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Preface

Many issues in statistics are related to the identification of structural changes in time
series. In this context, major challenges consist in determining the point in time when a
change occurred and in discriminating between random effects and actual changes in the
structure of data-generating stochastic processes. These problems serve as the central
motivation for all results presented in the following chapters.

The most common techniques in change-point analysis are based on CUSUM statistics
which, as the name indicates, result from a consideration of cumulative sums, and thus
are non-robust in the sense that outliers in the data have a significant impact on their
values. The focus of this thesis is on outlier robust methods. In particular, most of the
considered statistical tools are derived from Wilcoxon rank-sum statistics.

Change-point problems have been widely studied in the case of independent observa-
tions. However, for many practical purposes in statistics, the assumption that a given
set of observations has been generated by mutually independent random variables does
not serve as an adequate model of reality. For a realistic model, one has to allow for
dependence between observations. Naturally, this dependence declines as the time lag
between observations grows. According to the rate of decay, one differentiates between
short- and long-range dependent time series. A relatively fast decay of the autoco-
variances characterizes short-range dependent time series, while a slow decay defines
long-range dependence. At first sight, this classification seems to be quantitative. Yet,
in fact, many theoretical results that can be derived under the assumption of long-range
dependence differ qualitatively from those obtained under short-range dependence: due
to a higher variability in the former case, statistics usually require a stronger scaling
in order to converge. In addition, the asymptotic distributions of estimators and test
statistics are different from those attained under short-range dependence: statistics com-
puted with respect to independent or weakly dependent observations are asymptotically
normal distributed, whereas statistics computed with respect to long-range dependent
observations may converge to non-Gaussian limits. As a result, long-range dependence
affects data analysis in practice and the proofs of mathematical statements in theory.
The different aspects of change-point analysis covered by this thesis and the major ac-
complishments that underlie the results of the following chapters are all linked to specific
features of long-range dependent time series.

The content of this thesis is based on four journal articles: Betken (2016), Betken
(2017), Betken and Wendler (2015), and Betken and Kulik (2017). The first-mentioned
manuscript partially reproduces results that had been developed in my master thesis
(Betken (2013)), prior to the research projects associated with this dissertation. A short
remark at the end of Chapter 1 specifies to what extent the results established in Betken
(2016) go beyond the scope of Betken (2013). Moreover, the relevant findings of this
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article are referred to in the introductory chapter only. Apart from these, Chapter 1
introduces definitions and results that are taken as a basis for the subsequent chapters.
Chapter 2, which reproduces the results of Betken (2017), addresses the estimation of
change-point locations for mean shifts in long-range dependent time series on the basis of
non-self-normalized and self-normalized two-sample Wilcoxon statistics. The resulting
estimators are shown to be consistent. Moreover, the rate of convergence and, after
suitable standardization, the asymptotic distribution of the Wilcoxon-based estimator
are derived. Most notably, long-range dependence considerably affects the asymptotic
behavior of change-point estimators.
Betken and Wendler (2015) establishes the validity of a subsampling procedure under
the assumption of long-range dependent time series. Although motivated by the need to
approximate the distribution of test statistics in change-point analysis, the consistency
of subsampling-based estimators is shown to hold for a general class of statistics and
under mild assumptions on the data-generating process. Long-range dependence affects
the considered subsampling procedure in that the choice of blocklength is restricted by a
condition depending on the rate of decay of the time series’ autocovariances. In addition
to these results, Chapter 3 provides a further consistency result which, on the one hand,
requires a more limited choice of the blocklength, but, on the other hand, imposes even
less restrictive conditions on the data-generating process.
Betken and Kulik (2017) consider change-point tests for time series that follow the long
memory stochastic volatility (LMSV) model. A specific feature of change-point tests
for LMSV time series is being observed: while Wilcoxon statistics converge to limits
that are typically attained under long-range dependence, the asymptotic distribution
of CUSUM statistics does not necessarily correspond to a limit associated with long-
range dependence. Chapter 4 is based on the findings in Betken and Kulik (2017). The
main theoretical achievement presented in this chapter is the proof of a non-central limit
theorem for the two-parameter empirical process of subordinated LMSV time series. In
the context of change-point analysis, the corresponding result is needed to derive the
asymptotic distribution of test statistics. In general, the theory of empirical processes
also applies to many other fields in non-parametric statistics, so that the empirical
process limit theorem is of particular and independent interest.
The three main parts of this thesis, i.e. Chapters 2, 3, and 4, are all completed by
simulation studies at the end of each chapter. Chapter 5 takes up on the theory developed
in the preceding chapters by discussing applications of change-point tests and change-
point estimators to real data sets. For this purpose, testing procedures that allow for
ties or multiple change-points in the data are needed. Change-point tests based on
test statistics resulting from corresponding modifications of Wilcoxon-type statistics are
introduced in Appendix B. Appendix A provides a discussion on the topology of path
spaces for (two-parameter) empirical processes and on the concept of weak convergence
for random variables with values in possibly non-separable spaces.
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1. Background

This chapter introduces definitions and techniques that are taken as a basis for the
research results presented in the subsequent chapters. These include the definition of
long-range dependent time series, references to stochastic processes inextricably linked
with the concept of long-range dependence, and an introduction of basic model assump-
tions. What is common to the different chapters of this thesis, is the occurrence of
certain statistics designed to identify structural changes in time series. Non-parametric
statistics and self-normalization constitute concepts of peculiar interest and therefore
are given particular emphasis.

1.1. Long-range dependence

A historical example of a phenomenon that gave rise to the consideration of long-range
dependence in statistics and probability theory is the Hurst effect, named after its dis-
coverer, the British hydrologist Harold Edwin Hurst. For his studies of the river Nile’s
flow in the early 1950s, Hurst analyzed the annual minimum water level of the Nile
measured at the Roda gauge near Cairo for the years 622 to 1281; see Figure 1.1. Since
Hurst was particularly interested in estimating the storage capacity of water reservoirs,
he considered the values of the R/S (rescaled range) statistic in order to assess the
variability of the time series. Under the assumption of data generated by a sequence
of independent, identically distributed random variables, an increase in the number of
observations is expected to entail a growth of the rescaled range statistic of order

√
n,

where n denotes the number of observations. Nonetheless, a corresponding prediction
concerning the growth rate of the R/S statistic contradicts an observation made by
Hurst who found that his empirical analysis of the data suggested a rate of growth that
is better approximated by n0.72; see Hurst (1956). By dropping the assumption of in-
dependent data-generating random variables, the behavior of the R/S statistic can be
explained in a statistical model that allows for long-range dependence, i.e. in a model
of time series with relatively strong correlation between observations. While a grow-
ing distance in time, separating two observations, always goes along with a decay of
correlation between these observations, the rate of decay is crucial to the definition of
long-range dependent time series. A relatively slow decay of the autocovariances char-
acterizes long-range dependent time series, while a relatively slow decay characterizes
short-range dependent processes. Figure 1.1 contrasts the empirical correlation of time
series data consisting of the yearly minimal water levels of the Nile river for a time lapse
of more than 600 years with the expected behavior of the empirical correlation under
the assumption of uncorrelated observations.
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1. Background
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Figure 1.1.: Yearly minimal water levels of the Nile river for the years 622 to 1284, measured at
the Roda gauge near Cairo; see Toussoun (1925). The data has been taken from the longmemo

package in R. The two dashed horizontal lines in the plot of the autocovariances mark the bounds
for the 95% confidence interval under the assumption of data generated by white noise.

For a description of the covariance structure of long-range dependent processes, the
notions of asymptotic equivalence and slowly varying functions are essential.

Definition 1 (Bingham et al. (1987)). Two real-valued functions f , g are called asymp-
totically equivalent, if

lim
x→∞

f(x)

g(x)
= 1.

We write f ∼ g to indicate asymptotic equivalence.

Definition 2 (Beran et al. (2013)). For some c ≥ 0, let L : (c,∞) −→ R be a positive
function satisfying

lim
x→∞

L(λx)

L(x)
= 1 for all λ > 0.

Then L is said to be slowly varying at ∞ (in Karamata’s sense). A function L is said
to be slowly varying at the origin (in Karamata’s sense) if the function L̃ defined by
L̃(x) ··= L

(
x−1

)
is slowly varying at ∞.

A comprehensive treatment of slowly varying functions can be found in Bingham et al.
(1987).
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1.1. Long-range dependence

Definition 3 (Pipiras and Taqqu (2017)). A (second-order) stationary, real-valued time
series Xk, k ∈ Z, is called long-range dependent if its autocovariance function γ satisfies

γ(k) ··= Cov(X1, Xk+1) ∼ k−DLγ(k), as k →∞,

with D ∈ (0, 1) for some slowly varying function Lγ . We refer to D as long-range
dependence (LRD) parameter.

Apart from Definition 3, various notions of long-range dependence can be found in the
literature. Most of these are related, but, in general, not equivalent. In defining long-
range dependence with respect to the behavior of the autocovariances, Definition 3 is
sometimes referred to as being expressed in the time domain. However, in some cases,
it is useful to take a spectral domain perspective by relating long-range dependence in
time series to the behavior of its spectral density at the origin.

Definition 4 (Brockwell and Davis (2002)). Given a stationary time series Xk, k ∈ Z,
with autocovariance function γ, a function f is called the spectral density of this time
series if

a) f(λ) ≥ 0 for all λ ∈ (0, π],

b) γ(k) =

π∫
−π

eikλf(λ) dλ for all k ∈ Z.

A definition of long-range dependence in the spectral domain is given by the following
condition on the spectral density f of the considered time series:

f(λ) ∼ |λ|D−1 Lf (λ), as λ→ 0,

for some at the origin slowly varying function Lf .
The above characterization of long-range dependence in the spectral domain is not equiv-
alent to the notion of long-range dependence in the time domain. Nonetheless, it can be
shown that the defining conditions on the spectral density and the autocovariance func-
tion are equivalent under certain assumptions concerning the slowly varying functions
Lγ and Lf ; see Beran et al. (2013).

1.1.1. Fractional Brownian motion and fractional Gaussian noise

A process which is closely connected to the concept of long-range dependence is the so-
called fractional Brownian motion. As it is a Gaussian process, a definition only requires
the specification of mean and covariances.

Definition 5 (Beran et al. (2013)). A Gaussian process BH(t), t ∈ R, with mean 0 and
covariance function

Cov (BH(s), BH(t)) =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
,

where σ2 = VarBH(1) and 0 < H < 1, is called fractional Brownian motion. It is called
standard fractional Brownian motion if σ2 = 1.

3



1. Background

Remark 1. When H = 1
2 , the process B ··= B 1

2
is a usual Brownian motion.

Fractional Brownian motions with parameter H ∈
(

1
2 , 1
)

characterize asymptotic dis-
tributions in limit theorems for time series with long-range dependence and are in this
respect related to the concept of long-range dependence. In fact, partial sums of long-
range dependent random variables with LRD parameter D converge to a fractional
Brownian motion with parameter H = 1 − D

2 , when appropriately standardized. In
contrast to the classical central limit theorem for partial sums of independent (or short-
range dependent) random variables which require a normalization of order

√
n, where

n denotes the number of observations, the stronger normalization nH is needed in the
long-range dependent case. This observation corresponds to the previously mentioned
Hurst effect. For this reason, the parameter H in the definition of fractional Brownian
motion processes is also called Hurst parameter or Hurst index.

The sample paths of a fractional Brownian motion BH are almost surely Hölder con-
tinuous of any order strictly less than H, i.e. for every β ∈ (0, H) and every compact
interval I, there exists a constant C > 0 such that

|BH(t)−BH(s)| ≤ C |t− s|β (1.1)

for all s, t ∈ I. Moreover, it can be shown that the trajectories of BH are almost
surely not β-Hölder continuous for β ≥ H, and, in particular, nowhere differentiable.
Heuristically, the Hölder exponent β in (1.1) characterizes the roughness of the sample
paths of BH . As a consequence, a Hurst parameter H which is close to 1 points towards
a smooth and regular behavior of the sample paths of BH , while an H which is close
to 0 indicates a rougher behavior of sample paths characterized by relatively high local
variability.
A precise description of the path behavior of fractional Brownian motion processes is
given by the corresponding law of the iterated logarithm; see Arcones (1995).

Theorem 1 (Law of the iterated logarithm). Let BH(t), t ∈ R, be a standard fractional
Brownian motion. Then, for all t ∈ R,

lim sup
ε↘0

BH(t+ ε)−BH(t)√
2ε2H log log (1/ε)

= 1 a.s.

Strictly speaking, the definition of long-range dependence does not apply to fractional
Brownian motions, since these are not stationary. However, a fractional Brownian motion
has stationary increments and therefore gives rise to a construction of stationary, long-
range dependent Gaussian processes.

Definition 6 (Taqqu (2003)). Let BH(t), t ∈ R, be a fractional Brownian motion. The
process ξH(k), k ∈ Z, defined by

ξH(k) ··= BH(k + 1)−BH(k)

is called fractional Gaussian noise with Hurst parameter H.
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1.1. Long-range dependence

The autocovariance function of the process ξH(k), k ∈ Z, is given by

γ(k) =
1

2

(
|k + 1|2H − 2 |k|2H + |k − 1|2H

)
.

It can be shown that

γ(k) ∼ H(2H − 1)|k|2H−2, as k →∞,

if H 6= 1
2 . Thus, the process ξH exhibits long-range dependence when H ∈

(
1
2 , 1
)
. If

H = 1
2 , the variables ξH(k), k ∈ Z, are uncorrelated and ξH is a Gaussian white noise

process. Observations generated by fractional Gaussian noise ξH with H ∈
(
0, 1

2

)
tend

to have opposite algebraic signs due to negative correlation of the variables ξH(k), k ∈ Z,
resulting in realizations which are distinctively zigzagging. In contrast, the behavior of
observations generated by fractional Gaussian noise processes ξH with H ∈

(
1
2 , 1
)

is
characterized by less pronounced zigzagging. As a result, the behavior of ξH is often
referred to as being antipersistent for H ∈

(
0, 1

2

)
, chaotic for H = 1

2 and persistent for
H ∈

(
1
2 , 1
)
; see Taqqu (2003).

1.1.2. Subordinated Gaussian processes

Chapter 2 and 3 of this thesis focus on the consideration of long-range dependent time
series generated by transformations of Gaussian processes. We will refer to this model
as Gaussian subordination.

Definition 7. Let ξt, t ∈ T , be a Gaussian process with index set T . A process Yt, t ∈ T ,
satisfying Yt = G(ξt) for some measurable function G : R −→ R is called subordinated
Gaussian process.

Remark 2. For any particular distribution function F , an appropriate choice of the
transformation G in Definition 7 yields subordinated Gaussian processes with marginal
distribution F . Moreover, there exist algorithms for generating Gaussian processes that,
after suitable transformation, yield subordinated Gaussian processes with marginal dis-
tribution F and a predefined covariance structure; see Pipiras and Taqqu (2017).

Example 1. For k, α > 0, the cumulative distribution function

Fα,k(x) ··=

{
1−

(
x
k

)−α
if x ≥ k,

0 else,

characterizes the Pareto(α, k) distribution with scale parameter k and shape parameter
α, known as tail index. A Pareto(α, k)-distributed random variable Y has finite expec-
tation when α > 1 and finite variance when α > 2. In these cases, the expected value
and the variance are given by

EY =
αk

α− 1
, α > 1,

5



1. Background

VarY =
αk2

(α− 1)2(α− 2)
, α > 2.

To generate a Pareto-distributed time series Yt, t ∈ T , which has a representation as
a subordinated Gaussian process, i.e. which satisfies Yt = G(ξt) for some measurable
function G and Gaussian random variables ξt, t ∈ T , we consider the quantile transfor-
mation G(x) ··= k(Φ(x))−

1
α with Φ denoting the standard normal distribution function.

In order to obtain standardized observations, i.e. random variables Yt, t ∈ T , with mean
0 and variance 1, we have to choose

G(x) =

(
αk2

(α− 1)2(α− 2)

)− 1
2
(
k(Φ(x))−

1
α − αk

α− 1

)
.

The subordinated random variables Yt = G(ξt), t ∈ T , can be considered as elements of
the Hilbert space L2(R, ϕ(x)dx), i.e. the space of all measurable, real-valued functions
which are square-integrable with respect to the measure ϕ(x)dx associated with the
standard normal density function ϕ. For two functions G1, G2 ∈ L2(R, ϕ(x)dx) the
corresponding inner product is defined by

〈G1, G2〉L2 ··=
∫ ∞
−∞

G1(x)G2(x)ϕ(x)dx = EG1(X)G2(X)

with X denoting a standard normally distributed random variable.
A collection of orthogonal elements in L2(R, ϕ(x)dx) is given by the sequence of Hermite
polynomials.

Definition 8 (Pipiras and Taqqu (2017)). For n ≥ 0, the Hermite polynomial of order
n is defined by

Hn(x) = (−1)ne
1
2
x2 d

n

dxn
e−

1
2
x2 , x ∈ R.

Orthogonality of the sequence Hn, n ≥ 0, in L2(R, ϕ(x)dx) follows from

〈Hn, Hm〉L2 =

{
n! if n = m,

0 if n 6= m.

Moreover, it can be shown that the Hermite polynomials form an orthogonal basis of
L2(R, ϕ(x)dx). As a result, every G ∈ L2(R, ϕ(x)dx) has an expansion in Hermite
polynomials, i.e. for G ∈ L2(R, ϕ(x)dx) and X standard normally distributed, we have

G(X) =
∞∑
r=0

Jr(G)

r!
Hr(X), (1.2)

where the so-called Hermite coefficient Jr(G) is given by

Jr(G) := 〈G,Hr〉L2 = EG(X)Hr(X).

6



1.1. Long-range dependence

Equation (1.2) holds in an L2-sense, meaning

lim
n→∞

∥∥∥∥∥G(X)−
n∑
r=0

Jr(G)

r!
Hr(X)

∥∥∥∥∥
L2

= 0,

where ‖ · ‖L2 denotes the norm induced by the inner product 〈·, ·〉L2 .

Given the Hermite expansion (1.2), it is possible to characterize the dependence structure
of subordinated Gaussian time series G(ξn), n ∈ N. Under the assumption that the
Gaussian sequence ξn, n ∈ N, is stationary and that G is a one-to-one function, the
behavior of the autocorrelations of the transformed process is completely determined by
the dependence structure of the underlying process. However, this is not the case in
general. In fact, it holds that

Cov(G(ξ1), G(ξk+1)) =
∞∑
r=1

J2
r (G)

r!
(γ(k))r , (1.3)

where γ denotes the autocovariance function of ξn, n ∈ N. Under the assumption that,
as k tends to ∞, γ(k) converges to 0 with a certain rate, the asymptotically dominating
term in the series (1.3) is the summand corresponding to the smallest integer r for which
the Hermite coefficient Jr(G) is non-zero. This index, which decisively depends on G, is
called Hermite rank.

Definition 9 (Pipiras and Taqqu (2017)). Let G ∈ L2(R, ϕ(x)dx), EG(X) = 0 for
standard normally distributed X and let Jr(G), r ≥ 0, be the Hermite coefficients in
the Hermite expansion of G. The smallest index k ≥ 1 for which Jk(G) 6= 0 is called the
Hermite rank of G, i.e.

r ··= min {k ≥ 1 : Jk(G) 6= 0} .

It follows from (1.3) that subordination of long-range dependent Gaussian time series
potentially generates time series whose autocovariances decay faster than the autocovari-
ances of the underlying Gaussian process. In some cases, the subordinated time series is
long-range dependent as well, in other cases subordination may even yield short-range
dependence.

Theorem 2 (Pipiras and Taqqu (2017)). Let ξn, n ∈ N, be a stationary, long-range
dependent Gaussian series with mean 0, variance 1 and Cov(ξ1, ξk+1) ∼ k−DL(k), as
k →∞, and let G ∈ L2(R, ϕ(x)dx) be a function with Hermite rank r. Then

Cov(G(ξ1), G(ξk+1)) ∼ J2
r (G)r!k−DrLr(k), as k →∞.

It immediately follows from the above theorem that subordinated Gaussian time series
G(ξn), n ∈ N, are long-range dependent with LRD parameter DG ··= Dr and slowly-
varying function LG(k) = J2

r (G)r!Lr(k) whenever Dr < 1.
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1. Background

Given the previous definitions, it is possible to specify model assumptions that are taken
as a basis for the results presented in the following chapters.

Model 1. Let Yn = G(ξn), where ξn, n ∈ N, is a stationary, long-range dependent
Gaussian time series with mean 0, variance 1 and LRD parameter D, and let F denote
the marginal distribution function of Yn, n ∈ N. Moreover, let Jr(G;x) denote the r-th
Hermite coefficient in the Hermite expansion of 1{G(ξi)≤x} − F (x), i.e.

Jr(G;x) := E
(
1{G(ξi)≤x}Hr(ξi)

)
.

We assume that Dr < 1, where r denotes the Hermite rank of the class of functions
1{G(ξ1)≤x} − F (x), x ∈ R, defined by

r ··= min
x∈R

r(x), r(x) ··= min {q ≥ 1 : Jq(G;x) 6= 0} .

Moreover, we assume thatG : R −→ R is a measurable function and that F is continuous.

1.2. Change-point identification

The following subsections address aspects of change-point analysis that are relevant to
this thesis. In particular, hypothesis tests that differentiate between data generated by
stationary time series and data generated by time series containing a structural change
are considered. The presented results focus on non-parametric change-point tests, i.e. on
testing procedures that do not necessarily rest upon the assumption that the considered
data stems from a parametric family of probability distributions. The emphasis is laid
on change-point tests based on Wilcoxon-type statistics. These are robust in the sense
that outliers in the data do not have a significant impact on test decisions. Moreover,
particular emphasis is given to self-normalized statistics, i.e. statistics that, due to
standardization by data-dependent quantities, can be considered as parameter-free.

1.2.1. Change-point problems

The most frequently considered change-point problems relate to the identification of
shifts in the mean value of time series; see Figure 1.2 for an illustration. Formally, we
refer to the following assumption when considering time series with a change in the
mean:

Assumption 1. We assume that a given set of observations X1, . . . , Xn is generated by
a sequence of random variables Xn, n ∈ N, where

Xn = µn + Yn

for a sequence of unknown constants µn, n ∈ N, and a mean-zero stochastic process
Yn, n ∈ N. A change-point in the mean of the time series Xn, n ∈ N, is characterized
by a sequence µn, n ∈ N, satisfying

µk =

{
µ for k = 1, . . . , k0,

µ+ hn for k = k0 + 1, . . . , n

8



1.2. Change-point identification

for some k0 = bnτc, 0 < τ < 1, denoting the change-point location, and a deterministic
sequence of shift heights hn, n ∈ N, with hn 6= 0 for all n ∈ N.

We differentiate between fixed and local changes:

• hn = h for some h 6= 0 (fixed changes);

• limn→∞ hn = 0 (local changes).

−2.5

0.0

2.5

5.0

0 100 200 300 400 500

time

Figure 1.2.: Time series of length n = 500 generated by fractional Gaussian noise with Hurst
parameter H = 0.6 and a change in the mean of height h = 1.5 in k0 = bnτc with τ = 0.25.

In fact, various different change-point problems can be reduced to identifying changes in
the mean of transformed observations ψ(X1), . . . , ψ(Xn), where ψ is a suitably chosen
function. Possible choices include:

• ψ(x) = x in order to detect changes in the mean (change in location);

• ψ(x) = x2 in order to detect changes in the variance (change in volatility);

• ψ(x) = log(x2) or ψ(x) = log(|x|) in order to detect changes in the tail parameter
α of heavy-tailed observations (change in the tail index).

Given a sequence of observations with a structural change, we are interested in identifying
the location of the change, i.e. the point in time when the change occurred. Estimators
for the change-point location are considered in Chapter 2.

An important issue in change-point analysis that precedes the estimation of change-
point locations can be described by the question whether the data-generating process
that underlies a given set of observations changes at all. Since observational data is
subject to random fluctuations, it is often difficult to discriminate between structural
changes in data-generating processes and random effects that induce ostensible changes.
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1. Background

Given observations X1, . . . , Xn and a function ψ, chosen according to the specific change-
point problem, we consider the testing problem (H,A):

H : Eψ(X1) = · · · = Eψ(Xn)

against

A : Eψ(X1) = · · · = Eψ(Xk) 6= Eψ(Xk+1) = · · · = Eψ(Xn)

for some k ∈ {1, . . . , n− 1} .

The above choice of the alternative hypothesis implies that under the assumption of a
structural change, the location of the change-point is unknown. To motivate the design
of test statistics for deciding on the change-point problem, we temporarily assume that
the change-point location is known, i.e. for a given k ∈ {1, . . . , n− 1} we consider the
testing problem (H,Ak):

H : Eψ(X1) = · · · = Eψ(Xn)

against

Ak : Eψ(X1) = · · · = Eψ(Xk) 6= Eψ(Xk+1) = · · · = Eψ(Xn).

Within this setting, the two-sample CUSUM test is a commonly used non-parametric
test. The corresponding test statistic is given by the cumulative sum of differences
between single values and the overall average. More precisely, the two-sample statistic
is defined by

Ck,n ··=
k∑
i=1

ψ(Xi)−
k

n

n∑
j=1

ψ(Xj).

Under the assumption of a change in location, that means if for some point in time k
the values of ψ(X1), . . . , ψ(Xk) tend to be above or below average, the absolute value
of Ck,n will be exceptionally large. For this reason, the two-sample CUSUM test rejects
the hypothesis for values of |Ck,n| that exceed a predefined threshold.

Another non-parametric test for the two-sample testing problem (H,Ak) is the Wilcoxon
rank test which is based on the test statistic

Wk,n ··=
k∑
i=1

n∑
j=k+1

(
1{ψ(Xi)≤ψ(Xj)} −

1

2

)
.

By definition, the value of Wk,n corresponds to the number of times one of the observa-
tions ψ(X1), . . . , ψ(Xk) exceeds one of the observations ψ(Xk+1), . . . , ψ(Xn). Therefore,
the two-sample Wilcoxon test rejects the hypothesis for exceptionally large values of
|Wk,n|.
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1.2. Change-point identification

Under the assumption that the change-point location is unknown under the alternative,
it seems natural to consider the statistics |Ck,n| and |Wk,n| for every possible change-
point location k and to decide in favor of the alternative hypothesis A if the maximum
exceeds a predefined critical value. As a result, CUSUM and Wilcoxon change-point
tests base test decisions on the values of the statistics

Cn ··= max
1≤k≤n−1

|Ck,n| and Wn ··= max
1≤k≤n−1

|Wk,n| . (1.4)

1.2.2. Wilcoxon change-point test

Since the exact distribution of the Wilcoxon statistic is unknown and, in general, hard
to obtain, test decisions are based on a comparison of the value of the test statistic with
quantiles of its limit distribution. For the determination of the asymptotic distribution
of the Wilcoxon statistic Wn, computed with respect to time series data Yn, n ∈ N, with
continuous marginal distribution function F , it is useful to note that

Wk,n =
k∑
i=1

n∑
j=k+1

(
1{Yi≤Yj} −

1

2

)
= (n− k) k

(∫
R
Fk(x)dFk+1,n(x)−

∫
R
F (x)dF (x)

)
,

where Fk and Fk+1,n denote the empirical distribution functions of the first k and last
n− k realizations of Y1, . . . , Yn, i.e.

Fk(x) ··=
1

k

k∑
i=1

1{Yi≤x},

Fk+1,n(x) ··=
1

n− k

n∑
i=k+1

1{Yi≤x}.

As shown in Dehling et al. (2013), due to the above representation, the asymptotic
distribution of the Wilcoxon statistic can be derived from the following empirical process
limit theorem:

Theorem 3 (Dehling and Taqqu (1989)). Let Yn = G(ξn), n ∈ N, be a subordinated
Gaussian sequence according to Model 1 and define the sequence dn,r, n ∈ N, by

d2
n,r
··= Var

(
n∑
i=1

Hr(ξi)

)
(1.5)

with Hr denoting the r-th order Hermite polynomial and r the Hermite rank of the class
of functions 1{G(ξ1)≤x} − F (x), x ∈ R. Then, as n→∞,

d−1
n,rbntc(Fbntc(x)− F (x))

D−→ 1

r!
Jr(x)Zr,H(t), x ∈ [−∞,∞] , t ∈ [0, 1] ,

where Zr,H is an r-th order Hermite process, H = 1− rD
2 , and

D−→ denotes convergence in
distribution with respect to the σ-field generated by the open balls in D ([−∞,∞]× [0, 1]),
equipped with the supremum norm.
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1. Background

Remark 3.

1. Since the space D ([−∞,∞]× [0, 1]), equipped with the supremum norm, is non-
separable, the standard definition of weak convergence cannot be applied in this
context. A detailed discussion of convergence in distribution in non-separable
càdlàg spaces can be found in Appendix A.

2. If r = 1, the Hermite process Zr,H equals a standard fractional Brownian motion
with Hurst parameter H = 1−D

2 . We refer to Taqqu (1979) for a general definition
of Hermite processes.

We write

en(x, t) ··= d−1
n,rbntc(Fbntc(x)− F (x)),

e(x, t) ··=
1

r!
Jr(x)Zr,H(t),

so that en, n ∈ N, can be considered as a sequence of random variables with values
in D ([−∞,∞]× [0, 1]) converging in distribution to e. Note that Jr is bounded and
continuous. Moreover, the Hermite process Zr,H is almost surely continuous; see Mikosch
(1998).
With C ([−∞,∞]× [0, 1]) denoting the set of all continuous, real-valued functions with
domain [−∞,∞] × [0, 1], it follows that e ∈ C ([−∞,∞]× [0, 1]) almost surely. Since
C ([−∞,∞]× [0, 1]) is a separable subset of D ([−∞,∞]× [0, 1]), the Dudley-Wichura
version of Skorohod’s representation theorem implies that there exists another proba-
bility space (Ω?,F?, P ?) and random variables e?n, n ∈ N, and e? defined on that space
with

e?n
D
= en and e?

D
= e such that sup

x∈[−∞,∞],t∈[0,1]
|e?n(x, t)− e?(x, t)| a.s.−→ 0

see Shorack and Wellner (1986), Theorem 2.3.4. For notational convenience, we write

sup
x∈[−∞,∞],t∈[0,1]

∣∣∣∣d−1
n,rbntc

(
Fbntc(x)− F (x)

)
− 1

r!
Jr(x)Zr,H(t)

∣∣∣∣ a.s.−→ 0, as n→∞, (1.6)

to indicate the existence of random variables e?n and e? with these properties, although,
generally speaking, it is not possible to infer that supx∈[−∞,∞],t∈[0,1] |en(x, t)− e(x, t)|
converges to 0 almost surely. Since, whenever the argument in the proofs is based on
the almost sure convergence in (1.6), we are only interested in distributional properties,
this notation is justified.
With the objective of calculating the asymptotic distribution of the Wilcoxon test statis-
tic, we consider the stochastic process

Wn,r(t) ··=
1

ndn,r
Wbntc,n =

1

ndn,r

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)
, t ∈ [0, 1]. (1.7)
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1.2. Change-point identification

Given the asymptotic distribution of this process, the limit distribution of the Wilcoxon
test statistic can be derived directly by an application of the continuous mapping theo-
rem.

To fully characterize the asymptotic behavior of the process, we differentiate the following
cases:

1. hn = o
(
dn,r
n

)
;

2. hn ∼ cdn,rn for some constant c;

3. h−1
n = o

(
n
dn,r

)
.

If there is a change-point in the mean, the behavior of the process Wn,r(t), t ∈ [0, 1], is
influenced by a deterministic component depending on the height of the level shift as
well as the location of the change-point. For a detailed description of the asymptotics,
define the function δτ : [0, 1] −→ R by

δτ (t) =

{
t(1− τ) for t ≤ τ,
(1− t)τ for t ≥ τ.

In the presence of local changes, the asymptotic behavior of the process is characterized
by the following theorem:

Theorem 4 (Dehling et al. (2017a)). Let Xn, n ∈ N, with Xn = µn + Yn denote a
time series with a local change in the mean with shift height hn, n ∈ N, as defined
in Assumption 1 and let Yn, n ∈ N, be a subordinated Gaussian sequence according to
Model 1. Then

Wn,r(t)−
n

dn,r
δτ (t)

∫
R

(F (x+ hn)− F (x)) dF (x), t ∈ [0, 1] ,

converges in distribution to

1

r!
(Zr,H(t)− tZr,H(1))

∫
R
Jr(x)dF (x), t ∈ [0, 1] ,

in D [0, 1].

Remark 4. Choosing hn ≡ 0, Theorem 4 provides the asymptotic distribution of the
Wilcoxon process under the hypothesis of stationarity.

Dependent on the convergence rate of the shift height, it is possible to determine the
asymptotic behavior of Wn,r(t), t ∈ [0, 1], under local changes. To see this, note that,
under the assumption that F has a bounded density f ,

n

dn,r
δτ (t)

∫
R

(F (x+ hn)− F (x)) dF (x), t ∈ [0, 1] ,
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1. Background

converges to 
0 if hn = o

(
dn,r
n

)
;

δτ (t)

∫
R
f2(x)dx if hn ∼ dn,r

n ;

∞ if h−1
n = o

(
n
dn,r

)
;

uniformly in t ∈ [0, 1]. As a result, Wn,r(t), t ∈ [0, 1], converges in distribution to
1
r! (Zr,H(t)− tZr,H(1))

∫
R
Jr(x)dF (x) if hn = o

(
dn,r
n

)
;

1
r! (Zr,H(t)− tZr,H(1))

∫
R
Jr(x)dF (x) + δτ (t)

∫
R
f2(x)dx if hn ∼ dn,r

n ;

∞ if h−1
n = o

(
n
dn,r

)
;

in D [0, 1]. In the latter case, i.e. when Wn,r(t), t ∈ [0, 1], diverges, a stronger normal-
ization of Wn,r(t), t ∈ [0, 1], ensures convergence to a proper deterministic function; see
Lemma 1 in Chapter 2.

1.2.3. Self-normalized change-point tests

An application of the Wilcoxon change-point test to a given data set presupposes de-
termination of the scaling factor dn,r. With r denoting the Hermite rank of the class of
functions 1{G(ξ1)≤x}−F (x), x ∈ R, we have d2

n,r ∼ crn2−rDLr(n), where cr is a constant
depending on r and D; see Dehling et al. (2013). In statistical practice, the parameters
D, r and the function L are usually unknown. While in many cases r = 1, and while
there are methods to estimate D, estimating L seems to be hardly possible. In order
to avoid a normalization depending on these unknown quantities, it seems reasonable
to replace the deterministic normalization by a data-driven one, i.e. by a normalizing
sequence that depends on the given realizations only and which is therefore referred to
as self-normalization.
The concept of self-normalization has recently been applied to several testing procedures
in change-point analysis. Originally established by Lobato (2001) in another testing
context, it has been adapted to the change-point problem in Shao and Zhang (2010)
by definition of a self-normalized Kolmogorov-Smirnov test statistic. In these papers,
short-range dependent processes are considered. An extension to possibly long-range
dependent processes was introduced by Shao, who established a self-normalized change-
point test based on the CUSUM statistic; see Shao (2011). A self-normalized version of
the Wilcoxon change-point test is considered in Betken (2016).
The definition of the self-normalized Wilcoxon statistic is best motivated with reference
to an application of the self-normalization procedure to the CUSUM statistic. Given
a stochastic process Xn, n ∈ N, the asymptotic distribution of the CUSUM statistic is
usually derived from a central limit theorem for the sequential partial sum process

1

σn

bntc∑
i=1

(Xi − EX1) , t ∈ [0, 1] ,
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1.2. Change-point identification

where σ2
n
··= VarSn with Sn ··=

∑n
i=1Xi. Under the assumption of independent, iden-

tically distributed random variables, σ2
n = nσ2 with σ2 denoting the variance of the

marginal distribution. In this case, a natural estimate for σ2
n is the empirical variance

σ̂2
n
··=

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
, where X̄n =

1

n

n∑
i=1

Xi.

For stationary time series generated by a sequence of dependent random variables
Xn, n ∈ N, the variance of partial sums cannot be derived from the variance of the
marginal distribution. In fact, we have

lim
n→∞

1

n
σ2
n =

∞∑
j=−∞

γ(j),

so that the normalization of the partial sum process depends on the covariance structure
of the considered time series. For this reason, the empirical variance σ̂n can no longer
be considered as a suitable normalization. Instead, we consider the variance of Sk,
k = 1, . . . , n, as an estimate for σ2

n. Under the assumption of stationary time series
data, the empirical variance of the partial sums corresponds to

σ̂2
n
··=

1

n

n∑
k=1

(Sk − ESk)
2 =

1

n

n∑
k=1

(
k∑
i=1

Xi − kEX1

)2

.

By replacing the expected value of X1 in the previous formula with its natural estimate
X̄n, a parameter-free normalizing sequence for the partial sum process is defined by

V 2
n
··=

1

n

n∑
k=1

(
Sk − kX̄n

)2
=

1

n

n∑
k=1

(
k∑
i=1

(
Xi − X̄n

))2

.

Remark 5. Given a sequence of dependent random variables Xn, n ∈ N, a commonly
used estimator for the long-run variance

∑∞
j=−∞ γ(j) is the lag-window estimate

n−1∑
j=−(n−1)

K

(
j

bn

)
γ̂n(j), γ̂n(j) ··=

1

n

n−|j|∑
i=1

(
Xi − X̄n

) (
Xi+|j| − X̄n

)
,

where K denotes a kernel function and bn is a bandwidth parameter. Choosing K as
the Bartlett kernel, i.e.

K(x) ··= (1− |x|) 1{|x|≤1},

and bn = n, it follows that

n−1∑
j=−(n−1)

K

(
j

bn

)
γ̂n(j) =

2

n
V 2
n .

