verifier.

If Mallory is able to gain knowledge of a certificate 〈PK, ID〉 as well as the
secret key SK, he equips counterfeits with this certificate. He then installs
his counterfeits in a car to identify successfully. However, Mallory could not
use the same certificate twice for the same car since the HSM would detect
a collision. Otherwise, this attack is basically a cloning attack. It can only
be avoided when there is a global directory of all built-in lists GL available as
described before.

Mallory might replace the public key of the certificate issuer PKCA with his
own public key PKM . Then he is able to issue certificates for his counterfeits.

7.7 Conclusions 129

These perform the proof of origin successfully. However, Mallory had to replace
the public key of the HSM. In a distributed solution, he had to replace the
public key of components. As described before, Mallory cannot influence which
component acts as verifier though.

Obviously, if SKCA is compromised, the security of the entire system is
endangered. However, there are several techniques known how to securely
store the secret key of the certificate authority.

7.7 Conclusions

We presented a scheme for implementing component identification in the au-
tomotive context based on cryptographic authentication schemes. We first
presented a solution using a central high security module, and then we distrib-
uted the central task to security tags. Furthermore, we presented an approach
of using symmetric cryptographic methods only that can even be used with
passive RFID tags attached to the components. We introduced several features
such as key hierarchies and policies to make our system more flexible.

Our solution is mainly based on the tamper resistance of special security
hardware modules. In cases where the component has a mechanic main func-
tion, e.g. an engine, it is to be researched how secure hardware modules can
be embedded into the component. If the component has mainly an electronic
function such as a dashboard instrument, the security tag can take over the
role of the component. In such cases, trusted computing mechanisms are able
to provide tamper resistance. Since more and more parts of a car depend
on electronics, using such a solution will provide the required means for our
component identification scheme.

8 Summary and Outlook

In this thesis we analyzed and proposed authentication schemes for ad-hoc and
sensor networks. We started by giving an overview of existing schemes and
classified these. We then considered signature schemes and analyzed how well
they are suited to ad-hoc networks. We argued that in ad-hoc and especially in
sensor networks, a local neighborhood approach is always more efficient than
a global approach. In a local neighborhood approach, nodes establish relation-
ships to their direct neighbors in order to fulfil their task whereas in a global
approach there are central directories such that nodes can securely communi-
cate with each other node. The local neighborhood approach is provided by
pairwise authentication schemes. The local approach improves efficiency sub-
stantially compared to a global approach. The global approach is supported
by broadcast authentication schemes such as provided by digital signatures.
However, the local approach limits the capability of protocols. We proposed
two new extremely efficient pairwise authentication schemes that benefit of
the local approach’s efficiency. The first scheme is especially suited to sen-
sor networks whereas the second protocol is more powerful but also requires
more computational power as well as infrastructure such that it is appropriate
for ad-hoc networks. Finally, we presented a scheme for providing component
identification based on ad-hoc mechanisms. Such component identification
provides systems with theft protection, protection against counterfeits, as well
as protection against manipulation. Our component identification can be used
for complex systems such as cars or airplanes.

At the end of this thesis, we point out some thoughts and open problems
for future research:

• We believe that it should be a main goal of future authentication proto-
cols to provide asymmetric functionality with symmetric methods. Fur-
thermore, authentication protocols for ad-hoc networks should also be
provably secure. We believe that our ZCK recognition and IC authen-

Summary and Outlook 131

tication protocol which are extremely efficient and also provably secure
are a good start in this direction.

• It seems today that all authentication protocols are limited by their re-
quirements regarding computational efficiency and especially supporting
infrastructure. It would be valuable to have a more formal analysis about
these limitations, i.e., to obtain a maximum set of scenarios that are sup-
ported by today’s protocols, and a maximum set of scenarios that can
theoretically be supported.

• Regarding the limitations of today’s protocols, it would be very valuable
to design and implement a protocol that works in the following environ-
ment: the nodes are highly mobile and have computational resources to
perform public-key operations once in a while. However, once the devices
are deployed there is no supporting infrastructure available anymore be-
sides the devices itself. As this scenario fits many real-world applications
a proof of concept would be important.

