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Abstract

Smart Cameras are devices able to not only acquire images but to perform complete

Image Processing and Computer Vision (IP/CV) applications. A significant part of

these applications has real-time constraints, e.g. visual feedback control systems,

autonomous vehicles with visual sensors, automatic quality inspection in industry,

and so on. All these applications can fail if the data processing is not performed

within a specific time frame. IP/CV algorithms, in general, need to perform several

operations over massive amounts of data, which is a strong issue for current em-

bedded systems. Besides, there are other typical limitations of embedded systems,

e.g. speed, manufacturing cost, power consumption, temperature management, sil-

icon area, fault tolerance, among others. Since some years, there is a trend in the

computer architectures to become multi-processed. The Very-Large Scale of Inte-

gration (VLSI) technology already allows for the implementation of heterogeneous

System-on-Chip (SoC) with several different processing units, allowing the applica-

tions to benefit from more efficient and specialised processing power. In the domain

of Smart Cameras, one of the main issues is the massive data transfer from the

pixel sensor to the processing part. Therefore, several works explore the concept

of Near-Sensor Image Processing, which aims to bring acquisition and processing

as close as possible, increasing the efficiency of data transfer. An extension of this

concept is known as Focal-Plane Image Processing (FPIP), which explores parallel

data acquisition and transference of pixel data to multiple processing units, allow-

ing for high degrees of parallelism exploration, increasing the system’s efficiency.

In this work, we present an analysis of the design of future Many-Core embedded
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systems for parallel data processing, with a particular focus on IP/CV applications.

This work can be divided into three main parts, with different approaches and ab-

straction levels. We start our approach in a high-level of abstraction, from the

application’s developer perspective: how such applications should be developed and

how to analyse them to extract enough information to define the underlying pro-

cessing architectures efficiently. A methodology based on Task-Graph Clustering

was developed and integrated with a Task-Graph Simulator, written in SystemC at

the Transaction-Level, to profile applications and architectural possibilities simulta-

neously. The results generated in this part were used to reduce the design-space to

fewer possibilities, which were then analysed in a lower abstraction level. In the sec-

ond approach, another SystemC/TLM simulator was developed based on processing

and communication blocks, resembling more detailed architectural features. This

simulator was integrated into a tool able to estimate power consumption, silicon

area, and timing characteristics. The results provided here offered more detailed

information about how the different architectures would perform, however, to have

an efficient implementation, an even lower level was explored. The third part of this

work was based on the Register-Transfer Level, with cycle-accurate simulations in

Very-High Scale of Integration Chip Hardware Description Language (VHDL) and

synthesis results. A baseline architecture was defined and profiled to determine its

efficiency when compared to related works. Several new concepts were then pro-

posed and discussed with the aim to improve the baseline architecture, generating

different conceptual architectures with application-specific optimisations.



Kurzfassung

Smart Cameras sind Kameras welche ein Bild nicht nur aufnehmen, sondern auch

komplexe Bildverarbeitung Anwendungen auf diesem ausführen. Ein bedeutender

Teil dieser Anwendungen hat Echtzeitbeschränkungen, z.B. visuelle Rückkopplungs-

kontrollsysteme, autonome Fahrzeuge mit visuellen Sensoren und automatische Qua-

litätskontrollen in der Industrie. Alle diese Anwendungen können scheitern, wenn

die Datenverarbeitung nicht innerhalb einer definierten Zeitspanne erfolgt.Darüber

hinaus werden in IP/CV Anwendungen große Datenmengen in vielen einzelnen Op-

tionen verarbeitet. Di daraus resultierenden Anforderungen sind bis heute schwer

in eingebetteten Systemen zu realisieren und weitern die typischen Anforderungen

an eingebettete Systeme, wie beispielsweise geringe Herstellungskosten und leis-

tungsaufnahme, Temperaturmanagement sowie hohe Fehlertoleranz. Seit einigen

Jahren gibt es im Bereich der Computer-Architekturen einen Trend hinzu Mehrk-

ernsystem. Die VLSI-Technologie erlaubt bereits heute heterogene und mehrkernige

System-on-Chips (SoCs), wodurch Anwedungen von spezialisierten und effizienteren

Verarbeitungsressourcen profitieren können. In der Domäne der Smart Cameras ist

eine der gößten Herausforderungen / eines der größten Probleme, der Datentrans-

fer vom Pixel-Sensor zur Datenverarbeitungseinheit. Aus diesem Grund existieren

verschiedene Arbeiten welche das Konzept der sensorhahen Bildverarbeitung un-

tersuchen. Sensornahe Bildverarbeitung ziel darauf ab, die Datenaufnahme und

Datenverarbeitung so nah wie möglich zusammenzubringen, und so die Effizienz

der Datenübertragung zu steigern. Eine Erweiterung dieses Konzepts ist unter dem

Namen ”Focal-Plane Image Processing” (FPIP) bekannt. FPIP nutzt die parallele
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Datenafnahme und den Transport zu mehreren Datenverarbeitungseinheiten. Dieses

Konzept ermöglicht die Untersuchung hochgradiger Parallelisierung und dadurch

eine Steigerung der System-Effizienz. In dieser Arbeit stellen wir unsere Analyse von

zukünftigen eingebetteten Many-Core Systemen für die parallele Datenverarbeitung

mit Fokus auf IP- und CV-Anwendungen vor. Die Arbeit kann in drei Hauptteile

gegliedert werden, welche sich hinsichtlich der Ansätze und Abstraktionsschicht un-

terscheiden. Der erste vorgestellte Ansatz verfügt über einen hohen Abstraktion-

sgrad aus der Sicht eines Anwendungsentwicklers. Auf dieser Abstraktionsschicht

definieren wir die Programmiersicht. Diese beinhaltet, wie Anwendungen entwickelt

und analysiert werden, um die benötigten Informationen für die Entwicklung einer

effizienten Systemarchitektur zu ermöglichen. Hierzu wurde eine Methodik für das

effiziente Profiling von Anwendungen und der effizienten Exploration der Systemar-

chitektur entwickelt, welche auf Task-Graphen, High-Level-Synthese und Graph-

Clustering basiert. Für die Umsetzung dieser Methodik wurde ein Task-Graph-

Simulator auf Basis des SystemC/Transaction-Level-Modeling (TLM) implemen-

tiert. Die im Rahmen dieser Arbeit entstandenen Ergebnisse ermöglichen eine Re-

duktion des Entwicklungsraums. Die übrigen Implementierungsansätze wurden im

Folgenden auf einem tieferen Abstraktionslevel untersucht. Der zweite vorgestellte

Ansatz untersucht die verbleibende Menge der Implementierungsansätze im En-

twicklungsraum auf einer tieferen Abstraktionsschicht. Dazu wurde ein weiterer

SystemC/TLM Simulator für die Kommunikation zwischen den Datenverarbeitung-

seinheiten entwickelt. Der Simulator wurde in ein Werkzeug integriert, welches

die Abschätzung der Leistungsaufnahme, Chip-Fläche sowie des zeitlichen Verhal-

tens ermöglicht. Die in diesem Abschnitt erstellten Ergebnisse liefern detailliert-

ere Informationen über die Leistungsfähigkeit der untersuchten Architekturen. Der

dritte vorgestellte Ansatz führt die Analyse auf einer weiteren, tieferen Abstrak-

tionsschicht weiter. Dieser Ansatz basiert auf einer Modellierung auf dem Register-

Transfer-Level (RTL) mit einer zyklenakkuraten Simulation in VHDL sowie Syn-

theseergebnissen der Systemarchitekturen. Darauf aufbauend wurde eine Basis-



architektur definiert und untersucht, deren Effizienz mit dem Stand der Technik

verglichen wurde. Mehrere neuartige Konzepte werden vorgestellt und diskutiert.

Unter Verwendung der gezogenen Schlüsse wurde die Basisarchitektur verbessert

und verschiedene Architekturkonzepte mit anwendungsspezifischen Optimierungen

entwickelt.
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Eliane, Gustavo, André Carmona, Nathália, Mariana, Marina. I would be (even

more) crazy without your friendship.

My old friends far in Brazil, who always enjoyed to talk about life, studies, work,

politics, music, movies and non-sense. Technology has shortened the distances.

I am grateful to my family, who have always supported my natural curiosity

about ”how things work”: you are the main reason for my choice of the academic

career. I missed home every day.

I also acknowledge the Professors from the Department of Mechanical Engineer-
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Chapter 1

Motivation

In this Chapter, we explain the motivation for this work in the context of current

trends for embedded systems design and applications. We discuss the need for new

types of Smart Sensors, and why the design of future embedded systems requires a

paradigm change in the direction of Multi/Many-Core Architectures. In particular,

we focus on the design of future generation Many-Core Vision Processors to be used

in Smart Cameras. 1

1.1 Embedded Systems

In the past decades, the computing systems evolved from large facilities to small em-

bedded devices, following the technology evolution of the microelectronics industry.

The Very-Large Scale of Integration (VLSI) technology, following the prediction of

the famous Moore’s Law, has allowed the integration of billions of transistors in a

single chip, enabling the creation of different applications that were not possible in

former times.

Entirely new concepts, like the Cyber-Physical System (CPS) and the Internet of

Things (IoT), emerged some years ago, with the aim of bringing computing power to

everywhere and everything. Distributed networks of smart devices are converging to

1This Chapter is based on our previously published papers [Jan+14], [Mor+16b] and [YLH17],
with excerpts and some adaptations.
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CHAPTER 1. MOTIVATION

the so-called Ubiquitous Computing (UbiC), where the computational systems are so

deeply integrated into the environment, that it should not be possible to distinguish

between them anymore [Raj+10]. It is also predicted that all these computational

tasks will be performed transparently to the users, in a context called Pervasive

Computing (PvC).

To couple with the requirements of trends mentioned, to sense will be one of the

essential features. In this context, the concept of Smart Sensors emerged, as a device

which does not only acquire data but also to process these data and actuate in the

environment. Figure 1.1 depicts the evolution from a typical sensor system (top) to

a Smart Sensor (bottom), by transferring the processing part from the remote site

to the embedded device.

.

-

Environment

Remote Site
Embedded Device

Signal 
Acquisition/Pre-

Processing
Encoder Decoder

Remote 
Processing

EncoderDecoderActuator

Transmission

Transmission

Environment

Smart Embedded Device

Signal 
Acquisition

Processing

Actuator

Figure 1.1: Top: Common sensor system with remote processing; Bottom: Smart
Sensor system with local processing.

Several types of sensors might be used, and the information provided by each

one must be merged for a better understanding of what is going on in the monitored

environment [Gub+13]. It is predicted that particular devices able to acquire and

process vast amounts of sensor data will be needed, and the current processing

4



1.2. IMAGE PROCESSING AND COMPUTER VISION

architecture models are not able to deal with these requirements [Jan+14].

Figure 1.2 shows a conceptual model of such Multiple-Input/Multiple-Output

(MIMO) heterogeneous processing architecture. The figure shows a multi/many-

core processing architecture with spatially distributed inputs and outputs, as well

as the mapping of three different applications. Each tile in the architecture would be

defined as Input/Output, Memory, Processor or Co-Processor (Reconfigurable Fab-

ric), allowing for different configurations, increasing the flexibility and the processing

power.
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Figure 1.2: Conceptual model of a MIMO heterogeneous processing architecture
[Jan+14].

1.2 Image Processing and Computer Vision

When we talk about monitoring an environment and its agents, we are talking about

measuring their characteristics and states. For a human being, in general, the idea
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CHAPTER 1. MOTIVATION

of sense is directly related to our sensory functions: vision, hearing, touch, smell,

and taste. Considering the amount of input data, the most complex of our sensory

functions is our visual sense, composed not only by our eyes but also by our visual

cortex (the part of our brain responsible for processing visual information acquired

by our eyes). In comparison to other animals, our senses are not the most evolved.

However, our capacity of processing the information acquired and make assumptions

(to reason) is what differentiate us as the dominant species in Nature.

One of the most important technological challenges is to replicate in machines

our reasoning abilities. The Artificial Intelligence (AI) area has evolved a lot in the

past decades, following the development of the computers. However, there is still a

considerable gap between what we can build on machines and what we can do in our

brains. The brain’s computational model is still unknown and today’s best comput-

ers have only a small fraction of the brain’s processing efficiency. Nevertheless, the

computers can still be beneficial if correctly used.

Image Processing and Computer Vision (IP/CV) applications are present in

several different areas as medicine, social networks, consumer electronics, industrial

inspection, entertainment, security, safety, autonomous driving assistance, and so

on. The quality of image acquisition devices has evolved a lot in the past decades,

with today’s resolution reaching dozens of Mega-pixels in high-end smartphones. In

the context of the IoT, IP/CV applications will be in the mainstream, mainly due

to the power of visual information.

A standard camera system is, in general, able to acquire, compress, store, and

transmit images. However, for the new UbiC Era, these devices will act as Smart

Sensors, with the ability to also perform sophisticated algorithms to extract infor-

mation and actuate over the environment. This new set of cameras is also known

as Smart Cameras and will play an essential role to capture and interpret the hu-

man behaviour in an environment, among other events/objects. Figure 1.3 shows

an example of Smart Camera with a complete embedded application. These fu-

ture cameras must be able to perform complex applications simultaneously, coping
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1.3. REAL-TIME IP/CV SYSTEMS

with different requisites: energy consumption, chip temperature control, reliability,

Quality of Service (QoS), data security, privacy, power management, cost (silicon

area), and so on [Mor+16b].

(0,9)
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[23455]
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J ohn Paul Mary

Figure 1.3: A Smart Camera with a complete multiple face recognition embedded
application.

1.3 Real-Time IP/CV Systems

IP/CV applications are computationally costly, mainly due to the massive amount of

data to be processed. New technologies are enabling the use of increasing resolutions,

and new applications are demanding high-performance with tight deadlines. In this

scenario, there are cameras with frame rates over one hundred thousand frames per

second in high resolutions. When the application allows storing the images for later

processing, the problem is then related to the amount of storage memory. On the

other hand, several applications, e.g. autonomous vehicles, visual feedback control

loops, high-speed robot manipulation, industrial inspection, and so on, depend on

the results of IP/CV algorithms. In the context of these real-time applications,

the tight timing constraints can lead them to fail when not attended. The suc-

cess of Real-Time IP/CV processing systems is highly dependent on how efficiently

the inherent parallelism is explored and, therefore, a particular hardware/software

architecture must be used to fulfil the application’s needs [KG06].
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Simple processing architectures, such as the General-Purpose Processor (GPP),

are not able to provide an energy efficient real-time performance for IP/CV ap-

plications. The sequential nature of a GPP does not offer many opportunities

for parallelism exploration, which means that high operating frequencies are nec-

essary, resulting in more power dissipation. In this context, there are single-core

alternative architectures, such as the Very-Large Instruction Word (VLIW), which

can overcome simple Reduced Instruction Set Computer (RISC) GPPs by explor-

ing more efficiently the Instruction-Level Parallelism (ILP) for IP/CV applications

[HWA15a]. However, the VLIW architectures do not scale well for a high number of

issues, mainly due to the register file and multiplexing overhead, limiting the amount

of processing parallelism [Vii+14]. Direct silicon implementations would provide the

highest efficiency, considering power consumption, throughput, and area. However,

implementations made of custom or standard cells are fixed and do not allow the

flexibility to process a broad range of applications. Field-Programmable Gate Ar-

ray (FPGA) implementations, however, have can also be good candidates for a

semi-direct implementation. High-Level Synthesis (HLS) techniques can be used to

create libraries of blocks specialised for different applications in the IP/CV domain

[Mor+16a].

For several years, to enhance the processor’s speed, the industry relayed on in-

creasing the transistor count per area, and the circuit switching frequency. However,

problems with the power density (related to the Dennard Scaling model) limited this

trend [SBH14]. The industry entered then in the so-called ”post-Dennardian Scal-

ing Era” when it was forced into a transition to multi-core systems [Tay12]. On

the other hand, this architectural change was already expected, due to the natu-

ral evolution of parallel computing area from multi-computer clusters to intra-chip

multi-processors, which are envisioned to provide more scalable power efficiency

when increasing the number of cores [Bor07]. To be able to handle all the con-

straints and also offer enough flexibility for different IP/CV applications, a solution

for the Smart Cameras is also to migrate from single to multi/many-core processing

8



1.4. VISION PROCESSORS

architectures [MKH15a].

1.4 Vision Processors

An in-depth analysis of the hardware characteristics is essential to overcome the limi-

tations of Smart Camera devices, from image acquisition aspects to processing archi-

tectures features. From a historical perspective, the first commercial cameras used

Charge-Coupled Devices (CCD), which dominated the market for some decades.

Several technological aspects, such as manufacturing difficulties and power con-

sumption, limited the use of Complementary Metal-Oxide-Semiconductor (CMOS)

technology for image sensors. However, in the 1990’s, the CMOS and Active Pixel

Sensor (APS) (CMOS-APS) invention allowed for efficient integration of all image

sensor electronic components in a single chip [Fos97]. The advances in the CMOS

technology (mainly due to the processor’s market needs), were also used by the

camera sensors manufacturers, enabling significant cost reduction, and replacing

the CCD cameras for the CMOS ones in most devices.
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Figure 1.4: CMOS pixel array acquisition types: single and multiple pixel streams
[Mor+16b], and the design trade-off related.

Figure 1.4 shows different sensor acquisition configurations [Mor+16b], which

provide single or multiple pixel streams. Each configuration has its advantages and
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disadvantages, implying a trade-off analysis by the system’s designer:

• Single-Pixel Stream: For the complete sensor array there is only a sin-

gle output channel (Analog-to-Digital Converter (ADC) + readout circuitry).

Small throughput, lower cost, and simpler design complexity are the main

characteristics of this scheme. It is also the commercially most common sys-

tem.

• Region-Based Stream: The sensor array is divided into regions, and to

each region is assigned one output channel. This configuration offers a design

trade-off, where the main tuning parameter is the number of pixels per region.

• One Stream per Pixel: This configuration offers full acquisition parallelism

by assigning a single output channel for each pixel. However, despite the

higher throughput, this configuration has also the highest cost.

Real-Time IP/CV systems should start the processing phase as soon as the

pixels are available. The acquisition architecture choice depends not only on the

speed and parallelism but is also based on the IP/CV algorithms to be executed. A

more quantitative analysis of the acquisition schemes is provided in Section 5.1.

Two similar architectural concepts, Focal-Plane Image Processing (FPIP) and

Near-Sensor Image Processing (NSIP), have emerged in the late 1980’s and early

1990’s, as a solution for high-speed acquisition and processing in Real-Time IP/CV

systems. The basic idea was to merge the pixel sensors with processing elements in

the camera’s focal-plane [Fos89], or as close as possible one to the other [FA94a],

with the goal of offering pixel access parallelism and low latency.

Several architectures from the literature use this concept. Most of them were im-

plemented completely with analog circuits (both acquisition and processing) [FA94a]

[EKC01b] [Elo+04b]. The analogue implementations have advantages over digital

ones, such as power consumption and speed. However, they also have a lack of

programmability, and their implementation complexity makes them hardly adopted

in IP/CV applications. Also, due to physical limitations, the scale of integration
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achieved better results for digital circuits than for analogue ones [EYF99]. Digital

technology offers the advantages of flexibility through programmability, the reuse of

standard cells and more scalability, in comparison with the analogue circuits. Due to

these aspects, modern implementations unify analog and digital circuits as follows:

analog ones for the acquisition and ADC, and digital ones for the processing part

[KII97a] [FZR08] [WD12] [Sch+16].
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Figure 1.5: Fill-factor reduction when adding more functionalities to the image
sensor [Mor+16b].

In Figure 1.5, we can see the structure of a single standard pixel. As can be seen

in the picture, the addition of a ADC and a Processing Element (PE) to the pixel

area would reduce the fill-factor considerably, and by consequence, the image quality

would be degraded. Besides, due to the limited area available, the PEs found in the

literature are mostly analogue filters and/or small digital ones and do not offer too

much flexibility. Figure 1.5 shows issues related to the communication structure

which must be present to integrate the PEs. This structure would contribute to

reduce the sensor’s fill-factor considerably.

1.5 Multi/Many-Core Vision Processors

In Chapter 3, the historical evolution of the Vision Processors is traced, the tech-

nological evolution is detailed, and the state-of-art is determined. The main tech-

nological trends in the design of IP/CV systems is shown in Figure 1.6:

• Parallelisation: this is the main direction to deal with the massive amount of

data to be processed in IP/CV applications. The intrinsic parallelism present

in such application favours this trend.
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• Integration: the need for portability and flexibility lead to the design of

System-on-Chips (SoCs) with the Pixel Sensor, and the Processing Unit inte-

grated to reduce the size, power consumption and data transport delays.

Camera

processing unit

IntegrationIntegration

System-on-Chip

processing unit

Camera

processing unit processing unit

processing unit processing unit

ParallelisationParallelisation

Pixel Sensor

MPSoC

processing unit
Pixel Sensor

processing unit processing unit

processing unit processing unit

Figure 1.6: Technological trends in the design of IP/CV systems: Parallelisation
and Integration.

Over the years, analogue/digital integration achieved success. However, most im-

plementations are quite simple from the processing architecture point of view. Most

architectures were more focused on showing the feasibility of the concept through

prototyping, without exploring the vast design space available for both acquisition

and processing architectures.

Figure 1.7 shows the concept we explore in this project. The sensor array has

spatially distributed pairs amplifier/ADC, and each pair is responsible for a region

of the image. Using the Through-Silicon Vias (TSV) technology, the outputs of

the ADCs are sent to an underlying processing layer. The processing layer is a

many-core architecture composed of distributed pixel registers which receive the

pixel stream from the ADCs. A PE is responsible for processing each region, and

a communication infrastructure allows for data exchange among them. With this

configuration, both the acquisition and the processing parts can explore a higher

amount of parallelism.
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Figure 1.7: Focal-Plane/Near-Sensor Image Processing concept [Fos98] [MH14]
[MKH15a].

The design of such architecture is not trivial since the PEs, and the communica-

tion structure must be developed with the focus in the application and the embedded

hardware constraints (silicon area, power consumption, thermal distribution and so

on). Also, software related issues must be solved. The programming model must

be able to explore the parallelism in the applications, considering the spatial dis-

tribution of PEs, the distributed input streams, and the synchronisation and data

exchange issues.

In this way, the PEs from Figure 1.7 would be complex Processing Tiles, able to

communicate with them, and process data accordingly to the desired application.

The design of such architectures must be oriented to the specific needs of the IP/CV

applications like in an Application-Specific Instruction set Processor (ASIP) [MK16]

[Eus+14]. In the context of embedded parallel processing, we propose a Multi-ASIP

architecture as a solution for future Smart Cameras [MKH15a] [Mor+16b].

The proposed Multi-ASIP solution will be hence called a Many-Core Vision Pro-

cessor architecture, tightly integrated with the pixel sensor array. The design space
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of such architecture encompasses several different aspects in both analogue and dig-

ital domains. The focus of this work is in the digital hardware architecture only,

considering CMOS sensors with different acquisition configurations. There is a lack

of design methodologies able to bring together both the application-specific domain

and the hardware/software co-design problem [KT11]. Multiple parallelism levels

must be analysed, to provide precise and detailed information to the architecture

designer. The challenges in the development of such many-core vision processors are

not only in the hardware itself but also in the efficient algorithm implementation

and mapping. The complexity envisioned requires an integrated hardware/software

analysis able to determine several features, such as the number of tiles, pixel distri-

bution, communication structure, processing needs, programming model, memory

organisation and so on [MH14].

In this work, we provide a Design Space Exploration (DSE) of the digital hard-

ware solutions to design and program what we envision as the next generation of

vision processors. Table 1.1 shows a summary of the main DSE parameters explored

in this work.

Table 1.1: Summary of the main DSE parameters explored in this work.

Acquisition Scheme Processing Communication Application
(pixels per ADC) Element Structure Domain
Single-Pixel Stream GPP (RISC) Point-to-Point (P2P) Programmability
Region-Based Stream VLIW Bus-based Throughput
One Stream per Pixel ASIP Network-on-Chip (NoC) Parallelism

FPGA
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Chapter 2

Thesis Description

In this chapter, we show the description of the thesis project, starting with an

overview of the methodology used for this research. After that, we provide a general

description of each abstraction level used and the approach for each one. Then we

illustrate the main contributions of this research and how this document is organised.

2.1 Overview of the methodology

The goal of this research is to determine the hardware/software architecture of future

vision processors. As highlighted in Chapter 1, there is a trend for embedded systems

powered by Chip Multi-Processor (CMP), and we suggest that vision processors shall

benefit from multi/many-core architectures.

A more specific trend is the exploration of concepts like Focal-Plane Image Pro-

cessing (FPIP) and Near-Sensor Image Processing (NSIP), to reduce the image

acquisition delay and provide more parallelism to the processing system. This trend

is vastly explored in the literature, divided into pure-analogue processing, mixed

analogue-digital processing, and pure-digital processing.

The design space of CMPs is quite large, and it is not practical to have physical

implementations of all design possibilities. Besides, considering the application-

specific nature of the current research, more focused effort should be made in ex-

ploring solutions which better match the application’s needs. We provide in this
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thesis a holistic approach: a multi-level integrated design-space exploration.
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Figure 2.1: A Y-chart showing the levels of an electronics design, with the parts
covered in this work highlighted [Gaj+09].

