
Normalization of Historical Texts with Neural Network Models

Inaugural-Dissertation

zur

Erlangung des Grades eines Doktors der Philosophie

in der

Fakultät für Philologie

der

RUHR-UNIVERSITÄT BOCHUM

vorgelegt

von

Marcel Bollmann

Gedruckt mit der Genehmigung der Fakultät für Philologie der Ruhr-Universität Bochum

Referent: . Prof. Dr. Stefanie Dipper

Koreferent: . Prof. Dr. Barbara Plank

Tag der mündlichen Prüfung: 20.06.2018

Abstract

With the increasing availability of digitized resources of historical documents, interest in
effective natural language processing (NLP) for these documents is on the rise. However,
the abundance of variant spellings makes them challenging to work with both for human
users and for NLP tools. Normalization to contemporary spelling is often proposed as a
solution. This work investigates the suitability of a neural encoder–decoder architecture for
automatic normalization of historical language data. The neural network is extensively tuned
and improved by the application of techniques such as beam search and model ensembling.
Nonetheless, in a large-scale evaluation on datasets from eight different languages, the proposed
model is usually outperformed by a previously established method using character-based
statistical machine translation (CSMT).

Historische Dokumente werden zunehmend in digitalisierter Form verfügbar gemacht. Häufig
sind sie jedoch durch eine Fülle von Schreibvarianten gekennzeichnet, welche die Anwendung
computerlinguistischer Methoden (bzw. NLP-Tools) schwierig gestalten. Ein häufig verwendeter
Ansatz ist die Normalisierung dieser Varianten auf moderne Schreibweisen. Die vorliegende Arbeit
untersucht die Anwendung neuronaler Encoder-Decoder-Modelle für die automatische Normalisie-
rung historischer Sprachdaten. In einer umfassenden Auswertung auf historischen Korpora in acht
verschiedenen Sprachen zeigt sich, dass das verwendete Modell – trotz zahlreicher Anpassungen und
Verbesserungen wie z.B. Beam Search und Ensembling – meist eine schlechtere Normalisierungs-
Genauigkeit hat als etablierte Methoden, die auf statistischer maschineller Übersetzung beruhen.

Acknowledgements

When I began to work on this thesis, I wondered how other graduates could fill their acknowl-
edgements with so many people. Five years later, I know.

First and foremost, I would like to thank my supervisor, Stefanie Dipper, for her continuous
support. Stefanie always encouragedme and provided both the necessary guidance and freedom
to pursue my research ideas. Without her, I might not have had a lot of the opportunities and
experiences that brought me to where I am today. So, a heartfelt thank-you!

Thanks also go to my former colleagues in Bochum, particularly Julia Krasselt, Florian Petran,
and Adam Roussel, for countless brisk and inspiring discussions. Special thanks to Katharina
Bort and all student annotators who provided me with data for my first experiments and always
accommodated my occasional “urgent” requests.

My cordial thanks to Barbara Plank for agreeing to co-supervise this thesis and for many
helpful comments. Sincere thanks also go to Anders Søgaard for hosting me for a research visit
and sharing many valuable insights on neural networks. More generally, thanks to everyone
who provided comments, shared their datasets, or discussed my research with me; this list
of names will certainly be incomplete, but includes Fabian Barteld, Joachim Bingel, Christian
Chiarcos, Grzegorz Chrupała, Tomaž Erjavec, Dirk Hovy, Bryan Jurish, Katharina Kann, Nikola
Ljubešić, Rita Marquilhas, Eva Pettersson, Paul Rayson, Yves Scherrer, Uwe Springmann, and
everyone who came up to me after a conference talk or at a poster presentation. Further thanks
go to Johannes Bjerva, Ana Valeria González, João M. Martins, and Kaja Verhoeven for assisting
me with translations.

Finally, thanks to all of my family and friends—Juliane, Georg, Melanie, Miriana, Tobias,
Dominika, Max, Marlene, to name just a few—for making my life easier at the right times, for
distracting me from my work when I needed it, and for putting up with my moods when I hit
yet another obstacle during my research. A PhD can certainly be an arduous journey, and it is
best not done alone.