Bibliography

[1] R. Anderson. Protecting embedded systems — the next ten years. In Ç.
K. Koç, D. Naccache, and C. Paar, editors, Workshop on Cryptographic
Hardware and Embedded Systems — CHES 2001, volume LNCS 2162,
pages 1–2. Springer-Verlag, 2001. Invited Talk.

[2] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and
R. Needham. A new family of authentication protocols. In ACM Operating
Systems Review, 1998.

[3] R. Anderson and M. Kuhn. Tamper Resistance - a Cautionary Note. In
Second Usenix Workshop on Electronic Commerce, pages 1–11, November
1996.

[4] N. Asokan and P. Ginzboorg. Key agreement in ad-hoc networks. Com-
puter Communications, 23, 2000.

[5] Association for Automatic Identification and Mobility. Webpage, 2004.
http://www.rfid.org.

[6] J. Brandt, I. D. rd, P. Landrock, and T. Pedersen. Zero-Knowledge Au-
thentication Scheme with Secret Key Exchange. Journal of Cryptology,
1998.

[7] S. Buchegger and J.-Y. L. Boudec. Performance analysis of the CON-
FIDANT protocol: Cooperation of nodes — fairness in dynamic ad-hoc
networks. In Proceedings of IEEE/ACM Symposium on Mobile Ad Hoc
Networking and Computing (MobiHOC). IEEE, June 2002.

[8] C. Buschmann, S. Fischer, N. Luttenberger, and F. Reuter. Middleware
for swarm-like collections of devices. IEEE Pervasive Computing Maga-
zine, 2(4), 2003.

Bibliography 133

[9] Business Week, W. Stern. Warning! Bogus parts have turned up com-
mercial jets. Where’s the FAA?, June 1996.

[10] L. Buttyán and J.-P. Hubaux. Nuglets: a virtual currency to stimulate
cooperation in self-organized mobile ad hoc networks. Technical report
dsc/2001/001, Swiss Federal Institute of Technology – Lausanne, Depart-
ment of Communication Systems, 2001.

[11] R. Canetti, J. Garay, G. Itkis, D. Miccianicio, M. Naor, and B. Pinkas.
Multicast security: A taxonomie and some efficient constructions. In
Proceedings of IEEE INFOCOM ’99, New York, USA, March 1999.

[12] S. Capkun and J.-P. Hubaux. Biss: building secure routing out of an
incomplete set of security associations. In Proceedings of the 2003 ACM
workshop on Wireless security, pages 21–29. ACM Press, 2003.

[13] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints and Approaches
for Distributed Sensor Network Security. Technical Report 00-010, NAI
Labs, 2000.

[14] Certicom Corp. Certicom ECC Challenge, since 1997. Available at http:
//www.certicom.com/resources/ecc_chall/challenges.html.

[15] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for
sensor networks. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2003.

[16] D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traver-
sal. In Proceedings of the Fourth Conference on Financial Cryptography
(FC ’02). Springer-Verlag, 2002.

[17] Crossbow. Webpage, 2004. http://www.xbow.com.

[18] Daimler Chrysler. Ausbausicherung für elektronische Komponenten bei
einem Fahrzeug. Offenbarungsschrift, DE 100 21 811 A1, November 2001.

[19] J. Deng, R. Han, and S. Mishra. Security support for in-network process-
ing in wireless sensor networks. In Proceedings of 1st ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN’03), pages 83–93,
October 2003.

Bibliography 134

[20] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in
Cryptology – Crypto ’89, volume LNCS 435. Springer-Verlag, 1990.

[21] J. R. Douceur. The sybil attack. In First International Workshop on
Peer-to-Peer Systems, pages 251 – 260, 2002.

[22] L. Eschenauer and V. Gligor. A key management scheme for distributed
sensor networks. In Proceedings on ACM CCS 2002, 2002.

[23] D. Estrin, R. Govindan, and J. Heidemann. Embedding the Internet.
Communications of the ACM, 43(5):39–41, May 2000.