In Figure 2.1 we can see the classical Y-Chart, also known as Gajski-Kuhn chart,

which shows the levels of an electronics design [Gaj+09]. In this work, we study the

parts/levels highlighted in red. We followed a design flow known as Specify, Explore-

and-Refine (SER), which starts at the System Level and with specifications about

the application needs [Gaj+09]. In this flow, iteratively, we analyse and refine the

design possibilities trying to constrain the design space. When no more refinements

are worth doing at this level, we create specifications at a lower level using the

constrained design as input. This process is repeated until the design reaches the

desired level and/or acceptable specifications.
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2.2 High-Level approach

The first approach is more in the application domain, trying to see the problem

from the user perspective: how an Image Processing and Computer Vision (IP/CV)

expert would like to write programs to our architecture? We use the ideas discussed

in the Part II of this thesis to develop some new concepts. At this level, we explore

algorithm analysis techniques based on Task-Graphs (TGs) and develop a multi-

agent simulator which emulates a many-core vision processor. As a result, we select

some design possibilities for further analysis.

2.3 Intermediate-Level approach

The second approach comes as an evolution from the previous one, going to a lower

level of abstraction. At this level, we have already constrained the design-space, and

we analyse a smaller set of hardware/software design possibilities. In this approach,

we evolved the previous simulator to a more detailed hardware architecture simu-

lator. Also, we estimated the power consumption, the performance, and the silicon

area of each design choice, considering only the digital processing architectures. The

results allowed us to constrain even more the design space, leading to the next level.

2.4 Low-Level approach

The third approach is at the Register Transfer Level (RTL) level, where we describe

some hardware possibilities in Very-High Scale of Integration Chip Hardware De-

scription Language (VHDL), focusing on obtaining cycle-accurate simulations and

hardware synthesis estimations. The result of this approach is a parameterised

hardware/software many-core architecture which can be configured accordingly to

the specific IP/CV algorithms needed by the application. Besides, we discuss the

design of the Processing Elements (PEs) using two approaches: a High-Level Syn-

thesis (HLS) method and an Application-Specific Instruction set Processor (ASIP)
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design.

2.5 Thesis Contributions

The main contributions of this thesis are:

• A holistic analysis of the design space for future vision processors. This anal-

ysis considers not only the hardware/software architecture, but also how we

can optimise the end-user benefits of such system.

• A multi-level design framework composed by different tools integrated to han-

dle both the application intrinsics and the hardware/software design space.

• The proposal and implementation of a parameterizable many-core vision pro-

cessor architecture and its corresponding tool-flow.

2.6 Document Organization

The rest of this document is organized as follows:

• A preliminary part with the knowledge background for this thesis:

1. Bibliographic review about real-time IP/CV System-on-Chip (SoC)s (Chap-

ter 3).

2. Basic IP/CV concepts used in this thesis (Chapter 4).

3. An analysis of the application/software/hardware co-design details and

definitions (Chapter 5).

• The high-level approach, divided in:

1. An overview of the approach (Chapter 6).

2. The Task-Graph Generator tool (Chapter 7).

3. The Task-Graph Clustering method (Chapter 8).
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4. The Task-Graph Simulator tool (Chapter 9).

• The intermediate-level approach, composed by:

1. Description of the approach (Chapter 11).

2. Detailed Multi-Processor System-on-Chip (MPSoC) simulator descrip-

tion (Chapter 12).

3. Simulation results and performance estimation (Chapter 13).

• The low-level approach:

1. Standard tiled architecture description (Chapter 14).

2. Description of two approaches to develop PEs (Chapter 15).

• Conclusions and suggestions for further research (Chapter 16)
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Chapter 3

Related Work

In this chapter, we make a review of some relevant bibliographic references related

to this work. Each section is focused on a different aspect of the system’s design

and implementation. We start with works more related to the pixel sensor design

and analogue implementation of Image Processing and Computer Vision (IP/CV)

algorithms. This is followed by approaches with mixed-signal devices: analogue

acquisition with minor processing functions integrated to a digital processing part.

The subsequent section reviews techniques for processor architecture design, which

we can use to define the Processing Element (PE) of our many-core system. After-

wards, there is a review of multi/many-core architectures and methodologies to their

design. The last section is devoted to discussion and remarks about the literature,

establishing the guidelines for the development of this work. 2

3.1 Vision Processors

[AFI93] and [FA94b] present a first work showing an implementation of hybrid in-

tegrated analogue/digital circuit, with a sensor and low-level algorithms as median

and convolution filters. In these works, the authors implement a Sensor Process-

ing Element (SPE) in a fully parallel way (one SPE per pixel). Each SPE has a

2This chapter is based on our previously published papers [MH14], [Mor+16b], [MK16], [MH16],
[Mor+16a] and [YLH17], with excerpts and some adaptations.
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photodiode, an ADC, a bit-serial ALU, and a small memory. In that work, the

authors propose the concept of Near-Sensor Image Processing (NSIP), as a SIMD

array of SPEs. Pixel-level operations, like Adaptive Thresholding, Median Filtering,

Histogramming, Grayscale Morphology, and Convolution were implemented. Be-

sides, a simple feature extraction technique, based on geometric moments was also

implemented, which allows for object recognition.

[ESÅ96] extended the previous approach with a Global Logic Unit, which is

responsible for operations involving the complete image. Additionally, this work

shows an implementation with image processing capacity for every single pixel.

Vision chips have been studied for more than thirty years. In work from the year

1997, [Moi97], there are shown more than fifty different vision chips, most of them

analogue and with no programmable possibility. Several design blocks (with the

technology of that period) are depicted, as well as the primary design considerations

of each chip.

In [Fos97], the author provides data about the divergence among the technology

feature size and the pixel size, from 1970 to 2005. A relevant data published in

this work was the practical optical limit of the pixel size, estimated at 5 µm. This

limitation would predictably constrain the image resolution, avoiding the spread

of this technology. However, to prevent this limitation, current manufacturers use

micro-lenses, allowing for reducing the fill-factor while maintaining image quality.

With the micro-lenses, it is possible to integrate more functionality into the process-

ing part, making use of the reductions in technology feature size. Also, 3D stacked

chips, making use of Through-Silicon Vias (TSV), are expected to be cost-effective

in some years. Several discussions regarding pixel-level processing challenges are

presented in [Abb99], together with future trends in this area.

The design of a vision chip architecture was implemented into an FPGA, with

each processing element connected directly to photo-detectors in [KII97b]. With a

sampling rate of 1ms, the system could be used in a robot control system, enabling

high-speed visual feedback. This high-speed vision system used General-Purpose
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processing elements. This is one of the first works reportedly using digital processing

elements, instead of analogue ones. A full-parallelism is explored, with each PE

responsible for a single pixel. In this architecture, each PE is connected to its four

neighbours (North, South, East, West) by point-to-point connections. The PEs

are composed of local memory, an ALU, and the I/O interfaces. There is a global

instruction memory, and the instructions are transmitted to all PEs in parallel. This

organisation allows for automatic processing synchronism among the PEs. A similar

application is also shown in [Na00].

The architecture presented in [LD06] and [LD08] is a digital vision chip focused

on the efficient implementation of global image processing algorithms, instead of

point and neighbourhood algorithms. The architecture is composed of an array of

PEs in a point-to-point 4-connected mesh. Each PE has a single pixel, a simple

ADC, an ALU, and registers, as well as a communication unit. The instructions are

provided by a global controller, and a particular block in each PE is responsible for

long communications, enhancing the performance of global operations. One of the

advantages of this architecture is the scalability provided by the use of a single type

of PE, without extra row/global processors.

The works from [EKC01a], [Lin+08] and [Mia+08a] show how to better explore

parallelism in architectures of image processor chips. The work of [Mia+08b] shows

the implementation of an architecture for real-time machine vision applications. This

system is composed of a hybrid architecture, which combines a SIMD PE array with

row-parallel processors (Figure 3.1).

The authors in [Mia+08b] focused on low-level and medium-level image process-

ing algorithms, mainly for mathematical morphology methods. An I/O interface

is responsible for sending extracted features to external systems for processing/s-

torage/ visualisation. The architecture is composed of a mesh of PEs, and at the

end of each column and each row, there are XPUs and YPUs (X and Y Processing

Units), respectively. Each PE contains a single pair Pixel-ADC, a small memory,

and can perform boolean operations (which are the core of mathematical morphol-
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Figure 3.1: Architecture of the SRVC (SIMD Real-time Vision Chip) [Mia+08a].

ogy). To allow for operations in sequences of images (or an image processing chain

composed of a sequence of operations), the local PE memory can store pixels for

several images, with the same X-Y coordinates. There are two-bit structures, X-

Processor and Y-Processor, which group the XPUs and YPUs. The X/Y-PUs are

responsible for acquiring the outputs of the PEs, as well as its coordinates. The

X/Y-Processors operate determining the connected pixels which form objects, to

extract image features. The communication between the PEs is point-to-point, and

the synchronisation is controlled by a global instruction memory.

In the search for optimisation, some authors use biologically-inspired approaches,

emulating how animal’s and insect’s eyes work [Elo+04a] [FZR08]. In [FZR08], the

author innovates the design of standalone vision systems by stacking different layers

(sensor array, frame buffers, processing elements) in a 3D chip.

The approach in [FZR08] provides advantages in the image quality ( an increase

of the fill factor), speed, and complexity of the processing part. The processing

elements are organised as a SIMD system, where each tile is responsible for a region

of the image, but all tiles operate synchronously with the global instruction memory.

A highlighted characteristic of this architecture is that the pixels are mapped to the
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Figure 3.2: The SIMD multilayer chip from [FZR08].

local tile memory, which manages pixel requests to other tiles, resulting in a memory

structure transparent to the processing element. The proposed architecture achieved

a performance of 2 ns per pixel, for a 3× 3 convolution. Besides convolution, other

image processing algorithms were tested: grey-scale morphology, contour detection,

and diffusion.

The work in [Zar+11] presents the VISCUBE chip. In this approach, the pro-

cessing is distributed in both analogue and digital parts: early image processing in

the mixed-signal processor array; foveal processing in the digital processor.

Following this 3D idea, the architecture proposed by [ZFW11] is composed of

multiple levels of parallel processors. The first level is a microcontroller, and the

second one contains row processors and the third an array of Processing Elements

(PEs). This architecture provides different levels of parallelism exploration, which

can cover a significant amount of applications. The mapping of algorithms to the

architecture is dependent only upon the parallelism identified. The authors classi-

fied the IP/CV algorithms in three sets, accordingly to the type of operations:
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Figure 3.3: Type of operations [ZFW11].

• Pixel-Parallel : these operations are

implemented in the PE array, cor-

responding to low-level algorithms,

with low complexity, e.g. convolu-

tion, morphology, and thresholding.

• Row-Parallel : medium-level algo-

rithms, like FFT, DCT and statis-

tical operations, are implemented in

the RPs.

• No-Parallel : implemented in the

MPU, these operations are from

high-level algorithms, like object

tracking and pattern recognition.

In the architecture of [ZFW11] (Figure 3.4), the Analog-to-Digital Convert-

ers (ADCs) are allocated per rows, controlled by the MPU. However, pixel data

are sent from each ADC to the corresponding RP memory. An RP shares its mem-

ory with a row of PEs, allowing for fast data exchange among them. The RPs are

connected to neighbour RPs through point-to-point communication, and the PE

mesh is integrated in a 4-connected way, also with point-to-point communication.

This organisation provides different levels of processing, as well as different commu-

nication patterns. Edge Detection, Motion Detection, Filtering, DCT, Character

Recognition, and Target Tracking are among the applications implemented in the

resulting architecture.

Figure 3.5 shows the ASPA Sensor-Processor Chip ([LD11]), which has, in each

PE, sensor/ADC, a memory, communication unit, and a small mixed analog/digital
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Figure 3.4: Schematic of the [ZFW11] chip architecture: image sensor array, A/D
converters, PE array, RP array, and MPU.

processor. This architecture was developed with only a single pixel per PE, which

allowed for an extreme parallelism exploration. The applications implemented in

the ASPA chip were low-level algorithms, and the programming was performed in

assembly code, focused on SIMD exploration.

The SCAMP-3 vision chip (Figure 3.6) is a programmable pixel-parallel processor

array which operates in a single-instruction-multiple-data mode [PDu11]. It is a

mixed processor, with a digital control part with and analogue data-path. This

processor can implement mainly low-level IP/CV algorithms, like the convolution.

A 2D-Mesh topology was considered for the interconnections and the central aspect

identified was how the amount of local memory (register file, in the case) affects the

processing speed.

To the best of our knowledge, the latest work developing a vision processor inte-

grating the pixel sensor array and processing units is shown in Figure 3.7 [Sch+16].

In this work, the acquisition is performed using one ADC per group of 8 × 8 pix-

29



CHAPTER 3. RELATED WORK

Figure 3.5: The ASPA chip architecture [LD11].
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Figure 3.6: The SCAMP3 chip architecture [PDu11].

els. To each group is assigned an 8-bit ADC processor, which communicates to

the closest neighbours (North, South, East, West) with Point-to-Point (P2P) links.

There is a global program memory, and the instructions are propagated through the

processing array using the P2P links. A broad range of IP/CV applications can be

implemented, e.g., 8× 8 DCT, Edge Detection, Histogram, and Tracking.

Table 3.1 shows a summary of the Vision Processors discussed in this section. As

can be seen, more recent works present dominance of the Region-Based acquisition

type, digital processing, and SIMD organisation. Most of the works use P2P-based

communication among the PEs. In some of them, there is also one bus for a complete
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NP

Figure 3.7: The Neighborhood Processor Array [Sch+16].

row, to allow for fast communication.

Table 3.1: Summary of most relevant related Vision Processors.

Reference Acquisition Analog Digital Processing
Type Processing Processing Type

[AFI93] One per pixel yes yes SIMD
[FA94b] One per pixel yes yes SIMD
[ESÅ96] One per pixel yes yes SIMD +

Global Unit
[Fos97] Region-Based yes no SIMD
[KII97b] One per pixel no yes SIMD
[Na00] Region-Based no yes SIMD
[Mia+08b] One per pixel no yes Array +

Row/Column Units
[FZR08] Region-Based no yes SIMT
[Zar+11] Region-Based yes yes SIMD
[ZFW11] One per pixel no yes SIMD
[PDu11] One per pixel yes yes SIMD
[Sch+16] Region-Based no yes SIMD

3.2 Processor Architecture Design

The analysis of the selected works in the last section allows us to identify some char-

acteristics of the PEs used there. Most of them are merely programmable Finite

State Machines (FSMs) specifically designed to deal with the low-level operations

required by the IP/CV algorithms: get/set pixel values and arithmetic operations.

The most used Processing Type is the Single-Instruction Multiple-Data (SIMD),

where the PEs share the instruction memory, and work with the synchronization
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made per instruction. In general, General-Purpose Processors (GPPs) have a good

average performance among different application domains; however, for some spe-

cific applications, they struggle to be efficient. Application-Specific Instruction set

Processors (ASIPs) are specially adapted/designed to handle the most important

characteristics of a given application domain. The design of such architectures

requires knowledge about both the application domain and hardware/software co-

design. This section shows a review of methods and systems developed to help in

the design of ASIPs.

There are several works in the literature regarding ASIP design methodologies

and embedded real-time IP/CV processing platforms. In [SML07], a methodology

for the development of ASIPs based on LISA is described in details. The work of

[EWL13] shows a new method for fast ASIP design, which uses abstract processor

models to minimise the time of development. The basic methodology in this work

uses application profiling to extract the relevant features.

[Dia+12] uses profiling methods to the design of efficient computer vision algo-

rithms for robotics applications in space. [FH14] proposes a methodology based on

Peephole optimisation to identify, in the assembly code, the most repeated sequences

of instructions, considered as the best candidates for optimisation. This work shows

the design trade-off (area, power, and timing) for an Instruction Set Extension, ap-

plied to Sequence Alignment problem. This methodology was followed in the current

work to propose the design of new instructions.

In [Mus+10], DSP-based implementation and comparison of several different al-

gorithms for edge detection are performed. Several different optimisation techniques

were used, like Cache Optimization, Compiler Intrinsics, and Software Pipelining.

No concerns about the image acquisition stage are present in this work; however,

the Compiler Intrinsics concept was used to ease the creation of custom instruc-

tions. [MSL12] shows an FPGA implementation of image filtering by convolution,

with camera synchronisation. In [MLB12], redundant operations are identified and

eliminated, resulting in more efficient resource use.
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In [MSL12], the authors show similar FPGA-based designs, not only for con-

volution but other neighbourhood operations, such as rank-order filters and binary

morphology. The architecture shown in these works can efficiently store only a re-

gion of the image per time, reducing the memory usage in the acquisition stage. The

current work was developed based on the standard architecture shown in [MLB12]

[MSL12].

A reconfigurable ASIP for image processing is described in [Lia+12]. Some ap-

proaches for the design of application-specific processors are shown in several works.

A hardware/software partitioning technique, together with a resource management

analysis can be seen in [GBC09]. This system is implemented in a run-time recon-

figurable system, with great flexibility.

One of the steps in the proposed methodology is the selection of processors, or

the development of new custom ASIPs, to be used as PEs. In [T+06], [TG08b],

and [TG08a], it can be seen a technique to generate the structure of a custom pro-

cessor by analyzing the application’s C-code. The CoEx methodology, proposed by

[EWL15], is based on profiling an application in the LLVM Intermediate Represen-

tation ([LA04a]) and, with the help of processor’s abstract templates, suggesting a

microarchitecture. In [MKH15b], an ASIP for low-level image processing operations

is shown as a result of an instruction’s sequences optimisation.

Table 3.2: ASIP design methodologies/tools from the literature review.

Reference Methodology
Automatic

ADL Simulation RTLArchitecture
Generation

[T+06] Task-Scheduling yes - - no
[SML07] Profiling no LISA Instruction/Cycle-Accurate yes
[Mus+10] Compiler Intrinsics no - Hardware Implementation no
[RAS11] Profiling no SystemC-based Instruction-Accurate no
[Dia+12] Profiling no - Cycle-Accurate no
[Lia+12] Task-Scheduling yes LISA Instruction/Cycle-Accurate yes
[EWL13] Profiling yes LISA Instruction/Cycle-Accurate yes
[FH14] Peephole Optimization no LISA Instruction/Cycle-Accurate yes
[Jor+17] Probabilistic Analysis yes no - no

Table 3.2 shows a summary of the main ASIP design methodologies/tools ex-

tracted from the literature. By taking advantage of: the profiling techniques [Dia+12]

[FH14]; the design methodology [SML07] [EWL13]; the standard convolution archi-
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tecture [MLB12] [MSL12]; and the compiler optimizations [Mus+10] from the liter-

ature, it was possible to design an an efficient hardware/software structure, turning

the standard RISC processor into an efficient ASIP. In Section 15.2.3, the design

process is described in more details.

3.3 High-Level Synthesis methods

Another option to design the PEs is the High-Level Synthesis (HLS), which takes

an algorithm description in a high-level programming language and generates an

Register Transfer Level (RTL) description. The EDA industry emerged and grew

to seek for efficient ways to transform the idea of an application into a hardware

processing system. Since the first CAD tools used to help the design of analogue

parts, until the current complex commercial HLS tools, the primary goal of an EDA

tool is to make the application’s implementation more friendly to the designer.

In [GR94], an overview of the nomenclature of HLS area and the central con-

cepts related to it are presented. The work in [WO00] shows a tool flow for ASIC

design based on C input, to be used for high-level synthesis and verification. The

presented tool allows the user to actuate in several different levels, with suggestions

for modifications given by the tool. They also report an industry case where it was

possible to achieve a reduction in the project duration in about six times. In our

work, we also take advantage of the C-based input to verify the created hardware.

The Spark framework is presented in [Gup+04]. It is an HLS tool which relies on

source code transformations to enable better synthesis results. This tool has the ad-

vantage of minimal user interaction, which can lead to faster results. The authors of

[Per09] highlight that Model-Based Design, used in tools like Mathworks Simulink,

requires from the designer the knowledge about both application and hardware ar-

chitectures, which results in longer design cycles and also non-portable results. The

work suggests the application’s implementation using abstract functional units, like

multipliers, adders, memories, and so on, generating a data-flow graph. After that,

a set of transformations is performed to identify patterns and structures, which are
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then mapped to the FPGA resources. Our method works similarly, but with the

advantage of having a higher abstraction level with the C code input.

In [MHS10], an HLS framework was developed to map DSP algorithms to Coarse

Grain Reconfigurable Architectures (CGRAs). The algorithm’s description is done

in a subset of the C language, due to restrictions on handling dynamic data struc-

tures and functions. The designer must use pragmas to identify SIMD-prone blocks

of code, like in OpenCL [Cza+12]. A Control-Data-Flow-Graph is then extracted,

and a configware is generated to the CGRA. The main disadvantage of this approach

is that the designer must know which type of structures should be highlighted by

the pragmas, what means that the success of implementation depends highly on the

user’s experience.

The ROCCC (Riverside Optimizing Compiler for Configurable Circuits) is a

tool to create hardware accelerators from applications described in the C language

[Vil+10]. It presents a 15x reduction in the design time, in comparison to hand-

written VHDL code. However, the flexibility of application’s description is con-

strained by the necessity of using specific templates and patterns to enable the tool

to extract the hardware structures from the C code correctly. The integration among

domain-specific design platforms and HLS tools is discussed in [Con+11]. A review

of the state-of-art tools is shown, highlighting the trend to have higher abstrac-

tion levels, going from the programming language level to the application domain

level. This trend means that these tools converge to particular platforms offering to

the designer application-specific design options, which can improve the quality and

reduce the design time for such applications.

The LegUp ([Can+13],[For+14]) framework is an open source HLS tool focused

on FPGA technology. The tool receives an application described in standard C

language and automatically generates a hardware/software architecture composed

of a RISC soft-processor and custom hardware accelerators, connected using a bus

interface. The key point of this approach is to offer the flexibility of a RISC proces-

sor together with the hardware accelerators. [Hua+15] uses the LegUp framework
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to analyse the effect of different compiler optimisation options on the quality of

the synthesised hardware, showing that the careful choice of the optimisations can

enhance the wall-clock time circa 16%.

The framework described in [PMR14] proposes an automatic tool for fast De-

sign Space Exploration (DSE), targeted to FPGA technologies and integrated to

commercial HLS tools. The synthesis is done by first creating a standard synthe-

sised implementation which is profiled and transformed. This sequence of steps

iteratively enhances the implementation, until the design constraints are met. An

essential characteristic of this work that we explore in our project is not to rely on

a fixed HLS tool. In our case, a previously synthesised library must be present.

In [Geo+13], the authors propose a methodology to enable the use of Domain-

Specific Languages (DSLs) with HLS tools, creating a DSL-HLS design flow. In

this approach, the application is analysed depending on its specific domain, for

example, matrix computations should be handled and decomposed in an algebraic

environment, and so on. In this way, different Intermediate Representations (IRs)

are used to extract properties incrementally and optimise the implementation. This

method is enhanced in [Geo+14], where automatic analysis are performed to extract

execution kernels and dependency graphs, used to generate the hardware.

[Zuo+13] presents an HLS methodology for inter-block and intra-block optimi-

sations based on Polyhedral Transformations, targeted to FPGA technology. The

application’s code is transformed iteratively, and directives are inserted automati-

cally, to provide optimised HLS results. The flow starts by taking a data-dependent

multi-block program defined by the user and determines the data access patterns and

the loop transformations needed. The computation blocks are then transformed us-

ing the polyhedral model, and the communication part is generated in a fine-grained

way [Zuo+14].

Pre-Characterized Function Implementations (FIMPs) are suggested by [Li+13b]

to help the system level synthesis of DSP applications. The user input is a Syn-

chronous Data Flow (SDF) graph created using FIMPs. By analysing the FIMP
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libraries for the targeted hardware (ASIC, FPGA, CGRA) and the function-level

parallelism, a set of feasible schedules is generated and then incrementally enhanced

by testing different alternatives until the design constraints are met. The concept

of FIMPs is used in our work (as a library of synthesised Function Models) to avoid

the Combinatorial Optimization step.

The bambu framework is shown in [PF13]. It is a semi-automatic system to help

the design through the HLS flow. The framework interfaces with commercial tools to

get hardware parameters, like latency and resources usage. This tool was developed

focused on memory-intensive applications and presents several optimisation steps to

create efficient memory access patterns. However, the need for user interaction is

high and represents the main weakness of this tool.

[Cza+12] presents the Altera OpenCL HLS tool, which takes as input an OpenCL

implementation of the application and generates RTL code. OpenCL is based on C

language, and the user must include pragmas to determine parallelism opportunities,

which can be a drawback for inexperienced designers.

Table 3.3: Comparison of methods and tools for HLS

Reference
Input User

MethodologyLanguage interaction
[WO00] C moderate Source code transformations
[Gup+04] C minimal Source code transformations
[Per09] Model-Based strong Block diagram using function units

Design
[MHS10] C strong Pragmas to identify SIMD code blocks
[Vil+10] C moderate Templates and patterns
[Cza+12] OpenCL strong OpenCL kernels and synthesis pragmas
[Geo+13] DSL minimal Optimisations over Intermediate Representations (IRs)
[Zuo+13] C moderate Polyhedral transformations
[Li+13b] Model-Based moderate Libraries of pre-characterized FIMPs

Design
[PF13] C moderate Optimisation of memory access patterns
[PMR14] C moderate Iterative optimisations with tool suggestions
[For+14] C moderate Hardware/software

Table 3.3 shows a comparison of methods and tools for HLS. The majority of

HLS tools found in the literature and reported here offer to the designer a C-based

input. As our goal is to provide to software developers a fast way to have good-

performer hardware synthesised, the use of C-language is a straightforward choice.
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Also, the use of pragmas and user-handled code transformations should be avoided,

since there is a need for intermediate to advanced hardware knowledge to execute

them successfully. In other words, our work is based on minimum user interactions,

while offering fair performance results.