Therefore, self-normalization can be regarded as a special case of kernel-based estimation
for the long-run variance; see Kiefer and Vogelsang (2002) and Shao (2010).
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1. Background

Taking the possibility of a structural change at time k into consideration, a normalization
for the two-sample CUSUM statistic is obtained by combining the values of Vn computed
with respect to the separate samples X1, . . . , Xk and Xk+1, . . . , Xn. Accordingly, define

V 2
k,n
··=

1

n

k∑
t=1

S2
t (1, k) +

1

n

n∑
t=k+1

S2
t (k + 1, n)

with

St(j, k) ··=
t∑

h=j

(
Xh − X̄j,k

)
, X̄j,k ··=

1

k − j + 1

k∑
t=j

Xt,

as normalizing sequence and define the self-normalized CUSUM statistic by

SCn(τ1, τ2) ··= max
bnτ1c≤k≤bnτ2c

|SCk,n| , SCk,n ··=
Ck,n
Vk,n

,

where 0 < τ1 < τ2 < 1. The corresponding change-point test for the test problem (H,A),
considered in Section 1.2.1, rejects the hypothesis for large values of SCn(τ1, τ2).
Note that the proportion of the two-sample statistics that are included in the calculation
of SCn(τ1, τ2) is restricted by the choice of τ1 and τ2. Structural breaks at the beginning
or the end of a sample are hard to detect since there is a lack of information concerning
the behavior of the time series before or after a potential break point. Hence, the interval
[τ1, τ2] must be small enough for the critical values not to get too large on the one hand,
yet large enough to include potential break points on the other hand. A common choice
is τ1 = 1− τ2 = 0.15; see Andrews (1993).
Replacing the original observations X1, . . . , Xn in the CUSUM test statistic by their
ranks R1, . . . , Rn results in the following identity:∣∣∣∣∣

k∑
i=1

Ri −
k

n

n∑
i=1

Ri

∣∣∣∣∣ =

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ , Ri ··= rank(Xi) =
n∑
j=1

1{Xj≤Xi},

i.e. the Wilcoxon statistic arises from an application of the CUSUM statistic to the ranks.
Therefore, it seems natural to choose a data-driven normalization for the Wilcoxon
statistic by evaluation of the self-normalized CUSUM statistic in R1, . . . , Rn. For this
reason, we define the self-normalized two-sample Wilcoxon statistic by

SWk,n ··=
∑k

i=1Ri −
k
n

∑n
i=1Ri{

1
n

∑k
t=1 S

2
t (1, k) + 1

n

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
, (1.8)

where

St(j, k) ··=
t∑

h=j

(
Rh − R̄j,k

)
with R̄j,k ··=

1

k − j + 1

k∑
t=j

Rt.
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1.2. Change-point identification

The self-normalized Wilcoxon change-point test for the test problem (H,A), considered
in Section 1.2.1, rejects the hypothesis for large values of

SWn(τ1, τ2) ··= max
bnτ1c≤k≤bnτ2c

|SWk,n| , (1.9)

where 0 < τ1 < τ2 < 1.
Note that

SWn(t) ··= SWbntc,n = GWn(t) +OP (1), τ1 ≤ t ≤ τ2, (1.10)

where for f ∈ D [0, 1] the function Gf ∈ D [0, 1] is defined by

Gf (t) ··=
f(t)

Vf (t)
, Vf (t) ··=

{∫ t

0

(
f(s)− s

t
f(t)

)2
ds+

∫ 1

t

(
f(s)− 1− s

1− t
f(t)

)2

ds

} 1
2

,

so that the limit of the self-normalized process SWn(t), τ1 ≤ t ≤ τ2, can be derived
from the asymptotic behavior of the Wilcoxon process Wn(t), t ∈ [0, 1], described in
Section 1.2.2. In particular, it follows that under local changes the process SWn(t),
τ1 ≤ t ≤ τ2, converges to

• GWr,H
(t), τ1 ≤ t ≤ τ2, with

Wr,H(t) ··=
1

r!
(Zr,H(t)− tZr,H(1))

∫
R
Jr(x)dF (x)

if hn = o
(
dn,r
n

)
;

• GWr,H,τ
(t), τ1 ≤ t ≤ τ2, with

Wr,H,τ (t) ··=
1

r!
(Zr,H(t)− tZr,H(1))

∫
R
Jr(x)dF (x) + δτ (t)

∫
f2(x)dx

if hn ∼ dn,r
n .

Remark 6. For r = 1, the asymptotic distribution of the self-normalized Wilcoxon statis-
tic is derived in Betken (2013), while formal proofs for corresponding limit theorems
allowing for r > 1 can only be found in Betken (2016). Beside generalizations of the
results established in Betken (2013), Betken (2016) provides a proof for the consistency
of the self-normalized Wilcoxon change-point test under the assumption of changes in
the mean with fixed change-point height.
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2. Wilcoxon-type change-point estimators

Recall that, given a sample of observationsX1, . . . , Xn, the two-sample Wilcoxon statistic
is defined by

Wk,n =

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)

for k ∈ {1, . . . , n− 1}. Since the value of Wk,n is determined by the number of times one
of the observations Xk+1, . . . , Xn exceeds one of the observations X1, . . . , Xk, we expect
the absolute value of Wk0,n to exceed the absolute value of Wl,n for any l 6= k0 if k0

denotes the location of a change-point in the mean. This observation is illustrated by
Figure 2.1 which depicts the values of the two-sample statistic Wk,n as a function of k
for a sample of long-range dependent observations with a change-point located in k0.

k0 k̂W

potential change−point location k
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Figure 2.1.: Values of the two-sample Wilcoxon statistic Wk,n for a time series of length n = 200
generated by fractional Gaussian noise with Hurst parameter H = 0.9 and a change in the mean
of height h = 1 in k0 = bnτc with τ = 0.25.

Apparently, the value of the two-sample statistic increase when k approaches the change-
point location k0. Therefore, it seems natural to define an estimator of k0 by

k̂W = k̂W (n) ··= min

{
k : |Wk,n| = max

1≤i≤n−1
|Wi,n|

}
. (2.1)
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2. Wilcoxon-type change-point estimators

In the same way, the change-point estimator

k̂SW = k̂SW (n) ··= min

{
k : |SWk,n| = max

bnτ1c≤i≤bnτ2c
|SWi,n|

}
arises from the self-normalized Wilcoxon two-sample statistic SWk,n defined by (1.8) in
Section 1.2.3.
In order to characterize the asymptotic behavior of the change-point estimators k̂W and
k̂SW , we impose the following assumption:

Assumption 2. Let Xn, n ∈ N, denote a time series with a change in the mean in
k0 = bnτc with shift height hn, n ∈ N. More precisely, assume that

Xk =

{
Yk for k ≤ k0

Yk + hn for k > k0

for a deterministic sequence of unknown constants hn, n ∈ N, and a mean-zero subor-
dinated Gaussian sequence Yn = G(ξn), n ∈ N, according to Model 1. In particular,
assume that

γ(k) ··= Cov(ξ1, ξk+1) ∼ k−DLγ(k), as k →∞,

for some D ∈ (0, 1) and some slowly varying function Lγ . With r denoting the Hermite
rank of the class of functions 1{G(ξ1)≤x} − F (x), x ∈ R, define

gD,r(t) ··= t
rD
2 L
− r

2
γ (t).

Remark 7. The function gD,r relates to the normalizing sequence dn,r, defined by (1.5)
in Section 1.2.2, as follows:

dn,r ∼
n

gD,r(n)
cr, as n→∞, where cr ··=

√
2r!

(1−Dr)(2−Dr)
.

Since gD,r is a regularly varying function, there exists a function g−D,r such that(
gD,r ◦ g−D,r

)
(t) ∼

(
g−D,r ◦ gD,r

)
(t) ∼ t, as t→∞;

see Theorem 1.5.12 in Bingham et al. (1987). We refer to g−D,r as the asymptotic inverse
of gD,r.

The majority of articles that address the problem of estimating the change-point location
refers to a family of estimators that can be derived from the two-sample CUSUM test
statistics, defined by

Ck,n(β) ··=
(
k(n− k)

n

)1−β
(

1

k

k∑
i=1

Xi −
1

n− k

n∑
i=k+1

Xi

)
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for k ∈ {1, . . . , n− 1} and a parameter 0 ≤ β < 1. For β = 0, the corresponding statistic
has already been considered in Section 1.2.1. Based on the values of Ck,n(β), the location
of the change-point is approximated by

k̂C,β = k̂C,β(n) ··= min

{
k : |Ck,n(β)| = max

1≤i≤n−1
|Ci,n(β)|

}
. (2.2)

Under non-restrictive constraints on the dependence structure of the data-generating
process (including long-range dependent time series), Kokoszka and Leipus (1998) prove
consisteny of k̂C,β for both, fixed and certain local changes. For a constant jump height,
these authors establish convergence rates that depend on the intensity of dependence
in the data-generating random variables. Under the additional assumption that the
considered data is generated by Gaussian LRD processes, Horváth and Kokoszka (1997)
derive the asymptotic distribution of the estimator k̂C,β.

Bai (1994) establishes an estimator for the location of a shift in the mean by the method
of least squares. He proves consistency, determines the rate of convergence of the change-
point estimator and derives its asymptotic distribution. These results are shown to hold
for weakly dependent observations that satisfy a linear model and cover, for example,
ARMA(p, q)-processes. Moreover, Bai extended these results to the estimation of the
location of a parameter change in multiple regression models that also allow for lagged
dependent variables and trending regressors; see Bai (1997). A generalization of these re-
sults to possibly long-range dependent data-generating processes (including fractionally
integrated processes) is given in Kuan and Hsu (1998) and Lavielle and Moulines (2000).
Under the assumption of independent data, Darkhovskh (1976) establishes an estimator
for the location of a change in distribution based on the two-sample Mann-Whitney test
statistic. He obtains a convergence rate that has order 1

n , where n is the number of
observations. Allowing for strong dependence in the data, Giraitis et al. (1996) consider
Kolmogorov-Smirnov and Cramér-von-Mises-type test statistics for the detection of a
change in the marginal distribution of the random variables that underlie the observed
data. Consistency of the corresponding change-point estimators is proved under the
assumption that the jump height approaches 0.

In the following sections, we prove consistency of the estimators k̂W and k̂SW , establish
an optimal convergence rate for k̂W and finally derive its asymptotic distribution. For
k̂SW , neither the asymptotic distribution nor an optimal convergence rate is obtained.
Although self-normalized statistics have advantages over non-self normalized statistics
when testing for structural changes in time series, these benefits do not necessarily trans-
fer to the corresponding change-point estimators. A change-point estimator based on
a self-normalized CUSUM statistic has been applied in Shao (2011) to real data sets.
Eventhough Shao assumes validity of using the estimator, the article does not cover a
formal proof of consistency. Moreover, it has been noted by Shao and Zhang (2010)
that, even under the assumption of short-range dependence, it seems difficult to derive
the asymptotic distribution of the estimate.
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2. Wilcoxon-type change-point estimators

2.1. Consistency

It has been noted in Section 1.2.2 that for local changes with shift height hn, n ∈ N, both
Wilcoxon test statistics converge to the limits that are obtained under the assumption
of stationarity if hn decreases relatively fast, while they tend to ∞ if hn converges to
0 sufficiently slow. For this reason, we cannot expect the change-point estimators k̂W
and k̂SW to approach the true change-point location in the former case, but we may
conclude that consistency holds in the latter case. The following proposition verifies this
conjecture for subordinated Gaussian time series:

Proposition 1 (Betken (2017)). Let Xn, n ∈ N, denote a time series with a change
in the mean in k0 = bnτc, 0 < τ < 1, with shift height hn. Suppose that Xn, n ∈ N,
satisfies Assumption 2. Then, as n→∞,

τ̂W ··=
k̂W
n

P−→ τ, τ̂SW ··=
k̂SW
n

P−→ τ

if either

• hn = h with h 6= 0

or

• limn→∞ hn = 0, h−1
n = o(gD,r(n)) with D and r as in Assumption 2, and F has a

bounded density f .

In both cases, the test statistics

Wn ··= max
1≤k≤n−1

|Wk,n| and SWn(τ1, τ2) ··= max
bnτ1c≤k≤bnτ2c

|SWk,n|

tend to ∞ in probability, implying consistency of the corresponding change-point tests.

Given the assumptions of Proposition 1, the results of Kokoszka and Leipus (1998) im-
ply consistency of the CUSUM-based estimator k̂C,0 under fixed changes and under local

changes with shift height hn satisfying h−1
n = o(nrD/2). Hence, k̂W and k̂C,0 are asymp-

totically unbiased estimators under essentially the same constraints on the convergence
rate of the change-point height.

The proof of Proposition 1 is based on an application of the following lemma:

Lemma 1 (Betken (2017)). Let Xn, n ∈ N, denote a time series with a change in the
mean in k0 = bnτc, 0 < τ < 1, with shift height hn. Suppose that Xn, n ∈ N, satisfies
Assumption 2. If h−1

n = o(gD,r(n)) with D and r as in Assumption 2,

1

n2hn

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)
P−→ Cδτ (t), 0 ≤ t ≤ 1,
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2.1. Consistency

where

C ··=


1
h

∫
R

(F (x+ h)− F (x)) dF (x) if hn = h, h 6= 0,∫
R
f2(x)dx if lim

n→∞
hn = 0 and F has a bounded density f .

To simplify notation, we write
∫

instead of
∫
R for the proof of Lemma1 and all other

proofs in this chapter.

Proof. First, consider the case hn = h with h 6= 0. For bntc ≤ bnτc, we have

1

n2

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)

=
1

n2

bntc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+h} −

1

2

)
+

1

n2

bntc∑
i=1

bnτc∑
j=bntc+1

(
1{Yi≤Yj} −

1

2

)
.

By Lemma 1 in Betken (2016), the first summand on the right-hand side of the equation
converges in probability to t(1 − τ)

∫
(F (x+ h)− F (x)) dF (x), uniformly in t ∈ [0, τ ].

The second summand vanishes as n tends to ∞.
Whenever bntc > bnτc,

1

n2

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)

=
1

n2

bnτc∑
i=1

n∑
j=bntc+1

(
1{Yi≤Yj+h} −

1

2

)
+

1

n2

bntc∑
i=bnτc+1

n∑
j=bntc+1

(
1{Yi≤Yj} −

1

2

)
.

In this case, the first summand on the right-hand side of the equation converges in
probability to (1−t)τ

∫
(F (x+ h)− F (x)) dF (x), uniformly in t ∈ [τ, 1], while the second

summand converges to 0 in probability. All in all, it follows that

1

n2

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (t)

∫
(F (x+ h)− F (x)) dF (x)

uniformly in t ∈ [0, 1].
If limn→∞ hn = 0, the process

Wn,r(t)−
n

dn,r
δτ (t)

∫
(F (x+ hn)− F (x)) dF (x), 0 ≤ t ≤ 1,

converges in distribution to

1

r!
(Zr,H(t)− tZr,H(1))

∫
Jr(x)dF (x), 0 ≤ t ≤ 1,
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2. Wilcoxon-type change-point estimators

due to Theorem 4 in Chapter 1. Since h−1
n = o(gD,r(n)) by assumption, it follows that

1

n2hn

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (t)

∫
f2(x)dx, 0 ≤ t ≤ 1,

as n→∞.

Proof of Proposition 1. According to Lemma 1, it holds that, under the assumptions of
Proposition 1,

1

n2hn

bntc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)
P−→ Cδτ (t), 0 ≤ t ≤ 1, (2.3)

as n→∞, where δτ : [0, 1] −→ R is defined by

δτ (t) ··=

{
t(1− τ) for t ≤ τ
(1− t)τ for t ≥ τ

and C denotes some non-zero constant. Since h−1
n = o(gD,r(n)) by assumption, it directly

follows that 1
ndn,r

max1≤k≤n−1 |Wk,n| tends to ∞ in probability.
To show consistency of the change-point estimator τ̂W , define

Zn,ε ··=
1

n2hn
max

1≤k≤bnτc
|Wk,n| −

1

n2hn
max

1≤k≤bn(τ−ε)c
|Wk,n|

for ε > 0. Due to (2.3), Zn,ε converges in probability to C(1− τ)ε. It follows that

lim
n→∞

P (k̂W < bn(τ − ε)c) = lim
n→∞

P (Zn,ε = 0) = 0.

An analogous argument yields limn→∞ P (k̂W > bn(τ + ε)c) = 0.
All in all, it follows that for any ε > 0

lim
n→∞

P

(∣∣∣∣∣ k̂Wn − τ
∣∣∣∣∣ > ε

)
= 0.

In order to show that τ̂SW is a consistent estimator, we consider the process SWn(t),
0 ≤ t ≤ 1, defined by (1.10). According to Betken (2016), the limit of the self-normalized
Wilcoxon test statistic can be obtained by an application of the continuous mapping
theorem to the (suitably standardized) process Wn(t), 0 ≤ t ≤ 1. Therefore, it follows
by the corresponding argument in Betken (2016) that SWn(t) converges in probability
to {∫ t

0

(
δτ (s)− s

t
δτ (t)

)2
ds+

∫ 1

t

(
δτ (s)− 1− s

1− t
δτ (t)

)2

ds

}− 1
2

|δτ (t)|
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2.1. Consistency

uniformly in t ∈ [0, 1]. As a result, elementary calculations yield

max
bnτ1c≤k≤k0−nε

SWk,n
P−→ sup

t∈[τ1,τ−ε]

√
3t
√

1− t
(τ − t)

,

max
k0+nε≤k≤bnτ2c

SWk,n
P−→ sup

t∈[τ+ε,τ2]

√
3
√
t(1− t)

(τ − t)
.

As SWk0,n tends to ∞ in probability due to Theorem 2 in Betken (2016), it is possible

to conclude that P (k̂SW > k0 + nε) and P (k̂SW < k0 − nε) converge to 0 in probability.
This proves consistency of the change-point estimator τ̂SW .

The boxplots in Figure 2.2 illustrate the consistency of the change-point estimators τ̂W
and τ̂SW for two different values of H: the median of the estimated values approaches
the true value of the change-point location while the interquartile range and the length
of boxplot whiskers diminish as the sample size increases. Obviously, a higher correlation
within a sample of observations, characterized by the larger value of H, goes along with
a higher variability of the estimated values. Moreover, it can be observed that the
change-point estimator τ̂SW yields slightly better results than the estimator τ̂W .
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Figure 2.2.: Boxplots of the estimators τ̂W and τ̂SW on the basis of 5000 simulated fractional
Gaussian noise time series with Hurst parameter H and a change in the mean of height h = 1
after a proportion τ = 0.25.
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2. Wilcoxon-type change-point estimators

2.2. Convergence rate

Having shown the consistency of the change-point estimator τ̂W , we are interested in
deriving its rate of convergence. Figure 2.2 suggests that the rate depends on the value
of the parameter H, i.e. on the intensity of dependence in the data. The following
theorem confirms that under local changes the rate of convergence is determined by the
height of the level shift as well as the covariance structure of the data-generating process.
In particular, it follows that the smaller the correlation, i.e. the higher the value of D,
the faster the convergence of the estimator.

Theorem 5 (Betken (2017)). Let Xn, n ∈ N, denote a time series with a change in the
mean in k0 = bnτc, 0 < τ < 1, with shift height hn. Suppose that Xn, n ∈ N, satisfies
Assumption 2. Then, as n→∞,∣∣∣k̂W − k0

∣∣∣ = OP
(
g−D,r(h

−1
n )
)

if either

• hn = h with h 6= 0

or

• limn→∞ hn = 0, h−1
n = o(gD,r(n)) with D and r as in Assumption 2, and F has a

bounded density f .

Remark 8. For h−1
n = o(gD,r(n)) and mn = mn,D,r ··= g−D,r(h

−1
n ),

1. mn −→∞, as n −→∞,

2. mn
n −→ 0, as n −→∞,

3. mn ∼ dmn,r
hn

, as n −→∞.

The first and second relation show that the convergence rate that has been achieved
in proving consistency of the estimator is improved by Theorem 5. The third relation
confirms that the rate of convergence depends on the intensity of dependence in the data
and the change-point height.

Under the additional assumption that the considered data is generated by Gaussian pro-
cesses, Horváth and Kokoszka (1997) derive the same convergence rate for the CUSUM-
based change-point estimator k̂C,0. It is shown by Ben Hariz and Wylie (2005) that
under local changes this convergence rate, derived under the assumption of Gaussianity,
can also be established under general, non-restrictive conditions on the data-generating
sequences. In addition, these authors note that the convergence rate, obtained for the
CUSUM-based change-point estimator under long-range dependence, is the same as in
the case of independent or short-range dependent data, and, in particular does not de-
pend on the value of the LRD parameter D if the change-point height is fixed. This
result corresponds to the convergence rate derived by Lavielle and Moulines (2000) for
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2.2. Convergence rate

the least-squares estimate of the change-point location and is confirmed by Theorem 5
since, under fixed changes, |k̂W − k0| = OP (1). An explanation for this phenomenon
might be the occurrence of two opposing effects associated with the behavior of long-
range dependent processes (see Ben Hariz and Wylie (2005)): long-range dependence
usually leads to a higher variance of observations, i.e. the vertical fluctuations become
bigger, which is, in the considered case, reflected by the need of a stronger standard-
ization and a slower convergence of the statistic Wk,n. For this reason, one may expect
estimation to be more difficult if the correlation between observations is high. At the
same time, the behavior of the increments of Wk,n, k ∈ {1, . . . , n − 1}, becomes more
regular when the correlation increases, meaning that the horizontal fluctuations become
smaller, therefore making estimation seem easier.

Since fractional Brownian motion processes with parameter H ∈
(

1
1 , 1
)

typically char-
acterize the asymptotic distribution in limit theorems for long-range dependent time
series, these effects are also reflected by properties of the fractional Brownian motion
BH : as VarBH(t) = |t|2H , increasing values of the Hurst parameter H (corresponding to
a higher intensity of dependence) go along with a higher variance. Moreover, the trajec-
tories of a fractional Brownian motion are Hölder continuous of any order strictly smaller
than H, so that the sample paths become smoother when H increases. The influence of
vertical fluctuations is more pronounced for relatively small values of the change-point
height hn, while for a fixed height the effect of a higher variability is canceled out by the
effects of a more regular local path behavior.

This observation is illustrated by simulations of the mean absolute error, defined by

MAE ··=
1

m

m∑
i=1

∣∣∣k̂W,i − k0

∣∣∣
for estimates k̂W,i, i = 1, . . . ,m, computed on the basis of m = 5000 different sequences
of fractional Gaussian noise time series; see Figure 2.3.
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Figure 2.3.: Mean absolute error of k̂W computed on the basis of 5000 sequences of fractional
Gaussian noise time series for different values of H and a shift in the mean of height h = 0.5
after a proportion τ = 0.5.
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2. Wilcoxon-type change-point estimators

Since k̂W − k0 = OP (1) due to Theorem 5, we expect the mean absolute error to ap-
proach a constant as n→∞. This can be clearly seen in Figure 2.3 for H ∈ {0.7, 0.8}.
For strongly correlated data, characterized by H = 0.9, the convergence seems to be
rather slow, though.

The proof of Theorem 5 requires the following result:

Lemma 2 (Betken (2017)). Let Yn = G(ξn), n ∈ N, be a mean-zero subordinated
Gaussian sequence according to Model 1 and let hn, n ∈ N, be a sequence of real numbers
with limn→∞ hn = h.

1. As n→∞, the process

1

ndn,r

bntc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+hn} −

∫
R
F (x+ hn)dF (x)

)

converges in distribution to

(1− τ)
1

r!
Zr,H(t)

∫
R
Jr(x+ h)dF (x)− t 1

r!
(Zr,H(1)− Zr,H(τ))

∫
R
Jr(x)dF (x+ h)

uniformly in t ∈ [0, τ ].

2. As n→∞, the process

1

ndn,r

bnτc∑
i=1

n∑
j=bntc+1

(
1{Yi≤Yj+hn} −

∫
R
F (x+ hn)dF (x)

)

converges in distribution to

(1− t) 1

r!
Zr,H(τ)

∫
R
Jr(x+ h)dF (x)− τ 1

r!
(Zr,H(1)− Zr,H(t))

∫
R
Jr(x)dF (x+ h)

uniformly in t ∈ [τ, 1].

Proof. A proof is given for the first assertion only, as the second assertion can be derived
by an analogous argument. The line of argument follows the proof of Theorem 1.1 in
Dehling et al. (2013).
Let Fk and Fk+1,n denote the empirical distribution functions of the first k and last n−k
realizations of Y1, . . . , Yn, i.e.

Fk(x) ··=
1

k

k∑
i=1

1{Yi≤x},

Fk+1,n(x) ··=
1

n− k

n∑
i=k+1

1{Yi≤x}.
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2.2. Convergence rate

Given this notation, it follows that

bntc∑
i=1

n∑
j=bnτc+1

1{Yi≤Yj+hn} = (n− bnτc) bntc
∫
Fbntc(x+ hn)dFbnτc+1,n(x)

for t ≤ τ . This yields the following decomposition:

1

ndn,r

bntc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
(2.4)

=
n− bnτc

n
d−1
n,rbntc

∫ (
Fbntc(x+ hn)− F (x+ hn)

)
dFbnτc+1,n(x)

+
n− bnτc

n
d−1
n,rbntc

∫
F (x+ hn)d

(
Fbnτc+1,n − F

)
(x).

For the first term of the sum on the right-hand side, we have

sup
t∈[0,τ ]

∣∣∣d−1
n,rbntc

∫ (
Fbntc(x+ hn)− F (x+ hn)

)
dFbnτc+1,n(x)

− 1

r!
Zr,H(t)

∫
Jr(x+ h)dF (x)

∣∣∣
≤ sup
t∈[0,τ ]

∣∣∣∫ d−1
n,rbntc

(
Fbntc(x+ hn)− F (x+ hn)

)
− 1

r!
Zr,H(t)Jr(x+ hn)dFbnτc+1,n(x)

∣∣∣
+

1

r!
sup
t∈[0,τ ]

|Zr,H(t)|
∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h)) dFbnτc+1,n(x)

∣∣∣∣
+

1

r!
sup
t∈[0,τ ]

|Zr,H(t)|
∣∣∣∣∫ Jr(x+ h)d

(
Fbnτc+1,n − F

)
(x)

∣∣∣∣ .
In the following, it is shown that each of the summands on the right-hand side of the
above inequality converges to 0.
The first summand converges to 0 because of the empirical process non-central limit
theorem in Dehling and Taqqu (1989). In order to show that the second and third
summand vanish as well, note that supt∈[0,τ ] |Zr,H(t)| < ∞ almost surely, since the
sample paths of Hermite processes are almost surely continuous; see Mikosch (1998).
Furthermore, we have∫

Jr(x+ h)dFbnτc+1,n(x) = −
∫ ∫

1{x+h≤G(y)}Hr(y)ϕ(y)dydFbnτc+1,n(x)

= −
∫ ∫

1{x≤G(y)−h}dFbnτc+1,n(x)Hr(y)ϕ(y)dy

= −
∫
Fbnτc+1,n(G(y)− h)Hr(y)ϕ(y)dy.
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2. Wilcoxon-type change-point estimators

Analogously, it follows that∫
Jr(x+ hn)dFbnτc+1,n(x) = −

∫
Fbnτc+1,n(G(y)− hn)Hr(y)ϕ(y)dy.

Therefore, we may conclude that∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h)) dFbnτc+1,n(x)

∣∣∣∣
≤ 2 sup

x∈R

∣∣Fbnτc+1,n(x)− F (x)
∣∣ ∫ |Hr(y)|ϕ(y)dy

+

∫
|F (G(y)− hn)− F (G(y)− h)| |Hr(y)|ϕ(y)dy.

Since
∫
|Hr(y)|ϕ(y)dy <∞, the first expression on the right-hand side converges to 0 by

the Glivenko-Cantelli theorem. The second expression converges to 0 due to continuity
of F and the dominated convergence theorem.
To show convergence of the third summand, note that∣∣∣∣∫ Jr(x+ h)d

(
Fbnτc+1,n(x)− F (x)

)∣∣∣∣
=

1

n− bnτc

∣∣∣∣∣∣
n∑

i=bnτc+1

(Jr(Yi + h)− E Jr(Yi + h))

∣∣∣∣∣∣
≤ n

n− bnτc
1

n

∣∣∣∣∣
n∑
i=1

(Jr(Yi + h)− E Jr(Yi + h))

∣∣∣∣∣
+

bnτc
n− bnτc

1

bnτc

∣∣∣∣∣∣
bnτc∑
i=1

(Jr(Yi + h)− E Jr(Yi + h))

∣∣∣∣∣∣ .
For both summands on the right-hand side of the above inequality, the ergodic theorem
implies almost sure convergence to 0.
For the second summand on the right-hand side of (2.4), we have

n− bnτc
n

d−1
n,rbntc

∫
F (x+ hn)d

(
Fbnτc+1,n − F

)
(x)

= −bntc
n

d−1
n,r(n− bnτc)

∫ (
Fbnτc+1,n(x)− F (x)

)
dF (x+ hn).

Since bntcn −→ t uniformly in t, consider∣∣∣∣∣d−1
n,r(n− bnτc)

∫ (
Fbnτc+1,n(x)− F (x)

)
dF (x+ hn)

− 1

r!
(Zr,H(1)− Zr,H(τ))

∫
Jr(x)dF (x+ hn)

∣∣∣∣∣.
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2.2. Convergence rate

By an application of the triangular inequality, it follows that this expression is bounded
from above by ∣∣∣∣∫ d−1

n,rn (Fn(x)− F (x))− 1

r!
Zr,H(1)Jr(x)dF (x+ h)

∣∣∣∣
+

∣∣∣∣∫ d−1
n,rbnτc

(
Fbnτc(x)− F (x)

)
− 1

r!
Zr,H(τ)Jr(x)dF (x+ hn)

∣∣∣∣
+

1

r!
|Zr,H(1)− Zr,H(τ)|

∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ .
The first and second of the above summands converge to 0 because of the empirical
process non-central limit theorem. For the third summand, we have∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ =

∣∣∣∣∫ (Jr(x− hn)− Jr(x− h)) dF (x)

∣∣∣∣ .
As shown before in this proof, convergence to 0 follows by the Glivenko-Cantelli theorem
and the dominated convergence theorem.

Proof of Theorem 5. For the proof of Theorem 5, we write k̂ instead of k̂W and Wn(k)
instead of Wk,n. We assume that h > 0 under fixed changes and that for some n0 ∈ N
hn > 0 for all n ≥ n0 under local changes. Furthermore, we subsume fixed and local
changes under the general assumption that limn→∞ hn = h (under fixed changes hn = h
for all n ∈ N, under local changes h = 0).

In order to prove Theorem 5, we need to show that for all ε > 0 there exists an nε ∈ N
and an M > 0 such that

P
(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
< ε

for all n ≥ nε.

For M ∈ R+, define Dn,M ··= {k ∈ {1, . . . , n− 1} | |k − k0| > Mmn}, so that

P
(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
≤ P

(
sup

k∈Dn,M
|Wn(k)| ≥ |Wn(k0)|

)
≤ P1 + P2

with

P1 ··= P

(
sup

k∈Dn,M
(Wn(k)−Wn(k0)) ≥ 0

)
,

P2 ··= P

(
sup

k∈Dn,M
(−Wn(k)−Wn(k0)) ≥ 0

)
.
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Note that Dn,M = Dn,M,1 ∪Dn,M,2, where

Dn,M,1 ··= {k ∈ {1, . . . , n− 1} | k0 − k > Mmn} ,
Dn,M,2 ··= {k ∈ {1, . . . , n− 1} | k − k0 > Mmn} .

Therefore, P2 ≤ P2,1 + P2,2, where

P2,1 ··= P

(
sup

k∈Dn,M,1
(−Wn(k)−Wn(k0)) ≥ 0

)
,

P2,2 ··= P

(
sup

k∈Dn,M,2
(−Wn(k)−Wn(k0)) ≥ 0

)
.

In the following, we will consider the first summand only, since for the second summand
analogous implications result from the same argument.
We define

Ŵn(k) ··= δn(k)∆(hn),

where

δn(k) ··=

{
k(n− k0) for k ≤ k0

k0(n− k) for k > k0

and ∆(hn) ··=
∫

(F (x+ hn)− F (x)) dF (x).

Note that

P2,1 ≤ P

(
sup

k∈Dn,M,1

(
Ŵn(k)−Wn(k) + Ŵn(k0)−Wn(k0)

)
≥ Ŵn(k0)

)

≤ P

(
2 sup
t∈[0,τ ]

∣∣∣Wn(bntc)− Ŵn(bntc)
∣∣∣ ≥ k0(n− k0)∆(hn)

)
.

We have

sup
t∈[0,τ ]

∣∣∣Wn(bntc)− Ŵn(bntc)
∣∣∣

= sup
t∈[0,τ ]

∣∣∣∣∣
bntc∑
i=1

n∑
j=bnτc+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)

+

bntc∑
i=1

bnτc∑
j=bntc+1

(
1{Yi≤Yj} −

1

2

)∣∣∣∣∣.
Due to Lemma 2 and Theorem 1.1 in Dehling et al. (2013),

2 sup
t∈[0,τ ]

∣∣∣Wn(bntc)− Ŵn(bntc)
∣∣∣ = OP (ndn,r) ,
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2.2. Convergence rate

i.e. for all ε > 0 there exists a K > 0 such that

P

(
2 sup
t∈[0,τ ]

∣∣∣Wn(bntc)− Ŵn(bntc)
∣∣∣ ≥ Kndn,r) < ε

for all n. Furthermore, k0(n − k0)∆(hn) ∼ Cn2hn for some constant C. Note that
Kndn,r ≤ k0(n− k0)∆(hn) if and only if

K ≤ k0

n

n− k0

n

∆(hn)

hn

nhn
dn,r

.

The right-hand side of the inequality diverges if hn = h is fixed or if h−1
n = o(gD,r(n)).

Therefore, it is possible to find an nε ∈ N such that

P2,1 ≤ P

(
2 sup
t∈[0,τ ]

∣∣∣Wn(bntc)− Ŵn(bntc)
∣∣∣ ≥ Kndn,r) < ε

for all n ≥ nε.
We will now turn to the summand P1. Note that P1 ≤ P1,1 + P1,2, where

P1,1 ··= P

(
max

k∈Dn,M,1
Wn(k)−Wn(k0) ≥ 0

)
,

P1,2 ··= P

(
max

k∈Dn,M,2
Wn(k)−Wn(k0) ≥ 0

)
.

In the following, we will consider the first summand only, since for the second summand
analogous implications result from the same argument. We define a random sequence
κn, n ∈ N, by choosing κn ∈ Dn,M,1 such that

max
k∈Dn,M,1

(
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0)

)
= Wn(κn)− Ŵn(κn) + Ŵn(k0)−Wn(k0).

Note that for any sequence kn, n ∈ N, with kn ∈ Dn,M,1

Ŵn(k0)− Ŵn(kn) = (n− k0)ln∆(hn),

where ln ··= k0 − kn. Since κn ∈ Dn,M,1 and since mn tends to ∞, we have

lnd
−1
ln,r

= l1−Hn L
− r

2
γ (ln) ≥ (Mmn)1−HL

− r
2

γ (Mmn)

for n sufficiently large. Thus, it follows that

1

ndln,r

(
Ŵn(k0)− Ŵn(κn)

)
≥ n− k0

n

mn

dmn,r
M1−H L

r
2
γ (mn)

L
r
2
γ (Mmn)

∆(hn).
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2. Wilcoxon-type change-point estimators

If hn is fixed, the right-hand side of the inequality diverges. Under local changes, the
right-hand side asymptotically behaves like

(1− τ)M1−H
∫
f2(x)dx,

since, in this case, hn ∼ dmn,r
mn

due to the assumptions of Theorem 5. In the latter case,
for any δ > 0, it is possible to find an nδ ∈ N such that

1

ndln,r

(
Ŵn(k0)− Ŵn(kn)

)
≥M1−H(1− τ)

∫
f2(x)dx− δ

for all n ≥ nδ.
All in all, the previous considerations show that there exists an n0 ∈ N and a constant
K such that for all n ≥ n0

P1,1 ≤ P
(

max
k∈Dn,M,1

1

ndk0−k,r

(
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0)

)
≥ b(M)

)
,

where b(M) ··= KM1−H − δ with δ > 0 fixed.

Elementary calculations show that for k ≤ k0

Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0) = An,1(k) +An,2(k) +An,3(k) +An,4(k),

where

An,1(k) ··= −(n− k0)(k0 − k)

∫
(Fk+1,k0(x+ hn)− F (x+ hn)) dFk0+1,n(x),

An,2(k) ··= −(n− k0)(k0 − k)

∫
(Fk0+1,n(x)− F (x)) dF (x+ hn),

An,3(k) ··= (k0 − k)k

∫
(Fk(x)− F (x)) dFk+1,k0(x),

An,4(k) ··= −k(k0 − k)

∫
(Fk+1,k0(x)− F (x)) dF (x).

Thus, for n ≥ n0

P1,1 ≤P

(
max

k∈Dn,M,1

1

ndk0−k,r

4∑
i=1

|An,i(k)| ≥ b(M)

)

≤
4∑
i=1

P

(
max

k∈Dn,M,1

1

ndk0−k,r
|An,i(k)| ≥ 1

4
b(M)

)
.

In the following, it is shown that for each i ∈ {1, 2, 3, 4}

P

(
max

k∈Dn,M,1

1

ndk0−k,r
|An,i(k)| ≥ 1

4
b(M)

)
<
ε

4

for n and M sufficiently large.
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2.2. Convergence rate

1. Note that

max
k∈Dn,M,1

1

ndk0−k,r
|An,1(k)|

≤ max
k∈Dn,M,1

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣ .
Due to stationarity,

max
k∈Dn,M,1

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣
D
= max
k∈Dn,M,1

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))

∣∣∣ .
The triangle inequality yields

max
k∈Dn,M,1

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))

∣∣∣
≤ max

k∈Dn,M,1
sup
x∈R

∣∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Zr,H(1)Jr(x)

∣∣∣∣
+

1

r!
|Zr,H(1)| sup

x∈R
|Jr(x)| .