[24] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures.
Journal of Cryptology, 9:35–67, 1996.

[25] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Proceedings on Advances in
Cryptology–CRYPTO ’86. Springer-Verlag, 1986.

[26] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling
algorithm of RC4. In Selected Areas in Cryptography (SAC) 2001, volume
LNCS 2259, 2001.

[27] S. R. Fluhrer and S. Lucks. Analysis of the E0 Encryption System. In
Proceedings of the 2001 ACM Symposium on Applied Computing (SAC),
2001.

[28] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold
DSS signatures. In Advances in Cryptology – EUROCRYPT ’96, volume
LNCS 1070, Berlin, Germany, 1996. Springer-Verlag.

[29] C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the
NTRU Signature Scheme (NSS). In Advances in Cryptology – EURO-
CRYPT ’01. Springer-Verlag, 2001.

[30] P. Golle and N. Modadugu. Authenticating streamed data in the presence
of random packet loss. In ISOC Network and Distributed System Security
Symposium (2001), pages 13–22, 2001.

[31] L. Gong. Variations on the themes of message freshness and replay. In
Proceedings of the IEEE Computer Security Foundations Workshop VI,
pages 131–136, Franconia, New Hampshire, June 1993.

Bibliography 135

[32] V. Gupta, S. Gupta, and D. Stebila. Performance analysis of elliptic
curve cryptography for ssl. In Proceedings of the 2002 ACM Workshop on
Wireless Security, 2002.

[33] J. Hammell, A. Weimerskirch, J. Girao, and D. Westhoff. Recognition in a
low-power environment. In Proceedings of the 2nd International Workshop
on Wireless Ad Hoc Networking (WWAN 2005), 2005.

[34] HiperLAN2 Global Forum. Webpage, 2004. http://www.hiperlan2.com.

[35] A. Hodjat and I. Verbauwhede. The energy cost of secrets in ad-hoc
networks. In IEEE Circuits and Systems workshop on wireless communi-
cations and networking, September 2002.

[36] Y.-C. Hu, D. B. Johnson, and A. Perrig. Sead: Secure efficient dis-
tance vector routing in mobile wireless ad hoc networks. In Fourth IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA ’02),
pages 3–13, June 2002.

[37] Y.-C. Hu, A. Perrig, and D. Johnson. Efficient security mechanisms for
routing protocols. In Proceedings of the Tenth Annual Network and Dis-
tributed System Security Symposium (NDSS 2003), 2003.

[38] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: A Secure On-Demand
Routing Protocol for Ad Hoc Networks. In Eighth Annual International
Conference on Mobile Computing and Networking (MobiCom 2002), Sep-
tember 2002.

[39] J.-P. Hubaux, L. Buttyán, and S. Čapkun. The quest for security in mobile
ad hoc networks. In ACM Symposium on Mobile Ad Hoc Networking and
Computing – MobiHOC 2001, 2001.

[40] J.-P. Hubaux, S. Čapkun, and J.Luo. Security and Privacy of Smart
Vehicles. to appear in IEEE Security & Privacy, 2004.

[41] IEEE Computer Society LAN/MAN Standards Committee. Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications
- IEEE 802.11, 1997.

[42] IHK Stuttgart. Wirtschaftsrecht: IHK setzt sich aktiv für die Bekämp-
fung von Produkt- und Markenpiraterie ein - Jährlich 250 Milliarden

Bibliography 136

Euro Schaden durch Produktfälschung weltweit. World Wide Web, 2004.
http://www.stuttgart.ihk24.de.

[43] J. Jubin and J. Tornow. The DARPA Packet Radio Network Protocols.
Proceedings of IEEE (Special Issue on Packet Radio Networks), 75:21–32,
January 1987.

[44] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust and
ubiquitous security support for mobile ad-hoc networks. In International
Conference on Network Protocols (ICNP), pages 251–260, 2001.

[45] S. Kumar, M. Girimondo, A. Weimerskirch, C. Paar, A. Patel, and
A. Wander. Embedded End-to-End Wireless Security with ECDH Key
Exchange. In IEEE Midwest Symposium on Circuits and Systems, De-
cember 2003.

