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“It depends on how many beers one has already drunken when choosing the points.”

- my mother, on Sylvester’s four point problem.
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Chapter 1

Introduction

This chapter begins with a general introduction into the theory of stochastic geometry

and random polytopes, presenting some milestones in their historical development. In

particular, we focus on Buffon’s needle problem from 1777 and Sylvester’s four point

problem from 1864, which enable the reader to gain some insights into two mathem-

atical problems that are regarded as the starting points in the theory of stochastic

geometry and random polytopes, respectively. Then, we use the class of Gaussian

polytopes to state some applications of random polytopes to other fields of mathem-

atics, to explain results concerning random polytopes that have been obtained in the

last decades and to arrive at a point that can be considered as a kick-off for Chapter 3.

Moreover, we provide the reader with a historical background, dealing with the theory

of the approximation of smooth convex bodies by random polytopes. Finally, this leads

to a starting point for Chapter 5.

Next, we switch to the actual content of this thesis and describe its guideline. We

introduce three different random polytope models, combined with the associated is-

sues that are analyzed and solved in the upcoming chapters. Furthermore, we state

exemplary results to give an heuristic overview on the main topics of the thesis, and

specify the research papers that this thesis is based on.
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1.1. GENERAL INTRODUCTION

1.1 General introduction

Stochastic geometry is a branch of mathematics at the borderline between convex

geometry and probability theory. Its origin is in the year 1777, when Buffon [21] found

an answer to the following question, known as Buffon’s needle problem in literature:

Let us imagine two people stand in a room whose floor consists of parallel ordered

boards, having all the same width. Now, one person throws up a needle of given

length, betting that it falls on one of the splices between the boards. The other

person bets on the opposite event. We assume, additionally, that the needle is not

longer than the boards are wide. Under which assumption on the length of the needle

in relation to the width of the boards can this game be considered to be fair?

This problem can be regarded as an easier version of the game ‘franc Carreau’, very

popular in France at that time. Here, two people stand in a room and throw a coin

onto its chessboard patterned floor. The question, how high is the probability that the

coin will be completely contained in one of the squares, initiated also the interest in

Buffon’s needle problem.

In order to provide the reader with an overview on where both geometry and probability

come into play, we have decided to enumerate the main ideas of Buffon’s proof. Let

2a and 2b denote the width of the boards and the length of the needle, respectively,

satisfying 2b ≤ 2a by assumption. Now, consider a strip of width 2a− 2b in the middle

of one of the boards (see Figure 1.1). If the center of the needle, symbolized by M ,

Figure 1.1: Buffon’s needle problem I.

falls into this strip, the needle cannot touch one of the splices. On the other hand, if

M falls into one of the two remaining stripes of width b, the needle can either touch

a splice or not. Without loss of generality, let us assume that M falls into the upper

one, and denote by x the shortest distance from M to the corresponding upper splice.

2



CHAPTER 1. INTRODUCTION

If the needle falls down in such a way that it just touches the splice with one of its

ends, this direction and the perpendicular dropped of M onto the splice form the angle

α (see Figure 1.2). Now, the probability that the needle hits the upper splice is 2α
π

,

Figure 1.2: Buffon’s needle problem II.

and in view of cosα = x
b
, it follows that α = arccos x

b
. Therefore, the probability that

the needle hits the splice, given that it is at distance x to M , is

2

π
arccos

x

b
.

Since x can take values between 0 and b, we average over all of those. Thus, the

probability that the needle hits a splice, given that it lies in the upper strip, is

1

b

2

π

b∫
0

arccos
x

b
dx =

2

π
.

If M is located in the lower strip, we obtain the same probability. Because the prob-

ability that M falls into one of the two stripes is 2b
2a

, finally, the probability that the

needle hits a splice is given by

2b

2a

2

π
=

2b

aπ
. (1.1)

As a consequence, to achieve a fair game between the two players, the length of the

needle, 2b, and the width of the boards, 2a, need to satisfy

1− 2b

aπ
=

2b

aπ
⇔ 2b =

aπ

2
.

Hence, their relation has to fulfill

2b

2a
=
π

4
,

which is the answer to Buffon’s needle problem.

3



1.1. GENERAL INTRODUCTION

The first proof in the setting of a ‘long needle’, that is, 2b ≥ 2a in our above used

spelling, is given in an article by Wolf [134], who published results obtained by Merian

in 1850. In this situation, the probability that the needle hits a splice is given by

2β

π
+

2b

aπ
(1− sin β), (1.2)

where β is the angle arising when both endpoints of the needle are located on neigh-

boring splices (see Figure 1.3). In particular, in the case that 2a = 2b, it follows that

Figure 1.3: Buffon’s needle problem III.

β = 0 and, thus, the two probabilities in (1.1) and (1.2) do match.

In the last two centuries, random polytopes, or random convex hulls, have become one

of the outstanding models of study in stochastic geometry. Indeed, they have seen nu-

merous applications to other branches of mathematics, such as asymptotic geometric

analysis, coding theory, compressed sensing, computational geometry, optimization and

multivariate statistics. Also consider the surveys about random polytopes by Bárány

[7], Hug [72] and Reitzner [110] for further details and references. We explicitly state

some of these applications in the setting of Gaussian polytopes below.

A random polytope emerges as the result of a random experiment, obtained in our

setting by choosing n ∈ N random points in Rd, d ≥ 2, according to some probability

measure. The random convex hull of this point set, that is, the smallest closed convex

set containing all the points, defines the random polytope.

The most natural way of choosing the points might be the one where they are inde-

pendent and uniformly distributed. In view of this purpose, we restrict ourself to some

bounded set K in Rd. Since the induced random polytope is convex and should also

be contained in this set, we assume K to be convex itself.

For the sake of precision, we always assume K to be a convex body in Rd, i.e., a con-

vex, compact and non-empty subset of Rd, and X1, . . . , Xn independent and uniformly

distributed points in K. Then, the random convex hull of this point set is denoted by

Kn := conv(X1, . . . , Xn).

4



CHAPTER 1. INTRODUCTION

Figure 1.4 illustrates some convex body in the planar case, from which we choose

uniformly distributed random points and, finally, the corresponding convex hull Kn.

Figure 1.4: Construction of Kn.

The origin of random polytopes is traditionally related to the Sylvester’s four point

problem. In 1864, Sylvester [124] posed a problem, very innocent at the first glance,

that in more recent terminology reads as follows:

Show, that the probability that the convex hull of four points taken at random in an

indefinite plane is a triangle, is 1
4
.

Some years later, in 1885, Crofton [30, Page 785] underlined the meaning of Sylvester’s

four point problem by writing:

“Historically, it would seem that the first question given on local probability, since

Buffon, was the remarkable four point problem of Prof. Sylvester.”

Many people started working on this issue and presented different ‘solutions’. While

Sylvester [124] himself gave a proof, Ingleby [74] published answers obtained by De-

Morgan and Wilson, arguing that the probability has to be 1
2
, respectively 1

3
. If o is

the origin of Rd, we denote by Bd(o, r) the d-dimensional closed ball of radius r > 0,

centered at the origin. Woolhouse [136] initially chose the four points at random in

B2(o, r). Then, he computed the probability inside this circle. Finally, he took the

limit, as r →∞. In other words, he treated R2 as a circle of infinite radius.

5



1.1. GENERAL INTRODUCTION

Using this idea, he obtained a probability of

35

12π2
.

It was almost immediately understood that these inconsistent results were due to the

instruction that the points should be taken at random in an indefinite plane, allowing

for different interpretations of the underlying probability measure. To overcome this

culprit, Sylvester modified his question. Given a convex body K in the plane, he asked

for the probability that the convex hull of four points chosen from K independently

and uniformly distributed forms a triangle (see Figure 1.5). We denote this probability

by P(K). In the above introduced notation, this is the probability that K4 forms

Figure 1.5: Sylvester’s four point problem.

a triangle. Additionally, Sylvester asked for classes of convex bodies that minimize,

respectively maximize P(K).

Since the points are chosen independently and uniformly distributed, it follows that

P(K) = 4P({One point lies inside the triangle formed by the other three points.})

= 4
E[vol2(K3)]

vol2(K)
.

Here, vol2(·) denotes the 2-dimensional volume, namely, the area, while, generally,

volj(·), j ∈ N, is the j-dimensional volume of the underlying set. Moreover, the

expected area of the random polytope K3 is given by

E[vol2(K3)] =
1

vol2(K)3

∫
K

∫
K

∫
K

vol2(conv(x1, x2, x3)) dx1dx2dx3,

where dxi, i ∈ {1, 2, 3}, is the Lebesgue measure.

6



CHAPTER 1. INTRODUCTION

Woolhouse [136] computed this integral in the case of K being a circle of arbitrary

radius. As mentioned above, he obtained that

P(K) =
35

12π2
.

On the other hand, if K is an arbitrary triangle, Sylvester [125] proved that

P(K) =
1

3
.

In 1867, Woolhouse [135] computed the probability when the underlying convex body

is given by a square, a parallelogram and a regular hexagon, respectively. In particular,

he noted that for all discussed sets K, it holds that

35

12π2
≤ P(K) ≤ 1

3
.

Therefore, it seemed natural to conjecture that the minimum and maximum of P(K)

are obtained when K is a circle and a triangle, respectively. In 1885, Crofton [30]

proved that the minimum is indeed attained when K is a circle. It has taken 32 more

years, until 1917, before a unified proof of the complete conjecture was established by

Blaschke [16].

Sylvester’s four point problem in the plane can easily be generalized to an arbitrary

underlying space dimension. For d ≥ 2, let K be a convex body in Rd and Kd+2 be the

convex hull of d+ 2 independent and uniformly distributed points in K. Moreover, we

denote by Pd(K) the probability that one of the d+ 2 chosen points lies in the convex

hull of the d+ 1 others. Thus, the probability discussed above can be rewritten as

P(K) = P2(K).

At the end of his proof in the planar case, Blaschke claimed that his results would

easily carry over to higher dimensions. More precisely, he claimed that Pd(K) would

be minimized and maximized when K is a ball and a regular simplex in Rd, respectively.

Unfortunately, only in 1973, Groemer [54] verified the minimization property of the ball.

However, the conjecture that Pd(K) is maximized when K is a regular simplex is still

unsolved and, therefore, still a current topic of research. This is due to the fact that

a positive solution to this problem would immediately imply the famous hyperplane

conjecture, one of the major open problems in the asymptotic theory of Banach spaces

(see Milman and Pajor [102]). Let us give a small background about this conjecture.

7



1.1. GENERAL INTRODUCTION

We denote by GL(Rd,Rd) the family of linear isomorphisms T : Rd → Rd, and let K

be a convex body in Rd. Without loss of generality, we assume it to be centered, i.e.,∫
K

〈x, u〉 dx = 0,

for all u on the unit sphere Sd−1, where 〈·, ·〉 indicates the standard scalar product on

Rd. Then, there exists a T ∈ GL(Rd,Rd) such that K := T (K) is isotropic, i.e., has

unit volume and there is an absolute constant LK ∈ (0,∞) satisfying∫
K

〈x, u〉2 dx = L2
K ,

for all u ∈ Sd−1 (see [102]). LK is called the isotropic constant of K. In 1986, Bourgain

[20] conjectured that a uniform upper bound on the isotropic constant should hold,

simultaneously for any convex body and any space dimension. More precisely, he

conjectured that there is an absolute constant C ∈ (0,∞) such that

LK ≤ C,

for any d ≥ 2 and any convex body K in Rd. Unfortunately, the best known bound in

the literature is

LK ≤ C d
1
4 ,

where C ∈ (0,∞) is an absolute constant (see Klartag [82]). The isotropic constant

conjecture is equivalent to the aforementioned hyperplane conjecture, stating that there

exists another absolute constant C ∈ (0,∞) such that

max{vold−1(K ∩ u⊥) : u ∈ Sd−1} ≥ C,

for any d ≥ 2 and any centered convex body K in Rd of unit volume. Here, u⊥ is the

hyperplane containing the origin and orthogonal to u ∈ Sd−1. Indeed, for any d ≥ 2,

any u ∈ Sd−1 and any isotropic convex body K in Rd, it holds that

C1
1

LK
≤ vold−1(K ∩ u⊥) ≤ C2

1

LK
,

where C1, C2 ∈ (0,∞) are absolute constants (see Hensley [65]).

8



CHAPTER 1. INTRODUCTION

Thus, Sylvester’s four point problem from 1864 was not only the starting point in

the theory of random polytopes, but even nowadays it still affects and influences the

ongoing research in this rapidly developing area of stochastic geometry.

Another way of constructing random polytopes that has attracted particular interest

in the last decades concerns the so-called Gaussian polytopes. They arise as convex

hulls of a collection of independent random points in Rd, distributed according to the

standard Gaussian law. More formally, let ‖·‖ stand for the Euclidean norm. Then,

φd(x) :=
1

(2π)
d
2

exp

(
−‖x‖

2

2

)
, x ∈ Rd, (1.3)

is the density of a standard Gaussian random variable in Rd. Now, let X1, . . . , Xn,

n ∈ N, be independent random points in Rd, d ≥ 2, distributed according to the

Gaussian law. Finally, the random convex hull of this point set, denoted again by Kn,

defines the Gaussian polytope.

The main differences towards the already discussed model are that there is here no

reference body in which the points are contained with probability 1 and that the

induced Gaussian polytope grows unboundedly in all directions, as the number of

points increases.

Gaussian polytopes show relevant connections to other fields of mathematics. Firstly,

they are highly relevant in asymptotic convex geometry or the local theory of Banach

spaces. Indeed, since the breakthrough paper of Gluskin [49], Gaussian polytopes have

been used as extremizers in geometric or analytic problems. For example, consider the

two random convex hulls

Ki
d := conv([−1, 1]d ∪ {±X(i)

1 , . . . ,±X(i)
d }),

i ∈ {1, 2}, formed by the union of the d-dimensional unit cube [−1, 1]d with two

independent and symmetrized Gaussian polytopes in Rd, arising from d independent

Gaussian points X
(i)
1 , . . . , X

(i)
d , i ∈ {1, 2}. In particular, Ki

d, i ∈ {1, 2}, is an origin

symmetric convex body in Rd, that is, if x ∈ Ki
d, it holds that also −x ∈ Ki

d. Note that

there is a one to one correspondence between the class of such origin symmetric convex

bodies and the class of d-dimensional Banach spaces (see [49] for further explanations).

Now, with probability tending to 1 exponentially fast, as the space dimension d tends

to infinity, the two random convex hulls K1
d and K2

d – or, equivalently, the random d-

dimensional normed Banach spaces that have these polytopes as their respective unit

9



1.1. GENERAL INTRODUCTION

balls – have Banach-Mazur distance bounded from below by a constant multiple of d.

This distance is defined as follows. Let X and Y be two d-dimensional normed spaces,

and let GL(X, Y ) be the collection of all linear isomorphisms T : X → Y . If ||T ||Op
denotes the operator norm of T , the Banach-Mazur distance between X and Y is given

by

inf{||T ||Op ||T−1||Op : T ∈ GL(X, Y )}.

The value d also provides an upper bound for this quantity by the classical John’s

theorem (see [77]). We refer to the work of Lata la, Mankiewicz, Oleszkiewicz and

Tomczak-Jaegermann [88] and to the survey by Mankiewicz and Tomczak-Jaegermann

[96] for a generalization of this result to certain sub-Gaussian polytopes. Further ex-

tremality results in this context are due to, for instance, Gluskin and Litvak [50] and

Szarek [126].

Secondly, Gaussian polytopes are prototypical examples of random convex sets that

satisfy the (probabilistic version of the) celebrated hyperplane conjecture, already men-

tioned above. Initially, they where considered as a potential counterexample. More

detailed, it was shown by Klartag and Kozma [83] that the isotropic constant of the

convex hull of n ≥ d+ 1 independent Gaussian random points in Rd is bounded by an

absolute constant with probability at least 1− e−Cd, where C ∈ (0,∞) is another ab-

solute constant. In other words, Gaussian polytopes satisfy the hyperplane conjecture

asymptotically almost surely, as d→∞. For other random polytope models satisfying

this form of the hyperplane conjecture, we refer to the works of Alonso-Gutiérrez [5],

Dafnis, Guédon and Giannopoulos [31], Hörrmann, Hug, Reitzner and Thäle [67] and

Hörrmann, Prochno and Thäle [68].

Thirdly, Gaussian polytopes are of interest in some branches of coding theory because

of the following interpretation, derived by Baryshnikov and Vitale [11]. Fix n ≥ d+ 1,

and let ∆n be a regular simplex in Rn. Now, take a random rotation % in Rn, and let

prnd : Rn → Rd be the projection onto the first d coordinates (see Figure 1.6). Then,

the randomly rotated and projected simplex prnd(%(∆n)) has the same distribution as

a Gaussian polytope that arises as the convex hull of n+ 1 standard Gaussian random

points in Rd, up to an affine transformation. In the context of coding theory, it is of

interest whether the projection of k vertices of ∆n is always a (k− 1)-dimensional face

of prnd(%(∆n)). As n → ∞, this holds as long as k and d are both proportional to

n. For more details in this direction, we refer to the works of Candes and Tao [24],

Donoho and Tanner [35, 36, 37] and Vershik and Sporyshev [132].

10



CHAPTER 1. INTRODUCTION

Figure 1.6: Projection of the randomly rotated simplex onto its first
d coordinates.

Moreover, spatial data can be assumed to follow a Gaussian law. For more information

on this point, we refer to the survey article by Cascos [26]. Hence, Gaussian polytopes

show a clear relevance also in the area of multivariate statistics. For example, the

vertices of a Gaussian polytope can be viewed as the multivariate extremes of the

underlying sample.

In the following, the reader is provided with a historical background, dealing with

expectation and variance asymptotics, as well as central limit theorems, for different

characteristics of Gaussian polytopes. Let us denote the i-th intrinsic volume and

the number of j-dimensional faces of Kn by Vi(Kn), i ∈ {1, . . . , d}, and fj(Kn), j ∈
{0, . . . , d − 1}, respectively (see Section 2.2 for a detailed definition). In particular,

Vd(Kn) represents the volume, while f0(Kn) indicates the number of vertices of Kn.

One of the first issues taken into account concerned their expected values, as the

number of points tends to infinity. This line of research starts with the classical work

of Rényi and Sulanke [111] in 1963. Their paper can generally be seen as the first

milestone in the analysis of expected values of characteristics of random polytopes,

as the number of underlying points tends to infinity. Specifically, Rényi and Sulanke

analyzed the expected vertex number of a huge class of random polytope models in the

plane, including the Gaussian model as a special case.

11



1.1. GENERAL INTRODUCTION

This research was continued by the papers by Affentranger [2] and Affentranger and

Schneider [3], concerning the face numbers of Gaussian polytopes in higher dimensions.

Particularly, for all j ∈ {0, . . . , d− 1}, it holds that

E[fj(Kn)] ∼ c1 (log n)
d−1

2 ,

as n→∞, where c1 ∈ (0,∞) is an explicitly known constant only depending on d and

j. Here, for two functions f(n) and g(n), the notion f(n) ∼ g(n) indicates that

lim
n→∞

f(n)

g(n)
= 1.

Now, some simulations are presented to provide an heuristic explanation for the beha-

vior of the expectation asymptotic for the volume of Kn. While Figure 1.7 shows the

simulation of different numbers of Gaussian points in the plane, Figure 1.8 contains

their respective convex hulls. As already described above, Kn grows unboundedly in

all directions, as the number of points increases. On the other hand, the more points

thrown in, the more the random polytope Kn looks like a circle. Figure 1.9 indicates

that Bd(o,
√

2 log n) might be an appropriate reference body to compare the random

polytope Kn with. Indeed, it was proved by Geffroy [48] that the Hausdorff distance

between Kn and this ball converges to 0 almost surely, as n→∞. Here, the Hausdorff-

distance of two convex bodies K and L in Rd is given by

inf{ε > 0 : K ⊆ (L⊕ Bd(o, ε)) and L ⊆ (K ⊕ Bd(o, ε))},

where the Minkowski sum of K and L is defined as

K ⊕ L := {a+ b : a ∈ K, b ∈ L}.

Therefore, the expected value of the volume of Kn behaves like κd(2 log n)
d
2 , as n→∞,

where κd denotes the volume of the d-dimensional unit ball. This was proved by

Affentranger [2], showing that even more generally for all intrinsic volumes, i.e., all

i ∈ {1, . . . , d}, it holds that

E[Vi(Kn)] ∼
(
d

i

)
κd
κd−i

(2 log n)
i
2 ,

as n→∞.

12
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Figure 1.7: Simulation of n = 10, 100, 1.000, 100.000 Gaussian points.

Hug and Reitzner [73] derived variance upper bounds and used them to establish laws

of large numbers. For all i ∈ {1, . . . , d} and j ∈ {0, . . . , d− 1}, they proved that

var[Vi(Kn)] ≤ c1 (log n)
i−3

2 and var[fj(Kn)] ≤ c2 (log n)
d−1

2 ,

for sufficiently large n, where c1, c2 ∈ (0,∞) are constants only depending on d, i and

j. Matching lower bounds were obtained by Bárány and Vu [9] for all face numbers

and the volume.

Moreover, Hueter [70, 71] computed the precise variance asymptotics for the number

of vertices and the volume of Kn, while Calka and Yukich [23] generalized the result

to hold for all intrinsic volumes and face numbers.

13
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Figure 1.8: Simulation of K10,K100,K1.000 and K100.000.

For all i ∈ {1, . . . , d} and j ∈ {0, . . . , d− 1}, they showed that

var[Vi(Kn)] ∼ c1 (2 log n)i−
d+3

2 and var[fj(Kn)] ∼ c2 (2 log n)
d−1

2 ,

as n → ∞, where c1 ∈ [0,∞) and c2 ∈ (0,∞) are constants only depending on d, i

and j. In particular, the upper bound for the intrinsic volumes derived in [73] does not

have the right order of magnitude. However, except for the case that i = d, Calka and

Yukich were not able to exclude the possibility that c1 = 0. Recently, Bárány and Thäle

[8] closed the missing gap and proved that, in fact, c1 ∈ (0,∞) for all other intrinsic

volumes, too. Further, it was shown in [23] that the scaling limit of the boundary of

Kn, as n→∞, converges to a ‘festoon’ of parabolic surfaces.

14
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Figure 1.9: Comparison of Kn with the respective ball with radius√
2 log n.

The central limit problem for Gaussian polytopes has first been treated again by Hueter

[70, 71] for the number of vertices and the volume of Kn, and been generalized in

the breakthrough paper by Bárány and Vu [9] to hold for all other face numbers,

too. Finally, Bárány and Thäle [8] added the result for the lower-dimensional intrinsic

volumes. More in detail, for all i ∈ {1, . . . , d} and j ∈ {0, . . . , d− 1}, it holds that

Vi(Kn)− E[Vi(Kn)]√
var[Vi(Kn)]

D−→ N (0, 1) and
fj(Kn)− E[fj(Kn)]√

var[fj(Kn)]

D−→ N (0, 1),

as n → ∞. Here,
D−→ denotes convergence in distribution and N (0, 1) stands for a

standard normally distributed random variable.
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Under a further randomization of the model, that is, the family of random points is

induced by a Poisson distributed number of points instead of a deterministic one, these

central limit theorems yield an excellent starting point for Chapter 3 (see Section 1.2).

A third valuable example of constructing random polytopes is the following. Indeed,

it is the underlying model in Chapter 5. Let for now K be a convex body in Rd, d ≥ 2,

having twice continuously differentiable boundary ∂K with strictly positive Gaussian

curvature κK(x), x ∈ ∂K. Moreover, let f : ∂K → R+ be a continuous and strictly

positive function, satisfying ∫
∂K

f(x)Hd−1
∂K (dx) = 1,

where Hd−1
∂K is the Hausdorff measure on ∂K. Additionally, X1, . . . , Xn are chosen

independently on ∂K, distributed according to the probability measure induced by

f(x)Hd−1
∂K (dx). (1.4)

Finally, Kn indicates the random convex hull of this point set. In this situation, Schütt

and Werner [121] proved that

vold(K)− E[vold(Kn)]

n−
2
d−1

∼
(d− 1)

d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx), (1.5)

as n → ∞, where ωd is the surface area of Sd−1. In particular, the latter result will

be crucial in Chapter 5, which is concerned with the theory of the approximation of

smooth convex bodies by (random) polytopes. We close this section by providing a

historical background on this topic.

Let P be a polytope in Rd, defined as the closed convex hull of a finite point set, and

let K be a convex body in Rd as above. The general question,

How well can such a convex body K be approximated by a polytope P?,

has attracted a lot of interest in the last decades and much research has been devoted

to its solution. This is due to the fact that it is fundamental in convex geometry and

has applications in stochastic geometry, complexity, geometric algorithms and many

more. The surveys and books by Gruber [59, 60, 62] and the references cited therein

are excellent sources in this context.
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As formulated above, the question is quite vague and needs to be phrased more pre-

cisely. First of all, we aim to clarify what we mean by approximated and how we want

to measure the degree of approximation. The most prominent ways to do this might

be the symmetric difference metric and the surface deviation, reflecting the volume

deviation, respectively the surface deviation, of the approximating and approximated

objects. Here, we focus on the symmetric difference metric, defined for convex bodies

K and L in Rd as

vold(K∆L) := vold (K ∪ L)− vold (K ∩ L) .

The blue area in Figure 1.10 gives an example of this set in the planar case. Moreover,

Figure 1.10: The symmetric difference metric.

various assumptions on the approximating polytopes can be added. One can restrict

only to those polytopes that are contained in or do contain K, respectively. One can

focus on polytopes with a fixed number of vertices or, more generally, a fixed number of

lower-dimensional faces. Here, we deal with the situation where the number of vertices

is fixed and the polytope can be placed arbitrarily in space.

The question about the approximation of K in the symmetric difference metric by a

polytope P , having a fixed number of vertices and satisfying P ⊆ K, was answered

in dimension d = 2 by McClure and Vitale [99] and in arbitrary dimension d ≥ 2 by

Gruber [61]. There exists a constant deld ∈ (0,∞) only depending on d such that

inf{vold(K∆P ) : P ⊆ K, f0(P ) ≤ n}
n−

2
d−1

∼ 1

2
deld as(K)

d+1
d−1 ,

as n → ∞, where f0(P ) denotes the number of vertices of P , and the affine surface

area of K is given by

as(K) :=

∫
∂K

κK(x)
1
d+1 Hd−1

∂K (dx).
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1.1. GENERAL INTRODUCTION

The integral involving the Gaussian curvature appears in questions of best approx-

imation of convex bodies by polytopes quite naturally. Indeed, more vertices of the

approximating polytope should be placed where the boundary of K is strongly curved

and fewer points where the boundary is flat.

Regarding to the constant deld, Gordon, Reisner and Schütt [52, 53] proved that there

exist absolute constants C1, C2 ∈ (0,∞) such that

C1 d ≤ deld ≤ C2 d. (1.6)

Later, Mankiewicz and Schütt [94, 95] enhanced the bounds, providing that

d− 1

d+ 1
κ
− 2
d−1

d−1 ≤ deld ≤
(

1 +
C log d

d

)
d− 1

d+ 1
κ
− 2
d−1

d−1 ,

where C ∈ (0,∞) is an absolute constant. In particular, the latter result implies that

deld
d
∼ 1

2πe
,

as d → ∞. Removing the assumption that the polytope P has to be contained in K

and, hence, considering all polytopes having at most n vertices, Ludwig [90] showed

that there exists another constant ldeld ∈ (0,∞) only depending on d such that

inf{vold(K∆P ) : f0(P ) ≤ n}
n−

2
d−1

∼ 1

2
ldeld as(K)

d+1
d−1 , (1.7)

as n → ∞. The dependences on the number of points n and the convex body K are

the same as in the previously mentioned result. Besides, as a corollary from (1.6), one

gets that there is an absolute constant C ∈ (0,∞) such that

ldeld ≤ C d.

On the other hand, since we removed the restriction that P ⊆ K, this upper bound

can be improved. Indeed, in the case of K being the d-dimensional unit ball, it was

proved by Ludwig, Schütt and Werner [91] that there exists a polytope P in Rd, having

n vertices, such that for all sufficiently large n, it holds that

vold(K∆P ) ≤ C n−
2
d−1 κd, (1.8)

where C ∈ (0,∞) is an absolute constant.
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The approximating polytope is obtained via a random construction. In particular, if

one drops the restriction that P has to be contained in K, one gains by a factor of

dimension, that is,

ldeld ≤ C,

where C ∈ (0,∞) is an absolute constant. The corresponding result for arbitrary

K follows from (1.8), together with (1.7). Indeed, applying the affine isoperimetric

inequality [118, Equation (6.2.4)], that is,

(
as(K)

ωd

) d+1
d−1

≤ vold (K)

κd
,

yields that

vold(K∆P ) ≤ C n−
2
d−1 vold(K).

However, we aim to produce a direct proof for the approximation of K without using

the results of [90, 91]. This is the content of Chapter 5, where we construct a well

approximating polytope, obtained via a random construction. It is the convex hull of

randomly chosen points with respect to a probability measure with density f , given in

(1.4). In fact, it is only via our new approach that different densities can be considered,

not merely the uniform distribution as in [91] (see Section 1.2).

1.2 Guideline

This thesis deals with three completely different models of random polytopes and

associated issues. The purpose of this guideline is to introduce these models and to

provide an overview on the problems afforded, techniques used and answers suggested.

Chapter 2: The second chapter is devoted to some general preliminaries and back-

ground material. In Section 2.1, we start with the presentation of notation, used

throughout the whole text.

Then, Section 2.2 provides a short review of important concepts from convex geometry.

In particular, we define characteristics of convex bodies, namely, the intrinsic volumes,

together with their basic properties. Moreover, we introduce a prominent sub-class

of convex bodies, namely, convex polytopes. For polytopes, we present not only their
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metric parameters like the intrinsic volumes, but also their combinatorial structure,

represented by its f -vector.

Thereafter, Section 2.3 is concerned with some ‘special functions’ and their analytic and

asymptotic properties. This includes the Gamma function with associated digamma

and polygamma functions, the Beta function, as well as the Barnes G-function.

Next, in Section 2.4, we introduce the reader to the theory of cumulants. We state

their main properties, stressing their importance. This is due to the fact that once one

can bound the cumulants of a sequence of random variables ‘efficiently’, one directly

achieves not only a central limit theorem for this sequence, but also some related res-

ults, listed in this section.

Among them is a so-called moderate deviation principle, explained in Section 2.5, by

giving an overview on the even more general theory of large deviations.

Afterwards, in Section 2.6, we define the concept of Poisson point processes, focusing

on properties that turn out to be crucial later, namely, the Mecke equation and a map-

ping theorem.

The final Section 2.7 is concerned with an introduction into the theory of mod-φ con-

vergence. Once an appropriate version of mod-φ convergence has been established, one

gets a collection of companion theorems for free, stated in this section.

Chapter 3: This chapter ties on the results presented above for the class of Gaussian

polytopes, after a further randomization of the model. Specifically, we assume that the

considered generalized Gamma polytopes are defined as the random convex hulls of a

Poisson point process, whose intensity measure is given by a multiple of a huge class

of isotropic measures on Rd, d ≥ 2, including the Gaussian one as a special case.

Such a random polytope is constructed in three steps. First, let N be a Poisson

distributed random variable of intensity λ > 0, i.e.,

P(N = k) =
λk

k!
e−λ,

for all k ∈ N0. Secondly, choose the random number of N points in Rd, independently

and distributed according to the density

φα,β(x) := cdα,β ||x||α exp

(
−‖x‖

β

β

)
, x ∈ Rd, (1.9)

where α > −1 and β ≥ 1. We denote this point set by Pλ. In a third step, the convex

hull of Pλ, indicated by Kλ, defines the underlying random polytope.
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The family of stated densities can be summarized under the class of the generalized

Gamma distribution, giving rise to the description generalized Gamma polytopes. As

special cases, it includes the Gaussian distribution (α = 0, β = 2), the generalized

normal distribution (α = 0, β ≥ 1), the Gamma distribution (α ≥ 0, β = 1) and the

Weibull distribution (α > 0, β = α + 1).

In the Gaussian setting, the only difference to the previously discussed Gaussian poly-

topes concerns the number of chosen points, now no longer deterministic but random,

and determined by a Poisson distributed random variable. Furthermore, since we are

interested in the large scale asymptotics, as the number of points tends to infinity,

we now consider the setting where the parameter in the Poisson distribution tends to

infinity, i.e., λ→∞.

Since Bárány and Vu [9] in the Gaussian framework, the line of research under this

further randomization has recently been taken up in the remarkable work of Calka and

Yukich [23], who computed the precise variance asymptotics for the intrinsic volumes

and face numbers of Gaussian polytopes. Moreover, in [23], the scaling limit of the

boundary of the Kλ considered is obtained by means of a scaling transformation, de-

veloped in previous works of Calka, Schreiber and Yukich [22] and Schreiber and Yukich

[120] on random Poisson polytopes in the unit ball.

The general purpose of Chapter 3 is to introduce a new probabilistic viewpoint on

our class of generalized Gamma polytopes and to gain new insights into their large

scale asymptotic geometry. It is based on sharp bounds for cumulants and the large

deviation theory of Saulis and Statulevičius [117]. By means of these techniques, we

derive a number of new and powerful results that were not within the reach of other

methods available before. The geometric characteristics we consider are, on the one

hand, related to the metric and, on the other hand, related to the combinatorial struc-

ture of the underlying random polytopes, given by the intrinsic volumes and the face

numbers, respectively.

Some very technical, but crucial, preliminaries are described in Section 3.1. In the

Gaussian case, i.e., α = 0 and β = 2, it is known from the work of Geffroy [48] that the

Hausdorff distance between Kλk and Bd(o, (2 log λk)
1
2 ) converges to 0 almost surely, as

k → ∞, along all ‘suitable’ subsequences λk tending to infinity. The goal of Section

3.1.1 is to determine this critical ball in our generalized setting, which turns out to be

Bd(o, (β log λk)
1
β ),

not depending on the parameter α.
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Establishing these balls is necessary to define the scaling transformation Tλ in Section

3.1.2, a modified version of the one used in [23, Equation (1.5)]. Via this transformation,

the Poisson point process Pλ in Rd is mapping to another Poisson point process

P(λ) := Tλ(Pλ)

in some bounded region of the product space Rd−1 × R. Its limit, as λ→∞, is given

by a third Poisson point process P in Rd−1 × R, having density

(v, h) 7→ eh, (v, h) ∈ Rd−1 × R,

with respect to the Lebesgue measure on Rd−1 × R, independent of the parameter α

and β in the underlying density function φα,β.

From this scaling transformation, in Section 3.1.3, we introduce germ-grain processes

Ψ(λ)(P(λ)) and Φ(λ)(P(λ)). As λ → ∞, these processes connect the characteristics of

Kλ to limit paraboloid germ-grain processes Ψ(P) and Φ(P) associated with P (see

also Section 3.4.3). To construct, for instance, Φ(P), let

Π↓ :=

{
(v, h) ∈ Rd−1 × R : h ≤ −‖v‖

2

2

}
,

and, for w ∈ Rd−1 × R, put

Π↓(w) := w ⊕ Π↓.

Then, we denote by Φ(P) the maximal union of downward parabolic grains Π↓(w),

whose interior contains no points of the Poisson point process P . Specifically, Φ(P)

arises by filling up the space from below with downward parabolas Π↓, not containing

points from P . Therefore, its boundary ∂Φ(P) is a union of inverted parabolic surfaces.

Afterwards, in Section 3.1.4, we introduce the key geometric functionals taken into

account in this chapter (see [23, Page 9], slightly modified from their Gaussian setting).

First, we define the intrinsic volume and face number functionals that correspond to

Pλ, then, the ones to the rescaled process P(λ). For example, the volume functional is

given by the score function

ξ
(λ)
Vd

(w,P(λ)),

w ∈ P(λ). Thirdly, we present those correlated to the limit Poisson point process P .
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The final Section 3.1.5 is concerned with the measure-valued versions of our functionals

defined in Section 3.1.4. We also introduce a cluster measure representation of their

cumulant measures that is crucial for the proof of the cumulant bound in Section 3.3.

Recall that the case α = 0 and β = 2 is the classical Gaussian setup. In Section 3.2, we

generalize the results stated and proved in [23] concerning the functionals of interest

and the germ-grain processes to arbitrary parameter α > −1 and β ≥ 1 in the under-

lying density of the Poisson point process Pλ. First, we show in Section 3.2.1 that the

rescaled functional ξ
(λ)
Vd

(w,P(λ)), defined on points w := (v, h) ∈ Rd−1 × R, ‘localizes’

exponentially fast in its spatial coordinate v, as well as height coordinate h. Loosely

speaking, the value of this functional is just influenced by changes in the whole point

configuration P(λ) in some ‘small’ neighborhood of the point w itself. This leads to the

theory of localization, formally introduced at the beginning of this section.

Furthermore, [23, Lemma 4.4] shows that, in the Gaussian setting, the geometric func-

tional ξ
(λ)
Vd

(w,P(λ)) has finite moments of all orders. However, we provide some bound

in Section 3.2.2 to control the precise growth of these moments by using the local-

ization results from the previous section. For the volume functional, for all p ∈ N,

w = (v, h) ∈ P(λ) and sufficiently large λ, it holds that

E
∣∣ξ(λ)
Vd

(w,P(λ))
∣∣p ≤ c1 c

p
2 (p!)2d (1 + |h|)p(d−1)+d exp

(
−e

h∨0

c3

)
, (1.10)

where c1, c2, c3 ∈ (0,∞) are constants only depending on d, α and β, and h∨0 indicates

the maximum between both values. Such precise moment bounds can be seen as the

main output of Section 3.2.

The proofs of most results we achieve in Chapter 3 rely on a cumulant estimate, content

of Section 3.3. The related proof uses heavily the moment bounds obtained in the

foregoing section. Moreover, it is based on the cluster measure representation of the

cumulants of the measure-valued versions of the key geometric functionals, presented

in Section 3.1.4. Omitting technical details at this point, as an example, we state the

bound of the k-th cumulant achieved for the volume of Kλ. For all k ∈ {3, 4, . . .} and

sufficiently large λ, it holds that

|ck[Vd(Kλ)]| ≤ c1 c
k
2 (log λ)

β(d−kd−k−1)+2kd
2β (k!)3d+5,

where c1, c2 ∈ (0,∞) are constants only depending on d, α and β.
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Thereafter, in Section 3.4, we present our main findings of Chapter 3. In Section 3.4.1,

we discuss the intrinsic volumes and face numbers of Kλ. First of all, we generalize

the expectation and variance asymptotics, as well as central limit theorems, from the

Gaussian setting treated in [8, 9, 23] to our generalized one. For example, as the volume

of Kλ is considered, it holds that

E[Vd(Kλ)] ∼ κd (β log λ)
d
β , var[Vd(Kλ)] ∼ c1 (β log λ)

4d−β(d+3)
2β ,

and

Vd(Kλ)− E[Vd(Kλ)]√
var[Vd(Kλ)]

D−→ N (0, 1),

as λ→∞, where c1 ∈ (0,∞) is a constant only depending on d, α and β. Secondly, we

state further probabilistic results for this class of random polytopes that were, to the

best of our knowledge, previously unknown, even in the Gaussian case. In particular,

this includes

– concentration inequalities,

– bounds for the growth of moments of all orders,

– Marcinkiewicz-Zygmund-type strong laws of large numbers,

– bounds on the relative error in the central limit theorems, and

– moderate deviation principles,

for all key geometric characteristics discussed above. Let us, for instance, state the

following concentration inequality. For sufficiently large λ and all y ≥ 0, it holds that

P
(
|Vd(Kλ)− E[Vd(Kλ)]| ≥ y

√
var[Vd(Kλ)]

)
≤ 2 exp

(
−1

4
min

{
y2

23d+5
, c1 (log λ)

d−1
4(3d+5) y

1
3d+5

})
,

where c1 ∈ (0,∞) is a constant only depending on d, α and β.

Subsequently, in Section 3.4.2, we present the corresponding results for the measure-

valued counterparts of all intrinsic volumes and face numbers of Kλ. We emphasize

that the latter have the advantage to capture the spatial profile of the considered

functionals, not only their total masses.

24



CHAPTER 1. INTRODUCTION

As aforementioned, the germ-grain processes Ψ(λ)(P(λ)) and Φ(λ)(P(λ)) connect the

characteristics of Kλ via the scaling transformation Tλ to limit paraboloid germ-grain

processes Ψ(P) and Φ(P), as λ→∞. In Section 3.4.3, we discuss more in details the

topic. In particular, the scaling limit Tλ(∂Kλ) coincides with ∂Φ(P), as λ → ∞, for

all parameter α and β in the underlying distribution of the Poisson point process Pλ.
Thus, this ‘festoon’ of parabolic surfaces turns out to be a unique scaling limit for the

rescaled boundary of our class of generalized Gamma polytopes.

We remark that most of the theorems we have stated in Section 3.4.1 and Section

3.4.2 are the analogues of the results derived by Grote and Thäle [56], where random

polytopes arising as convex hulls of a homogeneous Poisson point process in the d-

dimensional unit ball are considered. Moreover, the principal technique we use, based

on sharp bounds for cumulants in conjunction with the large deviation theory from

[117], parallels that in [56]. However, besides of these conceptual similarities, the

further details and arguments differ considerably and require much more technical

effort, as well as a number of new ideas, if compared to [56]. Indeed, in contrast to

random polytopes in the unit ball, our random polytopes in Rd grow unboundedly in

all directions. In particular, for any fixed λ > 0, there is no centered ball with radius

only depending on λ (or any other deterministic set that depends on the parameter

λ only) in which Kλ is included with probability 1. This implies that the scaling

transformation Tλ maps Kλ into a set in the product space Rd−1×R, while the scaling

transformation for random polytopes in the unit ball has Rd−1 × [0,∞) as its target

space (see [22, 56]). In our situation, the upper half-space Rd−1 × [0,∞) corresponds

to the image of a proper centered ball that contains the random polytope with high

probability, while the lower half-space Rd−1 × (−∞, 0) corresponds to the image of its

complement. The probability that the latter contains points from the Poisson point

process P(λ) is small, but if there are such points, they have a significant influence on

the geometry of the underlying random polytope Kλ.

While the geometric functionals satisfy a weak spatial localization property in the

upper half-space, such a behavior holds no more in the global setup. An example is

provided by the moment bound stated in (1.10), where the exponential term and, thus,

the complete right hand side, is just ‘small’ if the involved point is located in the upper

half-space. This remarkable but unavoidable phenomenon is explained in the Gaussian

case in [23] and generalized to all underlying densities of the form (1.9) in Section 3.2.1.

It causes considerable technical difficulties that were not present in the previous work

[56] and makes the analysis of probabilistic properties of generalized Gamma polytopes

a much more demanding task.
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The final Section 3.5 of Chapter 3 contains the proofs of all the results presented in

Section 3.4. More in details, Section 3.5.1 includes the proof of the expectation and

variance asymptotics for the measure-valued versions of the intrinsic volumes and face

numbers of Kλ.

Then, in Section 3.5.2, we apply the cumulant bound obtained in Section 3.3 to prove

all other theorems stated in Section 3.4.2, while Section 3.5.3 covers the proofs of

the results in Section 3.4.1, concerning the intrinsic volumes and face numbers of Kλ

themselves.

Finally, in Section 3.5.4, we establish the results regarding to the scaling limit properties

of the germ-grain processes Φ(P) and Ψ(P), respectively.

Chapter 3 is partly based on the paper

• Grote, J., and Thäle, C. [57]: Gaussian polytopes: a cumulant-based ap-

proach. Journal of Complexity (2018+),

where the authors derived the cumulant bound presented in Section 3.3 in the Gaussian

case, i.e., α = 0 and β = 2, leading to the corresponding results stated in Section 3.4.1

and Section 3.4.2, respectively. Compared with that, the content of Chapter 3 goes

far beyond. Indeed, it contains a far-reaching generalization of the results stated by

Grote and Thäle [57], as well as the variance asymptotics and scaling limits obtained by

Calka and Yukich [23], to arbitrary parameter α > −1 and β ≥ 1 in the distribution

of the underlying Poisson point process Pλ. The main steps in the process of this

generalization are the following.

First, in Section 3.1, we modify the scaling transformation Tλ from [23, Equation (1.5)]

to achieve the uniqueness of the limit process P , giving rise to the uniqueness of the

scaling limit of the rescaled boundary Tλ(∂Kλ) (see Section 3.4.3). A second demanding

task is to prove the localization results and moment bounds in our generalized setting,

content of Section 3.2, following roughly [23, Lemma 4.1, 4.2 and 4.3] and [57, Section

5], respectively. Additionally, the proof of the cumulant bound in Section 3.3 generalizes

[57, Section 6]. Moreover, the expectation and variance asymptotics for the intrinsic

volumes and face numbers of Kλ, as well as there measure-valued counterparts, are

obtained as in [23, Section 5.2 and 5.3], while the scaling limit properties are realized

as in [23, Lemma 3.1 and Section 5.1]. Finally, all other main results in Section 3.4,

based on the cumulant bound, are accomplished as in [57, Section 4].

The general case, dealing with our huge class of generalized Gamma polytopes, will be

prepared for publication soon.
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Chapter 4: In the last decades, random polytopes have mostly been modeled as

follows. First, fix a space dimension d ≥ 2 and a probability measure µ on Rd. Then,

let X1, . . . , Xn, n ∈ N, be independent random points in Rd, distributed according

to µ. A random polytope Kn now arises by taking the convex hull of the point set

X1, . . . , Xn. In particular, if the probability measure µ is the uniform distribution on

some convex body K or the Gaussian measure on Rd, we obtain two of the situations

described in detail in Section 1.1. As aforementioned, the asymptotic behavior of the

expectation and the variance of characteristics like the volume or the number of vertices

of Kn has been studied intensively, keeping the dimension fixed and letting n grow to

infinity. Moreover, it has been investigated whether these quantities satisfy a ‘typical’

or ‘atypical’ behavior, that is, for instance, they fulfill a central limit theorem, large

and moderate deviation principles, and concentration inequalities.

However, up to a few exceptions, it has not been investigated what happens if the

space dimension d is not fixed, but tends to infinity itself. As far as we know, the

only exceptions are the papers by Ruben [114], Mathai [98], Anderson [6] and Maehara

[93]. In the first two, it is shown that, for any fixed r ∈ N, the r-volume of the convex

hull of r + 1 ≤ d + 1 independent and uniform random points, partly in the interior

of the d-dimensional unit ball and partly on its boundary, is asymptotically normally

distributed, as d → ∞. Besides, the third one establishes analogous results when

the fixed number of points are distributed according to the Beta distribution in the

d-dimensional unit ball, while the fourth paper generalizes the setup to the situation

of an arbitrary underlying d-fold product distribution on Rd.
Nevertheless, the regime in which r and d tend to infinity simultaneously is not treated

in these papers. The purpose of Chapter 4 is to close this gap and to prove a collection

of probabilistic limit theorems for the r-volume of the convex hull of r + 1 ≤ d + 1

random points, distributed according to some classes of probability distributions that

allow for explicit computations. We focus especially on different regimes of growths of

the parameter r, relative to d. More precisely, we distinguish between the following

three regimes. The first case concerns r growing as o(d) with the dimension d, that is,

lim
d→∞

r

d
= 0.

This includes, for example, the case where r is fixed or behaves like dα, for some α ∈
(0, 1). Secondly, the underlying situation might be the one where r is asymptotically

equivalent to αd, again for some α ∈ (0, 1). Lastly, we analyze the setting where

d− r = o(d), as d→∞.

27



1.2. GUIDELINE

In particular, for r = d, we choose d + 1 random points. Thus, their convex hull is

nothing but a full-dimensional simplex in Rd (see Figure 1.11).

Figure 1.11: Full-dimensional simplex in R3.

This chapter of the thesis is organized as follows. At first, in Section 4.1.1, we introduce

the different random point models considered. Besides the spherical and Beta-type,

this class includes once more the Gaussian model. For the sake of readability, we focus

on the Gaussian model for the rest of this guideline, stressing that similar results hold

also for the other two models.

Let r(d) ≤ d be an integer, let X1, . . . , Xr+1 be Gaussian random points in Rd,
and denote by Vd,r the r-dimensional volume of the random simplex with vertices

X1, . . . , Xr+1. In Section 4.1.2, we state a formula for the moments of Vd,r, going back

to Miles [101]. More in detail, for all k ≥ 0, it holds that

E[(r!Vd,r)2k] = (r + 1)k
r∏
j=1

[
2k

Γ
(
d−r+j

2
+ k
)

Γ
(
d−r+j

2

) ]
. (1.11)

By using these moments, we derive the distribution of Vd,r in Section 4.1.3.

Thereafter, Section 4.2 is devoted to the precise analysis of the cumulants of the log-

arithmic volume of the Gaussian simplex, given by the random variable

Ld,r := log(r!Vd,r).

In Section 4.2.1, we start by analyzing its expectation and variance asymptotics, where

the first significant difference between the regimes for the parameter r arises.
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Specifically, as d→∞, it holds that

E[Ld,r] ∼
r

2
log d and var[Ld,r] ∼


1
2
r
d

: r = o(d)

1
2

log 1
1−α : r ∼ αd

1
2

log d
d−r+1

: d− r = o(d).

Further, we derive a cumulant bound. For all k ∈ {3, 4, . . .} and sufficiently large d, it

holds that

∣∣∣∣ck [Ld,r − E[Ld,r]
var[Ld,r]

]∣∣∣∣ ≤


ck1 k!

(
√
rd)k−2 : r = o(d) or r ∼ αd

ck2 k!(√
log d

d−r+1

)k : d− r = o(d),

where c1, c2 ∈ (0,∞) are constants not depending on d and k. In particular, in contrast

to the cumulant estimates in Chapter 3, these bounds are ‘optimal’ in the sense that

the exponent at k! is 1 and, therefore, as small as possible. Indeed, this can be seen

from Theorem 2.4.3.

In Section 4.2.2, we apply these bounds and obtain ‘optimal’ Berry-Esseen bounds,

moderate deviation principles and concentration inequalities for the log-volume Ld,r.
Then, in Section 4.2.3, we transfer the limit theorem from the log-volume to the volume

itself and obtain a phase transition in the limiting behavior. If r = o(d) or r ∼ αd,

α ∈ (0, 1), the volume of the Gaussian simplex, Vd,r, converges to a normally or log-

normally distributed random variable, respectively.

Beyond, Section 4.3 establishes results concerning mod-φ convergence for the logar-

ithmic volume of the Gaussian simplices. Postponing a detailed introduction into this

topic and the used terminology to Section 2.7, let us for now just state the exemplary

result from Section 4.3.1 in the case that r ∈ N is fixed. As d→∞, the sequence

d

(
Ld,r −

r

2
log d− 1

2
log(r + 1)

)

converges mod-φ with parameter rd and limiting function (t+1)−
r(r+1)

4 . More formally,

E
[
etd(Ld,r−

r
2

log d− 1
2

log(r+1))
]

erd(
1
2

((t+1) log(t+1)−t))
∼ (t+ 1)−

r(r+1)
4 ,

as d→∞, uniformly as long as t stays in any compact subset of C \ (−∞,−1).
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Figure 1.12: The rate function I(x).

Section 4.3 is also the starting point to prove the results presented in Section 4.4,

concerning large deviation principles. For example, if r ∈ N is fixed, the sequence

1

r

(
Ld,r −

r

2
log d− 1

2
log(r + 1)

)
satisfies a large deviation principle with speed rd and rate function

I(x) =
1

2

(
e2x − 1

)
− x, x ∈ R,

(see Figure 1.12).

Chapter 4 is based on the paper

• Grote, J., Kabluchko, Z., and Thäle, C. [55]: Limit theorems for random

simplices in high dimensions. arXiv: 1708.00471.

Chapter 5: Let K be a convex body in Rd, d ≥ 2, with twice continuously differ-

entiable boundary ∂K and strictly positive Gaussian curvature κK(x), x ∈ ∂K. As

aforementioned, it has been derived from [91] that there exists a polytope P in Rd,
having n vertices, such that for sufficiently large n, it holds that

vold(K∆P ) ≤ C n−
2
d−1 vold(K), (1.12)

where C ∈ (0,∞) is an absolute constant.
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In Chapter 5, we generalize the latter result in the following way. Let f : ∂K → R+

be a continuous and strictly positive function, satisfying∫
∂K

f(x)Hd−1
∂K (dx) = 1.

Then, there exists a polytope Pf in Rd, having n vertices, such that for sufficiently

large n, it holds that

vold(K∆Pf ) ≤ C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx), (1.13)

where C ∈ (0,∞) is an absolute constant. In particular, in the case of f being the

uniform distribution on the boundary of K, we recover the result stated in (1.12).

Afterwards, we discuss the influence of different densities f on the right hand side of

(1.13). On the one hand, the optimal density is given by the normalized affine surface

area measure, distributing the points according to the Gaussian curvature. With this

optimal density, the dependence on K in our result is optimal. On the other hand, our

result always gives the optimal dependence on the number of vertices, not depending

on the underlying density f .

Next, Section 5.2 is devoted to some preliminaries. Besides a Blaschke-Petkantschin

type formula for functions with respect to points chosen on the boundary of K due to

Zähle [137], this includes the result by Schütt and Werner [121], stated in (1.5).

The proof of the main result is the content of Section 5.3. As in [91], we obtain

the approximating polytope in a probabilistic way. To be more precise, we consider

a convex body that is slightly bigger than the body K. Then, we choose n points

randomly on the boundary of the bigger body and take the convex hull of these points.

Since our density functions live on the boundary of K, we choose the random points

on ∂K and approximate a slightly smaller body, say (1− γ)K, where γ depends only

on the dimension d and the number of points n. This is established by means of the

aforementioned result from [121]. Secondly, we bound the expected volume difference

E[vold((1− γ)K∆Pn)]

between (1 − γ)K and a random polytope Pn := conv(X1, . . . , Xn) by the right hand

side of (1.13).
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Figure 1.13: The set (1− γ)K∆Pn.

The blue area in Figure 1.13 illustrates the set (1 − γ)K∆Pn in the planar setting.