Since

sup
x∈R

∣∣∣∣d−1
n,rn (Fn(x)− F (x))− 1

r!
Zr,H(1)Jr(x)

∣∣∣∣ a.s.−→ 0, as n→∞,

and as k0 − k ≥Mmn with mn approaching ∞, it follows that

max
k∈Dn,M,1

sup
x∈R

∣∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Zr,H(1)Jr(x)

∣∣∣∣
converges to 0 almost surely. Therefore,

P

(
max

k∈Dn,M,1

1

ndk0−k,r
|An,1(k)| ≥ 1

4
b(M)

)
≤P

(
max

k∈Dn,M,1
sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣ ≥ 1

4
b(M)

)
≤P

(
1

r!
|Zr,H(1)| sup

x∈R
|Jr(x)| ≥ 1

4
b(M)

)
+
ε

8

for n sufficiently large.

Furthermore, it is well-known that all moments of Hermite processes are finite; see
Pipiras and Taqqu (2017). As a result, supx∈R |Jr(x)| <∞. It therefore follows by
Markov’s inequality that for some Mε ∈ R

P

(
1

r!
|Zr,H(1)| sup

x∈R
|Jr(x)| ≥ 1

4
b(M)

)
≤ E |Zr,H(1)| 4 supx∈R |Jr(x)|

b(M)r!
<
ε

8

for all M ≥Mε.
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2. We have

max
k∈Dn,M,1

1

ndk0−k,r
|An,2(k)| ≤

∣∣∣∣d−1
n,r(n− k0)

∫
(Fk0+1,n(x)− F (x)) dF (x+ hn)

∣∣∣∣
for n sufficiently large. As a result,

max
k∈Dn,M,1

1

ndk0−k,r
|An,2(k)| ≤ sup

x∈R

∣∣d−1
n,r(n− k0) (Fk0+1,n(x)− F (x))

∣∣ .
Due to the empirical process limit theorem of Dehling and Taqqu (1989),

sup
x∈R

∣∣d−1
n,r(n− k0) (Fk0+1,n(x)− F (x))

∣∣ D−→ 1

r!
|Zr,H(1)− Zr,H(τ)| sup

x∈R
|Jr(x)| .

Moreover,

1

r!
|Zr,H(1)− Zr,H(τ)| sup

x∈R
|Jr(x)| D= 1

r!
(1− τ)H |Zr,H(1)| sup

x∈R
|Jr(x)|

since Zr,H is an H-self-similar process with stationary increments. Thus, we have

P

(
max

k∈Dn,M,1

1

ndk0−k,r
|An,2(k)| ≥ 1

4
b(M)

)
≤P

(
1

r!
(1− τ)H |Zr,H(1)| sup

x∈R
|Jr(x)| ≥ 1

4
b(M)

)
+
ε

8

for n sufficiently large. Again, it follows by Markov’s inequality that

P

(
1

r!
(1− τ)H |Zr,H(1)| sup

x∈R
|Jr(x)| ≥ 1

4
b(M)

)
<
ε

8

for M sufficiently large.

3. Note that

1

ndk0−k,r
|An,3(k)| ≤

∣∣∣∣d−1
n,rk

∫
(Fk(x)− F (x)) dFk+1,k0(x)

∣∣∣∣
for n sufficiently large. Therefore,

max
k∈Dn,M,1

1

ndk0−k,r
|An,3(k)| ≤ sup

x∈R,t∈[0,1]

∣∣d−1
n,rbntc

(
Fbntc(x)− F (x)

)∣∣ .
The expression on the right-hand side converges in distribution to

1

r!
sup
t∈[0,1]

|Zr,H(t)| sup
x∈R
|Jr(x)|

due to the empirical process non-central limit theorem.
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2.2. Convergence rate

Since Zr,H is an H-self-similar process,

{Zr,H(t), 0 ≤ t ≤ 1} D=
{
tHZr,H(1), 0 ≤ t ≤ 1

}
,

so that

sup
t∈[0,1]

|Zr,H(t)| D= |Zr,H(1)|.

As a result, the aforementioned argument yields

P

(
max

k∈Dn,M,1

1

ndk0−k,r
|An,3(k)| ≥ 1

4
b(M)

)
≤P

(
1

r!
|Zr,H(1)| sup

x∈R
|Jr(x)| ≥ 1

4
b(M)

)
+
ε

8

<
ε

4

for n and M sufficiently large.

4. We have

max
k∈Dn,M,1

1

ndk0−k,r
|An,4(k)|

≤ max
k∈Dn,M,1

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣ .
Hence, the same argument that has been used to obtain an analogous result for
An,1 can be applied to conclude that

P

(
max

k∈Dn,M,1

1

ndk0−k,r
|An,4(k)| ≥ 1

4
b(M)

)
<
ε

4

for n and M sufficiently large.

In total, it follows that for all ε > 0 there exists an nε ∈ N and an M > 0 such that

P
(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
< ε

for all n ≥ nε. This proves Theorem 5.
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2.3. Asymptotic distribution

Theorem 5 implies uniform tightness of the sequence m−1
n (k̂W − k0), n ∈ N. Thus,

it seems natural to wonder whether m−1
n (k̂W − k0) converges in distribution to a non-

degenerate random variable, so that the rate of convergence achieved by Theorem 5 can
be considered optimal. The following theorem provides an answer to this question:

Theorem 6 (Betken (2017)). Let Xn, n ∈ N, denote a time series with a change in
the mean in k0 = bnτc, 0 < τ < 1, with shift height hn. Suppose that Xn, n ∈ N,
satisfies Assumption 2. In particular, Xn = Yn + hn for some mean-zero subordinated
Gaussian sequence Yn, n ∈ N, with marginal distribution function F . Assume that F has
a bounded density f and that the Hermite rank of the class of functions 1{Y1≤x} −F (x),

x ∈ R, equals 1. Let mn ··= g−D,1(h−1
n ) with D as in Assumption 2, define h(s; τ) by

h(s; τ) ··=


s(1− τ)

∫
R
f2(x)dx if s ≤ 0

−sτ
∫
R
f2(x)dx if s > 0

and let BH(t), t ∈ R, with H = 1− D
2 be a (standard) fractional Brownian motion.

If h−1
n = o(gD,r(n)), as n→∞, then, for all M > 0,

Vn(s) ··=
1

n3hndmn,1

(
W 2
k0+bmnsc,n −W

2
k0,n

)
, −M ≤ s ≤M,

converges in distribution to

2τ(1− τ)

∫
R
f2(x)dx

(
BH(s)

∫
R
J1(x)dF (x) + h(s; τ)

)
, −M ≤ s ≤M,

in the Skorohod space D [−M,M ].

Given an interval I and a right-continuous function f , we write sargmaxs∈I f(s) for the
maximizer of f with the smallest value. With this notation,

m−1
n

(
k̂W − k0

)
= sargmax

s∈(−∞,∞)
Vn(s),

so that the asymptotic distribution of m−1
n (k̂W − k0) can be deduced from Theorem 6

by showing

1. that

sargmax
s∈[−M,M ]

Vn(s)
D−→ argmax

s∈[−M,M ]
GH,τ (s),

where

GH,τ (s) ··= BH(s)

∫
R
J1(x)dF (x) + h(s; τ);
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2.3. Asymptotic distribution

2. that ∣∣∣∣∣sargmax
s∈[−M,M ]

Vn(s)− sargmax
s∈(−∞,∞)

Vn(s)

∣∣∣∣∣ P−→ 0;

3. that for sufficiently large M

argmax
s∈[−M,M ]

GH,τ (s) = argmax
s∈(−∞,∞)

GH,τ (s).

−200

−100

0

−1000 −500 0 500 1000

s

GH,τ(s)
h(s;τ)

Figure 2.4.: Realization of GH,τ (s), s ∈ [−M,M ], with M = 1000, H = 0.7, and τ = 0.25 under
the assumption of Gaussian time series.

Corollary 1 (Betken (2017)). Under the assumptions of Theorem 6, m−1
n (k̂W − k0)

converges in distribution to

argmax
s∈(−∞,∞)

(
BH(s)

∫
R
J1(x)dF (x) + h(s; τ)

)
(2.5)

if h−1
n = o (gD,r(n)).

The limit in formula (2.5) closely resembles the limit of the CUSUM-based change-
point estimator considered in Horváth and Kokoszka (1997). Moreover, the condition
h−1
n = o (gD,r(n)) is equivalent to Assumption C.5 (i) in that article.

Remark 9. The proof of Theorem 6 is mainly based on the empirical process non-central
limit theorem for subordinated Gaussian sequences in Dehling and Taqqu (1989). The
sequential empirical process has also been studied by many other authors in the context
of different models; see, among others, the following: Müller (1970) and Kiefer (1972) for
independent and identically distributed data, Berkes and Philipp (1977) and Philipp and
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2. Wilcoxon-type change-point estimators

Pinzur (1980) for strongly mixing processes, Berkes et al. (2009) for S-mixing processes,
Giraitis and Surgailis (1999) for long memory linear (or moving average) processes,
Dehling et al. (2014) for multiple mixing processes. Presumably, in these situations the
asymptotic distribution of k̂W can be derived by the same argument as in the proofs of
Theorem 6 and Corollary 1. In particular, Theorem 1 in Giraitis and Surgailis (1999) can
be considered as a generalization of Theorem 1.1 in Dehling and Taqqu (1989), i.e. with
an appropriate normalization, the change-point estimator k̂W , computed with respect to
long-range dependent linear processes as defined in Giraitis and Surgailis (1999), would
converge in distribution to a limit that corresponds to (2.5).

The first assertion of Theorem 6 can be proved by an application of the following lemma,
which establishes a condition under which convergence in distribution of a sequence
of random variables with values in a càdlàg space entails convergence of the smallest
argmax.

Lemma 3 (Betken (2017)). Let K be a compact interval and denote by D(K) the
corresponding Skorohod space. Assume that Zn, n ∈ N, are random variables taking
values in D(K) and that Zn converges in distribution to a random variable Z, where
(almost surely) Z is continuous and has a unique maximizer. Then, the sargmax of Zn
converges in distribution to the argmax of Z as n tends to ∞.

Proof. Due to Skorohod’s representation theorem, there exist random variables Z̃ and
Z̃n, n ∈ N, defined on a common probability space (Ω̃, F̃ , P̃ ), such that

Z̃n
D
= Zn, Z̃

D
= Z with Z̃n

a.s.−→ Z̃, as n→∞.

Due to Lemma 2.9 in Seijo and Sen (2011), the smallest argmax functional is continuous
at W (with respect to the Skorohod metric and the uniform metric) if W ∈ D(K)
is a continuous function which has a unique maximizer. Since (almost surely) Z is
continuous with unique maximizer, sargmax(Z̃n) converges to argmax(Z̃) almost surely.
As almost sure convergence implies convergence in distribution, sargmax(Z̃n) converges
in distribution to argmax(Z̃). As a result, sargmax(Zn) converges in distribution to
argmax(Z).

Note that in order to justify an application of Lemma 3, it remains to be shown that the
limit attains its maximal value at a unique point since the sample paths of a fractional
Brownian motion are almost surely continuous. In the considered case, uniqueness of
the maximum can be derived by the following criterion established by Lifshits (1982).

Theorem 7 (Ferger (1999)). Let Y (t), t ∈ T , denote a Gaussian process indexed by a
compact metric space T with almost surely continuous trajectories. If

E
(

(Y (s)− Y (t))2
)
6= 0 for all s 6= t,

Y attains its maximal value at a unique point almost surely. If the parameter set T is only
σ-compact (i.e. a countable union of compact sets), the assertion remains valid under
the additional assumption that the set of maximizers of Y is nonempty and bounded
almost surely.
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2.3. Asymptotic distribution

In addition to Lemma 3 and Theorem 7, the following Lemma is needed for the proof of
Theorem 6.

Lemma 4 (Betken (2017)). Suppose that Assumption 2 holds and let ln, n ∈ N, and hn,
n ∈ N, be two sequences with limn→∞ hn = h, limn→∞ ln =∞ and ln = O(n). Then, as
n→∞,

sup
s∈[0,1]

∣∣∣∣∣d−1
ln,r
blnsc

∫
R

(
Fblnsc(x+ hn)− Fblnsc(x+ h)

)
dFn(x)

− d−1
ln,r
blnsc

∫
R

(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣ (2.6)

and

sup
s∈[0,1]

∣∣∣∣∣d−1
ln,r
blnsc

∫
R

(Fn(x+ hn)− Fn(x+ h)) dFblnsc(x)

− d−1
ln,r
blnsc

∫
R

(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣ (2.7)

converge to 0 almost surely.

Proof. For the expression in formula (2.6), the triangle inequality yields

sup
s∈[0,1]

∣∣∣∣∣d−1
ln,r
blnsc

∫ (
Fblnsc(x+ hn)− Fblnsc(x+ h)

)
dFn(x)

− d−1
ln,r
blnsc

∫
(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣
≤ 2 sup

s∈[0,1],x∈R

∣∣∣∣d−1
ln,r
blnsc

(
Fblnsc(x)− F (x)

)
− 1

r!
Zr,H(s)Jr(x)

∣∣∣∣
+

1

r!
sup
s∈[0,1]

|Zr,H(s)|
∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h))dFn(x)

∣∣∣∣
+

∣∣∣∣d−1
ln,r

ln

∫
(F (x+ hn)− F (x+ h)) d (Fn − F ) (x)

∣∣∣∣ .
The first summand on the right-hand side converges to 0 because of the empirical process
non-central limit theorem.
Since Zr,H is almost surely continuous, sups∈[0,1] |Zr,H(s)| <∞ almost surely. Moreover,
it is shown in the proof of Lemma 2 that∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h))dFn(x)

∣∣∣∣
converges to 0. As a result, the second summand vanishes as n tends to ∞.
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2. Wilcoxon-type change-point estimators

Since ln = O(n),∣∣∣∣d−1
ln,r

ln

∫
(F (x+ hn)− F (x+ h)) d (Fn − F ) (x)

∣∣∣∣
≤K

∣∣∣∣∫ (d−1
n,rn (Fn(x)− F (x))− 1

r!
Zr,H(1)Jr(x)

)
dF (x+ hn)

∣∣∣∣
+K

∣∣∣∣∫ (d−1
n,rn (Fn(x)− F (x))− 1

r!
Zr,H(1)Jr(x)

)
dF (x+ h)

∣∣∣∣
+K

1

r!
|Zr,H(1)|

∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣
for some constant K and n sufficiently large. The first and second summand on the right-
hand side of the above inequality converge to 0 due to the empirical process non-central
limit theorem. In addition, we have∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ =

∣∣∣∣∫ (Jr(x− hn)− Jr(x− h)) dF (x)

∣∣∣∣ .
Therefore, it follows by the same argument as in the proof of Lemma 2 that the third
summand converges to 0.

Considering the term in formula (2.7), note that

sup
s∈[0,1]

∣∣∣∣∣d−1
ln,r
blnsc

∫
(Fn(x+ hn)− Fn(x+ h)) dFblnsc(x)

− d−1
ln,r
blnsc

∫
(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣
≤ 2 sup

s∈[0,1],x∈R

∣∣∣∣d−1
ln,r
blnsc

(
Fblnsc(x)− F (x)

)
− 1

r!
Zr,H(s)Jr(x)

∣∣∣∣
+

1

r!
sup
s∈[0,1]

|Zr,H(s)|
∣∣∣∣∫ Jr(x)d (Fn(x+ hn)− Fn(x+ h))

∣∣∣∣
+ 2K sup

x∈R

∣∣∣∣d−1
n,rn (Fn(x)− F (x))− 1

r!
Zr,H(1)Jr(x)

∣∣∣∣
+

1

r!
|Zr,H(1)|

∫
|Jr(x+ hn)− Jr(x+ h)| dF (x)

for some constant K and n sufficiently large. The first and third summand on the right-
hand side of the above inequality converge to 0 due to the empirical process non-central
limit theorem. The last summand converges to 0 due to the corresponding argument in
the proof of Lemma 2.
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2.3. Asymptotic distribution

By definition of the Hermite coefficient Jr(x), integration by parts, and applications of
the triangle inequality, it follows that∣∣∣∣∫ Jr(x)d (Fn(x+ hn)− Fn(x+ h))

∣∣∣∣
=

∣∣∣∣∫ (Fn(G(y)− hn)− Fn(G(y)− h))Hr(y)ϕ(y)dy

∣∣∣∣
≤
(

2 sup
x∈R
|Fn(x)− F (x)|+ sup

x∈R
|F (x− hn)− F (x− h)|

)∫
|Hr(y)|ϕ(y)dy.

The right-hand side of the above inequality converges to 0 almost surely due to the
Glivenko-Cantelli theorem and because F is uniformly continuous. As a result, the
second summand vanishes as n tends to ∞ as well.

Proof of Theorem 6 and Corollary 1. Note that

W 2
n(k0 + bmnsc)−W 2

n(k0)

= (Wn(k0 + bmnsc)−Wn(k0)) (Wn(k0 + bmnsc) +Wn(k0)) .

We will see that (with an appropriate normalization) Wn(k0+bmnsc)−Wn(k0) converges
in distribution to a non-deterministic limit process, whereas Wn(k0 + bmnsc) +Wn(k0)
(with stronger normalization) converges in probability to a deterministic expression.

For notational convenience, we write dmn instead of dmn,1, J instead of J1, k̂ instead of

k̂W and we define ln(s) ··= k0 + bmnsc.
Note that

Wn(k0 + bmnsc)−Wn(k0) = Ṽn(ln(s)) + Vn(ln(s)),

where

Ṽn(l) =


−

k0∑
i=l+1

n∑
j=k0+1

(
1{Yi≤Yj+hn} − 1{Yi≤Yj}

)
if s < 0

−
k0∑
i=1

l∑
j=k0+1

(
1{Yi≤Yj+hn} − 1{Yi≤Yj}

)
if s > 0

and

Vn(l) =


l∑

i=1

k0∑
j=l+1

(
1{Yi≤Yj} −

1
2

)
−

k0∑
i=l+1

n∑
j=k0+1

(
1{Yi≤Yj} −

1
2

)
if s < 0

l∑
i=k0+1

n∑
j=l+1

(
1{Yi≤Yj} −

1
2

)
−

k0∑
i=1

l∑
j=k0+1

(
1{Yi≤Yj} −

1
2

)
if s > 0.

In the following, it is shown that 1
ndmn

Ṽn(ln(s)) converges to h(s; τ) in probability and

that 1
ndmn

Vn(ln(s)) converges in distribution to BH(s)
∫
J(x)dF (x) in D [−M,M ].
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2. Wilcoxon-type change-point estimators

For this purpose, rewrite Ṽn(ln(s)) as follows:

Ṽn(ln(s)) = −(k0 − ln(s))(n− k0)

∫ (
Fln(s)+1,k0(x+ hn)− Fln(s)+1,k0(x)

)
dFk0+1,n(x)

if s < 0, and

Ṽn(ln(s)) = −k0(ln(s)− k0)

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,ln(s)(x)

if s > 0.
For s < 0, the limit of 1

ndmn
Ṽn(ln(s)) corresponds to the limit of

−(1− τ)d−1
mn(k0 − ln(s))

∫
(F (x+ hn)− F (x)) dF (x)

due to Lemma 4 and stationarity of the random sequence Yn, n ∈ N. Note that

−d−1
mnbmnschn

∫
1

hn
(F (x+ hn)− F (x)) dF (x)

converges to −s
∫
f2(x)dx since hn ∼ dmn

mn
.

For s > 0, the limit of 1
ndmn

Ṽn(ln(s)) corresponds to the limit of

−τd−1
mn(ln(s)− k0)

∫
(F (x+ hn)− F (x)) dF (x)

due to Lemma 4 and stationarity of the random sequence Yn, n ∈ N. Note that

d−1
mnbmnschn

∫
1

hn
(F (x+ hn)− F (x)) dF (x)

converges to s
∫
f2(x)dx since hn ∼ dmn

mn
.

All in all, it follows that 1
ndmn

Ṽn(ln(s)) converges to h(s; τ) defined by

h(s; τ) =


s(1− τ)

∫
f2(x)dx if s ≤ 0

−sτ
∫
f2(x)dx if s > 0.

In the following, it is shown that 1
ndmn

Vn(ln(s)) converges in distribution to

BH(s)

∫
J(x)dF (x), −M ≤ s ≤M.

For this purpose, we show convergence of the correspondingly restricted process in
D[−M, 0] and D[0,M ]. Following this, the proof is extended to weak convergence in
D[−M,M ].
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2.3. Asymptotic distribution

Note that if s < 0,

Vn(ln(s)) =− ln(s)(k0 − ln(s))

∫ (
Fln(s)+1,k0(x)− F (x)

)
dFln(s)(x)

− (k0 − ln(s))(n− k0)

∫ (
Fln(s)+1,k0(x)− F (x)

)
dFk0+1,n(x)

+ ln(s)(k0 − ln(s))

∫
(Fln(s)(x)− F (x))dF (x)

+ (k0 − ln(s))(n− k0)

∫
(Fk0+1,n(x)− F (x)) dF (x).

If s > 0, we have

Vn(ln(s)) =(ln(s)− k0)(n− ln(s))

∫ (
Fk0+1,ln(s)(x)− F (x)

)
dFln(s)+1,n(x)

+ k0(ln(s)− k0)

∫ (
Fk0+1,ln(s)(x)− F (x)

)
dFk0(x)

− (ln(s)− k0)(n− ln(s))

∫ (
Fln(s)+1,n(x)− F (x)

)
dF (x)

− k0(ln(s)− k0)

∫
(Fk0(x)− F (x)) dF (x).

By the line of argument in the proof of Lemma 4, it follows that the limit of 1
ndmn

Vn(ln(s))
corresponds to the limit of

1

ndmn
(A1,n(s) +A2,n(s) +A3,n(s)) ,

where

A1,n(s) ··= (−ln(s)− n+ k0)(k0 − ln(s))

∫ (
Fln(s)+1,k0(x)− F (x)

)
dF (x),

A2,n(s) ··= (k0 − ln(s))ln(s)

∫
(Fln(s)(x)− F (x))dF (x),

A3,n(s) ··= (k0 − ln(s))(n− k0)

∫
(Fk0+1,n(x)− F (x)) dF (x),

if s < 0, and

A1,n(s) ··= (n− ln(s) + k0)(ln(s)− k0)

∫ (
Fk0+1,ln(s)(x)− F (x)

)
dF (x),

A2,n(s) ··= −(ln(s)− k0)(n− ln(s))

∫ (
Fln(s)+1,n(x)− F (x)

)
dF (x),

A3,n(s) ··= −(ln(s)− k0)k0

∫
(Fk0(x)− F (x)) dF (x),

if s > 0.
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2. Wilcoxon-type change-point estimators

Note that for s < 0

1

ndmn
A2,n(s) = − 1

ndmn
bmnscln(s)

∫
(Fln(s)(x)− F (x))dF (x). (2.8)

As n→∞, the above expression converges to 0 uniformly in s ∈ [−M, 0], since

sup
s∈[−M,0]

∣∣∣∣d−1
n ln(s)

∫
(Fln(s)(x)− F (x))dF (x)

∣∣∣∣
≤ sup

x∈R,t∈[0,1]

∣∣d−1
n bntc(Fbntc(x)− F (x))−BH(t)J(x)

∣∣
+ sup
t∈[0,1]

|BH(t)|
∣∣∣∣∫ J(x)dF (x)

∣∣∣∣ ,
and since mnd

−1
mn = o(nd−1

n ), i.e. the expression in (2.8) is bounded in probability. Anal-
ogously, it follows that 1

ndmn
A2,n(s) converges to 0 uniformly in s ∈ [0,M ]. Moreover, it

can be shown by an analogous argument that 1
ndmn

A3,n(s) converges to 0, uniformly in

s ∈ [−M,M ], if n tends to ∞.
Therefore, it remains to be shown that 1

ndmn
A1,n converges in distribution to a non-

deterministic expression. Due to stationarity,

1

ndmn
A1,n(s)

D
=
n− bmnsc

n
d−1
mn (bmnsc)

∫ (
Fbmnsc(x)− F (x)

)
dF (x), s ∈ [0,M ] .

As a result, 1
ndmn

A1,n(s) converges in distribution to BH(s)
∫
J(x)dF (x) in D [0,M ].

Furthermore, we have

1

ndmn
A1,n(s)

D
=
n+ bmnsc

n
d−1
mnbmnsc

∫ (
F−bmnsc(x)− F (x)

)
dF (x), s ∈ [−M, 0] .

Note that

− n+ bmnsc
n

d−1
mn (−bmnsc)

∫ (
F−bmnsc(x)− F (x)

)
dF (x)

=− n+ bmnsc
n

d−1
mn (dmn(−s)e)

∫ (
Fdmn(−s)e(x)− F (x)

)
dF (x).

Therefore, 1
ndmn

A1,n(s) converges in distribution to −BH(−s)
∫
J(x)dF (x) in D [−M, 0].

Considering 1
ndmn

A1,n(s) as a stochastic process with path space D [−M,M ], we note

that for s ∈ [0,M ] and t ∈ [−M, 0](
1

ndmn
A1,n(s),

1

ndmn
A1,n(t)

)′
D
=

(
wn(s− t)− wn(−t)

−wn(−t)

)
+OP (1),

where

wn(t) ··=
∫
d−1
mnbmntc

(
Fbmntc(x)− F (x)

)
dF (x).
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2.3. Asymptotic distribution

It then follows from an application of the continuous mapping theorem and the empirical
process non-central limit theorem of Dehling and Taqqu (1989) that(

1

ndmn
A1,n(s),

1

ndmn
A1,n(t)

)′
D−→ (BH(s− t)−BH(−t),−BH(−t))′

∫
J(x)dF (x).

The limit is Gaussian with mean 0 and covariances

Cov(BH(s− t)−BH(−t),−BH(−t)) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
,

i.e. the covariance function of the limit variable corresponds to the covariances of a
(standard) fractional Brownian motion with index set R as defined in Theorem 6. By
an extension of the argument to(

1

ndmn
A1,n(t1),

1

ndmn
A1,n(t2), . . . ,

1

ndmn
A1,n(tk)

)′
with k ∈ N and t1, t2, . . . , tk ∈ [−M,M ], t1 < t2 < . . . < tk, the marginal distributions
of the limit variable correspond to the marginal distributions of BH(s)

∫
J(x)dF (x),

s ∈ [−M,M ]. Moreover, tightness of 1
ndmn

A1,n in D[−M, 0] and in D[0,M ] implies that
1

ndmn
A1,n is tight in D[−M,M ].

All in all, it follows that

1

ndmn
(Wn(k0 + bmnsc)−Wn(k0))

D−→ BH(s)

∫
J(x)dF (x) + h(s; τ)

in D[−M,M ].

With the stronger normalization hnn
2, the limit of 1

hnn2Wn(k0 + bmnsc) corresponds to

the limit of 1
hnn2Wn(k0). Furthermore, we have

1

hnn2
Wn(k0) =

1

hnn2
k0(n− k0)

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,n(x)

+
1

hnn2

k0∑
i=1

n∑
j=k0+1

(
1{Yi≤Yj} −

1

2

)
.

The second summand on the right-hand side of the above equation vanishes as n tends
to ∞ since h−1

n = o(nd−1
n ). According to Lemma 4, the limit of

d−1
n k0

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,n(x)

corresponds to the limit of d−1
n k0

∫
(F (x+ hn)− F (x)) dF (x). Therefore,

h−1
n

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,n(x)

a.s.−→
∫
f2(x)dx, as n→∞.
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2. Wilcoxon-type change-point estimators

It follows that

1

hnn2
(Wn(k0 +mns) +Wn(k0))

P−→ 2τ(1− τ)

∫
f2(x)dx, as n→∞,

in D[−M,M ]. This completes the proof of the first assertion in Theorem 6.

In order to show that

m−1
n (k̂ − k0)

D−→ argmax
s∈(−∞,∞)

(
BH(s)

∫
J(x)dF (x) + h(s; τ)

)
, as n→∞,

we make use of Lemma 3.
For this purpose, note that according to Theorem 7, Lifshits’ criterion for unimodality of
Gaussian processes, the random function GH,τ (s) = BH(s)

∫
J(x)dF (x) +h(s; τ) almost

surely attains its maximal value in [−M,M ] at a unique point for every M > 0. Hence,
an application of Lemma 3 yields

sargmax
s∈[−M,M ]

1

n3hndmn,1

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
) D−→ argmax

s∈[−M,M ]
GH,τ (s). (2.9)

It remains to be shown that instead of considering the sargmax in [−M,M ], we may
as well consider the smallest argmax in R. By the law of the iterated logarithm, i.e.
Theorem 1 in Section 1.1.1, lim|s|→∞ s

−1BH(s) = 0 almost surely, so that

BH(s)

∫
J(x)dF (x) + h(s; τ)

a.s.−→ −∞

if |s| → ∞. As a result, the limit in formula (2.9) equals argmaxs∈(−∞,∞)GH,τ (s) if M
is sufficiently large.
For M > 0, define

ˆ̂
k(M) ··= min

{
k : |k0 − k| ≤Mmn, |Wn(k)| = max

|k0−i|≤Mmn
|Wn(i)|

}
.

By definition of
ˆ̂
k(M), it follows that∣∣∣sargmax

s∈[−M,M ]

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
)
− sargmax
s∈(−∞,∞)

(
W 2
n(k0 + bmnsc)−W 2

n(k0)
)∣∣∣

= m−1
n

∣∣∣ˆ̂k(M)− k̂
∣∣∣+OP (1).

We have to show that for some M ∈ R,

m−1
n

∣∣∣ˆ̂k(M)− k̂
∣∣∣ P−→ 0

as n tends to ∞. Note that

P
(
k̂ =

ˆ̂
k(M)

)
= P

(∣∣∣k̂ − k0

∣∣∣ ≤Mmn

)
= 1− P

(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
.
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2.4. Simulations

Furthermore, we have

lim
M→∞

lim inf
n→∞

(
1− P

(
|k̂ − k0| > Mmn

))
= 1

because |k̂ − k0| = OP (mn) by Theorem 5. As a result,

lim
M→∞

lim inf
n→∞

P
(
k̂ =

ˆ̂
k(M)

)
= 1.

Hence, for all ε > 0 there exists an Mε ∈ R and an nε ∈ N such that

P
(
k̂ 6= ˆ̂

k(M)
)
< ε

for all n ≥ nε and all M ≥Mε. This concludes the proof of Theorem 6.

2.4. Simulations

We will now investigate the finite sample performance of the change-point estimator k̂W
and compare it to corresponding simulation results for the estimators k̂SW (based on
the self-normalized Wilcoxon test statistic) and k̂C,0 (based on the CUSUM test statistic
with parameter β = 0). For this purpose, we simulate subordinated Gaussian time series
G(ξi), i ≥ 1, where ξi, i ≥ 1, is a fractional Gaussian noise sequence generated by the
function fgnSim (fArma package in R) with Hurst parameter H. Two different scenarios
are considered:

1. Normal margins: We choose G(t) = t. Note that in this case the Hermite coefficient
J1(x) is not equal to 0 for all x ∈ R (see Dehling et al. (2013)), so that r = 1,
where r denotes the Hermite rank of 1{G(ξi)≤x} − F (x), x ∈ R. Consequently,
Assumption 2 holds for all values of D ∈ (0, 1).

2. Pareto margins: In order to get standardized Pareto-distributed data which has a
representation as a functional of a Gaussian process, we consider the transforma-
tion

G(t) =

(
αk2

(α− 1)2(α− 2)

)− 1
2
(
k(Φ(t))−

1
α − αk

α− 1

)
with parameters k, α > 0 and with Φ denoting the standard normal distribution
function; see Example 1. Since G is a strictly decreasing function, it follows by
Theorem 2 in Dehling et al. (2013) that r = 1, where r denotes the Hermite rank
of 1{G(ξi)≤x} − F (x), x ∈ R. As a result, Assumption 2 holds for all values of
D ∈ (0, 1).

In order to compare the finite sample behavior of the change-point estimators, we con-
sider mean, sample standard deviation (S.D.) and quartiles of k̂W , k̂SW and k̂C,0, com-
puted with respect to 500 simulated time series of length 600 for different shift heights h
and different change-point locations τ . The simulation results are reported in Tables 2.1,
2.2, and 2.3.
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2. Wilcoxon-type change-point estimators

Correspondent to the expected behavior of consistent change-point estimators, the fol-
lowing observations can be made on the basis of the simulation study:

• Bias and variance of the estimated change-point location decrease when the height
of the level shift increases.

• Estimation of the time of change is more accurate for breakpoints located in the
middle of the sample than estimation of change-point locations that lie close to
the boundary of the testing region.

• High values of H go along with an increase of bias and variance. This seems nat-
ural since the variance of the time series increases when the correlation between
observations, characterized by the value of H, increases.

A comparison of the descriptive statistics of the estimators k̂W (based on the Wilcoxon
statistic) and k̂SW (based on the self-normalized Wilcoxon statistic) shows that:

• In most cases, the estimator k̂W has a higher bias, especially for an early change-
point location. Nevertheless, the difference between the biases of k̂SW and k̂W is
relatively small.

• In general, the sample standard deviation of k̂W is smaller than that of k̂SW .
Indeed, it is only slightly better when τ = 0.25, but there is a clear difference
when τ = 0.5.

All in all, our simulations do not give rise to choosing k̂SW over k̂W . In particular, better
standard deviations of k̂W compensate for smaller biases of k̂SW .
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Figure 2.5.: Boxplots of the estimators k̂SW , k̂W and k̂C,0 on the basis of 5000 simulated fractional
Gaussian noise and Pareto(3, 1) time series of length 50 with Hurst parameter H = 0.7 and a
change in the mean of height h = 0.5 after a proportion τ = 0.5.
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2.4. Simulations

Comparing the finite sample performances of k̂W and the CUSUM-based change-point
estimator k̂C,0, we make the following observations:

• For fractional Gaussian noise time series, bias and variance of k̂C,0 tend to be
smaller; at least when τ = 0.25 and especially for relatively high level shifts.
Nonetheless, the deviations are in most cases negligible.

• If there is a level shift after a proportion τ = 0.5 in a time series with normal
margins, bias and variance of k̂W tend to be smaller, especially for relatively high
level shifts. Again, in most cases the deviations are negligible.

• For Pareto-distributed time series k̂W clearly outperforms k̂C,0 by yielding smaller
biases and decisively smaller standard deviations for almost every combination
of parameters that has been considered. The performance of the estimator k̂C,0
surpasses the performance of k̂W only for high values of the jump height h.

It is well-known that Wilcoxon-based testing procedures are more robust against outliers
in data sets than CUSUM-like change-point tests, i.e. Wilcoxon-based tests outperform
CUSUM-like tests if heavy-tailed time series are considered. Our simulations confirm
that this observation is also reflected by the finite sample behavior of the corresponding
change-point estimators; see Figure 2.5.
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2
.