[46] B. Lamparter, C. Paar, A. Weimerskirch, and D. Westhoff. On digital
signatures in ad hoc networks. Wiley Journal European Transactions on
Telecommunications, September 2005. Special Issue on Self-Organization
in Mobile Networking.

[47] B. Lamparter, K. Paul, and D. Westhoff. Charging support for ad hoc
stub networks. Journal of Computer Communication, 26:1504–1514, Au-
gust 2003. Special Issue on Internet Pricing and Charging: Algorithms,
Technology and Applications.

[48] J. López and R. Dahab. Performance of elliptic curve cryptosystems.
Technical Report IC-00-08, ICUniCamp, May 2000.

[49] S. Lucks, E. Zenner, A. Weimerskirch, and D. Westhoff. Efficient entity
recognition for low-cost devices. Technical Report, 2004.

[50] H. Luo, P. Zefros, J. Kong, S. Lu, and L. Zhang. Self-securing ad hoc
wireless networks. In Seventh IEEE Symposium on Computers and Com-
munications (ISCC ’02), 2002.

[51] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson.
Wireless sensor networks for habitat monitoring. In ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA’02),
Atlanta, USA, September 2002.

Bibliography 137

[52] A. Menezes and D. Johnson. The elliptic curve digitial signature algo-
rithm (ECDSA). Technical Report CORR 99-34, Department of C & O,
University of Waterloo, Ontario, Canada, August 1999.

[53] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.

[54] M.Fischlin. Fast verification of hash chains. In RSA Security Cryptogra-
pher’s Track 2004, volume LNCS 2964, pages 339–352. Springer-Verlag,
2004.

[55] C. Mitchell. Remote user authentication using public information. In
Cryptography and Coding, 2003.

[56] Mobile Ad-hoc Networks (MANET). Webpage, 2003. http://www.ietf.
org/html.charters/manet-charter.html\.

[57] National Institute of Standard and Technology. Recommended elliptic
curves for federal government use, May 1999. Available at http://csrc.
nist.gov/encryption.

[58] National Institute of Standard and Technology. Special Publication 800-
57, Recommendation for Key Management. Federal Information Process-
ing Standards, National Bureau of Standards, U.S. Department of Com-
merce, January 2003.

[59] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor
networks: analysis & defenses. In Proceedings of the third international
symposium on Information processing in sensor networks, pages 259 –
268, 2004.

[60] C. Paar, J. Pelzl, K. Schramm, A. Weimerskirch, and T. Wollinger. Einge-
bettete Sicherheit: State-of-the-art. In D-A-CH Security 2004, March
2004.

[61] P. Papadimitrados and Z. Haas. Secure routing for mobile ad hoc net-
works. In SCS Communication Networks and Distributed Systems Mod-
elling and Simulation Conference (CNDS 2002), 2002.

[62] K. Paul and D. Westhoff. Context aware detection of selfish nodes in dsr
based ad-hoc networks. In IEEE GLOBECOM 2002, 2002.

Bibliography 138

[63] A. Perrig, R. Canetti, D. Tygar, and D. Song. The TESLA Broadcast
Authentication Protocol. Technical Report 2, RSA Laboratories, 2002.

[64] A. Perrig, R. Szewczyk, V. Wen, D. Cullar, and J. D. Tygar. SPINS:
Security protocols for sensor networks. In Proceedings of MOBICOM 2001,
2001.

[65] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein. Theory of spread-
spectrum communications - a tutorial. IEEE Transactions on Communi-
cations, pages 855–884, May 1982.

[66] N. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. Analyzing the
energy consumption of security protocols. In IEEE International Sympo-
sium on Low-Power Electronics and Design (ISLPED), August 2003.

[67] I. Riedel. Security in ad-hoc networks: Protocols and elliptic curve cryp-
tography on an embedded platform. Diploma Thesis, March 2003. Ruhr-
University Bochum, Communication Security Group.