3.4 Many-core design and methodologies

Different strategies for profiling source codes are shown in [Che+11], and in [LZL12]

there can be seen a methodology for memory subsystem analysis for ASIP design.

The issues and challenges on Adaptive ASIPs design are depicted in [JL11], focused

on the development of massively-parallel heterogeneous MPSoCs and an approach

for the design of processors capable of deal with parallel algorithms is shown in

[Kar+13].

The profiling of computer vision algorithms is shown in [Dia+12], to the optimi-

sation of a system for rover navigation. In [Iss+12], ASIP design methods are applied

to an MPSoC architecture. This methodology is validated by the implementation

of a wireless image transmission system.

Figure 3.8: The WiMedia MAC MpSoC architecture [Iss+12].
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The work presented in [KOA05] describes a parallel SIMD processor and memory

array architecture which explores data level parallelism from image rows as well as

from memory access patterns identified in IP/CV algorithms. The architecture is

composed by 128 PEs, each one as an 8 bit 4-way Very-Large Instruction Word

(VLIW) processor, and one 16 bit RISC processor.

Figure 3.9: Block diagram of the IMAP-CE MPSoC and PE [KOA05].

In [Han+05] a methodology for mapping applications and evaluation of a Weakly-

Programmable Processor Array (WPPA) is presented. A WPPA is composed of

small optimised Weakly-Programmable Processing Elements (WPPEs) having the

advantage of a sub-word parallelism, allowing for extreme parallelism exploration.

The design and programming of multi/many-core architectures are still hot topics

in both academic and industry communities. The techniques and methodologies

developed for an old technology sometimes are not feasible for new technologies

(and new applications). The Kahrisma project, [K+10], presents a reconfigurable

architecture composed of different processor models and interconnections. It also

presents a software framework, providing retargetable compile-time tools.
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Figure 3.10: An example of a WPPA with parameterizable PEs [Han+05].

In [C+08], a framework for application parallelization to MPSoCs is presented.

The applications are described using an extended version of the Kahn Process Net-

works (KPNs). Building blocks of different granularities are extracted from the

process networks and can be then compiled for the MPSoC. The exploration of

loops is one of the key concepts to speed up IP/CV algorithms.

The Tightly-Coupled Processor Arrays (TCPAs), [H+14]) was developed with

the aim of having thousands of small PEs integrated as a single module to be inserted

into heterogeneous MPSoCs. In this case, a heterogeneous MPSoC is composed of

several different elements (homogeneous/heterogeneous multicores, I/Os, memory

blocks, GPUs, and so forth.) interconnected through a NoC. The TCPA architecture

seems to outperform embedded GPUs for applications with integer arithmetic. In

our case, the majority of IP/CV applications use mainly integer and fixed-point

arithmetic, which suggests that an intermediary architecture between a TCPA and

a GPU can be a good solution.

The parallelisation of loop programs to Massively Parallel Processor Arrays (MP-

PAs) is shown in [TTH13], using a TCPA as an accelerator in a heterogeneous MP-

SoC. Most of these approaches share an essential step: the parallelism extraction

(from loops, instructions, among others.). The use of KPNs goes in the direction of

forcing the programmer to highlight the parallelism. In our approach, we consider
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Figure 3.11: On the left, the TCPA architecture; on the right, an heterogeneous
MPSoC example [H+14].

the use of a graph-based Domain Specific Language, to couple the spatial distribu-

tion of pixel/processors and the IP/CV parallelism exploration.

The works from [Goh+08] and [RG14] include a new dimension in the design

space of Multi/Many-Core architectures: the hardware runtime adaptivity. The

dynamic hardware reconfiguration can enhance the performance of the system in

real-time, enabling for more flexibility when dealing with the design constraints. In

IP/CV applications different widths can be configured in an ALU, depending on

the algorithm to be executed, or even the choice among RISC or VLIW to explore

sequential or parallel sequences of instructions.

The analysis of trends and issues for MPSoCs is the focus of [BD05]. The authors

discuss how SoCs composed by tens or hundreds of PEs should be integrated through

communication structures. Systems with tens to thousands PEs operating at high

frequencies are expected to be common soon. The authors highlight that global wires

are likely to have propagation delays too significant for the desired clock period.

This statement constrains the use of buses and point-to-point connections to local

communications only. Also, the synchronisation of this massive amount of PEs with

a single clock may lead to an area explosion due to clock buffers, also preventing
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Figure 3.12: On the left, the RAR-NoC MPSoC; on the right, the configurable router
architecture [RG14].

higher operating frequencies.

Multiple clock domains may be used, to support different application needs.

However, bus-based systems are not designed to support this feature efficiently.

The increasing amount of PEs sharing the same bus will lead to unfeasible high

operating frequencies. Therefore, a different solution should be used. The Network-

On-Chips are proposed as a solution to the highlighted issues. In our work, similar

issues are expected, due to the amount of PEs, as well as the massive amount of

data to be transported intra-chip. In Section 12.0.3 there are more details about

the communication issues in the design of our architecture.

In [SFP13], the utilisation of an MPSoC based on a NoC architecture is discussed

for a real-time IP/CV application. The MPSoC is based on heterogeneous Tiles,

composed of distributed memories, GPPs, and hardware blocks dedicated to specific

functions (motion estimation, discrete transforms, and filtering). Each Tile has also

a Network Interface (NI) which is connected to a NoC Router. This architecture does

not use a spatial pixel distribution, like in a pixel array, however, it is configurable

to work as a cascade of processing elements accordingly to the application. This

type of architecture takes advantage of the NoC structure to trade flexibility with

communication delay. Another advantage is the possibility of re-using the same PE

in different parts of the image processing chain since the NoC topology allows for
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A Coarse-Grained Processor Array (CGA) developed over a NoC is proposed

in [Pha+13]. The architecture is organised as a 2D mesh, 4-connected, with each

Tile composed by the Router, a RISC processor, Data, and Program Memories. An

interesting aspect here is the use of independent Program Memory in each Tile. This

feature is implemented to allow for different applications running simultaneously. In

our case, considering an image region allocated to each Tile, the same application

should be running, and the replication of Program Memories could be considered

a waste of area. However, we highlight here that the synchronisation among the

PEs can be done by data dependencies, instead of being performed by a global

controller. This feature can also allow for faster execution of pixel-based branches,

where different Tiles can be in different states simultaneously.

The work of [KKK13] explores partially the design space of a many-core archi-

tecture used for image segmentation. The authors propose a layered architecture

composed of a CMOS photo-detector array at the top of the processor layer. The

processor layer is based on a 2D array of PEs, 4-connected in a point-to-point con-

figuration. Each PE is responsible for a region of the image and composed by an

ALU, Register File, Local Memory, and a Communication Unit. In this work, the
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Figure 3.14: The NoC-based MPSoC proposed by [Pha+13].

authors analysed the impact of varying the number of PEs with fixed image size. In

our work, we extended this analysis to different types of PEs, several communication

structures, and memory organisation.

Several commercial and free tools capable of system-level design can be found in

the market. Diverse features as simulation, profiling, HDL code generators, virtual

design platforms and so on have been developed to deal with the vast design space

for application-specific processing systems. Most of the tools and methodologies

found in the literature focus on few aspects in the design space, and there are

no methodologies focused on the specific problems a hardware engineer would find

when developing a vision processor. In this work we performed a simple analysis

to bridge this gap, allowing the designer to have more detailed information from

the application domain, by analysing the processing needs from the outputs to the

inputs.

It can be identified in the literature, that the main bottleneck in IP/CV archi-

tectures is the data access. The parallelism exploration must be extended from the

instruction level to the memory access level. This can be done by exploring the focal-

plane approach and the spatial parallelism of IP/CV algorithms. Another critical

point is the migration from analogue to digital processing, focusing the analogue

44



3.4. MANY-CORE DESIGN AND METHODOLOGIES

Table 3.4: My caption

Reference PE Type
Communication Mapping
Structure Method

[Iss+12] heterogeneous Bus Application-specific SoC
[KOA05] VLIW PE – SIMD Bus Memory access patterns
[Han+05] WPPE Switching matrix Sub-word parallelism
[C+08] independent independent Mapping of KPNs
[TTH13] RISC PE – SIMD Switching matrix Loop parallelisation
[SFP13] PE Array NoC Cascade of Pes

parts to acquisition only, leaving the processing tasks to the digital parts, which can

have more flexibility and lower costs. Considering these points, the general architec-

ture suggested in Figure 1.7 is envisioned to be able to provide the aimed advantages:

an application-specific many-core system with spatially distributed pixel registers,

integrated by an intrachip communication structure. The following topics show a

bibliographical review directed to the development of this architecture.

In the current work, we are developing a mix of the presented techniques, to

identify the application’s needs and refine the processor’s model since the beginning

of the design flow. It is important to highlight that not only the processing part but

also the communication needs are considered in our design.
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Chapter 4

Image Processing Concepts

In this chapter, we review some of the basic concepts related to the Image Processing

and Computer Vision (IP/CV) area. We provide only a non-exhaustive overview

which should be enough for most readers to understand the development of this

thesis. 3

4.1 Image Processing and Computer Vision Chain

IP/CV applications appear in several different areas, such as safety monitoring,

biometric devices, industrial quality control, driving assistance systems, medical

diagnostics, remote sensing, underwater inspection, and consumer market. These

applications require different algorithm types, from simple contrast correction to

complex pattern recognition. In this section, we highlight the IP/CV main charac-

teristics used in this work.

Most of the image processing algorithms are used to generate a new image from

the original image, performing operations such as noise filtering, feature enhance-

ment (borders, lines, regions, objects) and feature detection (vectors of characteris-

tics describing the features). Another type of algorithms, like pattern recognition,

works analysing the vectors of characteristics to identify objects. This work is fo-

3This chapter is based on excerpts and adaptations from previously published papers [MH14],
[YLH17].
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cused on the algorithms, mentioned at first, which transform the original image into

another image.

Figure 4.1 shows an example of image processing stages for an application. Most

of the works found in the literature about Vision Processors are focused on offering

processing solutions for the first and the second stages [KG06]. The approach of

the present work extends the analysis also to intermediate-level operations (stages

3 and 4).

Figure 4.1: A general IP/CV processing chain [KG06; MH14; MK16; YLH17].

A typical IP/CV system contains one or more of the stages shown in Figure 4.1:

1. Acquisition: It encompasses the CMOS pixel array and its ADCs. Its output

is the original image.

2. Pre-Processing : It is responsible mainly for noise removal through filtering.

Its outputs are intermediary images.

3. Segmentation: It localizes the Regions of Interest (ROI) in an image (ROI

definition depends on the algorithm used). Its outputs are intermediary labeled

images.

4. Feature Extraction: Scans the ROIs to extract their characteristics (features).

The outputs are feature vectors representing these characteristics.
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5. Interpretation: Extracts useful information from the feature vectors. The out-

puts are the information extracted. In the example, could be the identification

of the letter A.

Each state of the processing chain has different characteristics of complexity

and amount of operations. The first stages use low-level pixel operations, mostly

based on trivial arithmetics. However, the amount of information to be processed

is enormous. In contrast, stages close to the end of the processing chain need high-

level, sophisticated algorithms, but operate over less information.

It is important to observe in Figure 4.1 that the amount of data to be processed,

in general, decreases from one step to the next. On the other hand, the complexity

of the functions used in each step increases. This means that at the beginning of

the chain there are data-intensive simple operations, and at the end of the chain

complex operations over few data [KG06], [Brä+13], as in Figure 4.1.

Also, it is common to find a considerable amount of Instruction-Level Parallelism

at the beginning and more sequential algorithms at the end of the chain. As a re-

sult, for the beginning of the chain, one can propose architectures such as Vector

Processors, Superscalar and VLIW architectures, as well as direct hardware imple-

mentations, for example using embedded reconfigurable fabric. For the end of the

chain, one can propose more general-purpose processors, to allow for more complex

algorithms implementation. This information can be used by the chip designer as a

starting point on which architectures can better explore algorithm characteristics.

4.2 Operation Types

In Stages 2 and 3 (Figure 4.1), the operations work in the pixel level, transforming a

given image in another one. The IP/CV operations at the pixel level can be classified

in three types, as shown in Fig.4.2 ([KG06], [MH14], [Zar11]):

• Pixel operation: Gets a single pixel as input to generate a single output pixel.
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Local operation: from 

pixel to pixel

Neighborhood operation: 

from region to pixel

Global operation: from 

image to pixel

Non-Regular operation: 

from pixel set to pixel

Figure 4.2: Basic pixel-level IP/CV operations [KG06].

• Neighborhood operation: Gets as input a regular group of pixels to produce a

single output pixel.

• Global operation: Gets as input the whole image to generate a single output

pixel.

• Non-Regular operation: Gets as input a set of pixels which share a common

property to produce a single output pixel.

We must highlight that Pixel and Global operations are just particular cases

(lower and upper limits) of Neighborhood operations. Several different IP/CV ap-

plications can be described using combinations of those three types of operations.

4.3 The OpenVX Project

In the parallel processing domain, one of the most important goals is to identify and

explore the maximum amount of parallelism possible [KG06]. Looking at the IP/CV

algorithms, and considering the spatial distribution of PEs over the image area, we
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can identify coarse-grained parallelism. In the IP/CV domain, the OpenCV library

[tea17] is one of the most used collections of algorithms. It is used for educational,

industrial and scientific purposes, and can be considered as an informal standard.

With the increasing number of complex IP/CV commercial applications, the

industry identified the need for an IP/CV standard de facto. The Khronos Group

[Edi17] released in 2014 the first version of the OpenVX standard. OpenVX is a

set of rules and design patterns created to describe IP/CV applications. Similar

to other standards, like OpenCL and OpenGL, the OpenVX actuates as a frontend

for application’s description. The backend should be created by each hardware

manufacturer, accordingly to its architecture’s characteristics [Edi17].

Median 
Filter

Convolution 
kernel 1

Convolution 
kernel 2

Subtraction
Absolute 

Value

Figure 4.3: OpenVX graph of a simple application [Edi17],[Mor+16b]

OpenVX defines a programming model based on graphs, composed of nodes

and links. Each node is a complete IP/CV algorithm (filtering, motion detection,

arithmetic operations among images, and so on), as shown in Fig.4.3. In general,

both input and output of a node are images. The OpenVX functions/blocks/nodes

were defined with the following main criteria [Edi17]:

• Applicable to Acceleration Hardware: The vision functions most feasible

to be implemented as hardware accelerators were chosen.

• Very Common Usage: The most common vision functions found in academy

and industry were chosen.
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• Encumbrance Free: Algorithms, methods, and techniques used in OpenVX

are free of property/intellectual claims.

Considering the broad application of other Khronos Group standards, we decided

to develop our architecture to implement most of the OpenVX function blocks. Only

the functionalities of the function blocks were analysed. To be compliant with the

standard, some features like garbage collection and kernel management were not

considered.
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Application-Specific

Hardware/Software Co-Design

In this chapter, we perform an analysis of the application-specific features which can

determine hardware/software design templates. We start this chapter by analysing

different pixel acquisition architectures, to highlight their main advantages and

drawbacks. Afterwards, we check some parallelism exploration possibilities and

define the basic programming model of our architectures. In the end, we show the

specification of a general architecture template which will be used as a guide for

further development in this thesis 4.

5.1 Image Acquisition Schemes

In [Zar11], different CMOS sensor acquisition schemes are discussed. This design

choice reflects directly on the amount of parallelism that can be explored, but also

in the size and complexity of the analogue part of the system. As described in

Figure 1.4, there are three basic acquisition schemes, each one with its advantages

and disadvantages (Single-Pixel Stream, Region-Based Stream, and One Stream per

Pixel). In this section, we analyse each scheme, to provide a comparison among

4This chapter is based on excerpts and adaptations from the previously published papers [MH14]
[YLH17]
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them. Let’s first consider the following parameters, essential to define the pixel

acquisition scheme:

• Resolution: M rows and N columns.

• Throughput: Thr : represents the amount of pixels generated per time unit.

• Neighborhood: a pixel array of size L × K, needed in the first processing

stage.

• Region: an image region of size W × Z, used only in the Region-Based ac-

quisition scheme.

• Initial Delay: 4init : the amount of cycles until the first neighborhood is

filled.

5.1.1 Throughput

The throughput measures the acquisition speed: how many pixels are acquired and

made available at each clock cycle (pixels per cycle - ppc). Table 5.1 shows the

equations used to determine the throughput of each acquisition scheme.

Table 5.1: Throughput for each acquisition scheme.

Acquisition Scheme Thr (ppc)
Single Pixel 1
One per Pixel M ×N
Parallel Rows M
Parallel Columns N
Region-Based M×N

W×Z

Figure 5.1 plots a specific case of the throughputs for a fixed size image (M =

N = 1024), as a function of W = Z. The acquisition scheme which has more flexibil-

ity is the Region-Based Stream, which provides more possibilities for the throughput

choice. Intuitively, the Single Pixel Stream and One Stream per Pixel schemes are

the cheapest and the most expensive (considering the silicon area), respectively.

Therefore, it is not naive to say that the Parallel Rows/Columns and Region-Based
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Stream schemes should have the best cost/benefit ratio. In the graph, the high-

lighted point (32, 1024) shows the case when both schemes have the same amount

of ADCs (which roughly corresponds to the same cost in silicon area).
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Parallel Columns/Rows=1024 Region-Based=1024×1024
W 2

Figure 5.1: Throughput considering: M = N = 1024, W = Z = {variable}.

5.1.2 Initial Latency

In general, the first algorithms applied to the acquired image are based on groups of

pixels (neighbourhoods). These neighbourhoods can have any size or shape. How-

ever, square shapes are the most common ones and therefore used for the analysis in

this section. Table 5.2 shows how to determine the Initial Delay for each acquisition

scheme.

Table 5.2: Initial Delay for each acquisition scheme.

Acquisition Scheme 4init(cycles)
Single Pixel N × (L− 1) +K
One per Pixel 1
Parallel Rows K
Parallel Columns L
Region-Based W × (L− 1) +K

Figure 5.2 shows the Initial Delays for each acquisition scheme, considering dif-

ferent parameter’s values. Observing the plotted functions, we can see that the

Region-Based scheme provides a variable range which encompasses all the spectrum

from the Parallel Columns/Rows to the Single Pixel schemes.
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Figure 5.2: Initial Delay considering: M = N = 1024, L = K = {3, 7, 15}, W =
Z = {variable}.

5.1.3 Image Delay

The Total Delay is the total amount of cycles to load the complete image in each

acquisition scheme. Equation 5.1 shows how to determine the Total Delay for any

acquisition scheme.

TotalDelay = 4init +
M ×N
Thr

(5.1)

The Total Delay is a combination of the Initial Delay with the total amount

of pixels in the image, adjusted with the Throughput. The graphs in Figure 5.3

show the Total Delay of each acquisition scheme. Once more we can observe that

the Region-Based acquisition scheme provides more design flexibility, which is an

essential characteristic in the scope of this work.

56



5.1. IMAGE ACQUISITION SCHEMES

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
100

101

102

103

104

105

106

W (pixels)

T
ot
a
lD
el
a
y
(c
y
cl
es

)

Single Pixel (L=3) Single Pixel (L=7)
Single Pixel (L=15) One Per Pixel=1

Parallel Columns/Rows (K=3) Parallel Columns/Rows (K=7)
Parallel Columns/Rows (K=15) Region-Based (K=3)
Region-Based (K=5) Region-Based (K=15)

Figure 5.3: Total Delay considering: M = N = 1024, L = K = {3, 7, 15}, W = Z =
{variable}.

5.1.4 Overview

The discussion made until now in this section was focused on the acquisition schemes

from the processing part. From an analogue design perspective, there is also some

interesting analysis to be done. The focus of this work is on the processing ar-

chitecture possibilities (here considered purely digital), not in the analogue design.

However, we can make a qualitative analysis of the analogue design issues related

to the vision processor architecture:

Scalability The focus of this work is the design possibilities of a multi/many-core

vision processor. Therefore, the scalability refers to changes in the image resolution

and the number of processors. Considering Throughput, Initial Delay and Total De-

lay, the most flexible acquisition scheme is the Region-Based since it provides more

opportunities for design changes based on the resolution and number of processors.

Also, a stackable architecture (like in Figure 1.7) would have equal propagation de-

lays from the ADCs to the Pixel Memories responsible for image buffering. In the

other acquisition schemes, several different wire lengths would be used, resulting in
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less deterministic behaviour and more noise sensitivity.

Image Quality A pixel array is composed of: a light sensitive area (photodiode)

in each pixel, amplifiers, and connection through the switching/transfer bus to the

ADCs. The quality of an acquired image is directly related to the amount of light

it can acquire from the environment. In a Focal-Plane approach, the sensitive area

is reduced due to the addition of processing/communication/storage elements to

the pixel sensor area, reducing the fill-factor. The stackable architecture shown in

Figure 1.7 (with a Region-Based scheme) optimizes the sensitive area by putting

non-acquisition related elements in another chip layer. This separation could also

be done in the other acquisition schemes. However, the outputs of the pixels need

to be routed to the die borders of the pixel-array, also occupying the sensitive area

with the data transfer wires.

Design Flexibility The design of mixed-signal (analogue and digital) integrated

circuits has several issues. As a thumb rule, analogue designs are less sensitive to

noise and manufacturing problems when designed/manufactured in older foundry

technologies. However, the digital design benefits from smaller power consumption

and higher operating frequencies. The 3D chip shown in Figure 5.4 can be manufac-

tured using different node sizes, allowing both analogue and digital parts to benefit

from it.

Sensor 

Array

Processing 

Elements (PE)

Intra-chip 

Communication

Figure 5.4: Focal-Plane/Near-Sensor Image Processing concept [Fos98] [MH14]
[MKH15a].
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Programmability One of the significant challenges of using a multi/many-core

chip is to solve the problem of programming several cores efficiently. By observing

the different acquisition schemes, the Region-Based one preserves the same charac-

teristics as the Single Pixel one, with the difference on the number of pixels to be

processed. This favours the utilisation of legacy codes and algorithms with minimal

modifications, in comparison with the other acquisition schemes, as will be detailed

in Section 5.2.

Considering the analysis performed in this section, we can consider the Region-

Based acquisition scheme as the most suitable for the design-space exploration,

because it is the most flexible, offering a balance among the parameters analysed.

5.2 Parallelism Analysis

To analyse the parallelism exploration opportunities, we will consider the sample

IP/CV processing chain shown in Figure 5.5. The application shown is an Edge

Detection composed by simple blocks. A first type of parallelism appears in the

IP/CV processing chain as Function-Level (or Block-Level). Looking to Figure 5.5,

we can observe that some blocks have no data dependencies with others: SobelX

can be executed in parallel to SobelY, as well as the pair of ABS blocks among

themselves.

Figure 5.5: Simple Edge Detection application.
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5.2.1 Macro-Pipeline

In a real-time IP/CV system, not a single, but a sequence of images is processed

(in general, a continuous stream of images). A simple type of parallelism appears

among the different stages and the image stream. Figure 5.6 shows a Macro-Pipeline

for the processing chain of Figure 5.5, in which the processing stages can be applied

in parallel to an image sequence, in a similar fashion as a pipeline in a common

processor [MH16].

Figure 5.6: Macro-Pipeline: exploring the parallelism in image sequences [MH16].

5.2.2 Operation-Level Parallelism

Some IP/CV algorithms are composed by several operations, e.g. the Convolution

in Figure 5.7. This algorithm is used to perform different functions, like the SobelX,

SobelY, Median Filter blocks from Figure 5.5. The Convolution in Figure 5.7 oper-

ates over a 3 × 3 neighborhood, by multiplying each pixel to a coefficient (kn) and

summing up the results. We can observe that each multiplication is independent of

the other, as well as some of the additions. Therefore, these operations could be

performed in parallel. In a VLIW processor, this type of parallelism would be called

Instrucion-Level Parallelism (ILP).

5.2.3 Loop-Tiling / Spatial Parallelism

With the choice for the Region-Based acquisition scheme (Section 1.4), a type of

Spatial Parallelism can be explored. The left side of Figure 5.8 shows how a generic
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Figure 5.7: Operation level Parallelism: 3× 3 Convolution example [MH16].

IP/CV algorithm is commonly implemented: for each pixel in the image the pro-

cessing chain blocks are applied. Due to data independence, the nested loops can be

both unrolled, and each loop body could be computed in parallel. This would match

with the One per Pixel acquisition scheme. This scheme would provide the high-

est throughput, at least for the first stage in the Image Processing and Computer

Vision (IP/CV) processing chain. However, the cost and technical implementation

issues of having one processor per pixel are not suitable for practice.

An alternative, which matches the Region-Based acquisition scheme, is to divide

the image into regions with the same size of the acquired regions. In this way, the

two image-sized nested loops would be divided into smaller nested loops with the

size of each region. This process is also known as Loop-Tiling [YLH17].

Figure 5.8: Loop-Tiling example for a generic IP/CV block, as defined in [MKH15a].

The same operations will be performed, however in parallel, with each region

allocated to a different PE, as shown in Figure 5.9. This algorithm/data mapping
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favours the scalability of the system since a resolution increase can be easily solved

by inserting new PEs, or by changing the number of pixels per Region/PE.

PE

PE

PE

PE

Figure 5.9: Exploring the Spatial Parallelism using a Region-based configuration:
each PE is responsible for a region of the image [MH16].

In the next section, we show the definition of a conceptual template for our

many-core vision processor.