W
ilcox

o
n

-ty
p

e
ch

an
ge-p

oin
t

estim
ators

τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9

n
o
rm

a
l

m
a
rg

in
s

0.25 0.5 mean (S.D.) 193.840 (64.020) 227.590 (99.788) 252.408 (110.084) 270.646 (113.720)
quartiles (150, 168, 217.25) (150, 191, 284.25) (157, 226.5, 335.25) (172.75, 250, 353)

1 mean (S.D.) 164.244 (27.156) 176.362 (42.059) 188.328 (63.751) 215.108 (88.621)
quartiles (150, 153.5, 167) (150, 158, 190) (150, 159.5, 206.25) (150 176 256)

2 mean (S.D.) 153.604 (8.255) 156.656 (12.393) 164.338 (29.570) 173.610 (41.514)
quartiles (150, 151, 154) (150, 151, 158) (150, 151, 164) (150, 152, 180.25)

0.5 0.5 mean (S.D.) 299.506 (30.586) 301.870 (61.392) 300.774 (82.610) 298.930 (98.368)
quartiles (291, 300, 309) (274.75, 300.5, 320.25) (264, 299, 339.25) (233, 299, 353)

1 mean (S.D.) 300.014 (9.141) 300.438 (18.695) 302.592 (42.213) 300.902 (50.487)
quartiles (298, 300, 302) (297, 300, 304) (293, 300 307) (290, 300, 311)

2 mean (S.D.) 300.064 (1.294) 299.922 (3.215) 299.504 (5.520) 300.282 (7.494)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

P
a
re

to
(3

,
1
)

m
a
rg

in
s

0.25 0.5 mean (S.D.) 158.166 (17.762) 164.080 (31.219) 179.512 (58.871) 194.126 (74.767)
quartiles (150, 151, 159.25) (150, 152, 168) (150, 154, 191.25) (150, 159, 218.25)

1 mean (S.D.) 154.160 (8.765) 156.090 (13.516) 164.712 (28.774) 178.174 (54.429)
quartiles (150, 151, 155) (150, 151, 157) (150, 152, 168) (150, 152, 186)

2 mean (S.D.) 152.256 (4.852) 155.592 (11.092) 160.686 (24.599) 169.374 (38.197)
quartiles (150, 150, 152) (150, 151, 155.25) (150, 151, 159) (150, 150, 172)

0.5 0.5 mean (S.D.) 298.072 (6.008) 296.432 (13.441) 293.060 (26.221) 289.946 (45.739)
quartiles (297, 300, 300) (296, 300, 300) (294, 300, 301) (291, 300, 301)

1 mean (S.D.) 299.178 (2.712) 298.744 (4.587) 296.674 (11.585) 296.168 (20.424)
quartiles (299, 300, 300) (299, 300, 300) (298, 300, 300) (300, 300, 300)

2 mean (S.D.) 299.798 (1.008) 299.716 (1.543) 299.384 (3.070) 298.896 (6.560)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

Table 2.1.: Descriptive statistics of the sampling distribution of k̂W for a change in the mean based on 500 simulated time
series of length 600 with Hurst parameter H and a level shift in τ of height h.
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2.4.
S

im
u

lation
s

τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9

n
or

m
a
l

m
a
rg

in
s

0.25 0.5 mean (S.D.) 172.288 (63.639) 216.934 (110.934) 242.202 (119.655) 268.878 (122.615)
quartiles (135, 153, 183.25) (138, 171, 272.5) (143, 207.5, 333.5) (157, 243.5, 370.25)

1 mean (S.D.) 152.406 (24.840) 160.618 (39.834) 174.424 (70.673) 204.906 (99.648)
quartiles (140, 149, 158) (139, 150.5, 172.25) (136, 150, 188.25) (139.75, 161.5, 243.75)

2 mean (S.D.) 148.836 (9.007) 150.208 (13.575) 153.194 (28.251) 160.026 (40.979)
quartiles (144, 150, 152) (142.75, 150, 154) (138, 150, 158) (137.75, 150, 165)

0.5 0.5 mean (S.D.) 297.712 (43.291) 302.204 (77.719) 302.866 (96.511) 297.662 (110.175)
quartiles (277, 297, 320) (262, 300, 337) (248, 298.5, 369.5) (215, 301, 369.5)

1 mean (S.D.) 299.052 (16.132) 299.910 (28.907) 302.386 (55.267) 300.956 (62.821)
quartiles (290, 299, 308) (288, 300, 313) (277, 300, 324.25) (270, 300, 329)

2 mean (S.D.) 300.010 (6.054) 299.612 (10.079) 298.844 (14.059) 301.424 (21.022)
quartiles (297, 300, 303.25) (294, 300, 305) (291, 300, 307) (289, 300, 312)

P
ar

et
o
(3

,
1
)

m
a
rg

in
s

0.25 0.5 mean (S.D.) 151.562 (18.392) 155.034 (32.505) 165.260 (58.363) 182.706 (83.268)
quartiles (142, 150, 157) (140, 150, 163) (136, 150, 173) (136.75, 150, 196.25)

1 mean (S.D.) 150.206 (9.116) 150.272 (15.405) 152.824 (25.074) 166.602 (58.982)
quartiles (145, 150, 154) (143, 150, 156) (140, 150, 159.25) (136, 150, 174.25)

2 mean (S.D.) 149.210 (6.201) 149.934 (11.821) 151.946 (21.426) 156.836 (39.311)
quartiles (146, 150, 152) (143, 150, 153) (140, 150, 156) (136, 150, 160.25)

0.5 0.5 mean (S.D.) 300.524 (11.841) 299.488 (21.317) 299.664 (37.136) 295.048 (55.000)
quartiles (294, 300, 307) (290, 300, 310) (287, 300, 317) (280.75, 300, 318)

1 mean (S.D.) 300.498 (6.600) 300.560 (10.383) 299.520 (18.862) 297.766 (28.308)
quartiles (297, 300, 304) (296, 300, 306) (292, 300, 309.25) (289, 300, 312.25)

2 mean (S.D.) 300.444 (4.411) 300.234 (7.517) 300.524 (11.122) 298.840 (16.004)
quartiles (298, 300, 303) (296, 300, 304) (295.75, 300, 307) (292, 300, 308)

Table 2.2.: Descriptive statistics of the sampling distribution of k̂SW for a change in the mean based on 500 simulated time
series of length 600 with Hurst parameter H and a level shift in τ of height h.
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W
ilcox

o
n
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p

e
ch

an
ge-p

oin
t

estim
ators

τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9

n
o
rm

a
l

m
a
rg

in
s

0.25 0.5 mean (S.D.) 193.060 (64.917) 228.948 (101.442) 253.114 (111.182) 271.380 (114.590)
quartiles (150, 166.5, 222) (151, 191.5, 286.75) (156.75, 226, 341.5) (172.75, 249.5, 354.25)

1 mean (S.D.) 162.028 (22.948) 173.838 (39.845) 187.386 (63.865) 213.114 (87.356)
quartiles (150, 153, 164) (150, 156.5, 187.25) (150, 158, 206) (150, 173, 254.25)

2 mean (S.D.) 152.374 (6.249) 154.878 (10.395) 159.700 (22.064) 165.940 (33.124)
quartiles (150, 150, 152) (150, 150, 156) (150, 151, 158) (150, 150, 165)

0.5 0.5 mean (S.D.) 297.840 (30.249) 302.060 (63.878) 300.246 (84.346) 298.910 (97.904)
quartiles (290, 299, 308) (276, 301, 322) (261.75, 300, 340) (236.25, 299, 353.25)

1 mean (S.D.) 299.870 (9.356) 299.662 (21.281) 303.646 (42.245) 299.762 (52.492)
quartiles (298, 300, 302) (297, 300, 304) (293, 300, 307) (290, 300, 311)

2 mean (S.D.) 300.060 (1.473) 299.916 (3.199) 299.442 (5.234) 300.460 (8.179)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

P
a
re

to
(3

,
1
)

m
a
rg

in
s

0.25 0.5 mean (S.D.) 175.632 (48.517) 198.452 (79.303) 205.506 (88.482) 210.444(93.831)
quartiles (150, 159, 185) (150, 168, 223.75) (150, 173, 251.25) (150, 167, 259.5)

1 mean (S.D.) 156.586 (14.133) 160.350 (27.204) 170.278 (45.402) 177.278 (66.661)
quartiles (150, 152, 159) (150, 152, 161) (150, 153, 171) (150, 150, 174)

2 mean (S.D.) 150.314 (1.349) 150.566 (3.984) 152.474 (18.578) 155.496 (29.408)
quartiles (150, 150, 150) (150, 150, 150) (150, 150, 150) (150, 150, 150)

0.5 0.5 mean (S.D.) 296.260 (22.306) 292.904 (43.471) 289.192 (64.033) 287.966 (64.827)
quartiles (292, 300, 303.25) (288.75, 300, 305) (273.75, 300, 308.25) (285, 300, 303)

1 mean (S.D.) 298.240 (6.104) 297.306 (9.361) 293.116 (26.614) 292.864 (37.601)
quartiles (299, 300, 300) (299, 300, 300) (298, 300, 300) (300, 300, 300)

2 mean (S.D.) 299.604 (1.843) 299.228 (3.385) 298.350 (8.354) 297.632 (14.525)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

Table 2.3.: Descriptive statistics of the sampling distribution of k̂C,0 for a change in the mean based on 500 simulated time
series of length 600 with Hurst parameter H and a level shift in τ of height h.
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3. Subsampling for long-range dependent
time series

Given observations X1, . . . , Xn and a series of statistics Tn = Tn(X1, . . . , Xn), n ∈ N,
many issues in statistics are related to an approximation of the distribution function FTn
of Tn. If Tn converges in distribution to some non-degenerate random variable T , the
distribution function FT of T is often considered as a suitable estimate for FTn . However,
in many cases FT itself is unknown, so that confidence intervals or critical values for test
decisions are usually based on simulations of the required quantiles. The self-normalized
change-point tests considered in Section 1.2.2 serve as examples since the corresponding
test statistics converge in distribution to functionals of stochastic processes which depend
on unknown parameters (the Hurst index H and the Hermite rank r). In this case, test
decisions are generated by comparing the value of the particular test statistic to critical
values attained by simulations of the limit variable with respect to estimated parameter
values. To overcome the problem of an unknown limit distribution and to avoid the
estimation of nuisance parameters, an application of non-parametric methods to estimate
FTn can be considered as an alternative to approximating the asymptotic distribution
of the test statistic by simulations. Since we typically just have one sample, so that
only a single realization of Tn is observed, the basic idea of subsampling procedures is to
approximate the distribution of Tn by the empirical distribution of values of the statistic
computed over subsets of the original sample.

3.1. Sampling-window method

The so-called sampling-window method, studied by Politis and Romano (1994), Hall and
Jing (1996), and Sherman and Carlstein (1996), utilizes evaluations of the test statistic in
subsamples of successive observations, i.e. for some blocklength ln < n, the realizations
Tln,k ··= Tln (Xk, . . . , Xk+ln−1), k = 1, . . . ,mn, where mn ··= n − ln + 1, are considered.
As a result, we obtain multiple (though dependent) realizations of the test statistic Tln .
Due to the fact that consecutive observations are chosen, the subsamples retain the
dependence structure of the original sample, so that the empirical distribution function
of Tln,1, . . . , Tln,mn , defined by

F̂mn,ln(t) ··=
1

mn

mn∑
k=1

1{Tln,k≤t}, (3.1)

can be considered as an appropriate estimator for FTn .
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3. Subsampling for long-range dependent time series

In order to establish the validity of the subsampling procedure, i.e. in order to show that
the empirical distribution function of Tln,1, . . . , Tln,mn can be considered as a suitable

approximation of FTn , we aim at proving that the distance between F̂mn,ln and FTn
vanishes as the number of observations tends to ∞.

Definition 10. The subsampling procedure is said to be consistent if∣∣∣F̂mn,ln(t)− FTn(t)
∣∣∣ P−→ 0, as n→∞,

for all points of continuity t of FT .

Remark 10. If the subsampling procedure is consistent in the sense of Definition 10, and
if FT is continuous, the usual Glivenko-Cantelli argument for uniform convergence of
empirical distribution functions implies that

sup
t∈R

∣∣∣F̂mn,ln(t)− FTn(t)
∣∣∣ P−→ 0, as n→∞;

see for example Section 20 in Billingsley (1995).

It is shown in Sherman and Carlstein (1996) that the sampling-window method is consis-
tent for any time series satisfying an α-mixing condition and for any measurable statistic
converging in distribution to a non-degenerate limit variable. Thereby, consistency can
be derived for an extensive class of short-range dependent processes under the mildest
possible assumptions on the blocklength and the considered statistic. In the long-range
dependent case, the validity of subsampling has been shown to hold for specific statistics
under various model assumptions. Hall et al. (1998) prove consistency of the sampling-
window method for the sample mean as well as a studentized version of the sample mean
under the assumption of subordinated Gaussian processes. Nordman and Lahiri (2005)
attained consistency results with respect to the same statistics for long-range dependent
linear processes with possibly non-Gaussian innovations. For this model, an alternative
proof for consistency can be found in Beran et al. (2013). Zhang et al. (2013) generalize
these results by proving consistency with respect to the sample mean under the assump-
tion of subordinated long-range dependent linear processes with possibly non-Gaussian
innovations. It was noted by Fan (2012) that the proof in Hall et al. (1998) can easily
be generalized to other statistics than the sample mean. Nonetheless, the assumptions
on the subordinated Gaussian processes considered in Hall et al. (1998) are rather re-
strictive; see McElroy and Politis (2007). Their conditions imply that the underlying
Gaussian sequence is completely regular, which might hold for some special cases (see
Ibragimov and Rozanov (1978)), but excludes standard examples:

Example 2 (Fractional Gaussian noise). Let

ξH(n) ··= BH(n)−BH(n− 1)
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3.1. Sampling-window method

for some fractional Brownian motion BH(t), t ∈ [0,∞), i.e. ξH is a fractional Gaussian
noise process; see Definition 6 in Chapter 1. It follows by self-similarity of BH that

Cov

 n∑
i=1

ξH(i),

3n∑
j=2n+1

ξH(j)

 = Cov (BH(n), BH(3n)−BH(2n))

= Cov (BH(1), BH(3)−BH(2)) .

As a result, the correlation of linear combinations of variables does not vanish if the
gap between past and future observations grows. Thus, fractional Gaussian noise is not
completely regular.

Jach et al. (2012) provide a result on the validity of subsampling for a general class of
statistics Tn and certain heavy-tailed long-range dependent time series that follow the
long memory stochastic volatility model defined in Section 4.1. However, their results
are restricted by the assumption that the transformation σ in Model 2 is invertible,
Lipschitz-continuous and that the underlying Gaussian process has a causal representa-
tion as a functional of a sequence of independent random variables. These assumptions
are difficult to check in practice. Moreover, although not explicitly stated in Jach et al.
(2012), the proof of consistency only holds for statistics Tn that are Lipschitz-continuous
(uniformly in n). Many robust statistics do not satisfy this assumption. In fact, the
change-point test statistics considered in Section 1.2 can be taken as examples for non-
Lipschitz-continuous statistics. Nonetheless, combining self-normalized statistics and
subsampling results in a testing procedure that, if applied in practice, only requires the
choice of the blocklength parameter. For this reason, the main aim of this section is to
establish the validity of the sampling-window method for general statistics Tn without
any assumptions on the continuity of the statistic and only mild assumptions on the
data-generating process.

Given observations X1, . . . , Xn generated by subordinated Gaussian time series, the con-
sistency proof for the sampling-window method can be reduced to assessing the maximal
correlation between σ-algebras generated by two separate blocks of random variables.

Definition 11. Suppose (Ω,F , P ) is a probability space and A and B are sub-σ-fields
of F . The maximal correlation between A and B is defined by

ρ(A,B) ··= sup |Corr(f, g)| , f ∈ L2(A), g ∈ L2(B),

where L2(A) ··= L2(Ω,A, P ) and L2(B) ··= L2(Ω,B, P ) denote the families of all (equiv-
alence classes of) real-valued, A-measurable (resp. B-measurable) random variables on
Ω with finite second moments.

In order to establish the validity of the subsampling procedure, note that the triangular
inequality yields

|F̂mn,ln(t)− FTn(t)| ≤ |F̂mn,ln(t)− FT (t)|+ |FT (t)− FTn(t)|. (3.2)

The second term on the right-hand side of the inequality converges to 0 for all points of
continuity t of FT if the following assumption holds:
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3. Subsampling for long-range dependent time series

Assumption 3. The statistics Tn, n ∈ N, are measurable and converge in distribution
to a (non-degenerate) random variable T with distribution function FT .

Assumption 3 is considered as a standard requirement for a proof of consistency; see
for example Politis and Romano (1994). If the distribution of Tn does not converge, we
cannot expect the distribution of Tln to be close to the distribution of Tn.
Given Assumption 3, it remains to show that the first summand on the right-hand side
of inequality (3.2) converges to 0 as well. As L2-convergence implies convergence in
probability, it suffices to show that limn→∞ E |F̂mn,ln(t)−FT (t)|2 = 0. For this purpose,
we consider the following bias-variance decomposition:

E
(
|F̂mn,ln(t)− FT (t)|2

)
= Var F̂mn,ln(t) +

∣∣∣E F̂mn,ln(t)− FT (t)
∣∣∣2 .

Stationarity of the process Xn, n ∈ N, implies that E F̂mn,ln(t) = FTl(t), so that, due to
the convergence of Tn, the bias term of the above equation converges to 0 as ln tends
to ∞. As a result, it remains to show that the variance term vanishes as n tends to ∞.
Initially, note that

Var F̂mn,ln(t) =
1

mn
Var 1{Tln,1≤t} +

2

m2
n

mn∑
k=2

(mn − i+ 1) Cov
(

1{Tln,1≤t}, 1{Tln,k≤t}
)

≤ 2

mn

mn∑
k=1

∣∣∣Cov
(

1{Tln,1≤t}, 1{Tln,k≤t}
)∣∣∣ ,

due to stationarity of Xn, n ∈ N.
Since Tln,k = Tln(G(ξk), . . . , G(ξk+ln−1)) for some measurable function G,∣∣∣Cov

(
1{Tln,1≤t}, 1{Tln,k≤t}

)∣∣∣ ≤ ρ (σ(ξi, 1 ≤ i ≤ ln), σ(ξj , k ≤ j ≤ k + ln − 1)) ,

where σ(ξi, 1 ≤ i ≤ ln) (resp. σ(ξj , k ≤ j ≤ k+ ln− 1)) denotes the σ-field generated by
the random variables ξ1, . . . , ξln (resp. ξk, . . . , ξk+ln−1).
For β ∈ (0, 1), we split the sum of covariances into two parts:

1

mn

mn∑
k=1

∣∣∣Cov
(

1{Tln,1≤t}, 1{Tln,k≤t}
)∣∣∣

=
1

mn

bnβc∑
k=1

∣∣∣Cov
(

1{Tln,1≤t}, 1{Tln,k≤t}
)∣∣∣+

1

mn

mn∑
k=bnβc+1

∣∣∣Cov
(

1{Tln,1≤t}, 1{Tln,k≤t}
)∣∣∣

≤bn
βc

mn
+

1

mn

mn∑
k=bnβc+1

ρ (σ(ξi, 1 ≤ i ≤ ln), σ(ξj , k ≤ j ≤ k + ln − 1))

≤bn
βc

mn
+

1

mn

mn−ln∑
k=bnβc−ln+1

ρk,ln ,
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3.1. Sampling-window method

where

ρk,ln ··= ρ (σ(ξi, 1 ≤ i ≤ ln), σ(ξj , k + ln ≤ j ≤ k + 2ln − 1)) .

The first summand on the right-hand side of the inequality converges to 0 if ln = o(n). In
order to show that the second summand converges to 0, a sufficiently good approximation
to the sum of maximal correlations is needed. In particular, we have to show that

mn−ln∑
k=bnβc−ln+1

ρk,ln = o(mn).

3.1.1. Auxiliary results

The following results characterize the maximal correlation ρk,l of σ-algebras generated
by two blocks of l subsequent random variables separated by a lag of k time units. An
exact representation of the maximal correlation in terms of correlation matrices is given
by the following proposition:

Proposition 2. Suppose that ξn, n ∈ N, is a stationary Gaussian time series with
mean 0, variance 1 and autocovariance function γ, γ(k) ··= Cov(ξ1, ξk+1), such that
limk→∞ γ(k) = 0. Let Σm,l ··= (γm+i,j)1≤i,j≤l with γi,j ··= Cov(ξi, ξj). Then

ρ (σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1)) = ‖Σ−
1
2

l Σ′k+l,lΣ
− 1

2
l ‖2,

where ‖ · ‖2 is the spectral norm and Σ
− 1

2
l denotes the inverse of the (principal) square

root of Σl ··= Σ0,l.

Proof. Note that the random vector (ξ1, . . . , ξl, ξk+l, . . . , ξk+2l−1)′ follows a multivariate
normal distribution with mean 0 and covariance matrix

Σ̃k,l =

(
Σl Σk+l,l

Σ′k+l,l Σl

)
.

According to Proposition 5.1.1. in Brockwell and Davis (2013), the matrix Σl is sym-
metric and positive definite. It therefore has a symmetric, positive definite inverse, and
a symmetric, positive definite (principal) square root with a symmetric, positive definite
inverse. Define

(ζ1, . . . , ζl)
′ ··= Σ

− 1
2

l (ξ1, . . . , ξl)
′, (ζk+l, . . . , ζk+2l−1)′ ··= Σ

− 1
2

l (ξk+l, . . . , ξk+2l−1)′.

By definition, both random vectors have a multivariate standard normal distribution.
With

Γ ··=

(
Σ
− 1

2
l 0

0 Σ
− 1

2
l

)
,
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3. Subsampling for long-range dependent time series

it follows that (ζ1, . . . , ζl, ζk+l, . . . , ζk+2l−1)′ = Γ (ξ1, . . . , ξl, ξk+l, . . . , ξk+2l−1)′ is normally
distributed with covariance matrix

ΓΣ̃k,lΓ
′ =

 Il Σ
− 1

2
l Σk+l,lΣ

− 1
2

l

Σ
− 1

2
l Σ′k+l,lΣ

− 1
2

l Il

 .

Consider the Hilbert space H of (equivalence classes of) random variables

a1ζ1 + a2ζ2 + · · ·+ alζl + b1ζk+l + · · ·+ blζk+2l−1,

where a1, . . . , al, b1, . . . , bl range over the real numbers and the inner product of ξ1,
ξ2 ∈ H is defined by 〈ξ1, ξ2〉 ··= E ξ1ξ2. Let H1 (resp. H2) denote the subspace of
H spanned by ζ1, . . . , ζl (resp. ζk+l, . . . , ζk+2l−1). It then follows by definition of H1

(resp. H2), and independence of ζ1, . . . , ζl (resp. ζk+l, . . . , ζk+2l−1) that ζ1, . . . , ζl (resp.
ζk+l, . . . , ζk+2l−1) is an orthonormal basis of H1 (resp. H2). By Theorem A903 in Bradley
(2007), there exist mean-zero random variables V1, . . . , Vl ∈ H1 and W1, . . . ,Wl ∈ H2

with the following properties:

• V1, . . . , Vl is an orthonormal basis of H1;

• W1, . . . ,Wl is an orthonormal basis of H2;

• 〈Vi,Wi〉 = EViWi ≥ 0 for all i = 1, 2, . . . , l;

• 〈Vi,Wj〉 = EViWj = 0 for all i = 1, 2, . . . , l, j = 1, 2, . . . , l with i 6= j.

It is shown in the proof of Theorem 9.2 in Bradley (2007) that there exists an index
K ∈ {1, . . . , l} such that

ρ(σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1)) = Corr(VK ,WK).

So far, we specified two different sets of random variables that serve as bases for H1

(resp. H2). While the joint distributions of ζ1, . . . , ζl and ζk+l, . . . , ζk+2l−1 are known,
the orthonormal bases V1, . . . , Vl and W1, . . . ,Wl yield an explicit description of the
maximal correlation. So as to derive an approximation for the maximal correlation,
we relate both bases by change of basis matrices. For this purpose, let T denote the
orthogonal matrix satisfying

(V1, . . . , Vl)
′ = T ′ (ζ1, . . . , ζl)

′ , (W1, . . . ,Wl)
′ = T ′ (ζk+l, . . . , ζk+2l−1)′ .

It follows that

(V1, . . . , Vl,W1, . . . ,Wl)
′ = S (ζ1, . . . , ζl, ζk+l, . . . , ζk+2l−1)′ , where S ··=

(
T ′ 0
0 T ′

)
.
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3.1. Sampling-window method

All in all, we conclude that the random vector (V1, . . . , Vl,W1, . . . ,Wl)
′ is normally dis-

tributed with mean 0 and autocovariance matrix

SΓΣ̃k,lΓ
′S′ =

 Il T ′Σ
− 1

2
l Σk+l,lΣ

− 1
2

l T

T ′Σ
− 1

2
l Σ′k+l,lΣ

− 1
2

l T Il

 .

Note that VarVK = VarWK = 1, so that

ρ(σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1)) = Cov(VK ,WK) = DK,K

for some K ∈ {1, . . . , l}. Due to the choice of V1, . . . , Vl and W1, . . . ,Wl, the matrix

D ··= T ′Σ
− 1

2
l Σ′k+l,lΣ

− 1
2

l T

is diagonal, so that the diagonal entries of D correspond to its eigenvalues. As a result,
we have

DK,K = ‖D‖2 = ‖T ′Σ−
1
2

l Σ′k+l,lΣ
− 1

2
l T‖2 = ‖Σ−

1
2

l Σ′k+l,lΣ
− 1

2
l ‖2,

where the last identity results from the invariance of ‖ · ‖2 under orthogonal transforma-
tions.

On the basis of Proposition 2, we derive an upper bound for the maximal correlation
ρk,l:

Corollary 2. Under the assumptions of Proposition 2,

ρ(σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1)) ≤ l 1

λmin
max

1≤i≤2l−1
|γk+i|,

where λmin denotes the smallest eigenvalue of Σl.

Proof. Note that for A = (aij)1≤i,j≤n it holds that ‖A‖2 ≤ nmax1≤i,j≤n |aij |. According
to this and the Cauchy–Schwarz inequality,

‖Σ−
1
2

l Σ′k+l,lΣ
− 1

2
l ‖2 ≤ ‖Σ

− 1
2

l ‖
2
2‖Σ′k+l,l‖2 ≤ ‖Σ

− 1
2

l ‖
2
2l max

1≤i≤2l−1
|γk+i|.

By definition of the spectral norm,

‖Σ−
1
2

l ‖2 =
√
µmax =

1√
λmin

,

where µmax denotes the largest eigenvalue of Σ−1
l .

The above corollary meets the expectation that a growing time lag between two blocks
of random variables leads to a decrease of the maximal correlation, whereas a growth of
the blocklength yields an increase of correlation. Given the following assumption on the
spectral density of a stationary Gaussian process, the subsequent Lemma shows that the
eigenvalues of the covariance matrix do not contribute to a significant increase of the
maximal correlation.
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3. Subsampling for long-range dependent time series

Assumption 4. Let ξn, n ∈ N, denote a stationary, long-range dependent Gaussian pro-
cess with mean 0, variance 1, LRD parameter D and spectral density f(λ) = |λ|D−1Lf (λ)
for a slowly varying function Lf which is bounded away from 0 on [0, π].

Lemma 5 (Betken and Wendler (2015)). Suppose that ξn, n ∈ N, is a time series with
a spectral density satisfying Assumption 4. Let Σl denote the covariance matrix of l
consecutive random variables, i.e. Σl ··= (γi,j)1≤i,j≤l, γij ··= Cov(ξi, ξj). Then there
exists a constant KD ∈ (0,∞), such that

λmin(Σl) ≥ KD

for all l ∈ N.

Proof. By definition,

λmin(Σl) = inf
x∈X

(x′Σlx),

where X =
{
x ∈ Rl |x′x = 1

}
. We rewrite x′Σlx in the following way:

x′Σlx =
l∑

j=1

l∑
k=1

xjxkγ(j − k)

=
l∑

j=1

l∑
k=1

xjxk

∫ π

−π
ei(j−k)λLf (|λ|)|λ|D−1dλ

= 2

∫ π

0

l∑
j=1

l∑
k=1

xjxke
i(j−k)λLf (λ)λD−1dλ

= 2

∫ π

0

∣∣∣∣∣∣
l∑

j=1

xje
−ijλ

∣∣∣∣∣∣
2

Lf (λ)λD−1dλ.

By assumption, there exists a constant Cmin ∈ (0,∞) with

Lf (λ) ≥ Cmin

for all λ ∈ [0, π], so that

x′Σlx ≥ 2Cmin

∫ π

0

∣∣∣∣∣∣
l∑

j=1

xje
−ijλ

∣∣∣∣∣∣
2

λD−1dλ ≥ 2Cminπ
D−1

∫ π

0

∣∣∣∣∣∣
l∑

j=1

xje
−ijλ

∣∣∣∣∣∣
2

dλ.

We rewrite the integrand as∣∣∣∣∣∣
l∑

j=1

xje
−ijλ

∣∣∣∣∣∣
2

=
l∑

j=1

x2
j +

∑
1≤j 6=k≤l

xjxke
−i(j−k)λ

62



3.1. Sampling-window method

=
l∑

j=1

x2
j +

∑
1≤j<k≤l

xjxk

(
e−i(j−k)λ + e−i(k−j)λ

)

=
l∑

j=1

x2
j + 2

∑
1≤j<k≤l

xjxk cos((k − j)λ)

=

l∑
j=1

l∑
k=1

xjxk cos((k − j)λ).

Since
∫ π

0 cos((k − j)λ)dλ = 0 for all j, k with j 6= k, we have

∫ π

0

∣∣∣∣∣∣
l∑

j=1

xje
−ijλ

∣∣∣∣∣∣
2

dλ =

l∑
j=1

l∑
k=1

xjxk

∫ π

0
cos((k − j)λ)dλ

=
l∑

j=1

x2
j

∫ π

0
cos(0)dλ+

∑
1≤j 6=k≤l

xjxk

∫ π

0
cos((k − j)λ)dλ

= π

l∑
j=1

x2
j

= π

for x ∈ X .
All in all, the above calculations yield

x′Σlx ≥ 2Cminπ
D−1

∫ π

0

∣∣∣∣∣∣
l∑

j=1

xje
−ijλ

∣∣∣∣∣∣
2

dλ = 2Cminπ
D−1.

As a result,

λmin(Σl) = inf
x∈X

(x′Σlx) ≥ KD

with KD ··= 2Cminπ
D−1.

Corollary 2 and Lemma 5 together imply the following result:

Corollary 3. Given a time series ξn, n ∈ N, satisfying Assumption 4,

ρ(σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1)) .
1

KD
lk−DLγ(k)

with KD as in Lemma 5 and with f . g signifying that there exists a function h with
f ≤ h and h ∼ g.

We will see that under slightly stronger assumptions on the time series ξn, n ∈ N, the
upper bound on the maximal correlation achieved by Corollary 3 can be improved.
For this purpose, we specify Assumption 4:
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3. Subsampling for long-range dependent time series

Assumption 5. Let ξn, n ∈ N, denote a stationary, long-range dependent Gaussian pro-
cess with mean 0, variance 1, LRD parameter D and spectral density f(λ) = |λ|D−1Lf (λ)
for a slowly varying function Lf which is bounded away from 0 on [0, π]. Moreover, as-
sume that limλ→0 Lf (λ) ∈ (0,∞] exists.

The following Lemma is needed for establishing an upper bound which is smaller than
that attained by Corollary 3.

Lemma 6 (Betken and Wendler (2015)). Given a time series ξn, n ∈ N, satisfying
Assumption 5, there exist constants CD ∈ (0,∞) and l0 ∈ N such that∣∣∣∣ l∑

i=1

xi

∣∣∣∣ ≤ CDlD/2
for all l ≥ l0 and for all x1, . . . , xl ∈ R with Var

(∑l
i=1 xiξi

)
= 1.

Proof. The assertion of this lemma is equivalent to the following statement: there exists
a constant C̃D ∈ (0,∞), such that for all x1, . . . , xl ∈ R with

∑l
i=1 xi = 1

Var

(
l∑

i=1

xiξi

)
≥ C̃Dl−D.

Assume that x?1, . . . , x
?
l ∈ R with

∑l
i=1 x

?
i = 1 denote the values of x1, . . . , xl minimizing

Var
(∑l

i=1 xiξi

)
. Then

µ̂(ξ1, . . . , ξn) ··=
l∑

i=1

x?i ξi

is the best linear unbiased estimator for µ ··= E ξ1. For a process ζn, n ∈ N, with spectral
density fζ(x) = 1

2π |1− e
ix|D−1, we have

Var (µ̂(ζ1, . . . , ζn)) ≥ C1l
−D

for a constant C1 ∈ (0,∞) by Theorem 5.1 in Adenstedt (1974). We rewrite the spectral
density fζ of ζn, n ∈ N, with the help of the spectral density f of ξn, n ∈ N, as

fζ(λ) = f(λ)g(λ), g(λ) ··=
∣∣1− eiλ∣∣D−1

2π|λ|D−1Lf (λ)
.

Note that the function g is bounded since Lf is bounded away from 0 by assumption.
Hence, we have

Var (µ̂(ξ1, . . . , ξn)) ≥ 1

g(0)
Var (µ̂(ζ1, . . . , ζn)) ≥ C̃Dl−D

for all l ≥ l0 by Lemma 4.4 in Adenstedt (1974).
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3.1. Sampling-window method

Beside a slightly stronger assumption on the spectral density of the Gaussian variables,
a restriction on the growth of Lγ guarantees an upper bound on ρk,l that improves the
one achieved by Corollary 3.

Assumption 6. Let ξn, n ∈ N, denote a stationary, long-range dependent Gaussian pro-
cess with mean 0, variance 1 and covariance function γ(k) ··= Cov(ξ1, ξk+1) = k−DLγ(k)
for some parameter D ∈ (0, 1) and some slowly varying function Lγ . Assume that there
exists a constant K ∈ (0,∞), such that for all k ∈ N

max
k+1≤j≤k+2l−2

|Lγ(k)− Lγ(j)| ≤ K l

k
min {Lγ(k), 1}

for l ∈ {lk, . . . , k}.

Lemma 7 (Betken and Wendler (2015)). Given a time series ξn, n ∈ N, satisfying
Assumptions 5 and 6, there exist constants C1, C2 ∈ (0,∞), such that

ρ (σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1))

≤ C1l
Dk−DLγ(k) + C2l

2k−D−1 max{Lγ(k), 1}

for all k ∈ N and all l ∈ {lk, . . . , k}.

Proof. It is shown in Kolmogorov and Rozanov (1960) that there exist real numbers
a1, . . . , al and b1, . . . , bl, such that

ρ (σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l ≤ j ≤ k + 2l − 1)) = Cov

 l∑
i=1

aiξi,

l∑
j=1

bjξk+l−1+j


and Var

(∑l
i=1 aiξi

)
= Var

(∑l
j=1 bjξk+l−1+j

)
= 1. The triangular inequality yields

∣∣∣∣∣∣Cov

 l∑
i=1

aiξi,
l∑

j=1

bjξk+l−1+j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
l∑

i=1

ai

l∑
j=1

bj

∣∣∣∣∣∣ |γ(k)|+
l∑

i=1

l∑
j=1

|ai||bj | |γ(k)− γ(k + l − 1 + j − i)| .

We will treat the two summands on the right-hand side separately. For the first term,
it follows by Lemma 6 that∣∣∣∣∣∣

l∑
i=1

ai

l∑
j=1

bj

∣∣∣∣∣∣ |γ(k)| =

∣∣∣∣∣
l∑

i=1

ai

∣∣∣∣∣
∣∣∣∣∣∣
l∑

j=1

bj

∣∣∣∣∣∣ |γ(k)| ≤ C1l
Dk−DLγ(k)

for some constant C1 ∈ (0,∞).
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3. Subsampling for long-range dependent time series

In order to derive an upper bound for the second summand, note that

|γ(k)− γ(j)| ≤ Lγ(k)
∣∣k−D − j−D∣∣+ |Lγ(k)− Lγ(j)|j−D

≤ Lγ(k)
(
k−D − (k + 2l − 2)−D

)
+ |Lγ(k)− Lγ(j)|k−D

for j ∈ {k + 1, . . . , k + 2l − 2}. By means of Taylor series expansion, we have

k−D − (k + 2l − 2)−D = Dk−D−1(2l − 2)− 1

2
D(D + 1)η−D−2(2l − 2)2

for some η ∈ {k, . . . , k + 2l − 2}. Due to Assumption 6,

|Lγ(k)− Lγ(j)|k−D ≤ Klk−D−1

for some constant K ∈ (0,∞). As a result, we get

|γ(k)− γ(j)| ≤ Clk−D−1 max{Lγ(k), 1}

for some constant C ∈ (0,∞). By Hölder’s inequality it then follows that

l∑
i=1

|ai| ≤

√√√√l
l∑

i=1

a2
i ≤
√
l
√
KD and

l∑
j=1

|bj | ≤

√√√√l
l∑

j=1

b2j ≤
√
l
√
KD.

Combining the previous inequalities, we conclude that

l∑
i=1

|ai|
l∑

j=1

|bj | |γ(k)− γ(k + l + j − i)| ≤ C2l
2k−D−1 max{Lγ(k), 1}

for some constant C2 ∈ (0,∞).

3.1.2. Consistency

As stated in Section 3.1, the sampling-window method is consistent if

mn−l∑
k=bnβc−l+1

ρk,l = o(mn) (3.3)

for some β ∈ (0, 1). In this section, (3.3) is shown to hold under two different sets of
assumptions.

According to the following theorem, the subsampling procedure is consistent under non-
restrictive conditions on the data-generating process, but for a severely limited choice
of the blocklength. At the same time, the subsequent theorem takes a loss of generality
concerning the data-generating process to the benefit of a less restrictive condition on
the blocklength.
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3.1. Sampling-window method

Theorem 8. Suppose that ξn, n ∈ N, is a time series satisfying Assumption 4. More-
over, let ln, n ∈ N, be an increasing, divergent sequence of integers. If ln = o(nD), then,
for some β ∈ (0, 1),

mn−ln∑
k=bnβc−ln+1

ρk,ln = o(mn).

In particular, it follows that the sampling-window method is consistent under these as-
sumptions.

Proof. As shown in the proof of Corollary 3, for some constant CD ∈ (0,∞)

mn−ln∑
k=bnβc−ln+1

ρk,ln . lnCD

mn−ln∑
k=bnβc−ln+1

k−DLγ(k), as n→∞,

with Lγ such that Cov(ξ1, ξk+1) = k−DLγ(k).
According to Proposition 1.1.4. in Pipiras and Taqqu (2017),

mn−ln∑
k=1

k−DLγ(k) ∼ Lγ(mn − ln)(mn − ln)1−D

1−D
, as n→∞.

Since Lγ is slowly varying, it follows from Potter’s bound that for any arbitrary small
δ > 0, there exist constants Cδ, xδ ∈ (0,∞) such that Lγ(x) ≤ Cδx

δ for x ≥ xδ; see
Theorem 1.5.6 in Bingham et al. (1987). As a result,

Lγ(mn − ln)(mn − ln)1−D

1−D
≤ Cδ(mn − ln)1−D+δ

1−D

for sufficiently large n. Therefore, (3.3) holds if ln = o(nD).

Finally, the following result shows that under additional assumptions on the slowly
varying functions Lf and Lγ , consistency holds for a less limited choice of the blocklength.

Theorem 9 (Betken and Wendler (2015)). Suppose that ξn, n ∈ N, is a time series
satisfying Assumptions 5 and 6. Moreover, let ln, n ∈ N, be an increasing, divergent
sequence of integers. If ln = O

(
n(1+D)/2−ε) for some ε > 0, then, for some β ∈ (0, 1),

mn−ln∑
k=bnβc−ln+1

ρk,ln = o(mn).

In particular, it follows that the sampling-window method is consistent under these as-
sumptions.
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3. Subsampling for long-range dependent time series

Remark 11. Theorem 8 and Theorem 9 both hold for Gaussian processes ξn, n ∈ N,
with spectral density f(λ) = |λ|D−1Lf (λ) characterized by D < 1. If D > 1, the process
ξn, n ∈ N, is strongly mixing due to Theorem 9.8 in Bradley (2007) and consistency
follows from Corollary 3.2 in Politis and Romano (1994) for any blocklength ln that
tends to ∞ and satisfies ln = o(n).