[68] R. Rivest. Can we eliminate revocation lists? In Financial Cryptography
– Second International Conference, pages 178–183. Springer-Verlag, 1998.

[69] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

[70] P. Rohatgi. A compact and fast hybrid signature scheme for multicast
packet. In 6th ACM Conference on Computer and Communication Secu-
rity, pages 93–100, November 1999.

[71] RSA Laboratories. Factoring Challenge. Available at http://www.

rsasecurity.com/rsalabs/node.asp?id=2093.

[72] N. B. Salem, L. Buttyan, J.-P. Hubaux, and M. Jakobsson. A Charging
and Rewarding Scheme for Packet Forwarding in Multi-hop Cellular Net-
works. In ACM/SIGMOBILE 4th International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHOC), June 2003.

[73] F. Stajano. The resurrecting duckling – what next? In The 8th Inter-
national Workshop on Security Protocols, volume LNCS 2133. Springer-
Verlag, 2000.

Bibliography 139

[74] F. Stajano. Security for Ubiquitous Computing. John Wiley and Sons,
Feb. 2002.

[75] F. Stajano and R. Anderson. The resurrecting duckling: Security issues
in ad-hoc wireless networks. In The 7th International Workshop on Se-
curity Protocols, volume LNCS 1796, Cambridge, UK, April 19–21 1999.
Springer-Verlag.

[76] Standards for Efficient Cryptography Group. SEC2: Recommended El-
liptic Curve Domain Parameters. Working draft, version 0.7, SECG, Sep-
tember 2000.

[77] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A New Approach
to Group Key Agreement. In Proceedings of the 18th International Con-
ference on Distributed Computing Systems (ICDCS’98), pages 380–387,
Amsterdam, 1998. IEEE Computer Society Press.

[78] M. Szydlo. Hypercubic Lattice Reduction and Analysis of GGH and
NTRUSign Signatures. In Advances in Cryptology – EUROCRYPT ’03.
Springer-Verlag, 2003.

[79] The Network Simulator NS-2, 2003. Available:
http://www.ietf.org/html.charters/manet-charter.html.

[80] TinyOS Project. TinyOS: a component-based OS for the networked sen-
sor regime. Available at http://webs.cs.berkeley.edu/tos/download.
html.

[81] U.S. Department of Commerce/National Institute of Standard and Tech-
nology. Digital Signature Standard (DSS), January 27, 2000. Available at
http://csrc.nist.gov/encryption.

[82] Verpackungsrundschau. Webpage, 2004. http://www.

verpackungsrundschau.de.

[83] Volkswagen AG. Kraftfahrzeug mit einer Vielzahl von Bauteilen. Offen-
barungsschrift, DE 100 01 986 A1, July 2001.

[84] B. Warneke, M. Last, B. Leibowitz, and K. Pister. Smart dust: Commu-
nicating with a cubic-millimeter computer. IEEE Computer Magazine,
pages 44–51, January 2001.

Bibliography 140

[85] A. Weimerskirch. Authentikation in Ad-hoc und Sensor Netwerken. In
GUUG Frühjahrsfachtagung 2004, March 2004.

[86] A. Weimerskirch, K. Hoeper, C. Paar, and M. Wolf. Component identi-
fication: Enabler for secure networks of complex systems. In Proceedings
of Applied Cryptography an Network Security 2005 (ACNS 2005), 2005.

[87] A. Weimerskirch, C. Paar, and S. C. Shantz. Elliptic Curve Cryptography
on a Palm OS Device. In V. Varadharajan and Y. Mu, editors, The 6th
Australasian Conference on Information Security and Privacy — ACISP
2001, volume LNCS 2119, pages 502–513, Berlin, 2001. Springer-Verlag.

[88] A. Weimerskirch, C. Paar, and M. Wolf. Cryptographic component iden-
tification, enabler for secure inter-vehicular networks. In Proceedings of
the IEEE 62nd Semiannual Vehicular Technology Conference (VTC 2005
Fall). IEEE Computer Society Press, 2005.