5.3 Tiled Parallel Architecture

As discussed in section 5.1, the Region-Based acquisition scheme offers interesting

characteristics for the type of problem we want to solve. It is straightforward to

see that the Loop-Tiling presented in section 5.2.3 matches with the Region-Based

acquisition scheme. Considering the ideas highlighted, we propose a general archi-

tecture description which shall have these features.

In Figure 5.10, we show the General Tiled Architecture, where each tile is com-

posed by a Pixel Memory, a Processing Element, and a Communication Interface.

Besides, the tiles are integrated through an Inter-Tile Communication Structure.

Each tile is responsible for processing the pixels within its image’s acquired region.
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Inter-Tile Communication 

Structure

Tile

Pixel Memory Processing 

Element

Communication Interface

Tile

Pixel Memory Processing 

Element

Communication Interface

Figure 5.10: General Tiled Architecture

To simplify the nomenclature for the rest of the thesis, we define in this section

the concept of a Tile-Code. The Tile-Code is the algorithm/program/code needed

to generate a single output pixel. This is equivalent to say that the Tile-Code

is the set of operations in the loop-body of Figure 5.8, originated from a complete

loop-unroll. The Tile-Code has some characteristics that can be used in this project:

Programming Model: First of all, from its definition, the Tile-Code is imple-

mented in each Processing Element (PE) independently. If we program the Tile-

Code in a parameterizable way, the same program can be just replicated in each

PE and repeated for each pixel. This offers an easy and low-complex solution for

mapping the IP/CV algorithms to the many-core architecture.

Modularity: A single Tile-Code can be used to represent a complete IP/CV pro-

cessing chain. However, each block of an IP/CV processing chain can also be repre-

sented by a Tile-Code, if we consider the intermediary images as outputs/inputs of

the Tile-Codes.

Abstract Representation: The Tile-Code must be seen not strictly as a source-

code (e.g. C, C++, Java) but as an abstract representation of the operations needed

to generate a single output pixel. The IP/CV applications considered in this work
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can be broken down into the four basic pixel-level operations shown in Figure 4.2.

This abstraction comes from the fact that the PEs are not defined yet. As we will

show in this thesis, the PE can be a simple programmable processor (in this case,

the Tile-Code would be a source-code), a systolic array (in this case, the Tile-Code

would be represented in the array), or even a direct hardware implementation (in

this case, the PE would be a result of a high-level synthesis of a Tile-Code).
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Chapter 6

The high-level methodology

In this part of the thesis, we propose a methodology to design and program many-

core vision processors from a high-level perspective: we use the desired application

as first input to determine the underlying hardware/software architecture.5

6.1 Introduction

Considering the concepts, results and ideas from the bibliography, some key points

must be highlighted in this work. An important aspect is a need for an application’s

development layer which can make the hardware transparent to the programmer.

Another important aspect is the spatiotemporal characteristics of IP/CV algorithms.

A digital image is a spatial distribution of pixels and the IP/CV techniques should

be considered as spatial problems [Ung58]. This means that the hardware/software

architecture should also be thought in a spatially distributed way, to better deal

with the IP/CV techniques.

Task graphs represent the dependencies between the components of an algorithm

and are used in many areas. They represent a set of tasks and are used to distribute

them in a particular order among a defined number of execution units so that they

can be processed as efficiently as possible. The complexity of the individual tasks is

5The chapters presented in this part are based on excerpts from two Master Theses supervised
by the author - [Wer15] [Fri15] - as well as two a previously published papers: [MKH15a] and
[Mor+16b].
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not uniform but depends on the task to be solved. In this way, a task can correspond

to a single machine instruction, but also to a complete complex program.

Figure 6.1 depicts an example of task-graph mapping and scheduling. A generic

task-graph with eight tasks is provided. The mapping task starts by assigning a

cost for each node and each edge of the task-graph. The node’s cost is known as

processing cost, and the edge’s cost is known as communication cost.
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Figure 6.1: An example of task-graph mapping and scheduling.

The processing cost depends on different factors:

• The task itself, its complexity and particularities.

• The processing unit responsible for the task. In a heterogeneous architecture,

different types of processing units could be used.

• The matching among the task functionality and the processing unit.

The communication cost depends on some other factors:

• The amount of data to be transfered.

• The channel bandwidth.

• The communication structure (Bus, Point-to-Point (P2P), Network-on-Chip

(NoC),etc).
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The goal of the mapping process is to optimise the task assignment to the process-

ing units. This optimisation can be for speed, power consumption, fault-tolerance,

or any design constraint (even for combinations of them). In a higher abstraction

level, in the area of graph analysis, the task mapping problem can be viewed as a

Clustering problem. The clustering process tries to classify the tasks into groups

called clusters. In Figure 6.1, the clustering/mapping was performed to four different

Processing Unit (PU).

The scheduling process takes the already clustered task-graph and defines when

each task should be executed, to maintain the algorithm’s semantic. This process is

based on data dependencies and availability. In Figure 6.1, the scheduling resulted

in six time slots to process the complete algorithm.

6.2 Methodology’s Overview

The proposed methodology can be seen in Figure 6.2. Starting from application’s

description (the Tile-Code), techniques for static code analysis, together with spatial

considerations, are used to extract the parallelism and to create Task-Graphs and

intermediary source code.

A Task-Graph Clustering technique, based on a library of hardware models, is

used to create a SystemC/TLM2.0 description of a many-core architecture for each

IP/CV algorithm. If an application needs to use different algorithms, simultaneous

Task-Graphs are analysed, to generate a more suitable and flexible architecture.

Simulations with different combinations of the TLM timing models are used to

refine the SystemC/TLM2.0 description into more detailed models of the PEs and

the communication structure, aiming to specify the Register Transfer Level (RTL)

description.

The rest of the chapters in this part of the thesis are dedicated to explaining the

development of the following tools:

• Task-Graph Creator - it is responsible by parsing the input C program and
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Figure 6.2: The High-Level methodology [MKH15a].

creating the Task-Graph.

• Task-Graph Cluster-Generator - it is responsible by clustering the Task-

Graph based on a database of hardware models.

• Task-Graph Simulator - it is responsible for scheduling the execution of each
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task, depending on the hardware models desired. It can work with both LT

and AT timing models. It also monitors all the events during the simulation.
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Chapter 7

Task-Graph Generator

In this chapter, we show the development of the Task-Graph Generator, a tool which

aims to analyse a program’s source-code and generate a task-graph.

7.1 Introduction

The goal of this thesis is to provide a methodology able to help to define a complex

hardware/software architecture. To have enough details and be able to determine

the architecture, we need to analyse the algorithms in a low abstraction level. We

do not have the hardware architecture defined at this moment, which implies that it

is not possible to perform an analysis using Basic Blocks at a processor’s instruction

level. We must analyse an algorithm description, a program 6.

Program analysis is a vastly studied area, which includes algorithms, compilers,

programming languages, among others. For the sake of simplicity, we have chosen

to describe the Tile-Codes in the C programming language. Our choice is based on

the fact that C is still the most used programming language, with a lot of legacy and

knowledge available. Besides, it is also supported by most of the high-level synthesis

tools, which can be useful in our project, as we will show later on.

To analyse the Tile-Codes, we chose an abstraction called Task-Graphs, which

6We are considering Program as the standard description of an algorithm, e.g. source-code,
Domain-Specific Language (DSL)s, diagrams, and so on
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has several interesting properties. The basic principle is to distribute parts of a

task-graph to be processed in separated Tiles. This partition is performed by a

clustering algorithm, as explained in Section 6.2.

A task-graph is composed of nodes (the tasks) and edges (connections among

the nodes). These edges represent the data and the control flow of an algorithm.

We can classify the edges into two types:

• Internal Edges: they represent the internal processor communications.

• External Edges: they represent the exchange of information among two

Processing Unit (PU)s.

The manual generation of task-graphs is complicated and error-prone, even for

simple programs. Despite being a well-studied area, we could not find in the litera-

ture an up-to-date and open-source tool able to extract task-graphs from programs

written in high-level structured programming languages, e.g. C/C++/Pascal. On

the other hand, there are several tools able to generate random task-graphs. Due

to the lack of a suitable tool, it was decided to develop a task-graph generator tool

from scratch.

Even though the C language was developed more than 40 years ago, it is still one

of the most used programming languages, with plenty of legacy codes in different

application domains. Also, it is a quite large language, and due to its complexity,

we reduced our scope to just a set of the language. The main restrictions are that

we do not support pointers or unconditional jumps (goto statements). Loops are

supported only for the analysis of data dependencies.

The Task-Graph Generator was developed as functionality within the LLVM

compiler framework, with the Clang C-Compiler as front-end [LA04b]. We must

highlight that, at this point, we are not developing a compiler, but a program

analysis tool, which shares several structures with common compilers. We use a

specific library called libTooling, which simplifies the implementation of programs

that need a compiler front-end.
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Besides LLVM and Clang, we used the Boost Graph Library (BGL), which is a

well-known library with support for different graph-based computing [Jer].

7.2 Indexing of Pixels and Processing Elements

The Image Processing and Computer Vision (IP/CV) algorithms studied in this

thesis work on image pixels. Indexing the pixels is of high importance to maintain

the semantic of the algorithms and provide correct processing results. On the other

hand, considering the General Tiled Architecture, depicted in Section 5.3, the tiles

are organised in a 2D array. To force the coherence of the addressing scheme (and,

consequently, all memory accesses), we use three addressing modes simultaneously.

The pixel addressing uses Cartesian coordinates, with the starting pixel at the

upper-left corner and the last pixel at the lower-right position. The tiles are indexed

in the same way, with a significant difference: each tile has the same index as the

starting pixel of its region.

For an image with M ×N resolution, the absolute coordinates are in the range

from 0 to (M − 1) and from 0 to (N − 1), where M is the number of pixels in width

and N is the number of pixels in height.

Also, to facilitate the memory management within a tile, the pixels are addressed

in the same way: to the upper left corner we assign the relative coordinates (0.0),

and to the lower right corner we assign the coordinates ((m − 1), (n − 1)). To

separate the global and the local pixel addressing, we denote by m and n the width

and height, respectively, of a tile image in pixels.

Figure 7.1 shows an example of the addressing modes, considering each tile with

2×2 pixels of resolution. Highlighted in the picture is the starting pixel of each tile.

From an algorithmic perspective, another addressing mode should be used: by

the definition we gave in section 5.3, the Tile-Code is the program which generates

a single pixel as output. The third addressing mode is relative to the position of

the pixel of interest. Like in the other modes, we use a Cartesian coordinate system

with the center in the pixel of interest and all the other image pixels have their
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Figure 7.1: Display of absolute numbering of pixels and tiles [Fri15].

coordinates determined relative to the centre pixel. This means that to some pixels

we will assign negative coordinate values. Figure 7.2 shows an example with 4 × 4

tiles, with the pixel of interest at the upper-left corner of the highlighted tile.

7.3 Tools and Libraries used

7.3.1 The Boost Graph Library

Since we intend to work with graph manipulation, we have searched for tools offering

classes, structures and methods to ease handling the task-graph analysis. The BGL

is a complete C++ library able to create, store and manipulate graphs. Further-

more, the BGL also offers several data structures for graph storage, common search

algorithms, and complex graph-based methods (e.g. the identification of sections,

trees, rivers, and so on). The BGL is supported by a large community, providing ex-

tensive documentation and it is strongly based on templates, which can be adapted

and customised for our purposes. In addition, it provides the visualization of the

graphs based on standards like Graphviz [GN00] and GraphML [Bra+02]. Figure

7.3 shows a basic class hierarchy for graph creation using BGL.
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Figure 7.2: Representation of the relative numbering of pixels and arithmetic units
[Fri15].

7.3.2 The Clang compiler Front-End

In the task-graph creation process, we assume that the application’s description was

already functionally verified, which means that the code is free of lexical and/or se-

mantic errors. To create the task-graph, we use the front-end of the Clang compiler,

mainly its Abstract Syntax Tree (AST) parser.

Clang provides AST generation from C language family (C, C++, ObjectiveC),

which fits our desire to use a subset of the C language. The Clang parser actuates

identifying source-code templates to create a tree-shaped graph with data depen-

dencies, statements, expressions and so on.
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VertexAndEdgeListGraph

VertexListGraph EdgeListGraph

AdjacencyMatrixAdjacencyGraph

IncidenceGraph

BidirectionalGraph

Graph

Figure 7.3: Hierarchy of the recipes in the BGL [Fri15].

7.4 Generating the Task-Graph

In this section, we show sample codes for C language structures, illustrating the AST

(generated automatically by the Clang front-end) and the Task-Graph (generated

automatically by our Task-Graph Creator).

7.4.1 Literals

A literal is a string used to represent fixed values. In an AST, the node types

for literals are Integer−Literal, Floating−Literal, Character−Literal and String−Literal. A

literal must be always a leaf in the AST. As an example, let’s take a look at Listing

7.1. The code shows a void function ex Literals , which has three literals. The AST

is depicted in Figure 7.4, and the Task-Graph (TG) is shown in Figure 7.5. We can

highlight that the TG shows clearly that each task is independent from the others.
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Listing 7.1: Sample code for literals� �
1 void e x L i t e r a l s ( )

2 {

3 ’ f ’ ;

4 172 ;

5 1 9 . 8 5 ;

6 }� �
FunctionDecl

Type: void ()

Name: ex_Literals

CompoundStmt

Body

CharacterLiteral

Type: int

Value: 102

Stmt: 0

IntegerLiteral

Type: int

Value: 172

Stmt: 1

FloatingLiteral

Type: double

Value: 19.850000

Stmt: 2

Figure 7.4: AST for the code example 7.1 of Literals [Fri15].

ex_Literals

CharacterLiteralVertex

VertexID: 0

Type: int

Value: 102

IntegerLiteralVertex

VertexID: 1

Type: int

Value: 172

FloatingLiteralVertex

VertexID: 2

Type: double

Value: 19.850000

Figure 7.5: Task-Graph for the code example 7.1 of Literals [Fri15].

7.4.2 Variable Access

In Listing 7.2, two functions are shown. The first function, ex ParmVarDeclRef, illus-

trates a function with a parameter alpha which is returned by the function. The

second function, ex VarDeclRef, illustrates a function without parameters, but with

an internal variable alpha which is returned by the function. Looking into Figures

7.6 and 7.7, we can see that the AST are partially similar (the return statement of

variable alpha). On the other hand, when we look to the TG in Figures 7.8 and 7.9,

we can see that both representations are almost the same, with the difference in the
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type of the of vertex, denoting that in the first case it is a literal, and in the second

case, it is an input. For the analysis we intend to perform, the TG representation

is more clean and straightforward.

Listing 7.2: Example code for variable retrieval� �
1 i n t ex ParmVarDeclRef ( i n t alpha )

2 {

3 re turn alpha ;

4 }

5 i n t ex VarDeclRef ( )

6 {

7 i n t alpha = 25 ;

8 re turn alpha ;

9 }� �

FunctionDecl

Type: int (int)

Name: ex_ParmVarDeclRef

ParmVarDecl

Type: int

VarName: alpha

funcArg

CompoundStmt

Body

ReturnStmt

Stmt: 0

ImplicitCastExpr

Type: int

LValueToRValue

return

DeclRefExpr

Type: int

VarName: alpha

Figure 7.6: AST for function param-
eters access [Fri15].

FunctionDecl

Type: int ()

Name: ex_VarDeclRef

CompoundStmt

Body

DeclStmt

Stmt: 0

ReturnStmt

Stmt: 1

VarDecl

Type: int

VarName: alpha

IntegerLiteral

Type: int

Value: 25

init

ImplicitCastExpr

Type: int

LValueToRValue

return

DeclRefExpr

Type: int

VarName: alpha

Figure 7.7: AST for variable access
[Fri15].
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ex_ParmVarDeclRef

VarInputVertex

VertexID: 0

Type: int

alpha

ReturnVertex

VertexID: 1

Type: int

values returned by the function

alpha [int]

Figure 7.8: TG for function parame-
ters access [Fri15].

ex_VarDeclRef

IntegerLiteralVertex

VertexID: 0

Type: int

Value: 25

ReturnVertex

VertexID: 1

Type: int

values returned by the function

alpha [int]

Figure 7.9: TG for variable access
[Fri15].

7.4.3 Unary operators

Listing 7.3 shows two versions of an increment operation (pre and post increment), as

well as a unitary subtraction, all examples of unary operators. In addition, a Binary

Operator (explained in the next topic) is used in the return statement. When we

compare the AST (Figure 7.10) with the TG (Figure 7.11), we can see that the TG

representation is easier to interpret, due to the concise information presented. An

important aspect to point out is the clear parallelism that can be extracted from

the TG. The two ++ statements in Listing 7.3 are independent, thus computed in

parallel, receiving the input vertex values. Then the − is computed in parallel to

the ∗ operation, which generates the data needed in the ReturnVertex.

Listing 7.3: Sample code for unary operators� �
1 i n t ex UnaryOp ( i n t alpha , i n t bravo )

2 {

3 −(++alpha ) ;

4

5 bravo++;

6

7 re turn alpha ∗ bravo ;

8 }� �
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FunctionDecl

Type: int (int, int)

Name: ex_UnaryOp

ParmVarDecl

Type: int

VarName: alpha

funcArg

ParmVarDecl

Type: int

VarName: bravo

funcArg

CompoundStmt

Body

UnaryOperator

Type: int

-

Stmt: 0

UnaryOperator

Type: int

++

Stmt: 1

ReturnStmt

Stmt: 2

ParenExpr

Type: int

UnaryOperator

Type: int

++

DeclRefExpr

Type: int

VarName: alpha

DeclRefExpr

Type: int

VarName: bravo

BinaryOperator

Type: int

*

return

ImplicitCastExpr

Type: int

LValueToRValue

RHS

ImplicitCastExpr

Type: int

LValueToRValue

LHS

DeclRefExpr

Type: int

VarName: bravo

DeclRefExpr

Type: int

VarName: alpha

Figure 7.10: AST for the code example 7.3 for unary operators [Fri15].
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ex_UnaryOp

VarInputVertex

VertexID: 0

Type: int

alpha

UnaryOpPreIncVertex

VertexID: 3

Type: int

++

alpha [int]

VarInputVertex

VertexID: 1

Type: int

bravo

UnaryOpPostIncVertex

VertexID: 4

Type: int

++

bravo [int]

UnaryOpMinusVertex

VertexID: 2

Type: int

-

alpha [int]

BinOpMulVertex

VertexID: 5

Type: int

*

alpha [int] bravo [int]

ReturnVertex

VertexID: 6

Type: int

values returned by the function

#tempVal [int]

Figure 7.11: Task-Graph for the code example 7.3 for unary operators [Fri15].

7.4.4 Binary operators

Listing 7.4 shows the code example for three binary operators, using three function

parameters as inputs. The function ex BinaryOp does not return any value. The

first statement, line 3, shows an operation whose output is not assigned to any

variable (probably it would be later eliminated by compiler optimisations). What

is important to highlight here, is that in the TG representation, we cannot identify

completely line 5 of the code. It is not clear that to the variable charlie is assigned the

& operation between alpha and bravo. This happens mainly because of the absence

of pointers, or a return statement. Observing the code, we can see that it operates

locally over the variables, but all data is then lost.
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Listing 7.4: Sample code for binary operators� �
1 void ex BinaryOp ( i n t alpha , i n t bravo , i n t c h a r l i e )

2 {

3 alpha + bravo ;

4 bravo ∗= c h a r l i e ;

5 c h a r l i e = alpha & bravo ;

6 }� �

FunctionDecl

Type: void (int, int, int)

Name: ex_BinaryOp

ParmVarDecl

Type: int

VarName: alpha

funcArg

ParmVarDecl

Type: int

VarName: bravo

funcArg

ParmVarDecl

Type: int

VarName: charlie

funcArg

CompoundStmt

Body

BinaryOperator

Type: int

+

Stmt: 0

CompoundAssignOperator

Type: int

*=

Stmt: 1

BinaryOperator

Type: int

=

Stmt: 2

ImplicitCastExpr

Type: int

LValueToRValue

RHS

ImplicitCastExpr

Type: int

LValueToRValue

LHS

DeclRefExpr

Type: int

VarName: bravo

DeclRefExpr

Type: int

VarName: alpha

ImplicitCastExpr

Type: int

LValueToRValue

RHS

DeclRefExpr

Type: int

VarName: bravo

LHS

DeclRefExpr

Type: int

VarName: charlie

BinaryOperator

Type: int

&

RHS

DeclRefExpr

Type: int

VarName: charlie

LHS

ImplicitCastExpr

Type: int

LValueToRValue

RHS

ImplicitCastExpr

Type: int

LValueToRValue

LHS

DeclRefExpr

Type: int

VarName: bravo

DeclRefExpr

Type: int

VarName: alpha

Figure 7.12: AST for the code example 7.4 to binary operators [Fri15].
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ex_BinaryOp

VarInputVertex

VertexID: 0

Type: int

alpha

BinOpAddVertex

VertexID: 3

Type: int

+

alpha [int]

BinOpAndVertex

VertexID: 5

Type: int

&

alpha [int]

VarInputVertex

VertexID: 1

Type: int

bravo

bravo [int]

BinOpMulVertex

VertexID: 4

Type: int

*=

bravo [int]

VarInputVertex

VertexID: 2

Type: int

charlie

charlie [int]

bravo [int]

Figure 7.13: task graph for the code example 7.4 to binary operators [Fri15].

7.4.5 Ternary operators

The representation of the code example for the conditional expression (Listing 7.5)

in AST is illustrated in Figure 7.14, the resulting task graph in Figure 7.15. The

child nodes in the AST become dependencies in the task graph. The node of the

conditional operator in the task graph serves as the source for the value generated,

depending on the condition.

Listing 7.5: Example code for conditional expression� �
1 i n t ex CondOp ( i n t alpha , i n t bravo , i n t c h a r l i e )

2 {

3 re turn alpha > 5 ? bravo : c h a r l i e ;

4 }� �
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FunctionDecl

Type: int (int, int, int)

Name: ex_CondOp

ParmVarDecl

Type: int

VarName: alpha

funcArg

ParmVarDecl

Type: int

VarName: bravo

funcArg

ParmVarDecl

Type: int

VarName: charlie

funcArg

CompoundStmt

Body

ReturnStmt

Stmt: 0

ConditionalOperator

Type: int

expr ? true : false

return

BinaryOperator

Type: int

>

Cond

ImplicitCastExpr

Type: int

LValueToRValue

True

ImplicitCastExpr

Type: int

LValueToRValue

False

IntegerLiteral

Type: int

Value: 5

RHS

ImplicitCastExpr

Type: int

LValueToRValue

LHS

DeclRefExpr

Type: int

VarName: alpha

DeclRefExpr

Type: int

VarName: bravo

DeclRefExpr

Type: int

VarName: charlie

Figure 7.14: AST for the code example 7.5 to conditional expressions [Fri15].
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ex_CondOp

VarInputVertex

VertexID: 0

Type: int

alpha

BinOpGTVertex

VertexID: 5

Type: int

>

alpha [int]

VarInputVertex

VertexID: 1

Type: int

bravo

ConditionalOpVertex

VertexID: 3

Type: int

condition ? trueExpr : falseExpr

bravo [int]

VarInputVertex

VertexID: 2

Type: int

charlie

charlie [int]

ReturnVertex

VertexID: 6

Type: int

values returned by the function

#tempVal [int]

IntegerLiteralVertex

VertexID: 4

Type: int

Value: 5

#literal [int]

#tempVal [int]

Figure 7.15: Task graph for the code example 7.5 to conditional expressions [Fri15].

7.4.6 Function calls

The comparison of the representation of function calls can be seen in the listing

7.5, the AST in Figure 7.16 and the task graph shown in Figure 7.17. The function

arguments become dependencies of the function call at whose node the return value

is available in the task graph.

Listing 7.6: Sample code for function call� �
1 i n t funnyFunc ( i n t alpha , i n t bravo , i n t c h a r l i e ) ;

2

3 i n t ex FuncCal l ( i n t de l ta , i n t echo , i n t f o x t r o t t )

4 {

5 re turn funnyFunc ( de l ta , echo , f o x t r o t t ) ;

6 }� �
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FunctionDecl

Type: int (int, int, int)

Name: ex_FuncCall

ParmVarDecl

Type: int

VarName: delta

funcArg

ParmVarDecl

Type: int

VarName: echo

funcArg

ParmVarDecl

Type: int

VarName: foxtrott

funcArg

CompoundStmt

Body

ReturnStmt

Stmt: 0

CallExpr

Type: int

return

ImplicitCastExpr

Type: int (*)(int, int, int)

FunctionToPointerDecay

callee

ImplicitCastExpr

Type: int

LValueToRValue

funcArg

ImplicitCastExpr

Type: int

LValueToRValue

funcArg

ImplicitCastExpr

Type: int

LValueToRValue

funcArg

DeclRefExpr

Type: int (int, int, int)

VarName: funnyFunc

DeclRefExpr

Type: int

VarName: delta

DeclRefExpr

Type: int

VarName: echo

DeclRefExpr

Type: int

VarName: foxtrott

Figure 7.16: AST for the code example 7.5 to call the function [Fri15].

ex_FuncCall

VarInputVertex

VertexID: 0

Type: int

delta

FunctionCallVertex

VertexID: 3

Type: int

function call: funnyFunc

delta [int]

VarInputVertex

VertexID: 1

Type: int

echo

echo [int]

VarInputVertex

VertexID: 2

Type: int

foxtrott

foxtrott [int]

ReturnVertex

VertexID: 4

Type: int

values returned by the function

#tempVal [int]

Figure 7.17: Task graph for the code example 7.5 to the function call [Fri15].
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7.4.7 Control Flow

Table 7.1 shows the control flow constructions available in the C language. In this

chapter, we are performing a static code analysis. Therefore, control constructions

must have all its possibilities analysed since there is no dynamic execution path.