Contents

Zusammenfassung (Summary in German) xv

Foreword, or How to read this thesis xxi

1 Introduction 1
1.1 Challenges for NLP on historical data . 3

1.1.1 Spelling variation . 4
1.2 Possible solutions . 5

1.2.1 Arguments for normalization . 6
1.3 Automatic normalization . 7

1.3.1 From rules to machine translation . 7
1.3.2 Neural networks . 8

1.4 Aim of this thesis . 9
1.5 Structure of this thesis . 11

2 Principles of normalization 13
2.1 Why normalization? . 14
2.2 Digitization . 15
2.3 Defining normalization . 17
2.4 Guidelines and challenges . 18

2.4.1 Spelling and phonology . 19
2.4.2 Morphology and morphosyntax . 21
2.4.3 Lexicon and semantics . 23
2.4.4 Syntax and punctuation . 24

2.5 Conclusion . 25

3 Corpora 27
3.1 Historical datasets . 27

3.1.1 English . 30
3.1.2 German . 31
3.1.3 Hungarian . 34
3.1.4 Icelandic . 35
3.1.5 Slovene . 35
3.1.6 Spanish and Portuguese . 36
3.1.7 Swedish . 38

3.2 Preprocessing . 39
3.3 Character alignment . 40

3.3.1 Iterated Levenshtein alignment . 40
3.3.2 Generating aligned datasets . 42

v

Contents

3.4 Analyzing variation . 43
3.4.1 Measuring ambiguity . 46
3.4.2 Measuring similarity . 53

3.5 Contemporary datasets . 56
3.5.1 Europarl . 56
3.5.2 BÍN and MÍM . 57
3.5.3 Bible . 57
3.5.4 Coverage . 58

3.6 Summary . 60

4 Methods for automatic normalization 63
4.1 Previous work . 65

4.1.1 Wordlist mapping . 65
4.1.2 Rule-based approaches . 66
4.1.3 Distance-based approaches . 68
4.1.4 Statistical models . 69
4.1.5 Neural network models . 70

4.2 Methods for comparison . 70
4.2.1 Norma . 71
4.2.2 cSMTiser . 72

5 Neural network basics 73
5.1 Basic concepts . 74
5.2 Layers . 76

5.2.1 Embedding layer . 76
5.2.2 Dense layer . 77
5.2.3 Recurrent layers . 77

5.3 Training . 81
5.3.1 Objective function . 81
5.3.2 Optimizer . 82
5.3.3 Batch size . 82
5.3.4 Randomization of samples and initial weights 83
5.3.5 Dropout . 83
5.3.6 Early stopping . 84

6 Encoder–decoder model 85
6.1 Model description . 86

6.1.1 Base model . 86
6.1.2 Attentional model . 87
6.1.3 Decoding . 89

6.2 Hyperparameter tuning . 90
6.2.1 Tuning datasets . 91
6.2.2 Tuning procedure . 92
6.2.3 Model parameters . 92
6.2.4 Learning parameters . 99
6.2.5 Final hyperparameter settings . 101

vi

Contents

6.3 Analysis . 102
6.3.1 Stability of the training process . 102
6.3.2 Base vs. attentional model . 105
6.3.3 Ensembles . 106
6.3.4 Effect of decoding technique . 107

6.4 Summary . 109

7 Comparative analysis 111
7.1 Overview of normalization methods . 112
7.2 Evaluation measures . 113

7.2.1 Character error rate . 114
7.2.2 Further alternatives . 118
7.2.3 Limits of quantitative measures . 119

7.3 Error classification . 119
7.3.1 Results . 120

7.4 Stemming . 122
7.4.1 Dataset comparison . 123
7.4.2 Model comparison . 126
7.4.3 Conclusion . 126

7.5 Generalization . 127
7.5.1 Word-level analysis . 127
7.5.2 Character-level analysis . 129
7.5.3 Local vs. global probabilities . 131

7.6 Predicting errors . 132
7.6.1 String length and edit distance . 133
7.6.2 Normalizer scores . 136
7.6.3 Conclusion . 139