Here, the vertices of Pn are chosen randomly from the boundary of K, according to

the probability measure

f(x)Hd−1
∂K (dx).

Consequently, there exists a polytope Pf satisfying (1.13). Finding this bound relies on

ideas from [91], in conjunction with approximation results for the boundary of convex

bodies due to Reitzner [108], which we develop and apply in detail in a quite technical

proof in this section.

Chapter 5 is based on the paper

• Grote, J., and Werner, E. [58]: Approximation of smooth convex bodies

by random polytopes. Electronic Journal of Probability 23 (2018), no. 9, 1–21.
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Chapter 2

Preliminaries

In this chapter, we provide the reader with background material. First, we introduce

standard notation used throughout this thesis and, then, recall some foundations from

convex geometry. Thereafter, we present some special functions together with their

basic properties, the theory of cumulants, as well as large deviations and the concept

of Poisson point processes. The chapter closes by introducing the notion of mod-φ

convergence.

Most of the results stated in this chapter are given without a proof. We refer the reader

to [118, 119] as a general reference for convex geometry and to [87] for Poisson point

processes. For cumulants, we cite [81], while we mention [1] for special functions. An

overview on the theory of large deviations and mod-φ convergence is provided in [33]

and [44], respectively.
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2.1. NOTATION

2.1 Notation

We work in the Euclidean space Rd of dimension d ∈ N := {1, 2, 3, . . .} with origin

o. For x, y ∈ Rd, we denote by 〈x, y〉 the standard scalar product with associated

Euclidean norm ‖x‖. Moreover, let Bd(x, r) be the closed ball centered at x ∈ Rd

with radius r > 0. If we parametrize points in Rd by (v, h) ∈ Rd−1 × R, we write

Cd−1(v, r) for the infinite vertical cylinder Bd−1(v, r) × R around v with base radius

r > 0. Furthermore, we let

Bd := {x ∈ Rd : ‖x‖ ≤ 1} and Sd−1 := {x ∈ Rd : ‖x‖ = 1}

denote the unit ball and the unit sphere, respectively, whereas the north pole on the

unit sphere is given by u0 := (0, . . . , 0, 1).

We define volj(·), j ∈ N, to be the j-dimensional volume of the argument set, and

κj := volj(Bj) to be the j-volume of Bj. From [119, Page 13], we know that it fulfills

κj =
π
j
2

Γ
(
1 + j

2

) ,
where Γ denotes the Gamma function. Additionally, the surface area of the unit sphere

Sj−1, j ∈ N, is given by

ωj = jκj =
2π

j
2

Γ
(
j
2

) ,
(see [119, Page 13]).

Besides, for u ∈ Sd−1 and h ≥ 0, let

H(u, h) := {x ∈ Rd : 〈x, u〉 = h}

be the hyperplane orthogonal to u at distance h from the origin, and let H+(u, h) be

the corresponding half-space containing the origin, that is,

H+(u, h) := {x ∈ Rd : 〈x, u〉 ≤ h}.

Similarly, we define H−(u, h) to be the half-space not containing the origin, i.e.,

H−(u, h) := {x ∈ Rd : 〈x, u〉 ≥ h}.
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Now, let K and L be two non-empty subsets of Rd. We denote their union by K ∪ L,

their intersection by K ∩ L and their difference by K \ L, while

K ⊕ L := {x+ y : x ∈ K, y ∈ L}

denotes their Minkowski sum. Moreover, we write Kc for the complement and ∂K for

the boundary of K, respectively, and for a Borel set B ⊆ Rd, we write int(B) and cl(B)

for the interior and the closure of B, respectively.

While a ∧ b denotes the minimum of a, b ∈ R, a ∨ b describes their maximum. For

a ≥ 0, let bac indicate the largest n ∈ N0 := {0, 1, 2, . . .} that is smaller than or equal

to a. Similarly, dae is the smallest n ∈ N that is bigger than or equal to a.

Besides, let ‖ · ‖∞ denote the sup-norm of the argument function, and let 1(·) express

the indicator function of the underlying event. Further, | · | stands for the cardinality

of the argument set or the absolute value of some real number, respectively, depending

on the context.

By B(Rd) and C(Rd), we indicate the spaces of bounded measurable and of bounded

continuous real-valued functions on Rd, respectively. For a Borel set B ⊆ Rd, we

write C(Rd, B) for the collection of functions f ∈ B(Rd) whose set of continuity points

includes B. Beyond, we write M(Rd) for the space of s-finite measures on Rd. Here,

a measure on Rd is called s-finite, if it can be represented as a countable sum of finite

measures. For a function f ∈ B(Rd) and a measure ν ∈ M(Rd), we use the symbol

〈f, ν〉 to abbreviate the integral of f with respect to ν, that is,

〈f, ν〉 :=

∫
Rd

f dν.

Finally, if z ∈ C is a complex number, i.e., z = a + bi, where a, b ∈ R and i is the

imaginary unit, we denote by Re(z) the real part of z, and for z ∈ C \ {0},

arg z :=



arctan b
a

: a > 0, b ∈ R

arctan b
a

+ π : a < 0, b ≥ 0

arctan b
a
− π : a < 0, b < 0

π
2

: a = 0, b > 0

−π
2

: a = 0, b < 0

defines the argument of z.
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2.2. CONVEX GEOMETRY

Figure 2.1: A convex and a non-convex set.

2.2 Convex geometry

A subset K of Rd is convex, if for any pair of points x, y ∈ K, every point on the

straight line segment between them is also within K (see Figure 2.1). A compact and

convex subset of Rd, having non-empty interior, is called a convex body.

Let K be some convex body in Rd. We define its centroid by

1

vold(K)

∫
K

x dx,

where dx stands for the Lebesgue measure. Moreover, the support function and the

radial function of K in direction u ∈ Sd−1 are given by

hK(u) := max{〈x, u〉 : x ∈ K},

and

rK(u) := max{r : ru ∈ K},

respectively, while for x ∈ ∂K, we denote the corresponding outer unit normal by

NK(x) and the Gaussian curvature by κK(x).

Let the symmetric difference metric of two convex bodies K and L in Rd be defined as

vold(K∆L) := vold (K ∪ L)− vold (K ∩ L) .

Now, we introduce the intrinsic volumes of a convex body, which are some of its most

important characteristics. As an example, consider the 2-dimensional case and let K

be the square [0, 1]2.
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Then, the area of K ⊕ B2(o, r), r > 0, is given by

vol2(K ⊕ B2(o, r)) = vol2(K) + 4r + πr2,

(see Figure 2.2). In particular, it can be expressed as a polynomial in r of degree 2.

Figure 2.2: The Minkowski sum of the square [0, 1]2 and B2(o, r).

This phenomenon holds true far more generally. Indeed, the classical Steiner formula

[118, Equation (4.2.27)] states that for an arbitrary convex body K in Rd, there exist

coefficients Vi(K), i ∈ {0, . . . , d}, such that

vold(K ⊕ Bd(o, r)) =
d∑
i=0

rd−i κd−i Vi(K).

In the latter result, the term Vi(K) is called the i-th intrinsic volume ofK. In particular,

for all r > 0, it satisfies

Vi(Bd(o, r)) =

(
d

i

)
κd
κd−i

ri, (2.1)

(see [119, Page 601]). Some special cases are extremely classical measurements. Spe-

cially, Vd(K) is the volume of K. Secondly, Vd−1(K) is half of its surface area and

V1(K) a multiple of its mean width. We only focus on the case that i ≥ 1, since for

i = 0 we get that V0(K) = 1, for all convex bodies K in Rd (see [119, Page 601]).
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In the following lines, K and L are two convex bodies in Rd and i ∈ {1, . . . , d}. It

is well-known (see [119, Page 600]), that the intrinsic volumes are valuations, i.e.,

whenever K ∪ L is also a convex body, it holds that

Vi(K ∪ L) = Vi(L) + Vi(K)− Vi(K ∩ L).

Furthermore, they are motion-invariant, i.e.,

Vi(K) = Vi(gK),

for any g ∈ Gd, where Gd is the group of rigid motions on Rd. Additionally, they are

non-negative, that is,

Vi(K) ≥ 0,

and monotone, that is,

Vi(K) ≤ Vi(L),

when K ⊆ L. Moreover, they are continuous with respect to the Hausdorff distance.

The latter property indicates that if a sequence (Kn)n∈N of convex bodies converges

in the Hausdorff distance to a convex body K, then, Vi(Kn) converges to Vi(K), as

n→∞. Here, the Hausdorff distance of two convex bodies K and L in Rd is given by

inf{ε > 0 : K ⊆ (L⊕ Bd(o, ε)) and L ⊆ (K ⊕ Bd(o, ε))}.

The intrinsic volumes are of outstanding importance in convex geometry since they

form a basis of the vector space of all continuous motion invariant valuations on the

space of convex bodies. Indeed, Hadwiger’s characterization theorem [118, Theorem

4.2.6] states that any motion-invariant, continuous real-valued valuation φ on the space

of convex bodies in Rd can be rewritten as a linear combination of intrinsic volumes.

Specifically, for all convex bodies K in Rd, it holds that

φ(K) =
d∑
i=0

aiVi(K),

where a0, . . . , ad ∈ R.
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Kubota’s formula [119, Equation (6.11)] yields a second way of introducing the intrinsic

volumes. Let G(d, i), i ∈ {1, . . . , d}, be the set of all i-dimensional linear subspaces

of Rd, or linear i-dimensional Grassmannian of Rd, and denote by νi the normalized

SO(d)-invariant Haar measure on G(d, i), where SO(d) is the group of rotations on

Rd. Further, if L ∈ G(d, i), we indicate by K|L the orthogonal projection of K onto

L. Then, for all i ∈ {1, . . . , d}, it holds that

Vi(K) =

(
d

i

)
κd

κiκd−i

∫
G(d,i)

voli(K|L) νi(dL).

Following [22, 23], we define, for x ∈ Rd \ {o}, the projection avoidance functional as

θi(x,K) :=

∫
G(lin[x],i)

(1− 1(x /∈ K|L)) dν
lin[x]
i (L). (2.2)

Here, lin[x] is the 1-dimensional linear space spanned by x, G(lin[x], i) the set of i-

dimensional linear subspaces of Rd that do contain lin[x] and ν
lin[x]
i the normalized

rotational invariant Haar measure on G(lin[x], i).

Lemma 2.2.1 Let K be a convex body in Rd and i ∈ {1, . . . , d}. Then, it holds that

Vi(K) =

(
d− 1

i− 1

)
1

κd−i

∫
Rd

1

‖x‖d−i
θi(x,K) dx.

Proof. Starting with Kubota’s formula yields that

Vi(K) =

(
d

i

)
κd

κiκd−i

∫
G(d,i)

∫
L

(
1− 1(x /∈ K|L)

)
dx νi(dL).

To the inner integral over L, we apply the Blaschke-Petkantschin formula [119, Theorem

7.2.1], which leads to(
d

i

)
κd

κiκd−i

∫
G(d,i)

∫
L

(
1− 1(x /∈ K|L)

)
dx νi(dL)

=
iκi
2

(
d

i

)
κd

κiκd−i

∫
G(d,i)

∫
G(L,1)

∫
M

(
1− 1(x /∈ K|L)

)
‖x‖i−1 dx νL1 (dM) νi(dL).
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Applying [119, Theorem 7.1.2] and Fubini’s theorem yields that

iκi
2

(
d

i

)
κd

κiκd−i

∫
G(d,1)

∫
G(M,i)

∫
M

(
1− 1(x /∈ K|L)

)
‖x‖i−1 dx νMi (dL) ν1(dM)

=
iκi
2

(
d

i

)
κd

κiκd−i

∫
G(d,1)

∫
M

∫
G(M,i)

(
1− 1(x /∈ K|L)

)
‖x‖i−1 νMi (dL) dx ν1(dM)

=
iκi
2

(
d

i

)
κd

κiκd−i

∫
G(d,1)

∫
M

∫
G(lin[x],i)

(
1− 1(x /∈ K|L)

)
‖x‖i−1 ν

lin[x]
i (dL) dx ν1(dM),

where we used that M = lin[x]. Next, to this expression we apply the Blaschke-

Petkantschin formula, now backwards, to verify that

iκi
2

(
d

i

)
κd

κiκd−i

∫
G(d,1)

∫
M

∫
G(lin[x],i)

(
1− 1(x /∈ K|L)

)
‖x‖i−1 ν

lin[x]
i (dL) dx ν1(dM)

=
iκi
dκd

(
d

i

)
κd

κiκd−i

∫
Rd

∫
G(lin[x],i)

(
1− 1(x /∈ K|L)

) ‖x‖i−1

‖x‖d−1
ν

lin[x]
i (dL) dx

=

(
d−1
i−1

)
κd−i

∫
Rd

∫
G(lin[x],i)

(
1− 1(x /∈ K|L)

)
‖x‖−(d−i) ν

lin[x]
i (dL) dx.

Taking into account the definition of θi(x,K) completes the proof.

A convex polytope in Rd is defined as the convex hull of a finite point set. Here, the

convex hull is the smallest closed convex set containing all these points. More precisely,

if X is a finite point set in Rd, its convex hull can be expressed as

conv(X ) :=
{ m∑

i=1

αixi : m ∈ N, x1, . . . , xm ∈ X , α1, . . . , αm ≥ 0,
m∑
i=1

αi = 1
}
.

Let P be a convex polytope in Rd. For j ∈ {0, 1, . . . , d − 1}, we write Fj(P ) for the

collection of all j-dimensional faces of P , and put fj(P ) := |Fj(P )|. In particular,

F0(P ) is the set of vertices and f0(P ) the vertex number of P , while the elements of

Fd−1(P ) are called the facets and fd−1(P ) is the facet number of P . The vector

(f0(P ), f1(P ), . . . , fd−1(P ))

is called the f -vector of P and describes its combinatorial structure.
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An extreme point of a convex body K in Rd is a point which does not lie in any open

line segment joining two points of K. We write ext(K) for the set of extreme points

of K. The extreme points of a finite point set X characterize the extreme points of

its convex hull, i.e., ext(X ) := ext(conv(X )). If x ∈ ext(X ), we denote by Fj(x,X ),

j ∈ {0, . . . , d − 1}, the collection of all j-dimensional faces of conv(X ) containing x.

Similarly as above, define as |Fj(x,X )| the cardinality of Fj(x,X ), whereas

cone(x,X ) := {ry : r ≥ 0, y ∈ Fd−1(x,X )}

is the cone corresponding to the facets Fd−1(x,X ).

Now, let K have twice continuously differentiable boundary with strictly positive Gaus-

sian curvature everywhere. Then,

as(K) :=

∫
∂K

κK(x)
1
d+1 Hd−1

∂K (dx)

is the affine surface area of K. Here, Hd−1
∂K denotes the (d− 1)-dimensional Hausdorff

measure on ∂K, normalized such that∫
Sd−1

Hd−1
Sd−1(du) = ωd, (2.3)

and satisfying the relation

Hd−1
Sd−1(du) = κK(x)Hd−1

∂K (dx), x ∈ ∂K, (2.4)

(see [118, Equation (2.5.30)]). The affine surface area is an important affine invariant

from convex and differential geometry with applications in approximation theory, the

theory of valuations, as well as affine curvature flows (see, for example, [19, 63, 64, 121,

130, 131]). Moreover, it has recently been extended to spherical and hyperbolic space

by Besau and Werner [14, 15].

Its related affine isoperimetric inequality [118, Equation (6.2.4)] says that

(
as(K)

ωd

) d+1
d−1

≤ vold (K)

κd
,

with equality if and only if K is an ellipsoid.
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Further, for p ∈ [−∞,∞], p 6= −d, let

asp(K) :=

∫
∂K

κK(x)
p
d+p

〈x,NK(x)〉
d(p−1)
d+p

Hd−1
∂K (dx)

be the p-affine surface area of K. The p-affine surface area, an extension of the classical

affine surface area, was introduced by Lutwak [92] for p > 1 and has been extended to

all other p 6= −d by Schütt and Werner [122]. In particular, it is central to the rapidly

developing Lp Brunn Minkowski theory (see, for example, [18, 69, 100, 123, 133]).

2.3 Analysis

For n ∈ N, define

n! :=
n∏
j=1

j.

The following link between the factorial and the exponential function will be used

several times in the subsequent analysis. For all n ∈ N and x > 0, it holds that

exp (−x) ≤ n!

xn
, (2.5)

(see [1, Equation (4.2.35)]).

Lemma 2.3.1 (a) For all a, b ∈ N, it holds that

(ab)! ≤ (aa)b (b!)a. (2.6)

(b) For all d, j, k ∈ N, it holds that

(d(k + j))! ≤ (2dj)dj 2dkj (dk)!. (2.7)

(c) For all a1, . . . , an ∈ N, n ∈ N, and b := a1 + . . .+ an, it holds that

a1! a2! · · · an! ≤ b!. (2.8)
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Proof. We prove the first assertion by induction. For b = 1, the inequality follows trivi-

ally. Now, we assume that the result holds for b ∈ N. With the induction requirement

used in the third step, we achieve

(a(b+ 1))! = (ab+ a)(ab+ (a− 1)) · · · (ab+ 1) (ab)!

≤ (ab+ a)a (ab)! ≤ aa (b+ 1)a (aa)b (b!)a = (aa)b+1 ((b+ 1)!)a.

Let us prove (b). By using kd ≤ 2dk, d, k ∈ N, we get

(d(k + j))! = (dk + dj)(dk + dj − 1) · · · (dk + 1) (dk)!

≤ (dk + dj)dj (dk)! ≤ (2dkj)dj (dk)! = (2dj)dj kdj (dk)! ≤ (2dj)dj 2dkj (dk)!.

Let us now prove (c). It holds that

b! = (a1 + · · ·+ an)!

= 1 · · · a1︸ ︷︷ ︸
=a1!

(a1 + 1) · · · (a1 + a2)︸ ︷︷ ︸
≥a2!

· · · (a1 + . . .+ an−1 + 1) · · · (a1 + . . .+ an−1 + an)︸ ︷︷ ︸
≥an!

≥ a1! a2! · · · an!.

This completes the proof.

The Gamma function is given by

Γ(x) :=

∞∫
0

tx−1 e−t dt, x > 0.

In particular, for all x > 0, it fulfills

Γ(x+ 1) = xΓ(x), (2.9)

(see [1, Equation (6.1.15)]), and

Γ(x) Γ

(
x+

1

2

)
=

Γ(2x)√
π 22x−1

, (2.10)

(see [1, Equation (6.1.18)]).
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Moreover, the Beta function is defined as

B(x, y) :=

1∫
0

tx−1 (1− t)y−1 dt, x, y > 0.

Specifically, for all x, y > 0, it satisfies

B(x, y) =

∞∫
0

tx−1 (1 + t)−x−y dt, (2.11)

(see [1, Equation (6.2.1)]), and

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
, (2.12)

(see [1, Equation (6.2.2)]).

Further, for two functions g1, g2 : C→ C, the relation g1 ∼ g2 indicates that

lim
z→∞

g1(z)

g2(z)
= 1,

while the relations g1 = o(g2) and g1 = O(g2) indicate that

lim
z→∞

g1(z)

g2(z)
= 0 and lim sup

z→∞

∣∣∣∣g1(z)

g2(z)

∣∣∣∣ <∞,
respectively, as long as |arg z| < π.

Building on this notation, for n > 0 and m,m1,m2 ∈ R, it holds that

Γ(nz +m) ∼ (2π)
1
2 e−nz (nz)nz+m−

1
2 , (2.13)

(see [1, Equation (6.1.39)]), and

Γ(nz +m1)

Γ(nz +m2)
= (nz)m1−m2

(
1 +

(m1 −m2)(m1 +m2 − 1)

2nz
+O

(
1

z2

))
, (2.14)

(see [1, Equation (6.1.47)]), as z →∞, as long as |arg z| < π.

44



CHAPTER 2. PRELIMINARIES

Now, let z = a+ bi with a > 1 and b ∈ R. Then, the Riemann ζ-function of z is given

by

ζ(z) :=
∞∑
j=1

1

jz
.

As d→∞, it fulfills the asymptotic

ζ(z) ∼
d∑
j=1

1

jz
+

1

(z − 1) dz−1
, (2.15)

(see [1, Equation (23.2.9)]). Moreover, let, for d ≥ 1,

Hd :=
d∑

k=1

1

k

denote the d-th harmonic number. In particular, it satisfies

Hd = log d+ γ +
1

2d
+O

(
1

d2

)
, (2.16)

(see [29, Page 79]), as d→∞, with the Euler-Mascheroni constant γ.

Additionally, for a function f : C→ C, let

dj

dzj
f(z)

indicate its j-th derivative, j ∈ N. Then, we define the digamma function

ψ(z) := ψ(0)(z) :=
d

dz
log Γ(z),

and the polygamma functions

ψ(k)(z) :=
dk

dzk
ψ(z) =

dk+1

dzk+1
log Γ(z), k ∈ N.

Each polygamma function has a series representation. Indeed, from [1, Equation

(6.4.10)], we know that it fulfills

ψ(k)(z) = (−1)k+1 k!
∞∑
j=0

1

(z + j)k+1
. (2.17)
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Lemma 2.3.2 Let k ∈ N. Then, as z →∞, as long as |arg z| < π, the digamma and

polygamma functions fulfill

ψ(z) = log z − 1

2z
+ o

(
1

z

)
, (2.18)

and

ψ(k)(z) = (−1)k−1 (k − 1)!

zk
+O

(
1

zk+1

)
. (2.19)

Besides, for all z > 0, it holds that

|ψ(k)(z)| ≤ (k − 1)!

zk
+

k!

zk+1
. (2.20)

Proof. The asymptotic relations (2.18) and (2.19) can be found in [1, Equation (6.3.18)

and (6.4.11)]. To prove the inequality, note that, in view of (2.17),

|ψ(k)(z)| =
∞∑
j=0

k!

(z + j)k+1
≤ k!

zk+1
+ k!

∞∫
z

1

xk+1
dx =

k!

zk+1
+

(k − 1)!

zk
,

where we estimated the sum by the integral since x 7→ x−(k+1), x > 0, is decreasing.

Lemma 2.3.3 As d→∞, it holds that

1

2

d∑
j=1

ψ

(
j

2

)
∼ d

2
log d, (2.21)

and

1

4

d∑
j=1

ψ(1)

(
j

2

)
=

1

2
log d+ c1 + o(1), (2.22)

where c1 = 1
2
(γ + 1 + π2

8
). Furthermore, for all k ≥ 3, it holds that

1

2k

∣∣∣ d∑
j=1

ψ(k−1)

(
j

2

) ∣∣∣ ≤ 2 (k − 1)!. (2.23)
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Proof. The asymptotic relations (2.21) and (2.22) can be found in [38, Page 17]. To

prove inequality (2.23), use (2.20) and (k − 2)! ≤ 1
2
(k − 1)! to get that

1

2k

∣∣∣ d∑
j=1

ψ(k−1)

(
j

2

) ∣∣∣ ≤ 1

2k

∞∑
j=1

(
(k − 2)!(
j
2

)k−1
+

(k − 1)!(
j
2

)k
)

≤ (k − 1)!
∞∑
j=1

(
1

4jk−1
+

1

jk

)
≤ (k − 1)!

(
1

4
ζ(2) + ζ(3)

)
.

Bounding the ζ-functions using [1, Equation (23.2.17) and (23.2.24)] yields that

ζ(2) + ζ(3) ≤ π2

6
+

7π3

180
≈ 1, 6.

This completes the proof.

Moreover, for z ∈ C, the Barnes G-function is defined by

G(z) := (2π)
z
2 e−

1
2

(z+(1+γ)z2)

∞∏
k=1

(
1 +

z

k

)k
e
z2

2k
−z.

In particular, it satisfies the functional equation

G(z + 1) = Γ(z)G(z), (2.24)

(see [10, Page 265]), and fulfills a Stirling-type formula of the form

logG(z + 1)

=
1

2
z2 log z − 3

4
z2 +

z

2
log(2π)− 1

12
log z +

d

dz
ζ(z)

∣∣∣
z=−1

+O

(
1

z

)
,

(2.25)

(see [10, Page 285]), as z →∞, as long as |arg z| < π.

Lemma 2.3.4 For all d ∈ N and z ≥ 0, it holds that

d∏
k=1

Γ

(
k

2
+ z

)
=
G
(
d+1

2
+ z
)
G
(
d+2

2
+ z
)

G
(

1
2

+ z
)
G
(

2
2

+ z
) . (2.26)
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Proof. We prove the statement by induction. For d = 1, by equation (2.24), we obtain

G (1 + z)G
(

3
2

+ z
)

G
(

1
2

+ z
)
G (1 + z)

=
G
(

1
2

+ z
)

Γ
(

1
2

+ z
)

G
(

1
2

+ z
) = Γ

(
1

2
+ z

)
=

1∏
k=1

Γ

(
k

2
+ z

)
.

Let us assume that the assertion holds for d ∈ N and consider the case d + 1. By

applying the induction hypothesis and (2.24), it follows that

d+1∏
k=1

Γ

(
k

2
+ z

)
=
G
(
d+1

2
+ z
)
G
(
d+2

2
+ z
)

G
(

1
2

+ z
)
G
(

2
2

+ z
) G

(
d+3

2
+ z
)

G
(
d+1

2
+ z
) =

G
(
d+2

2
+ z
)
G
(
d+3

2
+ z
)

G
(

1
2

+ z
)
G
(

2
2

+ z
) ,

as claimed.

Lemma 2.3.5 Let z → ∞ be such that |arg z| < π and a = a(z) ∈ C be such that

a = o(z). Then, it holds that

logG(z + a+ 1)− logG(z + 1)

= a
(
z log z − z + log

√
2π
)

+
1

2
a2 log z +O

(
|a|3 + 1

z

)
.

Proof. As z →∞, as long as |arg z| < π, applying (2.25) yields

logG(z + a+ 1)− logG(z + 1) =
1

2
A+B + C +D +O

(
1

z

)
,

where

A = (z + a)2 log(z + a)− z2 log z

= (z2 + a2 + 2za)

(
log z +

a

z
− a2

2z2
+O

(
a3

z3

))
− z2 log z

= za− 1

2
a2 + a2 log z + 2za log z + 2a2 +O

(
a3

z

)
,

B = −3

4

(
(z + a)2 − z2

)
= −3

4
a2 − 3

2
za,

C =
1

2
a log(2π), and

D = − 1

12
(log(z + a)− log z) = O

(a
z

)
.

Combining these terms completes the proof.
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2.4 Cumulants

Let X be a random variable on some probability space (Ω,F ,P) with distribution

function F (t) := P(X ≤ t) and tail distribution F̄ (t) := 1−F (t), t ∈ R. If E|X|k <∞,

we denote by E[Xk] the k-th moment of X. The moments stand in a direct connection

to the so-called cumulants, introduced by the Danish mathematician and astronomer

Thiele [127] in 1889 under the name of semi-invariants. In 1931, Fisher and Wishart

[47] were the first to call them cumulants.

Let us write ck[X], k ∈ N, for the k-th cumulant of a random variable X with E|X|k <
∞, that is,

ck[X] := (−i)k dk

dtk
logE[exp(itX)]

∣∣∣
t=0
.

In particular, it holds that

c1[X] = E[X] and c2[X] = var[X].

In general, the k-th cumulant of X can be expressed as a combination of its moments

up to order k. Indeed, it holds that

ck[X] =
∑

L1,...,Lp�JkK

(−1)p (p− 1)!E[X |L1|] · · · E[X |Lp|],

(see [117, Equation (1.34)]), where the sum ranges over all unordered partitions of the

set JkK := {1, . . . , k}. This is indicated by the symbol L1, . . . , Lp � JkK in what follows.

The next lemma lists some basic properties of cumulants. Further details can be found

in [104, Page 33].

Lemma 2.4.1 Let X and Y be independent random variables with ck[X], ck[Y ] <∞,

for some k ∈ N. Then, for all b ∈ R, it holds that

(a) c1[X + b] = c1[X] + b and ck[X + b] = ck[X], for k ≥ 2,

(b) ck[bX] = bkck[X],

(c) ck[X + Y ] = ck[X] + ck[Y ].

We provide the reader with a short example. Let X
D∼ N (µ, σ2), where N (µ, σ2)

denotes a normally distributed random variable with mean µ ∈ R and variance σ2 > 0.

While
D∼ indicates equality in distribution, by

D−→ we mean convergence in distribution.
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Then, it holds that

logE[exp(itX)] = µit− 1

2
σ2it2,

and, thus,

c1[X] = µ, c2[X] = σ2 and ck[X] = 0, for all k ≥ 3. (2.27)

Thiele [128, Page 25] underlined the meaning of this property of the Gaussian distri-

bution by writing:

“This remarkable proposition has originally led me to prefer the semi-invariants to

every other system of symmetrical functions.”

It is noteworthy that the property (2.27) with µ = 0 and σ = 1 characterizes uniquely

the standard normal distribution, as the following result due to Marcinkiewicz [97]

shows.

Theorem 2.4.2 Let X be a random variable. Then, it holds that

X
D∼ N (0, 1) ⇔ c1[X] = 0, c2[X] = 1 and ck[X] = 0, for all k ≥ 3.

In view of this universality of the Gaussian distribution, cumulants have become a

key concept in probability theory. Indeed, the latter theorem suggests a method of

proving a central limit theorem for a sequence (Xn)n∈N of random variables, having

the properties E[Xn] = 0 and var[Xn] = 1, for all n ∈ N. Showing that the cumulants

of order three and higher vanish, as n → ∞, implies that the underlying sequence of

random variables automatically fulfills a central limit theorem.

If one can not only show that the cumulants of order three and higher vanish, but also

bound them ‘efficiently’, one simultaneously achieves a list of companion theorems,

stated in the following result. We denote by

Φ(y) :=
1√
2π

y∫
−∞

e−
x2

2 dx, y ∈ R,

the distribution function of a standard normally distributed random variable.
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Theorem 2.4.3 Let (Xn)n∈N be a sequence of random variables with E[Xn] = 0 and

var[Xn] = 1, for all n ∈ N. Suppose that, for all k ∈ {3, 4, . . .} and sufficiently large n,

it holds that

|ck[Xn]| ≤ (k!)1+γ

(∆n)k−2
, (2.28)

with a constant γ ∈ [0,∞) not depending on n, and a constant ∆n ∈ (0,∞) that may

depends on n. Then, the following assertions are true:

(i) For all y ≥ 0 and sufficiently large n, it holds that

P(|Xn| ≥ y) ≤ 2 exp

(
−1

4
min

{
y2

21+γ
, (y∆λ)

1
1+γ

})
.

(ii) For all 0 ≤ y ≤ c1 ∆
1

1+2γ
n and sufficiently large n, it holds that∣∣∣∣log

P(Xn ≥ y)

1− Φ(y)

∣∣∣∣ ≤ c2 (1 + y3) ∆
− 1

(1+2γ)
n ,

and ∣∣∣∣log
P(Xn ≤ −y)

Φ(−y)

∣∣∣∣ ≤ c2 (1 + y3) ∆
− 1

(1+2γ)
n ,

where c1, c2 ∈ (0,∞) are constants only depending on γ.

(iii) Let (an)n∈N be a sequence of real numbers such that

lim
n→∞

an =∞ and lim
n→∞

an ∆
− 1

1+2γ
n = 0.

Then, (a−1
n Xn)n∈N satisfies a moderate deviation principle on R with speed a2

n

and rate function x2

2
.

(iv) For sufficiently large n, we get the Berry-Esseen bound

sup
y∈R
|P(Xn ≤ y)− Φ(y)| ≤ c∆

− 1
1+2γ

n ,

with a constant c ∈ (0,∞) only depending on γ.
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Proof. Part (i) is a reformulation of [117, Lemma 2.4] in a form taken from [43, Lemma

3.9] with H = 21+γ there. Moreover, the statement in (ii) corresponds to [117, Lemma

2.3], modified in the form of [43, Corollary 3.2]. Next, the moderate deviation principle

for the family (a−1
n Xn)n∈N follows from [39, Theorem 1.1]. Finally, the Berry-Esseen

bound is implied by [117, Corollary 2.1].

Due to Janson [76], Theorem 2.4.2 can be weakened as follows. It is enough to show

that all cumulants of order higher than some level j ≥ 3 are 0 to assure that it is

Gaussian. To the best of our knowledge, there is no result in literature providing that

the respective assumption on (2.28) also implies the results presented in Theorem 2.4.3.

Theorem 2.4.4 Let X be a random variable and j ≥ 3. Then, it holds that

X
D∼ N (0, 1) ⇔ c1[X] = 0, c2[X] = 1 and ck[X] = 0, for all k ≥ j.

Part three of Theorem 2.4.3 makes a statement about a so-called moderate deviation

principle, formally introduced in the next section.

2.5 Large and moderate deviations

The theory of large and moderate deviations is concerned with the study of the prob-

ability of ‘rare events’. In order to provide an intuitive idea of the concept of rare,

we start with an example. Let X1, X2, . . . be independent and identically distributed

random variables with E[X1] = 0 and var[X1] = 1, and put Sn := X1 + · · ·+Xn, n ∈ N.

Then, by the strong law of large numbers, it holds that

1

n
Sn −→ 0 almost surely,

as n→∞. Thus, for all x > 0, it follows that

P(|Sn| ≥ xn) −→ 0, (2.29)

as n→∞, while from the central limit theorem for the sequence Sn, for all x ∈ R,

P(Sn ≥ x
√
n) −→ 1− Φ(x) > 0.
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Summarizing, it follows that

1

np
Sn −→ 0 (2.30)

is almost surely true for p ≥ 1 and almost surely false for p ≤ 1
2
, as n → ∞. The

question of what happens in between, that is, for p ∈ (1
2
, 1), is answered by the so-

called Marcinkiewicz-Zygmund type strong law of large numbers. It states that for

p ∈ (1
2
, 1), the condition E|X1|p < ∞ is equivalent to the almost sure convergence in

(2.30) (see [27, Page 122]).

The central limit theorem makes a precise statement about deviations of order
√
n, i.e.,

for the ‘typical’ behavior of Sn, while the probability of ‘rare events’ of order n tends to

0 (see (2.29)). The question about the speed of this convergence finds an explanation

in Cramér’s theorem. Before stating it, take another look at the Gaussian setting, that

is, X1
D∼ N (0, 1). Then, for all x > 0, it holds that

lim
n→∞

1

n
logP

(
1

n
Sn ≥ x

)
= −x

2

2
, (2.31)

(see [33, Page 2]). Now, one could guess that the central limit theorem implies (2.31)

for all sums of independent and identically distributed random variables. However, this

turns out to be wrong. For example, let us consider the case of X1 being a Bernoulli

random variable and taking the values −1 and 1 with probability 1
2
. Then, for all

x > 0, it holds that

lim
n→∞

1

n
logP

(
1

n
Sn ≥ x

)
= −I(x),

where

I(x) =

1+x
2

log(1 + x) + 1−x
2

log(1− x) : x ∈ (0, 1)

∞ : otherwise,

(see [33, Page 35]). This is due to the fact that the probability of such rare events,

or ‘large deviations’, is much more sensitive by the tail behavior of the involved ran-

dom variables, while the central limit theorem only requires the existence of certain

moments.
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Let X be a random variable. We denote its moment generating function by

ϕX(t) := E[etX ], t ∈ R,

its cumulant generating function by

∆X(t) := logE[etX ], t ∈ R,

and the Legendre-Fenchel transformation of ∆X(t) by

∆∗X(x) := sup
t∈R
{tx−∆X(t)} , x ∈ R.

How to establish the so-called rate function I(x) in general, is the content of the next

theorem, which can be found in [33, Theorem 2.2.3].

Theorem 2.5.1 (Cramér’s theorem) Let X1, X2, . . . be independent and identically

distributed random variables with E[X1] = 0, and let ∆X1(t) < ∞, for all t ∈ (−ε, ε),

where ε > 0. Then, for all x > 0, it holds that

lim
n→∞

1

n
logP

(
1

n
Sn ≥ x

)
= −I(x),

where I(x) := ∆∗X1
(x).

Going back to the example X1
D∼ N (0, 1), we get that

∆X1(t) =
t2

2
and, thus, I(x) = ∆∗X1

(x) = sup
t∈R

{
tx− t2

2

}
=
x2

2
.

Cramér’s theorem yields information about the rate function I(x) in the setting of a

sequence of independent and identically distributed random variables. Moreover, it

identifies the exponential rate of the probability that 1
n
Sn lies in an interval of the form

[x,∞). In particular, it implies that for all x > 0 and A := [x,∞), it holds that

lim
n→∞

logP
(

1

n
Sn ∈ A

)
= − inf

a∈A
I(a).

On the one hand, this illustrates a key principle in large deviation theory:

Any large deviation is done in the least unlikely of all the unlikely ways.

54



CHAPTER 2. PRELIMINARIES

On the other hand, one would like to generalize such a statement to other A ⊆ R,

resulting in large and moderate deviation principles. Let us recall from [66, Chapter

III.1] what this formally means.

A family (νn)n∈N of probability measures on R fulfills a large deviation principle with

speed an and rate function I : R → [0,∞], if I is lower semi-continuous, has compact

level sets, and if it holds that

− inf
x∈int(B)

I(x) ≤ lim inf
n→∞

1

an
log νn(B) ≤ lim sup

n→∞

1

an
log νn(B) ≤ − inf

x∈cl(B)
I(x),

for every Borel set B ⊆ R. Here, a function f : R→ [−∞,∞] is lower-semicontinuous,

if it has closed sub-level sets, i.e., for all c ∈ R, it holds that the set

f−1([−∞, c]) = {x ∈ R : f(x) ≤ c}

is closed. A sequence (Xn)n∈N of real-valued random variables satisfies a large devi-

ation principle with speed an and rate function I : R → [0,∞], if the family of their

distributions does.

Moreover, if the involved random elements (Xn)n∈N satisfy a strong law of large num-

bers and a central limit theorem, and if the rescaling an lies ‘between’ that of a law of

large numbers and that of a central limit theorem, one usually speaks about a moder-

ate deviation principle, instead of a large deviation principle, with speed an and rate

function I.

While, in Section 2.4, we presented a way to prove moderate deviation principles for

a general sequence of random variables via cumulant bounds, the approach to prove

large deviation principles applied throughout this thesis relies on the following theorem

(see [33, Theorem 2.3.6]).

Theorem 2.5.2 (Gärtner-Ellis theorem) Let (Xn)n∈N be a sequence of random vari-

ables, and let ∆Xn(t), t ∈ R, be its cumulant generating function. Suppose that for each

t ∈ R and any sequence an tending to infinity, as n→∞, there exists the logarithmic

moment generating function, defined as the extended real-valued limit

∆(t) := lim
n→∞

1

an
∆Xn(ant), t ∈ R.
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Moreover, assume that the origin belongs to the interior of the set

D∆ := {t ∈ R : ∆(t) <∞},

∆(t) is lower-semicontinuous, differentiable on int(D∆), and, either D∆ = R, or

lim
t→∂D∆

∣∣∣∣ d

dt
∆(t)

∣∣∣∣ =∞.

Then, the sequence (Xn)n∈N satisfies a large deviation principle with speed an and rate

function

∆∗(x) := sup
t∈R
{tx−∆(t)} .

By using a continuous function, one can shift a large deviation principle due to the

following theorem (see [33, Theorem 4.2.1]).

Theorem 2.5.3 (Contraction principle) Let f : R→ R be a continuous function, and

let (Xn)n∈N be a sequence of random variables that fulfills a large deviation principle

on R with speed an and rate function I(x). Then, the sequence (f(Xn))n∈N also fulfills

a large deviation principle on R with rate function

I∗(y) := inf {I(x) : x ∈ R, f(x) = y} , y ∈ R,

and the same speed an.

2.6 Poisson point processes

A point process on Rd can be viewed as a random collection of at most countably many

points. More precisely, let (Ω,F ,P) be some probability space, and let B := B(Rd)
be the Borel σ-field on Rd. Now, let N := N(Rd) be the space of all s-finite measures

ν on Rd, having the property

ν(B) ∈ N0 ∪ {∞}, B ∈ B.
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Moreover, let N := N (Rd) be the σ-field generated by the sets

{ν ∈ N : ν(B) = k},

where k ∈ N0 and B ∈ B. Thus, N is the smallest σ-field on N such that the map

ν → ν(B) becomes measurable.

Based on this formalism, a point process η on Rd is a random variable defined on

(Ω,F ,P) with values in (N,N ), i.e., a measurable mapping η : (Ω,F)→ (N,N ). For

a point process η on Rd, η(B) describes the number of points of η contained in some

B ∈ B, that is, we denote by η(B) the mapping

ω → η(ω,B), ω ∈ Ω.

By the definition of the σ-field N , the function η takes values in N0 ∪ {∞}. Fur-

thermore, the intensity measure of a point process η on Rd is, for all B ∈ B, defined

by

ν(B) := E[η(B)].

The most prominent example in the class of point processes might be the Poisson point

process. It describes a point process, whose number of points in a prescribed set has a

Poisson distribution. Moreover, the number of points in disjoint sets are stochastically

independent. More in detail, let ν be a s-finite measure on Rd without atoms. A

Poisson point process η on Rd with intensity measure ν is a point process with the

following two additional properties:

• The number η(B) of points falling into some B ∈ B is Poisson distributed with

mean ν(B), i.e., it holds that

P(η(B) = k) =
ν(B)k

k!
e−ν(B),

for k ∈ N0.

• Let n ∈ N, and let B1, . . . , Bn ∈ B be pairwise disjoint. Then, the random

variables η(B1), . . . , η(Bn) are stochastically independent.

Poisson point processes play an outstanding role in probability theory. Indeed, they

have applications in, for example, the theory of Lévy processes [13, 86], Brownian ex-

cursion theory [113] and extreme value theory [112]. Besides, Poisson point processes
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are fundamental to stochastic geometry. In particular, they are often used to construct

more complex random structures such as the Boolean model, the Gilbert graph and

the Voronoi, Delaunay and hyperplane tessellations (see, for example, [103, 105, 119]

and the references cited therein).

Additionally, Poisson point processes have been used several times as the underlying

point sets in the theory of random polytopes (see, for example, [9, 22, 23, 56, 109]).

In order to illustrate why it can be especially advantageous to consider Poisson point

processes here, consider the Gaussian polytope setting described in the general intro-

duction. Here, the Gaussian polytope arises as the convex hull of n ∈ N independent

random points in Rd, distributed according to the standard Gaussian law.

In the corresponding ‘Poissonized’ Gaussian model, the number of points is no longer

deterministic but random, and determined by a Poisson distributed random variable

N with mean n > 0. In other words, the underlying point set is induced by a Poisson

point process whose intensity measure is a multiple n > 0 of the standard Gaussian

law in Rd.
The effect of this additional randomization is a further independence property, namely,

the number of points in two disjoint regions are independent random variables. Under

this randomization, Bárány and Vu [9] were able to apply Stein’s method for weakly de-

pendent random variables. In particular, they deduced a central limit theorem for the

volume of the Gaussian polytopes in the Poissonized model. Then, a so-called coupling

can be constructed to push the central limit theorem for the Poissonized model back

to the deterministic setup.

Now, we state two important properties of Poisson point processes. We start with the

Mecke equation [87, Theorem 4.1].

Theorem 2.6.1 (Mecke equation) Let η be a Poisson point process on Rd with intens-

ity measure ν, and let ξ be a non-negative measurable function acting on pairs (x, η),

x ∈ Rd. Then, it holds that

E

[∑
x∈η

ξ(x, η)

]
=

∫
Rd

E[ξ(x, η ∪ {x})] dν.

Moreover, let T : Rd → Rd be a measurable mapping. For a measure ν on Rd, we

denote the push-forward of ν under T to be the measure T (ν), defined by

T (ν)(C) := ν(T−1(C)), C ∈ B.
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If η is a point process on Rd, then, for any ω ∈ Ω, T (η(ω)) is a measure on B, given

by

T (η(ω))(C) := η(ω, T−1(C)), C ∈ B.

Finally, we state the Mapping theorem [87, Theorem 5.1] of (Poisson) point processes.

Theorem 2.6.2 (Mapping theorem) Let η be a Poisson point process on Rd with

intensity measure ν, and let T : Rd → Rd be a measurable function. Then, T (η) is also

a Poisson point process on Rd whose intensity measure is given by T (ν).

2.7 Mod-φ convergence

Consider a sequence of random variables (Xn)n∈N with existing moment generating

functions ϕXn(t) on some strip

S(a, b) := {t ∈ C : a < Re(t) < b},

where a < 0 < b are extended real numbers. We assume that there exists an infinitely

divisible distribution φ with moment generating function

∞∫
−∞

etx φ(dx) = eη(t),

well-defined on S(a, b), and an analytic function ψ(t) that does not vanish on the real

part of S(a, b), such that locally uniformly in t ∈ S(a, b), it holds that

lim
n→∞

E[etXn ] e−wnη(t) = ψ(t),

where (wn)n∈N is some sequence of real numbers converging to infinity. Then, (Xn)n∈N

is said to converge mod-φ on S(a, b) with parameter wn and limiting function ψ.

The idea behind the concept of mod-φ convergence is to look for a renormalization

of the moment generating function of random variables instead of looking at one of

the random variables themselves, as it is done in the central limit theorem. After this

renormalization, the sequence of moment generating functions converges to some non-

trivial limit.
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Intuitively, a sequence of random variables (Xn)n∈N converges mod-φ, if

• it has approximately the same distribution as the wn-th convolution power of φ

and the ‘difference’ between these distributions is measured by ψ, or

• it can be seen as a large renormalization of φ plus residue, asymptotically encoded

by ψ.

Mod-φ convergence is a powerful notion, introduced and studied in the context of

models from number theory, random matrix theory and probability theory in [32, 44,

45, 75, 84, 85], to mention only a few references. In the case of φ being the stand-

ard Gaussian distribution, i.e., η(t) = t2

2
, t ∈ R, one usually speaks of mod-Gaussian

convergence. Besides this, the most basic case is probably mod-Poisson convergence,

but there are also examples of mod-Cauchy and even mod-uniform convergence in the

aforementioned list of references.

Let us continue with a short example. Let (Xn)n∈N be a sequence of centered, inde-

pendent and identically distributed random variables with distribution φ. Put Sn =

X1 + · · ·+Xn, n ∈ N. Then, it holds that

E[etSn ] = enη(t),

and, therefore, (Sn)n∈N converges mod-φ with parameter ωn = n and limiting function

ψ ≡ 1.

While it is quite immediate to see that mod-φ convergence for a sequence (Xn)n∈N

implies a central limit theorem (see, for example, [42, Page 12]), there is in fact much

more information encoded in mod-φ convergence. In particular, extended central limit

theorems and large deviation results can be derived. The following theorem can be

found in [44, Theorem 4.2.1 and Theorem 4.3.1].

Theorem 2.7.1 Let (Xn)n∈N be a sequence of random variables that converges mod-φ

on some strip S(a, b) with parameter wn and limiting function ψ. We further assume

that φ is a non-lattice infinitely divisible distribution, which is absolutely continuous

with respect to the Lebesgue measure. Then, the following assertions are true:

(i) For any sequence xn satisfying xn = o
(
w

1
12
n

)
, as n→∞, it holds that

P

Xn − wn d
dt
η(t)

∣∣∣
t=0√

wn
d2

dt2
η(t)

∣∣∣
t=0

≤ xn

 = Φ(xn)(1 + o(1)).
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In the special case of mod-Gaussian convergence, the ‘normality zone’ is even

o(w
1
2
n ). In this regime, it holds that

P
(
Xn√
wn
≤ xn

)
= Φ(xn)(1 + o(1)),

as n→∞, since we have that η(t) = t2

2
and, therefore, for all a ∈ R,

d

dt
η(t)

∣∣∣
t=a

= a and
d2

dt2
η(t)

∣∣∣
t=a

= 1.

(ii) For x ∈
(

d
dt
η(t)

∣∣∣
t=0
, d

dt
η(t)

∣∣∣
t=b

)
, it holds that

P(Xn ≥ wnx) =
exp(−wnF (x))

h

√
2πwn

d2

dt2
η(t)

∣∣∣
t=h

ψ(h) (1 + o(1)),

and, for x ∈
(

d
dt
η(t)

∣∣∣
t=a
, d

dt
η(t)

∣∣∣
t=0

)
,

P(Xn ≥ wnx) =
exp(−wnF (x))

|h|
√

2πwn
d2

dt2
η(t)

∣∣∣
t=h

ψ(h) (1 + o(1)),

as n→∞. Here, h is defined by the implicit equation

d

dt
η(t)

∣∣∣
t=h

= x,

and

F (x) := sup
t∈R
{tx− η(t)}

is the Legendre-Fenchel transformation of η.

In the special case of mod-Gaussian convergence, we have

h = x and F (x) =
x2

2
.
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Thus, in this case, for x ∈ (0, b),

P(Xn ≥ wnx) =
exp

(
− wn x

2

2

)
x
√

2πwn
ψ(x) (1 + o(1)),

and, for x ∈ (a, 0),

P(Xn ≥ wnx) =
exp

(
− wn x

2

2

)
|x|
√

2πwn
ψ(x) (1 + o(1)),

as n→∞.

A stable distribution with scale parameter c > 0, stability parameter α ∈ (0, 2] and

skewness parameter β ∈ [−1, 1] is defined as the infinitely divisible distribution φc,α,β,

whose Fourier transform

∞∫
−∞

eitx φc,α,β(dx) = eηc,α,β(it)

satisfies

ηc,α,β(it) = |ct|α (1− i sign(t)βh(α, t)),

where sign(t) denotes the sign of t and

h(α, t) :=

tan
(
πα
2

)
: α 6= 1

− 2
π

log |t| : α = 1.

In particular, if c = 1√
2
, α = 2 and β = 0, one gets the Gaussian case, that is,

ηc,α,β(it) =
t2

2
, t ∈ R.

Other prominent examples in this class are the Cauchy distribution (c = 1, α = 1, β =

0), as well as the Lévy distribution (c = 1, α = 1
2
, β = 1).
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Now, if a sequence of random variables (Xn)n∈N converges in the mod-φc,α,β sense with

parameter wn, then,

Yn :=


Xn

w
1/α
n

: α 6= 1

Xn
wn
− 2cβ

πα
logwn : α = 1

(2.32)

converges in distribution to φc,α,β (see [45, Proposition 3]).

To continue, let (Xn)n∈N be a sequence of real-valued random variables, let φc,α,β be a

stable distribution, and let (wn)n∈N be some sequence of positive real numbers tending

to infinity. Consider the two following assertions:

(A) Fix v ≥ 1 and w, γ ≥ 0. There exists a zone of convergence [−Kwγn, Kwγn], K > 0,

such that for all t ∈ R in this zone,

|ψn(it)− 1| ≤ K1 |t|v exp(K2|t|w),

where K1, K2 ∈ (0,∞) are constants independent of n and

ψn(z) := E[ezXn ] e−wnηc,α,β(z), z ∈ C.

(B) It holds that

α ≤ w, γ ≤ 1

w − α
and 0 < K ≤

(
cα

2K2

) 1
w−α

.

If the above conditions are satisfied, one says that (Xn)n∈N has a zone of control

[−Kwγn, Kwγn] and index of control (v, w). These conditions give rise to the following

Berry-Esseen bound, which can be found in [45, Theorem 11].

Theorem 2.7.2 Let (Xn)n∈N be a sequence of random variables that converges mod-

φc,α,β. Moreover, assume that conditions (A) and (B) are satisfied, together with the

inequality γ ≤ v−1
α

. If Y denotes a random variable with distribution φc,α,β, then,

sup
x∈R
|P(Yn ≤ x)− P(Y ≤ x)| ≤ 3

2παc

(
2
v
α Γ
(
v
α

)
K1

cv−1
+

7 Γ
(

1
α

)
K

)
1

w
γ+ 1

α
n

,

where Yn is the random variable defined in (2.32).
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The aim of the last theorem in this section is to add one more item to this list of

mod-φ convergences, by proving a convergence modulo a tilted 1-stable totally skewed

distribution. To the best of the author’s knowledge, this type of mod-φ convergence

has not been treated in the literature before.

Let Xn be a random variable having a Gamma distribution with parameter (n, 1),

n ∈ N, that is, the probability density of Xn is given by

1

Γ(n)
xn−1 e−x, x > 0.

Then, the distribution of logXn is called the exp-Gamma distribution and the prob-

ability density of logXn is given by

1

Γ(n)
e−e

x

exn, x ∈ R.

It follows that

E [logXn] =
1

Γ(n)

∞∫
−∞

x exn e−e
x

dx =
1

Γ(n)

∞∫
0

(log y) yn−1 e−y dy

=
1

Γ(n)

∞∫
0

d

dn
(yn−1 e−y) dy =

1

Γ(n)

d

dn

∞∫
0

yn−1 e−y dy

= ψ(n),

where ψ(n) is the digamma function (see Section 2.3).

Theorem 2.7.3 The sequence of random variables n(logXn − ψ(n)) converges in the

mod-φ sense with η(t) = (t+ 1) log(t+ 1)− t and parameter wn = n, namely,

lim
n→∞

E
[
etn(logXn−ψ(n))

]
en((t+1) log(t+1)−t) =

e
t
2

√
t+ 1

,

uniformly as long as t stays in any compact subset of C\(−∞,−1).

Proof. By the properties of the Gamma distribution (see [79, Page 168]), we have that

E
[
etn(logXn−ψ(n))

]
= e−tnψ(n) E

[
X tn
n

]
= e−tnψ(n) Γ(tn+ n)

Γ(n)
.
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Using (2.13) and (2.18), it follows that

e−tnψ(n) Γ(tn+ n)

Γ(n)
∼ e−tn(logn− 1

2n
)

√
2π
tn+n

(
tn+n
e

)n+tn√
2π
n

(
n
e

)n
=

e
t
2

√
t+ 1

en((t+1) log(t+1)−t),

as n→∞. This concludes the proof.

Now, let Z1 be a random variable with stable distribution φc,α,β, where c = π
2
, α = 1 and

β = −1. Then, it follows from [116, Proposition 1.2.12] that the cumulant generating

function of this random variable is given by

logE
[
etZ1
]

= t log t, Re(t) ≥ 0.