The vertex in the TG related to the control flow is dependent on all values that are

read within the control flow block. When we use such representation, it allows for

a hierarchical simulation, which is important for the clustering process.

Table 7.1: Control flow constructions.

if-then-else do-while loop

switch-case for loop

while loop return statement

For the sake of simplicity, we will show here only the cases for the if-then-else

and return statement.

if-then-else Listing 7.7 shows the sample code of the if-then-else branch construc-

tion. The variable bravo can be returned with its original value (5, in the code) or a

value dependent on the input parameter alpha. In Figure 7.19 we can see that the

condition is analyzed before the IfBeginVertex, which receives only the comparison

result. The two branch possibilities, then and else are derived from vertex 6 and

converge to vertex 7, which represents the end of the branch construction.
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Listing 7.7: Sample code for if branching� �
1 i n t ex I fStmt ( i n t alpha )

2 {

3 i n t bravo = 5 ;

4 i n t c h a r l i e ;

5

6 i f ( ( c h a r l i e = alpha >> 3) != 0)

7 bravo = bravo + alpha ;

8

9 re turn bravo ;

10 }� �
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FunctionDecl

Type: int (int)

Name: ex_IfStmt

ParmVarDecl

Type: int

VarName: alpha

funcArg

CompoundStmt

Body

DeclStmt

Stmt: 0

DeclStmt

Stmt: 1

IfStmt

Stmt: 2

ReturnStmt

Stmt: 3

VarDecl

Type: int

VarName: bravo

IntegerLiteral

Type: int

Value: 5

init

VarDecl

Type: int

VarName: charlie

BinaryOperator

Type: int

!=

Cond

BinaryOperator

Type: int

=

Then

IntegerLiteral

Type: int

Value: 0

RHS

ParenExpr

Type: int

LHS

BinaryOperator

Type: int

=

BinaryOperator

Type: int

>>

RHS

DeclRefExpr

Type: int

VarName: charlie

LHS

IntegerLiteral

Type: int

Value: 3

RHS

ImplicitCastExpr

Type: int

LValueToRValue

LHS

DeclRefExpr

Type: int

VarName: alpha

BinaryOperator

Type: int

+

RHS

DeclRefExpr

Type: int

VarName: bravo

LHS

ImplicitCastExpr

Type: int

LValueToRValue

RHS

ImplicitCastExpr

Type: int

LValueToRValue

LHS

DeclRefExpr

Type: int

VarName: alpha

DeclRefExpr

Type: int

VarName: bravo

ImplicitCastExpr

Type: int

LValueToRValue

return

DeclRefExpr

Type: int

VarName: bravo

Figure 7.18: AST for the code example 7.7 to the if branching [Fri15].

.
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ex_IfStmt

VarInputVertex

VertexID: 0

Type: int

alpha

BinOpShrVertex

VertexID: 5

Type: int

>>

alpha [int]

IfBeginVertex

VertexID: 6

Type: controlflow

if-statement begin

alpha [int]

IntegerLiteralVertex

VertexID: 1

Type: int

Value: 5

bravo [int]

IntegerLiteralVertex

VertexID: 2

Type: int

Value: 0

BinOpNEVertex

VertexID: 3

Type: int

!=

#literal [int]

#tempVal [int]

IntegerLiteralVertex

VertexID: 4

Type: int

Value: 3

#literal [int]

charlie [int]

IfEndVertex

VertexID: 7

Type: controlflow

if-statement end

block-connection []

ThenBeginVertex

VertexID: 8

Type: controlflow

then-block entry

if - then [then] alpha [int] bravo [int]

ElseBeginVertex

VertexID: 10

Type: controlflow

else-block entry

if - else [else] bravo [int]

ReturnVertex

VertexID: 11

Type: int

values returned by the function

bravo [int]

BinOpAddVertex

VertexID: 9

Type: int

+

alpha [int] bravo [int]

bravo [int]

bravo [int]

Figure 7.19: Task-Graph for the code example 7.7 to the if branching [Fri15].

.
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Return statement In the C programming language, the return statement is used

to exit a function, with both a result or an error identification flag. A single function

can have an arbitrary number of return statements. However, they must exclusive.

In our implementation, some constraints must be observed:

• Each function may have only one return statement.

• The return statement must be the last statement in the code.
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Chapter 8

Task-Graph Clustering

In this chapter, we develop the Cluster Generator, which is responsible by clustering

the Task-Graph based on a database of hardware models.

8.1 Introduction

The primary utilisation of clustering methods is on data classification. These meth-

ods are used in several areas, and they can use different classification methods

[Sch07]. We must highlight that graph clustering is only one of this methods since

data can be represented in different ways and still be clustered/classified. In our

approach, we selected the Force-Directed Clustering because it can be viewed as a

geometric problem, as our goal of allocating tasks to spatially distributed Processing

Unit (PU)s, and it has been used for task allocation by different researchers in the

past decade. It is not our goal to discuss/find the best or the most efficient cluster-

ing solution, but to determine the importance of clustering/classification methods

in the methodology we are developing here.

8.2 Force-Directed Clustering

As a basic reference for the Force-Directed Clustering (FDC) method, we have fol-

lowed the approach described in [PS08]. In this section, we describe the method,
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using as an example the program in Listing 8.1, whose Task-Graph (TG) is depicted

in Figure 8.1. Parameters and literals are the task-graph inputs, and the vertexes

are basic C language operations. The edges represent dependencies, data-flow, and

control-flow. For the control-flow, there is a hierarchy of defined entry and exit

points. The graph output is the return value.

Listing 8.1: Sample code for if branching� �
1 i n t e x c l u s t e r i n g ( i n t a , i n t b , i n t c )

2 {

3 re turn ( a + b) / c ;

4 }� �

a

+

b c

/

return

Figure 8.1: TG for the program in Listing 8.1 [Fri15].

The FDC method is specially used in algorithms for drawing graphs. It considers

all nodes of a graph as charged particles, and all edges as springs, as shown in

Figure 8.2. The model assumes that attraction and repulsion forces are acting over

the graph nodes. Repulsion is based on the charge and distance of each node, and

attraction is based on the spring forces. The primary goal of this method is to find

a state of minimal energy in the physical system.
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Figure 8.2: A graph represented using charged particles and springs [Fri15].

The algorithm is based on the following steps:

1. Assign to each graph’s node a starting position.

2. Based on the current position, the forces acting on each node are then deter-

mined.

3. The new position of each node is then calculated, and the nodes are reposi-

tioned.

An important aspect is that this is a static method. Therefore, we do not consider

dynamic effects such as vibrations and rotations. To speed-up the algorithm, a

simplification is done, avoiding the use of differential equations.

To combine the strength of repulsion and attraction forces with the properties

of the graph, edge weights are used to specify each spring elasticity. The weight

of each node determines the charge of the respective particle. Using this model, it

follows that edges with high weight values represent connections (springs) hard to

stretch, meaning that the connected nodes are more likely to be placed close to each

other.

In the case of the TG, high edge weight values mean that the nodes connected

would be more likely to be assigned to the same cluster. On the other hand, nodes
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with high charge values lead to strong repulsion forces. Therefore, these nodes are

less likely to be assigned to the same cluster.

The position determination algorithm consists of the following steps:

1. determine the repulsion and attraction forces from the valid positions.

2. calculate the new positions from the forces determined.

3. repeat the steps until the threshold value for the energy is not exceeded, or

the maximum number of iterations is reached.

The maximum number of iterations and the threshold value can be set by the

user. The system energy in an iteration step is determined by summing the amounts

of all forces used to change the positions.

After the positions have been determined, the clustering of the graph is then

created, in the following steps:

1. Arrange the edges according to their length (the spatial distance of connected

nodes).

2. Starting from the shortest to the longest edge, determine if the two nodes

should be clustered together or not, based on a force-threshold.

3. Merge(or not) the nodes.

4. Calculate the sum of communication costs (energy) for the entire graph.

5. If the new energy value is smaller than in the previous iteration, we have a

new cluster set. Otherwise, repeat the steps for the next edge.

8.3 Clustering in the multi-core architecture

Considering the General Tiled Architecture discussed in Section 5.3, we can now

determine some constraints to the clustering method, to adapt it to our analysis.
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Figure 8.3: Cluster assignment for the General Tiled Architecture [Fri15].

Figure 8.3 shows that we assign a cluster to each tile. In this case, we are

analysing the clustering method with a single Tile-Code to be assigned to the ar-

chitecture. Cluster 0 represents the cluster where the pixel of interest is located.

Figure 8.4: 3× 3 convolution example .

Let’s consider a simple Image Processing and Computer Vision (IP/CV) algo-

rithm, like the 3 × 3 convolution from Figure 5.7, replicated in Figure 8.4, and an

architecture with 2 × 2 pixels per tile. Figure 8.5 shows the pixel of interest (0,0)

and the surrounding neighbourhood needed to perform the algorithm. We can see

that four pixels are in the same tile of the central pixel, and five other pixels are in

other tiles.

The constraints applied to the clustering algorithm, considering the underlying
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0,1

1,0 1,1

-2,2 -2,1

1,-2 -1,-1

-2,0 -2,1

-1,0 -1,1

-2,2 -2,3

-1,2 -1,3

0,2 0,3

1,2 1,3

0,-2 0,-1

1,-2 1,-2

2,-2 2,-1

3,-2 3,-1

2,0 2,1

3,0 3,1

2,2 2,3

3,2 3,3

0,0

Figure 8.5: Basic pixel assignment for the sample architecture.

architecture are listed as follows:

• The input pixels are in fixed allocated to their original tiles. This means that

the corresponding nodes do not move during the clustering process.

• The other inputs, coefficient values, are movable within the clustering.

8.4 Clustering Results

This section uses the Task-Graph Creator and the Task-Graph Cluster Generator

tools, to perform an analysis of two IP/CV algorithms. A discussion about the

results obtained and further enhancements are provided at the end of the section.

8.4.1 Convolution algorithm

We start the analysis with a 5 × 5 convolution algorithm, which resembles the

algorithm in Figure 8.4, but with a larger neighbourhood. We have chosen this

example because of its simplicity and representativeness of a larger family of IP/CV

algorithms. Furthermore, this algorithm requires 25 distributed pixels, so that the
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effects of the connection structure and programming styles can be well-represented

here.

One important aspect to be highlighted is that the quality of the source code

has a strong influence on the clustering results since the non-optimized code will

generate larger task-graphs. This is not directly related, however, to the number of

lines the code has. For example, the algorithm in Figure 8.4 has eight additions.

If these additions are written as a single line in the source-code, the generated TG

will have a tree of eight concatenated addition blocks, with a long critical path. The

exploration of associativity and commutativity of operations are not automated in

our tool and must be formulated by the programmer/user.

In the algorithm created for convolution, the products of the pixel values are

first calculated with their weights. The results of the products are then added up.

In the algorithm used for the experiments, the sums were formulated according to

the structure represented in Figure 8.6. The red arrows represent the transmission

of the calculated data. In this example, we considered the existence of horizontal

and vertical connections among the tiles, with no diagonal connections.
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Figure 8.6: Communication structure of the computing units with manually imple-
mented convolution [Fri15].

101



CHAPTER 8. TASK-GRAPH CLUSTERING

The use of the shown communication structure is based on the fact that precise

communication paths, which in each case only require directly accessible neighbours,

are given. This makes it possible to test whether the clustering algorithm combines

useful nodes into clusters. It is also necessary to find out to which extent the

boundaries of the clusters are bordered by nodes that are connected to other clusters

via favourable edges that only require one communication step. To obtain a reference

for the clustering results, clustering has been created manually, where the arithmetic

operations are distributed as shown in Figure 8.6. The nodes with incoming arrows

add the values they receive to their value and pass on the overall result.

Based on the same graph, clusters were subsequently created using the Force-

Directed Clustering technique. The step size, which parameters are needed for the

weighting of the edge weights, the spring length and the termination conditions

were changed. The resulting structures are in all cases of worse quality than the

manually created pattern. The positioning step produces comprehensible results in

which even changed weights of nodes and edges can be recognised.

The actual clustering step and in particular the related quality measure still have

considerable potential for improvement for the selected application. In particular,

the fact that once assigned clusters remain unchangeable and that each new cluster-

ing is assumed when the quality value improves means that no optimal solutions are

found. In this case, the use of an optimisation method is recommended, especially

to improve the allocation of nodes at the cluster boundaries.

The results generated by the current program can be chosen as a starting point

for such an optimisation process since significant improvements can often be achieved

in the clusters created by small changes. The following example in Figure 8.7 shows

the communication structure in automatic clustering. This shows that in many cases

non-optimal paths are chosen.

It makes sense to revise the quality criterion in such a way that paths to nearby

arithmetic units, as well as paths that do not move away from the target processor,

are more preferred. The task graphs for the discussed examples are shown in Figures
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8.9 and 8.8.
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Figure 8.7: Communication structure of the computing units with automatically
clustered convolution [Fri15].

To investigate the effects of the parameters in the clustering process, the example

shown above was primarily used. The effects of the spring length on the clustering

result are not particularly strong. This is because the initial spring length is the

same for all edges and the relative distances from which the sorting is carried out

do not change significantly.

The parameters for the step size and the weighting of the nodes and edges have

a strong influence on the result. It should be noted that the relation of these

parameters has a strong influence on the stability of the algorithm. High step

widths require very high damping of the weights of the nodes and edges and often

lead to unacceptable clustering results.

If the edge weights are over-emphasised, the clusters are created almost exclu-

sively from the connection structure, because the rejection of the nodes has almost

no effect. However, this behaviour is more desirable for clustering the task graph

in this case of application than a minimal emphasis on the edges or even a strong
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emphasis on the node weights.

This behaviour leads to significantly worse clustering results, especially in those

cases where it may be desirable that the algorithm is not distributed evenly so that

it can be processed at the lowest possible communication effort and high speed. This

is not necessarily the case if the processors are working at a constant load because

the same algorithm is executed on each processor in the assumed model.

Performing pre-calculations for a neighbour can prove to be quite useful if this

reduces dependencies and communication effort. However, it is not desirable to

distribute the calculation effort equally among the participating processing units.

8.4.2 Median-Filter

The second IP/CV algorithm analysed is the Median Filter. It is also a Neighborhood

Operation, which sorts the pixel values within the neighbourhood, outputting the

median value.

In contrast with the convolution algorithm, the TG in the median filter is strongly

connected, with several data exchanges among the tasks. This a result of the C-

coding style used but serves as a good example of the clustering technique.

The TG is structured in layers with data dependencies among them, in a quite

homogeneous flow. For this example, different clusters were created with the clus-

tering technique, as well as a manually partitioned version. Figure 8.10 shows one

of the clustering results. We can see that there is a dominance in one of the clusters,

which has the highest task count. However, in this example, as well as in the other

tested examples (with other weights assigned), the dominant cluster was not the one

with the pixel of interest.

Here the question arises whether a change of the algorithm for generating the

initial clustering should include a path from the pixels assigned to the computational

unit (relative coordinates (0.0)) to the return node to avoid this behaviour.

The parameters have a similar effect on the structure of the graph in this case:

due to the very homogeneous network structure, however, no clear groups are formed
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Figure 8.8: Manual Clustering [Fri15].
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Figure 8.9: Automatic Clustering
[Fri15].

as with tree structures. Only the nodes on the extremes (roots and leaves) are

strongly influenced by the change of the parameters. The nodes inside the network
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are placed similarly in all cases, and the cluster allocation does not differ significantly.
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Figure 8.10: Task-Graph for the Rank-Order-Filter with cluster assignment [Fri15].

8.5 Analysis of the clustering method

• The quality of the results is currently still very much dependent on the quality

of the generated core code. A useful enhancement is the automatic optimisa-

tion of the given source code concerning the processor architecture.

• Within the scope of this work, only one clustering algorithm was investigated

using quality criteria which, for simplicity, only considered the communication

costs. Inserting the processing costs is a trivial task, and our choice was based

merely due to the absence of a complete database of hardware models. The

results obtained can be used, but in many cases can be optimised. However,

the programs created allow one to easily replace both the clustering algorithm

and the costing functions to test other algorithms and the results that can be

achieved with them.

• If algorithms are investigated that use input parameters other than input

pixels, such as the values of a filter mask, the TaskGraphCreator also displays
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8.5. ANALYSIS OF THE CLUSTERING METHOD

them as nodes, regardless of whether they are defined as local variables or

as function parameters. In clustering, these must be assigned to exactly one

cluster, even if they are used in calculations on several processing units. This

behaviour occurs when a processing unit has more than one pixel. In this case,

communication costs occur which are not necessary because algorithm-specific

values, unlike pixels, do not have to be transmitted. A solution to this problem

is to create the values for each pixel to be calculated as a separate variable or

parameter, which complicates the creation of the algorithms on the one hand

and leads to unnecessary use of memory on the other.

• As explained in the description of algorithms and the section for clustering

task graphs, all input pixels required for a function are passed in such a struc-

ture whose size depends on the number of pixels per processing unit and the

number of pixels needed to calculate an output pixel. During the experi-

ments, the idea arose to use only one structure containing the pixels present

on a processing unit and as many parameters as neighbouring processors. The

structure described above has particular advantages when functions should be

concatenated because the return value always contains the pixels of a pro-

cessing unit. Another advantage is that the information about the relative

positions of the related arithmetic units could be used as parameter names.

These would then no longer have to be calculated for each pixel from the co-

ordinates. The structure described above has not been implemented in the

project but requires only changes in the functions for preprocessing the task

graphs in the clustering program and for automatic creation of the model if

their use is considered in other projects. In this case, the TaskGraphCreator

and the clustering algorithm do not have to be adapted.

• The clustering was performed in this chapter using unitary weights assigned

to the task links/edges. In the future, we plan to have a database of hard-

ware models, to use costs for area, power consumption and speed to assign the

weights. In this direction, we would perform a multi-objective optimisation.
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CHAPTER 8. TASK-GRAPH CLUSTERING

The simulator developed in the next chapters is directly related to the weight

assignment. It receives as input the clustered task-graph and creates archi-

tecture models based on the clusters. After the simulation, feedback is given

to the Cluster Creator to reassign weights and perform new clustering. This

interaction among the tools is essential to achieve the optimal design desired.
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Chapter 9

Task-Graph Simulator

For the investigation of image processing algorithms and their processing on different

multi-core topologies, a parameterizable simulator is described in this chapter. The

simulator was developed using SystemC and Tlm 2.0, as well as the concepts

discussed in the thesis, like the Tile-Codes and the General Tiled Architecture. It

can generate an executable simulation from the Task-Graphs created in the previous

chapters.

9.1 Introduction

Figure 9.1 shows the basic idea of the simulator presented in this chapter. A task-

graph, as discussed previously, is the representation of a Tile-Code. Given a clustered

task-graph, it could be that the resulting assignment is like shown in the picture.

The tile-code is replicated in each tile. Therefore, after the clustering, each tile

executes parts (tasks) of different task-graph instances.

This type of mapping is useful for both homogeneous or heterogeneous processing

architectures. The simulator accesses a database with different hardware models, to

estimate the processing costs. By simulating with different hardware possibilities,

the simulator can generate several solutions, which can then be fed back to the

clustering part and enhance the cluster results.

In this chapter, we show how we modelled the scheduling of each task, the
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From clustered task-graph to 
SystemC/TLM2.0 models of the 

whole many-core.

PE1 PE2

PE3 PE4

Hardware 
models 

database Simulation using LT and AT timing models

Figure 9.1: From the clustered task-graph to a many-core model

communication processes, and the parameterisation of the simulator.

9.2 Task-Graph interpretation

One of the goals of our simulator is to resemble, as close as possible, the behaviour

of a real hardware implementation 7. Therefore, the simulator must be able to

handle sequential and parallel execution of the tasks, like would be the case in real

hardware. This section shows how this is achieved by the simulator.

7At the Tlm level, it is mainly a functional simulation with some timing annotations, depending
if Loosely-Timed (LT) or Approximately-Timed (AT) is used.
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9.2. TASK-GRAPH INTERPRETATION

Listing 9.1: Simple clustered task-graph example� �
1 i n t e x t g i n t e r p r e t a t i o n ( i n t p1 , i n t p2 , i n t p3 , i n t k1 , i n t k2 , i n t

k3 )

2 {

3 i n t tmp1 = k1 ∗ p1 ;

4 i n t tmp2 = k2 ∗ p2 ;

5 i n t tmp3 = k3 ∗ p3 ;

6 i n t pout = tmp1 + tmp2 + tmp3 ;

7 re turn pout ;

8 }� �
Figure 9.2 shows the task-graph for the code in Listing 9.1. The Task-Graph

(TG) in the picture is already partitioned into three different clusters. Let’s define

now some concepts and constraints which help the simulator to interpret/understand

the TG.

slaveProcess_02 SlaveProcess_01MainProcess

X

+

XX

+

Pout

P1K1 P2K2P3K3

Figure 9.2: Example for a task graph with clustering [Wer15].

The cluster defined as ”MainProcess”, describes the part of the image algorithm
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CHAPTER 9. TASK-GRAPH SIMULATOR

computed on the tile that produces the result for the pixel of interest. It is defined

that for the calculation of an output pixel, all nodes and edges that are in the same

cluster as the output pixel must belong to the ”MainProcess” and the corresponding

input pixel 8 must be included. This also applies to the calculation of more than

one pixel of interest per tile.

The clusters called ”SlaveProcess”, are tasks that should be allocated to the

neighbouring tiles, and the edges linking two clusters describe transactions between

the tiles of the many-core architecture. These transactions should be mapped using

the Tlm library and the modelling styles defined there.

To generate the simulation model, the tasks in the graph nodes must first be

correctly interpreted. The image processing algorithm has to be established by im-

plementing the tasks and communicating with other process units. The necessary

tasks for the neighbourhood must be implemented and made available to the right

neighbours. After implementing the clusters in a processing unit, the defined net-

work is to be established by Tlm-connections and by instantiation of several process

units to model the complete architecture.

9.3 Implementation Overview

The Tlm models define a partition among processing and communication within an

architecture, to allow for separate analysis for each part. A layer model that encap-

sulates a processing description in a structure description is used for this purpose.

Figure 9.3 shows a graphic representation of our model. The tiles consist of a

Core-Wrapper and the Tile-Code contained in it. The Core-Wrapper has Target-

and Initiator-Sockets and implements the functionalities for modelling the Tlm

communication styles.

The Tile-Code are the clusters of the Task Graph. The MainProcess (see Figure

9.2) is registered as the main process on the simulator’s scheduler.

8The corresponding input pixel is the one in the input image which shares the same (x,y)
coordinates with the pixel of interest.
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Tile-Code Tile-Code

Tile-Code Tile-Code

Core-Wrapper Core-Wrapper

Core-Wrapper Core-Wrapper

Legend

Tile Tile

Tile Tile

request

perform

initiator

target

Figure 9.3: From the Task-Graph to a many-core model [Wer15].

The other clusters form auxiliary functions and receive their Tile-Code methods.

The connection between Wrapper and its Tile-Code is established via the interfaces

for calls from the Tile-Code on the Wrapper and for calls from the Wrapper to the

Tile-Code.

The Wrapper forms, together with Sockets, a hardware structure of the model,

while the clustered algorithm is distributed on MainProcess and auxiliary functions.

The model of a tile is thus created by instantiating a Tlm-Wrapper with corre-

sponding Sockets and a Tile-Code object, which is then connected to each other via

interfaces.
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CHAPTER 9. TASK-GRAPH SIMULATOR

9.4 Functional Sequence

When starting the simulation, the main process of a Tile-Code of a processing unit

is started. The processing of the code runs to a point where an edge connects two

nodes of different clusters in the Task Graph. This is interpreted as a communication

between two different tiles and generates the call of a data request from the Tile-

Code. This initiates a Tlm transaction in the Wrapper and places it to the addressed

neighbours.

After that, the main process is halted until the wrapper successfully receive

the data. The communication partner of the current transaction deals with this

according to the chosen modelling style and for his part directs the enquiry to

his Tile Code implementation. The address of the transaction object is used to

differentiate between the individual auxiliary tasks. For example, an address can

select a particular auxiliary task or address an exclusive data of the tile. To model

this situation as well, the Tile-Code has a Queue that collects requests while the

processing unit is busy.

The orders in the Queue are then processed as in a First-In First-Out (FIFO).

Thus, if a tile halts its MainProcess because a value request is running, the processing

unit is free to execute auxiliary functions for its neighbourhood. Processing requires

computing time. Each cluster knows its processing time and suspends the auxiliary

process for that time before returning the data and releasing the tile.

The complexity of the processing unit can be changed in such a way that the

number of parallel processes can be adjusted or that the auxiliary functions can be

distributed to hardware units, being able to emulate different processor models, as

Very-Large Instruction Word (VLIW) ones.

9.5 Simulation Example

In this section, we show the results of a simple simulation of the 3× 3 Convolution

discussed in the last chapter. Different architectural possibilities were considered, to
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show the flexibility of the developed simulator. We examined an image of resolution

12× 12 pixels, varying the number of pixels per tile, and the number of tiles.

9.5.1 Clustering

Table 9.1 shows the parameters used to configure the clustering tool. We can see, for

example, the Node cost is 10× the Edge cost, what means that the communication

costs are much smaller than the processing costs.

Table 9.1: Clustering parameters used in the example.