[89] A. Weimerskirch and D. Westhoff. Identity certified authentication for
ad-hoc networks. In ACM Workshop on Security of Ad Hoc and Sensor
Networks in conjunction with the Tenth ACM SIGSAC Conference on
Computer and Communications Security (ACM SASN’03), October 2003.

[90] A. Weimerskirch and D. Westhoff. Zero Common-Knowledge Authenti-
cation for Pervasive Networks. In Selected Areas in Cryptography - SAC,
2003, 2003.

[91] A. Weimerskirch, D. Westhoff, S. Lucks, and E. Zenner. Efficient Pair-
wise Authentication Protocols for Sensor and Ad-hoc Networks. Sensor
Network Operations, 2005.

[92] M. Wiener. Performance comparison of public-key cryptosystems. Tech-
nical report, RSA Laboratories, 1998.

[93] C. Wong and S. Lam. Digital signatures for flow and multicasts. In
Proceedings of IEEE ICNP’98, October 1998.

[94] M. G. Zapata. Secure ad hoc on-demand distance vector (saodv) routing.
In INTERNET DRAFT, 2001.

Bibliography 141

[95] S. Zhong, Y. R. Yang, and J. Chen. Sprite: A Simple, Cheat-Proof,
Credit-Based System for Mobile Ad-hoc Networks. In Proceedings of IEEE
INFOCOM ’03, March 2003.

[96] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network,
13(6):24–30, 1999.

Curriculum Vitae

André Weimerskirch
aweimerskirch@web.de

Education

2001-2004 Ruhr-University Bochum, Germany
Ph.D. (Dr.-Ing.) in Computer Science
Thesis: Authentication in Ad-hoc and Sensor Networks
Advisor: Prof. Christof Paar

1999-2001 Worcester Polytechnic Institute, MA, USA
MS in Computer Science
Thesis: The Application of the Mordell-Weil Group to Cryp-
tographic Systems
Advisor: Prof. Christof Paar

1995-1999 Darmstadt University of Technology, Germany
Bachelor (Vordiplom) in Computer Science/Business Admin-
istration
Bachelor (Vordiplom) in Mathematics

Experience

since 2004 escrypt GmbH, Bochum, Germany
CTO

2001 - 2004 Ruhr-University Bochum, Germany
Research Fellow

2003 Aarhus University, Denmark
Researcher, Marie Curie European Union fellowship

143

2002 Sun Microsystems Laboratories, Mountain View, CA, USA
Researcher, internship

2002 Josteit, Herten & Partner, Dusseldorf, Germany
IT-Consultant, part-time position

2001 Accenture Technology Labs, Sophia-Antipolis, France
Researcher, internship

2000 - 2001 Worcester Polytechnic Institute, MA, USA
Research Assistant

2000 Philips Research, Briarcliff Manor, NY, USA
Researcher, internship

1997 - 1999 Deutsche Post AG, Darmstadt, Germany
Web developer, part-time position

Awards

• European Union Marie Curie Fellowship, 2003

• e-fellows.net fellowship 2001–2004

• Scholarship of the German Academic Exchange Service (DAAD),
1999–2000

• Best Pre-Diploma out of 77 students at Darmstadt University of Tech-
nology in the year 1997/98.

144

Publications

Journal Papers

• Bernd Lamparter, Christof Paar, André Weimerskirch, and DirkWest-
hoff, "On Digital Signatures in Ad Hoc Networks", Wiley Journal
European Transactions on Telecommunications, Special Issue on Self-
Organization in Mobile Networking, September 2005.

Book Chapters

• André Weimerskirch, Dirk Westhoff, Stefan Lucks, and Erik Zenner,
"Efficient Pairwise Authentication Protocols for Sensor and Ad-hoc
Networks", Sensor Network Operations, IEEE Press, 2004.

• André Weimerskirch, "Fixed-base exponentiation", Encyclopedia of
Cryptography and Security, 2004.

• André Weimerskirch, "Fixed-exponent exponentiation", Encyclopedia
of Cryptography and Security, 2004.

• André Weimerskirch, "Karatsuba algorithm", Encyclopedia of Cryp-
tography and Security, 2004.