Proof of Theorem 9. Let ε > 0. By assumption, ln ≤ Cln
α for α ··= 1

2(1 + D) − ε and
some constant Cl ∈ (0,∞). As a consequence of Potter’s Theorem, for every δ > 0,
there exists a constant Cδ ∈ (0,∞) such that Lγ(k) ≤ Cδk

δ for all k ∈ N; see Theorem
1.5.6 in Bingham et al. (1987).
Moreover, we choose β > α and n large enough such that ln <

1
2bn

βc. According to this,
Lemma 7 yields

1

mn

mn−ln∑
k=bnβc−ln+1

ρk,ln

≤ C1l
D
n

1

mn

mn−ln∑
k=bnβc−ln+1

k−DLγ(k) + C2
l2n
mn

mn−ln∑
k=bnβc−ln+1

k−D−1 max{Lγ(k), 1}

≤ CδC1
lDn
mn

mn−ln∑
k=bnβc/2

k−D+δ + CδC2
l2n
mn

mn−ln∑
k=bnβc/2

k−D−1+δ

≤ C
(
nDα−βD+βδ + n2α−βD−β+δβ

)
for some constant C ∈ (0,∞). By definition of α and for a suitable choice of β, the
right-hand side of the above inequality converges to 0.

Due to the assumptions on the blocklength in Theorems 8 and 9, an increase of the
parameter D implies a stronger restriction on the range of possible values for ln. A
popular choice for the blocklength is ln = c

√
n for some constant c; see for example Hall

et al. (1998). For long-range dependent time series with LRD parameter D, this choice
is compatible with the requirements of Theorem 8 for every D ∈

(
1
2 , 1
)

and with those
of Theorem 9 for every D ∈ (0, 1).
Neither of both consistency results makes any restrictive demands concerning the statis-
tic Tn or the transformation G, such as finite moments of the data-generating variables,
continuity of G or continuity of the considered statistics. As a result, both theorems are
applicable to heavy-tailed random variables and robust test statistics. Yet, Theorems 8
and 9 impose conditions on the Gaussian variables that underlie the data-generating
processes. In the following, it is shown that these assumptions hold for two standard
examples of long-range dependent Gaussian processes.

Example 3 (Fractional Gaussian noise). By means of Taylor series expansion, the
covariance function of a fractional Gaussian noise time series ξn, n ∈ N, with Hurst
parameter H can be rewritten as

γ(k) = H(2H − 1)
(
k−D + h(k)k−D−1

)
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3.1. Sampling-window method

for D = 2− 2H and a function h, bounded by a finite constant M . Hence,

Lγ(k) = H(2H − 1)
(
1 + h(k)k−1

)
and for all j ≥ k

|Lγ(k)− Lγ(j)| ≤ H(2H − 1)
∣∣h(k)k−1 − h(j)j−1

∣∣ ≤ 2H(2H − 1)Mk−1.

The above inequality implies Assumption 6.
Moreover, note that the spectral density f of a fractional Gaussian noise time series is
given by

f(λ) = CH(1− cos(λ))

∞∑
k=−∞

|λ+ 2kπ|D−3

= λD−1CH
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3

for some constant CH ; see Sinai (1976). The slowly varying function

Lf (λ) ··= CH
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3

is bounded away from 0, because∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3
≥ 1,

and since (1 − cos(λ))λ−2 is bounded away from 0. Moreover, Lf (λ) decreases mono-
tonically as λ approaches 0. As a result, limλ→0 Lf (λ) exists due to the monotone
convergence theorem. Therefore, Assumption 5 holds as well.

Example 4 (Gaussian FARIMA processes). Let ηk, k ∈ Z, be a Gaussian white noise
process with variance σ2 = Var η0. Then, for d ∈ (0, 1/2), the process

ξi =
∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
ηi−j , i ≥ 1,

is a Gaussian FARIMA(0, d, 0) process.
By Corollary 1.3.4 in Pipiras and Taqqu (2017), we have

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(k + d)

Γ(k − d+ 1)
.

Stirling’s formula yieldsf Γ(x) =
(

2π
x

)1/2 (x
e

)x (
1 +O(x−1)

)
, so that

log

(
Γ(k + d)

Γ(k − d+ 1)

)
= 1− 2d+ log

(
(k + d)k+d− 1

2

(k − d+ 1
2)k−d+1

)
+ log

(
1 +O

(
1

k

))
.
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3. Subsampling for long-range dependent time series

It follows that

γ(k) = k2d−1e1−2d

(
k + d

k

)k+d− 1
2
(

k

k − d+ 1

)k−d+ 1
2
(

1 +O
(

1

k

))
.

By means of Taylor series expansion,

log

[(
k + d

k

)k+d− 1
2
(

k

k − d+ 1

)k−d+ 1
2

]
= 2d− 1 +O

(
1

k

)
.

All in all, the previous calculations yield

γ(k) = k−D
(
C +O

(
1

k

))
for some constant C. Therefore, Assumption 6 follows in the same way as in Example 3.
According to Pipiras and Taqqu (2017), the spectral density corresponding to a Gaussian
FARIMA(0, d, 0) process is given by

f(λ) =
σ2

2π
|1− e−iλ|−2d = |λ|D−1 σ

2

2π

(
|λ|

|1− e−iλ|

)1−D

with D = 1− 2d ∈ (0, 1). The slowly varying function

Lf (λ) ··=
σ2

2π

(
|λ|

|1− e−iλ|

)1−D

is bounded away from 0 since |1− e−iλ| ≤ |λ|. Moreover, limλ→0
|λ|

|1−e−iλ| = 1√
2
, so that

limλ→0 Lf (λ) exists and Assumption 5 holds.

Remark 12. Bai et al. (2016) show that the sampling-window method is consistent for a
studentized version of the sample mean under the assumption of subordinated Gaussian
processes, without any additional conditions on the slowly varying functions Lγ and
Lf , but with a stronger restriction on the blocklength ln, namely ln = o(nDLγ(n)). In
fact, this result can be easily extended to general statistics. In another article by Bai
and Taqqu (2015), the validity of subsampling is shown to hold whenever ln = o(n),
i.e. under the mildest possible assumption on the blocklength. However, in this case,
the condition on the spectral density is slightly stronger than Assumption 5; the case
limλ→0 Lf (λ) =∞ is excluded.
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3.2. Simulations

3.2. Simulations

In the following, the finite sample performance of the sampling-window method is inves-
tigated in the context of testing for changes in the mean of a given set of observations
X1, . . . , Xn. More precisely, we apply the subsampling procedure to decide on the testing
problem:

H : EX1 = · · · = EXn

against

A : EX1 = · · · = EXk 6= EXk+1 = · · · = EXn for some k ∈ {1, . . . , n− 1}.

For this purpose, recall that the Wilcoxon change-point test, considered in Section 1.2.2,
is based on the statistic

Wn ··= max
1≤k≤n−1

|Wk,n| , Wk,n =

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
,

while the self-normalized Wilcoxon change-point test, considered in Section 1.2.3, bases
test decisions on an evaluation of the test statistic

SWn(τ1, τ2) = max
bnτ1c≤k≤bnτ2c

∣∣∣∣Wk,n

Vk,n

∣∣∣∣ , V 2
k,n
··=

1

n

k∑
t=1

S2
t (1, k) +

1

n

n∑
t=k+1

S2
t (k + 1, n)

with

St(j, k) ··=
t∑

h=j

(
Rh − R̄j,k

)
, R̄j,k ··=

1

k − j + 1

k∑
t=j

Rt,

and with R1, . . . , Rn denoting the ranks of the observations.
The finite sample performance of the sampling-window method is compared to the per-
formance of the change-point tests that generate test decisions on the basis of critical
values obtained from the asymptotic distribution of the test statistics. The rejection
rates of both testing procedures are computed for simulated subordinated Gaussian
time series Xn, n ∈ N, Xn = G(ξn), where ξn, n ∈ N, is a fractional Gaussian noise
sequence generated by the function fgnSim from the fArma package in R.
We consider two different scenarios:

1. Normal margins: We choose G(t) = t, so that the variables Xn, n ∈ N, are standard
normally distributed.

2. Pareto margins: We choose

G(t) =

(
αk2

(α− 1)2(α− 2)

)− 1
2
(
k(Φ(t))−

1
α − αk

α− 1

)
with parameters k, α > 0 and with Φ denoting the standard normal distribution
function, so that the variables Xn, n ∈ N, are Pareto(α, k)-distributed; see Exam-
ple 1.
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3. Subsampling for long-range dependent time series

In both cases, the Hermite rank r of 1{G(ξi)≤x} − F (x), x ∈ R, equals 1; see Section 2.4.

As a result, 1
ndn,1

Wn converges in distribution to

sup
t∈[0,1]

|BH(t)− tBH(1)|
∣∣∣∣∫

R
J1(x)dF (x)

∣∣∣∣ ,
where, due to the consideration of time series generated by strictly monotone trans-

formations of fractional Gaussian noise, dn,1 ∼ n1−D
2 and

∣∣∫
R J1(x)dF (x)

∣∣ = 1
2
√
π

; see

Theorem 2 in Dehling et al. (2013).
According to Theorem 1 in Betken (2016), the self-normalized test statistic SWn(τ1, τ2)
converges in distribution to

sup
t∈[τ1,τ2]

|BH(t)− tBH(1)|{∫ ′
0
V 2
H(s; 0, λ)ds+

∫ 1

t
V 2
H(s; t, 1)ds

} 1
2

with

VH(t; t1, t2) = BH(t)−BH(t1)− t− t1
t2 − t1

{BH(t2)−BH(t1)} .

To generate test decisions based on the asymptotic distributions of the test statistics,
critical values can be taken from Table 1 and Table 2 in Betken (2016).
For both testing procedures, the frequencies of rejections are reported in Table 3.1 and
Table 3.2 for the self-normalized Wilcoxon change-point test, and in Table 3.3 and Ta-
ble 3.4 for the non-self-normalized Wilcoxon test. The calculations are based on 5, 000
realizations of time series with sample sizes n = 300 and n = 500. For the applica-
tions of the sampling-window method, block lengths ln = bnγc with γ ∈ {0.4, 0.5, 0.6}
are considered. The values of the test statistic are compared to the 95%-quantile of
its asymptotic distribution and the 95%-quantile of the empirical distribution function
F̂mn,ln , i.e. the significance level is chosen to be 5%.
For a comparison of the test statistics with the asymptotic critical values, the estimation
of the Hermite rank r, the slowly varying function Lγ and the integral

∫
J1(x)dF (x) is

neglected. Nevertheless, for every simulated time series, the Hurst parameter H is esti-
mated by the local Whittle estimator Ĥ as proposed in Künsch (1987). This estimator
is based on an approximation of the spectral density by the periodogram at the Fourier
frequencies. It depends on the spectral bandwidth parameter bn which denotes the num-
ber of Fourier frequencies used for the estimation. If the bandwidth parameter satisfies
1
bn

+ bn
n −→ 0, as n −→ ∞, the local Whittle estimator is a consistent estimator for H;

see Robinson (1995). For convenience, we always chose bn = bn2/3c. The critical val-
ues corresponding to the estimated values of H are determined by linear interpolation.
Under the alternative A, the power of the testing procedures is analyzed by considering
different choices for the height of the level shift, denoted by h, and the location of the
change-point, denoted by τ . In the tables, the columns that are superscribed by h = 0
correspond to the frequency of a type 1 error, i.e. the rejection rate under the hypothesis.
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The following observations correspond to the expected behavior of change-point tests
and can be made with respect to all four testing procedures and Gaussian as well as
Pareto-distributed time series:

• An increasing sample size goes along with an improvement of the finite sample
performance, i.e. the empirical size approaches the level of significance and the
empirical power increases.

• The empirical power of the testing procedures increases when the height of the
level shift increases.

• The empirical power is higher for breakpoints located in the middle of the sample
than for change-point locations that lie close to the boundary of the testing region.

A comparison of the testing procedures with respect to the non-self-normalized Wilcoxon
statistic shows that:

• For both testing procedures, the empirical size is, in most cases, not close to the
nominal level of significance, ranging from 1.1% to 20.8% using subsampling and
from 2.6% to 36.0% using asymptotic critical values.

• In general, the sampling-window method becomes more conservative for higher
values of the Hurst parameter H, while test decisions based on the asymptotic
distribution become more liberal.

• Under the alternative, test decisions which are based on asymptotic critical values
yield a higher empirical power than the sampling-window method, especially for
high values ofH. However, a comparison of the rejection rates under the alternative
has to be seen in view of the fact that under the hypothesis the rejection frequencies
of the testing procedures differ.

A comparison of the testing procedures with respect to the self-normalized Wilcoxon
statistic shows that:

• For Gaussian time series, the empirical size, computed on the basis of the statis-
tic’s asymptotic distribution, almost equals the level of significance of 5%. The
sampling-window method yields rejection rates that slightly exceed the significance
level.

• For Pareto(3, 1)-distributed time series, both testing procedures lead to similar
results and tend to reject the hypothesis too often when there is no change.

• For fractional Gaussian noise time series, the sampling-window method yields con-
siderably better power than the test which is based on asymptotic critical values.

• For Pareto(3, 1)-distributed time series, the empirical power that results from an
application of the sampling-window method exceeds the empirical power achieved
by test decisions based on asymptotic critical values. However, in this case, the
deviations of the rejection rates are rather small.
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3. Subsampling for long-range dependent time series

• For both testing procedures and Gaussian as well as Pareto(3, 1)-distributed time
series, the empirical size is not much affected by the value of the Hurst parameter
H, while the empirical power tends to decrease as H increases.

All in all, the self-normalized Wilcoxon change-point test seems to be more reliable than
the non-self-normalized change-point test. This may be due to the fact that in the
original scaling of the Wilcoxon statistic, the estimator of the Hurst parameter enters as
a power of the sample size n. Thus, a small error in the estimation of H might lead to a
large error in the value of the test statistic. By using the sampling-window method for
the self-normalized Wilcoxon statistic, an estimation of unknown parameters is avoided,
so that the performances of the different testing procedures are similar.
In most cases covered by the simulations, the choice of the block length for the sampling-
window method does not have a significant impact on the frequency of a type 1 error.
Considering the classical Wilcoxon statistic, an increase of the block length results in
a higher frequency of rejections. For applications of the sampling-window method to
the self-normalized Wilcoxon change-point test, the choice of the block length has the
opposite effect: an increase of the block length tends to go along with a decrease in
power, especially for big values of the Hurst parameter H and Pareto-distributed random
variables. For smaller values of H, the effect is not pronounced, though.
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sampling-window method asymptotic distribution

τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

fGn n ln h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 9 0.041 0.263 0.700 0.502 0.952
17 0.064 0.313 0.742 0.570 0.964 0.044 0.209 0.521 0.424 0.861
30 0.070 0.322 0.705 0.555 0.943

500 12 0.053 0.396 0.859 0.697 0.994
22 0.060 0.421 0.861 0.720 0.995 0.049 0.303 0.687 0.577 0.958
41 0.069 0.411 0.829 0.697 0.991

H = 0.7 300 9 0.057 0.155 0.412 0.291 0.759
17 0.070 0.171 0.423 0.313 0.763 0.053 0.108 0.268 0.228 0.611
30 0.077 0.177 0.403 0.314 0.737

500 12 0.056 0.183 0.513 0.382 0.856
22 0.059 0.193 0.508 0.382 0.854 0.048 0.133 0.359 0.302 0.730
41 0.065 0.192 0.476 0.387 0.819

H = 0.8 300 9 0.070 0.126 0.251 0.223 0.526
17 0.067 0.117 0.234 0.208 0.494 0.048 0.081 0.144 0.141 0.362
30 0.073 0.114 0.218 0.201 0.466

500 12 0.066 0.121 0.295 0.217 0.591
22 0.068 0.114 0.278 0.210 0.567 0.053 0.085 0.198 0.163 0.462
41 0.069 0.119 0.257 0.205 0.532

H = 0.9 300 9 0.093 0.126 0.208 0.209 0.462
17 0.074 0.097 0.161 0.169 0.397 0.057 0.065 0.106 0.125 0.308
30 0.073 0.095 0.145 0.165 0.367

500 12 0.079 0.105 0.194 0.185 0.461
22 0.067 0.091 0.166 0.162 0.416 0.051 0.068 0.120 0.128 0.350
41 0.063 0.087 0.146 0.152 0.391

Table 3.1.: Rejection rates of the self-normalized Wilcoxon change-point test obtained by comparison with asymptotic critical values
(right) and subsampling (left) with block length ln = bnγc, γ ∈ {0.4, 0.5, 0.6} for fractional Gaussian noise time series of length n
with Hurst parameter H.75
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sampling-window method asymptotic distribution

τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

Pareto n ln h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 9 0.041 0.847 0.977 0.990 1.000
17 0.067 0.871 0.946 0.990 1.000 0.056 0.820 0.912 0.984 0.999
30 0.070 0.831 0.946 0.979 1.000

500 12 0.055 0.947 0.997 0.999 1.000
22 0.066 0.946 0.994 0.999 1.000 0.061 0.920 0.970 0.996 1.000
41 0.071 0.921 0.976 0.996 1.000

H = 0.7 300 9 0.057 0.571 0.821 0.990 0.994
17 0.064 0.527 0.738 0.876 0.990 0.070 0.529 0.702 0.856 0.982
30 0.077 0.527 0.738 0.842 0.975

500 12 0.066 0.693 0.904 0.949 0.999
22 0.068 0.684 0.893 0.942 0.998 0.076 0.663 0.820 0.940 0.995
41 0.072 0.632 0.838 0.921 0.994

H = 0.8 300 9 0.070 0.355 0.574 0.703 0.931
17 0.068 0.284 0.454 0.666 0.905 0.072 0.297 0.428 0.640 0.875
30 0.073 0.284 0.454 0.633 0.857

500 12 0.064 0.401 0.609 0.738 0.948
22 0.063 0.379 0.581 0.714 0.933 0.069 0.369 0.510 0.715 0.920
41 0.064 0.345 0.509 0.688 0.903

H = 0.9 300 9 0.093 0.253 0.396 0.597 0.832
17 0.071 0.168 0.254 0.532 0.772 0.073 0.165 0.236 0.499 0.738
30 0.073 0.168 0.254 0.482 0.729

500 12 0.073 0.256 0.405 0.585 0.839
22 0.064 0.219 0.340 0.547 0.802 0.068 0.199 0.296 0.529 0.782
41 0.065 0.190 0.296 0.503 0.762

Table 3.2.: Rejection rates of the self-normalized Wilcoxon change-point test obtained by comparison with asymptotic critical values
(right) and by subsampling (left) with block length ln = bnγc, γ ∈ {0.4, 0.5, 0.6} for Pareto(3, 1)-transformed fractional Gaussian
noise time series of length n with Hurst parameter H.
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3.2.
S
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s

sampling-window method asymptotic distribution

τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

fGn n ln h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 9 0.066 0.20 0.232 0.386 0.591
17 0.054 0.223 0.411 0.439 0.784 0.026 0.096 0.160 0.223 0.727
30 0.059 0.264 0.529 0.663 0.870

500 12 0.063 0.285 0.436 0.569 0.856
22 0.058 0.345 0.663 0.627 0.952 0.036 0.148 0.256 0.378 0.897
41 0.062 0.397 0.789 0.683 0.975

H = 0.7 300 9 0.052 0.080 0.088 0.162 0.302
17 0.049 0.095 0.158 0.206 0.466 0.035 0.067 0.228 0.167 0.665
30 0.051 0.120 0.227 0.267 0.593

500 12 0.042 0.104 0.153 0.249 0.539
22 0.039 0.131 0.267 0.287 0.689 0.030 0.079 0.259 0.225 0.714
41 0.046 0.160 0.373 0.343 0.789

H = 0.8 300 9 0.028 0.030 0.031 0.054 0.092
17 0.029 0.038 0.048 0.075 0.179 0.077 0.153 0.421 0.245 0.673
30 0.034 0.057 0.088 0.070 0.272

500 12 0.023 0.031 0.036 0.064 0.162
22 0.028 0.044 0.070 0.097 0.273 0.050 0.112 0.439 0.226 0.714
41 0.039 0.071 0.129 0.137 0.391

H = 0.9 300 9 0.009 0.010 0.006 0.016 0.020
17 0.009 0.014 0.009 0.021 0.060 0.36 0.484 0.739 0.524 0.830
30 0.015 0.029 0.028 0.011 0.153

500 12 0.008 0.006 0.003 0.015 0.026
22 0.011 0.009 0.011 0.029 0.086 0.319 0.439 0.743 0.511 0.845
41 0.021 0.021 0.032 0.058 0.197

Table 3.3.: Rejection rates of the non-self-normalized Wilcoxon change-point test obtained by comparison with asymptotic critical
values (right) and by subsampling (left) with block length ln = bnγc, γ ∈ {0.4, 0.5, 0.6} for fractional Gaussian noise time series of
length n with Hurst parameter H.77
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sampling-window method asymptotic distribution

τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

Pareto n ln h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 9 0.170 0.949 0.742 0.991 0.923
17 0.130 0.963 0.861 0.996 0.991 0.108 0.938 0.985 0.998 1.000
30 0.109 0.962 0.871 0.998 0.998

500 12 0.163 0.991 0.916 1.000 0.993
22 0.132 0.997 0.976 1.000 0.999 0.128 0.988 0.999 1.000 1.000
41 0.114 0.997 0.989 1.000 1.000

H = 0.7 300 9 0.224 0.785 0.568 0.939 0.796
17 0.175 0.802 0.680 0.955 0.949 0.179 0.833 0.969 0.974 0.999
30 0.140 0.789 0.708 0.959 0.976

500 12 0.208 0.921 0.763 0.989 0.956
22 0.167 0.931 0.862 0.992 0.996 0.191 0.940 0.994 0.996 1.000
41 0.143 0.925 0.891 0.994 0.998

H = 0.8 300 9 0.203 0.508 0.326 0.743 0.565
17 0.160 0.496 0.347 0.776 0.808 0.204 0.729 0.925 0.918 0.993
30 0.137 0.484 0.364 0.791 0.881

500 12 0.190 0.639 0.445 0.865 0.770
22 0.160 0.649 0.513 0.886 0.929 0.212 0.805 0.963 0.948 0.999
41 0.137 0.626 0.556 0.890 0.961

H = 0.9 300 9 0.128 0.150 0.077 0.320 0.336
17 0.097 0.128 0.071 0.403 0.550 0.309 0.712 0.901 0.848 0.966
30 0.092 0.125 0.077 0.481 0.677

500 12 0.112 0.159 0.089 0.402 0.436
22 0.100 0.161 0.101 0.518 0.680 0.27 0.726 0.911 0.851 0.975
41 0.095 0.170 0.106 0.571 0.771

Table 3.4.: Rejection rates of the non-self-normalized Wilcoxon change-point test obtained by comparison with asymptotic critical
values (right) and by subsampling (left) with block length ln = bnγc, γ ∈ {0.4, 0.5, 0.6}, for Pareto(3, 1)-transformed fractional
Gaussian noise time series of length n with Hurst parameter H.

7
8



4. Testing for change-points in LMSV time
series

The analysis of financial time series, such as stock market prices, usually focuses on
log-returns instead of the observed data itself. One of the reason why is that in general
price data cannot be assumed to stem from stationary processes, whereas the log-returns
display features of stationary time series. As an example, we consider the daily closing
indices of Standard & Poor’s 500 (S&P 500, in short) and its log-returns, defined by

Lt ··= logRt, Rt ··=
Pt
Pt−1

,

where Pt denotes the value of the index on day t, in the period from January 2005 to
December 2010; see Figure 4.1. The plots show that the considered time series exhibits
volatility clustering, meaning that large price changes, i.e. log-returns with relatively
large absolute values, tend to cluster.
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Figure 4.1.: Daily closing index of Standard & Poor’s 500 and its log-returns from January 2005
to December 2010. The data has been obtained from Google Finance.

Comparing the plots of the sample autocorrelation function of the log-returns and the
sample autocorrelation function of their absolute values in Figure 4.2, we observe a
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4. Testing for change-points in LMSV time series
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Figure 4.2.: Sample autocorrelation of the log-returns and the absolute log-returns of Standard &
Poor’s 500 daily closing index from January 2005 to December 2010. The two dashed horizontal
lines mark the bounds for the 95% confidence interval of the autocovariances under the assumption
of data generated by white noise.

phenomenon that is often encountered in the context of financial data: the log-returns
of the index appear to be uncorrelated, whereas the absolute log-returns tend to be
highly correlated.

Another characteristic of financial time series is the occurrence of heavy tails. In partic-
ular, probability distributions of log-returns often exhibit tails which are heavier than
those of a normal distribution. For the S&P 500 data, this property is highlighted by
the Q-Q plot in Figure 4.3.
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Figure 4.3.: Q-Q plot for the log-returns of Standard & Poor’s 500 daily closing index from
January 2005 to December 2010.
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4.1. Long Memory Stochastic Volatility model

4.1. Long Memory Stochastic Volatility model

All of the previously described features of financial data can be covered by stochastic
volatility models. While these models are often restricted to modeling a relatively fast
decay of dependence in the data, the so-called long memory stochastic volatility (LMSV)
model allows for long-range dependence. In this sense, the LMSV model can be con-
sidered as a generalization of stochastic volatility models considered, for example, in
Taylor (1986). Initially, the LMSV model had been introduced by Breidt et al. (1998)
and, independently, by Harvey (2002). An overview of stochastic volatility models with
long-range dependence and their basic properties is given in Deo et al. (2006) and in
Hurvich and Soulier (2009).
Definitions of LMSV time series Xn, n ∈ N, are typically based on the assumption that

Xn = Ynεn with Yn = exp

(
1

2
ξn

)
,

where εn, n ∈ N, is an independent, identically distributed sequence of random variables
with mean 0, and ξn, n ∈ N, is a Gaussian process, independent of εn, n ∈ N.
The LMSV model considered in this thesis generalizes the preceding concepts of stochas-
tic volatility models with long-range dependence by allowing for general subordinated
Gaussian sequences Yn, n ∈ N, and dependence between ξn, n ∈ N, and εn, n ∈ N.

Model 2. Let the data generating process Xn, n ∈ N, satisfy

Xn = Ynεn, n ∈ N,

where εn, n ∈ N, is an independent, identically distributed sequence of random variables
with mean 0, and Yn, n ∈ N, is a long-range dependent subordinated Gaussian process
according to Definition 7 in Chapter 1 with Yn = σ(ξn), n ∈ N, for some stationary, long-
range dependent Gaussian process ξn, n ∈ N, with LRD parameter D and a non-negative
measurable function σ (not equal to 0). More precisely, assume that ξn, n ∈ N, admits
a linear representation with respect to an independent, standard normally distributed
sequence ηk, k ∈ Z, i.e.

ξn =
∞∑
k=1

ckηn−k, n ∈ N,

with
∑∞

k=1 c
2
k = 1. Furthermore, suppose that (εn, ηn) is a sequence of independent,

identically distributed random . A sequence of random variables Xn, n ∈ N, which
satisfies the previous assumption is called a long memory stochastic volatility time series.

Remark 13. Although the usage of the term LMSV often presupposes that the sequences
ξn, n ∈ N, and εn, n ∈ N, are independent, less restrictive assumptions are imposed by
Model 2: instead of claiming mutual independence of ξn, n ∈ N, and εn, n ∈ N, the
sequence of random vectors (ηn, εn) is assumed to be independent.
In particular, this implies that for a fixed index j, the random variables ξj and εj are
independent, while ξj may depend on εi, i < j. Except for this so-called leverage effect,
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4. Testing for change-points in LMSV time series

Model 2 corresponds to the LMSV model considered in Kulik and Soulier (2011). In
many cases, this version of the LMSV model is also referred to as LMSV with leverage.

Note that, given an LMSV time series Xn, n ∈ N,

γ(k) ··= Cov(X1, Xk+1) = 0, k ≥ 1.

Assuming mutual independence of ξn, n ∈ N, and εn, n ∈ N, it follows that

Cov(X2
1 , X

2
k+1) = (Var ε1)2 Cov(Y 2

1 , Y
2
k+1).

Accordingly, the random variables Xn, n ∈ N, are uncorrelated, while their squares
inherit the dependence structure from the subordinated Gaussian sequence Yn, n ∈ N.
Under the assumption that the marginal distribution of the random variables εn, n ∈ N,
has a regularly varying right tail, i.e. F̄ε(x) ··= P (ε1 > x) = x−αL(x) for some α > 0 and
a slowly varying function L, and that Eσα+δ(ξ1) <∞ for some δ > 0, the tail behavior
of the sequence Xn, n ∈ N, can be related to the tail behavior of εn, n ∈ N, by the
following asymptotic equivalence:

P (X1 > x) ∼ Eσα(ξ1)P (ε1 > x), as x→∞,

i.e. the variables Xn, n ∈ N, inherit the tail behavior from the sequence εn, n ∈ N. This
result is known as Breiman’s Lemma; see Breiman (1965).

4.2. The sequential empirical process of subordinated LMSV
time series

In this section, we study the sequential empirical process of subordinated LMSV time
series, i.e. given a time series Xn, n ∈ N, satisfying the conditions specified by Model 2
and a measurable function ψ, we consider the two-parameter empirical process en(x, t),
x ∈ [−∞,∞], t ∈ [0, 1], defined by

en(x, t) ··=
bntc∑
j=1

(
1{ψ(Xj)≤x} − Fψ(X1)(x)

)
, x ∈ [−∞,∞] , t ∈ [0, 1],

with Fψ(X1) denoting the distribution function of ψ(X1).
As noted in Section 1.2.2, the asymptotic distribution of the Wilcoxon change-point
test statistic can be derived from the limit behavior of the two-parameter empirical
process. Beyond change-point analysis, the theory of empirical processes has many other
applications in non-parametric statistics. For instance, the asymptotic distribution of
certain classes of statistics such as V- or U-statistics can be derived from empirical
process limit theorems. For this reason, the theoretical results in this section are of
independent interest.
For subordinated Gaussian time series, the asymptotic behavior of the empirical process
has been characterized in Dehling et al. (2013); see also Theorem 3 in Section 1.2.2.
For subordinated long memory stochastic volatility time series, the following theorem
constitutes an analogous result.
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4.2. The sequential empirical process of subordinated LMSV time series

Theorem 10 (Betken and Kulik (2017)). Suppose Xn, n ∈ N, satisfies the conditions
specified by Model 2 and let ψ be a measurable function. Moreover, assume that∫

R

d

dy
Ψx(y)dy <∞, (4.1)

where Ψx(y) ··= P (ψ(yε1) ≤ x). Let r denote the Hermite rank of the class of functions
1{σ(ξ1)≤x}−Fσ(ξ1)(x), x ∈ R, with Fσ(ξ1) denoting the distribution function of σ(ξ1), and
let dn,r denote the normalizing sequence defined by (1.5) in Section 1.2.2. If rD < 1,
then

1

dn,r
en(x, t)

D−→ 1

r!
Jr(Ψx ◦ σ)Zr,H(t), x ∈ [−∞,∞] , t ∈ [0, 1] , (4.2)

with Zr,H denoting an r-th order Hermite process, H = 1− rD
2 , and

D−→ convergence in
distribution with respect to the σ-field generated by the open balls in D ([−∞,∞]× [0, 1])
equipped with the supremum norm.

To prove Theorem 10, define a sequence of σ-fields Fj , j ∈ N, by

Fj ··= σ (εj , εj−1, . . . , ηj , ηj−1, . . .) ,

i.e. Fj denotes the σ-field generated by the random variables εj , εj−1, . . . , ηj , ηj−1, . . ..
Due to this construction, εj is independent of Fj−1 and Yn is Fj−1-measurable.

To prove Theorem 10, we consider the following decomposition:

en(x, t) = Mn(x, t) +Rn(x, t),

where

Mn(x, t) ··=
bntc∑
j=1

(
1{ψ(Xj)≤x} − E

(
1{ψ(Xj)≤x} | Fj−1

))
,

Rn(x, t) ··=
bntc∑
j=1

(
E
(

1{ψ(Xj)≤x} | Fj−1

)
− Fψ(X1)(x)

)
.

For fixed x ∈ R, we write

Mn(t) ··= Mn(x, t) =

bntc∑
j=1

ζj(x)

with

ζj(x) = 1{ψ(Xj)≤x} − E
(

1{ψ(Xj)≤x} | Fj−1

)
.
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4. Testing for change-points in LMSV time series

Note thatMn(t) is a martingale with respect to the filtration Fbntc, t ≥ 0. For this reason,
Mn is called the Martingale part. Since the asymptotic behavior of Rn is determined by
the dependence structure of the long-range dependent subordinated Gaussian sequence
σ(ξn), n ∈ N, we refer to Rn as the long-range dependent part.
The following two subsections show that n−1/2Mn(x, t) = OP (1) uniformly in x and t,
while d−1

n,rRn(x, t) converges in distribution to the limit process in formula (4.2). Theo-
rem 10 then follows because

√
n = o(dn,r).

4.2.1. Martingale part

For fixed x ∈ R, the following lemma characterizes the asymptotic distribution of the
martingale part Mn(x, t).

Lemma 8 (Betken and Kulik (2017)). Under the conditions of Theorem 10,

1√
n
Mn(x, t)

D−→ β(x)B(t), t ∈ [0, 1],

where B(t), t ∈ [0, 1], denotes a Brownian motion, β2(x) ··= E ζ2
1 (x) and convergence

holds in D[0, 1] for every x ∈ R.

Proof. Define

ζn,j ··= n−
1
2 ζj(x) = Xn,j(x)− E(Xn,j(x) | Fj−1)

with Xn,j(x) ··= n−
1
2 1{ψ(Xj)≤x}. To show convergence in D[0, 1], we apply the functional

martingale central limit theorem stated in Theorem 18.2 of Billingsley (1999). For this,
we have to show that

bntc∑
j=1

E
(
ζ2
n,j | Fj−1

) D−→ β(x)t

for every t ∈ [0, 1], and that

lim
n→∞

bntc∑
j=1

E
(
ζ2
n,j1{|ζn,j |≥ε}

)
= 0

for every t ∈ [0, 1] and every ε > 0. The latter requirement is known as Lindeberg
condition. Due to Lemma 3.3 in Dvoretzky (1972), it suffices to prove that

lim
n→∞

bntc∑
j=1

E
(
X2
n,j(x)1{|Xn,j(x)|≥ ε

2}
)

= 0, (4.3)

in order to show that the Lindeberg condition holds. As the indicator function is
bounded, the summands on the left-hand side of (4.3) vanish for sufficiently large n
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and hence convergence to 0 follows. Furthermore, the random variable E(ζ2
j (x) | Fj−1)

can be considered as a measurable function of the random variable Yj and therefore as
a function of ηj−n, n ∈ N. As a result, E

(
ζ2
n(x) | Fn−1

)
, n ∈ N, is an ergodic sequence

and it follows by the ergodic theorem that

bntc∑
j=1

E
(
ζ2
n,j | Fj−1

)
=
bntc
n

1

bntc

bntc∑
j=1

E
(
ζ2
j (x) | Fj−1

) P−→ tE ζ2
1 (x)

for every t ∈ [0, 1].

Lemma 8 implies tightness of n−
1
2Mn(x, t) in D[0, 1] for fixed x ∈ R. However, to prove

Theorem 10, we have to verify tightness in D([−∞,∞] × [0, 1]). For this purpose, the
notion of canonical stopping times for two-parameter processes is introduced:

Definition 12 (Ivanoff (1983)). Let (Ω,F , P ) be a probability space, X a random
element with values in D ([0, 1]× [0, 1]) and {F(s, t) | (s, t) ∈ [0, 1]× [0, 1]} an increasing,
right-continuous family of sub-σ-fields of F with X(s, t) being adapted to F(s, t). A
random variable S is called a 1-stopping time relative to F(s, t) if {S ≤ s} is measurable
with respect to F(s, 1). A random variable T is called a 2-stopping time relative to
F(s, t) if {T ≤ t} is measurable with respect to F(1, t). S is a canonical 1-stopping time
for X if S is a 1-stopping time belonging to a set of the form

Sε ··=
{
S0 = 0, Si = inf

{
s : sup

t∈B
|X(s, t)−X(Si−1, t)| > ε

}
, i = 1, 2, . . .

}
,

where B ⊆ [0, 1] is a closed set. T is a canonical 2-stopping time for X if T is a 2-stopping
time belonging to a set of the form

Tε ··=
{
T0 = 0, Ti = inf

{
t : sup

s∈B
|X(s, t)−X(s, Ti−1)| > ε

}
, i = 1, 2, . . .

}
,

where B ⊆ [0, 1] is a closed set.

For the proof of two-parameter tightness, Theorem 3.1 in Ivanoff (1983) is needed:

Theorem 11 (Ivanoff (1983)). Let (Ωn,Fn, Pn), n ∈ N, be a sequence of probability
spaces such that Xn is a random element with values in D ([0, 1]× [0, 1]) for each n, and
the process Xn(x, t) is adapted to a complete, right-continuous filtration Fn(x, t) ⊆ Fn.
If Xn(x, t) is tight for each (x, t) ∈ [0, 1] × [0, 1], and if for all sequences δn, n ∈ N,
δn ↘ 0, each canonical 1-stopping time Sn and each canonical 2-stopping time Tn

sup
t∈[0,1]

|Xn(Sn + δn, t)−Xn(Sn, t)|
P−→ 0, as n→∞, (4.4)

sup
x∈[0,1]

|Xn(x, Tn + δn)−Xn(x, Tn)| P−→ 0, as n→∞, (4.5)

then Xn, n ∈ N, is tight in D ([0, 1]× [0, 1]).
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Based on an application of Theorem 11, it is possible to give a proof for the follow-
ing lemma which establishes tightness of n−

1
2Mn(x, t) as a process with path space

D([−∞,∞]× [0, 1]).