Furthermore, E[eZ1 ] = 1, and consider an exponential tilt of Z1, denoted by Z2. Observe

that

E[Z2] = E[eZ1Z1] =
d

dt
E[etZ1 ]︸ ︷︷ ︸

=tt

∣∣∣
t=1

= tt(log t+ 1)
∣∣∣
t=1

= 1,

and consider the centered version Z := Z2−1. Then, the cumulant generating function

of Z is given by

logE
[
etZ
]

= (t+ 1) log(t+ 1)− t, Re(t) ≥ −1,

(see [116, Proposition 1.2.12]). As an exponential tilt of an infinitely divisible dis-

tribution, Z is itself infinitely divisible. Thus, in Theorem 2.7.3, we have a mod-φ

convergence modulo a tilted totally skewed 1-stable distribution.
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Chapter 3

Generalized Gamma polytopes

Calka and Yukich [23] obtained precise expectation and variance asymptotics for the

intrinsic volumes and face numbers of the random convex hull of a Poisson point pro-

cess in Rd, whose intensity measure is a multiple of the standard Gaussian measure.

The existing gap, that the limiting variance of all lower-dimensional intrinsic volumes is

strictly positive, was closed by Bárány and Thäle [8]. Additionally, Bárány and Thäle

[8] and Bárány and Vu [9] proved central limit theorems for all intrinsic volumes and

face numbers.

In this chapter, we generalize these results to the situation where the underlying in-

tensity measure of the Poisson point process is a multiple of a huge class of isotropic

measures on Rd, including the Gaussian one as a special case.

The second purpose is to introduce a new viewpoint on the resulting generalized

Gamma polytopes, based on cumulant bounds and the general large deviation the-

ory of Saulis and Statulevičius [117]. This leads to new and powerful concentration

inequalities, moment bounds, Marcinkiewicz-Zygmund-type strong laws of large num-

bers and moderate deviation principles for the intrinsic volumes and face numbers.

To the best of our knowledge, none of these results have counterparts in the existing

literature, not even in the Gaussian case. Corresponding results are also derived for

the empirical measures induced by these key geometric functionals, thereby taking care

of their spatial profiles.

Thirdly, we show that the scaling limit of the boundary of the generalized Gamma

polytopes arises as a unique festoon of inverted parabolic surfaces, not depending on

the underlying Poisson point process, generalizing once more a result from [23].
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3.1 Preliminaries

Fix a space dimension d ≥ 2, the parameter α > −1 and β ≥ 1, and let γd,α,β be the

measure of an isotropic random variable in Rd with density

φα,β(x) := cdα,β ||x||α exp

(
−‖x‖

β

β

)
:=

 β
β−α−1

β

2 Γ
(
α+1
β

)
d

||x||α exp

(
−‖x‖

β

β

)
, (3.1)

x ∈ Rd, with respect to the Lebesgue measure on Rd. We denote by Pλ a Poisson point

process in Rd with intensity measure λγd,α,β, where λ > 0. Recall, if N is a Poisson

distributed random variable with mean λ, Pλ is a point set consisting of N points in

Rd, independently chosen according to the law γd,α,β. In the next step, the generalized

Gamma polytope Kλ arises as the random convex hull of the point set Pλ. Actually,

both Kλ and Pλ depend on the parameter α and β, but we suppress this dependence

to simplify the notation.

3.1.1 Critical radius

In the Gaussian case, i.e., α = 0 and β = 2, it follows from the work of Geffroy [48]

that the Hausdorff distance between Kλk and Bd(o,
√

2 log λk) converges to 0 almost

surely, as k →∞, along ‘suitable’ subsequences λk tending to infinity. The goal of this

section is to determine this critical ball in our generalized setting, following from the

next theorem (see also [41, Theorem 4.1] for a slightly different statement).

Theorem 3.1.1 Let α > −1, β ≥ 1 and X1, X2, . . . be independent random variables

in R, distributed according to the density

fα,β(x) := cα,β |x|α exp

(
−|x|

β

β

)
:=

β
β−α−1

β

2 Γ
(
α+1
β

) |x|α exp

(
−|x|

β

β

)
, x ∈ R.

Put Mn := max{X1, . . . , Xn}, n ∈ N. Then, for all x ∈ R, it holds that

lim
n→∞

P

(β log n)
β−1
β

Mn −

(β log n)
1
β −

(β − α− 1) log

(
c
− β
β−α−1

β β log n

)
β (β log n)

β−1
β


 ≤ x


= exp(−e−x).
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Remark 3.1.2 Loosely speaking, the latter theorem yields that for all α > −1, β ≥ 1

and sufficiently large n, the maximum Mn takes values that are ‘close’ to (β log n)
1
β ,

independent of the second parameter α. Moreover, the difference between Mn and

(β log n)
1
β is random and of the magnitude

1

(β log n)
β−1
β

.

In our Poissonized model, this indicates that (β log λ)
1
β should be chosen as the critical

radius, i.e., Kλ can be expected to grow like Bd(o, (β log λ)
1
β ), for all β ≥ 1 and α > −1,

as λ→∞.

By using the method described in [48], it seems likely to show that also the Hausdorff

distance between Kλk and Bd(o, (β log λk)
1
β ) converges to 0 almost surely, as k → ∞,

along ‘suitable’ subsequences λk. We leave this issue to further research.

In order to prove Theorem 3.1.1, we recall some basic facts from extreme value the-

ory. Consider a sequence of independent and identically distributed random variables

(Xn)n∈N, and denote by Mn the maximum of X1, . . . , Xn, n ∈ N. Moreover, let F be

the distribution function of X1.

If there exist an > 0 and bn ∈ R, n ∈ N, and a non-degenerated distribution function

G such that

Mn − bn
an

D−→ G,

as n→∞, one says that F lies in the maximum domain of attraction of G. Such a G

is called an extreme value distribution.

Fisher and Tippett [46] proved that every extreme value distribution belongs to the

families of Frechet-, Weibull- or Gumbel-type distributions. For our purpose, it turns

out to be enough to focus on the latter one.

A random variable is said to be Gumbel distributed, if its distribution function is given

by

F (t) = exp(−e−t), t ∈ R.

The following theorem, first proved by Gnedenko [51], yields a complete description of

all distribution functions lying in the maximum domain of attraction of the Gumbel

distribution.
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Theorem 3.1.3 A distribution function F lies in the maximum domain of attraction

of the Gumbel distribution, if and only if there exists a positive and measurable function

g(t), fulfilling

lim
t→∞

F̄ (t+ xg(t))

F̄ (t)
= e−x, (3.2)

for all x ∈ R. If (3.2) holds, then, it follows that

Mn − bn
an

D−→ G,

as n→∞, where G is Gumbel distributed, and (an)n∈N and (bn)n∈N are given by

lim
n→∞

n F̄ (bn) = 1 and an = g(bn), (3.3)

respectively.

Lemma 3.1.4 Let F̄ be the tail distribution of a random variable with density fα,β.

Then, it holds that

lim
t→∞

F̄ (t) =
fα,β(t)

tβ−1
. (3.4)

Proof. By using the rule of L’Hospital in the case that ‘0
0
’, we achieve that

F̄ (t)
fα,β(t)

tβ−1

∼

∞∫
t

sα e−
sβ

β ds

1
tβ−1 tα e

− tβ
β

∼ −tα e−
tβ

β

(α− β + 1) tα−β e−
tβ

β − tα e−
tβ

β

∼ 1
β−α−1
tβ

+ 1
∼ 1,

as t→∞. This completes the proof.

Lemma 3.1.5 The distribution function F of a random variable with density fα,β lies

in the maximum domain of attraction of the Gumbel distribution.

Proof. In view of Theorem 3.1.3, it is enough to show that equation (3.2) holds for

some suitable function g(t). Choose

g(t) :=
1

tβ−1
, t > 0,

which is positive and measurable and, therefore, fits into the setting of Theorem 3.1.3.
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Using Lemma 3.1.4, it follows that

F̄ (t+ xg(t))

F̄ (t)
∼

1

(t+ x

tβ−1 )
β−1

(
t+ x

tβ−1

)α
e−

(t+ x
tβ−1 )

β

β

1
tβ−1 tα e

− tβ
β

=

(
t

t+ x
tβ−1

)β−1 (t+ x
tβ−1

t

)α
exp

(
− 1

β

((
t+

x

tβ−1

)β
− tβ

))
=
(

1 +
x

tβ

)1−β (
1 +

x

tβ

)α
exp

(
− 1

β

((
t+

x

tβ−1

)β
− tβ

))
=
(

1 +
x

tβ

)α+1−β
exp

(
− 1

β

((
t+

x

tβ−1

)β
− tβ

))
,

as t → ∞. Now, using the Taylor-Lagrange expansion up to second order yields that

there is an absolute constant C ∈ (−∞,∞) such that

(
t+

x

tβ−1

)β
= tβ + βx+

x2

2t2(β−1)
β(β − 1)(t+ C)β−2.

Since (t+ C)β−2 ∼ tβ−2, as t→∞, we obtain

(t+ C)β−2

t2(β−1)
∼ tβ−2

t2(β−1)
∼ t−β,

as t→∞. Thus,

exp

(
− 1

β

((
t+

x

tβ−1

)β
− tβ

))
= exp

(
− 1

β

(
βx+

x2

2t2(β−1)
β(β − 1)(t+ C)β−2

))
= e−x exp

(
− x2

2t2(β−1)
(β − 1)(t+ C)β−2

)
∼ e−x,

as t→∞. Combined with

lim
t→∞

(
1 +

x

tβ

)α+1−β
= 1,

this yields that

lim
t→∞

F̄ (t+ xg(t))

F̄ (t)
= e−x,

for all x ∈ R, finishing the proof.
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Proof of Theorem 3.1.1. It remains to find sequences an > 0 and bn ∈ R, n ∈ N, such

that

Mn − bn
an

D−→ G,

as n → ∞, where G is Gumbel distributed. The first condition of (3.3) and Lemma

3.1.4 imply that

c−1
α,β b

β−α−1
n e

b
β
n
β ∼ n,

as n→∞. As a first approach of the sequence bn, we choose wn by e
w
β
n
β = n, i.e.,

wn = (β log n)
1
β .

Of course, this is not the right choice for bn since it holds that

c−1
α,β w

β−α−1
n e

w
β
n
β = c−1

α,β (β log n)
β−α−1

β n � n,

as n→∞. Thus, we need to modify wn and, therefore, start with the estimate

bn = (β log n)
1
β + δn,

where (δn)n∈N is an unknown sequence. By using again the Taylor-Lagrange expansion

up to second order, we obtain that there exists an absolute constant C ∈ (−∞,∞)

such that

exp

(
1

β

(
(β log n)

1
β + δn

)β)
= exp

(
log n+ (β log n)

β−1
β δn +

δ2
n(β − 1)

2
((β log n)

1
β + C)β−2

)
= n exp

(
(β log n)

β−1
β δn

)
exp

(
δ2
n(β − 1)

2
((β log n)

1
β + C)β−2

)
.

Similarly, the Taylor-Lagrange expansion up to first order yields that there is an abso-

lute constant C ′ ∈ (−∞,∞), satisfying(
(β log n)

1
β + δn

)β−1−α
= (β log n)

β−1−α
β + (β − 1− α)δn

(
(α log n)

1
β + C ′

)β−2−α
.
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This leads to

c−1
α,β b

β−α−1
n e

b
β
n
β

= c−1
α,β

(
(β log n)

1
β + δn

)β−α−1

exp

(
1

β

(
(β log n)

1
β + δn

)β)
= n c−1

α,β

(
(β log n)

β−1−α
β + (β − 1− α)δn

(
(β log n)

1
β + C ′

)β−2−α
)

× exp
(

(β log n)
β−1
β δn

)
exp

(
δ2
n(β − 1)

2
((β log n)

1
β + C)β−2

)
.

(3.5)

Now, we aim to determine δn in a way that all expressions above, except for n, are

asymptotically equivalent to 1. To achieve this, we choose δn such that

c−1
α,β (β log n)

β−α−1
β exp

(
(β log n)

β−1
β δn

)
= 1

⇔ exp
(

(β log n)
β−1
β δn

)
=

1

c−1
α,β (β log n)

β−α−1
β

⇔ exp
(

(β log n)
β−1
β δn

)
=

1(
c
− β
β−α−1

α,β β log n

)β−α−1
β

⇔ (β log n)
β−1
β δn = −β − α− 1

β
log

(
c
− β
β−α−1

α,β β log n

)

⇔ δn = −β − α− 1

β

log

(
c
− β
β−α−1

α,β β log n

)
(β log n)

β−1
β

.

Evidently, δn converges to 0, as n→∞. Furthermore, since(
(β log n)

1
β + C ′

)β−2−α

(β log n)
β−1
β

+β−1−α
β

∼ (β log n)
β−2−α

β

(β log n)
2β−2−α

β

= (β log n)−
β
β = (β log n)−1,

as n→∞, we achieve that

(β − 1− α)δn

(
(β log n)

1
β + C ′

)β−2−α

(β log n)
β−1−α

β

= −(β − 1− α)2

β
log

(
c
− β
β−α−1

α,β β log n

) ((β log n)
1
β + C ′

)β−2−α

(β log n)
2β−2−α

β
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∼ −(β − 1− α)2

β
log

(
c
− β
β−α−1

α,β β log n

)
(β log n)−1,

as n→∞. As a result, we get that

(β log n)
β−1−α

β + (β − 1− α)δn

(
(β log n)

1
β + C ′

)β−2−α
∼ (β log n)

β−1−α
β , (3.6)

as n→∞. By exploiting the definition of δn, we have similarly that

δ2
n(β − 1)

2
((β log n)

1
β + C)β−2

converges to 0, as n→∞, and, therefore,

exp

(
δ2
n(β − 1)

2
((β log n)

1
β + C)β−2

)
∼ 1, (3.7)

as n → ∞. Summarizing (3.6) and (3.7) yields that our choice of δn ensures that the

right hand side of (3.5) is indeed asymptotically equivalent to n. As a consequence,

the sequence (bn)n∈N can be defined as

bn := (β log n)
1
β −

(β − α− 1) log

(
c
− β
β−α−1

α,β β log n

)
β (β log n)

β−1
β

,

for all n ∈ N. Moreover, we know from the second part of (3.3) that the sequence

(an)n∈N fulfills an = g(bn) = 1

bβ−1
n

. Since

bn ∼ (β log n)
1
β ,

as n→∞, we lastly obtain that an can be chosen like

an :=
1

(β log n)
β−1
β

,

for all n ∈ N. That proves the theorem.
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3.1.2 Scaling transformation

Let us start this section by stating the general setup, needed to define the crucial

scaling transformation, taken in the Gaussian case from [23, Equation (1.5)]. If u0 is

the north pole on the sphere Sd−1 and Tu0 := Tu0(Sd−1) the tangent space at this point,

we identify Tu0 with the (d− 1)-dimensional Euclidean space Rd−1. Besides, we define

exp−1 as the inverse of the exponential map exp := expu0
: Tu0 → Sd−1. It maps a

vector v ∈ Tu0 to the point u ∈ Sd−1 in such a way that u lies at the end of the unique

geodesic ray with length ‖v‖, emanating at u0 and having direction v. Note that the

exponential map is injective on Bd−1(o, π) := {v ∈ Tu0 : ‖v‖ < π} and we have that

exp(Bd−1(o, π)) = Sd−1 \ {−u0}. (Following [23], we prefer to write Bd−1(o, r) for a

centered ball of radius r > 0 in Tu0 instead of Bd−1(o, r) to prevent confusions.) Since

the inverse of the exponential map is well-defined on the whole sphere Sd−1, except for

the point −u0, we put exp−1(−u0) := (o, π).

In the previous section, we saw that for sufficiently large λ, the polytope Kλ can be

expected to grow like the d-dimensional Euclidean ball centered at the origin with

radius (β log λ)
1
β . In order to reflect this behavior in our scaling transformation, define

Rλ :=

[
β log λ−

(
β(d+ 1)− 2d− 2α

2

)
log

(
c
− 2βd
β(d+1)−2d−2α

α,β β log λ

)] 1
β

, (3.8)

for all λ > 0 such that Rλ ≥ 1. In particular, Rλ is asymptotically equivalent to the

critical radius (β log λ)
1
β itself. The reason for the explicit choice of Rλ will become

clear in the proof of the upcoming Lemma 3.1.7. We are now in the position to define

the scaling transformation, illustrated by Figure 3.1 in the planar setting.

Definition 3.1.6 The mapping Tλ : Rd → Rd−1 × R, defined by

Tλ(x) :=

(
R

β
2
λ exp−1

(
x

‖x‖

)
, Rβ

λ

(
1− ‖x‖

Rλ

))
, x ∈ Rd \ {o}, (3.9)

maps Rd \ {o} into the region

Wλ := R
β
2
λ Bd−1(o, π)× (−∞, Rβ

λ] ⊆ Rd−1 × R.

Putting Tλ(o) := (o, Rβ
λ), the transformation Tλ is a bijection between Rd and Wλ.
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Figure 3.1: The scaling transformation Tλ.

Now, define the rescaled point process by

P(λ) := Tλ(Pλ),

(see Figure 3.2). Due to the mapping property for Poisson point processes (see Theorem

2.6.2), the point process P(λ) is actually also a Poisson point process in Wλ. Its

distributional properties will be analyzed in the following two lemmas.

Lemma 3.1.7 The intensity measure of P(λ) has density

(v, h) 7→ sind−2(R
−β

2
λ ‖v‖)

‖R−
β
2

λ v‖d−2

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

× exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)(
1− h

Rβ
λ

)d−1+α

1((v, h) ∈ Wλ),

(3.10)

with respect to the Lebesgue measure on Rd−1 × R, where C ∈ (−∞, 1) is an absolute

constant.

Remark 3.1.8 Later, it turns out to be crucial to bound the exponential term in (3.10)

uniformly by eh, for all h ∈ R. Examples are provided by the estimates presuming

(3.46), (3.47), (3.53), (3.63) and (3.68). However, if β < 1, this is not achievable and,

therefore, we may and will restrict to the condition β ≥ 1. This natural condition was

used also by Carnal [25, Page 171] and Eddy and Gale [41, Page 757].
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Figure 3.2: The rescaled Poisson point process P(λ).

Due to the properties of the sine function and the definition of Rλ, the first two fractions

in (3.10) converge to 1, as λ → ∞, on compact subsets of Wλ. Moreover, for fixed

h ∈ R, the same holds true for the fourth expression, while the exponential term tends

to eh, as λ→∞. Summarizing, this implies the following important corollary.

Corollary 3.1.9 As λ → ∞, P(λ) converges in distribution, in the sense of total

variation convergence on compact sets, to a Poisson point process P on Rd−1 × R,

whose intensity measure has density

(v, h) 7→ eh, (v, h) ∈ Rd−1 × R,

with respect to the Lebesgue measure on Rd−1 × R, for all parameter α and β in the

density φα,β.

Remark 3.1.10 The scaling transformation Tλ carries Pλ into a Poisson point process

in the product space Rd−1 ×R that is stationary in the spatial coordinate, as λ→∞.

On the one hand, this was to be expected in view of [41, Theorem 4.1] (generalizing a

result obtained in [40]), where a transformation was constructed to carry the binomial

counterpart of our Pλ into a point process in R × Rd−1, whose height coordinate is

determined by a Poisson point process with intensity e−hdh, h ∈ R, while in the spatial

regime a standard Gaussian process arises. On the other hand, the result in [41] clearly

contrasts ours, in particular concerning the distribution in the spatial coordinate.
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Proof of Lemma 3.1.7. Let us write x ∈ Rd as x = ur with u ∈ Sd−1 and r ≥ 0. Thus,

using polar coordinates, it follows that

λφα,β(x) dx = λφα,β(ur) rd−1 drHd−1
Sd−1(du).

Following the proof of [23, Lemma 3.2], we achieve, by making the change of variables

v := R
β
2
λ exp−1(u) and h := Rβ

λ

(
1− r

Rλ

)
⇔ r = Rλ

(
1− h

Rβ
λ

)
,

that

Hd−1
Sd−1(du) =

sind−2(R
−β

2
λ ‖v‖)

‖R−
β
2

λ v‖d−2

(
R
−β

2
λ

)d−1
dv. (3.11)

Indeed, for all v ∈ Rd−1 \ {o}, the exponential map can be expressed as

exp(v) = cos(||v||)(o, 1) + sin(||v||)
(

v

||v||
, 0

)
,

(see [23, Equation (3.14)]). Thus,

Hd−1
Sd−1(du) = sin(|| exp−1(u)||)d−2 d(|| exp−1(u)||)Hd−2

Sd−2

(
d

exp−1(u)

|| exp−1(u)||

)
=

sin(|| exp−1(u)||)d−2

|| exp−1(u)||d−2
d(exp−1(u)),

and the claim follows from exp−1(u) = R
−β

2
λ v. Moreover, by the choice of r, we achieve

rd−1 dr =

[
Rλ

(
1− h

Rβ
λ

)]d−1

R
−(β−1)
λ dh. (3.12)

Furthermore, we get

λφα,β(ur)

= (β log λ)
β(d+1)−2d−2α

2β Rα
λ

(
1− h

Rβ
λ

)α

exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
,

(3.13)

for some absolute constant C ∈ (−∞, 1).
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Indeed, using the Taylor-Lagrange expansion up to second order of the function (1−x)β

at the point 0 yields that there exists an absolute constant C ∈ (0, x) such that

(1− x)β = 1− βx+
x2

2
β(β − 1)(1− C)β−2. (3.14)

The definitions of r and φα,β(x), as well as (3.14) applied to x = h/Rβ
λ, imply that

there is an absolute constant C ∈ (−∞, 1), satisfying

φα,β(ur)

= φα,β

(
uRλ

(
1− h

Rβ
λ

))

= cdα,β R
α
λ

(
1− h

Rβ
λ

)α

exp

− 1

β
Rβ
λ

(
1− h

Rβ
λ

)β


= cdα,β R
α
λ

(
1− h

Rβ
λ

)α

exp

(
− 1

β
Rβ
λ

(
1− β h

Rβ
λ

+
h2

2R2β
λ

β(β − 1)(1− C)β−2

))

= cdα,β R
α
λ

(
1− h

Rβ
λ

)α

exp

(
−R

β
λ

β
+ h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)

= cdα,β R
α
λ

(
1− h

Rβ
λ

)α

exp

(
−R

β
λ

β

)
exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)

=
1

λ
Rα
λ

(
1− h

Rβ
λ

)α

(β log λ)
β(d+1)−2d−2α

2β exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
.

Note that we used the explicit choice of Rλ in the last step to deduce

exp

(
−R

β
λ

β

)

= exp

(
− 1

β

(
β log λ−

(
β(d+ 1)− 2d− 2α

2

)
log

(
c
− 2βd
β(d+1)−2d−2α

α,β β log λ

)))
= exp(− log λ) exp

((
β(d+ 1)− 2d− 2α

2β

)
log

(
c
− 2βd
β(d+1)−2d−2α

α,β β log λ

))
=

1

λ

(
c
− 2βd
β(d+1)−2d−2α

α,β β log λ

)β(d+1)−2d−2α
2β

=
1

λ
(β log λ)

β(d+1)−2d−2α
2β c−dα,β.
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Combining (3.11), (3.12) and (3.13) with

Rα
λ R

−β(d−1)
2

λ Rd−1
λ R

−(β−1)
λ = R

−βd+β+2d−2−2β+2+2α
2

λ = R
−β(d+1)+2d+2α

2
λ

finishes the proof.

Let i ∈ {1, . . . , d}. Similarly to the notation used in [23, Page 41], we denote by vol
(λ)
i

the image of

R
β(d+1)−2i

2
λ ‖x‖i−d vold

under the scaling transformation Tλ, where vold is the usual d-dimensional Lebesgue-

measure on Rd.

Lemma 3.1.11 Let i ∈ {1, . . . , d}. Then, the image measure vol
(λ)
i under the scaling

transformation Tλ has density

(v, h) 7→ sind−2(R
−β

2
λ ‖v‖)

‖R−
β
2

λ v‖d−2

(
1− h

Rβ
λ

)i−1

1((v, h) ∈ Wλ), (3.15)

with respect to the Lebesgue measure on the product space Rd−1 × R.

Corollary 3.1.12 It is readily seen that the density in (3.15) converges point wise

to 1, as λ → ∞, proving that the image measure vol
(λ)
i , i ∈ {1, . . . , d}, converges in

distribution to vold, again in the sense of total variation convergence on compact sets.

Proof of Lemma 3.1.11. Starting with ‖x‖i−d dx instead of λφα,β(x) dx in the proof

of Lemma 3.1.7 implies that the density of the image measure vol
(λ)
i is given by the

product of the terms on the right hand sides of (3.11) and (3.12), times

R
β(d+1)−2i

2
λ Ri−d

λ

(
1− h

Rβ
λ

)i−d

,

with respect to the Lebesgue measure on Rd−1 × R. Multiplication of these three

expressions yields the density stated in (3.15).
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3.1.3 Germ-grain processes

Let us start this section with two observations regarding Kλ, explained in detail for

example in [23, Page 14]. A point x′ ∈ Pλ is a vertex of Kλ, if and only if the ball

Bd
(
x′

2
,
||x′||

2

)
is not contained in the union of all balls corresponding to the other points of Pλ, i.e,

in ⋃
y∈Pλ
y 6=x

Bd
(
y

2
,
||y||

2

)
.

Let

θ := dSd−1

(
x

||x||
,
x′

||x′||

)
be the geodesic distance on the sphere. Then, we can rewrite the ball as

Bd
(
x′

2
,
||x′||

2

)
= {x ∈ Rd : ||x|| ≤ ||x′|| cos θ}

=

{
x ∈ Rd : Rβ

λ

(
1− ||x||

Rλ cos θ

)
≥ Rβ

λ

(
1− ||x

′||
Rλ

)}
.

(3.16)

On the other hand, Rd \Kλ is the union of half-spaces that do not contain points of

Pλ. For x′ ∈ Rd, consider the half-space

H(x′) : = {x ∈ Rd : ||x′|| ≤ ||x|| cos θ}

=

{
x ∈ Rd : Rβ

λ

(
1− ||x′||

Rλ cos θ

)
≥ Rβ

λ

(
1− ||x||

Rλ

)}
,

(3.17)

which is one of the main ingredients of the following lemma.

Lemma 3.1.13 Putting Tλ(x
′) := (v′, h′) ∈ Rd−1 × R, the scaling transformation Tλ

transforms the ball Bd
(
x′

2
, ||x

′||
2

)
and the half-space H(x′) into the upward opening grain

[Π↑(v′, h′)](λ) :=
{

(v, h) ∈ Wλ : h ≥ Rβ
λ(1− cos(dλ(v

′, v))) + h′ cos(dλ(v
′, v))

}
, (3.18)
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and the downward opening grain

[Π↓(v′, h′)](λ) :=

{
(v, h) ∈ Wλ : h ≤ Rβ

λ −
Rβ
λ − h′

cos(dλ(v′, v))

}
, (3.19)

respectively, where

dλ(v
′, v) := dSd−1

(
exp(R

−β
2

λ v′), exp(R
−β

2
λ v)

)
is the geodesic distance between the images of the rescaled points v′ and v under the

exponential map.

Proof. The second characterization of the ball in (3.16) implies that

Rβ
λ

(
1− ||x||

Rλ cos θ

)
≥ Rβ

λ

(
1− ||x

′||
Rλ

)
⇔ Rβ

λ cos θ −Rβ−1
λ ||x|| ≥ Rβ

λ

(
1− ||x

′||
Rλ

)
cos θ

⇔ Rβ
λ −R

β−1
λ ||x|| ≥ Rβ

λ −R
β
λ cos θ +Rβ

λ

(
1− ||x

′||
Rλ

)
cos θ

⇔ Rβ
λ

(
1− ||x||

Rλ

)
≥ Rβ

λ(1− cos θ) +Rβ
λ

(
1− ||x

′||
Rλ

)
cos θ.

Therefore,

h ≥ Rβ
λ(1− cos(dλ(v

′, v))) + h′ cos(dλ(v
′, v)),

where we used

h′ = Rβ
λ

(
1− ||x

′||
Rλ

)
, h = Rβ

λ

(
1− ||x||

Rλ

)
, v′ = R

β
2
λ exp−1

(
x′

||x′||

)
,

and

v = R
β
2
λ exp−1

(
x

||x||

)
,

in view of the scaling transformation Tλ.
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Similarly, we get from (3.17) that

Rβ
λ

(
1− ||x||

Rλ

)
≤ Rβ

λ −
Rβ
λ
||x′||
Rλ

cos θ
= Rβ

λ −
Rβ
λ −R

β
λ

(
1− ||x

′||
Rλ

)
cos θ

,

and, thus,

h ≤ Rβ
λ −

Rβ
λ − h′

cos(dλ(v′, v))
.

This proves the claim.

Consequently, Tλ transforms the sets

⋃
x∈Pλ

Bd
(
x

2
,
||x||

2

)
and Rd \Kλ

into the quasi-paraboloid germ-grain models

Ψ(λ) := Ψ(λ)(Tλ(Pλ)) :=
⋃

w∈P(λ)

[Π↑(w)](λ),

(see Figure 3.3), and

Φ(λ) := Φ(λ)(Tλ(Pλ)) :=
⋃
w∈Wλ

P(λ)∩[Π↓(w)](λ)=∅

[Π↓(w)](λ),

(see Figure 3.4), respectively.

What is crucial about these germ-grain processes is that now, for sufficiently large λ, a

point x′ ∈ Pλ is a vertex of Kλ, if and only if the germ [Π↑(Tλ(x
′))](λ) is not covered by

Ψ(λ)(Tλ(Pλ \ {x′})). This observation has been used extensively in the Gaussian case

in [23] and also our results exploit this fact. In this case, Tλ(x
′) is called an extreme

point of P(λ), whose collection we denote by ext(P(λ)). Moreover, the boundary ∂Φ(λ)

of Φ(λ) is build from piecewise quasi-parabolic facets, glued together at the extreme

points of P(λ). Recall that Tλ(Pλ) converges in distribution to a Poisson point process

P in Rd−1 × R, whose intensity measure has density

(v, h) 7→ eh, (v, h) ∈ Rd−1 × R,

with respect to the Lebesgue measure on Rd−1 × R.
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Figure 3.3: The germ-grain model Ψ(λ).

Thus, it seems natural that the boundaries of the quasi-paraboloid germ-grain models

Ψ(λ) and Φ(λ) converge to those of so-called limit paraboloid germ-grain models Ψ and

Φ, corresponding to P and defined as follows. Putting

Π↑ :=

{
(v, h) ∈ Rd−1 × R : h ≥ ‖v‖

2

2

}
,

and

Π↓ :=

{
(v, h) ∈ Rd−1 × R : h ≤ −‖v‖

2

2

}
,

to be the unit up- and downward paraboloids, respectively, define

Ψ := Ψ(P) :=
⋃
w∈P

[Π↑(w)](∞) and Φ := Φ(P) :=
⋃

w∈Rd−1×R
P∩int(Π↓(w))=∅

[Π↓(w)](∞), (3.20)

where, for w := (v, h) ∈ Rd−1 × R,

[Π↑(w)](∞) := w ⊕ Π↑ and [Π↓(w)](∞) := w ⊕ Π↓.

All the points of P that belong to the boundary of Φ are summarized in the set of

extreme points of P , denoted by ext(P).
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Figure 3.4: The germ-grain model Φ(λ).

3.1.4 Functionals of interest

Recall that Kλ is the generalized Gamma polytope, arising as the convex hull of the

Poisson point process Pλ. If x is an extreme point of Pλ, we denote by Fj(x,Pλ),
j ∈ {1, . . . , d−1}, the set of all j-dimensional faces of Kλ containing x, while |Fj(x,Pλ)|
indicates its cardinality. Moreover, we define by cone(x,Pλ) := {ry : r ≥ 0, y ∈
Fd−1(x,Pλ)} the cone corresponding to the facets Fd−1(x,Pλ). Furthermore, recall

the definition of the projection-avoidance functional θi from (2.2). We are now in the

position to introduce the functionals of interest and start with those regarding to Pλ.

Definition 3.1.14 (Intrinsic volume and face functionals) For i ∈ {1, . . . , d}, we define

the defect intrinsic volume functional with respect to the ball Bd(o, Rλ) by putting

ξVi(x,Pλ) := R
β(d+1)−2i

2
λ

(
d−1
i−1

)
d κd−i

∫
cone(x,Pλ)

[θi(y,Kλ)− θi(y,Bd(o, Rλ))]
1

||y||d−i
dy,

if x is an extreme point of Pλ, and 0 for all other points of Pλ. In particular, for i = d,

we arrive at

ξVd(x,Pλ) =
1

d
R

β(d+1)−2d
2

λ [vold(cone(x,Pλ) ∩ Bd(o, Rλ))− vold(cone(x,Pλ) ∩Kλ)],

i.e., the rescaled defect volume with respect to the aforementioned ball.
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Moreover, for j ∈ {0, . . . , d − 1}, we define the j-face functional of the generalized

Gamma polytope Kλ by putting

ξfj(x,Pλ) :=

 1
j+1
|Fj(x,Pλ)| : x ∈ ext(Pλ)

0 : x /∈ ext(Pλ).

We shall write

Ξ := {ξV1 , . . . , ξVd , ξf0 , . . . , ξfd−1
}

for the collection of the geometric functionals and use, for ξ ∈ Ξ, the abbreviation

Hξ
λ :=

∑
x∈Pλ

ξ(x,Pλ). (3.21)

With these definitions, it follows that the total number of j-dimensional faces of Kλ,

j ∈ {0, . . . , d− 1}, almost surely satisfies

fj(Kλ) = H
ξfj
λ ,

while the total i-th defect intrinsic volume of Kλ, i ∈ {1, . . . , d}, with respect to the

ball Bd(o, Rλ), almost surely fulfills

Vi(Bd(o, Rλ))− Vi(Kλ) = R
−β(d+1)−2i

2
λ H

ξVi
λ , (3.22)

conditioned on the event that o ∈ Kλ. We notice that this event occurs with probability

at least 1 − e−cλ, for some constant c ∈ (0,∞) only depending on d. To keep our

presentation short, in all computations concerning the functional ξVi that are carried

out in this chapter, we implicitly condition on this event. In fact, this causes – up to

constants – no changes in our results since conditioning on the complementary event

only leads to terms that are negligible for sufficiently large λ. Also, implicitly this

convention has already been used in [22, 23, 56].

If w ∈ ext(P(λ)), recall the definition in Section 3.1.3, let Cyl(λ)(w) indicate the set

in Rd−1, achieved by projecting the facets of Φ(λ) that contain the point w onto

Rd−1. Furthermore, define |Fj(w,P(λ))| to be the number of j-dimensional faces of

∂(
⋃
v∈P(λ) [Π↓(v)](λ)) that contain w.
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Definition 3.1.15 (Rescaled intrinsic volume and face functionals) Let ξ ∈ Ξ and λ

be sufficiently large. The rescaled functional ξ(λ) under the scaling transformation Tλ

is defined by

ξ(λ)(w,P(λ)) := ξ(T−1
λ (w), T−1

λ (P(λ))), w ∈ Wλ.

In particular, for i ∈ {1, . . . , d}, define

ξ
(λ)
Vi

(w,P(λ)) :=
1

d

∫
Cyl(λ)(w)

Φ(λ)(P(λ))(v)∫
0

vol
(λ)
i (d(v, h)),

if w belongs to the extreme points of P(λ), and 0 otherwise. Additionally, for j ∈
{0, . . . , d− 1}, define

ξ
(λ)
fj

(w,P(λ)) :=

 1
j+1
|Fj(w,P(λ))| : w ∈ ext(P(λ))

0 : w /∈ ext(P(λ)).

Denote by

Ξ(λ) := {ξ(λ)
V1
, . . . , ξ

(λ)
Vd
, ξ

(λ)
f0
, . . . , ξ

(λ)
fd−1
}

the family of rescaled geometric functionals.

Remark 3.1.16 Here and in the rest of this chapter, we adopt the following notational

convention. If w ∈ Wλ does not belong to the rescaled point process P(λ), we under-

stand ξ(λ)(w,P(λ)) as ξ(λ)(w,P(λ)∪{w}) and, similarly, also ξ(x,Pλ) as ξ(x,Pλ∪{x}).

Now, if w ∈ ext(P), let Cyl(w) denote the set in Rd−1 obtained by projecting the

hyperfaces of ∂(Φ(P)) that contain w onto Rd−1. Moreover, |Fj(w,P)|, j ∈ {1, . . . , d−
1}, indicates the number of j-dimensional parabolic faces of ∂(Φ(P)) containing w.

In order to define the scaling limit intrinsic volume and face functionals, we first in-

troduce some more necessary notation. For every w = (v, h) ∈ Rd−1 × R, we denote

by wl the set {v} ×R and by µw
l

i the normalized Haar measure on the set A(wl, i) of

all i-dimensional affine spaces in Rd containing wl. Moreover, for every affine space L
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containing wl, we define the corresponding orthogonal paraboloid Π⊥[w;L] as the set{
w′ = (v′, h′) ∈ Rd−1 × R : (w − w′)⊥L, h′ ≤ h− ||v − v

′||2

2

}
,

where (w−w′)⊥L indicates that the vector w−w′ is orthogonal to L. In other words,

Π⊥[w;L] is the set of points of w⊕L⊥, positioned ‘under’ the paraboloid surface ∂Π↓(w)

with apex at w.

Building on all this notation, we put

ϑ
(∞)
L (w) :=

1 : Π⊥[w;L] ∩ Tλ(Kλ) = ∅

0 : otherwise.

In particular, when L = wl, we get that ϑ
(∞)

wl
(w) = 1(Π⊥[w;L] ∩ Φ = ∅).

Definition 3.1.17 (Scaling limit intrinsic volume and face functionals) For i ∈ {1, . . . , d},
the scaling limit defect intrinsic volume functional is given by

ξ
(∞)
Vi

(w,P) :=
1

d

(
d−1
i−1

)
κd−i

∫
Cyl(w)

[
ϑ

(∞)
i (w′)− 1({w′ ∈ Rd−1 × R−})

]
dw′,

if w belongs to the extreme points of P , and 0 otherwise. Here, for every w ∈ Rd,

ϑ
(∞)
i (w) :=

∫
A(wl,i)

ϑ
(∞)
L (w′) dµw

l

i (L).

Moreover, for j ∈ {0, . . . , d− 1},

ξ
(∞)
fj

(w,P) :=

 1
j+1
|Fj(w,P)| : w ∈ ext(P)

0 : w /∈ ext(P)

is the scaling limit j-face functional. Similarly as before, let

Ξ(∞) := {ξ(∞)
V1

, . . . , ξ
(∞)
Vd

, ξ
(∞)
f0

, . . . , ξ
(∞)
fd−1
}

indicate the family of scaling limit functionals.
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Based on the rescaled and scaling limit functionals, we introduce so-called second order

correlation functions, describing the limiting constants in the expectation and variance

asymptotics stated in Theorem 3.4.1.

Definition 3.1.18 (Second order correlation functions) Let ξ(λ) ∈ Ξ(λ) and ξ(∞) ∈
Ξ(∞). For all h0 ∈ R, (v1, h1) ∈ Wλ and x, y ∈ Rd, define

cξ
(λ)

((o, h0), (v1, h1),P(λ))

:= E[ξ(λ)((o, h0),P(λ) ∪ {(v1, h1)}) ξ(λ)((v1, h1),P(λ) ∪ {(o, h0)})]

− E[ξ(λ)((o, h0),P(λ))]E[ξ(λ)((v1, h1),P(λ))],

(3.23)

and

cξ
(∞)

(x, y,P)

:= E[ξ(∞)(x,P ∪ {y}) ξ(∞)(y,P ∪ {x})]− E[ξ(∞)(x,P)]E[ξ(∞)(y,P)].
(3.24)

Furthermore, put

σ2(ξ(∞)) :=

∞∫
−∞

E[ξ(∞)((o, h0),P)2] eh0 dh0

+

∞∫
−∞

∞∫
−∞

∫
Rd−1

cξ
(∞)

((o, h0), (v1, h1),P) eh0+h1 dh0 dh1 dv1.

(3.25)

3.1.5 Empirical measures and their cumulants

It is crucial in the proofs of our main results to have very precise control on the growth

of the cumulants of the geometric characteristics Hξ
λ, given in (3.21). For that purpose,

it turns out to be more convenient to work with the measure-valued versions of Hξ
λ.

For this reason, for all λ > 0 with Rλ ≥ 1, we define the empirical random measures

µξλ :=
∑
x∈Pλ

ξ(x,Pλ) δx =
∑

w∈P(λ)

ξ(λ)(w,P(λ)) δT−1
λ (w), ξ ∈ Ξ, (3.26)

where δx is the Dirac measure at x. The corresponding centered versions are given by

µ̄ξλ := µξλ − E[µξλ].
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The method of expanding the cumulant measures associated with µξλ in terms of cluster

measures has been developed and successfully applied in [12] in the context of proving a

central limit theorem. For a function f ∈ B(Rd) and r ∈ R\{0}, define fr(x) := f(x/r).

We use a refined version from [43, 56] to deduce sharp bounds for the cumulants of

〈fRλ , µ
ξ
λ〉 =

∫
Rd
fRλ(x) dµξλ. To present the main formulas, let us write Mk

λ , k ∈ N, for

the k-th order moment measure of µkλ, defined by the relation

E[exp(〈fRλ , µ
ξ
λ〉)] = 1 +

∞∑
k=1

1

k!
〈fkRλ ,M

k
λ 〉,

in which we write fk for the k-th tensor power of a function f ∈ B(Rd), given by

fk(x1, . . . , xk) := f(x1) · · · f(xk). (Here and in what follows, we think of ξ ∈ Ξ being

fixed and, hence, suppress the dependence on ξ in our notation.) To appropriately

handle the moment measures, for g ∈ B(Rd) and F ∈ B((Rd)k), we define the singular

differential d̄[g] by the relation∫
(Rd)k

F (x1, . . . , xk) d̄[g](x1, . . . , xk) :=

∫
Rd

F (y, . . . , y) g(y) dy, (3.27)

and, for x := (x1, . . . , xk) ∈ (Rd)k, put

d̃[g](x) :=
∑

L1,...,Lp�JkK

d̄[g](xL1) . . . d̄[g](xLp), (3.28)

where xLi := (x`)`∈Li , for i ∈ {1, . . . , p}. Now, from [43, Proposition 3.1], it follows

that the density of Mk
λ with respect to d̃[λφα,β] equals

mλ(x) = mλ(x1, . . . , xk) := E

[
k∏
i=1

ξ(λ)

(
Tλ(xi),P(λ) ∪

k⋃
i=1

{Tλ(xi)}

)]
. (3.29)

Moreover, the k-th cumulant measure ckλ, associated with µξλ, is defined as

ckλ :=
∑

L1,...,Lp�JkK

(−1)p−1(p− 1)! M
|L1|
λ ⊗ . . .⊗M |Lp|

λ , (3.30)

where M
|L1|
λ ⊗ . . . ⊗M |Lp|

λ denotes the product measure of M
|L1|
λ , . . . ,M

|Lp|
λ . The cu-

mulant measures can alternatively be expressed as a sum of cluster measures.
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Indeed, for non-empty and disjoint sets S, T ⊆ N, the cluster measure US,T
λ on (Rd)|S|×

(Rd)|T | is defined by

US,T
λ (A×B) := M

|S∪T |
λ (A×B)−M |S|

λ (A)M
|T |
λ (B),

for Borel sets A ⊆ (Rd)|S| and B ⊆ (Rd)|T |. Loosely speaking, the cluster measures

will capture the spatial correlations of the rescaled functionals ξ(λ) and their measure-

valued counterparts (see Lemma 3.2.15). To proceed, for x = (x1, . . . , xk) ∈ (Rd)k and

their rescaled images (vi, hi) := Tλ(xi), i ∈ {1, . . . , k}, define the quantity

δ(x) := δ (v1, . . . , vk) := max {d(vS,vT ) : {S, T} � JkK} , (3.31)

where vS = (vs)s∈S, vT = (vt)t∈T , and

d(vS,vT ) := min
s∈S,t∈T

‖vs − vt‖

is the separation for the partition {S, T} of {1, . . . , k}. Moreover, let

∆ := {(x, . . . , x) ∈ (Rd)k : x ∈ Rd}

be the diagonal in (Rd)k. Similarly to what has been explained in [12, 43, 56], one can

decompose the space (Rd)k \∆ into a disjoint union of sets δ({S, T}) with non-trivial

partitions {S, T} � JkK, such that x ∈ δ({S, T}) implies that d(vS,vT ) = δ(x). This

leads to the following cluster measure representation.

Lemma 3.1.19 Fix k ∈ {2, 3, . . .} and f ∈ B(Rd). Then, it holds that

〈fkRλ , c
k
λ〉 =

∫
∆

fkRλ dckλ +
∑

S,T �JkK

∫
δ({S,T})

∑
S′ ,T ′ ,K1,...,Ks�JkK

aS′ ,T ′ ,K1,...,Ks

× fkRλ d(US
′
,T
′

λ ⊗M |K1|
λ ⊗ · · · ⊗M |Ks|

λ ),

(3.32)

where in every summand, S
′
, T
′
, K1, . . . , Ks is a partition of {1, . . . , k} with S

′ ⊆ S,

T
′ ⊆ T , and the constants aS′ ,T ′ ,K1,...,Ks

satisfy the estimate∑
S′ ,T ′ ,K1,...,Ks�JkK

|aS′ ,T ′ ,K1,...,Ks
| ≤ 2k k!. (3.33)

Remark 3.1.20 The proof in [43] shows that the bound (3.33) cannot be improved.
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3.2. PROPERTIES OF THE FUNCTIONALS OF INTEREST AND THE
GERM-GRAIN PROCESSES

3.2 Properties of the functionals of interest and the

germ-grain processes

In the following, C,C1, C2 ∈ (0,∞) will always denote absolute constants that may

change from line to line. The same holds for c, c1, c2, . . . ∈ (0,∞), which are, unless

specified differently, allowed to depend on the dimension d, the parameter α and β

in the underlying distribution, and the functional ξ ∈ Ξ. Moreover, writing that a

statement holds for sufficiently large λ means that there exists a λ0 > 0, depending on

d, α, β and the geometric functional under consideration, such that the statement is

valid for all λ ≥ λ0.

3.2.1 Theory of localization

In this section, we prove that the rescaled functionals ξ(λ) ∈ Ξ(λ) and the scaling limit

functionals ξ(∞) ∈ Ξ(∞), defined on points w := (v, h) ∈ Wλ and w′ := (v′, h′) ∈
Rd−1 × R, respectively, ‘localize’ in their spatial coordinates v and v′, as well as their

height coordinates h and h′, respectively.

In order to do this for the height coordinates, we introduce the following characteristic

of the germ-grain processes. If w ∈ ext(P(λ)), let H(w) := H(w,P(λ)) be the maximal

height of an apex of a downward paraboloid which contains a parabolic facet in the

boundary of Φ(λ) that contains w, and 0 otherwise. Figure 3.5 illustrates the functional

in the planar setting. H ′(w′) := H ′(w′,P) is defined analogously with respect to the

processes P and Φ. On the other hand, to deal with the spatial coordinates, we need

the notion of the so-called radius of localization. It has been introduced and used

heavily in the context of random polytopes before (see, for example, [22, 23, 56, 120]).

Definition 3.2.1 (Radius of localization) Let ξ(λ) ∈ Ξ(λ) and r > 0. Given a point

w := (v, h) ∈ Wλ, define

ξ
(λ)
[r] (w,P(λ)) := ξ(λ)(w,P(λ) ∩ Cd−1(v, r))

to be the restriction of the functional to the cylinder Cd−1(v, r) := Bd−1(v, r) × R.

Similarly, for ξ(∞) ∈ Ξ(∞), r > 0 and w′ := (v′, h′) ∈ Rd−1 × R, put

ξ
(∞)
[r] (w′,P) := ξ(∞)(w′,P ∩ Cd−1(v′, r)).
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If there exist random variables L(w) := L(ξ(λ), w) and L′(w′) := L′(ξ(∞), w′) that

almost surely fulfill

ξ(λ)(w,P(λ)) = ξ
(λ)
[L(w)](w,P

(λ)) and ξ
(λ)
[L(w)](w,P

(λ)) = ξ
(λ)
[s] (w,P(λ)),

for all s ≥ L(w), and

ξ(∞)(w′,P) = ξ
(∞)
[L′(w′)](w

′,P) and ξ
(∞)
[L′(w′)](w

′,P) = ξ
(∞)
[s] (w′,P),

for all s ≥ L′(w′), respectively, then, the functionals ξ(λ) and ξ(∞) are said to localize.

The infima over all such random variables satisfying the above conditions are called

the radii of localization of the corresponding functional. To simplify the notation, let

us refer to them also as L(w) and L′(w′) in what follows.

Theorem 3.2.2 Let ξ(λ) ∈ Ξ(λ) and ξ(∞) ∈ Ξ(∞). Then, for all w = (v, h) ∈ Wλ,

w′ = (v′, h′) ∈ Rd−1 × R and sufficiently large λ,

(a) it holds that

P(H(w) ≥ t) ≤ c1 exp

(
−e

t

c2

)
and P(H ′(w′) ≥ t) ≤ c3 exp

(
−e

t

c4

)
, (3.34)

for all t ≥ h ∨ 0 and t ≥ h′ ∨ 0, respectively, and

(b) the radii of localization L(w) and L′(w′) satisfy

P(L(w) ≥ t) ≤ c1 exp

(
− t

2

c2

)
and P(L′(w′) ≥ t) ≤ c3 exp

(
− t

2

c4

)
, (3.35)

as well as the weaker estimates

P(L(w) ≥ t) ≤ c5 exp

(
− t

c6

)
and P(L′(w′) ≥ t) ≤ c7 exp

(
− t

c9

)
, (3.36)

for all t ≥ |h| and t ≥ |h′|, respectively.

As a direct consequence, we achieve an exponential decay for the probability that a

point belongs to the set of extreme points of P(λ), respectively P , with respect to their

height coordinates.
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If w /∈ P(λ) or w′ /∈ P , we use the notation w ∈ ext(P(λ)) and w′ ∈ ext(P) for

w ∈ ext

( ⋃
z∈P(λ)∪{w}

[Π↑(z)](λ)

)
and w′ ∈ ext

( ⋃
z∈P∪{w′}

[Π↑(z)]

)
.

Corollary 3.2.3 Let w := (v, h) ∈ Wλ and w′ := (v′, h′) ∈ Rd−1 × R. Then, for

sufficiently large λ, it holds that

P(w ∈ ext(P(λ))) ≤ c1 exp

(
−e

h∨0

c2

)
and P(w′ ∈ ext(P)) ≤ c3 exp

(
−e

h′∨0

c4

)
.

After having investigated the localization properties of the functionals ξ(λ) and ξ(∞),

we turn to the germ-grain processes Ψ(λ), Φ(λ), Ψ and Φ.

Theorem 3.2.4 For all M ∈ (0,∞) and sufficiently large λ, it holds that

P(‖∂Ψ(λ)(P(λ)) ∩ Cd−1(v,M)‖∞ ≥ t) ≤ c1M
2(d−1) exp

(
− t

c2

)
,

and

P(‖∂Ψ(P) ∩ Cd−1(v,M)‖∞ ≥ t) ≤ c3M
2(d−1) exp

(
− t

c4

)
,

for all t > 0. The two bounds also hold for the dual processes Φ(λ) and Φ.

Let us briefly comment on the previous statements. First, we emphasize that the

tail estimates (3.35) and (3.36) are valid only for arguments t ≥ |h|. Next, also the

probability for a point w = (v, h) ∈ Wλ to belong to the extreme points of P(λ) separates

into two cases. Namely, if the height h exceeds 0, then, P(w ∈ ext(P(λ))) decays super-

exponentially fast, while, if h ≤ 0, one only has an estimate independently of h (which

is in some sense trivial). Similarly, also the probability for the event that H(w) ≥ t

can only be estimated in a meaningful way if t or h are not too small. This underlines

the effect already discussed in Section 1.2, that the spatial localization property of the

rescaled geometric functionals ξ(λ) ∈ Ξ(λ) we consider can only be handled effectively

in the upper half-space Rd−1 × [0,∞), while in the lower half-space no such spatial

localization is available. This phenomenon is new compared to the theory of random

polytopes in the unit ball developed in [22, 56, 120] and is in fact the leading cause for

the technical complications that arise in the context of our class of random polytopes.
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Figure 3.5: The event {H(w) ≥ t} and the unit volume cube S.

Remark 3.2.5 As aforementioned and proven in Corollary 3.1.9, the limiting Poisson

point process P , as well as the corresponding germ-grain models Ψ and Φ, do not

depend on the parameter α and β in the underlying distribution. Hence, the proofs of

the assertions for these three limit processes stated in Theorem 3.2.2, Corollary 3.2.3

and Theorem 3.2.4 stay absolutely the same compared with the ones derived in the

Gaussian case in [23] and can be omitted. Thus, it remains to derive the above stated

assertions connected with P(λ), Ψ(λ) and Φ(λ), which of course depend on α and β.

Due to the rotational invariance of the underlying Poisson point process Pλ, it is enough

to prove all these results for points w = (o, h) ∈ Wλ with h ∈ (−∞, Rβ
λ]. Let λ be

sufficiently large. Similarly to what has been done in [23, Page 25], let us investigate

the event {H(w) ≥ t}, which can be rewritten in the form

{H(w) ≥ t} = {∃w1 := (v1, h1) ∈ ∂[Π↑(w)](λ) : h1 ≥ t, [Π↓(w1)](λ) ∩ P(λ) = ∅},

(see Figure 3.5). Now, consider such a w1 := (v1, h1) ∈ ∂[Π↑(w)](λ) and define the

inverse of the scaling transformation of w by ρu0 := T−1
λ (w), ρ > 0, where we recall

that u0 indicates the north pole on the sphere Sd−1. The parameter ρ is positive since

otherwise, the spatial coordinate of w would be πR
β
2
λ instead of o, by definition of Tλ.
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Lemma 3.2.6 Denote by S the unit volume cube centered in (v1,
h1

(β+1)β
−1), illustrated

in Figure 3.5. For sufficiently large λ, it fulfills

S ⊆ [Π↓(w1)](λ) ∩ Cd−1

(
o,

3πR
β
2
λ

4

)
. (3.37)

Proof. For sufficiently large λ, the cube S is included in [Π↓(w1)](λ). Indeed, due to

the upcoming estimate in (3.76), the boundaries of [Π↓(w1)](λ) and [Π↓(w1)](∞) are not

‘far’ from each other, and the latter downward germ contains the cube S by definition.