Conference Papers

• André Weimerskirch, Christof Paar, and Marko Wolf, "Cryptographic
Component Identification: Enabler for Secure Inter-vehicular Net-
works", 62nd IEEE Vehicular Technology Conference, September 25-
28, 2005, Dallas, TX, USA.

• André Weimerskirch, Katrin Höper, Christof Paar, and Marko Wolf,
"Component Identification: Enabler for Secure Networks of Complex
Systems", Applied Cryptography and Network Security (ACNS) 2005,
June 7-10, 2005, New York City, NY, USA.

• Marko Wolf, André Weimerskirch, and Christof Paar, "Digital Rights
Management als Enabling Technology im Automobil", Sicherheit
2005: Sicherheit - Schutz und Zuverlässigkeit, Regensburg, April 5-8,
2005.

145

• Jonathan Hammell, André Weimerskirch, Joao Girao, and Dirk West-
hoff, "Recognition in a Low-Power Environment", WWAN 2005, The
25th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS-2005), Columbus, Ohio, USA, June 6-9, 2005.

• Ulrich Kaiser, Christof Paar, Dörte Rappe, Werner Schindler, André
Weimerskirch, and Thomas Wollinger, "Kriterien für die Auswahl der
kryptographischen Algorithmen bei Low-Cost-RFID-Systemen", D-A-
CH Security 2005, Darmstadt University of Technology, 2005.

• Marko Wolf, André Weimerskirch, and Christof Paar, "Security in
Automotive Bus Systems", escar 2004 - Embedded Security in Cars
Workshop, Bochum, 10.-11. November, 2004.

• André Weimerskirch, Marko Wolf, and Christof Paar, "Komponen-
tenidentifikation: Voraussetzung für IT-Sicherheit im Automobil",
Automotive - Safety & Security 2004, Stuttgart, 6.-7. October, 2004.

• Marko Wolf, André Weimerskirch, and Christof Paar, "Sicherheit in
automobilen Bussystemen", Automotive - Safety & Security 2004,
Stuttgart, 6.-7. October, 2004.

• André Weimerskirch, "Authentikation in Ad-hoc und Sensornetzwer-
ken", GUUG-Frühjahrsfachgespräch 2004, Ruhr-Universität Bochum,
9.-12. März, 2004.

• Christof Paar, Jan Pelzl, Kai Schramm, André Weimerskirch and
Thomas Wollinger, "Eingebettete Sicherheit: State-of-the-art", D-A-
CH Security 2004, University of Basel, March 30-31, 2004.

• Sandeep Kumar, Marco Girimondo, André Weimerskirch, Christof
Paar, Arun Patel, and Arvinderpal S.Wander, "Embedded End-to-
End Wireless Security with ECDH Key Exchange", 46th IEEE Mid-
west Symposium On Circuits and Systems, December 27-30, 2003,
Cairo, Egypt.

• André Weimerskirch and Dirk Westhoff, "Identity Certified Authen-
tication for Ad-hoc Networks", 2003 ACM Workshop on Security of
Ad Hoc and Sensor Networks (SASN ’03), October 31, 2003.

146

• André Weimerskirch and Dirk Westhoff, "Zero Common-Knowledge
Authentication for Pervasive Networks", Selected Areas in Cryptog-
raphy - SAC, August 14-15, 2003.

• André Weimerskirch, Douglas Stebila, and Sheueling Chang Shantz,
"Generic GF (2m) Arithmetic in Software and its Application to
ECC", The Eighth Australasian Conference on Information Security
and Privacy (ACISP 2003), 9-11 July 2003, Wollongong, Australia.

• Olivier Pelletier, André Weimerskirch, "Algorithmic Self-Assembly of
DNA Tiles and its Application to Cryptanalysis", The Genetic and
Evoluationary Computation Conference 2002 (GECCO 2002), July
9-13, 2002, New York City, USA.

• André Weimerskirch and Gilles Thonet, "A Distributed Light-Weight
Authentication Model for Ad-hoc Networks", The 4th International
Conference on Information Security and Cryptology (ICISC 2001),
December 6-7, 2001, Seoul, South Korea.