Lemma 9 (Betken and Kulik (2017)). Under the conditions of Theorem 10, we have

1√
n
Mn(x, t) = OP (1)

in D([−∞,∞]× [0, 1]).

Proof. Let H : [0, 1] × [0, 1] −→ [−∞,∞] × [0, 1] be defined by H(x, t) ··= (h(x), t) for
some increasing isomorphism h : [0, 1] −→ [−∞,∞]. In the following, it is shown that
the conditions of Theorem 11 hold for the random process Xn(x, t) ··= n−1/2Mn (H(x, t)),
x, t ∈ [0, 1].

Initially, note that n−1/2 (Mn ◦H) (x, t) is tight for fixed (x, t) ∈ [0, 1] × [0, 1] due to
Lemma 8. Recall that Fj = σ (εj , εj−1, . . . , ηj , ηj−1, . . .) and define

Fn(x, t) ··= Fbntc

for all x ∈ [0, 1]. Then, Xn(x, t) is adapted to Fn(x, t). Moreover, the corresponding
filtration is right-continuous.

Let Tn denote a canonical 2-stopping time for Xn(x, t), measurable with respect to
Fn(1, t) = Fbntc, and define τn ··= bnTnc. Note that

|Xn (x, Tn + δn)−Xn (x, Tn)| =
∣∣∣∣ 1√
n
Mn(h(x), Tn + δn)− 1√

n
Mn(h(x), Tn)

∣∣∣∣
=

∣∣∣∣∣∣ 1√
n

τn+bnδnc∑
j=τn+1

ζj(h(x))

∣∣∣∣∣∣
with

ζj(h(x)) = 1{ψ(Xj)≤h(x)} − E
(

1{ψ(Xj)≤h(x)} | Fj−1

)
.

For 0 ≤ x ≤ y ≤ 1, define

Λ1,n(y, x) ··=
1√
n

τn+bnδnc∑
j=τn+1

(
1{h(x)<ψ(Xj)≤h(y)} − E

(
1{h(x)<ψ(Xj)≤h(y)} | Fj−1

))
,

Λ1,n(y) ··= Λ1,n(y, 0).

In order to show (4.5), we have to prove that

sup
y∈[0,1]

|Λ1,n(y)| P−→ 0, as n→∞.

Prior to the proof, we establish the following result:
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Lemma 10 (Betken and Kulik (2017)). Under the conditions of Theorem 10,

Var Λ1,n(y, x) = E Λ2
1,n(y, x) ≤ 1

n

bnδnc∑
j=1

(
Fφ(Xj+τn )(y)− Fφ(Xj+τn )(x)

)
with Fφ(Xj+τn )(x) ··= P (φ(Xj+τn) ≤ x), φ ··= h−1 ◦ ψ, and for x ≤ y.

Proof. Write

Λ1,n(y, x) =
1√
n

τn+bnδnc∑
j=τn+1

λ1,j(y, x)

with

λ1,j(y, x) ··=1{h(x)<ψ(Xj)≤h(y)} − E
(

1{h(x)<ψ(Xj)≤h(y)} | Fj−1

)
.

Since {τn = k} is measurable with respect to Fj for all j ≥ k, it follows that

E

τn+bnδnc∑
j=τn+1

λ1,j(y, x)

 =

n∑
k=1

bnδnc∑
j=1

E
(
λ1,j+k(y, x)1{τn=k}

)

=

n∑
k=1

bnδnc∑
j=1

E
(

1{x<φ(Xj+k)≤y}1{τn=k} − E
(

1{x<φ(Xj+k)≤y}1{τn=k} | Fj+k−1

))
= 0.

Furthermore,

E

τn+bnδnc∑
j=τn+1

λ1,j(y, x)

2 =

n∑
k=1

bnδnc∑
i=1

bnδnc∑
j=1

E
(
λ1,i+k(y, x)λ1,j+k(y, x)1{τn=k}

)
.

For i < j,

λ1,i+k(y, x)λ1,j+k(y, x)1{τn=k}

= 1{x<φ(Xi+k)≤y}1{x<φ(Xj+k)≤y}1{τn=k}

+ E
(

1{x<φ(Xj+k)≤y}1{τn=k} E
(
1{x<φ(Xi+k)≤y} | Fi+k−1

)
| Fj+k−1

)
− E

(
1{x<φ(Xi+k)≤y}1{x<φ(Xj+k)≤y}1{τn=k} | Fj+k−1

)
− 1{x<φ(Xj+k)≤y}1{τn=k} E

(
1{x<φ(Xi+k)≤y} | Fi+k−1

)
.

As a result,

E
(
λ1,i+k(y, x)λ1,j+k(y, x)1{τn=k}

)
= 0.
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Moreover, we have

n∑
k=1

E
(
λ2

1,i+k(y, x)1{τn=k}
)

=

n∑
k=1

E
[(

1{x<φ(Xi+k)≤y} − E
(
1{x<φ(Xi+k)≤y} | Fi+k−1

))2
1{τn=k}

]
=

n∑
k=1

E

[
E
(
1{x<φ(Xi+k)≤y} E

(
1{x<φ(Xi+k)≤y}1{τn=k} | Fi+k−1

)
| Fi+k−1

)
+ 1{x<φ(Xi+k)≤y}1{τn=k} − 21{x<φ(Xi+k)≤y} E

(
1{x<φ(Xi+k)≤y}1{τn=k} | Fi+k−1

)]
≤

n∑
k=1

E
(
1{x<φ(Xi+k)≤y}1{τn=k}

)
=

n∑
k=1

E
(
1{x<φ(Xi+τn )≤y}1{τn=k}

)
= E

(
1{x<φ(Xi+τn )≤y}

)
= Fφ(Xi+τn )(y)− Fφ(Xi+τn )(x).

Note that E(Λ1,n(y)) = 0. As a result, it follows that

Var Λ1,n(y, x) = E Λ2
1,n(y, x) ≤ 1

n

bnδnc∑
j=1

(
Fφ(Xj+τn )(y)− Fφ(Xj+τn )(x)

)
.

Due to Lemma 10,

Var Λ1,n(y) ≤ 1

n

bnδnc∑
i=1

Fφ(Xi+τn )(y) ≤ δn −→ 0.

In addition, E(Λ1,n(y)) = 0, so that Λ1,n(y) converges to 0 in probability. This implies
convergence of the finite-dimensional distributions of Λ1,n(y), y ∈ [0, 1], considered as a
process with values in D [0, 1].

Proof of (4.5). In order to establish (4.5), it remains to show tightness of Λ1,n(y),
y ∈ [0, 1]. For this, the argument that proves Theorem 15.6 in Billingsley (1968) is
adopted. For any function v in D[0, 1], define the modulus ωv(δ) by

ωv(δ) = sup min {|v(x)− v(x1)|, |v(x2)− v(x)|} ,

where the supremum extends over x1, x, x2 ∈ [0, 1] with x1 ≤ x ≤ x2, x2 − x1 ≤ δ.
Given the convergence of the finite-dimensional distributions, Theorem 15.4 in Billingsley
(1968) implies that it suffices to show that for each ε, η > 0, there exists a δ, 0 < δ < 1,
and an n0 ∈ N such that

P
(
ωΛ1,n(δ) ≥ ε

)
≤ η for all n ≥ n0.
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Define

Mm ··= max
0≤i≤j≤k≤m

min {|Sj − Si|, |Sk − Sj |} , where Si = Λ1,n(τ +
i

m
δ).

Following the proof of Theorem 12.5 in Billingsley (1968), there exists an n0 ∈ N such
that

P (Mm ≥ λ) ≤ K

λ2

m∑
i=1

ui

holds for all positive λ, some constant K and n ≥ n0, if

P (|Sj − Si| ≥ λ, |Sk − Sj | ≥ λ) ≤ εn
λ2

∑
i<l≤k

ul, 0 ≤ i ≤ j ≤ k ≤ m,

for some sequence εn, n ∈ N, converging to 0.

For x1 ≤ x ≤ x2, it follows by the Cauchy - Schwarz inequality for expected values and
Lemma 10 that

E |Λ1,n(x2, x)| |Λ1,n(x, x1)|

= E

 1√
n

∣∣∣∣∣∣
τn+bnδnc∑
j=τn+1

λ1,j(x2, x)

∣∣∣∣∣∣ 1√
n

∣∣∣∣∣∣
τn+bnδnc∑
j=τn+1

λ1,j(x, x1)

∣∣∣∣∣∣


≤

√√√√√ 1

n
E

τn+bnδnc∑
j=τn+1

λ1,j(x2, x)

2 1

n
E

τn+bnδnc∑
j=τn+1

λ1,j(x, x1)

2
≤ 1

n

√√√√bnδnc∑
i=1

(
Fφ(Xi+τn )(x2)− Fφ(Xi+τn )(x)

)√√√√bnδnc∑
i=1

(
Fφ(Xi+τn )(x)− Fφ(Xi+τn )(x1)

)
≤ 1

n

bnδnc∑
i=1

(
Fφ(Xi+τn )(x2)− Fφ(Xi+τn )(x1)

)
. (4.6)

The Markov inequality yields

P (|Sj − Si| ≥ λ, |Sk − Sj | ≥ λ) ≤ P
(
|Sj − Si| |Sk − Sj | ≥ λ2

)
≤ 1

λ2
E |Sj − Si| |Sk − Sj | .

Therefore, it follows by (4.6) that for some γ ∈ (0, 1),

P (|Sj − Si| ≥ λ, |Sk − Sj | ≥ λ) ≤ δγn
λ2

∑
i<l≤k

ul,
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where

ul ··=
δ−γn
n

bnδnc∑
j=1

(
Fφ(Xj+τn )

(
τ +

l

m
δ

)
− Fφ(Xj+τn )

(
τ +

l − 1

m
δ

))
.

As a result, we get

P (Mm ≥ ε) ≤
K

ε2

δ−γn
n

bnδnc∑
j=1

(
Fφ(Xj+τn )(τ + δ)− Fφ(Xj+τn )(τ)

)
. (4.7)

Define

ω(Λ1,n, [τ, τ + δ]) ··= sup min {|Λ1,n(x, x1)|, |Λ1,n(x2, x)|} ,

where the supremum extends over x1, x, x2 satisfying τ ≤ x1 ≤ x ≤ x2 ≤ τ + δ.
Letting m tend to ∞ in (4.7) yields

P (ω(Λ1,n, [τ, τ + δ]) ≥ ε) ≤ K

ε2

δ−γn
n

bnδnc∑
j=1

(
Fφ(Xj+τn )(τ + δ)− Fφ(Xj+τn )(τ)

)
(4.8)

due to right-continuity of Λ1,n(y), y ∈ [0, 1].
Suppose that δ = 1

u for some integer u and assume that

ω(Λ1,n, [2iδ, (2i+ 2)δ]) ≤ ε, 0 ≤ i ≤ u− 1, (4.9)

ω(Λ1,n, [(2i+ 1)δ, (2i+ 3)δ]) ≤ ε, 0 ≤ i ≤ u− 2. (4.10)

If x1 ≤ x ≤ x2 and x2 − x1 ≤ δ, then x1 and x2 both lie in one of the 2u − 1 intervals
[2iδ, (2i+ 2)δ], 0 ≤ i ≤ u− 1, [(2i+ 1)δ, (2i+ 3)δ], 0 ≤ i ≤ u− 2, so that

min {|Λ1,n(x, x1)| , |Λ1,n(x2, x)|} ≤ ε.

Thus, (4.9) and (4.10) together imply ωΛ1,n(δ) ≤ ε. It now follows by (4.8) that

P
(
ωΛ1,n(δ) ≥ ε

)
≤ K

ε2

(
Σ′ + Σ′′

)
,

where each of Σ′ and Σ′′ is a sum of the form

l∑
k=1

δ−γn
n

bnδnc∑
j=1

(
Fφ(Xj+τn )(xk)− Fφ(Xj+τn )(xk−1)

)

=
δ−γn
n

bnδnc∑
j=1

(
Fφ(Xj+τn )(xl)− Fφ(Xj+τn )(x0)

)
≤δ1−γ

n

with 0 ≤ x1 ≤ . . . ≤ xl ≤ 1 and xk − xk−1 ≤ 2δ. Hence, we may conclude that

P
(
ωΛ1,n(δ) ≥ ε

)
≤ 2K

ε2
δ1−γ
n .

Since the right-hand side of the above inequality converges to 0, (4.5) has been proved.
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Proof of (4.4). Let Sn denote a canonical 1-stopping time for Xn(x, t).

For 0 ≤ s ≤ t ≤ 1, define

Λ2,n(t, s) ··=
1√
n

bntc∑
j=bnsc+1

(
1{0<φ(Xj)−Sn≤δn} − E

(
1{0<φ(Xj)−Sn≤δn} | Fj−1

))
,

Λ2,n(t) ··= Λ2,n(t, 0),

where φ ··= h−1 ◦ ψ. Note that

sup
t∈[0,1]

|Xn(Sn + δn, t)−Xn(Sn, t)| = sup
t∈[0,1]

|Λ2,n(t)| .

Prior to the proof of (4.4), we establish the following result:

Lemma 11 (Betken and Kulik (2017)). Under the conditions of Theorem 10,

Var Λ2,n(t, s) = E Λ2
2,n(t, s) ≤ 1

n

bntc∑
i=bnsc+1

(
Fφ(Xi)−Sn(δn)− Fφ(Xi)−Sn(0)

)
with Fφ(Xi)−Sn(x) ··= P (φ(Xi)− Sn ≤ x) and for s ≤ t.

Proof. Note that

Λ2,n(t, s) =
1√
n

bntc∑
j=bnsc+1

λ2,j(δn, 0),

where

λ2,j(y, x) ··= 1{x<φ(Xj)−Sn≤y} − E
(

1{x<φ(Xj)−Sn≤y} | Fj−1

)
.

Moreover, we have

E

 bntc∑
j=bnsc+1

λ2,j(δn, 0)

 = 0.

Furthermore,

Var

 bntc∑
j=bnsc+1

λ2,j(δn, 0)

 = E

 bntc∑
j=bnsc+1

λ2,j(δn, 0)

2
=

bntc∑
i=bnsc+1

bntc∑
j=bnsc+1

E (λ2,i(δn, 0)λ2,j(δn, 0)) .
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The canonical 1-stopping time Sn takes on only countably many values si, i ∈ N; see
Ivanoff (1983). Note that for i < j

λ2,i(δn, 0)λ2,j(δn, 0) =
∞∑
k=1

λ2,i(δn, 0)λ2,j(δn, 0)1{Sn=sk}

=

∞∑
k=1

1{Sn=sk}

{
1{0<φ(Xi)−sk≤δn}1{0<φ(Xj)−sk≤δn}

+ E
(

1{0<φ(Xj)−sk≤δn} E
(
1{0<φ(Xi)−sk≤δn} | Fi−1

)
| Fj−1

)
− E

(
1{0<φ(Xi)−sk≤δn}1{0<φ(Xj)−sk≤δn} | Fj−1

)
− 1{0<φ(Xj)−sk≤δn} E

(
1{0<φ(Xi)−sk≤δn} | Fi−1

)}
= 1{0<φ(Xi)−Sn≤δn}1{0<φ(Xj)−Sn≤δn}

+ E
(

1{0<φ(Xj)−Sn≤δn} E
(
1{0<φ(Xi)−Sn≤δn} | Fi−1

)
| Fj−1

)
− E

(
1{0<φ(Xi)−Sn≤δn}1{0<φ(Xj)−Sn≤δn} | Fj−1

)
− 1{0<φ(Xj)−Sn≤δn} E

(
1{0<φ(Xi)−Sn≤δn} | Fi−1

)
.

As a result, E (λ2,i(δn, 0)λ2,j(δn, 0)) = 0. Moreover,

Eλ2
2,j(δn, 0)

= E
(

1{0<φ(Xj)−Sn≤δn}

)
− 2 E

(
1{0<φ(Xj)−Sn≤δn} E

(
1{0<φ(Xj)−Sn≤δn} | Fj−1

))
+ E

(
E
(

1{0<φ(Xj)−Sn≤δn} E
(

1{0<φ(Xj)−Sn≤δn} | Fj−1

)
| Fj−1

))
= E

(
1{0<φ(Xj)−Sn≤δn}

)
− E

(
1{0<φ(Xj)−Sn≤δn} E

(
1{0<φ(Xj)−Sn≤δn} | Fj−1

))
≤E

(
1{0<φ(Xj)−Sn≤δn}

)
= Fφ(Xj)−Sn(δn)− Fφ(Xj)−Sn(0).

Therefore,

Var Λ2,n(t, s) = E Λ2
2,n(t, s) ≤ 1

n

bntc∑
j=bnsc+1

(
Fφ(Xj)−Sn(δn)− Fφ(Xj)−Sn(0)

)
.

Lemma 11 yields

Var Λ2,n(t) ≤ tE

(
sup
x∈[0,1]

(
Fbntc(δn + x)− Fbntc(x)

))
, (4.11)
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where Fbntc denotes the empirical distribution function of φ(Xi), i ≥ 1, i.e.

Fl(x) ··=
1

l

l∑
i=1

1{φ(Xi)≤x}.

Note that supx∈[0,1]

(
Fbntc(δn + x)− Fbntc(x)

)
converges to 0 almost surely due to the

Glivenko-Cantelli theorem for stationary, ergodic sequences and since Fφ(X1) is a con-
tinuous distribution function. It follows that its expected value converges to 0, as well.
Therefore, the right-hand side of (4.11) converges to 0. Moreover, E Λ2,n(t) = 0 such that
Λ2,n(t) converges to 0 in probability. This implies convergence of the finite-dimensional
distributions of Λ2,n(t), t ∈ [0, 1], as a process with values in D [0, 1].

Due to convergence of the finite-dimensional distributions, it is again possible to make
use of Theorem 15.4 in Billingsley (1968). In order to establish (4.4), it therefore suffices
to verify that for each ε, η > 0, there exists a δ, 0 < δ < 1, and an n0 ∈ N such that

P
(
ωΛ2,n(δ) ≥ ε

)
≤ η for all n ≥ n0.

Define

Mm ··= max
0≤i≤j≤k≤m

min {|Sj − Si|, |Sk − Sj |} , where Si = Λ2,n(τ +
i

m
δ).

For t1 ≤ t ≤ t2, we have

|Λ2,n(t, t1)| = 1√
n

∣∣∣∣∣∣
bntc∑

j=bnt1c+1

αj(δn, 0)

∣∣∣∣∣∣ , |Λ2,n(t2, t)| =
1√
n

∣∣∣∣∣∣
bnt2c∑

j=bntc+1

λ2,j(δn, 0)

∣∣∣∣∣∣ .
The Cauchy-Schwarz inequality yields

E |Λ2,n(t, t1)| |Λ2,n(t2, t)|

≤

√√√√√E

 1

n

 bntc∑
j=bnt1c+1

λ2,j(δn, 0)

2E

 1

n

 bnt2c∑
j=bntc+1

λ2,j(δn, 0)

2
≤ 1

n

bnt2c∑
i=bnt1c+1

(
Fφ(Xi)−Sn(δn)− Fφ(Xi)−Sn(0)

)
.

By the same argument as in the proof of (4.5), it follows that

P (Mm ≥ ε) ≤
K

ε2

γ−1
n

n

bn(τ+δ)c∑
j=bnτc+1

(
Fφ(Xj)−Sn(δn)− Fφ(Xj)−Sn(0)

)
for any sequence γn, n ∈ N, converging to 0.
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Taking the right-continuity of Λ2,n into consideration, we may, as before, conclude that

P
(
ωΛ2,n(δ) ≥ ε

)
≤ 2K

ε2
γ−1
n

1

n

n∑
j=1

(
Fφ(Xj)−Sn(δn)− Fφ(Xj)−Sn(0)

)

≤ 2K

ε2
γ−1
n E

(
sup
x∈[0,1]

(Fn(δn + x)− Fn(x))

)
.

Choosing γn, n ∈ N, such that

γ−1
n E

(
sup
x∈[0,1]

(Fn(δn + x)− Fn(x))

)

converges to 0, the right-hand side of the above inequality vanishes as n tends to ∞ due
to the choice of γn, n ∈ N. This concludes the proof of (4.4) as well as the proof of
Lemma 9.

4.2.2. Long-range dependent part

Finally, weak convergence of Rn(x, t) is proved.

Lemma 12 (Betken and Kulik (2017)). Under the conditions of Theorem 10,

1

dn,r
Rn(x, t)

D−→ 1

r!
Jr(Ψx ◦ σ)Zr,H(t)

in D ([−∞,∞]× [0, 1]) .

Proof. Note that

E
(

1{ψ(Xj)≤x} | Fj−1

)
= E

(
1{ψ(σ(ξj)εj)≤x} | Fj−1

)
= Ψx(σ(ξj))

because Yj is Fj−1-measurable and εj is independent of Fj−1. Furthermore, it holds
that E Ψx(σ(ξj)) = Fψ(X1)(x), where Fψ(X1) denotes the distribution function of ψ(X1).
Hence,

Rn(x, t) = bntc
∫
R

Ψx(u)d
(
Fbntc − EFbntc

)
(u),

where Fl denotes the empirical distribution function of the sequence σ(ξn), n ∈ N, i.e.

Fl(u) ··=
1

l

l∑
j=1

1{σ(ξj)≤u}.

We have

d−1
n,rRn(x, t) = I1(x, t) + I2(x, t)
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with

I1(x, t) = −
∫
R

d

dy
Ψx(y)d−1

n,r

bntc (Fbntc(y)− EFbntc(y)
)
− 1

r!
Jr(σ; y)

bntc∑
j=1

Hr(ξj)

 dy,

I2(x, t) = −
∫
R

d

dy
Ψx(y)d−1

n,r

1

r!
Jr(σ; y)

bntc∑
j=1

Hr(ξj)dy,

where r denotes the Hermite rank of the class of functions 1{σ(ξ1)≤x}−Fσ(ξ1)(x), x ∈ R,
and

Jr(σ; y) = E
(
1{σ(ξ1)≤y}Hr(ξ1)

)
.

Due to the integrability condition (4.1), it follows from Theorem 3.1 in Dehling and
Taqqu (1989) that I1(x, t) converges to 0 in probability, uniformly in x and t.
Furthermore,

I2(x, t) = −d−1
n,r

bntc∑
j=1

Hr(ξj)

{∫
R

1

r!
Jr(σ; y)

d

dy
P (ψ(yε1) ≤ x) dy

}
.

Denoting with ϕ the standard normal density, integration by parts yields∫
R
Jr(σ; y)

d

dy
P (ψ(yε1) ≤ x) dy = −Jr(Ψx ◦ σ).

Moreover, Theorem 4.1 in Taqqu (1975) implies

d−1
n,r

bntc∑
j=1

Hr(ξj)
D−→ Zr,H(t), t ∈ [0, 1] ,

in D [0, 1].

4.3. Change-point tests for LMSV time series

As noted in Section 1.2.1, specific change-point problems can be interpreted as testing
for changes in the mean of transformed observations. For this reason, the following
sections focus on characterizing the limit behavior of change-point tests that are based
on CUSUM and Wilcoxon statistics.

4.3.1. CUSUM tests for LMSV time series

Given observations X1, . . . , Xn, computations of the two-sample CUSUM statistics with
respect to the transformed observations Z1, . . . , Zn, Zi ··= ψ(Xi), i = 1, . . . , n yield

Ck,n =
k∑
j=1

Zj −
k

n

n∑
j=1

Zj ,
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4. Testing for change-points in LMSV time series

SCk,n =
Ck,n
Vk,n

, Vk,n =

{
1

n

k∑
t=1

S2
t (1, k) +

1

n

n∑
t=k+1

S2
t (k + 1, n)

} 1
2

,

where

St(j, k) =
t∑

h=j

(
Zh − Z̄j,k

)
and Z̄j,k =

1

k − j + 1

k∑
t=j

Zt.

As noted in Section 1.2.3, the limit of the self-normalized statistic can be described by
means of the function Gf ∈ D [0, 1], defined by

Gf (t) ··=
f(t)

Vf (t)
, Vf (t) ··=

{∫ t

0

(
f(s)− s

t
f(t)

)2
ds+

∫ 1

t

(
f(s)− 1− s

1− t
f(t)

)2

ds

} 1
2

.

In order to determine the limit distributions of the test statistics, we consider the partial
sum process

bntc∑
j=1

(ψ(Xj)− Eψ(Xj)) , 0 ≤ t ≤ 1.

Dependent on the function ψ, the considered observations are either uncorrelated or
display an autocovariance structure that relates to the subordinated Gaussian sequence
Yn, n ∈ N. To specify this assertion, recall that Fj denotes the σ-field generated by the
random variables εj , εj−1, . . . , ηj , ηj−1, . . .. Due to this construction, εj is independent
of Fj−1 and Yj is Fj−1-measurable.

The asymptotic behavior of the partial sum process is described by Theorem 4.10 in
Beran et al. (2013):

Theorem 12 (Beran et al. (2013)). Suppose that Xn, n ∈ N, is a time series satisfying
the conditions specified by Model 2. Moreover, assume that ψ is a measurable function
and that Eψ2(X1) <∞.

1. If E(ψ(X1) | F0) 6= 0 and rD < 1, where r denotes the Hermite rank of the function
Ψ with Ψ(z) ··= Eψ(σ(z)ε1), then

1

dn,r

bntc∑
j=1

(ψ(Xj)− Eψ(Xj))
D−→ 1

r!
Jr(Ψ)Zr,H(t), t ∈ [0, 1],

in D[0, 1], where Zr,H is an r-th order Hermite process with parameter H = 1− rD
2 ,

Jr(Ψ) denotes the r-th Hermite coefficient in the Hermite expansion of Ψ, and dn,r
the normalizing sequence defined by (1.5) in Section 1.2.2.
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2. If E(ψ(X1) | F0) = 0, then

1√
n

bntc∑
j=1

ψ(Xj)
D−→ σB(t), t ∈ [0, 1],

in D[0, 1], where B(t), t ∈ [0, 1], denotes a Brownian motion and σ2 = Eψ2(X1).

As an immediate consequence of Theorem 12, we obtain the asymptotic distribution of
the CUSUM and the self-normalized CUSUM statistic:

Corollary 4 (Betken and Kulik (2017)). Let 0 < τ1 < τ2 < 1. Given the assumptions
and notations of Theorem 12, the following assertions hold:

1. If E(ψ(X1) | F0) 6= 0 and rD < 1,

1

dn,r
max

1≤k≤n
Ck,n

D−→ 1

r!
|Jr(Ψ)| sup

t∈[0,1]
|Wr,H(t)| ,

max
bnτ1c≤k≤bnτ2c

|SCk,n|
D−→ sup

t∈[τ1,τ2]

∣∣GWr,H
(t)
∣∣ ,

where Wr,H(t) ··= Zr,H(t)− tZr,H(1).

2. If E(ψ(X1) | F0) = 0,

1√
n

max
1≤k≤n

Ck,n
D−→ σ sup

t∈[0,1]
|W (t)| ,

max
bnτ1c≤k≤bnτ2c

|SCk,n|
D−→ sup

t∈[τ1,τ2]
|GW (t)| ,

where W (t) ··= B(t)− tB(1).

According to Corollary 4, the asymptotic behavior of CUSUM-based test statistics es-
sentially depends on the specific change-point problem that is considered. Dependent on
the choice of ψ, it may or may not be affected by long-range dependence. If ψ(x) = x,
i.e. when testing for a change in the mean, E(ψ(X1) | F0) = σ(ξ1) E ε1 = 0. Hence,
the asymptotic distribution of the CUSUM statistics is determined by a Brownian mo-
tion. If ψ(x) = x2, i.e. when testing for a change in the variance of LMSV time series,
E(ψ(X1) | F0) = σ2(ξ1) E ε2

1 6= 0. In this case, the limit of CUSUM-based statistics is a
function of a fractional Brownian motion characterized by the parameter H = 1 − rD

2
with D denoting the LRD parameter of the Gaussian sequence ξn, n ∈ N. As a result,
the limit distributions are affected by the intensity of dependence in the data. Neverthe-
less, even if the limit distribution is affected by long-range dependence in the data, the
Hurst parameter H in the limit does not necessarily correspond to the LRD parameter
characterizing the dependence in the subordinated Gaussian sequence σ(ξn), n ∈ N,
since the Hermite ranks of Ψ and σ may differ.

97



4. Testing for change-points in LMSV time series

4.3.2. Wilcoxon tests for LMSV time series

Given observations X1, . . . , Xn and a transformation ψ, let Ri, i = 1, . . . , n denote the
rank statistics of the transformed observations ψ(X1), . . . , ψ(Xn), i.e.

Ri =
n∑
j=1

1{ψ(Xj)≤ψ(Xi)}.

Recall that the two-sample Wilcoxon statistics are given by

Wk,n =
k∑
j=1

Rj −
k

n

n∑
j=1

Rj ,

SWk,n =
Wk,n

Vk,n
, Vk,n =

{
1

n

k∑
t=1

S2
t (1, k) +

1

n

n∑
t=k+1

S2
t (k + 1, n)

} 1
2

,

where

St(j, k) =
t∑

h=j

(
Rh − R̄j,k

)
and R̄j,k =

1

k − j + 1

k∑
t=j

Rt.

As noted in Section 1.2.2, the asymptotic distribution of the Wilcoxon statistics can
be derived from the limit behavior of the two-parameter empirical process. Following
the proof of Theorem 1 in Dehling et al. (2013), the asymptotic distribution of the
Wilcoxon statistic Wn, which corresponds to the maximum of the two sample statistics
Wk,n, 1 ≤ k ≤ n, see (1.4) in Chapter 1, can be derived directly from Theorem 10 if the
data-generating sequence Xn, n ∈ N, is ergodic. Under the assumption of LMSV time
series satisfying Model 2, ergodicity follows from the fact that every random variable Xj

has a representation as a measurable function of the independent, identically distributed
random vectors (ηi, εi), i ≤ j. This proves the following Corollary:

Corollary 5 (Betken and Kulik (2017)). Suppose that Xn, n ∈ N, is a time series
satisfying the conditions specified by Model 2. Assume that ψ is a measurable function
and that ∫

R

d

dy
Ψx(y)dy <∞,

where Ψx(y) ··= P (ψ(yε1) ≤ x). Let r denote the Hermite rank of the class of functions
1{σ(ξ1)≤x} − Fσ(ξ1)(x), x ∈ R. If rD < 1,

1

ndn,r
max

1≤k≤n
Wk,n

D−→ 1

r!

∣∣∣∣∫
R
Jr(Ψx ◦ σ)dFψ(X1)(x)

∣∣∣∣ sup
t∈[0,1]

|Wr,H(t)| ,

max
bnτ1c≤k≤bnτ2c

|SWk,n|
D−→ sup

t∈[τ1,τ2]

∣∣GWr,H
(t)
∣∣

with Wr,H(t) ··= Zr,H(t) − tZr,H(1), where Zr,H is an r-th order Hermite process with
parameter H = 1 − rD

2 , Jr(Ψx ◦ σ) denotes the r-th Hermite coefficient in the Hermite
expansion of Ψx ◦σ, and dn,r the normalizing sequence defined by (1.5) in Section 1.2.2.
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Remark 14. Note that the Hermite rank of Ψx ◦ σ does not necessarily correspond to
the Hermite rank of 1{σ(ξ1)≤x} − Fσ(ξ1)(x), x ∈ R. However, if ψ has an inverse ψ−1,

Jr(Ψx ◦ σ) =

∫
R

∫
R

1{σ(z)u≤ψ−1(x)}Hr(z)ϕ(z)dzdFε(u),

where Fε denotes the distribution function of ε1. It follows that Jr(Ψx ◦σ) 6= 0 for some
x ∈ R implies that Jr(σ; y) 6= 0 for some y ∈ R. As a result, the Hermite rank of Ψx ◦ σ
is smaller or equal to the Hermite rank of 1{σ(ξ1)≤x} − Fσ(ξ1)(x), x ∈ R.

4.4. Simulations

For all simulations, the following specifications are made:

Xn = σ(ξn)εn, n ∈ N, (4.12)

where

• εn, n ∈ N, is an independent, identically Pareto distributed sequence with scale
parameter k = 1 and shape parameter α, either

a) non-centered, i.e. ε1 is Pareto(α, 1) distributed according to Example 1 in
Chapter 1, generated by the function rgpd (fExtremes package in R), or

b) centered, i.e. ε1 = ε̃1 − E ε̃1, where ε̃1 is Pareto(α, 1) distributed;

• ξn, n ∈ N, is a fractional Gaussian noise sequence generated by the function fgnSim

(fArma package in R) with Hurst parameter H;

• σ(z) = exp(z).

As noted in Chapter 1, different change-point problems can be reduced to the identifi-
cation of changes in the mean of suitably transformed observations ψ(X1), . . . , ψ(Xn).
In the following, three different change-point alternatives are considered: changes in
location, changes in volatility, and changes in the tail index. In each situation, the
asymptotic distributions of the CUSUM and Wilcoxon test statistics considered in Sec-
tion 4.3 are derived from Corollaries 4 and 5. Accordingly, definitions and notations are
adopted from the previous Section.

Change in location

We investigate the finite sample performance of the CUSUM and Wilcoxon change-point
tests for detecting changes in the mean of LMSV time series Xn, n ∈ N, i.e. we choose
ψ(x) = x for the test statistics described in Section 4.3. For this purpose, we simulate
observations X1, . . . , Xn which satisfy (4.12) with εj , j = 1, . . . , n, that follow a centered
Pareto(α, 1) distribution.
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4. Testing for change-points in LMSV time series

CUSUM: According to Corollary 4, the CUSUM statistic converges in distribution to

σ sup
t∈[0,1]

|B(t)− tB(1)| with σ2 = exp(2)
α

α− 2

(
1

α− 1

)2

,

while the self-normalized CUSUM statistic converges to

sup
t∈[τ1,τ2]

|B(t)− tB(1)|{∫ t

0
V 2(s; 0, t)ds+

∫ 1

t
V 2(s; t, 1)ds

} 1
2

with

V (t; t1, t2) ··= B(t)−B(t1)− t− t1
t2 − t1

{B(t2)−B(t1)}

for t ∈ [t1, t2], 0 < t1 < t2 < 1.

Wilcoxon: According to Corollary 5, the Wilcoxon statistic converges to

1

r!

∣∣∣∣∫
R
Jr(Ψx ◦ σ)dFψ(X1)(x)

∣∣∣∣ sup
t∈[0,1]

|Zr,H(t)− tZr,H(1)| , (4.13)

while the self-normalized Wilcoxon statistic converges to

sup
t∈[τ1,τ2]

|Zr,H(t)− tZr,H(1)|{∫ t

0
V 2
r,H(s; 0, t)ds+

∫ 1

t
V 2
r,H(s; t, 1)ds

} 1
2

(4.14)

with

Vr,H(t; t1, t2) ··= Zr,H(t)− Zr,H(t1)− t− t1
t2 − t1

{Zr,H(t2)− Zr,H(t1)}

for t ∈ [t1, t2], 0 < t1 < t2 < 1 and with r denoting the Hermite rank of the class of
functions 1{σ(ξ1)≤x} − Fσ(ξ1)(x), x ∈ R.
In order to determine the critical values needed for an application of the Wilcoxon test,
we have to calculate the deterministic factor in formula (4.13). For this purpose, note
that ϕ′(z) = −zϕ(z), so that integration by parts yields

J1(Ψx ◦ σ) =

∫
R
P (ψ(σ(z)ε1) ≤ x) zϕ(z)dz = x

∫
R

d

dz

(
1

σ(z)

)
fε1

(
x

σ(z)

)
ϕ(z)dz,

where fε1 denotes the density of ε1. Under the assumption of centered Pareto(α, 1)
distributed random variables εn, n ∈ N, it follows that

J1(Ψx ◦ σ) = −
∫ ∞
µα

hα(x, y)dy1{x>0} +

∫ µα

1
hα(x, y)dy1{x<0}
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with

hα(x, y) = αy−α−1ϕ

(
log

(
1

x
(y − µα)

))
1{y>1},

where µα denotes the expected value of ε̃1, i.e. µα ··= α
α−1 . Moreover, the probability

density function fX1 of X1 corresponds to

fX1(x) =
1

x

∫ ∞
µα

hα(x, y)dy1{x>0} −
1

x

∫ µα

1
hα(x, y)dy1{x<0}.

As a result,∫
R
J1(Ψx ◦ σ)dFψ(X1)(x) =

∫ ∞
0

1

x

[(∫ µα

1
hα(x, y)dy

)2

−
(∫ ∞

µα

hα(x, y)dy

)2
]
dx.

Since the above integral cannot be computed analytically, critical values for the Wilcoxon
test are based on an approximation by numerical integration.

In order to compare the finite sample behavior of the change-point tests, the empirical
size and the empirical power of the testing procedures are computed. To determine the
finite sample performance under the alternative, simulated time series with a change-
point of height h after a proportion τ of the data are considered, i.e. random variables
Xj , j = 1, . . . , n, with expected values EXj , j = 1 . . . , n, such that EXj = 0 for
j = 1, . . . , bnτc, while EXj = h for j = bnτc + 1, . . . , n. The calculations are based on
5000 realizations of time series with sample sizes 500, 1000 and 2000. The simulation
results are reported in Tables 4.1 and 4.2. The frequency of a type 1 error, i.e. the
rejection rate under the hypothesis, corresponds to the values in the columns that are
superscribed by h = 0.

The simulation results reported in Tables 4.1 and 4.2 show that under the hypothesis
the behavior of the testing procedures differs:

• In most cases the size of the CUSUM test does not deviate much from the level
of significance. However, the rejection rates do not seem to draw closer to the
significance level as the sample size increases. An increase in dependence, i.e. an
increase of the Hurst parameter H and a decrease of tail thickness, i.e. an increase
of the tail parameter α, lead to an increase in the number of rejections.