Furthermore, the ball Bd(ρu0

2
, ρ

2
), that is mapped into the germ [Π↑(w)](λ) by the scaling

transformation Tλ (see Lemma 3.1.13), is a subspace of Rd−1 × (0,∞), since ρ > 0.

Additionally, Tλ transforms this upper half space into the cylinder

Cd−1

(
o, π

R
β
2
λ

2

)
.

This leads to the relation

[Π↑(w)](λ) = Tλ

(
Bd
(ρu0

2
,
ρ

2

))
⊆ Cd−1

(
0,
πR

β
2
λ

2

)
,

which implies ||v1|| ≤
πR

β
2
λ

2
and, therefore, S ⊆ Cd−1

(
0,

3πR
β
2
λ

4

)
.

The cube S is the main ingredient when proving the next assertion.

Lemma 3.2.7 For sufficiently large λ, it holds that

P([Π↓(w1)](λ) ∩ P(λ) = ∅) ≤ exp(−c1 e
c2h1).

Proof. Let (v, h) ∈ S. From the definition of the cube S, we get that

h ∈
[

h1

(β + 1)β
− 3

2
,

h1

(β + 1)β
− 1

2

]
,

and, thus,

h

Rβ
λ

∈

[
h1

(β + 1)βRβ
λ

− 3

2Rβ
λ

,
h1

(β + 1)βRβ
λ

− 1

2Rβ
λ

]
⊆
[
−3

2
,
1

2

]
, (3.38)

since h1/R
β
λ ∈ [0, 1] and β ≥ 1.
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Hence, in view of (3.10), the density of the intensity measure of P(λ) in each point

(v, h) ∈ S looks like

sind−2(R
−β

2
λ ‖v‖)

‖R−
β
2

λ v‖d−2

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

× exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)(
1− h

Rβ
λ

)d−1+α

,

(3.39)

for some C ∈
[
−3

2
, 1

2

]
. Besides, the preparation (3.37) implies that

R
−β

2
λ ‖v‖ ≤ R

−β
2

λ

3πR
β
2
λ

4
=

3π

4
.

Therefore, for sufficiently large λ, the first fraction is bounded from below by a positive

constant. Moreover, if the exponent β(d+1)−2d−2α
2β

is positive, the definition of Rλ yields

that

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

=

(
β log λ

β log λ−
(β(d+ 1)− 2d− 2α

2

)
︸ ︷︷ ︸

>0

log
(
c
− 2βd
β(d+1)−2d−2α

α,β β log λ
)
)β(d+1)−2d−2α

2β

> 1,

since the term in the bracket is larger than 1. On the other hand, if the same exponent

is negative, we also achieve

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

=

(
β log λ

β log λ−
(β(d+ 1)− 2d− 2α

2

)
︸ ︷︷ ︸

<0

log
(
c
− 2βd
β(d+1)−2d−2α

α,β β log λ
)
)β(d+1)−2d−2α

2β

> 1.

Here, the inner fraction is smaller than 1, but since we have a negative exponent, we

nevertheless achieve the statement. Summarizing, the second fraction in (3.39) is larger

than 1.
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Now, let us switch to the height coordinate h. First, notice that d − 1 + α > 0, since

α > −1. If h ≤ 0, the fourth term in (3.39) is larger than 1. In the other case, the

estimate derived in (3.38) yields that(
1− h

Rβ
λ

)d−1+α

≥
(

1

2

)d−1+α

> 0.

Moreover, the third expression in (3.39) is bounded from below by c1 exp(c2h1). Indeed,

we have

h ∈
[

h1

(β + 1)β
− 3

2
,

h1

(β + 1)β
− 1

2

]
⊆
[

h1

(β + 1)β
− 3

2
,

h1

(β + 1)β

]
.

On these grounds, since h1/R
β
λ ∈ [0, 1],

exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)

≥ exp

(
−3

2

)
exp

(
h1

(β + 1)β
− h2

1

2(β + 1)2βRβ
λ

(β − 1)(1− C)β−2

)

≥ exp

(
−3

2

)
exp

(
h1

(β + 1)β
− h1

2(β + 1)2β
(β − 1)(1− C)β−2

)
= exp

(
−3

2

)
exp

(
h1

2(β + 1)β − (β − 1)(1− C)β−2

2(β + 1)2β

)
≥ exp

(
−3

2

)
exp

(
h1

(β + 1)β

2(β + 1)2β

)
= exp

(
−3

2

)
exp

(
h1

2(β + 1)β

)
,

where in the last inequality we have used that

2(β + 1)β − (β − 1)(1− C)β−2 ≥ (β + 1)β,

since C ∈
[
−3

2
, 1

2

]
. This proves the claim.

Summarizing the last calculations, we obtain that the density of the intensity measure

of P(λ), evaluated in an arbitrary point (v, h) ∈ S, can be bounded from below by

c1 exp(c2h1).
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Since the cube S has by construction unit volume, we obtain, writing νλ for the intensity

measure of the rescaled Poisson point process P(λ), that

νλ(S) ≥ c1 exp(c2h1).

Therefore,

P([Π↓(w1)](λ) ∩ P(λ) = ∅) = exp(−νλ([Π↓(w1)](λ))) ≤ exp(−νλ(S)) ≤ exp(−c1 e
c2h1).

This completes the proof.

The last two lemmas assumed a fixed w1 := (v1, h1) ∈ ∂[Π↑(w)](λ) with h1 ≥ t. In the

next step, we generalize this to all possible w1, i.e., the region

∂[Π↑(w)](λ) ∩ Rd−1 × [t,∞).

In order to do this, it is crucial to derive the following observation concerning the

spatial coordinates. Recall that we have w = (o, h) with h ∈ (−∞, Rβ
λ].

Lemma 3.2.8 For all (v1, h1) ∈ ∂[Π↑(w)](λ), it holds that

||v1|| ≤ C
R

β
2
λ

√
h1 − h√

Rβ
λ − h

.

Proof. From (3.18), we get that

h1 = Rβ
λ(1− cos(dλ(o, v1))) + h cos(dλ(o, v1)),

and the inequality 1− cos θ ≥ Cθ2, valid for all θ ∈ [0, π], together with the definition

of dλ(o, v1), implies that

1− cos(dλ(o, v1)) ≥ C dλ(o, v1)2 = C (R
−β

2
λ ||v1||)2 = C R−βλ ||v1||2.

Thus,

C ||v1||2 ≤ Rβ
λ (1− cos(dλ(o, v1))) = h1 − h cos(dλ(o, v1)) =

Rβ
λ(h1 − h)

Rβ
λ − h

.
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Indeed, in last step we used that

h1 − h cos(dλ(o, v1)) =
Rβ
λ(h1 − h)

Rβ
λ − h

⇔ (Rβ
λ − h)(h1 − h cos(dλ(o, v1))) = Rβ

λ(h1 − h)

⇔ Rβ
λh1 −Rβ

λh cos(dλ(o, v1))− hh1 + h2 cos(dλ(o, v1)) = Rβ
λh1 −Rβ

λh

⇔ Rβ
λh(1− cos(dλ(o, v1))) = h(h1 − h cos(dλ(o, v1)))

⇔ Rβ
λ(1− cos(dλ(o, v1))) = h1 − h cos(dλ(o, v1))

⇔ Rβ
λ(1− cos(dλ(o, v1))) + h cos(dλ(o, v1)) = h1,

which again holds in view of (3.18). Extracting the roots implies the claim.

Proof of Theorem 3.2.2 (a). Recall that w = (o, h) with h ∈ (−∞, Rβ
λ] and that the

event {H(w) ≥ t} can be rewritten in the form

{H(w) ≥ t} = {∃w1 := (v1, h1) ∈ ∂[Π↑(w)](λ) : h1 ≥ t, [Π↓(w1)](λ) ∩ P(λ) = ∅}.

The possible range for the height coordinate h1 is determined by [t∨h,Rβ
λ]. Moreover,

the previous lemma gives a condition on the spatial coordinate v1. Using the bound

derived in Lemma 3.2.7, this leads to

P(H(w) ≥ t) =

Rβλ∫
t∨h

∫
Bd−2(o,v);

(v,h1)∈∂[Π↑(w)](λ)

P([Π↓(w1)](λ) ∩ P(λ) = ∅) dv1 dh1

≤ c1

Rβλ∫
t∨h

R β
2
λ

√
h1 − h√

Rβ
λ − h

d−2

exp(−c2 e
c3h1) dh1.

In order to finish the proof, we consider two different cases. If h ∈
(
−∞, R

β
λ

2

]
, we

achieve that

R
β
2
λ√

Rβ
λ − h

≤
√

2.
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Indeed,

R
β
2
λ√

Rβ
λ − h

≤
√

2 ⇔ Rβ
λ ≤ 2(Rβ

λ − h) ⇔ Rβ
λ

2
≤ Rβ

λ − h ⇔ h ≤ Rβ
λ

2

holds by assumption. As a result, we get that

P(H(w) ≥ t) ≤ c1 exp(−c2 e
c3t). (3.40)

Truly, it holds that

P(H(w) ≥ t) ≤ c1

Rβλ∫
t∨h

(h1 − h)
d−2

2 exp(−c2e
c3h1) dh1

≤ c1

∞∫
t∨h

exp(c2 log(h1 − h) − c3e
c4h1) dh1

≤ c1

∞∫
t∨h

exp(c2 log h1 − c3e
c4h1) dh1

≤ c1

∞∫
t

exp(−c2e
c3h1) dh1

≤ c1 e
c2t exp(−c3e

c4t)

≤ c1 exp(−c2 e
c3t),

since for all h1 ≥ 0 we have that

exp(c1 log h1 − c2e
c3h1) ≤ exp(−c4e

c5h1).

If else-wise h ∈
(
Rβλ
2
, Rβ

λ

]
, we have that

h1 − h
Rβ
λ − h

≤ 1 and exp(−c ec h1) ≤ exp

−c ec h1

2
− c e

cR
β
λ

2

2

 .
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The first inequality holds since h1 ≤ Rβ
λ and the second follows because

exp(−c ech1) ≤ exp

−c ec h1

2
− c e

cR
β
λ

2

2


⇔ − c ec h1

2
≤ −c e

cR
β
λ

2

2

⇔ h1 ≥ Rβ
λ

2

is true due to the range of h and the fact that h1 ≥ h in the integral under investigation.

In this case, we obtain that

P(H(w) ≥ t) ≤ c1

Rβλ∫
t∨h

R
β(d−2)

2
λ exp

−c2 e
c3h1

2
− c4 e

c5R
β
λ

2

2

 dh1

≤ c1R
β(d−2)

2
λ exp

−c2 e
c3 R

β
λ

2

2

 ∞∫
t

exp

(
−c4 e

c5 h1

2

)
dh1

≤ c1

∞∫
t

exp

(
−c2 e

c3 h1

2

)
dh1

≤ c1 exp(−c2 e
c3t),

(3.41)

where in the third step we used that for sufficiently large λ,

R
β(d−2)

2
λ exp

(
−c1 e

c2R
β
λ

)
can be bounded by an absolute constant. Combining (3.40) and (3.41) yields the

result.

Part (a) of the theorem concerning H(w) is heavily used to derive a proof for part (b),

dealing with the localization in the spatial regime. In order to develop the proof, let

ξ(λ) ∈ Ξ(λ), w = (o, h) ∈ Wλ and t ≥ |h|. In contrast to the estimates presented before,

we analyze the event {H(w) ≤ t}. The motivation for this choice will be provided

later.
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Figure 3.6: The set V.

Similarly to the considerations in [23, Page 26], we start with the observation that in

the case that H(w) ≤ t, the functional ξ(λ)(w,P(λ)) only depends on the points of the

Poisson point process P(λ) contained in the set

V :=
⋃

w1∈[Π↑(w)](λ) ∩Rd−1×(−∞,t]

[Π↓(w1)](λ). (3.42)

Indeed, by definition of the rescaled functionals, at least all the points from P(λ) sharing

a quasi-parabolic facet of Ψ(λ) with w, and the paraboloids that determine ξ(λ), are

contained in V . Figure 3.6 illustrates this phenomenon in the planar setting.

Lemma 3.2.9 Fix w′ := (v′, h′) ∈ V and w1 := (v1, h1) ∈ [Π↑(w)](λ), h1 ≤ t, in a way

that both w′ and w lie on the boundary of the downward grain [Π↓(w1)](λ) corresponding

to w1. In Figure 3.7, we provide an example of this setup. Then, there exists a constant

C ∈ (0,∞) such that h′ ∈ [−C1t
2,∞) implies that ||v′|| ≤ t.
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Figure 3.7: The situation in Lemma 3.2.9.

Proof. In order to prove the assertion, we recall the definition of the upward quasi-

paraboloid grain [Π↑(w)](λ), i.e.,

[Π↑(w)](λ) =
{

(v1, h1) ∈ Wλ : h1 ≥ Rβ
λ(1− cos(dλ(o, v1))) + h cos(dλ(o, v1))

}
.

We have that t ≥ h1 and t ≥ |h| by definition of the point w1 and the assumption

made above, respectively. Thus, we obtain

Rβ
λ(1− cos(dλ(o, v1))) ≤ h1 − h cos(dλ(o, v1)) ≤ t− h cos(dλ(o, v1)) ≤ 2t,

since cos(dλ(o, v1)) ∈ [−1, 1]. Again, using the inequality 1 − cos θ ≥ Cθ2, it follows

that

dλ(o, v1)2 ≤ C(1− cos(dλ(o, v1))) ≤ 2C R−βλ t,

and, thus,

dλ(o, v1) ≤ C
√

2t R
−β

2
λ . (3.43)
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On the other hand, w′ belongs to the boundary of

[Π↓(w1)](λ) :=

{
(v′, h′) ∈ Wλ : h′ ≤ Rβ

λ −
Rβ
λ − h1

cos(dλ(v′, v1))

}
.

Based on 1− cos θ ≥ Cθ2, the equivalence

h′ = Rβ
λ −

Rβ
λ − h1

cos(dλ(v′, v1))

⇔ h′ cos(dλ(v
′, v1)) = Rβ

λ cos(dλ(v
′, v1))−Rβ

λ + h1

⇔ Rβ
λ −R

β
λ cos(dλ(v

′, v1)) + h′ cos(dλ(v
′, v1))− h′ = h1 − h′

⇔ (Rβ
λ − h

′)(1− cos(dλ(v
′, v1))) = h1 − h′

⇔ 1− cos(dλ(v
′, v1)) =

h1 − h′

Rβ
λ − h′

,

the fact that h′, h1 ≤ t by construction, t ≤ 2πR
β
2
λ (since the radius of localization

never exceeds the spatial diameter of Wλ), and

Rβ
λ − 2πR

β
2
λ ≥

1

2
Rβ
λ,

which is true for sufficiently large λ, we obtain that

(dλ(v
′, v1))2 ≤ C (1− cos(dλ(v

′, v1))) = C
h1 − h′

Rβ
λ − h′

≤ C
t− h′

Rβ
λ − t

≤ C
t− h′

Rβ
λ − 2πR

β
2
λ

≤ C
t− h′

Rβ
λ

.

Therefore, it holds that

dλ(v
′, v1) ≤ C

√
t− h′

R
β
2
λ

. (3.44)

Finally, putting together (3.43) and (3.44) with ||v′|| = R
β
2
λ dλ(v

′,o) yields that

||v′|| = R
β
2
λ dλ(v

′,o) ≤ R
β
2
λ (dλ(o, v1) + dλ(v1, v

′)) ≤ C (
√
t+
√
t− h′). (3.45)
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Beyond that, if h′ ∈ [−Ct2,∞), we even get ||v′|| ≤ t since it holds that

C (
√
t+
√
t− h′) ≤ t

⇔ C
√
t− h′ ≤ t− C

√
t

⇔ C2 (t− h′) ≤ t2 − 2tC
√
t+ C2t

⇔ t− h′ ≤ t2

C2
− 2t
√
t

C
+ t

⇔ h′ ≥ − t2

C2
+

2t
√
t

C
≥ − t2

C2
= −C1 t

2

by the assumption of the lemma with C1 := 1
C2 . This proves the result.

Proof of Theorem 3.2.2 (b). Let ξ(λ) ∈ Ξ(λ), w = (o, h) ∈ Wλ and t ≥ |h|. Using the

result from part (a) of the theorem implies that

P(L(w) ≥ t) = P(L(w) ≥ t,H(w) ≥ t) + P(L(w) ≥ t,H(w) ≤ t)

≤ P(H(w) ≥ t) + P(L(w) ≥ t,H(w) ≤ t)

≤ c1 exp(−c2 e
c3t) + P(L(w) ≥ t,H(w) ≤ t).

Thus, it remains to bound P(L(w) ≥ t,H(w) ≤ t) in an appropriate way. Recall, if

H(w) ≤ t, the functional ξ(λ)(w,P(λ)) only depends on the region given by V , defined

in (3.42). Moreover, the previous lemma states that the spatial coordinate of all points

w′ = (v′, h′) ∈ V is bounded by t, as long as its height coordinate fulfills h′ ∈ [−Ct2,∞).

As a consequence, it is enough to consider the region

V ∩ Rd−1 × (−∞,−Ct2).

If it is devoid of points from P(λ), then, the analyzed functional only depends on points

whose spatial coordinates are bounded by t, i.e., the radius of localization is smaller

than t. Thus,

P(L(w) ≥ t,H(w) ≤ t) ≤ P(P(λ) ∩ V ∩ Rd−1 × (−∞,−Ct2) 6= ∅).
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Writing again νλ for the intensity measure of the rescaled Poisson point process P(λ),

by using (3.10), we obtain that

νλ(V ∩ Rd−1 × (−∞,−Ct2))

=

−Ct2∫
−∞

∫
Bd−1(o,v);
(v,h1)∈V

sind−2(R
−β

2
λ ‖v′‖)

‖R−
β
2

λ v′‖d−2

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

× exp

(
h′ − h′2

2Rβ
λ

(β − 1)(1− C1)β−2

)(
1− h′

Rβ
λ

)d−1+α

dv′ dh′,

(3.46)

for some C1 ∈ (−∞, 1). Now, we have that, for sufficiently large λ, the sine expression,

the second fraction and the exponential term are bounded from above by 1, a positive

constant and eh
′
, respectively. Moreover, we use (3.45) to bound the spatial region.

This implies that

νλ(V ∩ Rd−1 × (−∞,−Ct2)) ≤ c1

−Ct2∫
−∞

(
√
t+
√
t− h′)d−1 eh

′

(
1− h′

Rβ
λ

)d−1+α

dh′

= c1

∞∫
Ct2

(
√
t+
√
t+ h′)d−1 e−h

′

(
1 +

h′

Rβ
λ

)d−1+α

dh′

≤ c1

∞∫
Ct2

(
√
t+
√
t+ h′)d−1 e−c2h

′
dh′

≤ c1

∞∫
Ct2

exp(c2 log(
√
t+
√
t+ h′)− c3h

′) dh′

≤ c1 exp(−c2t
2),

since we have for all h′ ≥ 0 that

e−h
′

(
1 +

h′

Rβ
λ

)d−1+α

≤ e−ch
′
,

and, similarly,

exp(c1 log(
√
t+
√
t+ h′)− c2h

′) ≤ exp(−c3h
′).
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As a conclusion, the inequality 1− e−x ≤ x, valid for all x ∈ R, leads to

P(P(λ) ∩ V ∩ Rd−1 × (−∞,−ct2) 6= ∅) = 1− P(P(λ) ∩ V ∩ Rd−1 × (−∞,−ct2) = ∅)

= 1− exp(−νλ(V ∩ Rd−1 × (−∞,−ct2)))

≤ νλ(V ∩ Rd−1 × (−∞,−ct2))

≤ c1 exp(−c2t
2).

Finally, this implies that

P(L(w) ≥ t) ≤ c1 exp(−c2e
c3t) + c4 exp(−c5t

2) ≤ c6 exp(−c7t
2) ≤ c8 exp(−c9t),

and the theorem is proved.

Proof of Corollary 3.2.3. Let w = (o, h) ∈ Wλ. In the case that h ∈ (0, Rβ
λ], we apply

(3.34) for t = h, which yields

P(w ∈ ext(P(λ))) = P(H(w) ≥ h) ≤ c1 exp

(
−e

h

c2

)
.

Indeed, if H(w) is supposed to be bigger than 0, then, by definition, w has to belong

to the extreme points of P(λ). In the second case, i.e., h ∈ (−∞, 0], one can bound

the probability in a trivial way by C exp(− e0

C
) with a sufficiently large constant C.

Combining the two cases yields the result.

In order to prove the assertion stated in Theorem 3.2.4, let M ∈ (0,∞), t ≥ 0, λ be

sufficiently large and define the events

T1 := {∂Ψ(λ)(P(λ)) ∩ {(v, h) : ||v|| ≤M,h > t} 6= ∅},

and

T2 := {∂Ψ(λ)(P(λ)) ∩ {(v, h) : ||v|| ≤M,h < −t} 6= ∅}.

Lemma 3.2.10 For sufficiently large λ, it holds that

P(T1) ≤ c1M
d−1 exp(−c2e

t).
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Figure 3.8: The event T1 and the unit volume cube S.

Proof. Similarly to the considerations concerning the event {H(w) ≥ t}, we have that

T1 = {∃w1 := (v1, h1) ∈ ∂Ψ(λ)(P(λ)) : h1 ≥ t, ||v1|| ≤M, [Π↓(w1)](λ) ∩ P(λ) = ∅},

(see Figure 3.8). The only difference is that there is now also a condition on the spatial

coordinate v1. Fix w1 := (v1, h1) ∈ ∂Ψ(λ)(P(λ)). Analogously as in the proof of Lemma

3.2.6, we construct a unit volume cube S centered in(
v1 −

√
d− 1v1

2||v1||
,

h1

(β + 1)β
− 1

)
,

(see again Figure 3.8), to obtain that

S ⊆ [Π↓(w1)](λ) ∩ Cd−1

o,M ∧ 3πR
β
2
λ

4

 ,

for all sufficiently large λ. The shift in the spatial coordinate of the center of S is

necessary to ensure that S ⊆ Cd−1(o,M). Now, by using this cube S, we achieve as in
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the proof of Lemma 3.2.7 that

P([Π↓(w1)](λ) ∩ P(λ) = ∅) ≤ exp(−c1 e
c2h1),

for sufficiently large λ. Since the Euclidean norm of the spatial coordinate of w1 is

bounded by M and the height coordinate is larger than t, we get, for sufficiently large

λ,

P(T1) ≤ c

∞∫
t

Md−1 P([Π↓(w1)](λ) ∩ P(λ) = ∅) dh1

≤ c1M
d−1

∞∫
t

exp(−c2 e
c3h1)

≤ c1M
d−1 exp(−c2e

c3t).

This completes the proof.

Lemma 3.2.11 For sufficiently large λ, it holds that

P(T2) ≤ c1M
2(d−1) e−c2t.

Proof. If T2 occurs, then, there must be an explicit point x ∈ P(λ) with

T2 = {∃w1 := (v1, h1) ∈ ∂Ψ(λ)(x) : h1 ∈ (−∞,−t], ||v1|| ≤M},

and

x ∈ U :=
⋃

w∈Bd−1(o,M)×{h1}

[Π↓(w)](λ).

Figure 3.9 illustrates the set U in the plane. By using (3.10) and the fact that the

spatial region is bounded by M , we get similarly as before that

νλ(U) ≤ c

h1∫
−∞

Md−1 eh

(
1− h

Rβ
λ

)d−1+α

dh = c1M
d−1 ec2h1 . (3.47)
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Figure 3.9: The set U and the event T2.

This implies that

P(U ∩ P(λ) 6= ∅) = 1− P(U ∩ P(λ) = ∅) = 1− exp(−νλ(U)) ≤ νλ(U) ≤ c1M
d−1 ec2h1 .

Finally, this yields that

P(T2) ≤ c1

−t∫
−∞

Md−1 P(U ∩ P(λ) 6= ∅) dh1 ≤ c2M
2(d−1)

−t∫
−∞

ec3h1 dh1 = c4M
2(d−1) e−c5t,

completing the proof.

Proof of Theorem 3.2.4. Recalling the definition of the events T1 and T2 in combination

with the results from Lemma 3.2.10 and Lemma 3.2.11 gives that

P(‖∂Ψ(λ)(P(λ)) ∩ Cd−1(v,M)‖∞ ≥ t) = P(T1) + P(T2)

≤ c1M
d−1 exp(−c2e

t) + c3M
2(d−1) e−c4t

≤ c1M
2(d−1) exp(−c2t).

This finishes the proof.
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3.2.2 Moment estimates

This section contains the first step of the proof of the cumulant estimate presented in

Theorem 3.3.1 and shows another crucial property of the functionals ξ ∈ Ξ, namely, a

moment estimate, that considerably refines the existing one from [23, Page 26] in the

Gaussian setting. As already discussed above, deriving such bounds in the context of

our class of generalized Gamma polytopes is a much more delicate task compared to

random polytopes in the unit ball studied in [56], although at the beginning we could

follow the principal idea from [23, Page 27 and 28] in the Gaussian case. To present

our results in a unified way, let us define for ξ ∈ Ξ the weights

u[ξ] :=

i : ξ = ξVi

2j : ξ = ξfj ,
v[ξ] :=

1 : ξ = ξVi

j : ξ = ξfj ,

and

w[ξ] :=

2 : ξ = ξVi

j : ξ = ξfj ,

where i ∈ {1, . . . , d} and j ∈ {0, . . . , d− 1}.

Theorem 3.2.12 Let ξ ∈ Ξ, p ∈ N, x1 = (v1, h1), . . . , xp = (vp, hp) ∈ Wλ, and put

δ := mini,j=1,...,p ‖vi − vj‖.

(i) For sufficiently large λ, it holds that

E
∣∣ξ(λ)(x1,P(λ))

∣∣p ≤ c1 c
p
2 (p!)u[ξ] (pdv[ξ])! (1 + |h|)p(d−1)v[ξ]+d exp

(
−e

h∨0

c3

)
,

and

E
∣∣ξ(λ)(x1,P(λ) ∩ Cd−1

(
x1,

δ

2

)
)
∣∣p

≤ c4 c
p
5 (p!)u[ξ] (pdv[ξ])! (1 + |h|)p(d−1)v[ξ]+d exp

(
−e

h∨0

c6

)
.
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(ii) Moreover, for sufficiently large λ, it holds that

E

( p∏
i=1

ξ(λ)

(
xi,P(λ) ∪

p⋃
i=1

{xi}

))2


≤ c1 c
p
2 (p!)2u[ξ] ((pdv[ξ])!)2

p∏
i=1

[
(1 + |hi|)2dw[ξ] exp

(
−e

hi∨0

c3 k

)]
,

and

E

( p∏
i=1

ξ(λ)

(
xi,

(
P(λ) ∪

k⋃
i=1

{xi}

)
∩ Cd−1

(
xi,

δ

2

)))2


≤ c4 c
p
5 (p!)2u[ξ] ((pdv[ξ])!)2

p∏
i=1

[
(1 + |hi|)2dw[ξ] exp

(
−e

hi∨0

c6 k

)]
.

Remark 3.2.13 It is enough to prove the bound for

E
∣∣ξ(λ)(x1,P(λ))

∣∣p,
since the one for

E
∣∣ξ(λ)(x1,P(λ) ∩ Cd−1

(
x1,

δ

2

)
)
∣∣p

is completely similar. The same holds true in part (ii) of the theorem.

Proof of Theorem 3.2.12 (i) for ξ = ξVi. We start with the first assertion and choose

ξ = ξVi , i ∈ {1, . . . , d}. Because of rotational invariance of the underlying point process,

we may assume that the point x := x1 has representation (o, h) with h ∈ (−∞, Rβ
λ].

Now, for all M ∈ (0,∞) and sufficiently large λ, put

D(λ)(M) := ‖∂Ψ(λ)(P(λ)) ∩ Cd−1(o,M)‖∞,

and let

L := L(ξ(λ), (o, h))

be the radius of localization of the functional ξ(λ), evaluated at (o, h).
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Then, for sufficiently large λ, in view of (3.15),
∣∣ξ(λ)((o, h),P(λ))

∣∣ is bounded by the

Lebesgue measure of the set

Bd−1(o, L)× [−D(λ)(L), D(λ)(L)],

times

c1

(
1 +

D(λ)(L)

Rβ
λ

)i−1

≤ c1 (1 +D(λ)(L))i−1 ≤ c1 2i−1D(λ)(L)i−1 = c2D
(λ)(L)i−1.

Hence, by the Cauchy-Schwarz inequality,

E
∣∣ξ(λ)((o, h),P(λ))

∣∣p ≤ c1 c
p
2 E
∣∣Ld−1D(λ)(L)i

∣∣p
≤ c1 c

p
2

(
E
[
L2p(d−1)

]) 1
2
(
E
[
D(λ)(L)2pi

]) 1
2 .

(3.48)

Using (3.36) and the definition of the Gamma function implies that

E[Lr] = r

∞∫
0

P(L > t) tr−1 dt

≤ r c1

∞∫
0

exp

(
− t

c2

)
tr−1 dt+ r

|h|∫
0

tr−1 dt

≤ c1 c
r
2 r! + |h|r ,

for all r ∈ N. Hence, in view of (2.6),

E
[
L2p(d−1)

]
≤ c1 c

p
2 (2p(d− 1))! + |h|2p(d−1) ≤ c3 c

p
4 (2pd)! + |h|2p(d−1)

≤ c1 c
p
2 ((pd)!)2 + |h|2p(d−1) ≤ c3 c

p
4 ((pd)!)2 (1 + |h|2p(d−1))

≤ c1 c
p
2 ((pd)!)2 (1 + |h|)2p(d−1).

Thus,

(
E
[
L2p(d−1)

]) 1
2 ≤

(
c1 c

p
2 ((pd)!)2 (1 + |h|)2p(d−1)

) 1
2

≤ c1 c
p
2 (pd)! (1 + |h|)p(d−1).

(3.49)
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On the other hand, we have that

E
[
D(λ)(L)r

]
=
∞∑
i=0

E
[
D(λ)(L)r 1(i ≤ L < i+ 1)

]
≤

∞∑
i=0

E
[
D(λ)(i+ 1)r 1(L ≥ i)

]
≤

∞∑
i=0

(
E
[
D(λ)(i+ 1)2r

]) 1
2 P(L > i)

1
2 ,

(3.50)

for all r ∈ N, by using the Cauchy-Schwarz inequality in the last step. Using Theorem

3.2.4 and (2.6) leads to

E
[
D(λ)(i+ 1)2r

]
= 2r

∞∫
0

P(D(λ)(i+ 1) > t) t2r−1dt

≤ 2r c1 (i+ 1)2(d−1)

∞∫
0

exp

(
− t

c2

)
t2r−1 dt

= c1 c
r
2 (i+ 1)2(d−1) (2r)!

≤ c1 c
r
2 (i+ 1)2(d−1) (r!)2.

Combining this with (3.36) and the fact that
√
a+ b ≤

√
a +
√
b, for all a, b ≥ 0, it

follows from (3.50) that

E
[
D(λ)(L)r

]
≤

∞∑
i=0

c1 c
r
2 (i+ 1)d−1 r!

(
c3 exp

(
− i

c4

)
+ 1(i ≤ |h|)

) 1
2

≤ c1 c
r
2 r!

(
∞∑
i=0

(i+ 1)d−1 exp

(
− i

c3

)
+
∞∑
i=0

(i+ 1)d−1 1(i ≤ |h|)

)
≤ c1 c

r
2 r! (1 + |h|)d,

since the first sum is bounded by a constant only depending on d, and for the second

one we have that

∞∑
i=0

(i+ 1)d−1 1(i ≤ |h|) ≤ (1 + |h|)d−1

∞∑
i=0

1(i ≤ |h|) ≤ (1 + |h|)d.
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Again, by (2.6), this shows that

(
E
[
D(λ)(L)2pi

]) 1
2 ≤

(
c1 c

p
2 (2pi)! (1 + |h|)d

) 1
2 ≤ c3 c

p
4 (pi)! (1 + |h|)d. (3.51)

Summarizing, we conclude from (3.48), (3.49) and (3.51) the bound

E
∣∣ξ(λ)((o, h),P(λ))

∣∣p ≤ c1 c
p
2 (p!)i (pd)! (1 + |h|)p(d−1)+d.

In the next step, we improve this by an exponential term. Namely, if the point (o, h)

does not belong to the extreme points of P(λ), the functional ξ(λ), evaluated at this

point, is automatically equal to 0. This means that we can condition on this event

without changing the value of the expression. By Corollary 3.2.3 and the Cauchy-

Schwarz inequality, this leads to

E
∣∣ξ(λ)((o, h),P(λ))

∣∣p = E
∣∣ξ(λ)((o, h),P(λ)) 1((o, h) ∈ ext(P(λ)))

∣∣p
≤
(
c1 c

p
2 (2pd)! ((2p)!)i (1 + |h|)2p(d−1)+d

) 1
2

(
exp

(
−e

h∨0

c3

)) 1
2

≤ c1 c
p
2 (pd)! (p!)i (1 + |h|)p(d−1)+d exp

(
−e

h∨0

c3

)
,

where we used (2.6) in the last step. This completes the proof of (i) for the intrinsic

volume functionals ξVi , since u[ξVi ] = i and v[ξVi ] = 1, where we recall their definitions

at the beginning of this section.

Proof of Proposition 3.2.12 (i) for ξ = ξfj . Next, we turn to the j-face functional ξ =

ξfj with j ∈ {0, . . . , d − 1}. Because of rotational invariance, it is again enough to

prove the assertion for the point (o, h) with h ∈ (−∞, Rβ
λ]. Let N (λ) be the number of

extreme points of P(λ) contained in the cylinder Cd−1(o, L), where L is the radius of

localization of ξ(λ), evaluated at (o, h). If j = 0, then, ξf0 ≤ 1 and, hence,

E
∣∣ξ(λ)
f0

(x,P(λ))
∣∣p ≤ 1, (3.52)

for all p ∈ N. Therefore, it remains to consider the case that j ∈ {1, . . . , d− 1}.
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We have that

ξ(λ)((o, h),P(λ)) ≤ 1

j + 1

(
N (λ)

j

)
≤ (N (λ))j,

and, hence, it follows that

E|ξ(λ)((o, h),P(λ))|p ≤ E[(N (λ))pj].

Thus, it is enough to find a bound for E[(N (λ))pj]. Writing once more νλ for the

intensity measure of the rescaled Poisson point process P(λ), we observe that in view

of (3.10), we have for sufficiently large λ, r ∈ [0, πR
β
2
λ ] and ` ∈ (−∞, Rβ

λ] that

νλ(Cd−1(o, r) ∩ (−∞, `)) ≤ c rd−1 (e` ∨ 1), (3.53)

slightly different from [23, Equation (4.18)]. Indeed, to verify this inequality, we notice

first that for all such r, ` and sufficiently large λ, we get by using the density function

in (3.10) that there is an absolute constant C ∈ (−∞, 1) such that

νλ(Cd−1(o, r) ∩ (−∞, `))

=

∫
Cd−1(o,r)∩(−∞,`)

sind−2(R
−β

2
λ ‖v‖)

‖R−
β
2

λ v‖d−2

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

× exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)(
1− h

Rβ
λ

)d−1+α

dvdh

≤ c

∫
Cd−1(o,r)∩(−∞,`)

eh
(

1− h

R2
λ

)d−1+α

dvdh

= c

`∫
−∞

eh

(
1− h

Rβ
λ

)d−1+α

dh

∫
Bd−1(o,r)

dv

= c rd−1

`∫
−∞

eh

(
1− h

Rβ
λ

)d−1+α

dh,

where we used for the inequality that the fractions involving the sine term and the

critical radius Rλ are bounded from above by 1 and a constant C ∈ (0,∞), respectively.
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Applying the fact that (
1− h

Rβ
λ

)
≤ (−(h− 1) ∨ 1),

for all h ∈ (−∞, Rβ
λ], whenever Rλ ≥ 1, yields that

`∫
−∞

eh

(
1− h

Rβ
λ

)d−1+α

dh ≤
`∫

−∞

eh (−(h− 1) ∨ 1)d−1+α dh

=

0∫
−∞

eh (−(h− 1))d−1+α dh+

`∫
0

eh dh

=

∞∫
0

e−h (1 + h)d−1+α dh+

`∫
0

eh dh

≤ cΓ(d− 1 + α) + e`

≤ c (e` ∨ 1).

Combining the last two calculations shows the bound claimed in (3.53).

Thus, writing Po(α) for a Poisson distributed random variable with mean α > 0 and

recalling the definition of the random variable H from the paragraph at the beginning

of Section 3.2.1, we get that, for sufficiently large λ,

E[(N (λ))pj] ≤ E|P(λ) ∩ (Cd−1(o, L) ∩ (−∞, H))|pj

≤
∞∑
i=0

∞∑
m=h

E[Po(νλ(Cd−1(o, i+ 1) ∩ (−∞,m+ 1)))pj

× 1(i ≤ L < i+ 1,m ≤ H < m+ 1)]

≤
∞∑
i=0

∞∑
m=h

E[Po(c (i+ 1)d−1 (em+1 ∨ 1))pj 1(L ≥ i,H ≥ m)].

(Here and below, h has to be interpreted as the integer bhc, but we refrain from such

a notation for simplicity. Moreover, from now on we interpret sums like
∑0

i=h ai as 0,

if h > 0.)
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The moments of Po(α) are given by the so-called Touchard polynomials. More precisely,

E[Po(α)k] =
k∑
i=1

αi

{
k

i

}
,

where

{
k

i

}
denotes the Stirling number of second kind (see [129]). Since

k∑
i=1

{
k

i

}
=

∑
L1,...,Lp�JkK

1 ≤ k!, (3.54)

we have that

E[Po(α)k] ≤ αk
k∑
i=1

{
k

i

}
1(α ≥ 1) +

k∑
i=1

{
k

i

}
1(α < 1) ≤ αk k! + k!. (3.55)

In the last step we used that the number of unordered partitions of {1, . . . , k} is known

as the k-th Bell number, which can be optimally bounded of order k! (see [34]).

Now, Hölder’s inequality, (3.55), (3.53), (2.6) and the fact that (a+ b)
1
3 ≤ a

1
3 + b

1
3 , for

a, b ≥ 0, imply that

E[(N (λ))pj]

≤
∞∑
i=0

∞∑
m=h

(E[Po(c (i+ 1)d−1 (em+1 ∨ 1))3pj])
1
3 P(L ≥ i)

1
3 P(H ≥ m)

1
3

≤ c1 c
p
2

∞∑
i=0

∞∑
m=h

((3pj)! (i+ 1)3p(d−1)j (em+1 ∨ 1)3pj + (3pj)!)
1
3

× P(L ≥ i)
1
3 P(H ≥ m)

1
3

≤ c1 c
p
2

∞∑
i=0

∞∑
m=h

(pj)! (i+ 1)p(d−1)j (em+1 ∨ 1)pj P(L ≥ i)
1
3 P(H ≥ m)

1
3

+ c3 c
p
4

∞∑
i=0

∞∑
m=h

(pj)!P(L ≥ i)
1
3 P(H ≥ m)

1
3

=: T1 + T2.

We bound both terms T1 and T2 separately.
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For T2, we get by splitting the summation over i into i ≤ |h| and i > |h|, and by using

(3.35), that it equals

c1 c
p
2 (pj)!

|h|∑
i=0

P(L ≥ i)
1
3︸ ︷︷ ︸

≤1

∞∑
m=h

P(H ≥ m)
1
3

+ c3 c
p
4 (pj)!

∞∑
i=|h|

P(L ≥ i)
1
3

∞∑
m=h

P(H ≥ m)
1
3

≤ c1 c
p
2 (pj)!

|h|∑
i=0

∞∑
m=h

P(H ≥ m)
1
3 + c3 c

p
4 (pj)!

∞∑
i=|h|

exp(−c5i
2)
∞∑
m=h

P(H ≥ m)
1
3

≤ c1 c
p
2 (pj)! |h| (|h|+ c3) + c4 c

p
5 (pj)! (|h|+ c6)

≤ c1 c
p
2 (pj)! (1 + |h|)2,

since, by (3.34),

∞∑
m=h

P(H ≥ m)
1
3 =

0∑
m=h

P(H ≥ m)
1
3 +

∞∑
m=0

P(H ≥ m)
1
3

≤
0∑

m=h

1 +
∞∑
m=0

c1 exp(−c2e
m)

≤ |h|+ c1.

Now, we turn to T1, where we first notice that

|h|∑
i=0

(i+ 1)p(d−1)j P(L ≥ i)
1
3︸ ︷︷ ︸

≤1

≤
|h|∑
i=0

(1 + |h|)p(d−1)j

≤ |h| (1 + |h|)p(d−1)j

≤ (1 + |h|)p(d−1)j+1.

(3.56)

Using (2.5) with n = pj + 1 in conjunction with (3.34) and the observation that, for

all m ≥ 0,

(em+1 ∨ 1)pj = e(m+1)pj,
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implies that

∞∑
m=0

(em+1 ∨ 1)pj P(H ≥ m)
1
3 = epj

∞∑
m=0

empj P(H ≥ m)
1
3

≤ c1 c
p
2

∞∑
m=0

empj exp

(
−e

m

c3

)
≤ c1 c

p
2 (pj + 1)!

∞∑
m=0

empje−m(pj+1)

≤ c1 c
p
2 (pj + 1)!

∞∑
m=0

e−m

≤ c1 c
p
2 (pj + 1)!,

and

−1∑
m=h

(em+1 ∨ 1)pj︸ ︷︷ ︸
≤1

P(H ≥ m)
1
3︸ ︷︷ ︸

≤1

≤
|h|∑
m=1

1 = |h| ≤ (1 + |h|).

Together with (2.7), this leads to

∞∑
m=h

(em+1 ∨ 1)pj P(H ≥ m)
1
3

=
−1∑
m=h

(em+1 ∨ 1)pj P(H ≥ m)
1
3 +

∞∑
m=0

(em+1 ∨ 1)pj P(H ≥ m)
1
3

≤ (1 + |h|) + c1 c
p
2 (pj + 1)!

≤ c1 c
p
2 (pj)! (1 + |h|).

(3.57)

Moreover, with (3.35), (2.7), (2.5) applied at n = p(d − 1)j + 2 and the fact that

i2 ≥ i+ 1, for all i ≥ 2, we get

∞∑
i=|h|

(i+ 1)p(d−1)j P(L ≥ i)
1
3 ≤ c1 c

p
2 (pdj)!. (3.58)
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Indeed, it holds that

∞∑
i=|h|

(i+ 1)p(d−1)j P(L ≥ i)
1
3 ≤ c1

∞∑
i=|h|

(i+ 1)p(d−1)j exp

(
− i

2

c2

)

≤ c1

∞∑
i=0

(i+ 1)p(d−1)j exp

(
−i+ 1

c2

)
≤ c1 c

p
2 (p(d− 1)j + 2)!

∞∑
i=0

(i+ 1)p(d−1)j−p(d−1)j−2

≤ c1 c
p
2 (p(d− 1)j + 2)!

∞∑
i=0

(i+ 1)−2

= c1 c
p
2 (p(d− 1)j + 2)!

≤ c1 c
p
2 (pdj)!.

Combining (3.56), (3.57) and (3.58), we see that T1 is bounded as follows:

T1 = c1c
p
2

∞∑
i=0

∞∑
m=h

(pj)! (i+ 1)p(d−1)j (em+1 ∨ 1)pj P(L ≥ i)
1
3 P(H ≥ m)

1
3

= c1 c
p
2 (pj)!

|h|∑
i=0

(i+ 1)p(d−1)j P(L ≥ i)
1
3

∞∑
m=h

(em+1 ∨ 1)pj P(H ≥ m)
1
3

+ c3 c
p
4 (pj)!

∞∑
i=|h|

(i+ 1)p(d−1)j P(L ≥ i)
1
3

∞∑
m=h

(em+1 ∨ 1)pj P(H ≥ m)
1
3

≤ c1 c
p
2 (pj)! (1 + |h|)p(d−1)j+1 (pj)! (1 + |h|) + c3 c

p
4 (pj)! (pdj)! (pj)! (1 + |h|)

≤ c1 c
p
2 (pdj)! ((pj)!)2 (1 + |h|)p(d−1)j+2.

Combining the estimates for T1 and T2 yields that

E[(N (λ))pj] ≤ c1 c
p
2 (pdj)! ((pj)!)2 (1 + |h|)p(d−1)j+2 + c3 c

p
4 (pj)! (1 + |h|)2

≤ c1 c
p
2 (pdj)! (p!)2j (1 + |h|)p(d−1)j+d.

(3.59)

In view of (3.52), this bound clearly holds for the functional ξf0 , too. Finally, the

additional exponential term appears in the same way as for the defect intrinsic volume

functionals by conditioning on the event that the point x = (o, h) belongs to the

extreme points of P(λ). This completes the proof of the first part of the theorem.
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Proof of Proposition 3.2.12 (ii). Next, we turn to the second assertion and consider the

defect intrinsic volume functional ξVi , i ∈ {1, . . . , d}, first. With Hölder’s inequality

and (2.6), we get that the expectation is bounded from above by

p∏
j=1

(
E
[
ξ

(λ)
Vi

(
xj,P(λ)

)]2p
) 1

p

≤
p∏
j=1

[
c1 c

p
2 (2pd)! ((2p)!)i (1 + |hj|)2p(d−1)+d exp

(
−e

hj∨0

c3

)] 1
p

≤
p∏
j=1

[
c1 c

p
2 ((pd)!)2 (p!)2i (1 + |hj|)2p(d−1)+d exp

(
−e

hj∨0

c3

)] 1
p

≤ c1 c
p
2 ((pd)!)2 (p!)2i

p∏
j=1

[
(1 + |hj|)2(d−1)+ d

p exp

(
−e

hj∨0

c3 p

)]

≤ c1 c
p
2 ((pd)!)2 (p!)2i

p∏
j=1

[
(1 + |hj|)2(d−1)+d exp

(
−e

hj∨0

c3 p

)]

≤ c1 c
p
2 ((pd)!)2 (p!)2i

p∏
j=1

[
(1 + |hj|)4d exp

(
−e

hj∨0

c3 p

)]
.

The trivial estimate 2(d− 1) + d ≤ 4d implies the last inequality. Finally, we consider

the functional ξfj with j ∈ {0, . . . , d− 1}. Instead of using the bound (3.59), it is more

convenient to work with

E[(N (λ))pj] ≤ c1 c
p
2 (pdj)! ((pj)!)2 (1 + |h|)p(d−1)j+2 + c3 (pj)! (1 + |h|)2

≤ c1 c
p
2 (pdj)! ((pj)!)2 (1 + |h|)pdj,

(3.60)

which holds because of p(d − 1)j + 1 ≤ pdj. Then, a similar computation as for the

intrinsic volume functional completes the proof.

Remark 3.2.14 In the proof of the previous theorem, one could also use the better

estimate 2(d−1) +d ≤ 3d. However, since later we need an exponent from the natural

numbers after taking the square-root, we directly work with the upper bound 4d.

The next clustering lemma is the analogue of [56, Lemma 5.4]. The main difference and

what makes it more complicated is that in view of (3.36), we do not have a localization

property on the whole space for our class of generalized Gamma polytopes. This leads

to an additional indicator function in the bound for the correlation function, which

also makes the analysis later more involved.
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Lemma 3.2.15 Let {S, T} be a non-trivial partition of {1, . . . , k} and ξ ∈ Ξ. Then,

for all x1 = (v1, h1), . . . , xk = (vk, hk) ∈ Wλ and sufficiently large λ, it holds that

|mλ(xS∪T )−mλ(xS)mλ(xT )|

≤ c1 c
k
2 k (k!)u[ξ] (kdv[ξ])!

(
exp(−c3 δ) + 1(δ ≤ 2 max

r∈S∪T
{|hr|})

)
×
∏

r∈S∪T

[
(1 + |hr|)dw[ξ] exp

(
−e

hr∨0

c4 k

)]
,

with k = |S ∪ T |, δ := d(vS,vT ) := mins∈S,t∈T ‖vs − vt‖,

mλ(xS) := E

[∏
s∈S

ξ(λ)

(
xs,P(λ) ∪

⋃
s∈S

{xs}

)]
,

and mλ(xT ) and mλ(xS∪T ) defined similarly.

Corollary 3.2.16 Let ξ(λ) ∈ Ξ(λ), h0 ∈ (−∞, Rβ
λ] and (v1, h1) ∈ Wλ. For all suffi-

ciently large λ, it holds that

|cξ(λ)

((o, h0), (v1, h1),P(λ))| ≤ c1 (1 + |h0|)dw[ξ] (1 + |h1|)dw[ξ] exp

(
− 1

c2

(eh0∨0 + eh1∨0)

)
× (exp(−c3 |v1|) + 1(|v1| ≤ 2 max{|h0|, |h1|})) ,

where cξ
(λ)

((o, h0), (v1, h1),P(λ)) is the second order correlation function from (3.23).

Proof of Lemma 3.2.15. Let us define the random variables

X :=
∏
s∈S

ξ(λ)
(
xs,P(λ) ∪

⋃
j∈S

{xj}
)
, Y :=

∏
t∈T

ξ(λ)
(
xt,P(λ) ∪

⋃
j∈T

{xj}
)
,

W :=
∏

r∈S∪T

ξ(λ)
(
xr,P(λ) ∪

⋃
j∈S∪T

{xj}
)
,

and

Xδ :=
∏
s∈S

ξ(λ)
(
xs,
(
P(λ) ∪

⋃
j∈S

{xj}
)
∩ Cd−1

(
xs,

δ

2

))
,

Yδ :=
∏
t∈T

ξ(λ)
(
xt,
(
P(λ) ∪

⋃
j∈T

{xj}
)
∩ Cd−1

(
xt,

δ

2

))
,
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Wδ :=
∏

r∈S∪T

ξ(λ)
(
xr,
(
P(λ) ∪

⋃
j∈S∪T

{xj}
)
∩ Cd−1

(
xr,

δ

2

))
.

For s ∈ S and t ∈ T , the cylinder Cd−1

(
xs,

δ
2

)
and Cd−1

(
xt,

δ
2

)
have empty intersection

by definition of δ. As a consequence of the independence of Xδ and Yδ, we get

mλ(xS∪T )−mλ(xS)mλ(xT )

= E[W ]− E[X]E[Y ]

= E[Wδ]− E[Xδ]E[Yδ] + E[W −Wδ]

− E[Xδ]E[Y − Yδ]− E[Y ]E[X −Xδ]

= E[W −Wδ]− E[Xδ]E[Y − Yδ]− E[Y ]E[X −Xδ].

(3.61)

Now, observe that Theorem 3.2.12 implies the estimates

E|Xδ| ≤ c1 c
k
2 (|S|!)u[ξ] (|S|dv[ξ])!

∏
s∈S

[
(1 + |hs|)dw[ξ] exp

(
−e

hs∨0

c3 k

)]
,

and

E|Y | ≤ c1 c
k
2 (|T |!)u[ξ] (|T |dv[ξ])!

∏
t∈T

[
(1 + |ht|)dw[ξ] exp

(
−e

ht∨0

c3 k

)]
,

where we also used that |S|, |T | ≤ k. Next, let NS be the event that at least one xs,

s ∈ S, has a radius of localization bigger than or equal to δ
2
. On the complement

of NS, we have that Xδ = X. Thus, the Cauchy-Schwarz inequality, the fact that
√
a+ b ≤

√
a+
√
b, for all a, b ≥ 0, Theorem 3.2.12 and (3.36) imply that

E|X −Xδ| = E|Xδ 1(NS)| ≤ (E[X2
δ ])

1
2 (P(NS))

1
2

≤

(
c1 c

k
2 (|S|!)2u[ξ] ((|S|dv[ξ])!)2

∏
s∈S

[
(1 + |hs|)2dw[ξ] exp

(
− e

hs∨0

c3 |S|

)]) 1
2

×
(
c4 |S| (exp (−c5 δ) + 1(δ ≤ 2 max

s∈S
{|hs|}))

) 1
2

≤ c1 c
k
2 (|S|!)u[ξ] (|S|dv[ξ])! k

(
exp (−c3 δ) + 1(δ ≤ 2 max

r∈S∪T
{|hr|})

)
×
∏
s∈S

[
(1 + |hs|)dw[ξ] exp

(
−e

hs∨0

c4 k

)]
,
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since

1(δ ≤ 2 max
s∈S
{|hs|}) ≤ 1(δ ≤ 2 max

r∈S∪T
{|hr|}) and |S| ≤ k.

Moreover, from (2.8), we have that

(|S|dv[ξ])! (|T |dv[ξ])! ≤ (kdv[ξ])! and |T |! |S|! ≤ k!,

which leads to

E|Y |E|X −Xδ| ≤ c1 c
k
2 (k!)u[ξ] (kdv[ξ])! k

(
exp (−c3 δ) + 1(δ ≤ 2 max

r∈S∪T
{|hr|})

)
×
∏

r∈S∪T

[
(1 + |hr|)dw[ξ] exp

(
−e

hr∨0

c4 k

)]
,

for sufficiently large λ. Similar estimates hold for E|Xδ|E|Y − Yδ| and E|W − Wδ|.
This completes the proof in view of (3.61).

3.3 Proof of the cumulant bound

This section contains the most technical part of the proof of our main results, that

is, the proof of the cumulant bound, content of Theorem 3.3.1. Before going into the

details, let us briefly describe the main steps. The starting point is the cluster measure

representation of the cumulant measures presented in Lemma 3.1.19. In a first step,

we deal with the diagonal term (see Lemma 3.3.2). By using (3.30), we get that for

this we just need to control the moments of ξ. We have prepared such a bound in the

first part of Theorem 3.2.12.

