Contents

Kurzfassung I
Abstract III
Contents V
Abbreviations IX
Notation and Symbols XI

1 Introduction 1
1.1 Acoustic Noise and Reverberation 2
1.2 Speech Enhancement 4
 1.2.1 Single-Channel Speech Enhancement 4
 1.2.2 Multichannel Speech Enhancement 5
1.3 Informed vs. Blind Optimal Filtering 7
1.4 Thesis Outline 8

2 Optimum Filtering for Multichannel Speech Enhancement 11
2.1 Signal Model and Assumptions 11
2.2 Minimum-Variance Distortionless-Response (MVDR) Beamforming 15
 2.2.1 Traditional Estimation of the Source Signal 16
 2.2.2 Extension to Estimation of Noise-Free Microphone Signals 19
 2.2.3 Estimation of Noise Components 21
2.3 Multichannel Wiener Filter (MWF) 26
 2.3.1 Traditional Estimation of the Source Signal 27
 2.3.2 Extension to Estimation of Noise-Free Microphone Signals 30
 2.3.3 Estimation of Noise Components 31
2.4 Implementation of Multichannel Speech Enhancement 34
 2.4.1 Resolving Unknown Spatial Properties 34
 2.4.2 Resolving Unknown Spectral Statistics 37

3 A Different Perspective: Multichannel Decorrelation (MCD) 39
3.1 Motivation: The Comprehensive Signal Model 39
3.2 Reconstruction of the Signal Properties 40
 3.2.1 MVDR Beamforming 41
3.2.2 Multichannel Wiener Filter .. 43
3.2.3 Interpretation ... 46
3.3 Multichannel Noise Decorrelation as a Postfilter 47
3.4 Analysis and Interpretation ... 50
3.5 Constructing a Wiener Postfilter from the MCD Postfilter 52
3.6 Experimental Evaluation .. 55
3.7 Summary and Conclusion .. 58

4 Maximum-Likelihood (ML) Based Postfilter 61
4.1 Motivation ... 61
4.2 Derivation of the ML-Based Postfilter 62
4.3 Interpretation and Analysis .. 69
4.4 Experimental Results .. 72
4.5 Summary and Conclusion .. 76

5 Bayesian Postfilter Refinement ... 77
5.1 Motivation ... 77
5.2 Statistical Likelihood Model of the ML-Based Postfilter 78
5.2.1 Statistics of the ML Estimates 79
5.2.2 Mapping to the Postfilter Likelihood 86
5.3 Statistical A-Priori Model of the Wiener Postfilter 93
5.4 Bayesian Inference .. 98
5.5 Experimental Results .. 102
5.5.1 Signal Enhancement and Evaluation Criteria 103
5.5.2 Experiments with Negligible Reverberation 104
5.5.3 Experiments with Moderate Reverberation 108
5.6 Summary and Conclusion .. 112

6 Evaluation with the CHIME Speech Corpus 115
6.1 Motivation ... 115
6.2 CHIME Challenge ... 116
6.2.1 CHIME-4 Datasets .. 116
6.2.2 The Original CHIME-4 Task 118
6.2.3 Modified Objective .. 120
6.3 System Setup ... 123
6.3.1 Estimating the Normalized Noise Covariance Matrix 124
6.3.2 Implementation Aspects and BCI 124
6.4 Results and Discussion .. 126
6.4.1 Simulated Data .. 127
6.4.2 Recorded Data .. 131
6.5 Summary and Conclusion .. 131

7 Summary and Outlook .. 135
A Proofs and Derivations

A.1 Derivative of the MCD Cost Function

A.2 Rearrangement of the Log-Likelihood Derivatives
 A.2.1 Derivative w.r.t. the Speech PSD
 A.2.2 Derivative w.r.t. the Noise PSD

A.3 Sufficient Statistics T_1 and T_2

A.4 Elements of the Fisher Information Matrix
 A.4.1 Higher-Order Derivatives of the Log-Likelihood
 A.4.2 Computation of the Matrix Elements

A.5 Proof of Equation 5.26

A.6 Proof of Lemma 1

A.7 Proof of Lemma 2

A.8 Proof of Lemma 3

A.9 Proof of Lemma 4

B Useful Identities and Definitions

B.1 Elements of Matrix Algebra
 B.1.1 The Matrix Inversion Lemma
 B.1.2 Square Root of a Matrix
 B.1.3 Properties of the Trace Operator
 B.1.4 Definition of the vec-Operator

B.2 Derivatives Involving Vectors and Matrices
 B.2.1 Gradient Layout
 B.2.2 Matrix Derivatives
 B.2.3 Chain Rule Employing the Trace Operator
 B.2.4 Wirtinger Calculus

B.3 Circularly-Symmetric Gaussian Random Vectors

B.4 Transformation of Random Variables
 B.4.1 The Univariate Case
 B.4.2 The Bivariate Case

Bibliography