• The Wilcoxon change-point test suffers from size distortions: the rejection rates
under the hypothesis are considerably higher than the level of significance. Al-
though the empirical size of the Wilcoxon change-point test decreases with an
increasing sample size, thereby approaching the level of significance, the conver-
gence to the significance level seems to be rather slow. An increase in dependence,
i.e. an increase of the Hurst parameter H, and an increase of tail thickness, i.e. a
decrease of the tail parameter α, lead to a decrease in the number of rejections.
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4. Testing for change-points in LMSV time series

• The size of the self-normalized CUSUM test almost equals the level of significance
(even for relatively small samples). Neither Hurst parameter nor tail index seem
to have a significant effect on the rejection rates.

• The self-normalized Wilcoxon change-point test tends to be undersized. A change
in H or α does not seem to have a significant impact on its finite sample perfor-
mance under the hypothesis.

Under the alternative we make the following observations:

• The empirical power of the change-point tests increases when the number of ob-
servations or the height of the level shift increases. It is higher for breakpoints
located in the middle of the sample than for change-point locations that lie close
to the boundary of the testing region.

• Heavier tails, i.e. a decrease of the tail parameter α, go along with a decrease of
the rejection rates for all four testing procedures.

• An increase of dependence in the data, i.e. an increase of the value of the Hurst pa-
rameter, is followed by a decrease of empirical power for the Wilcoxon-based testing
procedures, but a slight increase of rejections for the CUSUM-based change-point
tests.

A comparison of the finite sample performance of the testing procedures shows that:

• The finite sample performance of the Wilcoxon-based change-point tests confirms
that rank-based testing procedures are robust to the influence of heavy tails.
CUSUM-based testing procedures, on the other hand, are more sensitive to the
influence of heavy tails.

• As expected, the simulation results show that the Hurst parameter does not seem
to have a considerable impact on the performance of the CUSUM-based testing
procedures. A pronounced effect on the rejection rates can only be observed for
the Wilcoxon test.

• The so-called better size but less power phenomenon for self-normalized tests, which
has also been observed in Shao (2011), Shao and Zhang (2010) and Betken (2016),
arises: While the self-normalized change-point tests have better size properties, the
non-self-normalized tests usually yield a higher empirical power. Moreover, the em-
pirical size of the self-normalized tests is not influenced by long-range dependence
and does not depend on the values of the parameter α.

• For large sample sizes, the power of the CUSUM test exceeds the power of the
self-normalized CUSUM test. The deviation of the rejection rates increases with
growing values of α.

102



4.4. Simulations

• The power of the self-normalized Wilcoxon test is higher than the power of the self-
normalized CUSUM test for almost every combination of parameters. The power
of the self-normalized CUSUM test only exceeds the power of the self-normalized
Wilcoxon test for relatively high level shifts or high value of H. The difference
between the rejection rates is especially high for small values of α.

All in all, a comparison of the simulation results gives rise to choosing the self-normalized
Wilcoxon test over the other testing procedures when testing for a change in the mean.

Change in volatility

We will now investigate the finite sample performance of the CUSUM and Wilcoxon
change-point tests for detecting changes in the variance of LMSV time series Xn, n ∈ N,
i.e. we choose ψ(x) = x2 for the test statistics described in Section 4.3. For this
purpose, we simulate observations X1, . . . , Xn which satisfy (4.12) with εj , j = 1, . . . , n,
that follow a centered Pareto(α, 1) distribution. An application of Corollary 4 requires
EX4

1 < ∞, i.e. in order to test for changes in the variance, the existence of fourth
moments is assumed. For this reason, we choose α > 4, since the k-th moment of Pareto
distributed variables exists only if k is smaller than the tail index α.

CUSUM: In this case, E(ψ(X1) | F0) = σ2(ξ1) E ε2
1 6= 0. If rD < 1 (with r denoting

the Hermite rank of Ψ), it follows from Corollary 4 that the CUSUM statistic converges
to

1

r!
|Jr(Ψ)| sup

t∈[0,1]
|Zr,H(t)− tZr,H(1)| with Jr(Ψ) = E ε2

1Jr(σ
2),

while the self-normalized CUSUM statistic converges to the limit in formula (4.14),
where, in both cases, H = 1 − rD

2 . In particular, the Hermite rank of Ψ equals the
Hermite rank of σ2, so that for σ(z) = exp(z) and ε1 centered Pareto distributed, we
have

J1(Ψ) = E (exp(2ξ1)ξ1) Var ε1 = 2 exp(2)
α

α− 2

(
1

α− 1

)2

.

Wilcoxon: According to Corollary 5, the limit of the Wilcoxon statistic corresponds to
the expression in formula (4.13) while the limit of the self-normalized Wilcoxon statistic
is given by (4.14). In order to apply the non-self-normalized Wilcoxon test, the value of
the multiplicative factor

∣∣∫
R J1(Ψx ◦ σ)dFψ(X1)(x)

∣∣ has to be computed under the given
assumptions. For x ≥ 0, integration by parts yields

J1(Ψx ◦ σ) =

∫
R

(√
x
d

dz

1

σ(z)

){
fε1

( √
x

σ(z)

)
+ fε1

(
−
√
x

σ(z)

)}
ϕ(z)dz,

where fε1 denotes the density of ε1. Under the considered specifications, integration by
substitution yields

J1(Ψx ◦ σ) = −1{x>0}

∫ ∞
1

αy−α−1ϕ

(
log

(
1√
x

(y − µα)

))
dy,
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4. Testing for change-points in LMSV time series

where µα denotes the expected value of ε̃1, i.e. µα ··= E ε̃1 = α
α−1 . Moreover, the

probability density function fψ(X1) of ψ(X1) corresponds to

fψ(X1)(x) =
1

2x
1{x>0}

∫ ∞
1

αy−α−1ϕ

(
log

(
1√
x

(y − µα)

))
dy.

As a result,∣∣∣∣∫
R
J1(Ψx ◦ σ)dFψ(X1)(x)

∣∣∣∣ =

∫ ∞
0

1

2x

(∫ ∞
1

αy−α−1ϕ

(
log

(
1√
x

(y − µα)

))
dy

)2

dx.

Since the above integral cannot be computed analytically, critical values for the Wilcoxon
test are based on an approximation by numerical integration.

In order to compare the finite sample behavior of the change-point tests, the empiri-
cal size and the empirical power of the testing procedures is computed. To determine
the finite sample performance of the testing procedures under the hypothesis, observa-
tions X1, . . . , Xn with variance ω2 are simulated. For the computation of the empirical
power, a change-point of height h2 is added after τ percent of the data, i.e. we multiply
Xbnτc+1, . . . , Xn by h such that VarXj = ω2 for j = 1, . . . , bnτc while VarXj = h2ω2

for j = bnτc+ 1, . . . , n. The rejection rates of the testing procedures were computed on
the basis of 5000 realizations of time series with sample sizes 500, 1000 and 2000. The
simulation results are reported in Tables 4.3 and 4.4. The frequency of a type 1 error,
i.e. the rejection rate under the hypothesis, corresponds to the values in the columns
that are superscribed by h = 1.

We make the following observations with respect to the behavior of the different testing
procedures under the hypothesis:

• The empirical size of the non-self-normalized tests tends to increase when the
dependence in the simulated time series decreases, i.e. when H decreases, while
the empirical size of the self-normalized tests seems to be independent of H.

• For none of the four change-point tests, the empirical size seems to be significantly
affected by the value of the tail parameter α.

• The CUSUM test suffers from severe size distortions. It rejects the hypothesis too
frequently for every combination of the parameters α and H. In particular, the
number of rejections increases as the number of observations increases. Apparently,
unrealistically large sample sizes are required for the asymptotics to apply. The
same observation has been made in De Pooter and Van Dijk (2004) where the
CUSUM statistic is used to test for breaks in the variance of GARCH(1, 1) time
series.

• The Wilcoxon test rejects the hypothesis too often. Yet, the rejection rates seem
to approach the level of significance as the length of time series increases.
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4.4. Simulations

• The self-normalized CUSUM test tends to be undersized. Moreover, the rejec-
tion rates do not seem to approach the level of significance when the sample size
increases.

• The rejection rates of the self-normalized Wilcoxon test are, even for relatively
small sample sizes, close to the level of significance.

Under the alternative we make the following observations:

• The empirical power of all four change-point tests indicates consistency, i.e. it
increases when the number of observations increases.

• For all four change-point tests, an increase in correlation, i.e. an increase of H,
leads to a decrease in the empirical power.

• For all four change-point tests, the empirical power does not seem to be significantly
affected by a change in the value of the tail parameter α.

• For a change-point height h = 0.5, the power of the non-self-normalized CUSUM
test decreases when τ changes from 0.5 to 0.25; the empirical size exceeds the
empirical power in both cases. Nonetheless, the empirical power tends to increase
when τ changes from 0.5 to 0.25 in the presence of a change-point with height
h = 2. Independent of the change-point location, an increase of the variance,
characterized by h = 2, is better detected by the CUSUM test than a decrease of
the variance, characterized by h = 0.5.

• For a change-point height h = 0.5, the power of the self-normalized CUSUM test
increases when τ changes from 0.5 to 0.25. However, it decreases when τ changes
from 0.5 to 0.25 for a change-point height h = 2. In this case, the empirical size
of the self-normalized CUSUM test does not differ much from its empirical power.
For a change-point in τ = 0.5, an increase and a decrease of the variance are almost
equally well detected by the self-normalized CUSUM test, while for a change-point
in τ = 0.25 a decrease in the variance, characterized by h = 0.25, is better detected
than an increase of the variance.

• Independent of the change-point location, an increase and a decrease of the variance
are almost equally well detected by both Wilcoxon tests. Independent of the
change-point height, a change from τ = 0.5 to τ = 0.25 leads to a decrease in the
empirical power of both Wilcoxon-based testing procedures.

A comparison of the finite sample performance of the testing procedures shows that:

• Again, the so-called better size but less power phenomenon for self-normalized tests
can be observed.

• The empirical power of the self-normalized CUSUM test cannot compete with the
empirical power of any other test.
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4. Testing for change-points in LMSV time series

• Even though the CUSUM test has high size distortions, its power can only compete
with the power of the Wilcoxon-based testing procedures if the variance increases,
i.e. if h = 2. For a decrease of variance, i.e. h = 0.5, the empirical power of the
CUSUM test is smaller than the empirical power of the Wilcoxon-based testing
procedures .

• The power of the Wilcoxon test exceeds the power of the self-normalized Wilcoxon
test for every parameter combination that has been considered.

All in all, the simulation results show that both CUSUM tests are outperformed by the
Wilcoxon-based testing procedures. Obviously, CUSUM-based tests are highly unreliable
when testing for a change in the variance.

Change in the tail index

We will now investigate the finite sample performance of the CUSUM and Wilcoxon
change-point tests for detecting changes in the tail parameter α of LMSV time series
Xn, n ∈ N, i.e. we choose ψ(x) = log |x| for the test statistics described in Section 4.3.
For this purpose, we simulate observations X1, . . . , Xn which satisfy (4.12) for random
variables εj , j = 1, . . . , n, that follow a non-centered Pareto(α, 1) distribution. The
choice of ψ is justified since P (|X1| > x) = x−α, x > 1, so that E log |X1| = α−1.

CUSUM: Given the above conditions, E(ψ(X1) | F0) = log |σ(ξ1)| + E log |ε1| 6= 0. If
rD < 1 (with r denoting the Hermite rank of Ψ), it follows from Corollary 4 that the
CUSUM statistic converges to

1

r!
|Jr(Ψ)| sup

t∈[0,1]
|Zr,H(t)− tZr,H(1)|

with Jr(Ψ) = Jr(log ◦|σ|), while the self-normalized CUSUM statistic converges to the
limit in formula (4.14), where, in both cases, H = 1 − rD

2 . In particular, the Hermite
rank of Ψ equals the Hermite rank of log ◦σ, so that for σ(z) = exp(z) and ε1 centered
Pareto distributed, J1(Ψ) = E ξ2

1 = 1.

Remark 15. For ψ(x) = log |x|, the asymptotic distributions of the CUSUM statistics
can also be derived from an application of Donsker’s theorem and a non-central limit
theorem for the partial sum process of subordinated Gaussian sequences. To see this,
note that

1

dn,r

bntc∑
j=1

(log |Xj | − E log |Xj |)

=
1

dn,r

bntc∑
j=1

(log |σ(ξj)| − E log |σ(ξj)|) +

√
n

dn,r

1√
n

bntc∑
j=1

(log |εj | − E log |εj |) .

As
√
n = o(dn,r), the second summand on the right-hand side of the above equality

converges to 0 in probability, uniformly in t, according to Donsker’s theorem.
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4.4. Simulations

As a consequence of Theorem 4.1 in Taqqu (1975), the partial sum process non-central
limit theorem for subordinated Gaussian sequences,

1

dn,r

bntc∑
j=1

(log |σ(ξj)| − E log |σ(ξj)|)
D−→ 1

r!
Jr (log ◦ |σ|)Zr,H(t), t ∈ [0, 1].

Wilcoxon: According to Corollary 5, the limit of the Wilcoxon statistic corresponds to
the expression in formula (4.13) while the limit of the self-normalized Wilcoxon statistic
is given by (4.14). In order to apply the non-self-normalized Wilcoxon test, the value of
the multiplicative factor

∣∣∫
R J1(Ψx ◦ σ)dFψ(X1)(x)

∣∣ has to be computed under the given
assumptions. For x ≥ 0, integration by parts yields

J1(Ψx ◦ σ) = αx−α
∫ ∞

0
zα−1ϕ (log z) 1{x≥z}dz.

Moreover, the probability density function fψ(X1) of ψ(X1) corresponds to

fψ(X1)(x) = αx−α−1

∫ ∞
0

zα−1ϕ (log z) 1{x≥z}dz.

As a result,∣∣∣∣∫
R
J1(Ψx ◦ σ)dFψ(X1)(x)

∣∣∣∣ =

∫ ∞
0

α2x−2α−1

(∫ ∞
0

zα−1ϕ (log z) 1{x≥z}dz

)2

dx.

Since the above integral cannot be computed analytically, critical values for the Wilcoxon
test are based on an approximation by numerical integration.

In order to compare the finite sample behavior of the change-point tests, the empirical
size and the empirical power of the testing procedures is computed. For the computation
of the empirical power, we consider LMSV time series with a change-point of height h
after a proportion τ of the data, i.e. we consider non-centered Pareto distributed ran-
dom variables εj , j = 1, . . . , n with shape shape parameters αj , j = 1, . . . , n such that
αj = α for j = 1, . . . , bnτc while αj = α+ h for j = bnτc+ 1, . . . , n. The rejection rates
of the testing procedures were computed on the basis of 5000 realizations of time series
with sample sizes 500, 1000 and 2000. The simulation results are reported in Tables 4.5
and 4.6. The frequency of a type 1 error, i.e. the rejection rate under the hypothesis,
corresponds to the values in the columns that are superscribed by h = 0.

We make the following observations with respect to the behavior of the different testing
procedures under the hypothesis:

• The empirical size of the non-self-normalized tests increases when the dependence
in the simulated time series decreases, i.e. when H decreases. The empirical size
of the self-normalized tests does not seem to be significantly affected by a change
of H.
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4. Testing for change-points in LMSV time series

• Lighter tails, i.e. higher values of α, yield an empirical size that is closer the level
of significance than heavier tails.

• The non-self-normalized tests tend to be oversized, while the self-normalized tests
tend to be undersized.

Under the alternative we make the following observations:

• The empirical power of the change-point tests increases when the number of ob-
servations increases or the height of the level shift increases. It is higher for break-
points located in the middle of the sample than for change-point locations that lie
close to the boundary of the testing region.

• For all four change-point tests, an increase in correlation, i.e. an increase of H,
leads to a decrease in the empirical power.

• For all four change-point tests, the empirical power decreases as heavy-tailedness
decreases, i.e. as α increases.

A comparison of the finite sample performance of the testing procedures shows that:

• Once more, the better size but less power phenomenon for self-normalized tests can
be observed.

• A comparison of the finite sample performance of the non-self-normalized tests
does not give rise to choosing one of both tests over the other: While the empirical
size of the Wilcoxon test tends to be closer to the significance level, the empirical
power of the CUSUM test tends to be higher.

• A comparison of the finite sample performance of the self-normalized tests shows
that although both tests have similar empirical size, the empirical power of the
self-normalized CUSUM test exceeds the empirical power of the self-normalized
Wilcoxon test for almost every combination of parameters.

All in all, the simulation results indicate that the self-normalized CUSUM test outper-
forms the self-normalized Wilcoxon test when testing for a change in the tail index.
However, a comparison of the rejection rates of the self-normalized CUSUM test with
those of the non-self-normalized testing procedures does not give rise to choosing one of
these testing procedures over the others.

For a comparison of self-normalized and non-self-normalized change-point tests, it is im-
portant to note that the considered finite sample results are based on simulations which
were executed under the assumption that the normalization of the non-self-normalized
tests and the multiplicative quantities that appear in the limits of the corresponding test
statistics are known. In particular, normalization and limit of the non-self-normalized
statistics usually depend on the parameters H, r, the slowly-varying function Lγ that
characterizes the autocovariances of the Gaussian random variables ξn, n ∈ N, the dis-
tribution of εn, n ∈ N, (or at least the tail parameter α), and the function σ.
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4.4. Simulations

For all practical purposes, these quantities are unknown, and for this reason have to
be estimated. In contrast, the self-normalized test statistic can be computed from the
given data while its limit depends on the parameters r and H only. For an adequate
comparison of the testing procedures, this has to be taken into consideration.
All in all, the simulation studies show that the choice of the change-point test should
depend on the particular test situation that is considered. In general, an application of
Wilcoxon-type tests reduces the influence of heavy tails in data-generating processes on
test decisions. As a result, Wilcoxon-based testing procedures yield better results when
testing for changes in the mean and the variance of LMSV time series, while it might be
advisable to choose CUSUM-based testing procedures when testing for a change in the
tail parameter.
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CUSUM Wilcoxon

α = 2.5 α = 4 α = 2.5 α = 4
H n h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1

τ
=

0
.2
5

0.6 500 0.035 0.048 0.213 0.047 0.866 1.000 0.628 1.000 1.000 0.802 1.000 1.000
1000 0.034 0.085 0.745 0.051 0.993 1.000 0.578 1.000 1.000 0.751 1.000 1.000
2000 0.034 0.288 0.986 0.048 1.000 1.000 0.524 1.000 1.000 0.713 1.000 1.000

0.7 500 0.035 0.050 0.209 0.053 0.864 1.000 0.331 1.000 1.000 0.475 1.000 1.000
1000 0.037 0.087 0.752 0.058 0.994 1.000 0.270 1.000 1.000 0.384 1.000 1.000
2000 0.039 0.285 0.983 0.051 1.000 1.000 0.207 1.000 1.000 0.300 1.000 1.000

0.8 500 0.045 0.055 0.207 0.073 0.879 1.000 0.191 0.974 1.000 0.273 1.000 1.000
1000 0.041 0.108 0.757 0.066 0.994 1.000 0.144 0.994 1.000 0.187 1.000 1.000
2000 0.042 0.280 0.983 0.066 1.000 1.000 0.108 1.000 1.000 0.132 1.000 1.000

0.9 500 0.057 0.069 0.191 0.080 0.901 1.000 0.188 0.863 0.984 0.232 0.995 1.000
1000 0.059 0.111 0.783 0.090 0.992 1.000 0.139 0.888 0.990 0.165 0.996 1.000
2000 0.064 0.238 0.984 0.092 1.000 1.000 0.108 0.917 0.996 0.121 0.998 1.000

τ
=

0
.5

0.6 500 0.081 0.625 0.986 1.000 1.000 1.000 1.000 1.000
1000 0.239 0.969 1.000 1.000 1.000 1.000 1.000 1.000
2000 0.638 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.7 500 0.092 0.621 0.986 1.000 1.000 1.000 1.000 1.000
1000 0.239 0.961 1.000 1.000 1.000 1.000 1.000 1.000
2000 0.648 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0.8 500 0.096 0.622 0.984 1.000 0.987 1.000 1.000 1.000
1000 0.224 0.966 1.000 1.000 0.997 1.000 1.000 1.000
2000 0.637 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0.9 500 0.100 0.627 0.986 1.000 0.919 0.993 0.994 1.000
1000 0.207 0.973 1.000 1.000 0.929 0.995 0.999 1.000
2000 0.635 1.000 1.000 1.000 0.954 0.997 0.999 1.000

Table 4.1.: Rejection rates of the CUSUM and Wilcoxon test for LMSV time series of length n with Hurst parameter H, tail index α
and a shift in the mean of height h after a proportion τ . The calculations are based on 5000 simulation runs.
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self-norm. CUSUM self-norm. Wilcoxon

α = 2.5 α = 4 α = 2.5 α = 4
H n h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1

τ
=

0
.2
5

0.6 500 0.046 0.181 0.539 0.042 0.688 0.958 0.032 0.879 0.991 0.030 0.995 1.000
1000 0.049 0.290 0.722 0.044 0.862 0.990 0.032 0.973 1.000 0.030 1.000 1.000
2000 0.053 0.458 0.875 0.026 0.967 0.999 0.034 0.999 1.000 0.028 1.000 1.000

0.7 500 0.051 0.204 0.552 0.042 0.697 0.954 0.029 0.680 0.938 0.021 0.960 0.997
1000 0.050 0.295 0.727 0.046 0.866 0.990 0.032 0.856 0.988 0.027 0.993 1.000
2000 0.049 0.455 0.868 0.042 0.966 0.998 0.037 0.948 0.999 0.030 0.999 1.000

0.8 500 0.045 0.226 0.580 0.044 0.720 0.951 0.031 0.424 0.772 0.021 0.815 0.964
1000 0.042 0.338 0.736 0.040 0.870 0.989 0.033 0.559 0.862 0.024 0.915 0.984
2000 0.050 0.498 0.881 0.052 0.960 0.998 0.034 0.673 0.938 0.023 0.958 0.998

0.9 500 0.044 0.329 0.645 0.041 0.760 0.947 0.031 0.309 0.582 0.020 0.640 0.861
1000 0.051 0.446 0.761 0.042 0.871 0.980 0.039 0.369 0.650 0.034 0.734 0.912
2000 0.041 0.585 0.869 0.048 0.949 0.996 0.049 0.422 0.719 0.039 0.791 0.947

τ
=

0
.5

0.6 500 0.384 0.801 0.904 0.990 0.994 1.000 1.000 1.000
1000 0.564 0.909 0.973 0.998 1.000 1.000 1.000 1.000
2000 0.744 0.962 0.993 1.000 1.000 1.000 1.000 1.000

0.7 500 0.401 0.801 0.902 0.989 0.950 1.000 1.000 1.000
1000 0.565 0.904 0.972 0.998 0.993 1.000 1.000 1.000
2000 0.744 0.966 0.994 0.999 1.000 1.000 1.000 1.000

0.8 500 0.424 0.804 0.899 0.990 0.776 0.977 0.987 0.999
1000 0.589 0.905 0.966 0.997 0.896 0.995 0.998 1.000
2000 0.761 0.959 0.994 0.999 0.963 0.999 1.000 1.000

0.9 500 0.527 0.815 0.893 0.982 0.622 0.890 0.912 0.990
1000 0.650 0.898 0.959 0.997 0.708 0.936 0.956 0.996
2000 0.781 0.954 0.989 0.999 0.779 0.960 0.976 0.998

Table 4.2.: Rejection rates of the self-normalized CUSUM and the self-normalized Wilcoxon test for LMSV time series of length n
with Hurst parameter H, tail index α and a shift in the mean of height h after a proportion τ . The calculations are based on 5000
simulation runs.
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CUSUM Wilcoxon

α = 4.5 α = 6 α = 4.5 α = 6
H n h = 1 h = 0.5 h = 2 h = 1 h = 0.5 h = 2 h = 1 h = 0.5 h = 2 h = 1 h = 0.5 h = 2

τ
=

0
.2
5

0.6 500 0.464 0.252 0.963 0.467 0.270 0.978 0.119 0.925 0.937 0.130 0.929 0.929
1000 0.589 0.383 0.995 0.596 0.385 0.997 0.112 0.994 0.995 0.118 0.995 0.996
2000 0.708 0.529 1.000 0.694 0.574 1.000 0.108 1.000 1.000 0.104 1.000 1.000

0.7 500 0.330 0.164 0.852 0.330 0.174 0.882 0.078 0.584 0.587 0.078 0.606 0.591
1000 0.374 0.197 0.937 0.404 0.207 0.961 0.066 0.781 0.784 0.068 0.781 0.780
2000 0.431 0.263 0.983 0.443 0.273 0.991 0.060 0.932 0.929 0.061 0.934 0.936

0.8 500 0.235 0.116 0.670 0.244 0.111 0.686 0.074 0.314 0.328 0.074 0.332 0.319
1000 0.258 0.131 0.770 0.256 0.132 0.786 0.067 0.398 0.386 0.067 0.398 0.382
2000 0.275 0.139 0.837 0.271 0.137 0.861 0.060 0.502 0.499 0.059 0.505 0.501

0.9 500 0.179 0.088 0.470 0.170 0.084 0.486 0.088 0.251 0.254 0.088 0.252 0.262
1000 0.184 0.100 0.513 0.177 0.097 0.523 0.078 0.267 0.277 0.079 0.272 0.272
2000 0.191 0.101 0.564 0.191 0.099 0.566 0.072 0.283 0.283 0.065 0.279 0.277

τ
=

0
.5

0.6 500 0.377 0.954 0.417 0.967 0.988 0.990 0.990 0.990
1000 0.565 0.992 0.594 0.996 1.000 1.000 1.000 1.000
2000 0.774 0.999 0.814 0.999 1.000 1.000 1.000 1.000

0.7 500 0.252 0.821 0.252 0.839 0.808 0.808 0.806 0.809
1000 0.313 0.932 0.333 0.946 0.934 0.937 0.936 0.935
2000 0.416 0.984 0.436 0.987 0.992 0.992 0.990 0.991

0.8 500 0.170 0.623 0.166 0.651 0.529 0.525 0.515 0.528
1000 0.196 0.733 0.199 0.757 0.605 0.615 0.624 0.631
2000 0.226 0.838 0.230 0.848 0.741 0.738 0.746 0.734

0.9 500 0.127 0.440 0.132 0.445 0.410 0.419 0.404 0.406
1000 0.137 0.487 0.140 0.506 0.442 0.440 0.452 0.424
2000 0.135 0.542 0.148 0.540 0.466 0.467 0.468 0.473

Table 4.3.: Rejection rates of the CUSUM and Wilcoxon test for LMSV time series of length n with Hurst parameter H, tail index α
and a shift in the variance of height h2 after a proportion τ . The calculations are based on 5000 simulation runs.
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α = 4.5 α = 6 α = 4.5 α = 6
H n h = 1 h = 0.5 h = 2 h = 1 h = 0.5 h = 2 h = 1 h = 0.5 h = 2 h = 1 h = 0.5 h = 2

τ
=

0
.2
5

0.6 500 0.035 0.229 0.040 0.038 0.237 0.043 0.040 0.518 0.495 0.041 0.511 0.494
1000 0.033 0.291 0.043 0.035 0.317 0.050 0.043 0.736 0.739 0.047 0.731 0.745
2000 0.033 0.383 0.048 0.034 0.423 0.060 0.044 0.901 0.897 0.042 0.908 0.905

0.7 500 0.022 0.146 0.022 0.024 0.161 0.025 0.046 0.252 0.248 0.048 0.263 0.259
1000 0.022 0.192 0.023 0.025 0.225 0.027 0.044 0.380 0.381 0.046 0.380 0.378
2000 0.020 0.263 0.030 0.021 0.296 0.034 0.049 0.526 0.528 0.050 0.531 0.536

0.8 500 0.015 0.086 0.013 0.019 0.098 0.015 0.038 0.120 0.119 0.042 0.136 0.127
1000 0.015 0.107 0.017 0.016 0.128 0.017 0.049 0.159 0.155 0.045 0.165 0.156
2000 0.015 0.140 0.014 0.017 0.171 0.016 0.047 0.198 0.192 0.046 0.197 0.198

0.9 500 0.019 0.079 0.018 0.023 0.088 0.021 0.048 0.100 0.101 0.049 0.097 0.096
1000 0.019 0.099 0.015 0.021 0.112 0.020 0.053 0.109 0.107 0.050 0.110 0.105
2000 0.020 0.123 0.020 0.023 0.133 0.023 0.056 0.118 0.114 0.047 0.104 0.123

τ
=

0
.5

0.6 500 0.145 0.152 0.158 0.164 0.816 0.831 0.823 0.816
1000 0.206 0.193 0.227 0.221 0.965 0.963 0.962 0.960
2000 0.277 0.270 0.324 0.318 0.998 0.998 0.996 0.996

0.7 500 0.090 0.090 0.100 0.093 0.524 0.530 0.534 0.521
1000 0.125 0.121 0.130 0.135 0.701 0.695 0.698 0.699
2000 0.165 0.168 0.196 0.193 0.859 0.863 0.854 0.863

0.8 500 0.045 0.046 0.053 0.054 0.270 0.274 0.270 0.278
1000 0.063 0.064 0.062 0.070 0.357 0.361 0.350 0.361
2000 0.073 0.086 0.099 0.083 0.439 0.443 0.454 0.454

0.9 500 0.044 0.037 0.047 0.040 0.200 0.205 0.195 0.198
1000 0.053 0.052 0.064 0.058 0.228 0.224 0.246 0.228
2000 0.066 0.065 0.076 0.074 0.263 0.248 0.248 0.264

Table 4.4.: Rejection rates of the self-normalized CUSUM and the self-normalized Wilcoxon test for LMSV time series of length n with
Hurst parameter H, tail index α and a shift in the variance of height h2 after a proportion τ . The calculations are based on 5000
simulation runs.
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α = 0.5 α = 1 α = 0.5 α = 1
H n h = 0 h = 0.25 h = 0.5 h = 0 h = 0.25 h = 0.5 h = 0 h = 0.25 h = 0.5 h = 0 h = 0.25 h = 0.5

τ
=

0
.2
5

0.6 500 0.457 0.884 0.994 0.139 0.215 0.393 0.303 0.807 0.985 0.123 0.213 0.388
1000 0.419 0.982 1.000 0.121 0.298 0.588 0.277 0.931 1.000 0.113 0.269 0.538
2000 0.388 0.999 1.000 0.113 0.436 0.825 0.259 0.991 1.000 0.100 0.374 0.747

0.7 500 0.213 0.601 0.879 0.084 0.108 0.184 0.148 0.538 0.828 0.078 0.132 0.220
1000 0.177 0.761 0.977 0.071 0.134 0.249 0.123 0.635 0.930 0.067 0.144 0.272
2000 0.141 0.907 0.998 0.071 0.151 0.350 0.105 0.790 0.987 0.066 0.159 0.347

0.8 500 0.131 0.329 0.590 0.064 0.081 0.105 0.104 0.340 0.587 0.065 0.113 0.153
1000 0.107 0.379 0.716 0.064 0.081 0.115 0.090 0.357 0.665 0.064 0.108 0.155
2000 0.087 0.491 0.836 0.054 0.083 0.138 0.078 0.428 0.756 0.058 0.102 0.170

0.9 500 0.087 0.201 0.376 0.056 0.058 0.079 0.092 0.275 0.474 0.086 0.129 0.171
1000 0.075 0.216 0.425 0.054 0.068 0.080 0.082 0.279 0.493 0.075 0.126 0.163
2000 0.061 0.221 0.480 0.051 0.061 0.074 0.067 0.273 0.520 0.072 0.110 0.147

τ
=

0
.5

0.6 500 0.971 1.000 0.312 0.597 0.915 0.998 0.280 0.540
1000 0.997 1.000 0.446 0.812 0.985 1.000 0.381 0.739
2000 1.000 1.000 0.628 0.953 0.999 1.000 0.526 0.901

0.7 500 0.794 0.976 0.161 0.296 0.674 0.932 0.160 0.291
1000 0.916 0.998 0.188 0.402 0.795 0.988 0.180 0.381
2000 0.982 1.000 0.241 0.531 0.915 0.999 0.221 0.483

0.8 500 0.509 0.812 0.107 0.164 0.434 0.735 0.119 0.188
1000 0.611 0.902 0.109 0.192 0.501 0.817 0.123 0.208
2000 0.709 0.957 0.123 0.227 0.567 0.888 0.134 0.234

0.9 500 0.339 0.611 0.070 0.106 0.342 0.588 0.120 0.179
1000 0.360 0.656 0.068 0.121 0.345 0.606 0.116 0.183
2000 0.391 0.716 0.071 0.127 0.356 0.645 0.113 0.183

Table 4.5.: Rejection rates of the CUSUM and Wilcoxon test for LMSV time series of length n with Hurst parameter H and a change in the tail
index α of height h after a proportion τ . The calculations are based on 5000 simulation runs.
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α = 0.5 α = 1 α = 0.5 α = 1
H n h = 0 h = 0.25 h = 0.5 h = 0 h = 0.25 h = 0.5 h = 0 h = 0.25 h = 0.5 h = 0 h = 0.25 h = 0.5

τ
=

0
.2
5

0.6 500 0.035 0.373 0.725 0.040 0.087 0.181 0.037 0.221 0.461 0.043 0.072 0.145
1000 0.033 0.596 0.912 0.045 0.124 0.277 0.041 0.383 0.707 0.049 0.100 0.211
2000 0.038 0.819 0.985 0.045 0.206 0.453 0.037 0.584 0.888 0.045 0.159 0.334

0.7 500 0.026 0.189 0.435 0.041 0.065 0.100 0.032 0.120 0.242 0.042 0.059 0.082
1000 0.038 0.294 0.596 0.043 0.079 0.137 0.046 0.167 0.347 0.046 0.069 0.115
2000 0.040 0.452 0.774 0.047 0.098 0.191 0.042 0.263 0.502 0.049 0.081 0.151

0.8 500 0.028 0.092 0.194 0.041 0.046 0.056 0.034 0.062 0.111 0.043 0.044 0.053
1000 0.034 0.130 0.276 0.047 0.053 0.064 0.043 0.090 0.146 0.049 0.054 0.056
2000 0.040 0.177 0.350 0.046 0.050 0.078 0.043 0.107 0.188 0.047 0.049 0.068

0.9 500 0.030 0.073 0.133 0.047 0.044 0.058 0.039 0.059 0.081 0.049 0.048 0.060
1000 0.038 0.083 0.157 0.050 0.055 0.060 0.047 0.066 0.095 0.053 0.058 0.061
2000 0.046 0.101 0.189 0.052 0.055 0.058 0.054 0.077 0.099 0.055 0.057 0.057

τ
=

0
.5

0.6 500 0.603 0.907 0.137 0.318 0.456 0.813 0.112 0.259
1000 0.843 0.989 0.227 0.517 0.703 0.960 0.179 0.420
2000 0.974 1.000 0.363 0.732 0.901 0.996 0.288 0.612

0.7 500 0.364 0.692 0.085 0.167 0.262 0.535 0.078 0.136
1000 0.551 0.869 0.120 0.248 0.388 0.717 0.099 0.197
2000 0.750 0.969 0.157 0.344 0.562 0.882 0.124 0.275

0.8 500 0.195 0.414 0.057 0.091 0.136 0.290 0.057 0.083
1000 0.296 0.539 0.065 0.106 0.193 0.370 0.063 0.094
2000 0.383 0.671 0.082 0.135 0.234 0.463 0.076 0.115

0.9 500 0.135 0.288 0.059 0.083 0.102 0.192 0.057 0.080
1000 0.181 0.350 0.059 0.092 0.120 0.220 0.060 0.088
2000 0.216 0.410 0.060 0.085 0.143 0.263 0.060 0.080

Table 4.6.: Rejection rates of the self-normalized CUSUM and the self-normalized Wilcoxon test for LMSV time series of length n with Hurst
parameter H and a change in the tail index α of height h after a proportion τ . The calculations are based on 5000 simulation runs.
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5. Data examples

On the basis of corresponding evaluations in Betken and Wendler (2015), in the following,
three different data sets are analyzed with regard to changes in the mean by applications
of the sampling-window method considered in Chapter 3 and the change-point estimator
k̂W established in Chapter 2. All three data sets are included in any standard distribution
of R.

5.1. Nile river discharge
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Figure 5.1.: Measurements of the annual discharge volume of the river Nile at Aswan in 108m3

for the years 1871-1970. The dashed line indicates the potential change-point location estimated
by k̂W .

The first data set consists of annual measurements of the discharge volume from the
Nile river at Aswan in 108m3 for the years 1871 to 1970; see Figure 5.1. The data has
been taken from the datasets package in R. It has been analyzed for the detection of
a change-point by numerous authors under differing assumptions concerning the data
generating random process and by usage of diverse methods. Amongst others, Cobb
(1978), MacNeill et al. (1991), Wu and Zhao (2007), and Shao (2011) provided statisti-
cally significant evidence for a decrease of the Nile’s annual discharge towards the end
of the 19th century. The construction of the Aswan Low Dam between 1898 and 1902
serves as a popular explanation for an abrupt change in the data.
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5. Data examples

Yet, Cobb (1978) gave another explanation for the decrease in water volume by citing
rainfall records which suggest a decline of tropical rainfall at that time.

Computed with respect to this data set, the value of the self-normalized Wilcoxon test
statistic, defined by (1.9) in Chapter 1, corresponds to SWn(τ1, τ2) = 13.48729 when
τ1 = 1 − τ2 = 0.15. A comparison of this value with the 95%-quantile of the statistic’s
asymptotic distribution, reported in Betken (2016), leads to a rejection of the hypothesis
for every possible choice of H. Based on an approximation of the finite sample distri-
bution of the self-normalized Wilcoxon test statistic by the sampling-window method
with block size ln ∈ {bnγc| γ = 0.5, 0.6, 0.7} = {10, 15, 25}, subsampling indicates the
existence of a change-point in the mean of the data, even if the 99%-quantile of the
empirical distribution function F̂mn,ln , mn = n − ln + 1, defined by (3.1) in Chapter 3,
is considered.