In a second and considerably more involved step of the proof, we deal with the off-

diagonal term. The cluster measure representation of the cumulant measures presented

in Lemma 3.1.19, the description of spatial correlations from the clustering Lemma

3.2.15, as well as the second part of our moment estimates in Theorem 3.2.12, allow

us to derive a first integral representation for the individual terms (see Lemma 3.3.3).

These integrals are then estimated further, starting with the inner integral (see Lemma

3.3.4). The fact that the geometric functionals ξ ∈ Ξ are not globally localizing, implies

that this estimate has two terms that need to be investigated next (see Lemma 3.3.5 and

Lemma 3.3.6). Combining all bounds, finally, results in a bound for the off-diagonal

term (see Lemma 3.3.7).
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Recall the definition of the weights u[ξ], v[ξ] and w[ξ] from the beginning of the fore-

going section.

Theorem 3.3.1 (Cumulant bound) Let k ∈ {3, 4, . . .}, ξ ∈ Ξ and f ∈ B(Rd). Then,

for sufficiently large λ, it holds that

|〈fkRλ , c
k
λ〉| ≤



c1 c
k
2 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)2d+i+5 : ξ = ξVi , i ∈ {1, . . . , d}

c3 c
k
4 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)d+5 : ξ = ξf0

c5 c
k
6 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)2d+7 : ξ = ξf1

c7 c
k
8 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)4d+7 : ξ = ξf2

c9 c
k
10 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)6d+7 : ξ = ξf3

c11 c
k
12 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)2j(d+1) : ξ = ξfj , j ∈ {4, . . . , d− 1},

where c1, . . . , c12 ∈ (0,∞) are constants only depending on d, ξ, α and β. In a unified

form, this means that

|〈fkRλ , c
k
λ〉| ≤ c1 c

k
2 ‖f‖

k
∞ R

β(d−1)
2

λ (k!)u[ξ]+2dv[ξ]+z[ξ],

for all ξ ∈ Ξ, where

z[ξ] :=



d+ 5 : ξ = ξf0

5 : ξ ∈ {ξV1 , . . . , ξVd , ξf1}

3 : ξ = ξf2

1 : ξ = ξf3

0 : ξ ∈ {ξf4 , . . . ξfd−1
}.

(3.62)

As anticipated above, we start by dealing with the diagonal term. From now on, we

fix k ∈ {3, 4, . . .}.

Lemma 3.3.2 Let ξ ∈ Ξ and f ∈ B(Rd). Then, it holds that∣∣∣∣∣
∫
∆

fkRλ dckλ

∣∣∣∣∣ ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ] ((kdv[ξ])!)2,

for sufficiently large λ.
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Proof. From the definition (3.30) of the cumulant measure, we obtain∫
∆

fkRλ dckλ =
∑

L1,...,Lp�JkK

(−1)(p−1) (p− 1)!

∫
∆

fkRλ d(M
|L1|
λ · · ·M |Lp|

λ ).

Now, property (3.29) of the moment measures implies∫
∆

fkRλ dckλ =
∑

L1,...,Lp�JkK

(−1)(p−1) (p− 1)!

∫
∆

fkRλ(x) mλ(xL1) · · ·mλ(xLp) d̃[λφα,β](x),

with mλ(xLi) as before. Since we integrate over the diagonal ∆, the vector x is of the

form (x, . . . , x), for some x ∈ Rd. Now, because there is just one way to partition such

a vector, namely, into one complete block, we can only have p = 1 in the above sum.

Therefore, we get with the definition of the singular differentials in (3.27) that∣∣∣∣∣
∫
∆

fkRλ dckλ

∣∣∣∣∣ ≤
∫
∆

|fkRλ(x)| |mλ(xL1)| d̄[λφα,β](x)

≤ ||f ||k∞
∫
∆

|mλ(xL1)| d̄[λφα,β](x)

= ||f ||k∞
∫
Rd

|mλ(x, . . . , x)|λφα,β(x) dx

≤ ‖f‖k∞
∫
Rd

E
∣∣ξ(x,Pλ)∣∣k λφα,β(x) dx.

By rotational invariance of the Poisson point process Pλ, we have that

E
∣∣ξ(x,Pλ)∣∣k = E

∣∣ξ(λ)((o, h),P(λ))
∣∣k,

where h is defined by ‖x‖ = Rλ(1 − h/Rβ
λ) in view of the scaling transformation Tλ.

Writing u = x/‖x‖, we can rewrite dx as

dx =

[
Rλ

(
1− h

Rβ
λ

)]d−1

R
−(β−1)
λ dhHd−1

Sd−1(du).

For the latter step, we also refer to (3.12).
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Since

d+ α− β +
β(d+ 1)− 2d− 2α

2
=

2d+ 2α− 2β + βd+ β − 2d− 2α

2
=
β(d− 1)

2
,

the above integral is bounded by

‖f‖k∞R
β(d−1)

2
λ

∫
Sd−1

Rβλ∫
−∞

E
∣∣ξ(λ)

(
(o, h),P(λ)

)∣∣k φλ(u, h)

(
1− h

Rβ
λ

)d−1+α

dhHd−1
Sd−1(du),

with

φλ(u, h) :=
(β log λ)

β(d+1)−2d−2α
2β

R
β(d+1)−2d−2α

2
λ

exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
, (3.63)

where C ∈ (−∞, 1), see also the proof of formula (3.10) for further details. For

sufficiently large λ, φλ(u, h) is bounded from above by a constant times eh, for all

h ∈ R and u ∈ Sd−1. Furthermore, from Theorem 3.2.12 (i), we deduce that

E
∣∣ξ(λ)((o, h),P(λ))

∣∣k ≤ c1 c
k
2 (k!)u[ξ] (kdv[ξ])! (1 + |h|)k(d−1)v[ξ]+d exp

(
−e

h∨0

c3

)
.

Thus, the integral we started with is bounded by

c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ] (kdv[ξ])!

∫
Sd−1

Rβλ∫
−∞

(1 + |h|)k(d−1)v[ξ]+d exp

(
−e

h∨0

c3

)

× eh
(

1− h

Rβ
λ

)d−1+α

dhHd−1
Sd−1(du).

We decompose the inner integral into

0∫
−∞

(1 + |h|)k(d−1)v[ξ]+d exp

(
−e

h∨0

c1

)
eh

(
1− h

Rβ
λ

)d−1+α

dh

+

Rβλ∫
0

(1 + |h|)k(d−1)v[ξ]+d exp

(
−e

h∨0

c2

)
eh

(
1− h

Rβ
λ

)d−1+α

dh =: T3 + T4,

which will be treated separately.
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By using that Rβ
λ ≥ 1, for sufficiently large λ, and the inequality

k(d− 1)v[ξ] + d+ (d− 1 + α) ≤ kdv[ξ] + 2d+ α,

we obtain that

T3 =

0∫
−∞

(1 + |h|)k(d−1)v[ξ]+d exp

(
−e

h∨0

c1

)
︸ ︷︷ ︸

≤1

eh

(
1− h

Rβ
λ

)d−1+α

dh

≤
0∫

−∞

(1 + |h|)k(d−1)v[ξ]+d eh

(
1− h

Rβ
λ

)d−1+α

dh

=

∞∫
0

(1 + h)k(d−1)v[ξ]+d e−h

(
1 +

h

Rβ
λ

)d−1+α

dh

≤
∞∫

0

(1 + h)kdv[ξ]+2d+α e−h dh

≤ c1 (kdv[ξ] + 2d+ dαe)!

≤ c1 c
k
2 (kdv[ξ])!,

where we used (2.7) in the last step.

To bound the term T4, we apply (2.5) with n = 2 and (2.7) to achieve that

T4 =

Rβλ∫
0

(1 + |h|)k(d−1)v[ξ]+d exp

(
−e

h

c

)
eh

(
1− h

Rβ
λ

)d−1+α

︸ ︷︷ ︸
≤1

dh

≤

Rβλ∫
0

(1 + h)kdv[ξ]+d 2c2

e2h
eh dh

≤ c1

∞∫
0

(1 + h)kdv[ξ]+d e−h dh

≤ c1 (kdv[ξ] + d)!

≤ c1 c
k
2 (kdv[ξ])!.
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Putting together the bounds for T3 and T4, and using (2.3), implies that∣∣∣∣∣
∫
∆

fkRλ dckλ

∣∣∣∣∣ ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (k)u[ξ] (kdv[ξ])! (kdv[ξ])!

∫
Sd−1

Hd−1
Sd−1(du)

≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ] ((kdv[ξ])!)2,

and, thus, proves the claim.

An upper bound for the off-diagonal term in (3.32) is derived along the following four

lemmas.

Lemma 3.3.3 Let ξ ∈ Ξ and f ∈ B(Rd). Then, we have that for sufficiently large λ,∣∣∣∣∣ ∑
S,T �JkK

∫
σ({S,T})

fkRλ dckλ

∣∣∣∣∣
≤ c1 c

k
2 ‖f‖k∞R

β(d−1)
2

λ k k! (k!)u[ξ] (kdv[ξ])!

×
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

∫
(Rd−1)p−1

(
exp(−c3 δ(o,v)) + 1(δ(o,v) ≤ 2 max

i=1,...,p
{|hi|})

)

×
p∏
i=1

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c4 k

)
ehi

(
1− hi

Rβ
λ

)d−1
 dvdh1 . . . dhpHd−1

Sd−1(du),

where v := (v2, . . . , vp).

Proof. The definition of the cluster measures and the description of the densities of the

moment measures, explained in Section 3.1.5, imply that for a fixed and non-trivial

partition {S, T} of {1, . . . , k} and for fixed S ′, T ′, K1, . . . , Ks as in Lemma 3.1.19, it

holds that ∫
δ({S,T})

fkRλ d(US
′
,T
′

λ ⊗M |K1|
λ ⊗ . . .⊗M |Ks|

λ )

=

∫
δ({S,T})

fkRλ(x) (mλ(xS′∪T ′ )−mλ(xS′ )mλ(xT ′ ))

×mλ(xK1) . . .mλ(xKs) d̃[λφα,β](x).

(3.64)
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In what follows, we use the parametrization Tλ(xi) = (vi, hi), for all i ∈ {1, . . . , k}.
Using this notation, Lemma 3.2.15 shows that

|mλ(xS′∪T ′ )−mλ(xS′ )mλ(xT ′ )|

≤ c1 c
k
2 k (|S ′ ∪ T ′|!)u[ξ] (|S ′ ∪ T ′ |dv[ξ])!

×
(

exp(−c3 d(vS′ ,vT ′ )) + 1(d(vS′ ,vT ′ ) ≤ 2 max
r∈S′∪T ′

{|hr|})
)

×
∏

r∈S′∪T ′

[
(1 + |hr|)dw[ξ] exp

(
−e

hr∨0

c4 k

)]
.

Furthermore, for all i ∈ {1, . . . , s}, Theorem 3.2.12 (ii) delivers the bound

|mλ(xKi)| ≤ c1 c
k
2 (|Ki|!)u[ξ] (|Ki|dv[ξ])!

∏
i∈Ki

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c3 k

)]
,

since |Ki| ≤ k. Now, we notice that d(vS′ ,vT ′) ≥ d(vS,vT ). Together with the

observation that

max
r∈S′∪T ′

{|hr|} ≤ max
i=1,...,k

{|hi|},

this yields that

exp(−c d(vS′ ,vT ′ )) + 1(d(vS′ ,vT ′ ) ≤ 2 max
r∈S′∪T ′

{|hr|})

≤ exp(−c d(vS,vT )) + 1(d(vS,vT ) ≤ 2 max
i=1,...,k

{|hi|}),

which in turn implies that

| (mλ(xS′∪T ′ )−mλ(xS′ )mλ(xT ′ ))mλ(xK1) · · ·mλ(xKs)|

≤ c1 c
k
2 k
[
(|S ′ ∪ T ′|)! (|K1|)! · · · (|Ks|)!

]u[ξ]

(|S ′ ∪ T ′ |dv[ξ])!(|K1|dv[ξ])! · · · (|Ks|dv[ξ])!

×
(

exp(−c3 d(vS,vT )) + 1(d(vS,vT ) ≤ 2 max
i=1,...,k

{|hi|})
)

×
k∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c4 k

)]
.
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Now, we use the estimate (2.8) to achieve that

(|S ′ ∪ T ′ |dv[ξ])! (|K1|dv[ξ])! · · · (|Ks|dv[ξ])! ≤ (kdv[ξ])!,

and

(|S ′ ∪ T ′|)! (|K1|)! · · · (|Ks|)! ≤ (k)!.

Thus, it follows that

| (mλ(xS′∪T ′ )−mλ(xS′ )mλ(xT ′ ))mλ(xK1) · · ·mλ(xKs)|

≤ c1 c
k
2 k (k!)u[ξ] (kdv[ξ])!

(
exp(−c3 d(vS,vT )) + 1(d(vS,vT ) ≤ 2 max

i=1,...,k
{|hi|})

)
×

k∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c4 k

)]
.

Recalling Lemma 3.1.19 and (3.33), summing (3.64) over all S ′, T ′, K1, . . . , Ks � JkK
and observing that d(vS,vT ) = δ(x), whenever we are integrating over δ({S, T}), we

get that∣∣∣∣∣
∫

δ({S,T})

fkRλ dckλ

∣∣∣∣∣ ≤ c1 c
k
2 ‖f‖k∞ k k! (k!)u[ξ] (kdv[ξ])!

×
∫

δ({S,T})

(
exp(−c3 δ(x)) + 1(δ(x) ≤ 2 max

i=1,...,k
{|hi|})

)

×
k∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c4 k

)]
d̃[λφα,β](x).

Finally, this leads to∣∣∣∣∣ ∑
S,T �JkK

∫
δ({S,T})

fkRλ dckλ

∣∣∣∣∣ ≤ c1 c
k
2 ‖f‖k∞ k k! (k!)u[ξ] (kdv[ξ])!

×
∫

(Rd)k

(
exp(−c3 δ(x)) + 1(δ(x) ≤ 2 max

i=1,...,k
{|hi|})

)

×
k∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c4 k

)]
d̃[λφα,β](x).
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In the next step, a bound for the integral over (Rd)k is derived. We can assume without

loss of generality that, after a suitable rotation of the underlying point process, the

point x1 is mapped to (o, h1) ∈ Wλ under the scaling transformation Tλ. Here, the

height coordinate h1 is determined by ‖x1‖ = Rλ(1−h1/R
β
λ), as in the previous lemma.

Together with the definition of the singular differential d̃[λφα,β](x), we conclude that∫
(Rd)k

(
exp(−c1 δ(x)) + 1(δ(x) ≤ 2 max

i=1,...,k
{|hi|})

)

×
k∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c2 k

)]
d̃[λφα,β](x)

=
∑

L1,...,Lp�JkK

∫
(Rd)k

(
exp(−c1 δ(x)) + 1(δ(x) ≤ 2 max

i=1,...,k
{|hi|})

)

×
k∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c2 k

)]
d̄[λφα,β](xL1) . . . d̄[λφα,β](xLp)

=
∑

L1,...,Lp�JkK

λp
∫

(Rd)p

(
exp(−c1 δ(o, v2, . . . , vp)) + 1(δ(o, v2, . . . , vp) ≤ 2 max

i=1,...,p
{|hi|})

)

×
p∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c2 k

)]
φα,β(x1) . . . φα,β(xp) dx1 . . . dxp.

Now, we re-parameterize as in the proof of Lemma 3.3.2 and notice that the differential

elements transform into

λφα,β(x1) dx1 = R
β(d−1)

2
λ φλ(u, h1)

(
1− h1

Rβ
λ

)d−1+α

dh1Hd−1
Sd−1(du),

and, for i ∈ {2, . . . , p},

λφα,β(xi) dxi =
sind−2(R

−β
2

λ ‖vi‖)

‖R−
β
2

λ vi‖d−2

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

× exp

(
hi −

h2
i

2Rβ
λ

(β − 1)(1− Ci)β−2

)(
1− hi

Rβ
λ

)d−1−α

dvidhi

=
sind−2(R

−β/2
λ ‖vi‖)

‖R−β/2λ vi‖d−2
φλ(u, hi)

(
1− hi

Rβ
λ

)d−1+α

dvidhi,

where Ci ∈ (−∞, 1) and φλ(u, hi) is defined at (3.63).
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The fractions involving the sine term are bounded from above by 1. Moreover, we have

that φλ(u, hi) ≤ c ehi , for all i ∈ {1, . . . , p} and sufficiently large λ, as in the proof of

Lemma 3.3.2. This implies that

λp φα,β(x1) . . . φα,β(xp) dx1 . . . dxp

≤ cpR
β(d−1)

2
λ

p∏
i=1

ehi (1− hi

Rβ
λ

)d−1+α
 dh1 . . . dhpdv2 . . . dvpHd−1

Sd−1(du),

and, therefore,

λp
∫

(Rd)p

(
exp(−c1 δ(o, v2, . . . , vp)) + 1(δ(o, v2, . . . , vp) ≤ 2 max

i=1,...,p
{|hi|})

)

×
p∏
i=1

[
(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c2 k

)]
φα,β(x1) . . . φα,β(xp) dx1 . . . dxp

≤ cp1 R
β(d−1)

2
λ

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

∫
Tλ(Sd−1)

. . .

∫
Tλ(Sd−1)

×
(

exp(−c2 δ(o, v2, . . . , vp)) + 1(δ(o, v2, . . . , vp) ≤ 2 max
i=1,...,p

{|hi|})
)

×
p∏
i=1

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c3 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α


× dv2 . . . dvpdh1 . . . dhpHd−1
Sd−1(du)

≤ cp1 R
β(d−1)

2
λ

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

∫
(Rd)p−1

(
exp(−c2 δ(o,v)) + 1(δ(o,v) ≤ 2 max

i=1,...,p
{|hi|})

)

×
p∏
i=1

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c3 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dvdh1 . . . dhpHd−1

Sd−1(du),

with v := (v2, . . . , vp). This yields the desired result.

The previous lemma shows that we already have separated the crucial factor R
β(d−1)

2
λ .

In the next steps, we appropriately bound the remaining integrals. We start with the

inner integral concerning the integration with respect to the vector v.
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Lemma 3.3.4 In the situation of Lemma 3.3.3, it holds that∫
(Rd)p−1

(
exp(−c1 δ(o,v)) + 1(δ(o,v) ≤ 2 max

i=1,...,p
{|hi|})

)
dv

≤ c2 c
p
3 p

p−2

(
(dp)! +

(
max
i=1,...,p

{|hi|}
)(d−1)(p−1)

)
.

Proof. We divide the proof into two parts. First, we consider the integral regarding to

the exponential function. By using that

∞∫
δ(o,v)

exp(−c t) dt =
1

c
exp(−c δ(o,v)),

together with Fubini‘s theorem, we obtain

∫
(Rd)p−1

exp(−c δ(o,v)) dv = c

∫
(Rd)p−1

∞∫
δ(o,v)

exp(−c t) dtdv

= c

∞∫
0

∫
{δ(o,v)<t}

dv exp(−c t) dt.

Now, suppose that δ(o,v) < t. Then, there is no partition {S, T} of {o,v} such that

the corresponding separation d(vS,vT ) is bigger than t. This implies that there exists

a tree T on {1, . . . , p} such that all adjacent vertices vi, vj in T satisfy ‖vi − vj‖ < t.

We indicate this property by writing (o,v) � (t, T ). Thus, we have that∫
{δ(o,v)<t}

dv ≤
∑
T

∫
(o,v)�(t,T )

dv

=
∑
T

vol(p−1)(d−1)

({
v ∈ (Rd−1)p−1

}
: (o,v) � (t, T )

)
,

where the sum ranges over all trees T on the edges {1, . . . , p}. By the geometry of

these trees, it follows that

vol(p−1)(d−1)

({
v ∈ (Rd−1)p−1

}
: (o,v) � (t, T )

)
≤
(
td−1κd−1

)p−1
= t(d−1)(p−1)κp−1

d−1.

Moreover, with Caley’s theorem [4, Page 201] there are exactly pp−2 trees on {1, . . . , p}.
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Thus, ∫
{δ(o,v)<t}

dv ≤ pp−2 κp−1
d−1 t

(d−1)(p−1). (3.65)

This leads to

∫
(Rd)p−1

exp(−c1 δ(o,v)) dv ≤ c2 p
p−2 κp−1

d−1

∞∫
0

t(d−1)(p−1) exp(−c3 t) dt

≤ c1 c
p
2 κ

p−1
d−1 p

p−2 (dp)!.

For the second part of the integral, again by (3.65), we have∫
(Rd)p−1

1(δ(o,v) ≤ 2 max
i=1,...,p

{|hi|}) dv =

∫
{δ(o,v)≤2 max

i=1,...,p
{|hi|}}

dv

≤ pp−2 κp−1
d−1

(
2 max
i=1,...,p

{|hi|}
)(d−1)(p−1)

≤ cp1 p
p−2 κp−1

d−1

(
max
i=1,...,p

{|hi|}
)(d−1)(p−1)

.

Combining both estimates gives the result.

The two last lemmas show that we are left with the bound∣∣∣∣ ∑
S,T �JkK

∫
δ({S,T})

fkRλ dckλ

∣∣∣∣ ≤ T5 + T6, (3.66)

where the terms T5 and T6 are given by

T5 :=c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ k k! (dk)! (k!)u[ξ] (kdv[ξ])! kk−2
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

×
p∏
i=1

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c3 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dh1 . . . dhpHd−1

Sd−1(du),
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and

T6 :=c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ k k! (k!)u[ξ] (kdv[ξ])! kk−2

×
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

(
max
i=1,...,p

{|hi|}
)(d−1)(p−1)

×
p∏
i=1

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c3 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dh1 . . . dhpHd−1

Sd−1(du),

respectively. Here, we used in several places that p ≤ k.

Lemma 3.3.5 For T5, we have that

|T5| ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k.

Proof. We start with the integral concerning the coordinate h1. Similarly to the com-

putations performed in the proof of Lemma 3.3.2, and by using (2.5) with n = 2, we

see that

Rβλ∫
−∞

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c1 k

)
eh1

(
1− h1

Rβ
λ

)d−1+α

dh1

=

0∫
−∞

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c1 k

)
︸ ︷︷ ︸

≤1

eh1

(
1− h1

Rβ
λ

)d−1+α

dh1

+

Rβλ∫
0

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c2 k

)
eh1

(
1− h1

Rβ
λ

)d−1+α

︸ ︷︷ ︸
≤1

dh1

≤
0∫

−∞

(1 + |h1|)dw[ξ] eh1

(
1− h1

Rβ
λ

)d−1+α

dh1

+

Rβλ∫
0

(1 + h1)dw[ξ] exp

(
− e

h1

c1 k

)
eh1dh1

≤
∞∫

0

(1 + h1)dw[ξ]+d−1+α e−h1dh1 +

∞∫
0

(1 + h1)dw[ξ] 2 c2
1 k

2

e2h1
eh1dh1
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=

∞∫
0

(1 + h1)dw[ξ]+d−1+α e−h1dh1 + c1 k
2

∞∫
0

(1 + h1)dw[ξ] e−h1dh1

≤ c1 (dw[ξ] + d+ dαe)! + c2 k
2 (dw[ξ] + 1)!

= c1 + c2 k
2 ≤ c3 k

2.

Now, we have p− 1 further height coordinates h2, . . . , hp. The last computation shows

that, up to constants, we get an additional factor k2 for each of these integrals. Thus,

the integration with respect to all height coordinates is bounded by a constant times

k2p. In view of the definition of T5 and by (3.54), this leads to

|T5| ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ k k! (dk)! (k!)u[ξ] (kdv[ξ])! kk−2 k2p
∑

L1,...,Lp�JkK

1

≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! kk−1 k2k

≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k.

This completes the proof.

Lemma 3.3.6 For T6, we have that

|T6| ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k.

Proof. As in the proof of Lemma 3.3.5, we start with the integral with respect to the

variable h1. Putting a := max{|h2|, . . . , |hp|}, we can rewrite this integral as

Rβλ∫
−∞

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c1 k

)
eh1

(
1− h1

Rβ
λ

)d−1+α

(max{|h1| , . . . , |hp|})(d−1)(p−1) dh1

=

0∫
−∞

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c1 k

)
︸ ︷︷ ︸

≤1

eh1

(
1− h1

Rβ
λ

)d−1+α

(max{|h1| , a})(d−1)(p−1) dh1

+

Rβλ∫
0

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c2 k

)
eh1

(
1− h1

Rβ
λ

)d−1+α

︸ ︷︷ ︸
≤1

(max{|h1| , a})(d−1)(p−1) dh1

139



3.3. PROOF OF THE CUMULANT BOUND

≤
0∫

−∞

(1 + |h1|)dw[ξ] eh1

(
1− h1

Rβ
λ

)d−1+α

(max{|h1| , a})(d−1)(p−1) dh1

+

Rβλ∫
0

(1 + h1)dw[ξ] exp

(
− e

h1

c1 k

)
eh1 (max{|h1| , a})(d−1)(p−1) dh1

=

∞∫
0

(1 + h1)dw[ξ]+d−1+α e−h1 (max{|h1| , a})(d−1)(p−1) dh1

+

∞∫
0

(1 + h1)dw[ξ] exp

(
− e

h1

c1 k

)
eh1 (max{|h1| , a})(d−1)(p−1) dh1

=: T7 + T8.

Both T7 and T8 will be treated separately. Since

dw[ξ] + (d− 1) + α + (d− 1)(p− 1) = dw[ξ] + (d− 1)p+ α ≤ dw[ξ] + dk + α,

we obtain, together with (2.7), that

T7 =

∞∫
0

(1 + h1)dw[ξ]+d−1+α e−h1 (max{|h1| , a})(d−1)(p−1) dh1

=

a∫
0

(1 + h1)dw[ξ]+d−1+α e−h1a(d−1)(p−1) dh1

+

∞∫
a

(1 + h1)dw[ξ]+d−1+α e−h1h
(d−1)(p−1)
1 dh1

≤ a(d−1)(p−1)

a∫
0

(1 + h1)dw[ξ]+d−1+α e−h1dh1

+

∞∫
a

(1 + h1)dw[ξ]+d−1+α e−h1(1 + h1)(d−1)(p−1) dh1

≤ a(d−1)(p−1)

∞∫
0

(1 + h1)dw[ξ]+d−1+α e−h1dh1 +

∞∫
0

(1 + h1)dw[ξ]+dk+α e−h1dh1

≤ c1 (dw[ξ] + d+ dαe)! a(d−1)(p−1) + c2 (dw[ξ] + dk + dαe)!

≤ c1 a
(d−1)(p−1) + c2 c

k
3 (dk)!.
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Moreover, applying (2.5) with n = 2 in the second, the estimate

dw[ξ] + (d− 1)(p− 1) ≤ dw[ξ] + dk

in the fourth and (2.7) in the last step, we conclude that

T8 =

∞∫
0

(1 + h1)dw[ξ] exp

(
− e

h1

c1 k

)
eh1 (max{|h1| , a})(d−1)(p−1) dh1

≤ c1 k
2

∞∫
0

(1 + h1)dw[ξ] e−h1 (max{|h1| , a})(d−1)(p−1) dh1

= c1 k
2

a∫
0

(1 + h1)dw[ξ] e−h1a(d−1)(p−1) dh1 + c2 k
2

∞∫
a

(1 + h1)dw[ξ] e−h1h
(d−1)(p−1)
1 dh1

≤ c1 k
2 a(d−1)(p−1)

∞∫
0

(1 + h1)dw[ξ] e−h1dh1 + c2 k
2

∞∫
0

(1 + h1)dw[ξ]+dk e−h1dh1

≤ c1 k
2 (dw[ξ])! a(d−1)(p−1) + c2 k

2 (dw[ξ] + dk)!

≤ c1 k
2 a(d−1)(p−1) + c2 c

k
3 k

2 (dk)!.

Combining the two bounds for T7 and T8, we arrive at

Rβλ∫
−∞

(1 + |h1|)dw[ξ] exp

(
−e

h1∨0

c1 k

)
eh1

(
1− h1

Rβ
λ

)d−1+α

(max{|h1| , . . . , |hp|})(d−1)(p−1) dh1

≤ c1 a
(d−1)(p−1) + c2 c

k
3 (dk)! + c4 k

2 a(d−1)(p−1) + c5 c
k
6 k

2 (dk)!

≤ c1 k
2 (max{|h2|, . . . , |hp|})(d−1)(p−1) + c2 c

k
3 k

2 (dk)!.

For the term T6, this implies that

|T6| ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ k! (dk)! (k!)u[ξ] (kdv[ξ])! kk−1 k2
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

×
p∏
i=2

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c3 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dh2 . . . dhpHd−1

Sd−1(du)

+ c4 c
k
5 ‖f‖k∞R

β(d−1)
2

λ k! (k!)u[ξ] (kdv[ξ])! kk−1 k2
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×
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

(
max
i=2,...,p

{|hi|}
)(d−1)(p−1)

×
p∏
i=2

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c6 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dh2 . . . dhpHd−1

Sd−1(du).

The first summand is almost the same as in Lemma 3.3.5. The only difference is that

there are p− 1 further integrals concerning the height coordinates h2, . . . , hp left. Car-

rying out the integrations as above, this yields another factor k2(p−1), up to constants.

Furthermore, by computations similarly to those performed above, we have that

Rβλ∫
−∞

(1 + |h2|)dw[ξ] exp

(
−e

h2∨0

c1 k

)
eh2

(
1− h2

Rβ
λ

)d−1+α

(max{|h2| , . . . , |hp|})(d−1)(p−1) dh2

≤ c1 k
2 (max{|h3|, . . . , |hp|})(d−1)(p−1) + c2 c

k
3 k

2 (dk)!,

giving that |T6| can be upper bounded by

c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k

+ c3 c
k
4 ‖f‖k∞R

β(d−1)
2

λ k! (dk)! (k!)u[ξ] (kdv[ξ])! kk−1 k4
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

×
p∏
i=3

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c5 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dh3 . . . dhpHd−1

Sd−1(du)

+ c6 c
k
7 ‖f‖k∞R

β(d−1)
2

λ k! (k!)u[ξ] (kdv[ξ])! kk−1 k4

×
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

. . .

Rβλ∫
−∞

(
max
i=3,...,p

{|hi|}
)(d−1)(p−1)

×
p∏
i=3

(1 + |hi|)dw[ξ] exp

(
−e

hi∨0

c8 k

)
ehi

(
1− hi

Rβ
λ

)d−1+α
 dh3 . . . dhpHd−1

Sd−1(du).
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Repeating this procedure p− 2 further times yields that |T6| is bounded by

c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k

+ c3 c
k
4 ‖f‖k∞R

β(d−1)
2

λ k! (dk)! (k!)u[ξ] (kdv[ξ])! kk−1 k2(p−1)
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

× (1 + |hp|)dw[ξ] exp

(
−e

hp∨0

c5 k

)
ehp

(
1− hp

Rβ
λ

)d−1+α

dhpHd−1
Sd−1(du)

+ c6 c
k
7 ‖f‖k∞R

β(d−1)
2

λ k! (k!)u[ξ] (kdv[ξ])! kk−1 k2(p−1)
∑

L1,...,Lp�JkK

∫
Sd−1

Rβλ∫
−∞

|hp|(d−1)(p−1)

× (1 + |hp|)dw[ξ] exp

(
−e

hp∨0

c8 k

)
ehp

(
1− hp

Rβ
λ

)d−1+α

dhpHd−1
Sd−1(du).

The integral concerning hp in the second summand is bounded by a constant times k2,

as we have already seen in Lemma 3.3.5. For the third summand, it follows by similar

reasoning as above that

Rβλ∫
−∞

(1 + |hp|)dw[ξ] exp

(
−e

hp∨0

c1 k

)
ehp

(
1− hp

Rβ
λ

)d−1+α

|hp|(d−1)(p−1) dhp

=

0∫
−∞

(1 + |hp|)dw[ξ] exp

(
−e

hp∨0

c1 k

)
︸ ︷︷ ︸

≤1

ehp

(
1− hp

Rβ
λ

)d−1+α

|hp|(d−1)(p−1) dhp

+

R2
λ∫

0

(1 + |hp|)dw[ξ] exp

(
−e

hp∨0

c2 k

)
ehp

(
1− hp

Rβ
λ

)d−1+α

︸ ︷︷ ︸
≤1

|hp|(d−1)(p−1) dhp

≤
∞∫

0

(1 + hp)
dw[ξ]e−hp (1 + hp)

d−1+α (1 + hp)
(d−1)(p−1)dhp

+

∞∫
0

(1 + hp)
dw[ξ] exp

(
−e

hp

c k

)
ehp(1 + hp)

(d−1)(p−1)dhp

≤ c1 c
k
2 k

2 (dk)!.

This completes the proof.
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We can now combine the two previous lemmas into a bound for the off-diagonal term,

complementing the diagonal bound in Lemma 3.3.2.

Lemma 3.3.7 Let ξ ∈ Ξ and f ∈ B(Rd). Then, for sufficiently large λ, it holds that∣∣∣∣∣ ∑
S,T �JkK

∫
σ({S,T})

fkRλ dckλ

∣∣∣∣∣ ≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k.

Proof. Recalling (3.66), we have that∣∣∣∣∣ ∑
S,T �JkK

∫
σ({S,T})

fkRλ dckλ

∣∣∣∣∣ ≤ |T5|+ |T6|.

Applying now Lemma 3.3.5 to T5 and Lemma 3.3.6 to T6 yields the desired upper

bound.

What is left is to combine the two estimates for the on- and the off-diagonal term to

complete the proof of the cumulant bound.

Proof of Theorem 3.3.1. From Lemma 3.3.2 and Lemma 3.3.7, we deduce the bound

∣∣〈fkRλ , ckλ〉∣∣ ≤
∣∣∣∣∣
∫
∆

fkRλ dckλ

∣∣∣∣∣+

∣∣∣∣∣ ∑
S,T �JkK

∫
δ({S,T})

fkRλ dckλ

∣∣∣∣∣
≤ c1 c

k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ] ((kdv[ξ])!)2

+ c3 c
k
4 ‖f‖k∞R

β(d−1)
2

λ (dk)! (k!)2 (k!)u[ξ] (kdv[ξ])! k3k

≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ]+2dv[ξ] + c3 c
k
4 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ]+d+5+dv[ξ]

≤ c1 c
k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ]+2dv[ξ]+z[ξ],

for all sufficiently large λ, where we recall the definition of z[ξ] in (3.62). This completes

the proof of the cumulant bound.
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3.4 Main results

3.4.1 Intrinsic volumes and face numbers

Let us start with the expectation and variance asymptotics for the intrinsic volumes and

face numbers of the generalized Gamma polytope Kλ, given by Vi(Kλ), i ∈ {1, . . . , d},
and fj(Kλ), j ∈ {0, . . . , d− 1}, respectively.

To streamline our presentation, following (3.62), we define the individual weights

z[f0] := d+ 5, z[f1] := 5, z[f2] := 3, z[f3] := 1 and z[fj] := 0, if j ∈ {4, . . . , d− 1}.

Theorem 3.4.1 (Expectation and variance asymptotics)

(i) Let i ∈ {1, . . . , d}. Then, it holds that

E[Vi(Kλ)] ∼
(
d

i

)
κd
κd−i

(β log λ)
i
β and var[Vi(Kλ)] ∼ c1 (β log λ)

4i−β(d+3)
2β ,

as λ→∞, where c1 ∈ (0,∞) is a constant only depending on d, i, α and β.

(ii) Let j ∈ {0, . . . , d− 1}. Then, it holds that

E[fj(Kλ)] ∼ c2 (β log λ)
d−1

2 and var[fj(Kλ)] ∼ c3 (β log λ)
d−1

2 ,

as λ→∞, where c2, c3 ∈ (0,∞) are constants only depending on d, j, α and β.

Remark 3.4.2 (a) Let us draw attention to an interesting phenomenon, appearing

in the case that i = d, β = 4 and arbitrary α > −1. Then, the order of

magnitude of the variance of the volume of Kλ is independent of the dimension

d. More formally, it holds that var[Vd(Kλ)] ∼ c1 (4 log λ)−
3
2 , as λ→∞.

(b) Similarly to what has been done in the Gaussian model in [23], one can shift

the results in Theorem 3.4.1 via a ‘coupling’ from our Poissonized model to the

one where the number of underlying random points is deterministic. The same

holds true for the results presented in Theorem 3.4.19 concerning the scaling limit

properties. On the other hand, this is not possible in all other results stated in

Section 3.4.1, since their proofs rely on the cumulant bound established above,

which, unfortunately, cannot be shifted to the deterministic setting by using any

kind of coupling. Therefore, we have decided to refrain from stating these results

separately and to focus on the Poissonized model in this chapter.
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Next, we state a central limit theorem with corresponding Berry-Esseen bound for the

intrinsic volumes and face numbers of Kλ.

Theorem 3.4.3 (Central limit theorems with Berry-Esseen bound)

(i) Let i ∈ {1, . . . , d}. Then, we have that for sufficiently large λ,

sup
y∈R

∣∣∣∣∣P
(
Vi(Kλ)− E[Vi(Kλ)]√

var[Vi(Kλ)]
≤ y

)
− Φ(y)

∣∣∣∣∣ ≤ c1 (log λ)−
d−1

4(4d+2i+9) ,

where c1 ∈ (0,∞) is a constant only depending on d, i, α and β.

(ii) Let j ∈ {0, . . . , d− 1}. Then, we have that for sufficiently large λ,

sup
y∈R

∣∣∣∣∣P
(
fj(Kλ)− E[fj(Kλ)]√

var[fj(Kλ)]
≤ y

)
− Φ(y)

∣∣∣∣∣ ≤ c2 (log λ)
− d−1

4(4j(d+1)+2z[fj ]−1) ,

where c2 ∈ (0,∞) is a constant only depending on d, j, α and β.

Our technique also delivers an estimate for the relative error in the central limit theorem

that was not available before.

Theorem 3.4.4 (Bounds on the relative error in the central limit theorems)

(i) Let i ∈ {1, . . . , d}. Then, we have that for sufficiently large λ,∣∣∣∣∣ log
P
(
Vi(Kλ)− E[Vi(Kλ)] ≥ y

√
var[Vi(Kλ)]

)
1− Φ(y)

∣∣∣∣∣ ≤ c1 (1 + y3) (log λ)
− d−1

4(4d+2i+9) ,

and∣∣∣∣∣ log
P
(

voli(Kλ)− E[voli(Kλ)] ≤ −y
√

var[voli(Kλ)]
)

Φ(−y)

∣∣∣∣∣ ≤ c2 (1 + y3) (log λ)
− d−1

4(4d+2i+9) ,

for all

0 ≤ y ≤ c3 (log λ)
d−1

4(4d+2i+9) ,

where c1, c2, c3 ∈ (0,∞) are constants only depending on d, i, α and β.
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(ii) Let j ∈ {0, . . . , d− 1}. Then, we have that for sufficiently large λ,∣∣∣∣∣ log
P
(
fj(Kλ)− E[fj(Kλ)] ≥ y

√
var[fj(Kλ)]

)
1− Φ(y)

∣∣∣∣∣ ≤ c4 (1 + y3) (log λ)
− d−1

4(4j(d+1)+2z[fj ]−1) ,

and∣∣∣∣∣ log
P
(
fj(Kλ)− E[fj(Kλ)] ≤ −y

√
var[fj(Kλ)]

)
Φ(−y)

∣∣∣∣∣ ≤ c5 (1 + y3) (log λ)
− d−1

4(4j(d+1)+2z[fj ]−1) ,

for all

0 ≤ y ≤ c6(log λ)
d−1

4(4j(d+1)+2z[fj ]−1) ,

where c4, c5, c6 ∈ (0,∞) are constants only depending on d, j, α and β.

The next result contains new and powerful concentration inequalities.

Theorem 3.4.5 (Concentration inequalities)

(i) Let y ≥ 0 and i ∈ {1, . . . , d}. Then, we have that for sufficiently large λ,

P
(
|Vi(Kλ)− E[Vi(Kλ)]| ≥ y

√
var[Vi(Kλ)]

)
≤ 2 exp

(
− 1

4
min

{ y2

22d+i+5
, c1 (log λ)

d−1
4(2d+i+5) y

1
2d+i+5

})
,

where c1 ∈ (0,∞) is a constant only depending on d, i, α and β.

(ii) Let y ≥ 0 and j ∈ {0, . . . , d− 1}. Then, we have that for sufficiently large λ,

P
(
|fj(Kλ)− E[fj(Kλ)]| ≥ y

√
var[fj(Kλ)]

)
≤ 2 exp

(
− 1

4
min

{ y2

22j(d+1)+z[fj ]
, c2 (log λ)

d−1
4(2j(d+1)+z[fj ]) y

1
2j(d+1)+z[fj ]

})
,

where c2 ∈ (0,∞) is a constant only depending on d, j, α and β.

Remark 3.4.6 For small arguments y, the Gaussian exponent −y2 is already op-

timal. To improve the (presumably non-optimal) exponent for larger values of y by

our method, which is based on sharp bounds for cumulants, one would need to improve

the cumulant bound in Theorem 3.3.1. This point will further be discussed in Remark

3.4.18 below.
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Consider once more the Gaussian setup. A strong law of large numbers dealing with

the intrinsic volumes of Gaussian polytopes, arising from a deterministic number of

Gaussian points, has been derived by Hug and Reitzner [73] by using the Chebychev

inequality together with an upper bound on the variance obtained in the same paper.

By using our concentration inequality from Theorem 3.4.5 (i), we prove a stronger

result for our Poisson point process based model, which has the form of a so-called

Marcinkiewicz-Zygmund-type strong law. While, in the Gaussian case, the classical

strong law of large numbers for the random variables Vi(Kλ), i ∈ {1, . . . , d}, says that

Vi(Kλk)− E[Vi(Kλk)]

(log λk)
i
2

−→ 0,

with probability one, along subsequences λk of the form λk := ak, a > 1, as k → ∞,

our Marcinkiewicz-Zygmund-type strong law makes a statement about the almost sure

convergence to 0, as k →∞, of the random variables

Vi(Kλk)− E[Vi(Kλk)]

(log λk)
p i

2

,

for all p > 2i−(d+3)
2i

, again along all subsequences of the form λk = ak, a > 1.

While for p ≥ 1 such a result is a consequence of a classical strong law, the situation for

p < 1 is not covered by such a result. We notice that for p = 2i−(d+3)
2i

, the denominator

in the above expression equals (log λk)
2i−(d+3)

4 , which is precisely the rescaling that

is necessary in the central limit theorem for the intrinsic volumes. Indeed, it holds

that var[Vi(Kλk)] ∼ c(log λk)
2i−(d+3)

2 , as k → ∞, where c ∈ (0,∞) is a constant only

depending on d and i (see Theorem 3.4.1 in the case that β = 2). This implies that

our condition on p is in fact optimal and covers the whole possible range of parameter

p.

In contrast to the intrinsic volume functionals and even in the case of an underlying

binomial point process, a strong law of large numbers for the face numbers of Gaussian

polytopes does not exist so far. In part (ii) of the next theorem, we present the first

such result. Again, our condition on the parameter p is the best possible.

Moreover, we are able to state the Marcinkiewicz-Zygmund-type strong law of large

numbers for all underlying densities presented in (3.1), not just the Gaussian case. For

all choices of parameter α and β, the result stays optimal in the sense that it covers the

whole possible range of scalings (see Theorem 3.4.3 and Theorem 3.4.1 for a comparison

with the respective variances in the corresponding central limit theorems).
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Theorem 3.4.7 (Marcinkiewicz-Zygmund-type strong laws of large numbers)

(i) Let i ∈ {1, . . . , d}, p > 4i−β(d+3)
4i

, and let (λk)k∈N be a sequence of real numbers

defined by λk := ak, a > 1. Then, as k →∞, it holds that

Vi(Kλk)− E[Vi(Kλk)]

(log λk)
p i
β

−→ 0,

with probability one.

(ii) Let j ∈ {0, . . . , d−1}, p > 1
2
, and let (λk)k∈N be a sequence of real numbers defined

by λk := ak, a > 1. Then, as k →∞, it holds that

fj(Kλk)− E[fj(Kλk)]

(log λk)
p d−1

2

−→ 0,

with probability one.

Remark 3.4.8 In [73], the strong law of large numbers for the intrinsic volumes was

proved for the deterministic counterpart of the Gaussian random polytopes Kλk along

the subsequence λk = 2k and, then, extended by monotonicity arguments to λk = k (see

[73, Corollary 1.4]). In our setup, such an extension is not possible, since the random

variables Vi(Kλk)−E[Vi(Kλk)], and also fj(Kλk)−E[fj(Kλk)], are not monotone in k.

As a consequence of the cumulant bound presented in Theorem 3.3.1, we obtain upper

and lower bounds for the k-th moment of the intrinsic volumes and the face numbers.

Theorem 3.4.9 (Moment bounds)

(i) Let i ∈ {1, . . . , d} and k ∈ N. Then, for sufficiently large λ, it holds that

c1 c
k
2 (log λ)k

i
β ≤ E[Vi(Kλ)

k] ≤ c3 c
k
4 k! (log λ)k

i
β ,

where the upper bound holds for all β ≥ 2i
d+1

, and c1, c2, c3, c4 ∈ (0,∞) are con-

stants only depending on d, i, α and β.

(ii) Let j ∈ {0, . . . , d− 1} and k ∈ N. Then, for sufficiently large λ, it holds that

c5 c
k
6 (log λ)k

d−1
2 ≤ E[fj(Kλ)

k] ≤ c7 c
k
8 k! (log λ)k

d−1
2 ,

where c5, c6, c7, c8 ∈ (0,∞) are constants only depending on d, j, α and β.
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Remark 3.4.10 Let us emphasize that the upper bound for the k-th moment of the

intrinsic volumes of Kλ is the only main result where we need a restriction to the

parameter β. The reason for this phenomenon lies in the proof of Theorem 3.4.9 (see

Section 3.5.3). On the other hand, if we put α = 0 and β = 2 to obtain the most

popular example, that is, the Gaussian case, the condition on β and, therefore, the

upper bound, holds for all dimensions d.

After having investigated expectation and variance asymptotics, (the relative error in)

the central limit theorems, concentration inequalities and strong laws of large numbers,

we turn now to moderate deviation principles for the intrinsic volumes and face numbers

of Kλ (recall the definition in Section 2.5). Although moderate (or large) deviations

belong to the class of classical limit theorems in probability theory, to the best of our

knowledge, they have not been investigated in the context of our class of generalized

Gamma polytopes so far.

Theorem 3.4.11 (Moderate deviation principles)

(i) Let i ∈ {1, . . . , d}, and let (aλ)λ>0 be a sequence of real numbers, satisfying

lim
λ→∞

aλ =∞ and lim
λ→∞

aλ (log λ)−
d−1

4(4d+2i+9) = 0.

Then, the family (
1

aλ

Vi(Kλ)− E[Vi(Kλ)]√
var[Vi(Kλ)]

)
λ>0

satisfies a moderate deviation principle on R with speed a2
λ and rate function

I(x) = x2

2
.

(ii) Let j ∈ {0, . . . , d− 1}, and let (aλ)λ>0 be a sequence of real numbers, satisfying

lim
λ→∞

aλ =∞ and lim
λ→∞

aλ (log λ)
− d−1

4(4j(d+1)+2z[fj ]−1) = 0.

Then, the family (
1

aλ

fj(Kλ)− E[fj(Kλ)]√
var[fj(Kλ)]

)
λ>0

satisfies a moderate deviation principle on R with speed a2
λ and rate function

I(x) = x2

2
.
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Remark 3.4.12 The results that we have presented in this section have immediate

consequences for the model of randomly rotated and projected simplices, briefly dis-

cussed on page 10 in Chapter 1, if we randomize the model further. Namely, we let

the space dimension n = N(λ) be an independent random integer that is Poisson dis-

tributed with parameter λ and think of pr
N(λ)
d (%(∆N(λ))) as already being embedded

in Rd in the case that N(λ) ≤ d (the probability of this event tends to 0, as λ→∞).

Then, we conclude for the face numbers fj(pr
N(λ)
d (%(∆N(λ)))) of pr

N(λ)
d (%(∆N(λ))), for

all j ∈ {0, . . . , d − 1}, from Theorem 3.4.5 a concentration inequality, from Theorem

3.4.7 a Marcinkiewicz-Zygmund-type strong law of large numbers, from Theorem 3.4.9

bounds for the moments of all orders, from Theorem 3.4.4 a bound on the relative error

in the central limit theorem that we have from Theorem 3.4.3, as well as a moderate

deviation principle from Theorem 3.4.11. Moreover, Theorem 3.3.1 delivers a bound on

the cumulants of these random variables. We refrain from presenting all these results

formally since their statements are literally the same as in the theorems mentioned

above in the case that α = 0 and β = 2, with the random polytope Kλ replaced by the

randomly rotated and projected simplex pr
N(λ)
d (%(∆N(λ))).

3.4.2 Empirical measures

In this section, we present a series of results for the empirical measures introduced in

(3.26). The advantage of working with empirical measures instead of just their total

masses is that they allow to capture also the spatial profile of the geometric functionals.

Let us briefly recall the setup. We denote by Pλ a Poisson point process in Rd, whose

intensity measure is a multiple λ > 0 of the measure γd,α,β. The generalized Gamma

polytope Kλ is the random convex hull generated by Pλ, while the class of key geometric

functionals associated with Kλ is abbreviated by the symbol Ξ. Moreover, for ξ ∈ Ξ,

we let µξλ be the corresponding empirical measure (see (3.26)). To present our results

in a unified way, recall the weights u[ξ], v[ξ] and w[ξ] from the beginning of Section

3.2.2 and z[ξ] from (3.62). Furthermore, define

σξλ(fRλ) := (var[〈fRλ , µ
ξ
λ〉])

1
2 ,

and recall the definition of σ2(ξ(∞)) from (3.25).

We start with the following theorem, summarizing the expectation and variance asymp-

totics for the empirical measures. Recall that in the Gaussian setup, i.e., α = 0 and

β = 2, this has been obtained in [23, Theorem 2.1] for the volume and the face numbers.
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Theorem 3.4.13 Let ξ ∈ Ξ and f ∈ C(Rd;Sd−1). Then, it holds that

lim
λ→∞

(β log λ)−
(d−1)

2 E[〈fRλ , µ
ξ
λ〉] =

∞∫
−∞

E[ξ(∞)((o, h0),P)] eh0 dh0

∫
Sd−1

f(u)Hd−1
Sd−1(du),

and, if 〈f 2,Hd−1
Sd−1〉 > 0,

lim
λ→∞

(β log λ)−
(d−1)

2 var[〈fRλ , µ
ξ
λ〉] = σ2(ξ(∞))

∫
Sd−1

f(u)2Hd−1
Sd−1(du) ∈ (0,∞).

All the upcoming results are again new and have no counterparts in the literature,

not even in the Gaussian case. Our next result is a concentration inequality for the

empirical measures, related to the intrinsic volumes and face numbers of Kλ.

Theorem 3.4.14 (Concentration inequality) Let ξ ∈ Ξ and f ∈ C(Rd;Sd−1) with

〈f 2,Hd−1
Sd−1〉 > 0. Then, for all y ≥ 0 and sufficiently large λ, it holds that

P
(
|〈fRλ , µ̄

ξ
λ〉| ≥ y σξλ(fRλ)

)
≤ 2 exp

(
− 1

4
min

{
y2

2u[ξ]+2dv[ξ]+z[ξ]
,

c (log λ)
d−1

4(u[ξ]+2dv[ξ]+z[ξ]) y
1

u[ξ]+2dv[ξ]+z[ξ]

})
,

where c ∈ (0,∞) is a constant only depending on d, α, β, ξ and f .

The next result is a generalization of Theorem 3.4.4 and assesses the relative error in

the central limit theorem on a logarithmic scale, in a version taken from [43, Corollary

3.2].

Theorem 3.4.15 (Bounds on the relative error in the central limit theorem) Let ξ ∈ Ξ

and f ∈ C(Rd;Sd−1) with 〈f 2,Hd−1
Sd−1〉 > 0. Then, for all y with

0 ≤ y ≤ c1 (log λ)
d−1

4(2(u[ξ]+2dv[ξ]+z[ξ])−1) ,

and sufficiently large λ, we have that∣∣∣∣∣log
P(〈fRλ , µ̄

ξ
λ〉 ≥ y σξλ(fRλ))

1− Φ(y)

∣∣∣∣∣ ≤ c2 (1 + y3) (log λ)−
d−1

4(2(u[ξ]+2dv[ξ]+z[ξ])−1) ,
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and ∣∣∣∣∣log
P(〈fRλ , µ̄

ξ
λ〉 ≤ −y σ

ξ
λ(fRλ))

Φ(−y)

∣∣∣∣∣ ≤ c2 (1 + y3) (log λ)−
d−1

4(2(u[ξ]+2dv[ξ]+z[ξ])−1) ,

with constants c1, c2 ∈ (0,∞) only depending on d, α, β, ξ and f .

We also get the following central limit theorem that is available from our technique.

However, we point out that in the Gaussian case, the rate of convergence we obtain

is weaker than the one derived in [9]. On the other hand, our result is more general

since we consider integrals with respect to the empirical measures of general functions

f ∈ C(Rd; Sd−1), while even in the Gaussian case in [9] only constant functions were

investigated.

Theorem 3.4.16 (Central limit theorem with Berry-Esseen bound) Let ξ ∈ Ξ and

f ∈ C(Rd;Sd−1) with 〈f 2,Hd−1
Sd−1〉 > 0. Then, we have that for sufficiently large λ,

sup
y∈R

∣∣∣∣∣P
(
〈fRλ , µ̄

ξ
λ〉

σξλ(fRλ)
≤ y

)
− Φ(y)

∣∣∣∣∣ ≤ c (log λ)−
d−1

4(2(u[ξ]+2dv[ξ]+z[ξ])−1) , (3.67)

where c ∈ (0,∞) is a constant only depending on d, α, β, ξ and f . In particular, as

λ→∞, the sequence (
〈fRλ , µ̄

ξ
λ〉

σξλ(fRλ)

)
λ>0

converges in distribution to a standard Gaussian random variable.

Now, we turn to moderate deviation principles for integrals with respect to the empir-

ical measures.