Name Value

Number of iterations 3000

Node cost 1

Edge cost 0.01

The TG generated is shown in Figure 9.4, and the clustering result is shown in

Figure 9.5. The colours represent the clusters. Therefore, edges connecting nodes

of different colours symbolise external communication requests.

Figure 9.6 shows the tiled architecture with the communication pattern generated

by the clustering process.

m
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m
1

1
m
1

m
1
0

0
0

1
0

m
1
1

0
1

1
1

Figure 9.6: The tiles and the communication pattern after clustering [Wer15].
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9.5.2 Simulation results

In Table 9.2, the simulation results are listed. As expected, the simulated time

increased when we decreased the number of tiles. Some important aspects should

be considered here, as the communication structure. The tasks are scheduled when

they arrive, following a queue in the core wrapper, however, the communication

channels are not blocked. Therefore, if a Tile A wants to request a pixel from Tile B

and vice-versa, both messages can be exchanged at the same time. This is not what

would happen in practice. In a real hardware implementation, the communication

channels would act as bottlenecks, limiting the total bandwidth. This means that the

model created still needs refinements to approximate the behaviour of real hardware

better.

Name Pixel per PE time (ns)
conv 1 3 1 96
conv 2 3 4 333
conv 3 3 9 767
conv 4 3 16 1368
conv 6 3 36 3062

Table 9.2: Simulation results for the convolution example.

Another drawback identified in this simulation model is the fine granularity of the

implementation. In the SystemC library we created, each task is a different class.

A single TG will then be represented by several classes instances (objects) which

consumes much memory in the computer hosting the simulation. This happens

because by default the SystemC execution allocates the created objects in the

stack. Each communication transaction is an object’s instance, and the minimal

support for garbage collection can lead the system to an stack overflow. A solution

would be to use the heap, a garbage collector, or to modify the simulation model.
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Figure 9.4: Task Graph for the example [Wer15]..
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Figure 9.5: Task Graph for convolution after the clustering [Wer15].
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Chapter 10

Discussion

In the previous chapters, we focused on developing tools to help the analysis of Image

Processing and Computer Vision (IP/CV) Tile-Codes, using Task-Graph simula-

tions. We developed a tool to extract the Task-Graph from an ANSI-C description,

using the LLVM framework and the Clang compiler front-end. Also, we developed

another tool which applies the Force-Directed Clustering technique to determine

the optimal distribution of tasks, given costs for communication and processing. A

SystemC/TLM2.0 simulator was also developed. This simulator takes as input a

Clustered Task-Graph and some design parameters. Based on a library of nodes,

the simulator assemblies a many-core system, where each Processing Element (PE)

is implemented as a Task-Graph. Both Loosely-Timed (LT) and Approximately-

Timed (AT) abstraction levels can be used in the simulator, which can also schedule

the execution of every task and packet transmission.

The general idea of the Task-Graph Clustering flow is to perform a multi-goal op-

timisation, based on the application (represented by the Task-Graph) and a database

of hardware models. At this point of the thesis, the database is not yet available.

Therefore, the tests were performed only to show the techniques used.

The simulator developed can assembly a many-core system based on the clustered

task-graph. The simulation to be performed is dependent on both the hardware

database and the clustering results. Some drawbacks of this simulation model were

discussed in the previous chapter.
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CHAPTER 10. DISCUSSION

With the tests performed, the simulator could provide correct results when com-

pared to the original program in the Tile-Code, even when distributed among differ-

ent tiles. This shows that the tool-flow developed here works as planned and present

the expected behaviour.

In this part of the thesis, we have developed the desired tools and analysed

whether they are useful or not in our approach. We can see now the need for a dif-

ferent simulation model, which shall be able to behave more like a physical hardware

implementation. The communication structure must be taken into account, resem-

bling Point-to-Point (P2P), buses, Network-on-Chip (NoC), or any other intrachip

communication technology. The PE model used here is based on the task-graph

execution and can be used to determine the final PE model.

In the next part of the thesis, we extend the current simulator to a lower-level of

abstraction, to be more close to the real hardware. To do so, we discuss the design

space of such architectures to reduce the number of possibilities to be explored.

120



Part IV

Intermediate-Level approach
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Chapter 11

Introduction

In the previous part of this thesis, we have developed a high-level simulator, which

uses a task-graph as the basis to determine the processing system performance. We

identified the need for a lower level of abstraction to shrink the design space to a

more focused set of possibilities. In this part, we extend the Task-Graph Simulator

with different structures to resemble real hardware implementations.

In the first chapter, we discuss the design space and show the development of the

new simulator modules, as well as the inclusion of a tool to help to estimate timing,

power consumption, and silicon area of the hardware architectures analysed.

The second chapter shows simulation results and estimations for different hard-

ware configurations, by running a more complex set of Tile-Codes in a complete

Image Processing and Computer Vision (IP/CV) processing chain.
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Chapter 12

The MPSoC Simulator

In this chapter, we use several concepts extracted from the literature, the parallelism

analysis, and the application domain (IP/CV), to determine which characteristics

should be explored to help to design many-core vision processors. With this infor-

mation, we describe the implementation of a simulation tool with specific features

and parameters.

The use of SystemC and TLM2.0 allows dividing the analysis into processing

and communication [MH14]. We can take advantage of this separation to analyse

the design characteristics of the PEs and the communication structure individually.

Also, the use of Loosely-Timed (LT) and Approximately-Timed (AT) models allows

the analysis of timing issues, parallelism, and resource sharing problems [MH14].

The Generic Payload is used in all communications among the modules, abstracting

complex protocol implementation [Bla+10].

The simulator’s main modules are shown in Figure 12.1. The basic architectural

organisation assumes the Region-Based acquisition scheme sending parallel pixel

streams to the Tiles. Each Tile is just a wrapper to encapsulate the Processing El-

ement and the Pixel Memory blocks. Its main parameters are the image resolution,

the region resolution and the region’s coordinates. The other parts of the simulator

are detailed explained in the next sections.
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CHAPTER 12. THE MPSOC SIMULATOR

Figure 12.1: The simulation tool’s organization.

12.0.1 Processing Elements

As shown in Figures 5.8 and 5.9, each PE is responsible for processing the pixels in

its region. Therefore, each PE executes the Tile-Code for every pixel in its region.

An efficient PE architecture for IP/CV applications should be able to explore

the Operation Level Parallelism [KG06] [Won+11]. This fine-grained parallelism

can be considered a superset of the well-known Instruction Level Parallelism (ILP).

VLIW (Very Large Instruction Word) and Superscalar processors are capable of

exploring ILP by replicating in its microarchitecture several parallel execution units

(multiple ALUs, Multiplication units, and so on). Recent works have shown that

for common IP/CV algorithms, VLIW processors can perform more than 3× faster

than a standard RISC processor [HWA15a]. The VLIW architectures, however,

have a scalability problem: the switching module in their microarchitecture and the

Register File grow exponentially in complexity and area when we add more parallel
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units. This problem limits the amount of ILP to be parallelised and should be

explored in more details.

In the simulator, each PE implements a Finite State Machine (FSM) which

controls the execution of each Tile-Code and manages the data dependencies. In this

module, it is possible to emulate the behaviour of sequential and parallel execution

of different parts of the algorithm, by scheduling the SystemC execution threads to

be simulated as parallel or sequential. Figure 12.2 illustrates the concept:

• In the first column, the operations are scheduled to be executed in parallel

as soon as the data dependencies are solved. This organization emulates a

VLIW/Superscalar architecture, with two multiplying units.

• In the second column, the operations are scheduled depending on hardware

resource assumptions. This organization is more similar to a common RISC

processor.

• In the third column, the scheduling is similar to the previous one. However, it

schedules the input Jy(i, j) to not be read in parallel to the first multiplication.

- 1 multiplier

- 1 adder

- 1 input

- 1 sqrt unit

- 1 output

- 1 multiplier

- 1 adder

- parallel instr. 

(input+mult.)

- 1 sqrt unit

- 1 output

- 2 multipliers

- 1 adder

- 2 inputs

- 1 sqrt unit

- 1 output

X

+

� 

X

Es(i,j)

X

+

� 

Jy(i,j)

X

Es(i,j)

X

+

� 

Jy(i,j)

X

Es(i,j)

Jx(i,j) Jy(i,j) Jx(i,j) Jx(i,j)T1

T2

T3

T4

T5

T6

T7

Figure 12.2: Example of how the simulator implements different PE types.

For the sake of simplicity, in this work we considered only two PE types:
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CHAPTER 12. THE MPSOC SIMULATOR

• RISC : in this model, there is one multiplication unit and one ALU. No parallel

operations can be scheduled. It corresponds to the third type in Figure 12.2.

• VLIW4 : this model has four multiplication units and four ALUs, allowing for

full parallelism: the operations are scheduled as soon as the data dependencies

are fulfilled. It corresponds to the first type in Figure 12.2.

12.0.2 Pixel Memory Organization

In Figures 5.5 and 5.6, we can see that several intermediary images are generated.

Each PE is responsible for processing a distinct region of all images, however, in

Neighborhood and Global operations pixels from other regions are needed as inputs.

Figure 12.3 shows this issue for 3× 3 neighbourhoods: (A) only pixels in the same

region are used; (B) pixels from two regions are used; (C) pixels from three regions

are used. Most of the blocks in an IP/CV processing chain are based on region

algorithms, which means that we must search for an efficient way to transfer pixels

from one Tile to the other.

A

B

C

Figure 12.3: Example of pixel exchange needs among different image regions [MH14].

To maintain the Pixel Memory data coherency, each PE is allowed to write values

only to the Pixel Memory of its Tile. Read access is allowed without any restriction.
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We identified two possibilities for the Pixel Memory organization: (a) private, (b)

shared, as shown in Figure 12.4.

In the private mode, the Pixel Memory access, for both read or write, is exclusive

to the local PE. To have access to Pixel Memories in other Tiles, a PE makes a

request to another PE in the corresponding Tile. This scheme works like interrup-

tions in a common processor, where the interrupted PE stops its own algorithm’s

execution to perform the requested operation.

In the shared mode, the PEs requests are managed by the Pixel Memory itself,

without the interference of the local PE. This scheme allows the local PE to execute

its algorithms without interruptions, enhancing the overall performance. However,

the Pixel Memory must be able to handle multiple requests, while maintaining

its performance. Besides, the datapaths showed in Figure 12.4 have considerably

different access delay, as can be inferred from the number of steps needed to access

pixel values from other Tiles.

Tile

2
1

3

4

5

6
7

Pixel 

Memory

PE

Other 

tiles

Tile

Pixel 

Memory

PE

Other 

tiles

Private Pixel Memory Shared Pixel Memory

1

2 3

Figure 12.4: Private vs. Shared Pixel Memory for external accesses.

In the simulator developed, both models (private and shared) were implemented.

The private model works as a common memory with single access (single rw port).

The shared model was implemented with two rw ports: one for the local PE, and

the other one connected to the Tile’s communication interface.
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CHAPTER 12. THE MPSOC SIMULATOR

12.0.3 Communication Structure

In the last topic, we show an example of pixel exchange among image regions. In ad-

dition to pixels, the PEs also need to exchange messages for synchronisation, status

information, stalls and so on. There are several solutions for intrachip communica-

tion, like point-to-point (P2P), bus, cross-bar, and Networks-on-Chip (NoCs). Each

type of communication structure offers advantages and disadvantages in through-

put, traffic control, fault tolerance, silicon area and energy consumption. The right

choice of the communication structure is one of the key points to meet the design

constraints.

The Communication Structure is responsible for distributing the pixel values

(from the input and intermediary images) and synchronization messages among the

tiles. Let’s consider a general neighbourhood operation which takes a square region

to perform some computation. All the transactions shown could occur at the same

time, due to the data dependencies. The PEs are simultaneously requesting pixels

among them, which generates much traffic and conflicts, and the structure choice

can determine the success of the design in meeting the constraints.

In Point-to-Point communication, the PE is responsible for the communication

tasks, besides the processing ones. It is also responsible for transferring data among

its neighbours, so the PE located between two communicating tiles would be in-

terrupted to perform message and data transfers [DT03]. To the time spent in

processing, it is added the time needed for the communication tasks and the context

change inside the PE (e.g. interruption handling). Also, some IP/CV algorithms

have unpredictable communication needs (content-based algorithms), which means

that the amount of context changes is not previously known.

For a bus-based approach, all PEs should be considered bus masters, which

requires an arbiter (extra hardware/energy consumption). Also, bus architectures

do not scale well for systems with dozens to hundreds of Tiles, which can be a

drawback for implementing systems with high image resolutions.

The state-of-art solution, which presents good scalability and more efficient ways
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to handle simultaneous communication issues are the Networks-on-Chip [Hes+16].

The main characteristic of a NoC is the separation of processing and communica-

tion by the addition of specialised hardware for communication. This strategy frees

the PE to be optimised for the processing tasks only, increasing the system’s per-

formance. However, a NoC includes intrinsic message propagation delays, due to

the presence of the Routers. The Routers are specialised architectures for packet

switching transmission, being responsible for data transfer among Tiles.

In our architecture, the Tiles are physically placed in a grid, to have equally

distributed acquisition delays, as explained in Section 5.2.3. Also, because of most

IP/CV algorithms, the Tiles would need more pixels from their surrounding neigh-

bours. Because of these characteristics, we consider two general topologies for our

system: 4-Connected and 8-Connected (Figure 12.5). The main difference between

them is the number of connections each Tile has to the neighbouring ones. Each

topology offers a different balance among area, power consumption, and throughput,

which must be analysed carefully.

4-Connected 8-Connected

Tile

Tile

Tile

Tile

Tile

Tile

Tile Tile Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile Tile Tile

Figure 12.5: 4-Connected and 8-Connected topologies simulated.

In the simulator, the Interconnections module is configurable to behave like the

different communication structures discussed in this Section. All Tiles connect to

this module, which varies the number of I/O channels depending on the number of

ports to be simulated. It manages the requests and message buffers, depending if

LT or AT simulations are desired.
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CHAPTER 12. THE MPSOC SIMULATOR

12.0.4 Programming Model

A common design mistake in the area of Multi/Many-Core Architectures is that

most designers first develop the hardware part, postponing the software toolchain

development until the architecture is finished. Several problems appear then since

the application’s developer is in general not the processing system designer. A good

programming model should offer to the programmer an abstraction which allows

him to focus on the application domain, without caring about code optimisation,

performance and other constraints. We are considering here the programming model

based on the Tile-Codes. Figure 12.6 shows a general partition of the programming

model proposed. In this model, the applications are described using pre-defined

blocks (IP/CV libraries), assembling a Processing Chain, as shown in Figure 5.5.

Each block is mapped to a Tile-code. To Get and Set pixels, a Communication

Layer provides special functions, and, for the sake of completeness, messages for

synchronization among PEs.

Figure 12.6: Programming Model overview.

Despite its simplicity, this programming model allows a programmer to write a

vast number of IP/CV applications. An example of a custom Tile-Code is shown

in Listing 12.1. This code generates as output the geometric mean of a 3 × 3

neighbourhood.
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Listing 12.1: A custom Tile-Code to determine the geometric mean of a 3 × 3

neighborhood.� �
1 void geomean ( i n t x , i n t y , i n t s , i n t f )

2 {

3 i n t p1 = g e t p i x e l (x−1,y−1,s , f ) ;

4 i n t p2 = g e t p i x e l (x−1,y , s , f ) ;

5 i n t p3 = g e t p i x e l (x−1,y+1,s , f ) ;

6 i n t p4 = g e t p i x e l ( x ,y−1,s , f ) ;

7 i n t p5 = g e t p i x e l ( x , y , s , f ) ;

8 i n t p6 = g e t p i x e l ( x , y+1,s , f ) ;

9 i n t p7 = g e t p i x e l ( x+1,y−1,s , f ) ;

10 i n t p8 = g e t p i x e l ( x+1,y , s , f ) ;

11 i n t p9 = g e t p i x e l ( x+1,y+1,s , f ) ;

12

13 i n t pout = s q r t ( p1∗p2∗p3∗p4∗p5∗p6∗p7∗p8∗p9 ) ;

14

15 s e t p i x e l (x , y , s +1, f , pout ) ;

16 }� �
The parameters (x,y,s,f) in get pixel and set pixel functions can be explained as

follows:

• x : the X coordinate of the desired pixel.

• y : the Y coordinate of the desired pixel.

• s : identifies the corresponding block in the IP/CV chain.

• f : identifies the acquired frame, used for image sequences.

12.0.5 The Event Monitor

In the simulator, the Event Monitor (Figure 12.1) traces all activities running in

the simulations. It collects FSM status from the PEs with timing annotations, to

identify when each processing step occurs. This module also registers Pixel Memory

accesses, useful to determine the reading/writing patterns. The Interconnections
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module is also monitored. The buffers and message routing schemes can also be

accessed by the Event Monitor and all switching activities, transactions, and states

are stored in a log file for late analysis.

12.0.6 Estimation of Power, Area and Timing

When designing a system at the Register-Transfer Level (RTL), the designer can

perform the synthesis (for both FPGA or ASIC), and get estimations about the

power consumption, the area, and the maximum operating frequency (directly re-

lated to the propagation delays). However, when the design is developed at the

Electronic System Level (ESL), in general using high-level descriptions (Transac-

tion Level, Specification Level, and so on), accurate estimations are complicated

and still a challenge in the industry and academy [Ger+09].

Figure 12.7: Integration of our simulator with the McPAT Framework (adapted
from [Li+13a]).

In this work, we use McPAT (Multicore Power, Area, and Timing), a framework

to estimate power consumption, silicon area, and timing [Li+13a]. McPAT receives

as inputs a description of the architecture (processor descriptions, caches, memories,

buses, NoCs, routers, register files, ALUs, multipliers, and so on) and a utilisation

rate for each block. Each architectural block can be described with variable detail

levels, and the estimations are as accurate as the details.

Figure 12.7 shows the integration of our simulator to the McPAT Framework.
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The Architecture Specifications (pixels per tile, communication type, processing

element configuration, and so on) are used to configure the Simulator and to fill

a high-level description in the XML Interface. The Simulator’s Log Files are also

used in the XML Interface, to load the utilisation rate o each architectural block.

McPAT reads the XML Interface file and provides reports about the Power, Area,

and Timing estimations for the given architecture.
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Chapter 13

Simulation Results

In this chapter, we show the simulation results for a simple edge detection applica-

tion. We also include estimations obtained by an open-source tool for power, timing,

and area analysis.

13.1 Simulated parameters

Using the simulation tool described in the last chapter, different configurations were

profiled. Some of the underlying assumptions we used in the simulations are in the

Table 13.1, where our configurations are compared to a recent work which imple-

ments an array of 8-bit processors integrated to the CMOS pixel sensor, in the focal

plane.

Table 13.1: Overview of configurations in [Sch+16] and in this work.

Parameter [Sch+16] this work
Technology 130nm 90nm
Area (mm2) ∼ 8.04 ∼ 10 for the (8× 8)
Total resolution (80× 64) (64× 64)
Region (WxW) (8× 8) (4× 4), (8× 8), (16× 16), (32× 32), (64× 64)
Power (mW) 36 ∼ 30 for the (8× 8)

In Table 13.2 we can see the 16 architectural configurations used in our simula-

tions. Also, each configuration was also parameterised with the Region Size, giving

the total of 80 simulated architectures. The work in [Sch+16] uses an architecture

137



CHAPTER 13. SIMULATION RESULTS

similar to configuration A.

Table 13.2: Simulated architectural configurations.

Config. Topology Communication Pixel Memory PE Type Config. Topology Communication Pixel Memory PE Type
A

4-Connected

P2P
Private

RISC I

8-Connected

P2P
Private

RISC
B VLIW4 J VLIW4
C

Shared
RISC K

Shared
RISC

D VLIW4 L VLIW4
E

NoC
Private

RISC M

NoC
Private

RISC
F VLIW4 N VLIW4
G

Shared
RISC O

Shared
RISC

H VLIW4 P VLIW4

13.2 Area estimation

Figure 13.1 shows the Area estimation for the Table 13.2 configurations. When

we have W=64, the region has the same size as the complete image, which means

that there is negligible communication overhead, and almost all area is used for the

Processing Element and the Pixel Memory. When we move in the graph to the

left, reducing the Region’s size, we increase the communication overhead and the

number of Tiles. It is important to highlight that in the left side of the graph when

we change the PE Type from RISC to VLIW4, the total area almost doubles (from

A to B, from C to D, and so on). These characteristics show how sensible is the

area to the PE Type selected.
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Figure 13.1: Estimated area for all configurations, considering W = [4, 8, 16, 32, 64]
pixels.

13.3 Power estimation

In Figure 13.2, the Power consumption estimation can be seen. It is straightforward

to observe that the graph looks similar to the Area estimation (Figure 13.1), since

the power consumption is directly related to the silicon area used. The Power

consumption estimation was done only statically, considering the elements used in

the composition of the architecture.
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Figure 13.2: Estimated power for all configurations, considering W = [4, 8, 16, 32, 64]
pixels.

13.4 Performance estimation

The performance was estimated by the number of cycles needed to compute the

application from Figure 5.5. The graph in Figure 13.3 shows a logarithmic graph

for the number of cycles. We can observe that the choice of RISC or VLIW4 can

have a strong impact on the performance (a bit less than one order of magnitude).

The parallelism exploration is highlighted in this graph: for example, Configuration

A for W=8 and W=16 present a difference in performance of 5 times.
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Figure 13.3: Estimated cycles for all configurations, considering W = [4, 8, 16, 32, 64]
pixels.

13.5 Results discussion

In this chapter, we performed several simulations with different architecture con-

figurations, to show the flexibility of both the programming model (the library of

Tile-Codes) and the simulator.

Besides, we were able to estimate the static power consumption, the silicon area,

and the throughput per pixel in different architecture configurations.

We can highlight the high impact in performance observed when changing from

the simple RISC model to the VLIW-like model, which came with an equivalent

overhead in area.

80 architecture configuration possibilities were analysed in this chapter. How-

ever, there are several other design possibilities that could be explored. The exhaus-

tive search for an optimal solution was not the goal of this chapter. Our objective

was to show the design trade-off considering the selected design-space.

The main drawback at this point is that our simulation models are not cycle-

accurate. To estimate precisely the power consumption, the area, and the timing
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delays, it is necessary to perform the synthesis of the proposed architectures. This

leads us to the next part of this thesis, which is dedicated to the Register Transfer

Level (RTL) description of selected elements from the design space.
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Low-Level approach
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Chapter 14

The Baseline Architecture

Considering the necessity of synthesizable architecture models, as highlighted in the

last chapter, we show in this part the Register Transfer Level (RTL) implementation

of a baseline architecture for our many-core system.

As a proof-of-concept, we derived a many-core architecture suitable for the

IP/CV algorithms, as shown in Figure 14.1. The architecture has the following

characteristics: (a) the Pixel Memories are accessed in Shared Mode, and (b) the

communication is performed by a 4-Connected NoC. Considering this model, the

architecture was then described in VHDL. In this section, we show details of the

hardware description and its implementation in an FPGA platform. In this work,

we used the Xilinx Kintex-7 fabric, a mid-end modern FPGA technology.

Tile

Pixel Memory

Router

Pixel Memory 

Controller

Routing 

Control

RF

From ADC

Processing Element

Figure 14.1: Many-Core Vision Processor and its Tile structure.

145



CHAPTER 14. THE BASELINE ARCHITECTURE

14.1 Pixel Memory

The Pixel Memory block is responsible for storing pixels from the input image and

all other intermediary images. It is also responsible for receiving the input pixels

from the CMOS sensor array. In our architecture, each PE is in charge of a region

of the image. This means that it is responsible for processing the region’s pixels.

The local PE and the local Router have read access to all pixels in their region. The

write access to the addresses corresponding to the input image is restricted to the

sensor’s ADC. The remaining addresses (intermediary images) can only be written

by the local PE. This organisation ensures the data coherence.

Figure 14.2: Pixel Memory synthesis for different amounts of pixels per Tile (8 bits
per pixel).

Figure 14.2 shows the synthesis results for varying amounts of region pixels (8

bits per pixel). There is no distinction among pixels from input or intermediary

images. The only difference between them is the memory addresses used for each

pixel.

14.2 Processing Element

The Processing Element block is responsible for implementing the processing op-

erations of the IP/CV algorithms. It was implemented as a programmable FSM
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able to get and set pixel values to its local Pixel Memory or through the NoC us-

ing its local Router. Figure 14.3 shows the PE internal organization. The ALU

(Arithmetic-Logic Unit) performs 16-bit operations using integer arithmetic. The

Instruction Set used is shown in Table 14.1. It is quite reduced and encompasses

standard instructions (add, sub, mul, div, abs, jmp, lt, bt, eq), in addition to specific

ones (getpx, setpx).

FSM

Program 

Memory

Pixel 

Memory

Router

Figure 14.3: Processing Element internal organization.

Table 14.1: Instruction Set used in the PEs (RISC processors).

Instruction Description
ADD Arithmetic addition of two integers.
SUB Arithmetic subtraction of two integers.
MUL Arithmetic multiplication of two integers.
DIV Arithmetic division of two integers.
ABS Arithmetic absolute value of the input integer
JMP Jump to specified instruction address.
BLT Branch if less than.
BGT Branch if bigger than.
BEQ Branch if equal to.

GETPX Get a pixel value from the specified address.
SETPX Set a pixel value to the specified address.