• André Weimerskirch, Christof Paar, and Sheueling Chang Shantz,
"Elliptic Curve Cryptography on a Palm OS Device", The 6th Aus-
tralasian Conference on Information Security and Privacy (ACISP
2001), July 11-13 2001, Sydney, Australia.

Technical Reports

• Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff,
"Efficient Entity Recognition for Low-cost Devices", 2004.

• André Weimerskirch and Christof Paar, "Generalizations of the Karat-
suba Algorithm for Efficient Implementations", 2003.

Patents

• André Weimerskirch, "Method and apparatus for preventing noise
from influencing a random number generator based on flip-flop meta-
stability", United States Patent Application 20030101205.

• André Weimerskirch, "Method and apparatus to prevent the unau-
thorized copying of digital information", United States Patent Appli-
cation 20030088775.

147

• André Weimerskirch, "Apparatus and methods for attacking a screen-
ing algorithm based on partitioning of content", United States Patent
Application 20020152172.

Index

µTESLA, 45
802.11, 6, 44

ad-hoc, 5
ad-hoc network, 5
adversarial model, 18, 72, 80
AODV, 41
ARIADNE, 41
asymmetric authentication, 24
asymmetric component identification,

112
asymmetric MAC authentication, 29
authentication

asymmetric, 24
asymmetric MAC, 29
broadcast, 28
data origin, 23
entity, 23
Guy Fawkes, 31
hybrid, 26
message, 23
mutual, 28
overview, 33
remote user, 32
symmetric, 24
TESLA, 30
time-stamp, 26

authentication models, 46

BISS, 41

Bluetooth, 44
broadcast authentication, 28

challenge-response
identification, 114
symmetric, 114

charging
SCP, 43
SPRITE, 43

component identification, 107
asymmetric, 112
distributed, 120
symmetric, 123

CONFIDANT, 42
cooperation

CONFIDANT, 42
nuglets, 42

data origin authentication, 23
device model, 18
digital signatures, 51
distributed CA, 37
distributed component identification,

120
distributed PKI, 37
DSR, 41

ECC, 39, 54
ECDSA, 54
elliptic curve cryptography (ECC),

39, 54

Index 149

embedded cryptography, 39
embedded devices, 11
embedded systems, 11, 39
energy consumption, 88
energy model, 89
entity authentication, 23
entity identification, 24
entity recognition, 70

Fiat-Shamir identification, 26

Guy Fawkes, 31

hybrid authentication, 26

IC, 79
energy map, 93
protocol, 83

identification, 24
identity accumulation, 70
identity certified (IC) authentication,

79

key agreement
password-based, 35
resurrecting duckling, 36

key distribution, 35
key pre-distribution, 38

Lamport’s one-time passwords, 30

message authentication, 23
message recognition, 70
MICA Motes, 45
model

adversarial, 18, 72, 80
authentication, 46
device, 18
energy, 89

network, 17, 72, 80
mutual authentication, 28

network
ad-hoc, 5
multi-hop, 6
sensor, 9
single-hop, 6

network model, 17, 72, 80
network topology, 62

password-based key agreement, 35
PGP, 44
PKI

distributed, 37
distributed CA, 37
self-organized, 37

random key-ring, 38
recognition non-repudiation, 71
recognition protocols, 73
remote user authentication, 32
resurrecting duckling, 36
routing

AODV, 41
ARIADNE, 41
BISS, 41
DSR, 41
SEAD, 41

RSA, 39, 54

SCP, 43
SEAD, 41
secure routing, 40
security relationships, 64
self-organized PKI, 37
sensor network, 9
SNEP, 45

Index 150

SPINS, 45
SPRITE, 43
symmetric authentication, 24
symmetric component identification,

123

TESLA, 30
time-stamp authentication, 26
TinyOS, 45

WEP, 45
WLAN, 44

ZCK
energy map, 91
protocol, 74
recognition, 69

zero common-knowledge (ZCK), 74
zero-knowledge proof, 26