7.7 Error distribution . 140
7.8 Summary . 143

8 Multi-task learning 145
8.1 Models . 146

8.1.1 MTLSplit: Using separate prediction layers 147
8.1.2 MTLInput: Using input identifiers . 148
8.1.3 Joint training . 149

8.2 Model comparison . 149
8.3 Full evaluation . 153

9 Low-resource training 157
9.1 Variance and ensembling . 158
9.2 Comparative evaluation . 159
9.3 Multi-task learning . 161

9.3.1 Evaluation . 164
9.4 Summary . 165

10 Evaluation 167
10.1 Methodology . 168

vii

Contents

10.2 Accuracy . 169
10.3 Stemming . 172
10.4 Known vs. unknown tokens . 174
10.5 Low-resource scenario . 174

11 Conclusion 179
11.1 Evaluating automatic normalization . 180
11.2 Improving the neural network model . 181
11.3 Beyond token-level normalization . 182

Bibliography 185

Bildungsgang des Autors 207

viii

List of Acronyms

CER character error rate

CSMT character-based statistical machine translation

HNR historical/normalized type ratio

IR information retrieval

LCS longest common subsequence

LSTM long short-term memory

MFN most frequent normalization

MLP multi-layer perceptron

MTL multi-task learning

NLP natural language processing

OCR optical character recognition

PMI pointwise mutual information

POS part-of-speech

pp percentage points

RNN recurrent neural network

ROPE range of practical equivalence

sHNR standardized historical/normalized type ratio

SMT statistical machine translation

tf–idf term frequency–inverse document frequency

TPE tree-structured Parzen estimator

TTR type/token ratio

ix

List of Figures

1.1 Extract from a manuscript of 15th century German 3

3.1 Distribution of ambiguity (𝛼) scores as a quantile function 48
3.2 Cosine similarity of datasets based on tf–idf of historical character bi- and

trigrams . 54
3.3 Cosine similarity of datasets based on tf–idf of non-identical character alignments 54

5.1 Perceptron for binary classification . 74
5.2 A multi-layer perceptron with one hidden layer 75
5.3 Two representations of the same recurrent neural network (RNN) 78
5.4 A long short-term memory (LSTM) network 79
5.5 A bi-directional recurrent neural network (RNN) 81

6.1 Basic encoder–decoder architecture for normalization 85
6.2 Encoder–decoder model with a stack of two bi-directional RNNs for the en-

coder (left) and a stack of two uni-directional RNNs for the decoder (right) . . 86
6.3 Encoder–decoder model with attention mechanism 88
6.4 Accuracy of the base encoder–decoder model by model hyperparameter . . . 96
6.5 Combinations of model hyperparameter values categorized by accuracy 97
6.6 Accuracy of the attentional encoder–decoder model 98
6.7 Accuracy of the base encoder–decoder model by learning hyperparameter . . 100
6.8 Combinations of learning hyperparameter values categorized by accuracy . . 101
6.9 Validation accuracy of five different initializations per dataset and model type 104

7.1 Error classification for randomly chosen samples of 100 incorrect normalizations 121
7.2 String length difference and Levenshtein distance between historical tokens

and their gold-standard normalizations . 134
7.3 Comparison of two normalizers with regard to the subset of tokens that are

correctly normalized by either both or only one of them 141

8.1 Multi-task learning using the encoder–decoder model with separate prediction
layers (MTLSplit) . 147

8.2 Multi-task learning using the encoder–decoder model with task-specific input
symbols (MTLInput) . 148

8.3 Percentage change of error of the multi-task models compared to the single-task
setup . 151

8.4 Percentage change of error of the MTLSplit ensemble with attention compared
to the single-task setup . 154

xi

List of Figures

9.1 Validation accuracy of individual models and model ensembles in the low-
resource scenario . 158

9.2 Percentage change of error of the multi-task models compared to the single-task
setup in the low-resource scenario . 162