The Program Memory and the Register File can be configured at design time to

have different sizes. Considering the Processing Element without the Program Memory

and the Register File, the synthesis results are: 245 LUTs and 114 FFs. The other

two elements are just memories and their resource use is straightforward.
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14.3 Router

The router, in our architecture, is an element responsible for receiving pixel requests

(from the local PE or neighbour Tiles) and transmitting pixel values. In our im-

plementation, the communication among the routers is using single-packets with all

bits in parallel. A simple handshake is used to synchronise the communication in

any router port. In total, the router has six inputs and six outputs, connected to

the four neighbour Tiles, to the local PE, and to the local Pixel Memory.

Figure 14.4 shows the Router ’s internal structure. It is a pipeline, and a simple

handshake is used to transfer the messages between each pair of stages. The first

stage is an Arbiter, which uses a Round-Robin scheme to give the same priority

all ports. The second stage is a Decoder, that determines the output port of each

message. The third stage is the Channel Scheduler, a shared message buffer, which

stores each message until its destination port is free.

Table 14.2 shows the Router ’s synthesis results with the architecture configured

for a 256 × 256 image resolution, five steps, one frame and 12 messages in the

Channel Scheduler buffer. The total sums of the elements are not the same as the

Complete Router values since each component was synthesised separately. The syn-

thesis tool optimises differently when synthesising individual elements or complete

systems.

Router

Input North

Input South

Input East

Input West

Input Proc. 

Element

Decoder

Output North

Output South

Output East

Output West

Output Proc. 

Element

Input Pixel 

Memory

Output Pixel 

Memory

Input 

Arbiter

Channel 

Scheduler

Figure 14.4: Router ’s internal structure.
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Table 14.2: Router synthesis results: 256 × 256 resolution, 5 steps, 1 frame, 12
messages.

Component LUT FF
Input Arbiter 18715 1105
Decoder 41 1046
Channel Scheduler 2758 9442
Output Controller 24 6252
Complete Router 20461 15663

14.4 Profiling Results

To illustrate the performance of our architecture, we show in this section the imple-

mentation of a complex IP/CV application composed of several algorithms organised

in a chain: the Canny Edge Detector (CED). This algorithm is a well-known opti-

mised edge detector published in [Can86], and detailed in [TV98]. The CED algo-

rithm encompasses most of the general IP/CV processing chain shown in Figure 4.1.

In the following topics, we detail each part of the algorithm and how it performs in

our architecture, also making a comparison with state-of-art implementations from

the literature.

14.4.1 Pre-Processing

The first three blocks of the CED algorithm are Neighborhood Operations (Figure

4.2). The Gaussian Filter is a Pre-Processing, and the gradients (Gx, Gy) are part

of the Segmentation. These three algorithms are implemented using convolution

operations. The first block uses a 5×5 filter, which requires a neighbourhood of the

same size. The gradients are implemented using 3× 3 neighbourhoods.

Communication through a NoC implies some level of uncertainty since it is not

possible to determine precisely when a message will achieve its destination. The

uncertainties come from the unpredictability of the arbiter, the routing algorithm,

and the PE requests [Hes+16]. As shown in Fig.12.3, depending on its position, a

pixel can have different amounts of local and external pixels.

The Worst-Case Pixel (WCP) is the pixel which presents the highest delay to
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Figure 14.5: The Canny Edge Detector method: building blocks and operation’s
types.

be computed. Figure 14.6 shows how the Neighborhood Operations perform in our

architecture, considering a different number of pixels per Tile. When we increase

the number of pixels per Tile, the number of local pixels also increases, reducing
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the accesses time. However, this also limits the amount of parallelism explored

for a fixed image resolution. In this example, the image used has a resolution of

64× 64 = 4096 pixels.

Figure 14.6: Performance of Neighborhood Operations for different number of pixels
per Tile.

14.4.2 Segmentation

The processing blocks related to Pixel algorithms (Edge Strength, Edge Orientation,

Orientation Labeling, and Weak Edges Suppression) are all Local Operations. They

do not need information from neighbour pixels (local or external). In this type of

operation, there is no NoC communication: all pixels are local to the corresponding

PE, and the image resolution does not affect the performance per pixel. Figure 14.7

show the performance achieved by our architecture for the Segmentation Operations

of the CED application.

14.4.3 Feature Extraction

The last processing block is the Countor Search operation, a particular type of

Neighborhood Operation since it does not apply to all pixels. This operation uses

151



CHAPTER 14. THE BASELINE ARCHITECTURE

Figure 14.7: Performance of Segmentation Operations for different number of pixels
per Tile.

as inputs two intermediary images: Elo(i, j) and IN(i, j). The Countor Search links

pixels over a certain threshold, to determine if they are linked (in the same edge) or

not.

The performance of the operation depends on the image content. For this exam-

ple, we used a chess board image of 64×64 pixels. Each board square is 8×8 pixels.

This operation was implemented using a search window of 3× 3 pixels, which give

the same WCP delay as for the Convolution in Figure 14.6.

14.4.4 Complete Application

Figure 14.8 shows the performance of the complete CED application over our ar-

chitecture, for different numbers of pixels per Tile. Table 14.3 shows a comparison

of our architecture and state-of-art implementations from the literature. For the

comparisons, we estimated our performance based on the synthesis results shown in

the previous section.

Table 14.3 allows us to make a broad analysis, considering different points-of-

view. Regarding the frame-rate (fps), our architecture is scalable and maintains the

same frame-rate for any resolution.
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Figure 14.8: Performance of the CED application for different number of pixels per
Tile.

Table 14.3: Comparison with related architectures, all implementing the CED ap-
plication.

Reference Programmable? Performance Platform
This work:

(16× 16) px/tile Yes 495 fps/100MHz/any resolution FPGA Xilinx Kintex7 fabric
[Pos+14] No 909 fps/242MHz/512× 512 FPGA Altera Aria V
[Pos+14] Yes 33.3 fps/2.46GHz CPU Intel Core 2 Duo
[Pos+14] Yes 473 fps/1.54GHz GPU Geforce GTX580
[Bre+11] Yes 1.3 fps/700MHz/512× 512 Tilera T64 VLIW-MPSoC
[Gen+10] No 1515 fps/201MHz/512× 512 FPGA Xilinx Spartan 6
[HY08] No 400 fps/27MHz/360× 280 FPGA Altera Cyclone-I

Dedicated FPGA implementations are not flexible (programmable), and appli-

cation modifications can lead to an entirely different design, taking a long time to

be implemented. However, the dedicated hardware can achieve high throughput in

comparison with programmable implementations. Our architecture can outperform

a standard CPU since it is an application-specific design.

The Tilera T64 has a mesh array of 3-issue VLIW cores on a single chip. In

[Bre+11], the CED application was implemented using threads, and maybe the

programming model was responsible for the poor performance achieved. Due to

the exploration of multiple parallelism levels, and the design focused on the IP/CV

application domain, our architecture can outperform such commercial MPSoC.
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14.5 Conclusion

In this chapter, we proposed a baseline architecture for future Many-Core Vision

Processors. This architecture was prototyped in an FPGA and compared to state-

of-art solutions for Real-Time IP/CV. The performance of our architecture is shown

to be flexible and scalable, in comparison with the state-of-art works. This imple-

mentation can serve as a basis to guide the development of more precise analysis,

and more RTL implementations can help to enhance the estimation accuracy, for

either Area or Power consumption.
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Chapter 15

Processing Element Design

In this chapter we discuss two approaches to develop the Processing Elements for

our many-core architecture 9:

1. High-level synthesis of the Tile-Codes.

2. An Application-Specific Instruction set Processor (ASIP) design based on a

stream buffer and a novel direct injection of data to the processor’s datapath.

15.1 The High-Level Synthesis Approach

In this section, we show the development of a tool which receives as input a task-

graph and some design constraints and, by interacting with the Xilinx Vivado HLS

software, generates a synthesizable version of the task-graph. At the end of this sec-

tion, we propose the utilisation of the Synthesized Task-Graph as processing element

in our many-core architecture.

15.1.1 Introduction

The advances in VLSI technology during the last decades provided a high degree

of miniaturisation, enabling the ubiquity of sensing/processing/actuating embedded

systems. New applications appear daily, and the minimisation of the time-to-market

9This chapter is based on excerpts from two previously published papers: [MK16] and
[Mor+16a].
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is one of the primary goals of the semiconductor industry. The increasing complexity

of the applications is responsible for several changes in the design process organisa-

tion and development.

The current RTL languages (e.g. VHDL and Verilog) emerged in the 1980’s and

have been used for ASIC (originally) and FPGA (more recently) designs, [WO00]

[GR94]. Despite their success, the RTL description needs an advanced hardware

knowledge and a different modelling paradigm, which is not easily learned by the

designers (several of them with a software background). Also, the translation of

an application to the RTL domain requires the knowledge of both application and

hardware details. To reduce the design costs, High-Level Synthesis (HLS) methods

have been developed for many years. HLS grew in the last years as a solution to the

increasing complexity of hardware implementation of new applications.

The standard HLS design flow starts with the application’s implementation in

a high-level programming language (C/C++), or even using graphs, DSLs or other

abstractions [Geo+13]. After the validation of the software implementation, the

hardware is synthesised in several steps, in which the designer must interact with

the tool, to choose among different design alternatives, until the design constraints

are met, Fig.15.1. The advantage of HLS for the design process is mainly due to the

abstraction level of the languages used, in contrast to RTL description languages

(VHDL/Verilog) [SS15]. However, the design space is sometimes so vast, that the

designer needs a good knowledge of the application, the tool, the hardware structures

and the desired technology, to achieve the performance goals [Con+11].

To help the designers to achieve faster a proper hardware implementation of

the desired algorithms, we propose a more straightforward method. The designer

implements the algorithms as tile-codes and, after validating them (simple software

validation), a Task-Graph is extracted from the original C code. Our Task-Graph

Creator (TGC) tool can create different node types, covering the main structures of

the language, as shown in Part III. For each node type, one or more IPs should be

established and stored in an IP Database.
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HLS tools

Constraints 
met?

Synthesized Hardware

D   Q

Design 
constraints

User inputs

C / C++ / SystemC

End

ON

YES

Figure 15.1: Typical High-Level Synthesis development flow.

Considering the design constraints specified (resources available, power consump-

tion, throughput and so on), a Combinatorial Optimization Problem (COP) is

solved, to identify which combination of nodes can meet the constraints. If the

constraints are not fulfilled, the designer then must use any common EDA tool to

identify and create new IPs.

15.1.2 System Development

As already explained, the goal of this work is not to develop a new HLS tool. Our

objective is to have a fast prototyping method to help the inexperienced designer in

achieving good performance results in an easier way. Figure 15.2 shows the proposed

method.

The user needs to define the design constraints and the application’s implemen-

tation using a subset of ANSI-C language. To handle more complex applications

(composed of several functions), a Function-Graph is created by analysing the func-

tion calls in the application’s source code. A Task-Graph is then created from the

Application’s Code, only for single isolated functions. Searching in a Database with

hardware models for each block, the best combination is found using a simple opti-

misation algorithm.

This combination is mounted as a hardware version of the Task-Graph, which

can then be synthesised to verify if the constraints are met. If not, the user must

157



CHAPTER 15. PROCESSING ELEMENT DESIGN

U
se

r 
in

p
u

ts

1
2

5

3

76 8

4

Ta
sk

-G
ra

p
h

G
en

er
at

io
n

D
B

C
om

bi
na

to
ri

al
 

O
pt

im
iz

at
io

n

D
at

ab
as

e 
o

f 
ha

rd
w

ar
e 

m
od

el
s

1
2

3
4

5
6

7

8

H
ar

d
w

ar
e 

ve
rs

io
n 

of
 

th
e 

Ta
sk

-G
ra

p
h

Sy
nt

h
es

iz
ed

 
H

ar
d

w
ar

e

N
e

w
 N

O
D

E 
C

o
de

 in
Sy

st
em

C
/C

/C
++

/
V

H
D

L/
V

e
ri

lo
g

N
ew

 n
od

e 
m

od
el

s

b
3 b

2 b
1

EN
D

ye
s

no

In
cl

us
io

n 
to

 
th

e 
d

at
ab

as
e

C
on

st
ra

in
ts

 m
et

?
H

ie
ra

rc
h

ic
al

 
Pa

rt
it

io
n

A
p

pl
ic

at
io

n
’s

 
C

od
e 

in
A

N
SI

-C
 s

u
bs

et

D
es

ig
n

 
co

n
st

ra
in

ts

Figure 15.2: Flow of the proposed method: (a) in Green (continuous line), the
straightforward flow, with few user interaction; (b) in Red (dotted line), the flow to
create new Node models (same as the Common Flow from Fig.15.1).
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Task-Graph

int simpleIF(int a, int b)
{
    int res = 0;
    if ( a > b )
        res = a;
    else
        res = b;
    return res;
}

IfBeginVertex
Type: control flow

if-statement begin

BinOpGTVertex
Type: int

>

VarInputVertex
Type: int

a

VarInputVertex
Type: int

b

ThenBeginVertex
Type: control flow
then-block entry

ElseBeginVertex
Type: control flow

else-block entry

IfEndVertex
Type: control flow

if-statement end

Type: int
values returned 
by the function

ReturnVertex

Figure 15.3: Task-Graph for a simple example.

identify the problematic(s) node(s) and create new hardware models for it (them).

This model is saved in the Database for future utilisation and used in a new hardware

Task-Graph. As in the common flow (Figure 15.1), the user can create the new

models in any way: HLS, VHDL/Verilog and so on. The next sections explain

details about each part of the system.

Task-Graph Constraints for HLS

The most important part of the flow is the creation of a Task-Graph based on

the Application’s Code developed by the user. The current version of the Task-

Graph Creator tool supports only a subset of the ANSI-C language. However, this

limitation is present also in the commercial/academic HLS tools [SS15]. The TGC

tool is based on the front-end of the LLVM framework, and the application can be

developed and tested as a common software on the user’s workstation. The TGC

uses the CLANG Code Refactoring tools, mainly the Abstract Syntax Tree (AST)

Matcher [LA04b].

Input and Output Nodes: In Figure 15.3, it is possible to see nodes for inputs
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(VarInputVertex ) and for outputs (ReturnVertex ). The output nodes are, in general,

simple registers. The input nodes can have different configurations depending on

the underlying technology. In Section 15.1.3, some possibilities are shown, based on

Xilinx Vivado HLS tool. As mentioned before, the Task-Graphs are created for each

function, and in the case of a void function the output node, instead of a register,

is composed of a single bit. This scheme works as a flag, being activated at the

function end.

Binary Operator Nodes: The BinOpGTVertex in Figure 15.3 represents the

binary operator ”Greater Then” and outputs a boolean value. The binary operators

are responsible for all arithmetical and logical operations found in ANSI-C language.

These operations, in hardware, can be implemented in several different ways, e.g.

LUTs and DSPs in the FPGA technologies.

Branch Nodes: The example presented in Figure 15.3 contains an IF-clause,

which is represented by three nodes:

IfBeginVertex it works as a simple multiplexer to branch the flow depending

on the (single bit) input received from the previous node. The activation of an

IF-clause is a logic value generated by a boolean expression. In the example, the

boolean expression is composed by a single expression (a > b).

ThenBeginVertex and ElseBeginVertex they have the same internal struc-

ture and interfaces. The names are different only for the sake of avoiding misun-

derstandings during debugging and simulation. In Figure 15.3, these nodes appear

compacted. In the hierarchical Task-Graph generation, these nodes are considered

as void functions and may have internal Task-Graphs.

IfEndVertex it is just and endpoint for the IF-clause end.

Figure 15.4 shows a partial graph of and IF-clause with a more complex input

expression ((a < b)&((c− b) > 0)). As can be seen, the expression is first evaluated

and then its output value is used as input to the IfBeginVertex node. This solution
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int complexIF(int a, int b, int c)
{
    int res = 0;
    if ( (a < b) & ((c-b)>0) )
        res = a;
    else
        res = b;
    return res;
}

( (a < b) & ((c-b)>0) )

BinOpSubVertex
Type: int

-

IfBeginVertex
Type: control flow

if-statement begin

BinOpGTVertex
Type: int

>

FloatingLiteralVertex
Type: int

0

VarInputVertex
Type: int

c

VarInputVertex
Type: int

b

VarInputVertex
Type: int

a

BinOpLTVertex
Type: int

<

BinOpGTVertex
Type: int

&

then else

int simpleFor(int n)
{
    int c, i;
    for( i=1; i<=n; i++){
        c = c + 1;
    }    
    return c;
}

ForBeginVertex
Type: control flow

for-loop begin

VarInputVertex
Type: int

n

FloatingLiteralVertex
Type: int

1

BinOpLEVertex
Type: int

<=

BeginLoopBody
Type: control flow
loop-body begin

FloatingLiteralVertex
Type: int

1

UnaryOpPostDecVertex
Type: int

++

BinOpAddVertex
Type: int

+
EndLoopBody

Type: control flow
loop-body end

ForEndVertex
Type: control flow

for-loop end

ReturnVertex
Type: int

values returned 
by the function

Figure 15.4: Left: Partial Task-Graph of a complex IF-clause, highlighting the
expression; Right: Sample Task-Graph of a For-Loop.

provides flexibility to handle even more complex expressions.

For-Loops: A simple For-Loop Task-Graph can be seen in Figure 15.4. It is

composed by the following nodes:

ForBeginVertex this node is the starting point to the loop and responsible to

control the iterations.

BeginLoopBody this node receives and ”start signal” from the BinOpLEVertex

which handles the loop conditional. This node contains the loop body, composed

by any expression or function calls.

UnaryOpPostDecVertex this node increments the loop counter, sending its

value to the EndLoopBody, which represents the end of the loop body.

ForEndVertex this node represents the end of the loop, indicating if the execu-

tion’s control goes to the next node or back to the ForBeginVertex.

Combinatorial Optimization

A Task-Graph contains a set of nodes and interconnections. Each node can be of dif-

ferent types, implementing different functions (Figure 15.4). For each node type, a

set of equivalent hardware models were created (Figure 15.5). The hardware models
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related to a node have the same behaviour, so they implement the same function-

ality. However, they were created with different optimisation options, what means

that they have different characteristics of Resource Utilization, Power Consumption,

Latency, Operating Cycles and Maximum Frequency.

Using the Task-Graph as input, several alternative solutions (different combina-

tions of the hardware options) are mounted. Each of them represents a Hardware

Task-Graph with the same functionality as the original Task-Graph and C-code.

Given the Design Constraints, the best combination must be identified among the

solutions (the Hardware Task-Graphs). It is a Combinatorial Optimization Problem,

which can be solved by just computing the costs for each solution and comparing

with the constraints. The best solution will be the one which best fits under the

Design Constraints, Figure 15.5.

The analysis of each combination can be time-consuming, depending on the size

of the Task Graph and the number of hardware options for each node. However,

a pre-analysis can be performed, to eliminate Hardware Nodes options based on

the constraints. In the case that no solution met the Design Constraints, then the

user/designer must perform a classical timing analysis to identify bottlenecks and

new optimisation possibilities. After this, new hardware models for the Task-Graph

nodes can be created and inserted in the DataBase.

Hierarchical Partition

As explained in Part III, a task can have different granularities and complexities in

the task-graph representation. It can be a simple arithmetical operation, as well as a

complex function. Using the LLVM Front-End, all the functions used are identified.

The Hardware Models Database stores not only Graphs Nodes but also Functions.

This approach is used to improve code reusability in the same way as in software

development and minimise the time needed to find a hardware implementation for

the complete application. New functions can be created and stored in the database.

However, certain aspects must be observed, as the naming rules and the behaviour
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Figure 15.5: The Combinatorial Optimization Problem solved to select the best
design alternative under the Design Constraints.
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2D Convolution

int Fibonacci(int n)
{
    int a = 0; b = 1, c, i;
    for( i=0; i<n; i++){
        if( i<=1)

c0i;
        else{
                c = b + a;
                a = b;
                b = c;
        }    
    }
    return c;
}

p7 k7 p8 k8 p9 k9

p4
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p1
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p2
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p3

k3

X

X

X
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+

+ +

+

out

+

Figure 15.6: Use-cases selected: Convolution and Fibonacci.

verification, to assure the correctness of the solution. Although this step is performed

before the Task-Graph Creation, we preferred to explain it here, since it is simple

and straightforward.

15.1.3 Use-cases

We analyse two use-cases in this section to show the feasibility of the proposed

solution. The Xilinx Vivado HLS tool was used to create Hardware Functions and

Hardware Nodes for some nodes and functions. We implemented two different appli-

cations: (a) 2D Convolution for image filters and (b) a Fibonacci number generator.

The two applications are simple, however, the 2D Convolution shows the exploration

of data-flow applications and the Fibonacci shows a branch (IF-clause) inside a loop

(FOR-loop), Figure 15.6.

Considering that branches, loops and arithmetical expressions can be used to

implement a vast set of applications, there is no loss of generalisation with the use-

cases selected. Table 15.1 shows some models from the database, which can be

used to create the Hardware Task-Graph for the 2D Convolution and the Fibonacci

generator. Alternative models can perform the same function at different costs.

These models were created in Vivado HLS and differed in the optimisation and

synthesis configurations used.

The Combinatorial Optimization aims to combine the different possibilities to
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Table 15.1: Alternative Hardware Nodes on the Xilinx Xc7vx690tffg1761-2 FPGA
device

Node name DSP48E FF LUT Freq. interval Power
(MHz) (cycles) (mW)

add-v1 0 0 32 537 1 1
add-v2 1 0 0 443 1 1
mult-v1 3 20 18 242 6 5
mult-v2 3 19 17 242 1 6
mac-v1 3 53 49 246 4 5
mac-v2 3 148 49 243 1 7
simpleIF-v1 0 0 32 373 3 1
simpleIF-v2 0 2 16 118 2 1
simpleFOR-v1 0 0 28 332 5 1
simpleFOR-v2 0 8 10 289 2 1

find the one which best fits under the design constraints. Table 15.2 presents a

comparison of the synthesis results for implementations using Vivado HLS with

the ones generated using our method. The direct implementations were done by

developing the application in Vivado HLS, as a common user would do. The other

implementations were created as a block diagram in Vivado using the Hardware

Nodes from Table 15.1. Figure 15.7 shows a comparison of the following three rows

of Table 15.2:

• direct imp.1: common implementation using Vivado HLS to describe the ap-

plication.

• pred-conv-add2-mult2: the result expected after the Optimisation part and

before synthesis.

• conv-add2-mult2: the result of the Hardware Task-Graph after synthesised in

Vivado.

We predict the solution (pred-conv-add2-mult2) by adding the resources, the in-

terval and power characteristics of the Hardware Nodes. The frequency is estimated

by the smaller value, which should be the bottleneck. There can be observed that

the prediction is quite accurate with the synthesised Task-Graph. We must high-

light here that the direct implementation was done without using any optimisation
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options offered by Vivado HLS. This was done to show the first result an inexperi-

enced user would have when using both tools: Vivado HLS and our method. The

synthesis results (Table 15.2 and Figure 15.7) show that our method can achieve

results similar to the direct implementation ones, with the advantage of having a

shorter design time.

DSP48

FF

LUT

Freq.(MHz)

interval(cycles)

Power(mW)

direct imp.1

pred-conv-ad2-mult2

conv-add2-mult2

Figure 15.7: Comparison among the Design Constraints, a Direct Implementation
in Vivado HLS and our method.

Table 15.2: Results of direct implementations and of our method on the Xilinx
Xc7vx690tffg1761-2 FPGA device

Version DSP FF LUT Freq. Interval Power
48E (MHz) (cycles) (mW)

co
n
vo

lu
ti

on

direct imp.1 30 497 309 215 7 44
direct imp.2 30 814 306 222 1 57

conv-add1-mult1 27 180 418 224 7 51
conv-add1-mult2 27 153 391 183 2 51
conv-add2-mult1 35 153 135 214 2 54
conv-add2-mult2 35 168 112 202 2 55

pred-conv-add2-mult2 35 171 153 242 2 62
conv-mac1 37 136 450 228 4 32
conv-mac2 27 477 450 238 1 44

fi
b

o. direct imp. 0 129 128 156 5 4
generated 0 152 115 167 9 6
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15.1.4 HLS in the Many-Core architecture

Figure 15.8 shows the concept of using the HLS approach to generate hardware

versions of the task-graphs. Each block in an Image Processing and Computer

Vision (IP/CV) processing chain can be written as an independent Tile-Code, and

will be transformed into a hardware block.

The Task-Graph Storage in the picture will store all the needed hardware blocks.

The Manager will monitor the execution of these blocks, exchanging one to another.

This exchange can be done by merely multiplexing or, if fast enough, dynamic partial

reconfiguration, like in an FPGA.

The Input Manager will actuate as a data buffer, storing the pixels transferred

from other tiles and, depending on control signals from the Manager, it will assign

to the task-graph inputs the needed values.

The Local Memory encapsulates the Pixel Memory and a Register File used to

store constants and coefficients needed in the task-graphs.

Tile
input manager

local memory

(pixels, 

constants, 

coefficients)

Task-Graph 

Storage

Manager

port

p
o

rt

port

p
o

rt

Figure 15.8: Tile architecture for the HLS approach.
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15.2 The ASIP Approach

In this section, an ASIP design is provided. We start from a standard RISC processor

and, with descriptions in the LISA Architecture Description Language (ADL) in

the Synopsys Processor Designer tool, we develop an ASIP with a specialised input

stream buffer and a novel direct injection of data into the processor’s data-path.

15.2.1 Introduction

A common IP/CV application is composed of a sequence of steps, as shown in Figure

4.1. The initial steps (Acquisition, Pre-Processing, Segmentation) operate over pixel

data, transforming an image into another image. The step 4 extracts information

from the image and creates feature vectors, which will be interpreted by the final

step (5). Some applications will need more or fewer steps.