Previous analysis of the Nile data, done by Wu and Zhao (2007) and Balke (1993),
suggests that the change in the discharge volume occurred in 1899. An application of
the change-point estimator k̂W , defined by (2.1) in Chapter 2, identifies a change in 1898.
This result seems to be in good accordance with the estimated change-point locations
suggested by other authors: Cobb’s analysis of the Nile data leads to the conjecture
of a significant decrease in discharge volume in 1898. Moreover, computation of the
CUSUM-based change-point estimator k̂C,0, considered in Horváth and Kokoszka (1997)
and defined by (2.2) in Chapter 2, indicates a change in 1898.

An application of the self-normalized Wilcoxon test statistic to the corresponding pre-
break and post-break samples provides evidence for stationarity of the time series before
and after the estimated change-point: For both subsamples, neither a comparison of
SWn(τ1, τ2), τ1 = 1−τ2 = 0.15, with the 90%-quantile of the sampling distribution F̂mn,ln
nor a comparison with the 90%-quantile of its limit distribution, leads to a rejection of
the hypothesis (for any possible choice of the block length and any value of H). Based
on the whole sample, local Whittle estimation with bandwidth parameter bn = bn2/3c,
as previously considered in Section 3.2, suggests the existence of long-range dependence
characterized by a Hurst parameter Ĥ = 0.962, whereas the estimates for the pre-break
and post-break samples, given by Ĥ1 = 0.517 and Ĥ2 = 0.5, respectively, should be
considered as indication of short-range dependent data. These findings support the
conjecture of spurious long-range dependence caused by a change-point and therefore
agree with the results of Shao (2011).

5.2. Northern hemisphere temperature

The second data set consists of the seasonally adjusted monthly deviations of the temper-
ature (degrees Celsius) for the Northern hemisphere during the years 1854 to 1989 from
the monthly averages over the period 1950 to 1979; see Figure 5.2. The data has been
taken from the longmemo package in R. It results from spatial averaging of temperatures
measured over land and sea.

At first sight, the plot in Figure 5.2 suggests non-stationarity of the data-generating pro-
cess, possibly caused by an increasing trend and an abrupt change of the temperature
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5.2. Northern hemisphere temperature
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Figure 5.2.: Monthly temperature of the Northern hemisphere for the years 1854 – 1989 from the
data base held at the Climate Research Unit of the University of East Anglia, Norwich, England.
The temperature anomalies (in degrees C) are calculated with respect to the reference period 1950

– 1979. The dashed line indicates the potential change-point location estimated by k̂W .

deviations. Statistical evidence for a positive deterministic trend can be interpreted as
affirmation of the conjecture that there has been global warming during the last decades.
The question of whether the Northern hemisphere temperature data acts as an indicator
for global warming of the atmosphere is a controversial issue. Previous analysis of this
data offers different explanations for the irregular behavior of the time series. Deo and
Hurvich (1998) fitted a linear trend to the data, thereby providing statistical evidence
for global warming during the last decades. Beran and Feng (2002) considered a more
general stochastic model by the assumption of so-called semiparametric fractional au-
toregressive (SEMIFAR) processes. Their method did not deliver sufficient statistical
evidence for a deterministic trend. Neither does the investigation of the global tem-
perature data in Wang (2007) support the hypothesis of an increasing trend. In fact,
Wang (2007) offers an alternative explanation for the occurrence of a trend-like behavior
by pointing out that it may have been generated by stationary long-range dependent
processes. In contrast, it is shown in Shao (2011) that under model assumptions that
include long-range dependence, the existence of a change-point in the mean yields yet
another explanation for the performance of the data.

The value of the self-normalized Wilcoxon test statistic for the temperature data is
SWn(τ1, τ2) = 18.98636, when τ1 = 1 − τ2 = 0.15. By comparison of this value
with the asymptotic critical values for the corresponding hypothesis test, the hypoth-
esis of stationarity is rejected for every value of H at a level of significance of 1%;
see Betken (2016). An application of the sampling-window method with respect to
the self-normalized Wilcoxon test statistic based on comparison of SWn(τ1, τ2) with
the 99%-quantile of the sampling distribution F̂mn,ln , mn = n − ln + 1, yields a test
decision in favor of a change-point in the mean for any choice of the block length

119



5. Data examples

ln ∈ {bnγc| γ = 0.3, 0.4, . . . , 0.9} = {9, 19, 40, 84, 177, 371, 778}. All in all, both test-
ing procedures provide strong evidence for the existence of a change in the mean.

According to Shao (2011), estimation of the change-point location based on a self-
normalized CUSUM test statistic suggests a structural change around October 1924.
Computation of the change-point estimator k̂W corresponds to a change-point located
around June 1924. The same change-point location results from an application of the
estimator k̂C,0. In this regard, estimation by k̂W seems to be in good accordance with
the results of alternative change-point estimators.

Based on the whole sample, local Whittle estimation with bandwidth bn = bn2/3c pro-
vides an estimator Ĥ = 0.811. The estimated Hurst parameters for the pre-break and
post-break sample are Ĥ1 = 0.597 and Ĥ2 = 0.88, respectively. On the basis of a signif-
icance level of 10%, neither of both testing procedures, i.e. subsampling with respect to
the self-normalized Wilcoxon test statistic and comparison of the value of SWn(τ1, τ2),
τ1 = 1 − τ2 = 0.15, with the corresponding critical values of its limit distribution, pro-
vides evidence for another change-point in the pre-break or post-break sample (for any
possible choice of block length and any value of H).

In Appendix B.2 testing procedures that allow for more than one change-point are con-
sidered. These are based on test statistics resulting from corresponding modifications
of the Wilcoxon statistics defined in Sections 1.2.2 and 1.2.3. Computation of the self-
normalized Wilcoxon statistic that allows for two breakpoints, denoted by SWn(τ1, τ2, ε)
and defined by formula (B.2) in the appendix, yields SWn(τ1, τ2, ε) = 17.88404 for
τ1 = 1 − τ2 = ε = 0.15. This value only surpasses the critical value corresponding to
H = 0.501 at a significance level of 10% (see Table B.1), but does not exceed any of
the other quantiles. Subsampling with respect to the test statistic SWn(τ1, τ2, ε) does
not support the conjecture of two changes, either. In fact, subsampling leads to a re-
jection of the hypothesis when the block length equals ln = bn0.7c = 177 (based on a
comparison of SWn(τ1, τ2, ε) with the 95%-quantile of the corresponding sampling dis-
tribution F̂mn,ln , but yields a test decision in favor of the hypothesis for block lengths
ln ∈ {bnγc| γ = 0.5, 0.6, 0.8, 0.9} = {40, 84, 371, 778} and for comparison with the 90%-
quantile of F̂mn,ln . Therefore, it seems safe to conclude that the appearance of long-range
dependence in the post-break sample is not caused by another change-point in the mean.
The pronounced difference between the local Whittle estimators Ĥ1 and Ĥ2 can be inter-
preted as indication of a change in the dependence structure of the time series. Another
explanation could be a gradual change of the temperature in the post-break period.

5.3. Ethernet traffic

The third data set consists of the arrival rate of Ethernet data (bytes per 10 milliseconds)
from a local area network (LAN) measured at Bellcore Research and Engineering Center
in 1989. The data has been taken from the longmemo package in R. For more information
on the LAN traffic monitoring, see Leland and Wilson (1991) and Beran (1994).

Figure 5.3 reveals that the observations are strongly right-skewed. As Wilcoxon-like
statistics can be computed from ranks, this is not expected to affect tests and estimators
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5.3. Ethernet traffic

that are based on these statistics.

Coulon et al. (2009) examined this data set in view of change-points under the as-
sumption that a FARIMA model holds for segments of the data. The number of
different sections and the location of potential change-points are chosen by a model
selection criterion. The algorithm proposed by Coulon et al. (2009) detects multi-
ple changes in the parameters of the corresponding FARIMA time series. In con-
trast, an application of the self-normalized Wilcoxon change-point test does not pro-
vide evidence for a change-point in the mean: the value of the test statistic is given by
SWn(τ1, τ2) = 3.270726 when τ1 = 1 − τ2 = 0.15. Even for a level of significance of
10%, the self-normalized Wilcoxon change-point test does not reject the hypothesis for
any value of H. Subsampling with respect to the self-normalized Wilcoxon test statistic
does not lead to a rejection of the hypothesis, either (for any choice of block length
ln ∈ {bnγc| γ = 0.3, 0.4, . . . , 0.9} = {12, 27, 63, 144, 332, 761, 1745} and for comparison
with the 90%-quantile of the sampling distribution F̂mn,ln , mn = n− ln + 1).
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Figure 5.3.: Ethernet traffic in bytes per 10 milliseconds from a LAN measured at Bellcore Re-
search Engineering Center.

Since the value 0 appears several times in the Ethernet traffic data, it seems reasonable
to also consider change-point tests that allow for ties in the data. In Appendix B.1,
corresponding testing procedures, which are based on test statistics resulting from mod-
ifications of the Wilcoxon statistics defined in Sections 1.2.2 and 1.2.3, are considered. As
noted in Appendix B.1, test decisions on the basis of the asymptotic distributions of the
modified statistics are not feasible without specific knowledge of the data-generating pro-
cess. Yet, it is possible to apply subsampling with respect to the modified self-normalized
Wilcoxon test statistic SW ∗n(τ1, τ2) defined by (B.1) in the appendix. A comparison of
SW ∗n(τ1, τ2), τ1 = 1 − τ2 = 0.15, with the 90%-quantile of the corresponding sampling
distribution F̂mn,ln does not lead to a rejection of the hypothesis (for any possible choice
of the block length).
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An application of the test statistic constructed for the detection of two changes yields
SWn(τ1, τ2, ε) = 15.24527 when ε = τ1 = 1 − τ2 = 0.15. Comparing this value to the
90%-quantiles of the asymptotic distribution of SWn(τ1, τ2, ε), reported in Table B.1
in Section B.1 of the appendix, does not lead to a rejection of the hypothesis for any
value of the parameter H. Subsampling based on a comparison of SWn(τ1, τ2, ε) with
the 90%-quantile of the corresponding sampling-window estimate F̂mn,ln does not pro-
vide evidence for more than one change-point in the data for any choice of the block
length ln ∈ {bnγc| γ = 0.5, 0.6, 0.7, 0.8} = {63, 144, 332, 761}, either. These results do
not coincide with the analysis of Coulon et al. (2009). This may be due to the fact
that the considered methods differ considerably from the testing procedures applied be-
fore. The change-point estimation algorithm proposed in Coulon et al. (2009) is not
robust to skewness or heavy-tailed distributions and decisively relies on the assumption
of FARIMA time series. This seems to contradict observations made by Bhansali and
Kokoszka (2001) as well as Taqqu and Teverovsky (1997) who stress that the Ethernet
traffic data is very unlikely to be generated by FARIMA processes.
Estimation of the Hurst parameter by the local Whittle procedure with bandwidth pa-
rameter bn = bn2/3c yields an estimate Ĥ = 0.845 indicating long-range dependence.
This is consistent with the results of Leland et al. (1994) and Taqqu and Teverovsky
(1997).
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A. Skorohod spaces

Given a stationary sequence of random variables Xn, n ∈ N, with marginal distribution
function F , the determination of the asymptotic distribution of many non-parametric
statistics, such as U-statistics or von Mises statistics, can be derived from the asymptotic
behavior of the two-parameter empirical process

en(x, t) ··=
bntc∑
i=1

(
1{Xi≤x} − F (x)

)
, x ∈ [−∞,∞] , t ∈ [0, 1] .

In this thesis, limit theorems for the empirical process are considered in Chapters 1, 2,
and 4 with the objective of deriving the asymptotic distribution of Wilcoxon-type test
statistics and change-point estimators.
Since the sample paths of the two-parameter process en(x, t), x ∈ [−∞,∞], t ∈ [0, 1],
contain jumps, the space C([−∞,∞] × [0, 1]) of continuous, real-valued functions on
[−∞,∞] × [0, 1] cannot be considered as a suitable path space. For this reason, weak
convergence is studied in the Skorohod space D([−∞,∞]×[0, 1]) which allows for sample
paths with certain discontinuities.

A.1. Topologies on Skorohod spaces

Given a compact interval I ⊂ R̄, the space D(I) is defined as the set of all functions on
I which are right-continuous and have left limits. An element of D(I) is also referred to
as càdlàg function (French: continue à droite, limite à gauche).
For the definition of D ··= D(K), where K = [a1, b1] × [a2, b2] with a1, a2, b1, b2 ∈ R̄,
a1 < b1, a2 < b2, the terms right-continuity and one-sided limits are generalized by
the expressions continuity from above and quadrant limits. For a suitable definition of
continuity from above, which applies to functions with bidimensional domain K, we
consider the intervals Ik(s, t), t ∈ [ak, bk], s ∈ {ak, bk}, defined by

Ik(s, t) ··=

{
[ak, t) if s = ak,

(t, bk] if s = bk

for k = 1, 2. With V denoting the set of all vertices of K, i.e.

V ··=
{

(a1, a2)t, (a1, b2)t, (b1, a2)t, (b1, b2)t
}
,

we write

Q(v, x) ··= I1(v1, x1)× I2(v2, x2)

for any v ∈ V and x = (x1, x2)t ∈ [a1, b1]× [a2, b2].
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A. Skorohod spaces

Definition 13 (Seijo and Sen (2011)). Given v ∈ V, x ∈ K, with K and V defined as
above, and a function f : K −→ R, we say that l is the v-limit of f at x if for every
sequence xn, n ∈ N, in Q(v, x) that converges to x, we have limn→∞ f(xn) = l. In this
case, we define f(x+ 0v) ··= l. When v = (b1, b2)t we write f(x+ 0+) ··= f(x+ 0b). The
function f is said to be continuous from above at x if f(x+ 0+) = f(x).

Based on the notion of continuity from above, it is possible to define the Skorohod space
on rectangles K.

Definition 14 (Seijo and Sen (2011)). The Skorohod space D is defined as the collection
of all functions f : K −→ R for which all v-limits exist and which are continuous from
above for every x ∈ K.

Equipped with the uniform metric du : D ×D → R defined by

du(x, y) ··= sup
t∈K
|x(t)− y(t)|

for x, y ∈ D, the space (D, du) is a complete metric space. However, it is not separable;
Billingsley (1968). For this reason, we consider the Skorohod metric as an alternative
distance function on D.

Definition 15 (Seijo and Sen (2011)). Let ΛK denote the class of all (with respect to
the coordinatewise order on R2) strictly increasing, continuous bijections λ : K −→ K
and let id : K −→ K denote the identity function. The Skorokhod metric ds on D is
defined by

ds(x, y) ··= inf
λ∈ΛK

max {du(λ, id), du(y, x ◦ λ)}

for x, y ∈ D.

Every λ ∈ ΛK in the definition of the Skorohod metric can be interpreted as the repre-
sentation of a small perturbation in time whose size is measured by du(λ, id) while, at
the same time, du(y, x ◦ λ) measures the size of perturbations in space. Therefore, ds
allows for small deformations of functions in space and time whereas du only allows for
perturbations in space.
A sequence of càdlàg functions xn, n ∈ N, in D converges to a limit x in the Skorohod
topology if and only if there exist functions λn, n ∈ N, in ΛK such that du(λn, id) and
du(xn, x ◦ λn) converge to 0. As a result, convergence with respect to the metric du
implies convergence with respect to the metric ds.
With U and S denoting the Borel σ-algebras with respect to du and ds, respectively,
it follows that S ⊂ U , i.e. the uniform topology is finer than the Skorohod topology.
On the other hand, a sequence of càdlàg functions xn, n ∈ N, in D that converges with
respect to the Skorohod metric to a (uniformly) continuous function x, also converges
to x with respect to the uniform metric since

du(xn, x) ≤ 2 max {du(xn, x ◦ λn), du(x ◦ λn, x)} .
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Therefore, the Skorohod topology and the uniform topology coincide if relativized to the
space C ··= C(K) of continuous, real-valued functions onK. Nonetheless, the incongruity
of the topologies implies subtle difficulties when considering weak convergence of random
elements with values in D.

A.2. Weak convergence in Skorohod spaces

Given probability measures Pn, n ∈ N, and P defined on U (and therefore also defined
on S), weak convergence of Pn, n ∈ N, to P , denoted by Pn ⇒ P , is defined by requiring

lim
n→∞

∫
h dPn =

∫
h dP for all h ∈ Cb(D),

where Cb(D) denotes the class of all bounded, continuous real-valued functions on D.
Based on this definition of weak convergence of probability measures, a sequence of
random variables Xn, n ∈ N, is said to converge in distribution to some random variable
X, if and only if the induced laws of Xn, n ∈ N, converge weakly to the induced law of
X, i.e. if and only if

lim
n→∞

Eh(Xn) = Eh(X) for all h ∈ Cb(D). (A.1)

We indicate convergence in distribution by the notation Xn
D−→ X.

Since continuity depends on the topology that is considered, we write Pn ⇒u P for
convergence with respect to the uniform topology and Pn ⇒s P for convergence with re-
spect to the Skorohod topology. Weak convergence with respect to the uniform topology
requires the probability measures Pn, n ∈ N, and P to be defined on U , while proba-
bility measures which converge weakly with respect to the Skorohod topology have to
be defined on the smaller σ-field S only. For this reason, the possibility of an extension
of probability measures defined on S to the larger σ-field U is crucial to relating weak
convergence with respect to ds and weak convergence with respect to du.

Theorem 13 (Billingsley (1968)). Suppose Pn, n ∈ N, and P are probability measures
defined on U .

a) If Pn ⇒u P , then Pn ⇒s P .

b) If Pn ⇒s P and P (C) = 1, then Pn ⇒u P .

For a probability measure P on S with P (C) = 1, an extension of P from S to U can
be based on the fact that the uniform topology and the Skorohod topology coincide
if relativized to C. However, in general, an extension is not possible. As shown in
Billingsley, the empirical process of independent, uniformly distributed random variables
is an S-measurable, D[0, 1]-valued random variable, which is not measurable with respect
to U , so that the distribution of the empirical process cannot be extended from S to U .
To overcome the problems resulting from non-separability of the metric space (D, du),
Hoffmann-Jørgensen (1991) suggests to drop the requirement of Borel measurability by
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replacing the expected values in the convergence condition (A.1) by outer expectations,
thereby extending the classical notion of weak convergence to a theory of weak conver-
gence of laws without laws being defined:

Definition 16 (Van Der Vaart and Wellner (1996)). Let (M,d) be a metric space.
Given probability spaces (Ω,F , P ), (Ωn,Fn, Pn), n ∈ N, and arbitrary (possibly non-
measurable) maps Xn : Ωn −→ M , n ∈ N, and X : Ω −→ M , Xn, n ∈ N, is said to
converge in distribution in Hoffmann – Jørgensen’s sense to X, denoted by Xn  X, if
P (X ∈M0) = 1 for some separable Borel set M0 ⊂M and if

lim
n→∞

E*h(Xn) = Eh(X) for all h ∈ Cb(M),

where Cb(M) denotes the class of all bounded, continuous real-valued functions defined
on M , and where the outer expectation E* is defined by

E*f ··= inf {Eh | f ≤ h and h is measurable} .

Hoffmann – Jørgensen’s definition of convergence in distribution corresponds to the clas-
sical definition of weak convergence for Borel measurable random variables Xn, n ∈ N,
and, even in the case of non-measurability, parallels the classical theory to a large ex-
tent: Van Der Vaart and Wellner (1989) establish fundamental results of the classical
weak convergence theory on the basis of the above definition. These include a Portman-
teau theorem, continuous mapping theorems, Prohorov’s theorem, tightness and tools
for establishing tightness.

An alternative theory of weak convergence has been established in Dudley (1966, 1967).
Instead of allowing for non-measurability by operating with outer expectations, Dudley
suggests to replace the Borel σ-algebra, i.e. the σ-field generated by the open sets, in the
definition of weak convergence by the σ-field generated by the open balls (the so-called
ball σ-field).

Definition 17 (Dudley (1966)). Let (M,d) be a metric space. Given probability spaces
(Ω,F , P ), (Ωn,Fn, Pn), n ∈ N, and maps Xn : Ωn −→ M , n ∈ N, and X : Ω −→ M ,
which are measurable with respect to the ball σ-field Mb on M , Xn is said to converge
in distribution to X, denoted by Xn ⇀ X, if

lim
n→∞

Eh(Xn) = Eh(X) for all h ∈ Cb(M,Mb),

where Cb(M,Mb) denotes the class of all bounded, continuous real-valued functions
defined on M which are Mb-measurable.

In general, the Borel σ-algebra is finer than the ball σ-field. Especially, with Ub denoting
the ball σ-field on D equipped with the uniform metric, Ub ⊂ U . Since (D, du) is non-
separable, the ball σ-field Ub is a proper subset of the Borel σ-algebra U in this case.
However, on separable metric spaces ball and Borel σ-algebras coincide. Specifically,
Sb = S, where Sb denotes the σ-field generated by the ds-open balls.
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Moreover, it can be shown that the σ-field on D generated by the du-open balls equals
the σ-field generated by the ds-open sets, i.e. all in all, the following relations hold:

Sb = S = Ub ⊂ U .

In particular, Dudley’s concept of convergence in distribution of random variables with
values in D corresponds to the classical definition of weak convergence if the Skorohod
metric is considered.
If the limit variable X in Definition 17 is concentrated on a separable subset, it can be
shown that Dudley’s notion of weak convergence and the (in this case more general)
concept of weak convergence in the sense of Hoffmann – Jørgensen are equivalent.

Theorem 14 (Van Der Vaart and Wellner (1989)). Let (M,d) be a metric space. More-
over, let (Ω,F , P ), (Ωn,Fn, Pn), n ∈ N, be probability spaces and Xn : Ωn −→ M ,
n ∈ N, and X : Ω −→M maps which are measurable with respect to the ball σ-field Mb

on M . If P (X ∈ M0) = 1 for some separable Borel set M0 ⊂ M , then Xn ⇀ X if and
only if Xn  X.

Due to the fact that within this thesis all random variables with values in some Skorohod
space D(K) are at least Borel measurable with respect to the Skorohod topology and
since the corresponding limits are always concentrated on a separable subset of D(K),
namely on C(K), the difficulties that arise with the definition of weak convergence of
measures on D(K) can be avoided by resorting to Dudley’s or Hoffmann –Jørgensen’s
concept of weak convergence. Because in this case the two definitions are equivalent,
we refer to weak convergence of probability measures by ⇒ and to convergence in dis-

tribution of random variables by
D−→ without specifying the metric on D(K) or the

convergence concept.
A useful technique for proving weak convergence of stochastic processes with values in
function spaces such as C[0, 1] (equipped with the uniform metric) and D[0, 1] (equipped
with the Skorohod metric), consists in establishing tightness and weak convergence of
the finite-dimensional distributions; see Billingsley (1968). In fact, this result can be
easily generalized to processes with values in D(E), where E ··= [0, 1]× [0, 1] denotes the
two-dimensional unit cube in R2. For this purpose, we define the modulus of continuity
of an element x of D(E) by

ωx(δ) ··= sup
‖s−t‖<δ

|x(s)− x(t)| ,

where ‖ · ‖ denotes the Euclidean norm, and the natural projections from D(E) to Rm
by

πt1,...,tm(x) = (x(t1), . . . , x(tm))

for tj ∈ E, j = 1, . . . ,m, and m ∈ N.
Analogous to the corresponding results for stochastic processes with one-dimensional
time parameter, the following theorem establishes tightness and convergence of the finite-
dimensional distributions as sufficient conditions for proving weak convergence.
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Theorem 15 (Neuhaus (1971)). Let Pn, n ∈ N, be a sequence of probability measures
on (D(E),B), where B denotes the Borel σ-algebra on (D(E), ds). Suppose that

Pn ◦ π−1
t1,...,tm

D−→ P ◦ π−1
t1,...,tm

for some probability measure P on (D(E),B) with P (C(E)) = 1 and for all t1, . . . tm ∈ E,
m ∈ N. Suppose further that

lim
δ→0

lim sup
n→∞

Pn ({x ∈ D(E) : ωx(δ) ≥ ε}) = 0

for all ε > 0. Then Pn ⇒ P .
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B. Modified Wilcoxon-type change-point
tests

The Wilcoxon-based statistics considered in this thesis are designed for the identification
of a single change-point in time series with continuous marginal distribution. However,
as seen in Chapter 5, in practice it may be necessary to allow for data with ties or mul-
tiple change-points. Corresponding modifications of the Wilcoxon statistics, originally
proposed in Betken and Wendler (2015), are introduced in the following sections.

B.1. Wilcoxon-based change-point tests for data with ties

Given time series data X1, . . . , Xn, generated by random variables with non-continuous
marginal distribution, there is a positive probability that Xi = Xj for i 6= j, i.e. there
may be ties in the data.
By replacing the ranks Ri, i = 1, . . . , n, in the Wilcoxon statistics by the modified ranks

R?i =

n∑
j=1

(
1{Xj<Xi} +

1

2
1{Xj=Xi}

)
, i = 1, . . . , n,

change-point tests taking the possibility of ties into consideration are obtained. More
precisely, we arrive at the following definitions of test statistics:

W ?
n
··= max

1≤k≤n−1

∣∣∣∣∣
k∑
i=1

R?i −
k

n

n∑
i=1

R?i

∣∣∣∣∣ ,

SW ?
n(τ1, τ2) ··= max

{bnτ1c≤k≤bnτ2c}

∣∣∣∑k
i=1R

?
i − k

n

∑n
i=1R

?
i

∣∣∣{
1
n

∑k
t=1 S

2
t (1, k) + 1

n

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
, (B.1)

where

St(j, k) =
t∑
i=j

(
R?i −

1

k − j + 1

k∑
i=j

R?i

)
.

Suppose the considered data corresponds to a mean-zero subordinated Gaussian time
series Xn = G(ξn), n ∈ N, according to Model 1 introduced in Section 1.1.2, where
ξn, n ∈ N, is a long-range dependent Gaussian sequence with LRD parameter D.
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Under the additional assumption that G is piecewise monotone on finitely many pieces,
the asymptotic distribution of these statistics can be derived in the same way as the limits
of the Wilcoxon and self-normalized Wilcoxon statistics considered in Sections 1.2.2
and 1.2.3. However, instead of considering the Wilcoxon process defined by (1.7) in
Section 1.2.2, we consider the modified Wilcoxon process

W ?
n(t) ··=

[nt]∑
i=1

n∑
j=[nt]+1

h(ξi, ξj), t ∈ [0, 1] ,

with h(x, y) = hG(x, y) ··= 1{G(x)<G(y)} + 1
21{G(x)=G(y)} − 1

2 . Basic transformations yield

W ?
n = sup

t∈[0,1]
|W ?

n(t)| .

Following the proof of Theorem 1 in Betken (2016), the self-normalized Wilcoxon statistic
can be approximated by a function of W ?

n(t), t ∈ [0, 1], as follows:

SW ?
n(τ1, τ2) = sup

t∈[τ1,τ2]

∣∣GW ?
n
(t)
∣∣+OP (1),

where for f ∈ D [0, 1] the function Gf ∈ D [0, 1] is defined by

Gf (t) ··=
f(t)

Vf (t)
, Vf (t) ··=

{∫ t

0

(
f(s)− s

t
f(t)

)2
ds+

∫ 1

t

(
f(s)− 1− s

1− t
f(t)

)2

ds

} 1
2

.

Let dn ··= dn,1 denote the normalizing sequence defined by (1.5) in Section 1.2.2. Then,
according to Theorem 2.2 in Dehling et al. (2017b), the standardized process

1

ndn
W ?
n(t), t ∈ [0, 1] ,

converges in distribution to the limit process W ?(t), t ∈ [0, 1], defined by

W ?(t) ··=− (1− t)BH(t)

∫
R
ϕ(x) dh1(x)

− t(BH(1)−BH(t))

∫
R

(∫
R
ϕ(y)dh(x, y)(y)

)
ϕ(x) dx,

where BH denotes a fractional Brownian motion, ϕ the density function of the standard
normal distribution and h1(x) ··= E (h(x, ξi)). As a result,

1

ndn
W ?
n
D−→ sup

t∈[τ1,τ2]
|W ?(t)| ,

SW ?
n(τ1, τ2)

D−→ sup
t∈[τ1,τ2]

|GW ?(t)| .

Since the limit distributions depend on the transformation G, critical values can only
be computed under additional assumptions on the data-generating process. Neverthe-
less, convergence in distribution to non-degenerate limits justifies an application of the
sampling-window method considered in Chapter 3.
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B.2. Wilcoxon-based change-point tests for multiple
breakpoints

An extension of the Wilcoxon-based tests to testing procedures that allow for two or
more change-points can be based on a modification of the test statistics according to an
approach proposed in Shao (2011) for the self-normalized CUSUM statistic. To illustrate
the general idea that underlies the construction of the modified test statistics, we focus
on alternative hypotheses that assume two level-shifts. By dividing the observations
X1, . . . , Xn according to a pair (k1, k2), 1 ≤ k1 < k2 ≤ n, of potential change-point
locations, the modified test statistics stem from an application of the original test statistic
to the subsamples X1, . . . , Xk2 and Xk1+1, . . . , Xn.

The rank of an observation Xi with respect to the subsample Xj+1, . . . , Xl is given by

Ri;j,l ··=
l∑

k=j+1

1{Xk≤Xi}.

Evaluations of the two-sample Wilcoxon statistics with respect to this subsample lead
to the following definitions:

Wk;j,l ··=
k∑

i=j+1

Ri;j,l −
k − j
l − j

l∑
i=j+1

Ri;j,l,

SWk;j,l ··=
Wk;j,l{

1
n

∑k
t=j+1S

2
t;j,l(j + 1, k)+ 1

n

∑l
t=k+1S

2
t;j,l(k + 1, l)

}1/2
,

where

St;j,l(k,m) ··=
t∑
i=k

(
Ri;j,l − R̄k,m

)
and R̄k,m ··=

1

m− k + 1

m∑
i=k

Ri;j,l.

Under the assumption that in the presence of two breakpoints the change-point locations
are unknown and separated by at least bnεc observations, the set of potential change-
point locations is defined by

Ωn(τ1, τ2, ε) ··= {(k1, k2) | bnτ1c ≤ k1 < k2 ≤ bnτ2c, k2 − k1 ≥ bnεc}

for 0 < τ1 < τ2 < 1 and ε ∈ (0, τ2 − τ1).

As a result, the Wilcoxon statistic Wn(ε) and the self-normalized Wilcoxon statistic
SWn(ε) are defined by

Wn(ε) ··= max
(k1,k2)∈Ωn(0,1,ε)

{|Wk1;0,k2 |+ |Wk2;k1,n|} ,
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and

SWn(τ1, τ2, ε) ··= max
(k1,k2)∈Ωn(τ1,τ2,ε)

{|SWk1;0,k2 |+ |SWk2;k1,n|} . (B.2)

Basic transformations yield

Wbnsc,bntc,bnuc = Wn(s, t, u) ··= Wn(t, t)−Wn(s, t)−Wn(t, u),

and

SWbnsc,bntc,bnuc =
Wn(s, t, u)

VWn(s, t, u)
+OP (1),

where

Wn(s, t) ··=
bnsc∑
i=1

n∑
j=bntc+1

(
1{Xi≤Xj} −

1

2

)
and

Vf (s, t, u)

··=

{∫ t

s

(
f(s, v, u)− v − s

u− s
f(s, t, u)

)2

dv +

∫ u

t

(
f(s, v, u)− u− v

u− t
f(s, t, u)

)2

dv

} 1
2

.

According to the above representations, both test statistics, Wn(ε) and SWn(τ1, τ2, ε),
can be considered as functions of the process Wn(s, t), 0 ≤ s ≤ t ≤ 1.

Given a mean-zero subordinated Gaussian time series Yn = G(ξn), n ∈ N, according
to Model 1 introduced in Section 1.1.2, where ξn, n ∈ N, is a long-range dependent
Gaussian sequence with LRD parameter D, the standardized process

1

ndn,r
Wn(s, t), 0 ≤ s ≤ t ≤ 1,

with r denoting the Hermite rank of the class of functions 1{G(ξ1)≤x} − F (x), x ∈
R, and with dn,r denoting the corresponding normalizing sequence defined by (1.5) in
Section 1.2.2, converges in distribution to

{(1− t)Zr,H(s)− s(Zr,H(1)− Zr,H(t))} 1

r!

∫
R
Jr(x) dF (x), 0 ≤ s ≤ t ≤ 1,

where Zr,H is an r-th order Hermite process with Hurst parameter H = 1 − rD
2 and

where Jr(x) = E
(
Hr(ξ1)1{G(ξ1)≤x}

)
; see Lemma 2 in Chapter 2.

It follows by applications of the continuous mapping theorem that the statistics

1

ndn,r
Wn(ε) and SWn(τ1, τ2, ε)
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converge in distribution to W (ε) and SW (τ1, τ2, ε) defined by

W (ε) ··= sup
(t1,t2)∈Ω(0,1,ε)

{|W (t1; 0, t2)|+ |W (t2; t1, 1)|} 1

r!

∫
R
Jr(x) dF (x)

SW (τ1, τ2, ε) ··= sup
(t1,t2)∈Ω(τ1,τ2,ε)

{|SW (t1; 0, t2)|+ |SW (t2; t1, 1)|}

with

W (t; s, u) ··= Zr,H(t)− t− s
u− s

Zr,H(u)− u− t
u− s

Zr,H(s),

SW (t; s, u) ··=
W (t; s, u){ t∫

s

W 2(u; s, t) du+

u∫
t

W 2(u; t, 1) du

} 1
2

,

and

Ω(τ1, τ2, ε) ··= {(t1, t2) | τ1 ≤ t1 < t2 ≤ τ2, t2 − t1 ≥ ε} .

The critical values corresponding to the asymptotic distributions of the test statistics
are reported in Table B.1.

W (ε) W (τ1, τ2, ε)

H 10% 5% 1% 10% 5% 1%

0.501 0.6198999 0.6704254 0.7713137 17.79236 19.76166 24.12842
0.6 0.4716089 0.5109281 0.5972226 19.79540 22.38011 27.67941
0.7 0.3513135 0.3822559 0.4461184 22.07942 24.94961 30.46419
0.8 0.2477967 0.2718783 0.3205061 24.23847 27.61217 34.03470
0.9 0.1552892 0.1713176 0.2024479 26.49583 30.11468 37.77919
0.999 0.0138900 0.0153919 0.0182338 28.27782 32.32295 41.23974

Table B.1.: Simulated critical values for the distributions of W (ε) and SW (τ1, τ2, ε) when r = 1,
[τ1, τ2] = [0.15, 0.85], and ε = 0.15. The sample size is 1000, the number of replications is 10, 000.
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List of Symbols

P probability measure

EX expected value of a random variable X

VarX variance of a random variable X

Cov(X,Y ) covariance of two random variables X and Y

Corr(X,Y ) correlation of two random variables X and Y

σ (X1, . . . , Xn) σ-field generated by random variables X1, . . . , Xn

E (X | F) conditional expectation of a random variable X given a σ-field F
1A indicator function of a set A

bxc (floor) integer part of a real number x

dxe (ceiling) integer part of a real number x

L2(Ω,F , P ) the space of all F-measurable, real-valued functions on Ω which
are square-integrable with respect to the measure P

M ′ transpose of a matrix M

o little-o notation

O big-O notation

OP stochastic boundedness
a.s.−→ almost sure convergence
P−→ convergence in probability
D−→ convergence in distribution
D
= equality in distribution

f ∼ g asymptotic equivalence of two functions f and g

f . g existence of a function h with f ≤ h and h ∼ g
α tail parameter

D long-range dependence parameter

H Hurst parameter

r Hermite rank

B Brownian motion

BH fractional Brownian motion with Hurst parameter H

Zr,H r-th order Hermite process with self-similarity parameter H
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Aad W. Van Der Vaart and Jon A. Wellner. Convolution and Asymptotic Minimax
Theorems for Nonmeasurable “Estimators”. 1989.

Aad W. Van Der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes.
Springer, 1996.

Lihong Wang. Gradual changes in long memory processes with applications. Statistics,
41:221 – 240, 2007.

Wei Biao Wu and Zhibiao Zhao. Inference of trends in time series. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69:391 – 410, 2007.

Ting Zhang, Hwai-Chung Ho, Martin Wendler, and Wei Biao Wu. Block sampling under
strong dependence. Stochastic Processes and their Applications, 123:2323 – 2339, 2013.

143


	Background
	Long-range dependence
	Fractional Brownian motion and fractional Gaussian noise
	Subordinated Gaussian processes

	Change-point identification
	Change-point problems
	Wilcoxon change-point test
	Self-normalized change-point tests


	Wilcoxon-type change-point estimators
	Consistency
	Convergence rate
	Asymptotic distribution
	Simulations

	Subsampling for long-range dependent time series
	Sampling-window method
	Auxiliary results
	Consistency

	Simulations

	Testing for change-points in LMSV time series
	Long Memory Stochastic Volatility model
	The sequential empirical process of subordinated LMSV time series
	Martingale part
	Long-range dependent part

	Change-point tests for LMSV time series
	CUSUM tests for LMSV time series
	Wilcoxon tests for LMSV time series

	Simulations

	Data examples
	Nile river discharge
	Northern hemisphere temperature
	Ethernet traffic

	Skorohod spaces
	Topologies on Skorohod spaces
	Weak convergence in Skorohod spaces

	Modified Wilcoxon-type change-point tests
	Wilcoxon-based change-point tests for data with ties
	Wilcoxon-based change-point tests for multiple breakpoints

	List of Symbols
	Bibliography