Theorem 3.4.17 (Moderate deviation principle) Let ξ ∈ Ξ, f ∈ C(Rd; Sd−1) with

〈f 2,Hd−1
Sd−1〉 > 0, and let (aλ)λ>0 be a sequence of real numbers that satisfies the growth

condition

lim
λ→∞

aλ =∞ and lim
λ→∞

aλ (log λ)−
d−1

4(2(u[ξ]+2dv[ξ]+z[ξ])−1) = 0.
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Then, the family (
1

aλ

〈fRλ , µ̄
ξ
λ〉

σξλ(fRλ)

)
λ>0

fulfills a moderate deviation principle on R with speed a2
λ and rate function I(x) = x2

2
.

Remark 3.4.18 Except for Theorem 3.4.7, we do not claim that our findings are

optimal. However, in order to improve them by our methods, one would have to

decrease the exponent at k! in the cumulant bound in Theorem 3.3.1 from u[ξ] +

2dv[ξ] + z[ξ] to (optimally) 1. This would imply that γ = 0 in the application of

Theorem 2.4.3, which is optimal. It is unclear to us and seems unlikely that such an

improvement is possible in the framework of our class of generalized Gamma polytopes.

We even doubt that the exponent can be chosen independently of d.

3.4.3 Germ-grain processes

The following theorem shows the connection between the generalized Gamma polytope

Kλ and the four introduced germ-grain processes Φ(λ)(P(λ)), Ψ(λ)(P(λ)), Φ(P) and

Ψ(P), respectively.

Theorem 3.4.19 Fix L ∈ (0,∞). As λ→∞, the following assertions are true:

(a) Under the scaling transformation Tλ, the rescaled vertices of Kλ converge in dis-

tribution to the set of extreme points of P.

(b) Under the scaling transformation Tλ, the rescaled boundaries Tλ(∂Kλ) = ∂Φ(λ)(P(λ))

and ∂Ψ(λ)(P(λ)) converge in probability to ∂(Φ(P)) and ∂(Ψ(P)), respectively, on

the space C(Bd−1(o, L)).

In particular and as already anticipated in Chapter 1, the latter theorem states that

the scaling limit of the rescaled boundary of our generalized Gamma polytopes arises

as a unique festoon of parabolic surfaces, not depending on the parameter α and β in

the underlying distribution of the Poisson point process Pλ.
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3.5 Proof of the main results

3.5.1 Empirical measures: expectation and variance asymp-

totics

We start with the proof of Theorem 3.4.13. First, we need the following lemma,

stating that the rescaled functionals ξ(λ) ∈ Ξ(λ), as well as the corresponding second

order correlation functions cξ
(λ)

((o, h0), (v1, h1),P(λ)), recall the definition in (3.23),

converge to their respective scaling limit counterparts.

Lemma 3.5.1 Let ξ ∈ Ξ. Then, for all h0 ∈ (−∞, Rβ
λ] and (v1, h1) ∈ Wλ, it holds

that

lim
λ→∞

E[ξ(λ)((o, h0),P(λ))] = E[ξ(∞)((o, h0),P)],

and

lim
λ→∞

cξ
(λ)

((o, h0), (v1, h1),P(λ)) = cξ
(∞)

((o, h0), (v1, h1),P).

Proof. The proof of the first assertion follows step by step the proof of [23, Lemma 4.5

and 4.6] in the Gaussian setting. First, it is shown that the desired convergence holds

restricted to the cylinder Cd−1(o, r) = Bd−1(o, r)× R, r > 0, i.e.,

lim
λ→∞

E[ξ(λ)((o, h0),P(λ) ∩ Cd−1(o, r))] = E[ξ(∞)((o, h0),P ∩ Cd−1(o, r))].

Then, the result is extended to hold also without this restriction. We remark that both

related proofs just use the results obtained in Section 3.2, regarding to the properties of

the functionals of interest and the germ-grain processes and, therefore, are completely

independent of the parameter α and β in the underlying distribution of the Poisson

point process Pλ. Thus, we have decided to omit stating a word by word repetition of

the proofs given in [23]. The same holds true for the second assertion in Lemma 3.5.1,

which can be proven in the same spirit as [23, Lemma 4.7].

Proof of Theorem 3.4.13, the expectation. To analyze the expectation, we first use the

Mecke equation (see Theorem 2.6.1). Secondly, putting ||x|| = Rλ(1 − h/Rβ
λ) in view

of the scaling transformation Tλ, the rotational invariance of the underlying Poisson
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point process Pλ leads to

E[ξ(x,Pλ)] = E[ξ(λ)((o, h),P(λ))].

Then, writing

u =
x

||x||
⇔ x = u||x|| = uRλ

(
1− h

Rβ
λ

)
,

implies that

dx =

[
Rλ

(
1− h

Rβ
λ

)]d−1

R
−(β−1)
λ dhHd−1

Sd−1(du),

see once more also (3.12) for further details. Moreover, we use (3.13) to get

φα,β

(
u

(
1− h

Rβ
λ

))

= (β log λ)
β(d+1)−2d−2α

2β Rα
λ

(
1− h

Rβ
λ

)α

exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
,

where C ∈ (−∞, 1). Lastly, combining all these explanations with

φλ(u, h) =
(β log λ)

β(d+1)−2d−2α
2β

R
β(d+1)−2d−2α

2
λ

exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
, (3.68)

and the calculation

d+ α− β +
β(d+ 1)− 2d− 2α

2
=

2d+ 2α− 2β + βd+ β − 2d− 2α

2
=
β(d− 1)

2
,

yields that

E[〈fRλ , µ
ξ
λ〉]

= λ

∫
Rd

f

(
x

Rλ

)
E[ξ(x,Pλ)]φα,β(x) dx

= λ

∫
Rd

f

(
x

Rλ

)
E[ξ(λ)((o, h),P(λ))]φα,β(x) dx
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= λ

∫
Sd−1

Rβλ∫
−∞

f

(
u

(
1− h

Rβ
λ

)) [
Rλ

(
1− h

Rβ
λ

)]d−1

R
−(β−1)
λ

× E[ξ(λ)((o, h),P(λ))]φα,β

(
u

(
1− h

Rβ
λ

))
dhHd−1

Sd−1(du)

=

∫
Sd−1

Rβλ∫
−∞

f

(
u

(
1− h

Rβ
λ

))
(β log λ)

β(d+1)−2d−2α
2β Rd+α−β

λ

(
1− h

Rβ
λ

)d−1+α

× exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
E[ξ(λ)((o, h),P(λ))] dhHd−1

Sd−1(du)

= R
β(d−1)

2
λ

∫
Sd−1

Rβλ∫
−∞

f

(
u

(
1− h

Rβ
λ

))
φλ(u, h)E[ξ(λ)((o, h),P(λ))]

×

(
1− h

Rβ
λ

)d−1+α

dhHd−1
Sd−1(du).

Thus,

R
−β(d−1)

2
λ E[〈fRλ , µ

ξ
λ〉] =

∫
Sd−1

Rβλ∫
−∞

f

(
u

(
1− h

Rβ
λ

))
φλ(u, h)

× E[ξ(λ)((o, h),P(λ))]

(
1− h

Rβ
λ

)d−1+α

Hd−1
Sd−1(du).

(3.69)

Now, for fixed h ∈ (−∞, Rβ
λ], we have by the continuity of f , the definition of φλ(u, h)

and Lemma 3.5.1 that

lim
λ→∞

(
1− h

Rβ
λ

)d−1+α

= 1, lim
λ→∞

f

(
u

(
1− h

Rβ
λ

))
= f(u), lim

λ→∞
φλ(u, h) = eh,

and

lim
λ→∞

E[ξ(λ)((o, h),P(λ))] = E[ξ(∞)((o, h),P)],

respectively. Moreover, since C ∈ (−∞, 1), we have that φλ(u, h) ≤ C1 e
h, for all

u ∈ Sd−1 and all h ∈ R, where C1 ∈ (0,∞) is an absolute constant. This, combined

with the moment bound derived in Theorem 3.2.12 (i), shows that for sufficiently large
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λ, the integrand in (3.69) is bounded from above by

c1 ||f ||∞ (1 + |h|)(d−1)v[ξ]+2d+α−1 eh exp

(
−e

h∨0

c2

)
.

Since this expression is integrable, the dominated convergence theorem implies the

result.

In order to deal with the variance, we first use again the Mecke equation to achieve

that

E[〈fRλ , µ
ξ
λ〉

2]

= λ2

∫
Rd

∫
Rd

f

(
x

Rλ

)
f

(
y

Rλ

)
E[ξ(x,Pλ ∪ {y}) ξ(y,Pλ ∪ {x})]φα,β(x)φα,β(y) dx dy

+ λ

∫
Rd

f

(
x

Rλ

)2

E[ξ(x,Pλ)2]φα,β(x) dx,

and (
E[〈fRλ , µ

ξ
λ〉]
)2

= λ2

∫
Rd

∫
Rd

f

(
x

Rλ

)
f

(
y

Rλ

)
E[ξ(x,Pλ)]E[ξ(y,Pλ)]φα,β(x)φα,β(y) dx dy.

This yields that

R
−β(d−1)

2
λ var[〈fRλ , µ

ξ
λ〉]

= R
−β(d−1)

2
λ

[
E[〈fRλ , µ

ξ
λ〉

2]−
(
E[〈fRλ , µ

ξ
λ〉]
)2
]

= R
−β(d−1)

2
λ λ2

∫
Rd

∫
Rd

f

(
x

Rλ

)
f

(
y

Rλ

) [
E[ξ(x,Pλ ∪ {y}) ξ(y,Pλ ∪ {x})]

− E[ξ(x,Pλ)]E[ξ(y,Pλ)]
]
φα,β(x)φα,β(y) dx dy

+R
−β(d−1)

2
λ λ

∫
Rd

f

(
x

Rλ

)2

E[ξ(x,Pλ)2]φα,β(x) dx

=: I + II.

In the following, we analyze both terms separately.
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Lemma 3.5.2 As λ→∞, part II of the above sum converges to

∞∫
−∞

E[ξ(∞)((o, h),P)2] eh dh

∫
Sd−1

f(u)2Hd−1
Sd−1(du).

Proof of Lemma 3.5.2. As in the proof of the expectation asymptotic, we achieve

II = R
−β(d−1)

2
λ λ

∫
Rd

f

(
x

Rλ

)2

E[ξ(x,Pλ)2]φα,β(x) dx

=

∫
Sd−1

Rβλ∫
−∞

f

(
u

(
1− h

Rβ
λ

))2

φλ(u, h)E[ξ(λ)((o, h),P(λ))2]

×

(
1− h

Rβ
λ

)d−1+α

dhHd−1
Sd−1(du).

Similarly as above, for fixed h ∈ (−∞, Rβ
λ], we find that

lim
λ→∞

(
1− h

Rβ
λ

)d−1+α

= 1, lim
λ→∞

f

(
u

(
1− h

Rβ
λ

))2

= f(u)2, lim
λ→∞

φλ(u, h) = eh,

and

lim
λ→∞

E[ξ(λ)((o, h),P(λ))2] = E[ξ(∞)((o, h),P)2].

Here, in view of the moment bounds in Theorem 3.2.12 (i), for sufficiently large λ, the

integrand is bounded by

c1 ||f ||2∞ (1 + |h|)2(d−1)v[ξ]+2d+α−1 eh exp

(
−e

h∨0

c2

)
.

The limit result follows again by the dominated convergence theorem.

Lemma 3.5.3 As λ→∞, part I of the above sum converges to

∫
Rd−1

∞∫
−∞

∞∫
−∞

cξ
(∞)

((o, h), (v1, h1),P) eh+h1 dh dh1 dv1

∫
Sd−1

f(u)2Hd−1
Sd−1(du),

where cξ
(∞)

((o, h), (v1, h1),P) is the second order correlation function, given in (3.24).
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Proof of Lemma 3.5.3. Due to the rotational invariance of the underlying Poisson point

process Pλ, we assume without loss of generality that x = (o, hx) ∈ Rd−1 × R and

y = (vy, hy) ∈ Rd−1 × R. Then, by putting Tλ(x) := (o, h) and Tλ(y) := (v1, h1) in

view of the scaling transformation, where h, h1 and v1 are defined in terms of

||x|| = Rλ

(
1− h

Rβ
λ

)
, ||y|| = Rλ

(
1− h1

Rβ
λ

)
and v1 = R

β
2
λ exp

(
v1

||v1||

)
,

respectively, we obtain

E[ξ(x,Pλ ∪ {y}) ξ(y,Pλ ∪ {x})]− E[ξ(x,Pλ)]E[ξ(y,Pλ)]

= E[ξ(λ)((o, h),P(λ) ∪ {(v1, h1)}) ξ(λ)((v1, h1),P(λ) ∪ {(o, h)})]

− E[ξ(λ)((o, h),P(λ))]E[ξ(λ)((v1, h1),P(λ))]

= cξ
(λ)

((o, h), (v1, h1),P(λ)).

Moreover, we get similarly as in the proof for the expectation that there is a constant

C ∈ (−∞, 1) such that

R
−β(d−1)

2
λ λφα,β(x) dx

=
R

β(d+1)−2d−2α
2

λ

(β log λ)
β(d+1)−2d−2α

2β

(
1− h

Rβ
λ

)d−1+α

× exp

(
h− h2

2Rβ
λ

(β − 1)(1− C)β−2

)
dhHd−1

Sd−1(du)

= φλ(u, h)

(
1− h

Rβ
λ

)d−1+α

dhHd−1
Sd−1(du),

where we recall the definition of φλ(u, h) in (3.68). Furthermore, as in (3.10), there is

a C1 ∈ (−∞, 1) with

λφα,β(y) dy

=
sind−2(R

−β
2

λ ‖v1‖)

‖R−
β
2

λ v1‖d−2

(β log λ)
β(d+1)−2d−2α

2β

R
β(d+1)−2d−2α

2
λ

× exp

(
h1 −

h2
1

2Rβ
λ

(β − 1)(1− C1)β−2

)(
1− h1

Rβ
λ

)d−1+α

dv1 dh1
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= φλ(u, h1)
sind−2(R

−β
2

λ ‖v1‖)

‖R−
β
2

λ v1‖d−2

(
1− h1

Rβ
λ

)d−1+α

dv1 dh1.

Note that the double integral over (x, y) ∈ Rd×Rd transforms to a quadruple integral

over the set

(u, h, v1, h1) ∈ Sd−1 × (−∞, Rβ
λ]× Tλ(Sd−1)× (−∞, Rβ

λ].

Combining these statements yields that

I = R
−β(d−1)

2
λ λ2

∫
Rd

∫
Rd

f

(
x

Rλ

)
f

(
y

Rλ

) [
E[ξ(x,Pλ ∪ {y}) ξ(y,Pλ ∪ {x})]

− E[ξ(x,Pλ)]E[ξ(y,Pλ)]
]
φα,β(x)φα,β(y) dx dy

=

∫
Sd−1

∫
Tλ(Sd−1)

Rβλ∫
−∞

Rβλ∫
−∞

f

(
u

(
1− h

Rβ
λ

))
f(R−1

λ T−1
λ (v1, h1)) cξ

(λ)

((o, h), (v1, h1),P(λ))

× sind−2(R
−β

2
λ ‖v1‖)

‖R−
β
2

λ v1‖d−2

φλ(u, h)φλ(u, h1)

×

(
1− h

Rβ
λ

)d−1+α (
1− h1

Rβ
λ

)d−1+α

dh dh1 dv1Hd−1
Sd−1(du).

Now, using

T−1
λ (v1, h1) = uRλ

(
1− h1

Rβ
λ

)
exp(R

−β
2

λ v1),

and the continuity of f , leads to

lim
λ→∞

f

(
u

(
1− h

Rβ
λ

))
f(R−1

λ T−1
λ (v1, h1)) = f(u)2.

Analogously as above, it holds that

lim
λ→∞

φλ(u, h)φλ(u, h1) = eh+h1 and lim
λ→∞

(
1− h

Rβ
λ

)d−1+α (
1− h1

Rβ
λ

)d−1+α

= 1.
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Furthermore, Lemma 3.5.1 implies that

lim
λ→∞

cξ
(λ)

((o, h), (v1, h1),P(λ)) = cξ
(∞)

((o, h0), (v1, h1),P).

In order to use also the dominated convergence at this point, we have to bound the com-

plete integrand from above. Corollary 3.2.16 and the fact that φλ(u, h) and φλ(u, h1)

are smaller than constants times eh and eh1 , respectively, imply that for sufficiently

large λ, the integrand is indeed bounded by

c1 ||f ||2∞ (1 + |h0|)dw[ξ] (1 + |h1|)dw[ξ] exp

(
− 1

c2

(eh∨0 + eh1∨0) + h+ h1

)
× (exp(−c3 |v1|) + 1(|v1| ≤ 2 max{|h|, |h1|})) .

In particular, this bound is exponentially decaying in all arguments. Thus, the result

follows from the dominated convergence in combination with the four limits stated

above, as λ→∞.

Proof of Theorem 3.4.13, the variance. Combining the investigations of Lemma 3.5.2

and Lemma 3.5.3 implies that

lim
λ→∞

R
−β(d−1)

2
λ var[〈fRλ , µ

ξ
λ〉]

=

 ∞∫
−∞

E[ξ(∞)((o, h),P)2] eh dh +

∫
Rd−1

∞∫
−∞

∞∫
−∞

cξ
(∞)

((o, h), (v1, h1),P) eh+h1 dh dh1 dv1


×
∫
Sd−1

f(u)2Hd−1
Sd−1(du)

= σ2(ξ(∞))

∫
Sd−1

f(u)2Hd−1
Sd−1(du),

where we recall the definition of σ2(ξ(∞)) in (3.25). The strict positivity of the limit

follows from [8, 9] since σ2(ξ(∞)) does not depend on α and β, and, therefore, stays

exactly the same constant as in the Gaussian case. This completes the proof of the

variance asymptotic.
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3.5.2 Empirical measures: cumulant bound

Fix ξ ∈ Ξ and f ∈ C(Rd,Sd−1) with 〈f 2,Hd−1
Sd−1〉 > 0. If f ∈ C(Rd;Sd−1), we recall from

Theorem 3.4.13 that

σξλ(fRλ) := (var[〈fRλ , µ
ξ
λ〉])

1
2

fulfills, for sufficiently large λ, that

σξλ(fRλ) ≥ c 〈f 2,Hd−1
Sd−1〉

1
2 (log λ)

d−1
4 . (3.70)

The cumulant bound in Theorem 3.3.1 and the variance estimate (3.70) imply that,

for all k ∈ {3, 4, . . .} and sufficiently large λ,

|〈fkRλ , c
k
λ〉|

(σξλ(fRλ))k
≤ c1 c

k
2 ‖f‖k∞R

β(d−1)
2

λ (k!)u[ξ]+2dv[ξ]+z[ξ]
(
c3 〈f 2,Hd−1

Sd−1〉
1
2 (log λ)

d−1
4

)−k
.

By the definition of Rλ, we see that Rλ ≤ C (β log λ)
1
β and, hence,

|〈fkRλ , c
k
λ〉|

(σξλ(fRλ))k
≤ c1 c

k
2 ‖f‖k∞ (log λ)

d−1
2 (k!)u[ξ]+2dv[ξ]+z[ξ]

(
〈f 2,Hd−1

Sd−1〉
1
2 (log λ)

d−1
4

)−k
≤ c1 c

k
2

(
(log λ)

d−1
4

)−(k−2)

(k!)u[ξ]+2dv[ξ]+z[ξ] .

Proof of Theorem 3.4.14, 3.4.15, 3.4.16, and 3.4.17. Put

γ := u[ξ] + 2dv[ξ] + z[ξ]− 1 and ∆λ := (log λ)
d−1

4 . (3.71)

Then, our computations performed above imply that the random variables

Xλ :=
〈fRλ , µ̄

ξ
λ〉

σξλ(fRλ)

fulfill the conditions of Theorem 2.4.3 with the constants γ and ∆λ given by (3.71).

This completes the proof of the four theorems.
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3.5.3 Intrinsic volumes and face numbers

Proof of Theorem 3.4.1, 3.4.3, 3.4.4, 3.4.5, and 3.4.11. We start with the face num-

bers of the random polytope Kλ. In this case, all five theorems follow directly from

the corresponding results in Section 3.4.2 by putting fRλ ≡ 1 since

〈1, µ̄
ξfj
λ 〉 =

∑
x∈Pλ

ξfj(x,Pλ)− E

[∑
x∈Pλ

ξfj(x,Pλ)

]
= fj(Kλ)− E[fj(Kλ)],

for all j ∈ {0, . . . , d− 1}.
Now, we turn to the intrinsic volumes Vi(Kλ), i ∈ {1, . . . , d}, and start with the proof

of Theorem 3.4.1. Likewise, setting fRλ ≡ 1 in Theorem 3.4.13 and by using

Ri
λ ∼ (β log λ)

i
β ,

as λ→∞, as well as (2.1), we get that

E[(β log λ)
β(d+1)−2i

2β (Vi(Bd(o, Rλ))− Vi(Kλ))] ∼ c (log λ)
d−1

2

⇔ (β log λ)−
i
β

(
d

i

)
κd
κd−i

Ri
λ − (β log λ)−

i
β E[Vi(Kλ)] ∼ c (log λ)−1

⇔ (β log λ)−
i
β E[Vi(Kλ)] ∼ (β log λ)−

i
β

(
d

i

)
κd
κd−i

Ri
λ

⇔ (β log λ)−
i
β E[Vi(Kλ)] ∼

(
d

i

)
κd
κd−i

⇔ E[Vi(Kλ)] ∼
(
d

i

)
κd
κd−i

(β log λ)
i
β ,

proving the expectation asymptotics for the intrinsic volumes of Kλ.

In order to deal with the variance of the intrinsic volumes, we notice that part two of

Theorem 3.4.13 yields that, as λ→∞,

var[(β log λ)
β(d+1)−2i

2β (Vi(Bd(o, Rλ))− Vi(Kλ))] ∼ c (β log λ)
d−1

2

⇔ var[Vi(Bd(o, Rλ))− Vi(Kλ)] ∼ c (β log λ)
β(d−1)−2(β(d+1)−2i)

2β

⇔ var[Vi(Kλ)] ∼ c (β log λ)
4i−β(d+3)

2β .

This finishes the proof of the variance asymptotics for the intrinsic volumes of Kλ.
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Regarding to the proof of the other four theorems, we first deduce from Theorem 3.3.1

and (3.22) that, for sufficiently large λ,

|ck[R
β(d+1)−2i

2
λ (Vi(Bd(o, Rλ))− Vi(Kλ))]| ≤ c1 c

k
2 R

β(d−1)
2

λ (k!)2d+i+5.

In view of the properties of cumulants, summarized in Lemma 2.4.1, we have that

|ck[R
β(d+1)−2i

2
λ (Vi(Bd(o, Rλ))− Vi(Kλ))]| = |(−1)kR

k
β(d+1)−2i

2
λ ck[Vi(Kλ)− Vi(Bd(o, Rλ))]|

= R
k
β(d+1)−2i

2
λ |ck[Vi(Kλ)]|.

Therefore, for sufficiently large λ and k ∈ {3, 4, . . .},

|ck[Vi(Kλ)]| ≤ c1 c
k
2 (log λ)

β(d−kd−k−1)+2ki
2β (k!)2d+i+5. (3.72)

In combination with the lower variance bound var[Vi(Kλ)] ≥ c (log λ)
4i−β(d+3)

2β , following

from Theorem 3.4.1, we get, similarly as above,

|ck[Vi(Kλ)]|
(
√

var[Vi(Kλ)])k
≤ c1 c

k
2 (log λ)

β(d−kd−k−1)+2ki
2β (k!)2d+i+5

(
c3 (log λ)

4i−β(d+3)
2β

)− k
2

≤ c1 c
k
2 (log λ)

2β(d−kd−k−1)+4ki−4ki+kβ(d+3)
4β (k!)2d+i+5

≤ c1 c
k
2 (log λ)

2(βd−β)−k(βd−β)
4β (k!)2d+i+5

≤ c1 c
k
2

(
(log λ)

d−1
4

)−(k−2)

(k!)2d+i+5.

Thus, the random variables

Xλ :=
Vi(Kλ)− E[Vi(Kλ)]√

var[Vi(Kλ)]

fulfill the conditions of Theorem 2.4.3 with

γ := 2d+ i+ 4 and ∆λ := c (log λ)
d−1

4 .

This completes the proof for the intrinsic volume functionals.
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Proof of Theorem 3.4.7 (i). Let i ∈ {1, . . . , d}. Define the sequence (λk)k∈N by putting

λk := ak, a > 1, for all k ∈ N. The concentration inequality stated in Theorem 3.4.5 (i)

and the lower variance bound var[Vi(Kλk)] ≥ c (log λk)
4i−β(d+3)

2β from Theorem 3.4.1 (i)

imply, together with the elementary inequality exp(−min{a, b}) ≤ exp(−a)+exp(−b),
a, b ≥ 0, for sufficiently large k, p ∈ R and ε > 0, that

P
(
|Vi(Kλk)− E[Vi(Kλk)]| ≥ ε (log λk)

p i
β
)

≤ 2 exp

−c1

(
ε (log λk)

p i
β√

var[Vi(Kλk)]

)2


+ 2 exp

−c2 (log λk)
d−1

4(2d+i+5)

(
ε (log λk)

p i
β√

var[Vi(Kλk)]

) 1
2d+i+5


≤ 2 exp

−c1

(
ε (log λk)

p i
β

(log λk)
4i−β(d+3)

2β

)2


+ 2 exp

−c2 (log λk)
d−1

4(2d+i+5)

(
ε (log λk)

p i
β

(log λk)
4i−β(d+3)

2β

) 1
2d+i+5


≤ 2 exp

(
−c1 ε

2 (log λk)
i(4p−4)+β(d+3)

2β

)
+ 2 exp

(
−c2 ε

1
2d+i+5 (log λk)

i(4p−4)+β(2d+2)
4β(2d+i+5)

)
.

Next, we notice that

∞∑
k=1

exp
(
−(log λk)

i(4p−4)+β(2d+2)
4β(2d+i+5)

)
=
∞∑
k=1

exp
(
− (log a)

i(4p−4)+β(2d+2)
4β(2d+i+5) k

i(4p−4)+β(2d+2)
4β(2d+i+5)

)
<∞,

since i(4p−4)+β(2d+2)
4β(2d+i+5)

> 0 and, thus, that the series converges. Indeed, the latter condi-

tion is equivalent to p > 2i−β(d+1)
2i

and we observe that

4i− β(d+ 3)

4i
≥ 2i− β(d+ 1)

2i

holds true for all d ≥ 2. Therefore, the exponent at k is indeed larger than 0 for all p

in the corresponding range. Similarly, one has that

∞∑
k=1

exp
(
− (log λk)

i(4p−4)+β(d+3)
2β

)
=
∞∑
k=1

exp
(
− (log a)

i(4p−4)+β(d+3)
2β k

i(4p−4)+β(d+3)
2β

)
is finite, as long as i(4p− 4) + β(d+ 3) > 0, which is equivalent to p > 4i−β(d+3)

4i
.
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Thus, the series
∞∑
k=1

P
(
|Vi(Kλk)− E[Vi(Kλk)]| ≥ ε (log λk)

p i
2

)
converges for all p > 4i−β(d+3)

4i
and the Borel-Cantelli lemma implies that

Vi(Kλk)− E[Vi(Kλk)]

(log λk)
p i
β

−→ 0, (3.73)

with probability 1, as k →∞, for all p > 4i−β(d+3)
4i

.

Proof of Theorem 3.4.7 (ii). Let j ∈ {0, . . . , d − 1}, and let (λk)k∈N be a sequence

defined by λk := ak, for all k ∈ N and some a > 1. Using the concentration inequality

for the number of j-dimensional faces in Theorem 3.4.5 (ii) in combination with the

lower variance bound var[fj(Kλk)] ≥ c (log λk)
d−1

2 (see Theorem 3.4.1 (ii)) yields, for

sufficiently large k, p ∈ R and ε > 0, similarly as in the foregoing proof, that

P
(
|fj(Kλk)− E[fj(Kλk)]| ≥ ε (log λk)

p d−1
2

)
≤ 2 exp

(
−c1 ε

2 (log λk)
2p(d−1)

2
− d−1

2

)
+ 2 exp

(
−c2 ε

1
2j(d+1)+z[fj ] (log λk)

2p(d−1)
4(2j(d+1)+z[fj ])

)
.

Now, the series

∞∑
k=1

exp
(
− (log λk)

p(d−1)
2(2j(d+1)+z[fj ])

)
=
∞∑
k=1

exp
(
− (log a)

p(d−1)
2(2j(d+1)+z[fj ]) k

p(d−1)
2(2j(d+1)+z[fj ])

)
converges, as long as the exponent is bigger than 0. This holds, since by assumption p

is bigger than 0. On the other hand, the series

∞∑
k=1

exp
(
− (log λk)

(d−1)(2p−1)
2

)
=
∞∑
k=1

exp
(
− (log a)

(d−1)(2p−1)
2 k

(d−1)(2p−1)
2

)

converges if (d−1)(2p−1)
2

> 0, which is equivalent to p > 1
2
. Thus, the series

∞∑
k=1

P
(
|fj(Kλk)− E[fj(Kλk)]| ≥ ε (log λk)

p d−1
2

)
converges for all p > 1

2
and the Borel-Cantelli lemma implies the desired almost sure

convergence for all such p.
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Proof of Theorem 3.4.9. The k-th moment of a random variable X equals the k-th

complete Bell polynomial evaluated in c1[X], . . . , ck[X] (see [89]). Specifically,

E[Xk] = Bk(c
1[X], . . . , ck[X]),

with

Bk(x1, . . . , xk) :=
k∑
i=1

Bk,i(x1, . . . , xk−i+1).

Here, the Bell polynomials Bk,i are given by

Bk,i(x1, . . . , xk−i+1)

:=
∑ k!

j1! · · · jk−i+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xk−i+1

(k − i+ 1)!

)jk−i+1

,
(3.74)

where the sum runs over all k − i+ 1 tuples j1, . . . , jk−i+1 ∈ N0, satisfying

k−i+1∑
`=1

j` = i and
k−i+1∑
`=1

` j` = k.

Thus, the k-th moment can be written as a polynomial of the cumulants up to order

k. In particular, for i = k in the above sum, it contains the term (c1[X])k.

Let us first consider the intrinsic volumes of Kλ, and let i ∈ {1, . . . , d}. We know from

Theorem 3.4.1 (i) that, for sufficiently large λ, c1[Vi(Kλ)] = E[Vi(Kλ)] ≤ c1 (log λ)
i
β

and c2[Vi(Kλ)] = var[Vi(Kλ)] ≤ c2 (log λ)
4i−β(d+3)

2β . The exponent appearing in the

expectation is bigger than the one in the variance, as long as β ≥ 2i
d+3

. Indeed, it holds

that

i

β
≥ 4i− β(d+ 3)

2β
⇔ 2i ≥ 4i− β(d+ 3) ⇔ β(d+ 3) ≥ 2i ⇔ β ≥ 2i

d+ 3
.

In view of the estimate provided in (3.72), for sufficiently large λ, all higher-order

cumulants are bounded by a constant times

(log λ)
β(d−kd−k−1)+2ki

2β = (log λ)
β(d−1)−k(βd+β−2i)

2β .

Now, we have that βd+ β − 2i ≥ 0, for all β ≥ 2i
d+1

.
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Thus, if β ≥ 2i
d+1

, for sufficiently large λ, it holds that

ck[Vi(Kλ)] ≤ c1 c
k
2 (log λ)

β(d−1)−3(βd+β−2i)
2β = c1 c

k
2 (log λ)

3i−β(d+2)
β , (3.75)

for all k ≥ 3. Similarly as above, we obtain that the exponent in the expectation is

bigger than those appearing in the bound (3.75) for all β ≥ 2i
d+2

. Hence, (c1[Vi(Kλ)])
k

is the dominating term in the above sum, as long as the condition β ≥ 2i
d+1

is fulfilled.

Moreover, it is known that the total number of terms appearing in the k-th complete

Bell polynomial is the same as the total number of integer partitions of k, which in

turn is bounded by exp(π
√

2k/3) (see [106]). Furthermore, (3.74) shows that each

coefficient in the sum is bounded from above by k!. Combining these facts, we get, for

sufficiently large λ, k ∈ N and all β ≥ 2i
d+1

, that

E[Vi(Kλ)
k] ≤ ck1 k! (c1[Vi(Kλ)])

k ≤ c2 c
k
3 k! (log λ)k

i
β .

In a second step, we prove the upper moment bound for the number of j-dimensional

faces of Kλ, j ∈ {0, . . . , d − 1}. Each cumulant of fj(Kλ) of order bigger than 2 is

bounded by a constant multiple of (log λ)
d−1

2 in view of Theorem 3.3.1, for sufficiently

large λ. The expectation and variance growth is of the same order (see Theorem 3.4.1

(ii)). Thus, again it follows that (c1[fj(Kλ)])
k is the term of leading order, this time

for all values of the parameter β. Hence, we achieve similarly as above, for sufficiently

large λ and k ∈ N, that

E[fj(Kλ)
k] ≤ ck1 k! (c1[fj(Kλ)])

k ≤ c2 c
k
3 k! (log λ)k

d−1
2 .

Finally, Jensen’s inequality implies that the k-th moment of Vi(Kλ), i ∈ {1, . . . , d}, and

the k-th moment of fj(Kλ), j ∈ {0, . . . , d− 1}, is bounded from below by (E[Vi(Kλ)])
k

and (E[fj(Kλ)])
k, respectively. Using the estimates for the respective expectations

completes the proof.

3.5.4 Germ-grain processes

Proof of Theorem 3.4.19. We start with the following observation, a modification of

[23, Lemma 3.1]. It shows that for fixed w ∈ Wλ, the quasi-paraboloids [Π↑(w)](λ) and

[Π↓(w)](λ) locally approximate the paraboloids [Π↑(w)](∞) and [Π↓(w)](∞), respectively.
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Let w := (v1, h1) ∈ Wλ, L ∈ (0,∞) and λ be sufficiently large. Then, it holds that

||∂([Π↑(w)](λ) ∩ Cd−1(v1, L))− ∂([Π↑(w)](∞) ∩ Cd−1(v1, L))||∞

≤ C1R
− 1

2
β

λ L3 + C2 h1R
−β
λ L2,

and

||∂([Π↓(w)](λ) ∩ Cd−1(v1, L))− ∂([Π↓(w)](∞) ∩ Cd−1(v1, L))||∞

≤ C3R
− 1

2
β

λ L3 + C4 h1R
−β
λ L2,

(3.76)

where C1, C2, C3, C4 ∈ (0,∞) are absolute constants. In particular, both right hand

sides tend to 0, as λ→∞.

The rest of the proof is exactly the same as the proof of [23, Proposition 5.1] in the

Gaussian case. It just uses the two bounds stated above, in combination with Theorem

3.2.4 from Section 3.2.1. As in the proof of Lemma 3.5.1, we omit stating a word by

word repetition from [23, Page 34].

What is left is to prove the two assertions stated above. We start with the first one

and recall from (3.18) that we have

∂([Π↑(w)](λ)) =
{

(v, h) ∈ Wλ : h = Rβ
λ(1− cos(dλ(v1, v))) + h1 cos(dλ(v1, v))

}
.

Let v ∈ Bd−1(v1, L). The Taylor expansion of the cosine function, together with

dλ(v1, v) = ||R−
β
2

λ v −R−
β
2

λ v1||+O(||R−
β
2

λ v −R−
β
2

λ v1||2)

= R
−β

2
λ ||v − v1||+O(R−βλ ||v − v1||2)

= R
−β

2
λ ||v − v1||+O(R−βλ L2),

(3.77)

gives

1− cos(dλ(v1, v)) =
dλ(v1, v)2

2
+O(dλ(v1, v)3)

= R−βλ
||v − v1||2

2
+O(R

− 3
2
β

λ L3),

as λ→∞. Thus,

Rβ
λ(1− cos(dλ(v1, v))) =

||v − v1||2

2
+O(R

− 1
2
β

λ L3),
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and

|h1(1− cos(dλ(v1, v)))| = O(h1R
−β
λ L2),

as λ → ∞. The two last equations prove that ∂([Π↑(w)](λ) ∩ Cd−1(v1, L)) and the

boundary of ([Π↑(w)](∞) ∩ Cd−1(v1, L)), which is given by the graph

v 7→ h1 +
||v − v1||2

2
,

(see the discussion before (3.20)), differ by at most C1R
− 1

2
β

λ L3 + C2h1R
−β
λ L2. This

finishes the proof of the first assertion.

Moreover, we have from (3.19) that

∂([Π↓(w)](λ)) =

{
(v, h) ∈ Wλ : h = Rβ

λ −
Rβ
λ − h1

cos(dλ(v1, v))

}
.

By using again the Taylor expansion up to second order, the fact that

1

1− x
= 1 + x+ x2 + . . . ,

and the preparation (3.77), we obtain for all (v, h) ∈ ∂([Π↓(w)](λ)) ∩ Cd−1(v1, L)) that

h = Rβ
λ −

Rβ
λ − h1

cos(dλ(v1, v))

= Rβ
λ −

Rβ
λ − h1(

1− dλ(v1,v)2

2

)
= Rβ

λ − (Rβ
λ − h1)

(
1 +

dλ(v1, v)2

2
+O(dλ(v1, v)4)

)
= Rβ

λ − (Rβ
λ − h1)

(
1 +R−βλ

||v − v1||2

2
+O(R

− 3
2
β

λ L3)

)
= Rβ

λ −R
β
λ −
||v − v1||2

2
+O(R

− 1
2
β

λ L3) + h1 + h1R
−β
λ

||v − v1||2

2
+O(h1R

− 3
2
β

λ L3)

= h1 −
||v − v1||2

2
+O(R

− 1
2
β

λ L3) +O(h1R
−β
λ L2),

as λ→∞. Then, the result follows in the same way as in the first case.
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Chapter 4

Random simplices in high

dimensions

Let r = r(d) be a sequence of integers such that r ≤ d, and let X1, . . . , Xr+1 be

independent random points, distributed according to the Gaussian, the Beta or the

spherical distribution on Rd, d ≥ 2. In this chapter, limit theorems for the log-volume

and the volume of the random convex hull of X1, . . . , Xr+1 are established in high

dimensions, that is, as r and d tend to infinity simultaneously.

This includes Berry-Esseen-type central limit theorems, log-normal limit theorems,

moderate and large deviations, as well as concentration inequalities. Moreover, different

types of mod-φ convergence are derived.

The results heavily depend on the asymptotic growth of r, relative to d. For example,

we prove that the fluctuations of the volume of the simplex are normal (respectively,

log-normal) if r = o(d) (respectively, r ∼ αd, for some α ∈ (0, 1)), as d→∞.
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4.1. MODELS, VOLUMES AND PROBABILISTIC REPRESENTATIONS

4.1 Models, volumes and probabilistic representa-

tions

4.1.1 The four models

In this chapter, we consider convex hulls of random points X1, X2, . . .. More in detail,

we consider the following four models which allow for explicit computations. These

models were identified by Miles [101] and Ruben and Miles [115], respectively.

(a) The Gaussian model : X1, X2, . . . are independent and identically distributed with

standard normal density

f(x) =
1

(2π)
d
2

e−
1
2
‖x‖2 , x ∈ Rd.

(b) The Beta model with parameter ν > 0: X1, X2, . . . are independent and identic-

ally distributed with density

f(x) =
1

π
d
2

Γ
(
d+ν

2

)
Γ
(
ν
2

) (
1− ‖x‖2

) ν−2
2 , x ∈ Rd, ‖x‖ < 1.

(c) The Beta prime model with parameter ν > 0: X1, X2, . . . are independent and

identically distributed with density

f(x) =
1

π
d
2

Γ
(
d+ν

2

)
Γ
(
ν
2

) (
1 + ‖x‖2

)− d+ν
2 , x ∈ Rd.

(d) The spherical model : X1, X2, . . . are independent and uniformly distributed on

the sphere Sd−1.

Remark 4.1.1 Observe that in the Beta prime model, the power is (d+ ν)/2 (which

depends on d) rather than just (ν − 2)/2.

4.1.2 Moments

Let 1 ≤ r ≤ d be an integer and X1, . . . , Xr+1 be independent random points in Rd,
distributed according to one of the distributions introduced in Section 4.1.1.
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Theorem 4.1.2 (Moments for simplices) Let Vd,r be the volume of the r-dimensional

simplex with vertices X1, . . . , Xr+1.

(a) In the Gaussian model, for all k ≥ 0, it holds that

E
[
(r!Vd,r)2k

]
= (r + 1)k

r∏
j=1

[
2k

Γ
(
d−r+j

2
+ k
)

Γ
(
d−r+j

2

) ]
.

(b) In the Beta model with parameter ν > 0, for all k ≥ 0, it holds that

E
[
(r!Vd,r)2k

]
=

r∏
j=1

[
Γ
(
d−r+j

2
+ k
)

Γ
(
d−r+j

2

) Γ
(
d+ν

2

)
Γ
(
d+ν

2
+ k
)] Γ

(
d+ν

2

)
Γ
(
d+ν

2
+ k
) Γ
(
r(d+ν−2)+(d+ν)

2
+ (r + 1)k

)
Γ
(
r(d+ν−2)+(d+ν)

2
+ rk

) .

(c) In the Beta prime model with parameter ν > 0, for all 0 ≤ k < ν
2
, it holds that

E
[
(r!Vd,r)2k

]
=

r∏
j=1

[
Γ
(
d−r+j

2
+ k
)

Γ
(
d−r+j

2

) Γ
(
ν
2
− k
)

Γ
(
ν
2

) ]
Γ
(
ν
2
− k
)

Γ
(
ν
2

) Γ
(

(r+1)ν
2
− rk

)
Γ
(

(r+1)ν
2
− (r + 1)k

) .
(d) In the spherical model, for all k ≥ 0, it holds that

E
[
(r!Vd,r)2k

]
=

r∏
j=1

[
Γ
(
d−r+j

2
+ k
)

Γ
(
d−r+j

2

) Γ
(
d
2

)
Γ
(
d
2

+ k
)] Γ

(
d
2

)
Γ
(
d
2

+ k
) Γ
(
r(d−2)+d

2
+ (r + 1)k

)
Γ
(
r(d−2)+d

2
+ rk

) .

Proof. Moments of integer orders can be computed by using the linear Blaschke-

Petkantschin formula [119, Theorem 7.2.1] from integral geometry, together with an

induction argument. Using this technique, as an example, [119, Theorem 8.2.3] provides

a detailed proof in the spherical model. In particular, formula (a) is [101, Equation

(70)], formula (b) is [101, Equation (74)] and formula (c) is [101, Equation (72)]. Fi-

nally, formula (d) is obtained from (b) by letting ν → 0. Note that the formula in

[101] contains a typo, which is corrected, for example, in [28]. On the other hand,

Miles [101] considers only integer moments. Extensions to non-integer moments for all

four models can be found in [80].
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Remark 4.1.3 Observe that the moments in the spherical case can be obtained from

the ones in the Beta model by taking ν = 0 there. Since the proofs of our limit theorems

are based on the formulas for the moments, we may and will consider the spherical and

the Beta model together, the former being the special case of the latter with ν = 0.

4.1.3 Distributions

A random variable has a Gamma distribution with shape α > 0 and scale λ > 0, if its

density is

g(t) =
λα

Γ(α)
tα−1 e−λt, t ≥ 0.

Especially, if α = a
2
, for some a ∈ N, and λ = 1

2
, we speak about a χ2 distribution with

a degrees of freedom. Moreover, a random variable has a Beta distribution or Beta

prime distribution with parameter α1, α2 > 0, if its density is

g(t) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
tα1−1 (1− t)α2−1, t ∈ (0, 1),

or

g(t) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
tα1−1 (1 + t)−α1−α2 , t > 0,

respectively. We denote by χ2
a, respectively Γα,λ, βα1,α2 , β

′
α1,α2

, a random variable with

χ2 distribution with a ∈ N degrees of freedom and the Gamma, Beta or Beta prime

distribution with corresponding parameter, respectively. We use the notation X
D∼

Beta(α1, α2) or X
D∼ Beta′(α1, α2) to indicate that a random variable X has a Beta or

a Beta prime distribution with parameter α1 and α2, respectively. Furthermore, the

moments of order k ≥ 0 of these distributions are given by

E[χ2k
a ] = 2k

Γ
(
a
2

+ k
)

Γ
(
a
2

) , E[(βα1,α2)k] =
Γ(α1 + α2)Γ(α1 + k)

Γ(α1)Γ(α1 + α2 + k)
,

and

E[(β′α1,α2
)k] =

Γ(α1 + k)Γ(α2 − k)

Γ(α1)Γ(α2)
,

(see [79, Page 168], [78, Page 40] and [78, Page 87]), respectively.
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The distribution of the volume of a random simplex generated by one of the four models

under consideration can be derived from Theorem 4.1.2.

Theorem 4.1.4 (Distributions for simplices) Let Vd,r denote the volume of the r-

dimensional simplex with vertices X1, . . . , Xr+1, chosen according to the one of the

above four models.

(a) In the Gaussian model, we have

(r!Vd,r)2 D∼ (r + 1)
r∏
j=1

χ2
d−r+j.

(b) In the Beta model, we have

ξ (1− ξ)r (r!Vd,r)2 D∼ (1− η)r
r∏
j=1

β d−r+j
2

, ν+r−j
2
,

where ξ, η
D∼ Beta(d+ν

2
, r(d+ν−2)

2
) are independent random variables such that ξ is

independent of Vd,r, while η is independent of β d−r+j
2

, ν+r−j
2

, j = 1, . . . , r.

(c) In the Beta prime model, we have

(1 + η)r (r!Vd,r)2 D∼ ξ−1(1 + ξ)r+1

r∏
k=1

β′d−r+j
2

, ν
2

,

where ξ, η
D∼ Beta′(ν

2
, rν

2
) are independent random variables such that η is inde-

pendent of Vd,r, while ξ is independent of β′d−r+j
2

, ν
2

, j = 1, . . . , r.

(d) In the spherical model, we have

ξ (1− ξ)r (r!Vd,r)2 D∼ (1− η)r
r∏
j=1

β d−r+j
2

, r−j
2
,

where ξ, η ∼ Beta(d
2
, r(d−2)

2
) are independent random variables such that ξ is

independent of Vd,r, while η is independent of β d−r+j
2

, r−j
2

, j = 1, . . . , r.
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Proof. The assertion in (a) follows directly from Theorem 4.1.2 (a), combined with the

fact that the k-th moment of a χ2
d−r+j random variable is given by

2
k
2

Γ
(
d−r+j

2
+ k

2

)
Γ(d−r+j

2
)

.

To prove (b), we define α1 := d+ν
2

and α2 := r(d+ν−2)
2

. Since ξ, η
D∼ Beta(α1, α2),

E[(1− η)rk] =
1

B(α1, α2)

1∫
0

xα1−1(1− x)α2+rk−1 dx =
B(α1, α2 + rk)

B(α1, α2)
,

and

E[ξk(1− ξ)rk] =
1

B(α1, α2)

1∫
0

xα1+k−1(1− x)α2+rk−1 dx =
B(α1 + k, α2 + rk)

B(α1, α2)
,

where we recall from Section 2.3 that B(x, y) is the Beta function. This implies that

E[(1− η)rk]

E[ξk(1− ξ)rk]
=

B(α1, α2 + rk)

B(α1 + k, α2 + rk)
=

Γ(α1 + α2 + (r + 1)k)Γ(α1)

Γ(α1 + k)Γ(α1 + α2 + rk)

=
Γ
(
r(d+ν−2)+(d+ν)

2
+ (r + 1)k

)
Γ
(
d+ν

2

)
Γ
(
d+ν

2
+ k
)

Γ
(
r(d+ν−2)+(d+ν)

2
+ rk

) .

This is precisely the last factor in the formula for the moments (see Theorem 4.1.2 (b)).

Next, we consider (c). Since ξ, η
D∼ Beta′(α1, α2) with α1 = ν

2
and α2 = rν

2
, we apply

(2.11) to obtain

E[(1 + η)rk] =
1

B(α1, α2)

∞∫
0

xα1−1 (1 + x)−α1−(α2−rk) dx =
B(α1, α2 − rk)

B(α1, α2)
,

and

E
[
ξ−k(1 + ξ)(r+1)k

]
=

1

B(α1, α2)

∞∫
0

xα1−k−1 (1 + x)−α1−(α2−(r+1)k) dx

=
B(α1 − k, α2 − rk)

B(α1, α2)
.
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It follows that

E
[
ξ−k(1 + ξ)(r+1)k

]
E[(1 + η)rk]

=
B(α1 − k, α2 − rk)

B(α1, α2 − rk)
=

Γ(α1 − k)Γ(α1 + α2 − rk)

Γ(α1 + α2 − (r + 1)k)Γ(α1)

=
Γ
(
ν
2
− k
)

Γ
(
ν
2

) Γ
(

(r+1)ν
2
− rk

)
Γ
(

(r+1)ν
2
− (r + 1)k

) ,
which is exactly the last factor in the formula for the moments given by Theorem 4.1.2

(c). The assertion in (d) follows as a limit case from that in (b), as ν ↓ 0.

Remark 4.1.5 The distributional equality in Theorem 4.1.4 (a) has already been

noted by Miles [101, Section 13]. The other probabilistic representations in (b)–(d)

seem to be new.

4.2 Cumulants

Here, we concentrate on the Gaussian, the Beta and the spherical model, for which the

random variables Vd,r admit finite moments of all orders for any d ∈ N and r ≤ d.

4.2.1 Cumulant estimates

Let us define the random variables

Ld,r := log(r!Vd,r),

and

L̃d,r :=
Ld,r − E[Ld,r]√

var [Ld,r]
.

Theorem 4.2.1 Let r ≤ d be an integer and X1, . . . , Xr+1 be chosen according to one

of the four models presented above, and let α ∈ (0, 1). Then, the following assertions

are true:
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(a) For the Gaussian model, we have

E[Ld,r] ∼
r

2
log d and var[Ld,r] ∼


1
2
r
d

: r = o(d)

1
2

log 1
1−α : r ∼ αd

1
2

log d
d−r+1

: d− r = o(d),

as d→∞. Moreover, for all k ≥ 3,

|ck[Ld,r]| ≤

ck1 (k − 1)! r d1−k : r = o(d) or r ∼ αd

2 (k − 1)! : for arbitrary r(d),

where c1 ∈ (0,∞) is a constant not depending on d and k. Thus, for all k ≥ 3

and sufficiently large d,

|ck[L̃d,r]| ≤


ck1 (k − 1)!

(
1√
rd

)k−2

: r = o(d) or r ∼ αd

ck2 (k − 1)!

(
1√

log d
d−r+1

)k
: d− r = o(d),

where c1, c2 ∈ (0,∞) are constants not depending on d and k.

(b) For the Beta model and the spherical model, we have

var[Ld,r] ∼
1

2
log

d

d− r
− r2

2d(r + 1)
∼

1
2

(
log 1

1−α − α
)

: r ∼ αd

1
2

log d
d−r+1

: d− r = o(d),

as d→∞. Furthermore, for all k ≥ 3 and d ≥ 4,

|ck[Ld,r]| ≤

ck1 k! r d1−k : r = o(d) or r ∼ αd

2 4k k! : for arbitrary r(d),

where c1 ∈ (0,∞) is a constant not depending on d and k. Thus, for all k ≥ 3

and sufficiently large d,

|ck[L̃d,r]| ≤


ck1 k!

(
1
d

)k−2
: r ∼ αd

ck2 k!

(
1√

log d
d−r+1

)k−2

: d− r = o(d),

where c1, c2 ∈ (0,∞) are constants not depending on d and k.
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The proof of Theorem 4.2.1 is to some extent canonical and roughly follows the method

used in [38]. In particular, it is based on an asymptotic analysis of the digamma

function

ψ(z) = ψ(0)(z) :=
d

dz
log Γ(z),

and the polygamma functions

ψ(k)(z) :=
dk

dzk
ψ(z) =

dk+1

dzk+1
log Γ(z), k ∈ N,

whose properties have been analyzed in detail in Section 2.3.

Since the moments of Vd,r involve the same product of fractions of Gamma functions,

we prepare the proof of Theorem 4.2.1 with the following lemma. We define

Sd,r(z) :=
r∑
j=1

[
log Γ

(
d− r + j + z

2

)
− log Γ

(
d− r + j

2

)]
,

where z > 0.

Lemma 4.2.2 (a) If r = o(d), as d→∞, we have

dk

dzk
Sd,r(z)

∣∣∣
z=0
∼

 r
2

log d : k = 1

(−1)k

2
(k − 2)! r d−(k−1) : k ≥ 2.

(b) If r ∼ αd, for some α ∈ (0, 1), as d→∞, we have

dk

dzk
Sd,r(z)

∣∣∣
z=0
∼


αd
2

log d : k = 1

1
2

log 1
1−α : k = 2

(−1)k

2

(
1

(1−α)k−2 − 1
)

(k − 3)! d−(k−2) : k ≥ 3.

(c) If d− r = o(d), as d→∞, we have

dk

dzk
Sd,r(z)

∣∣∣
z=0
∼

d
2

log d : k = 1

1
2

log d
d−r+1

: k = 2.
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(d) For k ≥ 2, and if r = o(d) or r ∼ αd, α ∈ (0, 1), there is a constant c ∈ (0,∞)

which may depends on α (but does not depend on d and k) such that∣∣∣∣ dk

dzk
Sd,r(z)

∣∣∣
z=0

∣∣∣∣ ≤ ck (k − 1)! r d−(k−1).

(e) Finally, for k ≥ 3 and without any conditions on r, we have∣∣∣∣ dk

dzk
Sd,r(z)

∣∣∣
z=0

∣∣∣∣ ≤ 2 (k − 1)!.

Proof. Let us prove (a), (b) and (c) for k = 1. We have

d

dz
Sd,r(z)

∣∣∣
z=0

=
1

2

r∑
j=1

ψ

(
d− r + j

2

)
=

1

2

d∑
j=1

ψ

(
j

2

)
− 1

2

d−r∑
j=1

ψ

(
j

2

)
,

and all three statements follow from (2.21). Next, we prove (a), (b) and (c) for k ≥ 2.