The most common way to acquire an process and image, considering a camera

as input, is: (1) the camera sends a pixel stream to the processor; (2) the processor

acquires the pixels and stores them in the main memory; (3) the processor loads the

pixels from the main memory to process. We repeated the steps (2) and (3) for all

Intermediary Images. The Intermediary Images have the same size as the original

image. Depending on the application’s complexity - more complexity implies more

steps in the processing chain - the memory consumption can be large enough to

surpass the available memory.

To optimise the memory utilisation, we developed a memory partition model

specifically for IP/CV chains. Also, an input-to-datapath scheme was used to speed

up the processing by connecting pixel buffers directly to the executing stage of

processor’s pipeline. Also, a Peephole Optimization leads to reduce the total number

of Cycles-Per-Instruction (CPI) by grouping sequences of simple instructions in new

customised complex instructions.
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2 + Gy
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Figure 15.9: Processing chain of the Sobel edge enhancement algorithm.

15.2.2 Application’s Analysis

A common IP/CV application, the Sobel algorithm, is depicted in Figure 15.9. This

algorithm’s execution needs to store four images. An important feature to highlight

is the type of operations performed in the algorithm. In the Sobel algorithm, as well

as in most of IP/CV algorithms, point and neighbourhood operations are performed.

The classification is based on how much pixel locations are needed to compute the

operation’s output [MH14]. A point operation requires only one (x,y) location. A

neighbourhood operation requires a region surrounding the (x,y) location.

15.2.3 ASIP Design

This section shows the design of the new ASIP architecture. The first topic describes

the EDA tool used to develop the processor architecture. Afterwards, a description

of the standard 32-bit RISC processor architecture. Then the Memory Partition

is explained in details, followed by the Instruction’s Creation and the Input-to-

Datapath scheme.

The Synopsys Processor Designer

In this work, the design methodology offered in the Synopsys Processor Designer

toolset was used (Figure 15.10). The toolset requires the complete LISA (Language

for Instruction Set Architectures) description of the architecture, containing all in-

ternal structures, control signals, instruction’s behaviour and so on. With the LISA

description, the tool can generate both functional and cycle-accurate instruction set
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Algorithm implementation

for(int i=0; i<IMG_W; i++)
{
    …
    if(FIL_H<L)
    {
         c = c + (a * b);
         ...
    }
}

for(int i=0; i<IMG_W; i++)
{
    …
    for(int j=L; j>FIL_L; j++)
    {
          c = c + ( a * b );
    }
}

Software profiling

for(int i=0; i<IMG_W; i++)
{
    …
    if(FIL_H<L)
    {
         c = c + (a * b);
         ...
    }
}

New instruction creation

Application analysis

Figure 15.10: The ASIP design methodology followed in this work (adapted from
[MKH15a]).

simulators (ISS). A compiler based on Cosy [htt] or LLVM [LA04a] can be generated

and manually optimised by the designer. A detailed debugger tool is also available,

providing data about the instruction’s performance, as well as information regarding

pipeline usage, register and memory allocation, hazards occurrence, cache perfor-

mance and so on. It is also possible to generate a synthesizable RTL description of

the processor, in both VHDL or Verilog languages [Wu13]. Figure 15.10 shows the

classical ASIP design methodology: by successively loop among the stages shown in

Figure 15.10, the processor architecture will be manually refined until an acceptable

result is obtained. The literature presents several advanced design methodologies;

however, we followed the original one because the focus of this work is not on the

methodology itself but in the proposed architecture enhancements.

PD-RISC Processor Architecture

The PD-RISC processor is a standard RISC processor, shipped with the Synopsys

Processor Designer tool to be a starting point for new architecture designs. It is a

32-bit load-store architecture, with a 6-stage fully-bypassed pipeline and separated

ALU and Multiplication units, Figure 15.11 (for simplicity, the picture does not

show the PreFetch and Fetch stages). PD-RISC is similar to some conventional
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DC EX MEMWB

Figure 15.11: PD-RISC processor architecture (adapted from [Wu13]).

processors (such as DLX, MIPS, OR1K, RISC-V), so the analysis performed over it

is general enough to be applied to other similar processor architectures. We use the

original PD-RISC as a benchmark to compare the newly proposed architectures with

the standard one. There is an instruction to get values from inputs in the PD-RISC.

It works like a load instruction: it reads the value from the desired input register

and writes to the Register File (RF). The I/O Controller has a single configuration

parameter for the inputs: the sample period. To set a value to output, we use

another instruction, similar to a store instruction: it reads the value from the RF

and writes to the output register.

Memory Partition

To optimise the memory use, we must take a look at the application’s specific needs

and understand in more details how the algorithms use the pixels in each step of

the processing chain. Observing the processing chain in Figure 15.9, we can see the

dependencies among each step and the previously needed images. In the majority of

cases, the image is needed only in the subsequent step, and then can be discarded.

To improve the memory efficiency, even more, we divided the processor’s memory

space into two logical parts: one for pixels and the other one for any other variable in

the program. Besides the logical partition, we also implemented physical partitions.

In the literature, we identified an efficient architecture for image acquisition (Figure
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15.12). The Neighborhood Loader (NL), after an initial filling latency, displays a new

neighbourhood at each pixel clock cycle. A new entire neighbourhood is loaded every

cycle after the initial delay, and the already processed pixels are taken away, saving

memory and reducing the total amount of instructions needed by the application.

The size of the NL depends on the desired region. In this work, we considered only

3x3 neighbourhoods. We can insert an NL before each Neighborhood Operation. If

the step is a Point operation, then a simple buffer is used [MLB12].

With this approach, we have the processing chain synchronised by the pixel clock

from the camera. We described the NL architecture in LISA language and included

it in the processor’s architecture. It is a long shift register that works as a peripheral,

receiving and storing the pixels automatically from the input pins, without using the

processor’s datapath. It has a controller synchronised with the camera’s pixel clock.

To have access to the available neighborhood from the program, we created a new

instruction (getnl, Figure 15.13). This instruction was then added to the PD-RISC’s

ISA, generating a new processor hence called NL-RISC.

Then we included this instruction in the compiler library as Compiler Known

Function (CKF), mapped directly to the new instruction. For each pixel needed from

the neighbourhood, the instruction must be called. The getnl instruction maps a

value from a specified NL location to a program variable. The implemented NL

can be used receiving values from an input pin, as well as from the Register File.

Another instruction (setnl) takes a value from the Register File and writes to the

NL input.

Instruction’s Creation

In this topic, we show a simple procedure to create new instructions. The method

shown in [FH14] was used to identify sequences of instructions to be substituted by

a single complex instruction. It is similar to the well-known Peephole Optimization

found in compiler’s structures. The steps followed were (Figure 15.13):

1. Profile the application, to find the most repeated sequences of instructions.
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Neighborhood Loader

...

...

Input pixel

Line buffers: (L-1)x(N-L) pixels
Neighborhood: (LxL) pixels

Pixel Clock

Camera

Figure 15.12: Neighborhood Loader architecture.

for(m=0; m < HEIGHT; m++)
     for(n=0; n < WIDTH; n++)
          for(w=-1; w <= 1; w++)
               for(k=-1; k <= 1; k++)
                    acc=filter(w,k) x img(m+w, n+k) + acc;
               end
          end
          new_img(w,k) = acc;
     end
end

fo
r 

al
l p

ix
e

ls
..

.

// assembly code – original implementation
load r1 MEM       //load filter coefficient
load r2 MEM       //load pixel value
mul  r3 r1 r2   //multiply
add  r4 r4 r3   //add to the accumulator (r4)

// mac instruction
load r1 MEM
load r2 MEM
mac r4 r1 r2

// getmac 
getmac r4 r1 r2

// getnl – get from neighborhood loader
load   r1 MEM   //load filter coefficient
getnl  r2 NL        //load pixel value
mul  r3 r1 r2      //multiply
add  r4 r4 r3    //add to the accumulator (r4)

Figure 15.13: Assembly code reduction achieved by creating new instructions.

2. Determine the C code equivalent to the identified sequence of instructions.

3. Create a new instruction to give the same result as the original sequence.

4. Modify the compiler to add a CKF related to the new instruction created.

5. Substitute, in the C source code, the corresponding lines by the new CKF.

The most repeated sequence of instructions (Figure 15.13) identified in the an-

alyzed application is equivalent to a Multiply -And -Accumulate (MAC) operation,

well known in DSP domain. The new instruction created, MAC can operate a single

clock cycle, faster than the PD-RISC processor. This instruction was added to the

NL-RISC processor, generating a new architecture hence called NL-MAC.

Input-to-Datapath

We developed the NL-RISC and NL-MAC architectures by adding new features

to the primary processor. In this section, it is proposed a fusion of both ideas,

to reduce the control overhead due to separate hardware blocks. A single new
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OP

Reg

Imm

CMP

ALU

MUL

DC EX MEMWB

MAC

Camera

Neighborhood Loader

Figure 15.14: PWA architecture: with the Neighborhood Loader and input-MAC
unit.

Figure 15.15: Slice LUTs used by each architecture.

instruction, GETMAC was designed to, in a single cycle, get the pixel value from

the NL and compute a MAC operation (Figure 15.13). Its CKF is called with

three input parameters: an accumulator; filter coefficient; position in the NL. This

architecture is hence called PWA (Process-While-Acquiring), Figure 15.14. We can

see a direct connection from the NL to the MAC block in the picture.
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15.2.4 Results

The area is an essential aspect of an integrated circuit since it relates directly to the

chip’s fabrication cost. In our analysis, Look-Up Tables (LUTs) were considered for

FPGA synthesis. In the chart of Figure 15.15, it can be seen that the difference

in the area between the PD-RISC and the NL-RISC models is 27%, due to control

overhead. The NL itself was implemented using BRAMs, instead of LUTs. The

addition of the MAC instruction to the processor resulted in an area increase of

68%. The complexity of the new instruction is responsible for this overhead.

The PWA architecture - by tightly integrating the Neighborhood Loader and

the MAC instruction - could reduce the control overhead in 8% over the NL-MAC

architecture. Memory utilisation is another crucial aspect of the design of real-time

IP/CV systems. The chart in Figure 15.15 presents the total amount of memory

used by each architecture. It is important to highlight that we did not measure the

memory utilisation in Bytes, but in the number of pixels since the pixel depth can

vary. The values were determined for an image with 640 × 480 pixels, considering

the application in Figure 15.9.

In that application, four images are used/generated. The inclusion of the Neigh-

borhood Loader was responsible for reducing the total amount of pixels stored in

ca. 25%. Another aspect is that this metrics is not taking into account the extra

memory needed for the program (variables, temporary allocation, and so on). We

can reduce the main memory’s size since we are not storing the pixels there anymore.

Figure 15.16 shows the maximum operating frequency achieved by each architecture

in the technology selected for synthesis (Xilinx xc7k325t FPGA). We can see a vari-

ation of less than 10%. Considering the small variation among the architectures, we

searched for other speed metrics.

The number of cycles per pixel is shown in Figure 15.16. We can see a consider-

able reduction (ca. 43%) from the PD-RISC to the NL-RISC, indicating the impact

of reducing the memory access (in this case, due to the Neighborhood Loader).

The new MAC instruction contributed to a reduction of ca. 29%, showing that the
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Figure 15.16: Maximum frequency achieved by each architecture.

methodology used to identify the sequences of instructions succeed. In the PWA

architecture, the combination of acquisition and processing could enhance the NL-

MAC architecture in ca. 36%.

The chart in Figure 15.17 shows how many frames per second can be processed

in each architecture, running at the same frequency (100Mhz) and running at the

maximum frequency (Figure 15.16). We can observe that the reduction in the num-

ber of cycles per pixel (Figure 15.16) is responsible for an enormous increase in the

frame rate achieved by each architecture.

The power consumption is one of the most critical issues in the IP/CV domain.

Figure 15.18 shows the power estimation after synthesis, for each architecture. We

can see that the new architectures have a mean power consumption up to 60%

higher. However, this comparison can be made if the applications are running for

the same amount of time. Considering the specific application we are analysing, we

must use a different metric to compare the architectures.

The chart in Figure 15.18 shows the energy consumption for each processed

pixel. This metric is justified because after the processor finishes the processing of

an image, it can stay idle until the next image. This metric also includes the time of

processing, showing the power efficiency of each architecture. Even with an increase

in the area, the addition of a Neighborhood Loader increased the efficiency in 29%

176



15.2. THE ASIP APPROACH

Figure 15.17: Frame rate achieved by each architecture.

Figure 15.18: Power consumption estimated for each architecture.

(from PD-RISC to NL-RISC).

The new MAC instruction reduced the energy use in 10%, and finally, the PWA

architecture offered a reduction of 44% in the energy needed per pixel, over the NL-

MAC architecture. It is important to highlight that this energy efficiency could be

achieved mainly due to the reduction of the number of clock cycles per pixel, even

with an increase in area and because the application has a high switching frequency,

due to the massive amount of data.
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Comparison with other works

Table 15.3 shows a comparison of the architectures presented in the current work

and similar ones found in recent literature. The custom architecture from [Bro+11]

presents the highest throughput. However, it is not programmable. The area occu-

pied by our final processor (PWA) is half of the area of the Microblaze, the standard

Xilinx softprocessor. Regarding the frequency, the PWA processor achieved a fre-

quency higher than the ρ − V EX processor. However, the ρ − V EX is a VLIW,

which offers a more significant Cycles/Instruction factor.

The throughput obtained by the PWA processor (Cycles/pixel) is higher than

the ρ − V EX and the Microblaze processors. However, in [HWA15b], can be seen

that for higher resolution images, the VLIW processor surpasses the Microblaze

processor by a factor of more than 3×. Considering that the PWA processor is a

RISC architecture - like the Microblaze - we can expect that for bigger images, the

ρ− V EX processor would have a better performance. Another important aspect of

this comparison is that [HWA15b] does not have an image acquisition stage. The

authors there consider the image pre-loaded in the processor’s memory. The results

we present for our processors include the acquisition part from a camera.

Table 15.3: System’s comparison

Work Architecture Device Area Frequency Throughput Power (mW)
current PD-RISC Xilinx 1703 122 84 157

xc7k325t FPGA Slices (MHz) Cycles/pixel
current NL-RISC Xilinx 2159 125 48 194

xc7k325t FPGA Slices (MHz) Cycles/pixel
current NL-MAC Xilinx 3636 116 33 253

xc7k325t FPGA Slices (MHz) Cycles/pixel
current PWA Xilinx 3345 112 21 221

xc7k325t FPGA Slices (MHz) Cycles/pixel
[Bro+11] custom Xilinx 409 420 10 n/a

Virtex-6 xc6vlx75T Slices (MHz) Cycles/pixel
[HWA15b] VLIW Xilinx 7506 75 183 n/a

ρ− V EX Virtex-6 xc6vlx240T Slices (MHz) Cycles/pixel
[HWA15b] Microblaze Xilinx 7376 150 488 n/a

Virtex-6 xc6vlx240T Slices (MHz) Cycles/pixel

This section shows the development of power efficient ASIP for Image Processing

and Computer Vision Applications. Starting from a standard RISC processor, new
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features were included in the micro-architecture, providing advantages and disad-

vantages. Each design step generated a new architecture, incrementally leading to

a more efficient architecture.

The PWA architecture provides an enhanced throughput (4x cycles/pixel), higher

frame rate (ca. 4x speed-up), less memory utilisation (25% reduction) and less en-

ergy consumption per pixel (2.8x reduction) than the original PD-RISC. However, it

has a drawback: the overhead in the area (ca. 25%). A complete study must be per-

formed with more complex applications and higher resolution images, to show how

the proposed architecture would behave with, for example, longer image processing

chains and/or more NLs.

15.2.5 The ASIP in the Many-Core Architecture

As we have discussed in this section, the development of specialised processors is

somehow essential to handle the real-time constraints in IP/CV applications. Con-

sidering the architectures proposed here, all of them present interesting characteris-

tics that could be integrated into our many-core architecture. We discuss each one

on the following topics:

• NL-RISC: The Neighborhood Loader architecture is useful for pixel stream

processing. However, considering the IP/CV processing chain, it can be effi-

ciently used only for the first processing block. In this case, its area overhead

makes this solution not suitable for our problem.

• NL-MAC: The addition of custom instructions to the PD-RISC processor has

shown its advantages and a suitable cost. A more extensive study is needed

to identify which instructions should be added to the processor’s architecture

to benefit a large number of processing blocks.

• PWA: The approach of inserting input data directly to the processor’s data-

path offers a huge reduction in the cycle count per output pixel, which can

benefit a lot the throughput of our architecture. The main drawback is that

179



CHAPTER 15. PROCESSING ELEMENT DESIGN

with this approach we would need extra hardware to handle synchronisation

signals among the tiles.

15.3 Remarks

In this chapter, we proposed two different approaches to develop the Processing El-

ements for our Many-Core architecture. Several other techniques could be explored,

like the utilisation of Very-Large Instruction Word (VLIW) processors (as simulated

in the Chapter 13). Another possibility would be to explore other architectures. Em-

bedded GPUs could be an interesting solution. However, the area overhead might

be prohibitive. Transport-Triggered Architecture (TTA) architectures are also good

candidates since there are reports in the literature about a more efficient area utilisa-

tion in comparison to VLIW processors. Automatic generation of processor models

can also be achieved by some techniques presented in the literature. Our intention

here was not to perform an exhaustive exploration, but to provide some insights in

this direction.
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Conclusion and Future Work

Current trends in embedded and cyber-physical systems in industry and academy

show that novel hardware architectures are required to provide the requested com-

putational performance for modern applications, e.g. in the domain of image and

signal processing.

It is a fact that Moore’s law will end, caused by physical limits related mainly to

the Dennard Scaling problem. Moreover, therefore, novel technologies and hardware

system architectures, need to be investigated and provided to support the demand

from industrial applications.

This thesis followed precisely this motivation by investigating an entirely new

concept of a highly flexible, scalable and maximal parallel hardware architecture for

that type of applications. The approach is different to traditional multi/many-core

architectures, as well a to GPU-like hardware structures, since it includes a new

concept for the communication infrastructure and therefore the data transfer and

distribution, the processing elements and the programming model.

In this work, we developed contributions to all these three areas (communication

infrastructure, processing element design and programming model) by developing

the approach in three levels.

In the first level, we developed a method and tools to explore the programmability

of the system, using the Tile-Code concept, and to analyse the application using

Task-Graphs. This approach also leads to the development of a many-core simulator
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able to perform fine-grained scheduling of tasks. The promising results of this part

have shown that the distributed programming model based on Tile-Codes and the

IP/CV processing chain are valid and convincing. However, they also indicate

the need for another level of abstraction, to enable more detailed modelling and

evaluation of the hardware structure.

An evolution of the first simulator was developed in the second level, as well

as a more specific definition of the design space to be explored. The development

of a SystemC-based model of the hardware architecture was investigated resulting

that a novel communication over shared register banks was integrated. Also, a

tool for estimation of power consumption, area and timing were integrated into the

simulator, enabling the possibility for early estimation of hardware performance.

The more inside view of the behaviour of the architecture led to the final abstraction

level.

In the third level, we selected one of the hardware realisations from the second

level to extract results of the FPGA hardware utilisation and provided a first view of

the excellent performance and behaviour of the system. This realisation is only one

demonstrator, for a feasibility study, which shows that the approach can be realised

with the most modern FPGA architectures. However, the approach is not related

only to FPGA. It is envisioned that in extensions of the work an ASIC synthesis

with estimations of power and performance will be developed. Even a realisation on

a System-on-Chip can be envisioned and should be considered.

The approach opens varieties of such a highly parallel architecture that almost

endless numbers of instantiations for several algorithms can be developed. It would

be of great interest to use the developed hardware structure for machine learning

algorithms, especially for convolutional neural networks. Discussions with special-

ists from this domain brought out promising details since the hardware structure

supports the structure of the machine learning algorithm.

Further experiments would be of interest in the domain of signal processing with,

e.g. an array of radar antennas. Here, the massive parallelism and synchronous
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data processing are of interest for specific MIMO radar algorithms. Finally, using

FPGA as target platform would allow to scale and adapt the hardware during run-

time by dynamic and partial reconfiguration. This feature would allow reacting to

requirements of the algorithms and the environment of the system during operation.

After all, we have as the main result of this thesis the basis for several further re-

search projects, in varied directions, such as applications of multi-dimensional signal

processing; research in task-mapping and scheduling techniques; exascale comput-

ing; high-performance computing, and so on.
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[Brä+13] Thomas Bräunl et al. Parallel image processing. Springer Science &

Business Media, 2013.

[Bre+11] Andrew Z Brethorst et al. “Performance evaluation of Canny edge de-

tection on a tiled multicore architecture”. In: Proceedings of SPIE -

The International Society for Optical Engineering 7872 (2011), The

Society for Imaging Science and Technology (IS. issn: 0277786X. doi:

10.1117/12.873004. url: http://dx.doi.org/10.1117/12.873004.

[Bro+11] V. Brost et al. “Flexible VLIW processor based on FPGA for real-time

image processing”. In: Design and Architectures for Signal and Image

Processing (DASIP), 2011 Conference on. Nov. 2011, pp. 1–8. doi:

10.1109/DASIP.2011.6136855.

[Can+13] Andrew Canis et al. “LegUp: An open-source high-level synthesis tool

for FPGA-based processor/accelerator systems”. In: ACM Transac-

tions on Embedded Computing Systems (TECS) 13.2 (2013), p. 24.

[Can86] John Canny. “A Computational Approach to Edge Detection”. In: Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on PAMI-

8.6 (Nov. 1986), pp. 679–698. issn: 0162-8828. doi: 10.1109/TPAMI.

1986.4767851.

[C+08] J. Ceng, J. Castrillon, et al. “MAPS: An Integrated Framework for MP-

SoC Application Parallelization”. In: Proceedings of the 45th Annual

Design Automation Conference. DAC ’08. Anaheim, California: ACM,

2008, pp. 754–759. isbn: 978-1-60558-115-6. doi: 10.1145/1391469.

1391663. url: http://doi.acm.org/10.1145/1391469.1391663.

[Che+11] Qian Chen et al. “Source code profiling for ASIP design: Strategy

and implementation”. In: Electronics, Communications and Control

188

http://dx.doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
https://doi.org/10.1007/3-540-45848-4_59
http://dx.doi.org/10.1117/12.873004
http://dx.doi.org/10.1117/12.873004
http://dx.doi.org/10.1109/DASIP.2011.6136855
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1145/1391469.1391663
http://dx.doi.org/10.1145/1391469.1391663
http://doi.acm.org/10.1145/1391469.1391663


REFERENCES

(ICECC), 2011 International Conference on. Sept. 2011, pp. 1032–

1035. doi: 10.1109/ICECC.2011.6066550.

[Con+11] Jason Cong et al. “High-level synthesis for FPGAs: From prototyping

to deployment”. In: Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on 30.4 (2011), pp. 473–491.

[Cza+12] Tomasz S Czajkowski et al. “From OpenCL to high-performance hard-

ware on FPGAs”. In: Field Programmable Logic and Applications (FPL),

2012 22nd International Conference on. IEEE. 2012, pp. 531–534.

[DT03] William Dally and Brian Towles. Principles and Practices of Intercon-

nection Networks. San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 2003. isbn: 0122007514.

[Dia+12] D. Diamantopoulos et al. “SPARTAN project: On profiling computer

vision algorithms for rover navigation”. In: Adaptive Hardware and Sys-

tems (AHS), 2012 NASA/ESA Conference on. June 2012, pp. 174–181.

doi: 10.1109/AHS.2012.6268647.

[Edi17] Stephan Ramm (Editor). The OpenVX Specification. The Khronos Group

Inc., 2017.
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BGL Boost Graph Library

CCD Charge-Coupled Devices

CMOS Complementary Metal-Oxide-Semiconductor

CMOS-APS CMOS and Active Pixel Sensor (APS)

CMP Chip Multi-Processor

CPS Cyber-Physical System
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DSL Domain-Specific Language

FDC Force-Directed Clustering
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FIFO First-In First-Out

FIMP Function Implementation

FPGA Field-Programmable Gate Array

FPIP Focal-Plane Image Processing

FSM Finite State Machine

GPP General-Purpose Processor

HLS High-Level Synthesis

ILP Instruction-Level Parallelism

IoT Internet of Things

IP/CV Image Processing and Computer Vision

IR Intermediate Representation

KPN Kahn Process Network

LT Loosely-Timed

MIMO Multiple-Input/Multiple-Output

MPSoC Multi-Processor System-on-Chip

NoC Network-on-Chip

NSIP Near-Sensor Image Processing

P2P Point-to-Point

PE Processing Element

PU Processing Unit

PvC Pervasive Computing
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QoS Quality of Service

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SER Specify, Explore-and-Refine

SIMD Single-Instruction Multiple-Data

SoC System-on-Chip

TCPA Tightly-Coupled Processor Array

TG Task-Graph

TSV Through-Silicon Vias

TTA Transport-Triggered Architecture

UbiC Ubiquitous Computing

VHDL Very-High Scale of Integration Chip Hardware Description Language

VLIW Very-Large Instruction Word

VLSI Very-Large Scale of Integration

WPPA Weakly-Programmable Processor Array

WPPE Weakly-Programmable Processing Element
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• 2016 J. Y. Mori and M. Hübner, ”Multi-level parallelism analysis and system-

level simulation for many-core Vision processor design,” 2016 5th Mediter-

ranean Conference on Embedded Computing (MECO), Bar, 2016, pp. 90-95.

doi: 10.1109/MECO.2016.7525710

• 2015 J. Y. Mori, C. H. Llanos and M. Hüebner, ”A Framework to the De-
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