10.1 Accuracy comparison for full words vs. word stems 173

xii

List of Tables

3.1 Overview of historical datasets . 28
3.2 Ratios of types and tokens on the training sets 44
3.3 Accuracy on the training sets for unchanged tokens (ID) and most frequent

normalizations (MFN) . 45
3.4 Token ambiguity on the training sets . 48
3.5 Top 10 ambiguous words in the training sets 49
3.6 Overview of contemporary word types . 58
3.7 Tokens in the historical corpora not covered by the contemporary language

resources . 59

6.1 Statistics over five independent training runs per dataset and model type . . . 103
6.2 Validation accuracy of model ensembles compared to the best individual model 106
6.3 Validation accuracy of model ensembles for different decoding techniques . . 108

7.1 Word accuracy of different normalization methods on the development sets . 113
7.2 Average character error rate on the subset of incorrect normalizations 115
7.3 Examples for incorrect normalizations with a higher character error rate in the

encoder–decoder ensemble with filtering . 116
7.4 Absolute difference between the CER of the models’ incorrect predictions and

the unnormalized word forms . 117
7.5 Percentage of incorrect normalizations that match the word stems of their

gold-standard targets . 123
7.6 Examples of incorrect normalizations with matching stems 124
7.7 Word accuracy on the development sets, evaluated separately on knowns and

unknowns . 128
7.8 Word accuracy on the development sets, evaluated separately on knowns and

unknowns . 130
7.9 Examples of predictions for word pairs with an unknown character alignment 130
7.10 Example predictions on Portuguese only correct with lexical filtering 131
7.11 Precision, recall, and F-score of a logistic regression classifier on detecting

incorrect normalizations, based on either string length difference or Levenshtein
distance . 135

7.12 Precision, recall, and F-score of a logistic regression classifier on detecting
incorrect normalizations, based on the normalizer-specific score of a candidate 138

7.13 Matthews correlation coefficient for predicting correct/incorrect normalizations
of selected normalizers . 139

7.14 Percentage of tokens that are normalized correctly by only one of two normalizers 142

8.1 Comparison of multi-task learning models on the reduced datasets 152

xiii

List of Tables

9.1 Statistics for the low-resource scenario over five independent training runs per
dataset and model type . 159

9.2 Word accuracy of different normalization methods in the low-resource scenario 160

10.1 Dataset pairings for the test set evaluation of MTL models 168
10.2 Word accuracy of different normalization methods on the test sets 169
10.3 Method comparison on the accuracy scores from the full evaluation 171
10.4 Accuracy on word stems for different normalization methods on the test sets . 173
10.5 Word accuracy on the test sets, evaluated separately on knowns and unknowns 175
10.6 Method comparison on the accuracy scores for known and unknown tokens . 175
10.7 Word accuracy on the test sets in the low-resource scenario 176
10.8 Method comparison on the accuracy scores from the low-resource scenario . . 177

xiv

Zusammenfassung

Durch eine zunehmende Anzahl von Digitalisierungsprojekten werden mehr und mehr histori-
sche Dokumente einer breiten Öffentlichkeit zugänglich gemacht. Handschriften und Bücher,
die vormals nur persönlich in Bibliotheken zu begutachten waren, können nun in digitaler
Form leicht verbreitet werden. Praktisch nutzbar sind diese Ressourcen vor allem, wenn sie Do-
kumente nicht bloß in Bildform enthalten (z.B. als Scan), sondern auch in (maschinenlesbarer)
Textform bereitstellen. Das ermöglicht etwa die Volltextsuche nach bestimmten Schlüssel-
wörtern innerhalb der Daten oder ihre Weiterverarbeitung mithilfe von NLP-Tools,1 z.B. zur
automatischen Wortarten-Annotation (POS-Tagging2).

Ein großes Hindernis dabei ist jedoch oft die sprachliche Variation. Je älter die historischen
Dokumente sind, desto mehr weichen sie üblicherweise von der heutigen Standardsprache ab.
Dies kann alle sprachlichen Ebenen betreffen, wie etwa die Syntax, die Morphologie oder das
Lexikon. Die größte Bedeutung kommt jedoch oft der Schreibvariation zu. Die standardisierte
Orthographie ist in den meisten Sprachen eine recht junge Erfindung; historische Texte sind
nicht selten geprägt von unzähligen Schreibvarianten, die etwa von dialektalen Einflüssen
oder den individuellen Präferenzen des Verfassers bzw. Schreibers stammen können. Laing
(1994, S. 123) berichtet etwa, dass in einem Korpus des spätmittelalterlichen Englisch3 über
500 Varianten der Präposition through ‘durch’ dokumentiert sind.