We have
dk

dzk
Sd,r(z)

∣∣∣
z=0

=
1

2k

r∑
j=1

ψ(k−1)

(
d− r + j

2

)
.

We can conclude (a) by using (2.19). To prove (b) for k = 2, apply (2.22) to get

d2

dz2
Sd,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
d− r + j

2

)
=

1

2
log d+ c1 −

1

2
log(d− r)− c1 + o(1)

=
1

2
log

d

d− r
+ o(1) ∼ 1

2
log

1

1− α
,

as d→∞. To prove (b) for k ≥ 3, note that for r ∼ αd, using (2.19),

1

2k

r∑
j=1

ψ(k−1)

(
d− r + j

2

)
=

1

2k

d∑
j=d−r+1

ψ(k−1)

(
j

2

)

∼ 1

2k

d∑
j=d−r+1

(−1)k−2(k − 2)!(
j
2

)k−1
=

(−1)k (k − 2)!

2

[
d∑
j=1

1

jk−1
−

d−r∑
j=1

1

jk−1

]

∼ (−1)k (k − 2)!

2

[
ζ(k − 1)− 1

(k − 2)dk−2
− ζ(k − 1) +

1

(k − 2)(d− r)k−2

]
∼ (−1)k(k − 3)!

2 · dk−2

(
1

(1− α)k−2
− 1

)
,

as d→∞, where we used (2.15) to deal with the ζ-function.
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Finally, to prove (c) for k = 2, use the formula

1

4

r∑
j=1

ψ(1)

(
d− r + j

2

)
=

1

2
log d+O(1),

as d→∞, following from (2.22), to get

d2

dz2
Sd,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
d− r + j

2

)
=

1

2
log d+O(1)− 1

2
log(d− r + 1)−O(1)

=
1

2
log

d

d− r + 1
+O(1) ∼ 1

2
log

d

d− r + 1
,

as d→∞, since d
d−r+1

→∞. We added the term +1 to make the formula work in the

case r = d, too. Let us prove (d). Observe that the function

|ψ(k−1)(z)| =
∞∑
j=0

(k − 1)!

(z + j)k
,

(see (2.17)), is decreasing. Thus, we can write∣∣∣∣ dk

dzk
Sd,r(z)

∣∣∣
z=0

∣∣∣∣ =
1

2k

r∑
j=1

∣∣∣∣ψ(k−1)

(
d− r + j

2

)∣∣∣∣ ≤ r

2k

∣∣∣∣ψ(k−1)

(
d− r + 1

2

)∣∣∣∣ ,
and the claim follows from the estimate

|ψ(k−1)(z)| ≤ 2 (k − 1)! z1−k, (4.1)

z ≥ 1, which is a consequence of (2.20). Let us prove (e). If k ≥ 3 and r is arbitrary,

we see from (2.17) that the function ψ(k−1)(z), z > 0, has the same sign as (−1)k.

Hence,

∣∣∣∣ dk

dzk
Sd,r(z)

∣∣∣
z=0

∣∣∣∣ =
1

2k

r∑
j=1

∣∣∣∣ψ(k−1)

(
d− r + j

2

)∣∣∣∣ ≤ 1

2k

d∑
j=1

∣∣∣∣ψ(k−1)

(
j

2

)∣∣∣∣ .
Then, the result follows in view of inequality (2.23). Thus, the proof is complete.

Proof of Theorem 4.2.1. Denote the moment generating function of Ld,r = log(r!Vd,r)
by

Md,r(z) := E[exp(zLd,r)] = E[(r!Vd,r)z], z ≥ 0.
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We start with the Gaussian model. Recalling the moment formula from Theorem 4.1.2

(a), we see that

logMd,r(z) = Sd,r(z) +
z

2
log(r + 1) +

zr

2
log 2.

Hence,

dk

dzk
logMd,r(z) =

dk

dzk
Sd,r(z) + 1(k = 1)

1

2
log(r + 1) + 1(k = 1)

r

2
log 2,

for all k ∈ N. Taking z = 0, it follows that

ck[Ld,r] =
dk

dzk
Sd,r(z)

∣∣∣
z=0

+ 1(k = 1)
1

2
log(r + 1) + 1(k = 1)

r

2
log 2.

By using Lemma 4.2.2, we immediately get the required asymptotic formula for E[Ld,r] =

c1[Ld,r] and var[Ld,r] = c2[Ld,r]. The estimates for the cumulants ck[Ld,r], k ≥ 3, follow

from Lemma 4.2.2 (d),(e).

Next, we consider the Beta model and prove part (b) of the theorem. Recalling the

moment formula from Theorem 4.1.2 (b) and denoting by Md,r(z) again the moment

generating function of Ld,r, we get that

logMd,r(z)

= Sd,r(z) + log Γ

(
r(d+ ν − 2) + (d+ ν)

2
+

(r + 1)z

2

)
+ (r + 1) log Γ

(
d+ ν

2

)
− log Γ

(
r(d+ ν − 2) + (d+ ν)

2
+
rz

2

)
− (r + 1) log Γ

(
d+ ν

2
+
z

2

)
.

It follows that, for k ∈ N,

dk

dzk
logMd,r(z)

=
dk

dzk
Sd,r(z) +

(
r + 1

2

)k
ψ(k−1)

(
r(d+ ν − 2) + (d+ ν)

2
+

(r + 1)z

2

)
−
(r

2

)k
ψ(k−1)

(
r(d+ ν − 2) + (d+ ν)

2
+
rz

2

)
− r + 1

2k
ψ(k−1)

(
d+ ν

2
+
z

2

)
.

(4.2)
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Taking z = 0, we obtain

ck[Ld,r] =
dk

dzk
Sd,r(z)

∣∣∣
z=0

+

(
r + 1

2

)k
ψ(k−1)

(
r(d+ ν − 2) + (d+ ν)

2

)
−
(r

2

)k
ψ(k−1)

(
r(d+ ν − 2) + (d+ ν)

2

)
− r + 1

2k
ψ(k−1)

(
d+ ν

2

)
.

(4.3)

Let us compute the asymptotic of var[Ld,r] = c2[Ld,r] in the case that r ∼ αd. First of

all, by using (2.19) in the case that k = 1, we obtain

d2

dz2
Sd,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
d− r + j

2

)

=
1

4

r∑
j=1

2

d− r + j
+O

( r
d2

)
=
Hd −Hd−r

2
+O

( r
d2

)
,

as d→∞, where Hd is the d-th harmonic number. By using (2.16), we arrive at

d2

dz2
Sd,r(z)

∣∣∣
z=0

=
1

2
log

d

d− r
+

1

4

(
1

d
− 1

d− r

)
+O

(
1

d2

)
+O

( r
d2

)
=

1

2
log

d

d− r
+O

( r
d2

)
,

as d→∞. On the other hand, using (2.19) for k = 1, it follows that

ψ(1)
(r(d+ ν − 2) + (d+ ν)

2

)
=

2

d(r + 1) +O(r)
+O

(
1

d2r2

)
=

2

d(r + 1)
+O

(
1

d2r

)
,

and

ψ(1)

(
d+ ν

2

)
=

2

d
+O

(
1

d2

)
,

as d→∞. Recalling (4.3) and combining the previous estimates, as d→∞,

var[Ld,r] =
1

2
log

d

d− r
+

2r + 1

4

2

d(r + 1)
− r + 1

4

2

d
+O

( r
d2

)
=

1

2
log

d

d− r
− r2

2d(r + 1)
+O

( r
d2

)
.

(4.4)
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In the case that r ∼ αd, we evidently have

lim
d→∞

var[Ld,r] =
1

2
log

1

1− α
− α

2
.

Let us now compute the asymptotic of var[Ld,r] = c2[Ld,r] in the case that d−r = o(d).

By using once more (2.19) in the case that k = 1, we obtain

d2

dz2
Sd,r(z)

∣∣∣
z=0

=
1

4

r∑
j=1

ψ(1)

(
d− r + j

2

)
=
Hd −Hd−r

2
+O

(
1

d

)
,

as d→∞. Applying the formulas Hd = log d+O(1) and Hd−r = log(d− r+ 1) +O(1),

following directly from (2.16) (where +1 is needed to make the expression well-defined

in the case that r = d, too), we arrive at

d2

dz2
Sd,r(z)

∣∣∣
z=0

=
1

2
log

d

d− r + 1
+O(1),

as d→∞. By the formula ψ(1)(z) = O(1/z), as z →∞, implied by (2.19), we have

ψ(1)
(r(d+ ν − 2) + (d+ ν)

2

)
= O

(
1

d2

)
,

and

ψ(1)

(
d+ ν

2

)
= O

(
1

d

)
,

as d→∞. Plugging everything into (4.3) yields

var[Ld,r] = c2[Ld,r] =
1

2
log

d

d− r + 1
+O(1) ∼ 1

2
log

d

d− r + 1
,

as d→∞, because d
d−r+1

→∞, proving the required asymptotic of the variance.

Next, we prove the bounds on the cumulants assuming that r = o(d) or r ∼ αd. Recall

from Lemma 4.2.2 (d) the estimate∣∣∣∣ dk

dzk
Sd,r(z)

∣∣∣
z=0

∣∣∣∣ ≤ ck (k − 1)! r d−(k−1).

Further, since ν ≥ 0, we have

r(d+ ν − 2) + (d+ ν)

2
≥ r(d− 2)

2
.
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Since the function |ψ(k−1)(z)| is non-increasing, we have, by using (4.1), that∣∣∣∣ψ(k−1)

(
r(d+ ν − 2) + (d+ ν)

2

)∣∣∣∣ ≤ ∣∣∣∣ψ(k−1)

(
r(d− 2)

2

)∣∣∣∣
≤ 2k (k − 1)! r1−k (d− 2)1−k.

By the mean value theorem, we also have

(r + 1)k − rk ≤ k (r + 1)k−1.

Hence,

(r + 1)k − rk

2k

∣∣∣∣ψ(k−1)

(
r(d+ ν − 2) + (d+ ν)

2

)∣∣∣∣ ≤ k!

(
r + 1

r

)k−1

(d− 2)1−k

≤ 4k k! d1−k,

because d− 2 ≥ d/2, for d ≥ 4. Similarly, by the non-increasing property of |ψ(k−1)(z)|
and (4.1), we have

r + 1

2k

∣∣∣∣ψ(k−1)

(
d+ ν

2

)∣∣∣∣ ≤ r + 1

2k

∣∣∣∣ψ(k−1)

(
d

2

)∣∣∣∣ ≤ 2 r (k − 1)! d1−k,

since r + 1 ≤ 2r. Recalling (4.3) and combining the above estimates, we arrive at the

required bound

|ck[Ld,r]| ≤ ck k! r d1−k.

To prove the bound |ck[Ld,r]| ≤ 2 4k k!, without restrictions on r(d), we argue as above,

except for using Lemma 4.2.2 (e) to bound the derivative of Sd,r, that is,

|ck[Ld,r]| ≤ 2 (k − 1)! + 4k k! d1−k + 2 r (k − 1)! d1−k ≤ 2 4k k!.

Finally, we consider the spherical model. Since the results for the Beta model are

independent of the parameter ν, they carry over to the spherical model, appearing as

a limiting case, as ν ↓ 0.

The cumulant bounds of the normalized random variables L̃d,r follow by applying the

obtained cumulant bound in combination with the variance estimates.
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4.2.2 Implications of the cumulant bound

By using the cumulant bounds stated above in conjunction with Theorem 2.4.3 from

Section 2.4, we are able to derive a list of companion results. Recall that

Φ(y) := (2π)−
1
2

y∫
−∞

e−
t2

2 dt, y ∈ R,

is the distribution function of a standard Gaussian random variable. We start with

the Gaussian model. The following theorem includes a central limit theorem with

corresponding Berry-Esseen bound (part (a)), an estimate on the relative error in the

central limit theorem (part (b)), a moderate deviation principle (part (c)), as well as a

concentration inequality (part (d)) for the log-volume of the Gaussian simplex, that is,

L̃d,r =
Ld,r − E[Ld,r]√

var[Ld,r]
.

Theorem 4.2.3 Let r ≤ d be an integer and X1, . . . , Xr+1 be chosen according to the

Gaussian model. Define

εd :=


1√
rd

: r = o(d) or r ∼ αd

1√
log d

d−r+1

: d− r = o(d),

where α ∈ (0, 1). Then, the following assertions are true:

(a) For sufficiently large d, we have the Berry-Esseen bound

sup
y∈R

∣∣∣P(L̃d,r ≤ y
)
− Φ(y)

∣∣∣ ≤ c1 εd,

where c1 ∈ (0,∞) is a constant not depending on d.

(b) For sufficiently large d, there exist constants c1, c2, c3 ∈ (0,∞) not depending on

d such that ∣∣∣∣∣ log
P
(
L̃d,r ≥ y

)
1− Φ(y)

∣∣∣∣∣ ≤ c1 (1 + y3) εd,
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and ∣∣∣∣∣ log
P
(
L̃d,r ≤ −y

)
Φ(−y)

∣∣∣∣∣ ≤ c2 (1 + y3) εd,

for all 0 ≤ y ≤ c3 ε
−1
d .

(c) Let (ad)d∈N be a sequence of real numbers such that

lim
d→∞

ad =∞ and lim
d→∞

ad εd = 0.

Then, the family (
1

ad
L̃d,r

)
d>0

satisfies a moderate deviation principle on R with speed a2
d and rate function

I(x) = x2

2
.

(d) For sufficiently large d, it holds that

P
(
|Ld,r − E[Ld,r]| ≥ y

√
var[Ld,r]

)
≤ 2 exp

(
− 1

4
min

{y2

2
, c1 ε

−1
d y

})
,

where c1 ∈ (0,∞) is a constant not depending on d.

Proof. The proofs of the four statements follow directly by applying the cumulant

bounds for the normalized random variables L̃d,r from Theorem 4.2.1 there to Theorem

2.4.3 in Section 2.4.

In the Beta and the spherical case, we get a similar result. The difference is in the

definition of the parameter εd in the regimes of r. Unfortunately, we do not get the

results in the case that r = o(d) (see also Remark 4.2.5).

Theorem 4.2.4 Let r ≤ d be an integer and X1, . . . , Xr+1 be chosen according to the

Beta or the spherical model. Define

εd :=


1
d

: r ∼ αd

1√
log d

d−r+1

: d− r = o(d),

where α ∈ (0, 1). Then, the following assertions are true:
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(a) For sufficiently large d, we have the Berry-Esseen bound

sup
y∈R

∣∣∣P(L̃d,r ≤ y
)
− Φ(y)

∣∣∣ ≤ c1 εd,

where c1 ∈ (0,∞) is a constant not depending on d.

(b) For sufficiently large d, there exist constants c1, c2, c3 ∈ (0,∞) not depending on

d such that ∣∣∣∣∣ log
P
(
L̃d,r ≥ y

)
1− Φ(y)

∣∣∣∣∣ ≤ c1 (1 + y3) εd,

and ∣∣∣∣∣ log
P
(
L̃d,r ≤ −y

)
Φ(−y)

∣∣∣∣∣ ≤ c2 (1 + y3) εd,

for all 0 ≤ y ≤ c3 ε
−1
d .

(c) Let (ad)d∈N be a sequence of real numbers such that

lim
d→∞

ad =∞ and lim
d→∞

ad εd = 0.

Then, the family (
1

ad
L̃d,r

)
d>0

satisfies a moderate deviation principle on R with speed a2
d and rate function

I(x) = x2

2
.

(d) For sufficiently large d, it holds that

P
(
|Ld,r − E[Ld,r]| ≥ y

√
var[Ld,r]

)
≤ 2 exp

(
− 1

4
min

{y2

2
, c1 ε

−1
d y

})
,

where c1 ∈ (0,∞) is a constant not depending on d.

Remark 4.2.5 Theorem 4.2.4 (a) does not yield a central limit theorem for L̃d,r, if

r = o(d). However, also in this case we still get the estimate (4.4). Now, since r = o(d),

log
d

d− r
≥ r

d
,
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so that, for sufficiently large d,

1

2
log

d

d− r
− r2

2d(r + 1)
≥ r

2d
− r2

2d(r + 1)
≥ r

2d(r + 1)
.

Thus, we have

r

d2
= o

(
1

2
log

d

d− r
− r2

2d(r + 1)

)
,

as d→∞, and we can conclude that

var[Ld,r] ∼
1

2
log

d

d− r
− r2

2d(r + 1)
≥ r

2d(r + 1)
,

as d→∞. This yields, for sufficiently large d,

|ck[L̃d,r]| ≤
ck1 k! r d1−k(

r
2d(r+1)

) k
2

≤ ck2 k! r d−
1
2

(k−2),

with constants c1, c2 ∈ (0,∞) not depending on d. Thus, |ck[L̃d,r]| → 0, as d → ∞,

for all k ≥ 4, and Theorem 2.4.4 implies asymptotic normality for L̃d,r also in the case

that r = o(d).

While, in the three cases r = o(d), r ∼ αd and d − r = o(d), we were able to derive

precise Berry-Esseen bounds by using cumulant bounds, we can state a ‘pure’ central

limit theorem for the log-volume in an even more general setup. The following result

can directly be concluded by extracting subsequences and, then, by applying the results

of Theorem 4.2.3, Theorem 4.2.4 and Remark 4.2.5, respectively.

Corollary 4.2.6 (Central limit theorem for the log-volume) Let r = r(d) be an ar-

bitrary sequence of integers such that r(d) ≤ d, for any d ∈ N. Further, let for each

d ∈ N, X1, . . . , Xr+1 be independent random points, chosen according to the Gaussian,

the Beta or the spherical model, and put Ld,r = log(r!Vd,r). Then,

Ld,r − E[Ld,r]√
var [Ld,r]

D−→ Z,

where Z
D∼ N(0, 1) is a standard Gaussian random variable.
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4.2.3 Central and non-central limit theorem

After having investigated asymptotic normality for the log-volume of a random simplex,

we turn now to its actual volume, that is, the random variable Vd,r itself.

Theorem 4.2.7 (Distributional limit theorem for the volume) Let X1, . . . , Xr+1 be

chosen according to the Gaussian model, the Beta model or the spherical model, and

let α ∈ (0, 1). Let Z
D∼ N(0, 1) be a standard Gaussian random variable.

1. If r = o(d), then, for suitable normalizing sequences ad,r and bd,r, as d→∞,

Vd,r − ad,r
bd,r

D−→ Z.

2. If r ∼ αd, for some α ∈ (0, 1), then, for a suitable normalizing sequence bd,r,

Vd,r
bd,r

D−→

e
√

1
2

log 1
1−α Z : in the Gaussian model

e
√

1
2

log 1
1−α−

α
2
Z : in the Beta or spherical model.

Remark 4.2.8 In the third case, i.e., d−r = o(d), there is no non-trivial distributional

limit theorem for the random variable Vd,r under affine rescaling. The reason is that

the variance of logVd,r tends to infinity in this case.

Proof of Theorem 4.2.7. From Corollary 4.2.6, we know that with the sequences cd,r :=

E [logVd,r] and c′d,r :=
√

var [logVd,r], it holds that

logVd,r − cd,r
c′d,r

D−→ Z,

as d → ∞. By the Skorokhod–Dudley lemma [81, Theorem 4.30], we can construct

random variables V∗d,r and Z∗ on a different probability space such that V∗d,r
D∼ Vd,r,

Z∗
D∼ Z and

Z∗d :=
logV∗d,r − cd,r

c′d,r
−→ Z∗ almost surely,

as d→∞. So, we have

V∗d,r = ec
′
d,rZ

∗
d+cd,r ,

where Z∗d → Z∗ almost surely, as d→∞.
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Consider first the Gaussian model in the case that r ∼ αd. Then, by Theorem 4.2.1

(a), we have

c′d,r =
√

var [logVd,r] ∼
√

1

2
log

1

1− α
,

as d→∞. With the aid of the Skorokhod–Dudley lemma, it follows that

V∗d,r
ecd,r

= ec
′
d,rZ

∗
d −→ e

√
1
2

log 1
1−α Z

∗
almost surely,

as d→∞. Passing back to the original probability space, we obtain the distributional

convergence
Vd,r
ecd,r

D−→ e
√

1
2

log 1
1−α Z .

The proof for the Beta or spherical model in the case that r ∼ αd is similar, only the

expression for the asymptotic variance being different.

Consider now the Gaussian model in the case that r = o(d). Then, by Theorem 4.2.1

(a),

c′d,r =
√

var [logVd,r] −→ 0,

as d → ∞. Using the asymptotic limx→0(ex − 1)/x = 1 and the Skorokhod–Dudley

lemma, we obtain

V∗d,r
e
cd,r − 1

c′d,r
=
ec
′
d,rZ

∗
d − 1

c′d,rZ
∗
d

· Z∗d −→ Z∗ almost surely,

as d → ∞. Passing back to the original probability space and taking bd,r = ecd,rc′d,r
and ad,r = ecd,r , we obtain the required distributional convergence. Again, the proof

for the Beta and the spherical model is in the same spirit.

4.3 Mod-φ convergence

The aim of the present section is to establish mod-φ convergence for the log-volumes of

the random simplices under consideration. Recall the definition of mod-φ convergence

from Section 2.7.

193



4.3. MOD-φ CONVERGENCE

4.3.1 The Gaussian model

In this section, we prove mod-φ convergence for the random variables Ld,r = log(r!Vd,r)
in the Gaussian model. The following theorem focuses on four different regimes for the

parameter r. First, the case where r is fixed is treated. Then, we turn to the full-

dimensional setting, that is, r = d. Thirdly, we investigate the case in which the

co-dimension of the simplex, that is, d− r, stays fixed, as d→∞. Finally, we consider

the case when the co-dimension of the random simplex goes to infinity. To streamline

our presentation, recall that G denotes the Barnes G-function (see Section 2.3) and

put

md :=
1

2

(
d log d− d+

1

2
log d+ log 2

3
2π

)
. (4.5)

Theorem 4.3.1 (a) Fix some r ∈ N. Then, as d→∞, the sequence

dYd,r := d

(
Ld,r −

r

2
log d− 1

2
log(r + 1)

)
converges in the mod-φ sense with η(t) = (t + 1) log(t + 1) − t and parameter

wd = rd
2

, namely,

lim
d→∞

E
[
etd(Ld,r− r2 log d− 1

2
log(r+1))

]
e
rd
2

((t+1) log(t+1)−t)
= (t+ 1)−

r(r+1)
4 ,

uniformly as long as t stays in any compact subset of C \ (−∞,−1). Thus, we

have mod-φ convergence modulo a tilted totally skewed 1-stable distribution (see

Theorem 2.7.3).

(b) Let r = d. Then, as d→∞, the sequence

Ld,d −md

converges in the mod-Gaussian sense, that is, η(t) = 1
2
t2, and parameter wd =

1
2

log d
2
, namely,

lim
d→∞

E
[
et(Ld,d−md)

]
e

1
4
t2 log d

2

=
G
(

1
2

)
G
(

1
2

+ t
2

)
G
(
1 + t

2

) ,
uniformly as long as t stays in any compact subset of C\{−1,−2, . . .}.
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(c) Let a ∈ N be fixed and take r = d− a. Then, as d→∞, the sequence

Ld,r −md

converges in the mod-Gaussian sense, that is, η(t) = 1
2
t2, and parameter wd =

1
2

log d
2
, namely,

lim
d→∞

E
[
et(Ld,r−md)

]
e

1
4
t2 log d

2

=
G
(
a+1

2

)
G
(
a+2

2

)
2
ta
2 G

(
a+1

2
+ t

2

)
G
(
a+2

2
+ t

2

) ,
uniformly as long as t stays in any compact subset of C\{−a− 1,−a− 2, . . .}.

(d) If r = r(d) is such that d− r = o(d), as d→∞, then, the sequence

Y∗d,r := Ld,r − (md −md−r)−
1

2
log

(r + 1)(d− r)
d

converges in the mod-Gaussian sense, that is, η(t) = 1
2
t2, and parameter wd =

1
2

log d
d−r , namely,

lim
d→∞

E
[
et(Ld,r−(md−md−r)− 1

2
log

(r+1)(d−r)
d )

]
e

1
4
t2 log d

d−r
= 1,

uniformly for all t ∈ C.

Remark 4.3.2 We notice that in the full dimensional case r = d, our random vari-

ables are equivalent to those considered in [17] and one can follow our result also from

their Theorem 5.1. Nevertheless, we decided to include our completely independent

and much shorter proof. The paper [17] deals with the determinant of certain random

matrix models and has a completely different focus. On the other hand, let us em-

phasize that even in this special case, the distributions appearing in [17] are in fact

different from (but very close to) those we obtain.

Proof. We start by proving (a). From the moment formula in Theorem 4.1.2 (a), we

obtain

E
[
etdLd,r

]
= (r + 1)

td
2 2

tdr
2

r∏
j=1

Γ
(

(t+1)d−r+j
2

)
Γ
(
d−r+j

2

) .

By using the asymptotic behavior of the Gamma function, stated in (2.13), we deduce
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that

r∏
j=1

Γ
(

(t+1)d−r+j
2

)
Γ
(
d−r+j

2

) ∼
r∏
j=1

e−
td
2

(
d

2

) td
2

(t+ 1)
(t+1)d

2
+ j−r−1

2

= e−
tdr
2

(
d

2

) rtd
2

(t+ 1)(
(t+1)d

2
− 1

2)r− r(r−1)
4 ,

(4.6)

as d→∞, since

r∑
j=1

j =
r2 + r

2
.

Thus, as d→∞,

E
[
etdLd,r

]
∼ (r + 1)

td
2 e−

tdr
2 d

tdr
2 (t+ 1)(

(t+1)d
2
− 1

2)r− r(r−1)
4 .

Taking the logarithm and subtracting r
2

log d and 1
2

log(r + 1), we conclude that

logE
[
etd(Ld,r− r2 log d− 1

2
log(r+1))

]
=
dr

2
((t+ 1) log(t+ 1)− t)− r(r + 1)

4
log(t+ 1) + o(1),

(4.7)

and part (a) follows. Let us prove (b). In view of Theorem 4.1.2 (a) and (2.26), we can

express the moment generating function of Ld,d in terms of the Barnes G-function as

E
[
etLd,d

]
= (d+ 1)

t
2 2

td
2

G
(

1
2

)
G
(
d+1

2

) G(1)

G
(
d+2

2

) G (d+1
2

+ t
2

)
G
(

1
2

+ t
2

) G
(
d+2

2
+ t

2

)
G
(
1 + t

2

) , (4.8)

where G(1) = 1. For the function

ψ(t) :=
G
(

1
2

)
G
(

1
2

+ t
2

)
G
(
1 + t

2

) , (4.9)

we have

logE
[
etLd,d

]
=
t

2
log(d+ 1) +

td

2
log 2 + logψ(t) + logG

(
d− 1

2
+
t

2
+ 1

)
− logG

(
d− 1

2
+ 1

)
+ logG

(
d

2
+
t

2
+ 1

)
− logG

(
d

2
+ 1

)
.
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Applying Lemma 2.3.5 two times and using

((d+ b) log(d+ b)− (d+ b))− (d log d− d) = b log d+ o(1),

as d→∞, where b ∈ (0,∞) is any constant, leads to

logE
[
etLd,d

]
=
t

2
log(d+ 1) +

td

2
log 2 + logψ(t)

+
t

2

(
d− 1

2
log

d− 1

2
− d− 1

2
+ log

√
2π

)
+
t2

8
log

d− 1

2

+
t

2

(
d

2
log

d

2
− d

2
+ log

√
2π

)
+
t2

8
log

d

2
+ o(1)

= logψ(t) +
t

2

(
d− 1

2
log

d− 1

2
− d− 1

2
−
(
d

2
log

d

2
− d

2

))
+
t

2

(
d log

d

2
− d+ log 2π + log(d+ 1) + d log 2

)
+
t2

4
log

d

2
+ o(1)

= logψ(t) +
t

2

(
−1

2
log

d

2
+ d log d− d+ log d+ log 2π

)
+
t2

4
log

d

2
+ o(1)

= logψ(t) +
t

2

(
d log d− d+

1

2
log d+ log 2

3
2π

)
+
t2

4
log

d

2
+ o(1),

(4.10)

as d → ∞. This completes the argument and proves (b). We turn to part (c). First,

we observe that Theorem 4.1.4 (a) implies the distributional representation

Ld,d −
1

2
log(d+ 1)

D∼
(
Ld−r,d−r −

1

2
log(d− r + 1)

)
+
(
L′d,r −

1

2
log(r + 1)

)
, (4.11)

where L′d,r is a copy of Ld,r, independent of Ld−r,d−r. Since d− r = a, this implies that

E
[
et(Ld,r−md)

]
=
E
[
et(Ld,d−md)

]
E [etLa,a ]

e
t
2

log(a+1) e
t
2

log d−a+1
d+1 .

Applying part (b) of this theorem to the numerator and (4.8) to the denominator, we

conclude that, as d→∞,

E
[
et(Ld,r−md)

]
∼

e
1
4
t2 log d

2
G( 1

2)
G( 1

2
+ t

2)G(1+ t
2)

(a+ 1)
t
2 2

ta
2

G( 1
2)

G(a+1
2 )

G(1)

G(a+2
2 )

G(a+1
2

+ t
2)

G( 1
2

+ t
2)

G(a+2
2

+ t
2)

G(1+ t
2)

(a+ 1)
t
2 .
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Finally, we prove (d). From part (b), we know that

lim
d→∞

E
[
et(Ld,d−md)

]
e

1
4
t2 log d

2

= lim
d→∞

E
[
et(Ld−r,d−r−md−r)

]
e

1
4
t2 log d−r

2

=
G
(

1
2

)
G
(

1
2

+ t
2

)
G
(
1 + t

2

) .
Using the distributional identity (4.11) yields that

E
[
et
(
Ld,r−(md−md−r)− 1

2
log

(r+1)(d−r+1)
d+1

)]
=

E
[
et(Ld,d−md)

]
E
[
et(Ld−r,d−r−md−r)

]
∼ e

1
4
t2 log d

2

e
1
4
t2 log d−r

2

= e
1
4
t2 log d

d−r ,

as d → ∞. This implies the claim after observing that, as d → ∞, log(d + 1) =

log d + o(1) and log(d − r + 1) = log(d − r) + o(1), respectively. Note also that if

d− r = o(d), then wd →∞, as d→∞, which is otherwise not the case.

By using Theorem 4.3.1 and the results presented in Section 2.7, we deduce the fol-

lowing companion results. Recall also the definition of a stable distributed random

variable from Section 2.7.

Theorem 4.3.3 (a) Fix some r ∈ N. Then,

2

r
Yd,r + log

rd

2

D−→ φπ
2
,1,−1,

as d → ∞, where φπ
2
,1,−1 indicates a stable distributed random variable with

parameter c = π
2
, α = 1 and β = −1. Moreover, for all xd = o(d

1
12 ), it holds that

P
(
Yd,r ≤ xd

√
r

2d

)
= Φ(xd) (1 + o(1)),

and, for all x > 0,

P
(
Yd,r ≥ x

r

2

)
=

exp(− rd
2

(ex − x− 1))

(ex − 1)
√
πrd e−x

e−
r(r+1)

4
x (1 + o(1)),

as d→∞.
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(b) Let a ∈ N0 be fixed and take r = d− a. Then, for all xd = o(
√

log d),

P

(
Ld,r −md ≤ xd

√
1

2
log

d

2

)
= Φ(xd) (1 + o(1)),

and, for all x > 0,

P
(
Ld,r −md ≥

x

2
log

d

2

)
=

exp(−x2

4
log d

2
)

x
√
π log d

2

G
(
a+1

2

)
G
(
a+2

2

)
2
xa
2 G

(
a+1

2
+ x

2

)
G
(
a+2

2
+ x

2

) (1 + o(1)),

as d→∞.

(c) If r = r(d) is such that d− r = o(d), as d→∞, then, for all xd = o(
√

log d),

P

(
Y∗d,r ≤ xd

√
1

2
log

d

d− r

)
= Φ(xd) (1 + o(1)),

and, for all x > 0,

P
(
Y∗d,r ≥

x

2
log

d

d− r

)
=

exp(−x2

4
log d

2
)

x
√
π log d

d−r

(1 + o(1)),

as d→∞.

Remark 4.3.4 Theorem 2.7.2 also yields rates of convergences in the central limit

theorems for the sequences Yd,r, Ld,r −md and Y∗d,r, analyzed in Theorem 4.3.3. We

refrain from stating them separately since they show exactly the same rates as the ones

in the corresponding parts of Theorem 4.2.3. Indeed, by using mod-φ convergence,

these rates have been calculated in [42, Theorem 6.13] (see also Remark 4.3.7).

Proof. We start by proving (a). The first statement follows from (2.32), since c = π
2
,

α = 1 and β = −1. The second and third one are direct consequences of Theorem

2.7.1, since wd = rd
2

,

ψ(t) = (t+ 1)−
r(r+1)

4 ,
d

dt
η(t) = log(t+ 1),

d2

dt2
η(t) =

1

t+ 1
and h = ex − 1,

as well as F (x) = sup
t∈R
{tx− η(t)} = ex − x− 1.
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Indeed, since η(t) = (t+ 1) log(t+ 1)− t, we have that

d

dt
[tx− ((t+ 1) log(t+ 1)− t)] = x− log(t+ 1).

Thus, for all x ∈ R, the supremum is attained at t = ex−1, which yields the claim. Now,

let us prove (b) and (c). Again, the assertions follow from the respective conditions on

wd, ψ(t) and η(t) from Theorem 4.3.1 (b), (c), (d), applied to Theorem 2.7.1.

4.3.2 The Beta and the spherical model

Now, we consider the Beta model with parameter ν > 0 or the spherical model (in

which case ν = 0). We establish mod-φ convergence in the same four regimes as in the

Gaussian setting in the foregoing section. Similarly as above, put

m̃d =
1

2

(
1

2
log d− d+ 1− ν + log 2

3
2π

)
. (4.12)

Theorem 4.3.5 (a) Fix some r ∈ N. Then, as d→∞, the sequence

dLd,r

converges in the mod-φ sense with

η(t) =
(r + 1)(t+ 1)

2
log((r + 1)(t+ 1))− r(t+ 1) + 1

2
log(r(t+ 1) + 1)

− t+ 1

2
log(t+ 1),

and parameter wd = d, namely,

lim
d→∞

E
[
etdLd,r

]
edη(t)

= (1 + t)
1−ν(r+1)

2
− r(r−1)

4

(
(r + 1)(t+ 1)

r(t+ 1) + 1

) ν(r+1)−2r−1
2

,

uniformly as long as t stays in any compact subset of C \ (−∞,−1).

(b) Let r = d. Then, as d→∞, the sequence

Ld,d − m̃d

converges in the mod-Gaussian sense, that is, η(t) = 1
2
t2,
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and parameter wd = 1
2

log d
2
− 1

2
, namely,

lim
d→∞

E
[
et(Ld,d−m̃d)

]
e

1
4
t2(log d

2
−1)

=
G
(

1
2

)
G
(

1
2

+ t
2

)
G
(
1 + t

2

) ,
uniformly as long as t stays in any compact subset of C\{−1,−2, . . .}.

(c) Let a ∈ N be fixed and take r = d− a, as d→∞. Then, as d→∞, the sequence

Ld,r − m̃d −
a

2
log

d

2

converges in the mod-Gaussian sense, that is, η(t) = 1
2
t2, and parameter wd =

1
2

log d
2
− 1

2
, namely,

lim
d→∞

E
[
et(Ld,r−m̃d−

a
2

log d
2

)
]

e
1
4
t2(log d

2
−1)

=
G
(
a+1

2

)
G
(
a+2

2

)
2
ta
2 G

(
a+1

2
+ t

2

)
G
(
a+2

2
+ t

2

) ,
uniformly as long as t stays in any compact subset of C\{−a− 1,−a− 2, . . .}.

(d) If r = r(d) is such that d− r = o(d), as d→∞, then, the sequence

Ld,r − (md −md−r −
r + 1

4d
(t− 2 + 2ν))− 1

2
log

(d− r)(1 + r)

d1+r

converges in the mod-Gaussian sense, that is, η(t) = 1
2
t2, and parameter wd =

1
2

log d
d−r , namely,

lim
d→∞

E
[
et
(
Ld,r−(md−md−r− r+1

4d
(t−2+2ν))− 1

2
log

(d−r)(1+r)

d1+r

)]
e

1
4
t2 log d

d−r
= 1,

uniformly for all t ∈ C.

Proof. We start by proving (a). From the moment formula in Theorem 4.1.2 (b),

E
[
etdLd,r

]
=

r∏
j=1

[
Γ
(
d−r+j

2
+ td

2

)
Γ
(
d−r+j

2

) Γ
(
d+ν

2

)
Γ
(
d+ν

2
+ td

2

)] Γ
(
d+ν

2

)
Γ
(
d+ν

2
+ td

2

) Γ
(
r(d+ν−2)+(d+ν)

2
+ (r+1)td

2

)
Γ
(
r(d+ν−2)+(d+ν)

2
+ rtd

2

) .
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First of all, by (2.13), it holds that

Γ
(
d+ν

2

)
Γ
(
d+ν

2
+ td

2

) ∼ (1 + t)
1
2
− ν

2
− (1+t)d

2

(
d

2

)− td
2

e
td
2 ,

as d→∞. It follows from (4.6) that the first product in the moment formula asymp-

totically behaves like

r∏
j=1

[
Γ
(
d−r+j

2
+ td

2

)
Γ
(
d−r+j

2

) Γ
(
d+ν

2

)
Γ
(
d+ν

2
+ td

2

)] ∼ (1 + t)−
rν
2
− r(r−1)

4 ,

as d→∞. Again, using (2.13), leads to, as d→∞,

Γ
(
r(d+ν−2)+(d+ν)

2
+ (r+1)td

2

)
Γ
(
r(d+ν−2)+(d+ν)

2
+ rtd

2

) ∼ ((r + 1)(t+ 1))
d(r+1)(t+1)

2
+
ν(r+1)−2r−1

2

(
d

2

) td
2

e−
td
2

× (r(t+ 1) + 1)−
d(r(t+1)+1)

2
− ν(r+1)−2r−1

2 .

Thus, as d→∞, we get

logE
[
etdLd,r

]
=

(
1− ν(r + 1)

2
− r(r − 1)

4
− (1 + t)d

2

)
log(1 + t)

+

(
d(r + 1)(t+ 1)

2
+
ν(r + 1)− 2r − 1

2

)
log((r + 1)(t+ 1))

−
(
d(r(t+ 1) + 1)

2
+
ν(r + 1)− 2r − 1

2

)
log(r(t+ 1) + 1) + o(1),

(4.13)

and the result of part (a) follows. Let us prove part (b). For the purpose of this

proof, let LG
d,d denote the Gaussian analogue of Ld,d. In view of the connection between

the Gaussian and the Beta model (see Theorem 4.1.2 (a),(b)), the moment generating

function of Ld,d is given by

logE
[
etLd,d

]
= logE

[
etL

G
d,d

]
− t

2
log(d+ 1)− td

2
log 2

+ (d+ 1) log

(
Γ
(
d+ν

2

)
Γ
(
d
2

+ ν+t
2

))+ log

Γ
(
d(d+ν−1)+dt+t+ν

2

)
Γ
(
d(d+ν−1)+nt+ν

2

)
 .
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Using the asymptotic relation (2.14) implies that

(d+ 1) log

(
Γ
(
d+ν

2

)
Γ
(
d
2

+ ν+t
2

)) =
(d+ 1)t

2
log

2

d
− t

4
(t− 2 + 2ν) + o(1),

and, similarly,

log

Γ
(
d(d+ν−1)+dt+t+ν

2

)
Γ
(
d(d+ν−1)+dt+ν

2

)
 = t log d− t

2
log 2 + o(1),

as d→∞. Denoting by ψ(t) the function defined in (4.9), and using (4.10), yields that

logE
[
etLd,d

]
= logψ(t) +

t

2

(
d log d− d+

1

2
log d+ log 2

3
2π

)
+
t2

4
log

d

2
− t

2
log(d+ 1)

− td

2
log 2 +

(d+ 1)t

2
log

2

d
− t

4
(t− 2 + 2ν) + t log d− t

2
log 2 + o(1)

= logψ(t) +
t

2

(
log d

(
d+

1

2
− 1− d− 1 + 2

)
− d+ log 2

3
2π + 1− ν

)
+
t

2
log 2 (d+ 1− d− 1) +

t2

4

(
log

d

2
− 1
)

+ o(1)

= logψ(t) +
t

2

(
1

2
log d− d+ log 2

3
2π + 1− ν

)
+
t2

4

(
log

d

2
− 1
)

+ o(1)

= logψ(t) + tm̃d +
t2

4

(
log

d

2
− 1
)

+ o(1),

as d → ∞. Thus, the proof of (b) is complete and we progress with (c). The com-

putations are similar to those in the proof of (b), but slightly more involved. Again,

we let LG
d,r be the Gaussian analogue of Ld,r. By Theorem 4.1.2 (a),(b), the moment

generating function of Ld,r is given by

logE
[
etLd,r

]
= logE

[
etL

G
d,r

]
− t

2
log(r + 1)− tr

2
log 2

+ (r + 1) log

(
Γ
(
d+ν

2

)
Γ
(
d
2

+ ν+t
2

))+ log

Γ
(
r(d+ν−2)+d+ν

2
+ (r+1)t

2

)
Γ
(
r(d+ν−2)+d+ν

2
+ rt

2

)
 .

(4.14)
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Using again (2.14) and r = d− a implies that

(r + 1) log

(
Γ
(
d+ν

2

)
Γ
(
d
2

+ ν+t
2

)) =
(d+ 1)t

2
log

2

d
− t

4
(t− 2 + 2ν) +

at

2
log

d

2
+ o(1),

and

log

Γ
(
r(d+ν−2)+d+ν

2
+ (r+1)t

2

)
Γ
(
r(d+ν−2)+d+ν

2
+ rt

2

)
 = t log d− t

2
log 2 + o(1),

as d → ∞. By using the behavior of LG
d,r, stated in Theorem 4.3.1 (c), we obtain, as

d→∞,

logE
[
etLd,r

]
= log

(
G
(
a+1

2

)
G
(
a+2

2

)
2
ta
2 G

(
a+1

2
+ t

2

)
G
(
a+2

2
+ t

2

))+ tmd +
t2

4
log

d

2
− t

2
log(r + 1)

− tr

2
log 2 +

(d+ 1)t

2
log

2

d
− t

4
(t− 2 + 2ν) +

at

2
log

d

2

+ t log d− t

2
log 2 + o(1)

= log

(
G
(
a+1

2

)
G
(
a+2

2

)
2
ta
2 G

(
a+1

2
+ t

2

)
G
(
a+2

2
+ t

2

))+
t2

4

(
log

d

2
− 1
)

+
at

2
log

d

2

+
t

2
(d log d− d+

1

2
log d+ log 2

3
2π − log d− r log 2

+ (d+ 1) log
2

d
+ 1− ν + 2 log d− log 2) + o(1)

= log

(
G
(
a+1

2

)
G
(
a+2

2

)
2
ta
2 G

(
a+1

2
+ t

2

)
G
(
a+2

2
+ t

2

))+ t m̃d +
t2

4

(
log

d

2
− 1
)

+
at

2
log

d

2
+ o(1),

which yields the claim of part (c) in view of the definition of m̃d. Finally, we arrive at

part (d). Observe that relation (4.14) still holds. Regarding to the first term in this

relation, we know from Theorem 4.3.1 (d) that, as d→∞,

logE
[
etL

G
d,r

]
= t(md −md−r) +

t

2
log

(r + 1)(d− r)
d

+
1

4
t2 log

d

d− r
+ o(1).
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Once more, (2.14) yields

(r + 1) log

(
Γ
(
d+ν

2

)
Γ
(
d
2

+ ν+t
2

)) = (r + 1)
t

2
log

2

d
− r + 1

d

t

4
(t− 2 + 2ν) + o

( r
d2

)
,

and

log

Γ
(
r(d+ν−2)+d+ν

2
+ (r+1)t

2

)
Γ
(
r(d+ν−2)+d+ν

2
+ rt

2

)
 =

t

2
log

(
r(d+ ν − 2) + d+ ν

2
+
rt

2

)
+ o(1)

=
t

2
log

(r + 1)d

2
+ o(1),

as d→∞. Combining these estimates implies that, as d→∞,

logE
[
etLd,r

]
= t(md −md−r) +

t

2
log

(r + 1)(d− r)
d

+
1

4
t2 log

d

d− r
− t

2
log(r + 1)− tr

2
log 2

+ (r + 1)
t

2
log

2

d
− r + 1

d

t

4
(t− 2 + 2ν) +

t

2
log

(r + 1)d

2
+ o(1)

= t

(
md −md−r −

r + 1

4d
(t− 2 + 2ν)

)
+
t

2
log

(d− r)(r + 1)

d1+r

+
1

4
t2 log

d

d− r
+ o(1).

This yields the claim, since wd = 1
2

log d
d−r → ∞, as d → ∞, by the assumption that

d− r = o(d).

Remark 4.3.6 We do not formulate the corresponding extended central limit theor-

ems, precise deviations and Berry-Esseen bounds in the Beta and the spherical model,

because these results can be stated similarly as in Theorem 4.3.3.
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Remark 4.3.7 In their paper, Eichelsbacher and Knichel [42] analyze positive random

variables X that fulfill, for all k in some interval,

E[Xk] = c1 c
k
2

r∏
j=1

Γ(βk + α(j + l))

Γ(α(j + l))
, (4.15)

where r ≤ d is allowed to depend on d, while c1, c2 ∈ (0,∞) are allowed to depend on

r and α ∈ (0,∞) is an absolute constant. Moreover, β ∈ (0,∞) is allowed to depend

on j and l ∈ (0,∞) may depends on d and r.

For this huge class of random variables, the authors use methods similar to those

applied in this section to derive mod-φ convergence in the regimes where

• r is fixed,

• r = d,

• d− r → 0,

• d− r = a, a ∈ N, and,

• d− r = o(d),

as d → ∞. Now, let Vd,r be the volume of the r-dimensional simplex with vertices

X1, . . . , Xr+1, r ≤ d, chosen according to the Gaussian model (see Section 4.1.1).

Then, by using (4.15) with X = r!Vd,r, c1 = 1, c2 = 2r(r+ 1), α = β = 1
2

and l = d− r,
we obtain that, for all k ≥ 0,

E
[
(r!Vd,r)k

]
= (r + 1)k

r∏
j=1

[
2k

Γ
(
d−r+j

2
+ k

2

)
Γ
(
d−r+j

2

) ]
,

that is, the moment formula presented in Theorem 4.1.2 (a). Similar choices of the

involved parameter recover also the moments in the Beta-, the Beta-prime and the

spherical model, respectively. In particular, the results presented in [42, Theorem 7.3

and Theorem 7.7] include our Theorem 4.3.1, as well as Theorem 4.3.5, as special cases.

Further, Eichelsbacher and Knichel extend our results by proving mod-φ convergence

also in the regime where d − r → 0, as d → ∞. On the other hand, while we are

able to state a central limit theorem with Berry-Esseen bound in the regimes where

r = o(d) and r ∼ αd, α ∈ (0, 1), by using the method of cumulants, such results are

not included in [42]. This due to the fact that there is no mod-φ convergence in the

latter mentioned regimes for the parameter r.
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4.4 Large deviations

The purpose of this section is to derive large deviation principles (recall the definition

in Section 2.5). Again, we restrict to the Gaussian, the Beta and the spherical model,

which admit finite moments of all orders.

4.4.1 The Gaussian model

We start with the Gaussian model and recall the notation Ld,r = log(r!Vd,r). By using

the Gärtner–Ellis theorem (see Theorem 2.5.2), we derive large deviation principles

from the following assertions.

Theorem 4.4.1 (a) Let r ∈ N be fixed. Then, we have

j1(t) : = lim
d→∞

1

rd
logE

[
etd(Ld,r− r2 log d− 1

2
log(r+1))

]
=

1
2
((t+ 1) log(t+ 1)− t) : t ≥ −1

+∞ : otherwise.

(b) Let r ∼ αd, α ∈ (0, 1), as d→∞. Then, we have

j2(t) : = lim
d→∞

1

αd2
logE

[
etd(Ld,r−αd2 (log d+log(1−α)))

]
=

2+2t−α
4

log 1+t−α
1−α −

t
2

: t ≥ α− 1

+∞ : otherwise.

(c) Let a ∈ N0 and assume that r = d− a, as d→∞, and md as in (4.5). Then, we

have

lim
d→∞

1
1
2

log d
2

logE
[
et(Ld,r−md)

]
=

1

2
t2, t ∈ R.

(d) Let r = r(d) be such that d− r = o(d), as d→∞. Then, we have

lim
d→∞

1
1
2

log d
d−r

logE
[
et
(
Ld,r−(md−md−r)− 1

2
log

(r+1)(d−r+1)
d+1

)]
=

1

2
t2, t ∈ R.
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Proof. For t ≥ −1, part (a) is a consequence of Theorem 4.3.1 (a). Now, recall from

Theorem 4.1.4 (a) that the distribution of Ld,r involves Gamma distributed random

variables Z
D∼ Γ d−r+j

2
, 1
2

with j ≤ r. Writing

E
[
e
td
2

logZ
]

= E
[
Z

td
2

]
= c

∞∫
0

z
d−r+j

2
+ td

2
−1 e−

x
2 dz,

where c ∈ (0,∞) is some absolute constant, we get that the exponent at z is less than

−1 for sufficiently large d, if t < −1. This implies that in this regime the expectation

tends to infinity and, thus, completes the proof of part (a).

The proofs of (c) and (d) directly follow from the proofs of Theorem 4.3.1 (b), (c), (d)

in the previous section, respectively.

We turn now to the case that r ∼ αd. Due to the asymptotic formula (2.13), we obtain

for all α ∈ (0, 1), t ≥ α− 1 and j ∈ N that

log

Γ
(

(1+t−α)d+j
2

)
Γ
(

(1−α)d+j
2

)


∼ log

exp(− (1+t−α)d
2

)
(

(1+t−α)d
2

) (1+t−α)d
2

+ j−1
2

exp(− (1−α)d
2

)
(

(1−α)d
2

) (1−α)d
2

+ j−1
2


= log

(
exp

(
−td

2

)(
d

2

) td
2 (1 + t− α)

(1+t−α)d
2

(1− α)
(1−α)d

2

(
1 + t− α

1− α

) j−1
2

)

= −td
2

+
td

2
log

d

2
+

(1 + t− α)d

2
log (1 + t− α)

− (1− α)d

2
log (1− α) +

j − 1

2
log

1 + t− α
1− α

,

as d→∞, and, thus,

1

αd2
logE

[
etdLd,r

]
=

1

αd2

[
td

2
log(αd+ 1) +

tαd2

2
log 2 +

αd∑
j=1

log

(
Γ
( (1+t−α)d+j

2

)
Γ
( (1−α)d+j

2

) )]

∼ − t
2

+
t

2
log d+

1 + t− α
2

log (1 + t− α)− 1− α
2

log (1− α) +
α

4
log

1 + t− α
1− α

= − t
2

+
t

2
log d+

2 + 2t− α
4

log (1 + t− α)− 2− α
4

log (1− α) .
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This yields the result in the case that r ∼ αd in view of the moment formula for Gaus-

sian simplices stated in Section 4.1.2. For t < α − 1, we obtain the result completely

similar as in the case where r is fixed, presented above.

We turn now to the large deviation principles for the log-volume of Gaussian simplices.

Theorem 4.4.2 (LDP for Gaussian simplices) (a) Let r ∈ N be fixed. Then, the

sequence

1

r

(
Ld,r −

r

2
log d− 1

2
log(r + 1)

)
satisfies a large deviation principle on R with speed rd and rate function

I(x) =
1

2
(e2x − 1)− x, x ∈ R.

(b) If r ∼ αd, α ∈ (0, 1), then, the sequence

1

αd

(
Ld,r −

αd

2
(log d+ log(1− α))

)
satisfies a large deviation principle on R with speed αd2 and rate function

I(x) = sup
t≥α−1

{tx− j2(t)} , x ∈ R,

where j2(t) is the function from Theorem 4.4.1 (b).

(c) Let a ∈ N0 and assume that r = d− a, as d→∞, and md as in (4.5). Then, the

sequence

1
1
2

log d
2

(Ld,r −md)

satisfies a large deviation principle on R with speed 1
2

log d
2

and rate function

I(x) =
1

2
x2, x ∈ R.
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(d) Let r = r(d) be such that d− r = o(d), as d→∞. Then, the sequence

1
1
2

log d
d−r

(
Ld,r − (md −md−r)−

1

2
log

(r + 1)(d− r + 1)

d+ 1

)

satisfies a large deviation principle on R with speed 1
2

log d
d−r and rate function

I(x) =
1

2
x2, x ∈ R.

Proof. Let r ∈ N be fixed. Then, by the Gärtner–Ellis theorem (see Section 2.5) and

Theorem 4.4.1 (a), the random variables 1
r
(Ld,r − r

2
log d− 1

2
log(r + 1)) satisfy a large

deviation principle with speed rd and rate function

I(x) = sup
t∈R

[
tx− 1

2
((t+ 1) log(t+ 1)− t)

]
, x ∈ R,

i.e., the Legendre-Fenchel transformation of the function f(t) := 1
2
((t+1) log(t+1)−t).

For each x ∈ R, the supremum is attained at t = e2x − 1, which yields the result of

(a) since the function 1
2
((t+ 1) log(t+ 1)− t) is lower-semicontinuous, differentiable on

(−1,∞) and satisfies

lim
t↓−1

∣∣∣∣ d

dt
f(t)

∣∣∣∣ = lim
t↓−1

∣∣∣∣12 log(t+ 1)

∣∣∣∣ =∞. (4.16)

Similar arguments imply the large deviation principles for the other regimes of r as

well.

4.4.2 The Beta and the spherical model

Now, we turn to the Beta model with parameter ν > 0 and the spherical model,

i.e., ν = 0, and recall that Ld,r = log(r!Vd,r), where Vd,r is the volume of the r-

dimensional simplex with vertices X1, . . . , Xr+1, chosen according to the Beta or the

spherical distribution, respectively. Similar to the Gaussian case, we start with the

following theorem that implies the large deviation principles.
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Theorem 4.4.3 (a) Let r ∈ N be fixed. Then, we have

j3(t) := lim
d→∞

1

d
logE

[
etdLd,r

]
=

η(t) : t ≥ −1

+∞ : otherwise,

where η(t) is the function from Theorem 4.3.5 (a).

(b) If r ∼ αd, α ∈ (0, 1), we have

j4(t) := lim
d→∞

1

αd2
logE

[
etdLd,r

]
=

η(t) : t ≥ α− 1

+∞ : otherwise,

where η(t) is the function given by

η(t) :=
2 + 2t− α

4
log (1 + t− α)− 2− α

4
log (1− α)− 1 + t

2
log(1 + t).

(c) Let a ∈ N0 and assume that r = d−a, as d→∞, and let m̃d as in (4.12). Then,

lim
d→∞

1
1
2
(log d

2
− 1)

logE
[
et(Ld,r−m̃d−

a
2

log d
2

)
]

=
1

2
t2, t ∈ R.

(d) Let r = r(d) be such that d− r = o(d), and let md as in (4.5). Then,

lim
d→∞

1
1
2

log d
d−r

logE
[
et
(
Ld,r−(md−md−r− r+1

4d
(t−2+2ν))− 1

2
log

(d−r)(1+r)

d1+r

)]
=

1

2
t2, t ∈ R.

Proof. For t ≥ −1, the assertion in (a) follows from Theorem 4.3.5 (a). Recall from

Theorem 4.1.4 (b), that the distribution of Vd,r involves Beta random variables Z
D∼

β ν+r−j
2

, d−r+j
2

with j ≤ r. Writing once more

E
[
e
td
2

logZ
]

= E
[
Z

td
2

]
= c

1∫
0

z
d−r+j

2
+ td

2
−1(1− z)

ν+r−j
2
−1 dz,

we see that the exponent at z is less than −1 for sufficiently large d, if t < −1. This

shows that the expected value tends to infinity and, thus, completes the proof of (a).
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Now, let us turn towards the case that r ∼ αd, α ∈ (0, 1). Similar to the Gaussian

setting, we obtain, by using the asymptotic formula (2.13), for all ν > 0, as d→∞,

(αd+ 1) log

(
Γ
(
d+ν

2

)
Γ
( (1+t)d+ν

2

))

∼ tαd2

2
− tαd2

2
log

d

2
− (1 + t)αd2 + αd(ν − 1)

2
log(1 + t),

and, for all t ≥ 0,

log

Γ
(
αd(d+ν−2)+d+td(αd+1)+ν

2

)
Γ
(
αd(d+ν−2)+d+tdαd+ν

2

)


∼ −td
2

+
td

2
log

d

2

+
αd(d+ ν − 2) + d+ td(αd+ 1) + ν

2
log (α(d+ ν − 2) + 1 + t(αd+ 1))

− αd(d+ ν − 2) + d+ tdαd+ ν

2
log (α(d+ ν − 2) + 1 + tαd) .

Thus, by using the calculations made in the Gaussian case above, we conclude that,

for t ≥ α− 1, as d→∞,

1

αd2
logE

[
etdLd,r

]
=

1

αd2

(αd+ 1) log

 Γ
(
d+ν

2

)
Γ
(

(1+t)d+ν
2

)


+ log

Γ
(
αd(d+ν−2)+d+td(αd+1)+ν

2

)
Γ
(
αd(d+ν−2)+d+tdαd+ν

2

)
+

αd∑
j=1

log

Γ
(

(1+t−α)d+j
2

)
Γ
(

(1−α)d+j
2

)


∼ t

2
− t

2
log

d

2
− 1 + t

2
log(1 + t) +

1 + t

2
log (α(d+ ν − 2) + 1 + t(αd+ 1))

− 1 + t

2
log (α(d+ ν − 2) + 1 + tαd)− t

2
+
t

2
log

d

2

+
2 + 2t− α

4
log (1 + t− α)− 2− α

4
log (1− α)

∼ −1 + t

2
log(1 + t) +

2 + 2t− α
4

log (1 + t− α)− 2− α
4

log (1− α) .

This directly yields the result in the case where r ∼ αd, taking into account the moment

representation in the Beta model stated in Section 4.1.2.
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For t < α−1, we conclude the result similarly as above in the case that r = o(d). Since

there is no dependence on the parameter ν in the result concerning the Beta model,

the one regarding to the spherical model is implied by considering the limiting case

ν ↓ 0, as seen several times before.

The proofs of (c) and (d) directly follow from the proofs of Theorem 4.4.3 (b), (c), (d)

in the previous section, respectively.

Now, we are able to state the large deviation principles for the Beta and the spherical

model. Their proofs follow the same lines as the ones in the Gaussian case, using again

the Gärtner–Ellis theorem. Therefore, we have decided to omit them.

Theorem 4.4.4 (LDP for Beta-type and spherical simplices) (a) Let r ∈ N be fixed.

Then, the sequence Ld,r satisfies a large deviation principle on R with speed d and

rate function

I(x) = sup
t∈R

{
tx− j3(t)

}
,

where j3(t) is the function from Theorem 4.4.3 (a).

(b) If r ∼ αd, α ∈ (0, 1), then, the sequence

1

αd
Ld,r

satisfies a large deviation principle on R with speed αd2 and rate function

I(x) = sup
t∈R
{tx− j4(t)} ,

where j4(t) is the function from Theorem 4.4.3 (b).

(c) Let a ∈ N0 and assume that r = d− a, as d→∞, and m̃d as in (4.12). Then,

1
1
2
(log d

2
− 1)

(
Ld,r − m̃d −

a

2
log

d

2

)

satisfies a large deviation principle on R with speed 1
2
(log d

2
−1) and rate function

I(x) =
1

2
x2, x ∈ R.
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(d) Let r = r(d) be such that d− r = o(d), and let md be as in (4.5). Then,

1
1
2

log d
d−r

(
Ld,r − (md −md−r −

r + 1

4d
(t− 2 + 2ν))− 1

2
log

(d− r)(1 + r)

d1+r

)

satisfies a large deviation principle on R with speed 1
2

log d
d−r and rate function

I(x) =
1

2
x2, x ∈ R.

Finally, we combine Theorem 4.4.4 with the contraction principle (see Theorem 2.5.3)

to obtain a large deviation principle for Vd,r, that is, for the volume of the random

simplex itself, in the case that r ∈ N is fixed or r ∼ αd, for some α ∈ (0, 1).

Corollary 4.4.5 Let f : R→ R be a continuous function.

(a) Let r ∈ N be fixed. Then, the sequence r!Vd,r satisfies a large deviation principle

on R with speed d and rate function

I∗(y) := inf {I(x) : x ∈ R, ex = y} , y ∈ R,

where I(x) is the rate function from Theorem 4.4.4 (a).

(b) Let r ∼ αd, α ∈ (0, 1). Then, the sequence r!
αd
Ld,r satisfies a large deviation

principle on R with speed αd2 and rate function

I∗(y) := inf {I(x) : x ∈ R, ex = y} , y ∈ R,

where I(x) is the rate function from Theorem 4.4.4 (b).
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Chapter 5

Approximation of smooth convex

bodies

Let K be a convex body in Rd, d ≥ 2, with twice continuously differentiable boundary

∂K and strictly positive Gaussian curvature κK(x), x ∈ ∂K. Further, let f : ∂K → R+

be a continuous and strictly positive function, satisfying∫
∂K

f(x)Hd−1
∂K (dx) = 1.

In this chapter, we give an upper bound for the approximation of K in the symmetric

difference metric by an arbitrarily positioned polytope Pf , having a fixed number of

vertices. This generalizes a result by Ludwig, Schütt and Werner [91]. The polytope

Pf is obtained by a random construction via a probability measure with density f . In

our result, the dependence on the number of vertices is optimal. Moreover, with the

optimal density f , the dependence on K is also optimal.
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5.1. MAIN RESULT

5.1 Main result

Recall the symmetric difference metric of two convex bodies K and L in Rd, defined as

vold(K∆L) := vold (K ∪ L)− vold (K ∩ L) .

In this chapter, C,C1, C2 ∈ (0,∞) will always denote absolute constants that may

change from line to line.

Theorem 5.1.1 Let K be a convex body in Rd, d ≥ 2, with twice continuously differen-

tiable boundary ∂K and strictly positive Gaussian curvature κK(x), x ∈ ∂K. Further,

let f : ∂K → R+ be a continuous and strictly positive function, satisfying∫
∂K

f(x)Hd−1
∂K (dx) = 1.

Then, there exists a polytope Pf in Rd, having n vertices, such that for sufficiently large

n, it holds that

vold(K∆Pf ) ≤ C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx).

We discuss this bound for different densities. First, it was shown in [121, Page 8] that

the minimum of the right hand side is attained for the normalized affine surface area

measure, having density

fas(x) :=
κK(x)

1
d+1∫

∂K

κK(x)
1
d+1 Hd−1

∂K (dx)
.

In this case, the theorem yields that

vold(K∆Pf ) ≤ C n−
2
d−1 as(K)

d+1
d−1 ,

where as(K) is the affine surface area of K (see Section 2.2). In particular, choosing

the vertices of the approximating polytope according to the Gaussian curvature yields

the optimal bound.
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Now, let K be centered, that is, its centroid is positioned at the origin. Recall that for

x ∈ ∂K, we denote by NK(x) the corresponding outer unit normal. Put

fβ,α(x) :=
〈x,NK(x)〉α κK(x)β∫

∂K

〈x,NK(x)〉α κK(x)βHd−1
∂K (dx)

,

where α, β ∈ R. Then, the theorem yields that

vold(K∆Pf ) ≤ C n−
2
d−1

∫
∂K

κK(x)
1−2β
d−1

〈x,NK(x)〉
2α
d−1

Hd−1
∂K (dx)

×

∫
∂K

〈x,NK(x)〉α κK(x)βHd−1
∂K (dx)

 2
d−1

,

(see also [121, Page 10]). The second integral is a p-affine surface area asp(K) of K, if

and only if

α = −d(p− 1)

d+ p
and β =

p

d+ p
.

In this case, it holds that

vold(K∆Pf ) ≤ C n−
2
d−1 asq(K) asp(K)

2
d−1 ,

where

q =
d− p

d+ p− 2
.

Finally, we discuss the surface measure, given by the constant density

fsm(x) :=
1

vold−1(∂K)
.

Then, the theorem implies that

vold(K∆Pf ) ≤ C n−
2
d−1 vold−1(∂K)

2
d−1

∫
∂K

κK(x)
1
d−1 Hd−1

∂K (dx),

(see also [121, Page 9]).
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5.2 Preliminaries

Recall that for fixed u ∈ Sd−1 and h ≥ 0, we denote by H := H(u, h) the unique

hyperplane orthogonal to u at distance h from the origin. Let Pf be the probability

measure on ∂K given by

dPf := f(x)Hd−1
∂K (dx).

Now, let H ∩K 6= ∅. Then, Pf∂K∩H is the probability measure on ∂K ∩H given by

dPf∂K∩H :=
f(x)Hd−2

∂K∩H(dx)∫
∂K∩H

f(x)Hd−2
∂K∩H(dx)

.

The following results are crucial to prove the main theorem. The first two are stated

in [121, Theorem 1.1 and Lemma 4.3].

Theorem 5.2.1 Denote by E[vold(Pn)] the expected volume of the convex hull of n

points, chosen independently on ∂K with respect to Pf . Then, it holds that

vold(K)− E[vold(Pn)]

n−
2
d−1

∼
(d− 1)

d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx),

as n→∞.

Lemma 5.2.2 Let σ = (σi)1≤i≤d be a sequence of signs, that is, σi ∈ {−1, 1}, i ∈
{1, . . . , d}. We define

Kσ := {x = (x1, . . . , xd) ∈ K : sign(xi) = σi, i ∈ {1, . . . , d}}.

Then, it holds that

Pnf ({o /∈ conv(x1, . . . , xn)}) ≤ 2d

1−min
σ

∫
∂Kσ

f(x)Hd−1
∂Kσ(dx)

n

,

where Pnf indicates that the n points are chosen independently on ∂K with respect to

Pf .
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Moreover, we need the following Blaschke-Petkantschin-type formula. It arises as a

special case of a result derived in [137]. An alternative and simpler proof of this

version is also provided in [107, Page 2247].

Theorem 5.2.3 Let g(x1, . . . , xd) be a continuous and non-negative function. Then,

it holds that∫
∂K

· · ·
∫
∂K

g(x1, . . . , xd) dPf (x1) . . . dPf (xd)

= (d− 1)!

∫
Sd−1

∞∫
0

∫
∂K∩H

· · ·
∫

∂K∩H

g(x1, . . . , xd) vold−1(conv(x1, . . . , xd))

×
d∏
j=1

lH(xj) dPf∂K∩H (x1) . . . dPf∂K∩H (xd) dhHd−1
Sd−1(du),

where, for j ∈ {1, . . . , d},

lH(xj) := ‖NK(xj)|H‖−1 ,

and NK(xj)|H is the orthogonal projection of NK(xj) onto the hyperplane H := H(u, h).

Finally, from Theorem 4.1.2 (d), (2.9) and (2.10), we deduce that∫
Sd−2

· · ·
∫
Sd−2

vold−1(conv(x1, . . . , xd))
2Hd−2

Sd−2(dx1) . . .Hd−2
Sd−2(dxd)

=
ωdd−1

((d− 1)!)2

d−1∏
j=1

Γ
(
j
2

+ 1
)

Γ
(
j
2

)︸ ︷︷ ︸
=

Γ( d2)Γ( d+1
2 )

√
π

(
Γ
(
d−1

2

)
Γ
(
d−1

2
+ 1
))d

︸ ︷︷ ︸
=( 2

d−1)
d

Γ
(

(d−1)(d−3)+(d−1)
2

+ d
)

Γ
(

(d−1)(d−3)+(d−1)
2

+ d− 1
)

︸ ︷︷ ︸
=

(d−1)d
2

=
ωdd−1 2d (d− 1) d

((d− 1)!)2
√
π (d− 1)d 2

Γ

(
d

2

)
Γ

(
d+ 1

2

)
︸ ︷︷ ︸

=
√
π(d−1)!

2d−1

=
dωdd−1

(d− 1)! (d− 1)d−1
.

(5.1)
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5.3 Proof of the main result

Without loss of generality, we assume that the origin is in the interior of K. As

already explained detailed in Section 1.2, we obtain the approximating polytope in

a probabilistic way. More precisely, we choose n random points X1, . . . , Xn on the

boundary ofK according to Pf , and let Pn := conv(X1, . . . , Xn). Then, we approximate

a slightly smaller body, namely, (1 − γ)K, where γ := γn,d depends on the dimension

d and the number of points n. In fact, we choose γ such that

E[vold(Pn)] = vold((1− γ)K) = (1− γ)d vold(K). (5.2)

By Theorem 5.2.1, we have that

vold(K)− E[vold(Pn)] ∼ n−
2
d−1

(d− 1)
d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx),

as n→∞. Hence, with the choice (5.2) of γ,

vold(K)− (1− γ)d vold(K)

∼ n−
2
d−1

(d− 1)
d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx),

as n→∞. Since

(
1− (1− γ)d

)
∼ d γ,

as d→∞, this leads to

γ ∼ n−
2
d−1

(d− 1)
d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx), (5.3)

as n→∞. In particular, for sufficiently large n, γ can be bounded from below by

(
1− 1

d

)
n−

2
d−1

(d− 1)
d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx). (5.4)
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We split the proof of the main theorem into several lemmas. Recall, if H is some

hyperplane, we denote by H+ the corresponding half-space containing the origin and

by H− the opposite one. Now, define

Pf (∂K ∩H+) :=

∫
∂K∩H+

f(x)Hd−1
∂K∩H+(dx). (5.5)

Furthermore, for fixed u ∈ Sd−1 and sufficiently large n, let ε > 0 be such that

γ hK(u) ≤ ε ≤ hK(u)

d
,

where hK(u) is the support function of K in direction u.

Lemma 5.3.1 For sufficiently large n, for all ε ≥ γhK(u) sufficiently small, it holds

that

E[vold((1− γ)K∆Pn)]

≤ C

(
n

d

)
(d− 1)!

∫
Sd−1

hK(u)∫
hK(u)−ε

Pf (∂K ∩H+)n−d max{0, ((1− γ)hK(u)− h)}

×
∫

∂K∩H

· · ·
∫

∂K∩H

vold−1(conv(x1, . . . , xd))
2

d∏
j=1

lH(xj)

× dPf∂K∩H (x1) . . . dPf∂K∩H (xd) dhHd−1
Sd−1(du).

Proof of Lemma 5.3.1. The choice of the parameter γ in (5.2) yields for sufficiently

large n,

vold(K \ (1− γ)K) =

∫
∂K

· · ·
∫
∂K

vold(K \ Pn) dPf (x1) . . . dPf (xn).

We combine this observation with the relation

vold((1− γ)K∆Pn) = vold(K \ (1− γ)K)− vold(K \ Pn) + 2 vold((1− γ)K ∩ P c
n).

Figure 1.13 in the guideline corresponding to this chapter illustrates an example for

this equality in the planar case.
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Thus, Lemma 5.2.2 implies for sufficiently large n,

E[vold((1− γ)K∆Pn)]

=

∫
∂K

· · ·
∫
∂K

vold((1− γ)K∆Pn) dPf (x1) . . . dPf (xn)

= vold(K \ (1− γ)K)−
∫
∂K

· · ·
∫
∂K

vold(K \ Pn) dPf (x1) . . . dPf (xn)

+ 2

∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) dPf (x1) . . . dPf (xn)

= 2

∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) dPf (x1) . . . dPf (xn)

= 2

∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) 1(o ∈ Pn) dPf (x1) . . . dPf (xn)

+ 2

∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) 1(o /∈ Pn) dPf (x1) . . . dPf (xn)

≤ 2

∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) 1(o ∈ Pn) dPf (x1) . . . dPf (xn)

+ 2 vold(K)Pnf ({o /∈ conv(x1, . . . , xn)})

≤ 2

∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) 1(o ∈ Pn) dPf (x1) . . . dPf (xn)

+ 2 vold(K) 2d

1−min
σ

∫
∂Kσ

f(x)Hd−1
∂Kσ(dx)

n

.

The density f is strictly positive everywhere and since the origin is in the interior of

K, the second summand is essentially of order C−n, where C > 1. Later, we derive

that the first summand is of order n−
2
d−1 . Thus, it is enough to consider the first one

in what follows.

Next, we introduce the function Φj1,...,jd : ∂K × · · · × ∂K → R by

Φj1,...,jd(x1, . . . , xn)

:=

0 : conv(xj1 , . . . , xjd) /∈ Fd−1(Pn) oro /∈ Pn
vold((1− γ)K ∩ P cn ∩ cone(xj1 , . . . , xjd)) : conv(xj1 , . . . , xjd) ∈ Fd−1(Pn) ando ∈ Pn,
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where Fd−1(Pn) denotes the set of facets of Pn and

cone(x1, . . . , xd) :=

{
d∑
i=1

ai xi : ai ≥ 0, 1 ≤ i ≤ d

}
.

For all random polytopes Pn containing the origin as an interior point, it holds that

Rd =
⋃

conv(xj1 ,...,xjd )∈Fd−1(Pn)

cone(xj1 , . . . , xjd).

Moreover,

Pn−df ({(xd+1, . . . , xn) : conv(x1, . . . , xd) ∈ Fd−1(Pn) ando ∈ Pn})

=

 ∫
∂K∩H+

f(x)Hd−1
∂K∩H+(dx)

n−d

= Pf (∂K ∩H+)n−d,

where H is the hyperplane spanned by the points x1, . . . , xd and we recall the definition

of Pf (∂K ∩H+), given in (5.5).

Since the n points are independent and identically distributed, we arrive at∫
∂K

· · ·
∫
∂K

vold((1− γ)K ∩ P c
n) 1(o ∈ Pn) dPf (x1) . . . dPf (xn)

=

∫
∂K

· · ·
∫
∂K

∑
{j1,...,jd}⊆{1,...,n}

Φj1,...,jd(x1, . . . , xn) dPf (x1) . . . dPf (xn)

=

(
n

d

) ∫
∂K

· · ·
∫
∂K

Φ1,...,d(x1, . . . , xn) dPf (x1) . . . dPf (xn)

=

(
n

d

) ∫
∂K

· · ·
∫
∂K

Pf (∂K ∩H+)n−d

× vold((1− γ)K ∩H− ∩ cone(x1, . . . , xd)) 1(o ∈ Pn) dPf (x1) . . . dPf (xd)

≤
(
n

d

) ∫
∂K

· · ·
∫
∂K

Pf (∂K ∩H+)n−d

× vold((1− γ)K ∩H− ∩ cone(x1, . . . , xd)) dPf (x1) . . . dPf (xd),

where the sum runs over all unordered partitions of {1, . . . , n}.
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Now, Theorem 5.2.3 yields for sufficiently large n,

E[vold((1− γ)K∆Pn)]

≤ C

(
n

d

)
(d− 1)!

∫
Sd−1

∞∫
0

∫
∂K∩H

· · ·
∫

∂K∩H

Pf (∂K ∩H+)n−d vold−1(conv(x1, . . . , xd))

× vold((1− γ)K ∩H− ∩ cone(x1, . . . , xd))
d∏
j=1

lH(xj)

× dPf∂K∩H (x1) · · · dPf∂K∩H (xd) dhHd−1
Sd−1(du).

Notice that h ∈ [0, hK(u)]. On the other hand, due to the same arguments as in [91,

Page 9] and [107, Page 2255], it is possible to bound the range of integration for h from

below by hK(u)− ε, where ε > 0 is sufficiently small. Indeed, for all h ≤ hK(u)− ε, it

holds that Pf (∂K ∩H+) < 1. Thus, in the latter mentioned regime, the whole integral

decays exponentially fast in n.

In particular, for sufficiently large n, we can choose ε such that

γ hK(u) ≤ ε ≤ hK(u)

d
.

Furthermore, it holds that

vold((1− γ)K ∩H− ∩ cone(x1, . . . , xd))

≤ h

d
vold−1(conv(x1, . . . , xd)) ·max

{
0,

(
(1− γ)hK(u)

h

)d
− 1

}
.

Indeed, let H∗ be the hyperplane orthogonal to u at distance (1 − γ)hK(u) from the

origin, i.e., the tangent at (1− γ)K in direction u. Then,

vold((1− γ)K ∩H− ∩ cone(x1, . . . , xd))

≤ vold(H
−
∗ ∩ cone(x1, . . . , xd))− vold(H

− ∩ cone(x1, . . . , xd))

=

(
(1− γ)hK(u)

h

)d
vold(H

− ∩ cone(x1, . . . , xd))− vold(H
− ∩ cone(x1, . . . , xd))

=

[(
(1− γ)hK(u)

h

)d
− 1

]
vold(H

− ∩ cone(x1, . . . , xd))

=
h

d

[(
(1− γ)hK(u)

h

)d
− 1

]
vold−1(conv(x1, . . . , xd)).
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Besides, since γ is of order n−
2
d−1 and ε ≤ hK(u)

d
, for sufficiently large n,

(1− γ)hK(u)− h
h

≤ (1− γ)hK(u)− hK(u) + ε

hK(u)− ε
≤

1
d
− γ

1− 1
d

≤ 1

d− 1
.

Thus, by using the latter estimate,

(1 + x)d =
d∑

k=0

xk
(
d

k

)
,

and

exp(x) =
∞∑
k=0

xk

k!
,

we achieve that, for sufficiently large n,

1

d

[(
(1− γ)hK(u)

h

)d
− 1

]

=
1

d

[(
h+ (1− γ)hK(u)− h

h

)d
− 1

]

=
1

d

[(
1 +

(1− γ)hK(u)− h
h

)d
− 1

]

=
1

d

[
d

(1− γ)hK(u)− h
h

+
d (d− 1)

2

(
(1− γ)hK(u)− h

h

)2

+ · · ·

]

≤ (1− γ)hK(u)− h
h

·
∞∑
k=0

dk

k!

(
(1− γ)hK(u)− h

h

)k
≤ (1− γ)hK(u)− h

h
·
∞∑
k=0

1

k!

(
d

d− 1

)k
= exp

(
d

d− 1

)
(1− γ)hK(u)− h

h
≤ C

(1− γ)hK(u)− h
h

.

Therefore, for sufficiently large n,

vold((1− γ)K ∩H− ∩ cone(x1, . . . , xd))

≤ C vold−1(conv(x1, . . . , xd)) ·max{0, ((1− γ)hK(u)− h)}.

This proves the lemma.
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To evaluate the innermost integral in the expression of the foregoing lemma, we first

recall geometric results derived by Reitzner [107]. Let x(u) be the point on ∂K with

fixed outer unit normal vector u ∈ Sd−1. Since K has a twice differentiable boundary,

there is a paraboloid Q
(x(u))
2 , given by a quadratic form b2 := b

(x(u),x(u))
2 , that osculates

∂K at x(u). In order to keep our presentation reasonably self contained, we provide

the reader with an explicit construction (see, for example, [107, Page 2265]).

We identify the support hyperplane of ∂K at x(u) with Rd−1 and x(u) with the origin

of Rd−1. Then, there exists a twice differentiable convex function g(y) := gx(u)(y), y =

(y1, . . . , yd−1) ∈ Rd−1, such that, in some neighborhood of x(u), ∂K can be represented

by (y, gx(u)(y)). To formalize this further, we denote by

d2

dyidyj
g(y)

∣∣
y=o

the second partial derivative of the function g, evaluated at the origin. Then,

b2(y) :=
1

2

∑
i,j

d2

dyidyj
g(y)

∣∣
y=o

yi yj,

and

Q
x(u)
2 := {(y, z) : z ≥ b2(y)}.

Thus, K is contained in the half space corresponding to z ≥ 0. Now, let Rd = (R+ ×
Sd−2)×R, and denote by (rv, z) a point in Rd, where v ∈ Sd−2, r ∈ R+ and z ∈ R. The

following lemma summarizes results from [107, Page 2265 and 2271]. In particular, it

states that for each boundary point x(u) ∈ ∂K, the distance between ∂Q
x(u)
2 and ∂K

is uniformly bounded, in some specific neighborhood of x(u).

Lemma 5.3.2 Let u ∈ Sd−1 and δ > 0 be sufficiently small. Then, there exists some

λ > 0 only depending on δ and K such that for x(u) ∈ ∂K, the λ-neighborhood Uλ of

x(u) in ∂K, defined by

Uλ|Rd−1 = Bd−1(o, λ),

can be represented by a twice differentiable convex function z := g(rv) := g(x(u))(rv).

In particular, in this neighborhood, it satisfies

(1 + δ)−
1
2 b2(v)−

1
2 z

1
2 ≤ r ≤ (1 + δ)

1
2 b2(v)−

1
2 z

1
2 , (5.6)
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and

(1 + δ)−
3
2 2−1 b2(v)−

1
2 z−

1
2 ≤ lH(rv)

〈v,NK∩H(rv)〉
≤ (1 + δ)

3
2 2−1 b2(v)−

1
2 z−

1
2 . (5.7)

Here, for fixed rv, H is the hyperplane that contains (rv, g(rv)) and is parallel to Rd−1,

and NK∩H(rv) is the outer unit normal vector to ∂K ∩H at this point. Furthermore,

for the density f and all p ∈ Uλ, it holds that

(1 + δ)−1 f(x(u)) ≤ f(p) ≤ (1 + δ)f(x(u)). (5.8)

We next estimate the innermost integral in Lemma 5.3.1.

Lemma 5.3.3 Let x(u) be the point on ∂K with fixed outer unit normal vector u ∈
Sd−1. Denote by z the distance from H to the support hyperplane of ∂K at x(u), and

note that h = hK(u)− z by construction. Then, for all sufficiently small δ > 0,

∫
∂K∩H

· · ·
∫

∂K∩H

vold−1(conv(x1, . . . , xd))
2

d∏
j=1

lH(xj) dPf∂K∩H (x1) . . . dPf∂K∩H (xd)

≤ (1 + δ)
d(d+3)

2 2
d2−d−2

2 z
d2−d−2

2
dωdd−1

(d− 1)! (d− 1)d−1
f(x(u))d κK(x(u))−

d
2
−1

+ δO(z
d2−d−2

2 ),

where the constant in O(·) can be chosen independently of x(u) and δ.

Proof of Lemma 5.3.3. The proof follows closely the arguments given in [107]. First,

we replace the random points xi, i ∈ {1, . . . , d}, chosen on ∂K ∩H, by random points

chosen on the intersection of H with the approximating paraboloid Q
(x(u))
2 . Hence, we

write xi, i ∈ {1, . . . , d}, as xi = r(vi)vi, where r(vi) is the radial function of K ∩ H,

estimated in (5.6). Now, [107, Equation (68)] yields that

|vold−1(conv(x1, . . . , xd))− vold−1(conv(r2(v1)v1, . . . , r2(vd)vd))| ≤ δO(z
d−1

2 ),

where

r2(v) := b2(v)−
1
2 z

1
2 ,

δ > 0 is arbitrarily small and the constant in O(·) is independent of x(u) and δ.
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Therefore,

∫
∂K∩H

· · ·
∫

∂K∩H

vold−1(conv(x1, . . . , xd))
2

d∏
j=1

lH(xj) dPf∂K∩H (x1) . . . dPf∂K∩H (xd)

=

∫
∂K∩H

· · ·
∫

∂K∩H

[
vold−1(conv(r2(v1)v1, . . . , r2(vd)vd))

2 + δO(zd−1)
]

×
d∏
j=1

lH(xj) dPf∂K∩H (x1) . . . dPf∂K∩H (xd),

where the constant in O(·) can be chosen independently of x(u) and δ.

First, we evaluate the integral involving the O(·) term. The density f is uniformly

bounded and by (5.7), the integration concerning each

lH(xj) dPf∂K∩H (xj),

j ∈ {1, . . . , d}, results in terms of order

O(z−
1
2 ) vold−2(∂K ∩H).

Since, in view of (5.6),

vold−2(∂K ∩H) = O(z
d−2

2 ),

we achieve that∫
∂K∩H

· · ·
∫

∂K∩H

δO(zd−1)
d∏
j=1

lH(xj) dPf∂K∩H (x1) . . . dPf∂K∩H (xd)

= δO(zd−1)O(z−
d
2 )vold−2(∂K ∩H)d

= δO(zd−1− d
2

+d d−2
2 )

= δO(z
d2−d−2

2 ),

where the constant in O(·) can be chosen independently of x(u) and δ.
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Secondly, we turn to the first summand. Rewriting the integral over Sd−2 and using

(5.6), (5.7) and (5.8) yields similarly as in [107, Page 2274] that∫
∂K∩H

· · ·
∫

∂K∩H

vold−1(conv(r2(v1)v1, . . . , r2(vd)vd))
2

×
d∏
j=1

lH(xj) dPf∂K∩H (x1) . . . dPf∂K∩H (xd)

=

∫
Sd−2

· · ·
∫
Sd−2

vold−1(conv(r2(v1)v1, . . . , r2(vd)vd))
2

×
d∏
j=1

f(r(vj)vj)
lH(r(vj)vj) r(vj)

d−2

〈vj, NK∩H(r(vj)vj)〉
Hd−2
Sd−2(dv1) . . . Hd−2

Sd−2(dvd)

≤ (1 + δ)
d(d+3)

2 2−d z−d f(x(u))d
∫
Sd−2

· · ·
∫
Sd−2

vold−1(conv(r2(v1)v1, . . . , r2(vd)vd))
2

×
d∏
j=1

r2(vj)
d−1Hd−2

Sd−2(dv1) . . . Hd−2
Sd−2(dvd),

where again r2(v) = b2(v)−
1
2 z

1
2 . Now, define an ellipsoid E as the (d− 1)-dimensional

convex body having radial function b2(v)−
1
2 , i.e., as the intersection of Q

(x(u))
2 with the

hyperplane corresponding to z = 1. Since the Lebesgue measure is homogeneous, the

integral appearing in the latter expression can be rewritten as an integral where the

random points are chosen in the interior of E, according to the uniform distribution

(see [107, Page 2275]). That is,∫
Sd−2

· · ·
∫
Sd−2

vold−1(conv(r2(v1)v1, . . . , r2(vd)vd))
2

×
d∏
j=1

r2(vj)
d−1Hd−2

Sd−2(dv1) . . . Hd−2
Sd−2(dvd)

= z
d(d−1)

2

∫
Sd−2

· · ·
∫
Sd−2

b2(v1)−
1
2∫

0

· · ·
b2(vd)−

1
2∫

0

vold−1(conv(b2(v1)−
1
2 z

1
2v1, . . . , b2(vd)

− 1
2 z

1
2vd))

2

×
d∏
j=1

((d− 1)td−2
j ) dt1 . . . dtdHd−2

Sd−2(dv1) . . .Hd−2
Sd−2(dvd)
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= z
d(d−1)

2
+d−1

∫
Sd−2

· · ·
∫
Sd−2

b2(v1)−
1
2∫

0

· · ·
b2(vd)−

1
2∫

0

vold−1(conv(b2(v1)−
1
2v1, . . . , b2(vd)

− 1
2vd))

2

×
d∏
j=1

((d− 1)td−2
j ) dt1 · · · dtdHd−2

Sd−2(dv1) . . .Hd−2
Sd−2(dvd)

= z
d2+d−2

2 (d− 1)d
∫
E

· · ·
∫
E

vold−1(conv(x̃1, . . . , x̃d))
2dx1 . . . dxd,

where x̃i arises as the orthogonal projection of the point xi onto the boundary of E,

i.e.,

x̃i =
xi
‖xi‖

rE

(
xi
‖xi‖

)
.

Here, rE is the radial function of E, and ‖ · ‖ is the Euclidean norm with the origin

placed at the center of E. The random elements dxi, i ∈ {1 . . . , d}, as well as vold−1,

are homogeneous and invariant with respect to volume preserving affine transforms

acting in the affine subspace {z = 1}.
Moreover, the volume of E equals

2
d−1

2 κK(x(u))−
1
2κd−1,

(see [107, Page 2275]). Thus, by first transforming the ellipsoid E into the Euclidean

ball Bd−1 (using a suitable affinity), then, rewriting the integral as an integral over the

sphere Sd−2 and, finally, using (5.1), it follows that

z
d2+d−2

2 (d− 1)d
∫
E

· · ·
∫
E

vold−1(conv(x̃1, . . . , x̃d))
2 dx1 . . . dxd

= z
d2+d−2

2

(
2
d−1

2 κK(x(u))−
1
2

)2 (
2
d−1

2 κK(x(u))−
1
2

)d
×
∫
Sd−2

· · ·
∫
Sd−2

vold−1(conv(x1, . . . , xd))
2Hd−2

Sd−2(du1) . . .Hd−2
Sd−2(dud)

= z
d2+d−2

2 2
d2+d−2

2 κK(x(u))−
d
2
−1 d ωdd−1

(d− 1)! (d− 1)d−1
.
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Combining the above calculations yields for all sufficiently small δ > 0,

∫
∂K∩H

· · ·
∫

∂K∩H

vold−1(conv(x1, . . . , xd))
2

d∏
j=1

lH(xj) dPf∂K∩H (x1) · · · dPf∂K∩H (xd)

≤ (1 + δ)
d(d+3)

2 2
d2−d−2

2 z
d2−d−2

2
dωdd−1

(d− 1)! (d− 1)d−1
f(x(u))d κK(x(u))−

d
2
−1

+ δO(z
d2−d−2

2 ),

where the constant in O(·) can be chosen independently of x(u) and δ. This proves the

lemma.

Now, we further analyze the expression appearing in Lemma 5.3.1. We put

s := Pf (∂K ∩H−).

Consequently,

Pf (∂K ∩H+) = 1− s.

Moreover, the result stated in [107, Equation (71)] implies the following estimates.

Lemma 5.3.4 Let x(u) be the point on ∂K with fixed outer unit normal vector u ∈
Sd−1. Denote by z the distance from H to the support plane of ∂K at x(u), i.e.,

z = hK(u)− h. Then, for all sufficiently small δ > 0, it holds that

(1 + δ)−d 2
d−1

2 f(x(u))κK(x(u))−
1
2 κd−1 z

d−1
2

≤ s ≤ (1 + δ)d+1 2
d−1

2 f(x(u))κK(x(u))−
1
2 κd−1 z

d−1
2 .

(5.9)

Therefore, we achieve that

z ≤ (1 + δ)
2d
d−1

κK(x(u))
1
d−1 (d− 1)

2
d−1

2 f(x(u))
2
d−1 ω

2
d−1

d−1

s
2
d−1 , (5.10)

and

dz

ds
≤ (1 + δ)d

κK(x(u))
1
2 2−

d−3
2

f(x(u))ωd−1

z−
d−3

2 . (5.11)
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Using the two latter estimates, we continue the proof of the main theorem as follows.

Lemma 5.3.5 For sufficiently large n and sufficiently small δ > 0, it holds that

E[vold((1− γ)K∆Pn)] ≤ I + II,

where

I := (1 + δ)
3d2+3d

2 C

(
n

d

)
d

∫
Sd−1

κK(x(u))−1

×
1∫

0

(1− s)n−d sd−1 (z − γhK(u)) dsHd−1
Sd−1(du),

and

II := (1 + δ)
3d2+3d

2 C

(
n

d

)
d

∫
Sd−1

κK(x(u))−1

×
s(γhK(u))∫

0

(1− s)n−d sd−1 (γhK(u)− z) dsHd−1
Sd−1(du).

Here, we have that z := z(s) and

s(γhK(u)) :=

∫
∂K∩H−

f(x)Hd−1
∂K (dx),

where H is the unique hyperplane orthogonal to u ∈ Sd−1 at distance (1 − γ)hK(u) to

the origin and H− the corresponding half-space not containing the origin.

Proof of Lemma 5.3.5. First, observe that

max{0, ((1− γ)hK(u)− h)} = 0, if h > (1− γ)hK(u).

This, Lemma 5.3.1, Lemma 5.3.3 and the substitution z = hK(u)− h yield that

E[vold((1− γ)K∆Pn)]

≤ (1 + δ)
d(d+3)

2 C 2
d2−d−2

2

(
n

d

)
dωdd−1

(d− 1)d−1

∫
Sd−1

f(x(u))d κK(x(u))−
d
2
−1
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×
(1−γ)hK(u)∫
hK(u)−ε

Pf (∂K ∩H+)n−d z
d2−d−2

2 ((1− γ)hK(u)− h) dhHd−1
Sd−1(du)

+ δ

(
n

d

)
(d− 1)!

∫
Sd−1

(1−γ)hK(u)∫
hK(u)−ε

Pf (∂K ∩H+)n−dO(z
d2−d−2

2 )

× ((1− γ)hK(u)− h) dhHd−1
Sd−1(du)

= (1 + δ)
d(d+3)

2 C 2
d2−d−2

2

(
n

d

)
dωdd−1

(d− 1)d−1

∫
Sd−1

f(x(u))d κK(x(u))−
d
2
−1

×
ε∫

γhK(u)

Pf (∂K ∩H+)n−d z
d2−d−2

2 (z − γhK(u)) dzHd−1
Sd−1(du)

+ δ

(
n

d

)
(d− 1)!

∫
Sd−1

ε∫
γhK(u)

Pf (∂K ∩H+)n−dO(z
d2−d−2

2 )

× (z − γhK(u)) dzHd−1
Sd−1(du).

As the upcoming calculations show, the order of both summands is n−
2
d−1 . Since δ is

arbitrarily small, it is enough to consider the first one in what follows.

We use (5.11) and (5.10) to change from z
(d−1)2

2 to sd−1 and obtain that, for sufficiently

large n,

E[vold((1− γ)K∆Pn)]

≤ (1 + δ)
d(d+3)

2
+dC 2

d2−d−2
2 2−

d−3
2

(
n

d

)
dωdd−1

(d− 1)d−1

∫
Sd−1

f(x(u))d−1 κK(x(u))−
d
2
− 1

2

×
1∫

s(γhK(u))

(1− s)n−d z
d2−d−2−d+3

2 (z − γhK(u)) dsHd−1
Sd−1(du)

≤ (1 + δ)
d2+5d

2 C 2
d2−2d+1

2

(
n

d

)
dωd−1

d−1

(d− 1)d−1

∫
Sd−1

f(x(u))d−1 κK(x(u))−
d
2
− 1

2

×
1∫

s(γhK(u))

(1− s)n−d z
(d−1)2

2 (z − γhK(u)) dsHd−1
Sd−1(du)

≤ (1 + δ)
d2+5d

2
+d(d−1)C 2

(d−1)2

2 2−
(d−1)2

2

(
n

d

)
d

∫
Sd−1

κK(x(u))−1
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×
1∫

s(γhK(u))

(1− s)n−d sd−1 (z − γhK(u)) dsHd−1
Sd−1(du)

≤ (1 + δ)
3d2+3d

2 C

(
n

d

)
d

∫
Sd−1

κK(x(u))−1

×
1∫

s(γhK(u))

(1− s)n−d sd−1 (z − γhK(u)) dsHd−1
Sd−1(du)

= (1 + δ)
3d2+3d

2 C

(
n

d

)
d

∫
Sd−1

κK(x(u))−1

×
1∫

0

(1− s)n−d sd−1 (z − γhK(u)) dsHd−1
Sd−1(du)

+ (1 + δ)
3d2+3d

2 C

(
n

d

)
d

∫
Sd−1

κK(x(u))−1

×
s(γhK(u))∫

0

(1− s)n−d sd−1 (γhK(u)− z) dsHd−1
Sd−1(du).

This proves the lemma in view of the definitions of I and II.

We start with the first term.

Lemma 5.3.6 For sufficiently large n and sufficiently small δ > 0, it holds that

I ≤ (1 + δ)
3d2+3d

2 C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx).

Proof of Lemma 5.3.6. We apply (5.10) and (5.4) to get for all sufficiently small δ > 0

and sufficiently large n,

I ≤ (1 + δ)
3d2+3d

2 C

(
n

d

)
d

2

(d− 1)
2
d−1

ω
2
d−1

d−1

×

[
(1 + δ)

2d
d−1

∫
Sd−1

κK(x(u))−1+ 1
d−1

f(x(u))
2
d−1

Hd−1
Sd−1(du)

1∫
0

(1− s)n−d sd−1+ 2
d−1 ds
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−
(

1− 1

d

)
n−

2
d−1

(d− 1) Γ
(
d+ 1 + 2

nd−1

)
(d+ 1)!

1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

×
∫
Sd−1

hK(u)κK(x(u))−1Hd−1
Sd−1(du)

1∫
0

(1− s)n−d sd−1 ds

]
.

For u ∈ Sd−1, let x = x(u) ∈ ∂K be such that NK(x) = u. Then, relation (2.4) implies

that

d vold(K) =

∫
∂K

〈x,NK(x)〉Hd−1
∂K (dx)

=

∫
∂K

hK(u(x))Hd−1
∂K (dx)

=

∫
Sd−1

hK(u)

κK(x(u))
Hd−1
Sd−1(du),

(5.12)

and ∫
Sd−1

κK(x(u))−1+ 1
d−1

f(x(u))
2
d−1

Hd−1
Sd−1(du) =

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx).

We use those, together with the definition and properties of the Beta function, to arrive

at

I ≤ (1 + δ)
3d2+3d

2 C

(
n

d

)
d

2

(d− 1)
2
d−1

ω
2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

×

[
(1 + δ)

2d
d−1

Γ(n− d+ 1)Γ
(
d+ 2

d−1

)
Γ
(
n+ 1 + 2

d−1

)
−
(

1− 1

d

)
n−

2
d−1

(d− 1)Γ
(
d+ 1 + 2

d−1

)
(d+ 1)!

Γ(n− d+ 1)Γ (d)

Γ (n+ 1)

]

= (1 + δ)
3d2+3d

2 C
d

2

(
n

d

)
(d− 1)

2
d−1

ω
2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

Γ(n− d+ 1)Γ
(
d+ 2

d−1

)
Γ
(
n+ 1 + 2

d−1

)
×

[
(1 + δ)

2d
d−1 −

(
1− 1

d

)
n−

2
d−1

(d− 1)
(
d+ 2

d−1

)
d(d+ 1)

Γ
(
n+ 1 + 2

d−1

)
Γ (n+ 1)

]
.

235



5.3. PROOF OF THE MAIN RESULT

Here, in the last equality we have also used that

Γ

(
d+ 1 +

2

d− 1

)
= Γ

(
d+

2

d− 1

)(
d+

2

d− 1

)
,

in view of (2.9). Now, observe that, due to (2.13),

Γ

(
n+ 1 +

2

d− 1

)
∼
√

2π e−n nn+1− 1
2

+ 2
d−1 ∼ n

2
d−1 Γ (n+ 1) , (5.13)

as n→∞. Thus,

Γ(n− d+ 1)Γ
(
d+ 2

d−1

)
Γ
(
n+ 1 + 2

d−1

) ∼ (n− d)! (d− 1)!

n!n
2
d−1

=
1(

n
d

)
d n

2
d−1

,

as n, d → ∞. By using the latter estimates, we obtain for sufficiently large n and

sufficiently small δ > 0,

I ≤ (1 + δ)
3d2+3d

2 C n−
2
d−1

(d− 1)
2
d−1

ω
2
d−1

d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

×

[
(1 + δ)

2d
d−1 −

(
1− 1

d

)
(d− 1)

(
d+ 2

d−1

)
d(d+ 1)

]

≤ (1 + δ)
3d2+3d

2 C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx),

where in the last inequality we have again used (2.13) to get that

ω
2
d−1

d−1 =

(
2π

d−1
2

Γ
(
d−1

2

)) 2
d−1

∼

 2π
d−1

2

√
2πe−

d
2

(
d
2

) d−2
2

 2
d−1

=
2π

d−2
d−1 e

d
d−1

d
d−2
d−1

∼ 2eπ

d
, (5.14)

as d→∞, and (d− 1)
2
d−1 ≤ 2. This proves the assertion.
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Now, we deal with the second summand in Lemma 5.3.5.

Lemma 5.3.7 For sufficiently large n and sufficiently small δ > 0, it holds that

II ≤ (1 + δ)
3d2+3d

2 C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx).

Proof of Lemma 5.3.7. Recall that

II = (1 + δ)
3d2+3d

2 C

(
n

d

)
d

∫
Sd−1

κK(x(u))−1

×
s(γhK(u))∫

0

(1− s)n−d sd−1 (γhK(u)− z) dsHd−1
Sd−1(du).

First of all, by (5.3), for sufficiently large d and n,

γ ≤ C
1

vold(K)n
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx). (5.15)

Indeed, in view of (5.14) and (5.13), it holds that

(d− 1)
d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 d (d+ 1)!ω

2
d−1

d−1

∼ 1

4πe

(d− 1)
d+1
d−1 d

2
d−1 Γ(d+ 1)

(d+ 1)!
≤ d

4
d−1

2πe
≤ C,

as d→∞. Moreover, it holds that

s(γhK(u))

≤ (1 + δ)d+1 d

e n

f(x(u))hK(u)
d−1

2

κK(x(u))
1
2

 1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

 d−1
2

,
(5.16)

for sufficiently large d and n.
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Truly, by Lemma 5.3.4, (5.3) and (5.14), as n, d→∞,

s(γhK(u))

≤ (1 + δ)d+1 2
d−1

2 κd−1
f(x(u))hK(u)

d−1
2

κK(x(u))
1
2

γ
d−1

2

≤ (1 + δ)d+1 2
d−1

2 κd−1
f(x(u))hK(u)

d−1
2

κK(x(u))
1
2

×

n− 2
d−1

(d− 1)
d+1
d−1 Γ

(
d+ 1 + 2

d−1

)
2 (d+ 1)!ω

2
d−1

d−1

1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

 d−1
2

∼ (1 + δ)d+1 f(x(u))hK(u)
d−1

2

nκK(x(u))
1
2

×

(d− 1) d
2
d−1

d+ 1

1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

 d−1
2

∼ (1 + δ)d+1 d

e n

f(x(u))hK(u)
d−1

2

κK(x(u))
1
2

 1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

 d−1
2

,

since (
d− 1

d+ 1

) d−1
2

∼ 1

e
,

as d→∞. Now, we distinguish two cases.

Case 1:

s(γhK(u)) ≤ (d− 1)
d−1
d

d
1

2(d−1) n
.

The function

f(s) := (1− s)n−d sd−1,

s ∈ [0, 1], attains its maximum at

s∗ :=
d− 1

n− 1
.

238



CHAPTER 5. APPROXIMATION OF SMOOTH CONVEX BODIES

Indeed, it holds that

d

ds
f(s) = −(n− d)(1− s)n−d−1sd−1 + (d− 1)(1− s)n−dsd−2,

and

− (n− d)(1− s)n−d−1sd−1 + (d− 1)(1− s)n−dsd−2 = 0

⇔ (d− 1)(1− s)n−dsd−2 = (n− d)(1− s)n−d−1sd−1

⇔ (d− 1)(1− s) = (n− d)s

⇔ s(n− 1) = d− 1.

Therefore,

s∗ =
d− 1

n− 1
.

Since

d2

ds2
f(s)

∣∣∣
s=s∗

= (n− d)(n− d− 1)

(
1− d− 1

n− 1

)n−d−2(
d− 1

n− 1

)d−1

− 2(d− 1)(n− d)

(
1− d− 1

n− 1

)n−d−1(
d− 1

n− 1

)d−2

+ (d− 1)(d− 2)

(
1− d− 1
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)n−d(
d− 1

n− 1

)d−3

= (n− d)n−d−1(n− d− 1)(d− 1)d−1(n− 1)−(n−3)

− 2(n− d)n−d(d− 1)d−1(n− 1)−(n−3)

+ (n− d)n−d(d− 1)d−2(d− 2)(n− d)−(n−3)

< (n− d)n−d(d− 1)d−1(n− d)−(n−3)

− 2(n− d)n−d(d− 1)d−1(n− 1)−(n−3)

+ (n− d)n−d(d− 1)d−1(n− d)−(n−3)

= 0,

the function f(s) has its maximum at s∗. Now, because f(0) = 0 and

(d− 1)
d−1
d

d
1

2(d−1) n
≤ (d− 1)

2d2−5d+2

2d2−2d

n
≤ d− 1

n− 1
,
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the function f(s) is increasing on [
0,

(d− 1)
d−1
d

d
1

2(d−1) n

]
.

Observe that, in view of (2.13),(
n

d

)
d =

n(n− 1) · · · (n− d+ 1)

d!
d ∼ nd ed√

2 π
√
d dd−1

,

as n, d→∞. Furthermore, for all x ≥ 0, it holds that

(1− x)n−d ≤ exp(−(n− d)x),

(see [1, Equation (4.2.29)]). Thus, combining the above estimates, for sufficiently large

d and n, it holds that

(
n

d

)
d

s(γhK(u))∫
0

(1− s)n−d sd−1 (γhK(u)− z) ds

≤ γ hK(u)

(
n

d

)
d
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≤ γ hK(u)

(
n

d

)
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(
1− (d− 1)

d−1
d

d
1

2(d−1) n

)n−d (
(d− 1)

d−1
d

d
1

2(d−1) n

)d−1
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nd ed√

2π
√
d dd−1

(d− 1)
d−1
d

d
1
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(
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d−1
d

d
1
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)n−d (
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d−1
d

d
1

2(d−1) n

)d−1

≤ C γ hK(u) ed d
d−1
d

+
(d−1)2

d
−d+ 1

2
− 1

2(d−1)
− 1

2 exp

(
−(n− d)(d− 1)

d−1
d

d
1

2(d−1) n
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≤ C γ hK(u) ed d
2(d−1)2+2(d−1)3−2d2(d−1)−2d

2d(d−1) exp

(
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d−1
d

d
1
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≤ C γ hK(u) ed d−
d
d−1 exp

(
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d−1
d

d
1
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)
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d
,
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where we also used in the last step that

(d− 1)
d−1
d

d
1

2(d−1)

∼ d,

as d→∞. Hence, with (5.15) and (5.12), it follows that

II ≤ (1 + δ)
3d2+3d

2 C
γ

d

∫
Sd−1

κK(x(u))−1 hK(u)Hd−1
Sd−1(du)

≤ (1 + δ)
3d2+3d

2 C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx),

finishing the proof of the lemma in Case 1.

Case 2:

s(γhK(u)) >
(d− 1)

d−1
d

d
1

2(d−1) n
.

This inequality is in view of (5.16) equivalent to

(1 + δ)d+1 d f(x(u))hK(u)
d−1

2

e κK(x(u))
1
2

 1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx)

 d−1
2

>
(d− 1)

d−1
d

d
1

2(d−1)

,

which itself is equivalent to

hK(u)
1

d vold(K)

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx) >

e
2
d−1 (d− 1)

2
d

(1 + δ)
2(d+1)
d−1 d

2d−1

(d−1)2

κK(x(u))
1
d−1

f(x(u))
2
d−1

.

We integrate both sides over ∂K according to the (d−1)-dimensional Hausdorff measure

to achieve that

(1 + δ)
2(d+1)
d−1 >

e
2
d−1 (d− 1)

2
d

d
2d−1

(d−1)2

.

Thus, we arrive at a contradiction. Indeed, the right hand side is strictly bigger than

1. On the other hand, δ > 0 can be chosen arbitrarily small. This shows that Case 2

never arises and, therefore, finishes the proof of the lemma.
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Proof of Theorem 5.1.1. Lemma 5.3.6 and Lemma 5.3.7 imply that for sufficiently large

n and sufficiently small δ > 0,

E[vold((1− γ)K∆Pn)] ≤ (1 + δ)
3d2+3d

2 C n−
2
d−1

∫
∂K

κK(x)
1
d−1

f(x)
2
d−1

Hd−1
∂K (dx). (5.17)

Taking into account that we were approximating the body (1− γ)K instead of K, we

need to multiply the bound (5.17) by (1− γ)−d. Since

(1− γ)d ≥ 1− dγ,

for sufficiently large n, we have that (1 − γ)−d ≤ C. Finally, since the bound (5.17)

holds for all δ > 0, the theorem follows.
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