Eine hohe Frequenz von Schreibvarianten reduziert die praktische Nutzbarkeit der Daten unge-
mein: so ist es etwa für eine Volltextsuche äußerst hinderlich, alle möglichen Schreibvarianten
des gesuchten Wortes kennen und explizit angeben zu müssen. Auch die Genauigkeit von
NLP-Tools, die auf Daten der modernen Standardsprache trainiert sind, nimmt auf historischen
Daten meist deutlich ab (vgl. Rayson u. a., 2007; Scheible u. a., 2011b). Dass Schreibvarianten
dabei eine besonders zentrale Rolle einnehmen, wird unter anderem daran deutlich, dass sich
schon frühe Arbeiten zur computergestützten Analyse historischer Texte mit dem Problem der
Schreibvariation beschäftigen (z.B. Fix, 1980; Koller, 1983; Klein, 1991).

Für die praktische Nutzbarkeit von historischen Texten ist eine effiziente Behandlung von
Schreibvariation daher von höchstem Interesse.

Normalisierung

Eine Möglichkeit der Behandlung von Schreibvariation in historischen Texten ist die der
Normalisierung. Damit ist gemeint, verschiedene Schreibvarianten desselben Wortes auf eine

1NLP = Natural Language Processing
2POS-Tagging = Part-of-speech-Tagging
3LALME; A Linguistic Atlas of Late Mediaeval English

xv

Zusammenfassung (Summary in German)

eindeutige normalisierte Form abzubilden. In der Praxis ist dies zumeist die äquivalenteWortform
in moderner Orthographie; so könnten etwa die historischen Schreibungen fraw, frauwe, fraẅ,
frowe, vrawe usw. allesamt auf die moderne Wortform Frau abgebildet werden. Ähnliche
Ansätze sind in der Literatur auch unter den Begriffen Modernisierung und Kanonikalisierung
zu finden.

Die Normalisierung auf moderne Standardschreibung bietet viele Vorteile:

1. Sie reduziert die Schreibvarianz, was jeglichen NLP-Anwendungen auf diesen Daten
zugutekommt.

2. Sie vereinfacht Suchanfragen und erleichtert Nutzern das Verständnis der Daten, da
spezielle Kenntnisse der historischen Schreibpraxis nicht mehr zwingend erforderlich
sind.

3. Sie vereinfacht bzw. ermöglicht die Anwendung von Tools und Ressourcen, die für die
moderne Standardsprache entwickelt wurden, auf den historischen Daten.

Bei all diesen Punkten ist zu beachten, dass eine Normalisierung oft nicht alle Nuancen und
Besonderheiten der historischen Sprachstufe adäquat wiedergeben kann. Daher sollte sie
keinesfalls als „Ersatz“ für die historischen Schreibungen angesehen werden, sondern als
zusätzliche Annotationsebene bzw. als Hilfsmittel für den Nutzer und für NLP-Anwendungen.

Die Herangehensweise, eine Wortform auf ihre „moderne Standardschreibung“ zu normalisie-
ren, birgt in der Praxis einige Tücken. So stellt sich z.B. in stark flektierenden Sprachen wie
dem Deutschen die Frage, ob bei der Normalisierung auch Flexionsanpassungen vorgenommen
werden sollen. Soll beispielsweise die Phrase alle ſtain als alle Stein oder alle Steine normalisiert
werden? Stein ist die orthographisch ähnlichste moderne Wortform zu ſtain; aus dem Kontext
ergibt sich jedoch, dass wir im Neuhochdeutschen hier Steine erwarten würden. Bisherige
Forschungsprojekte haben diese Frage unterschiedlich beantwortet; so wählt das Anselm-
Korpus (Schultz-Balluff und Dipper, 2013a; Wegera, 2014) etwa ersteren Weg, während das
RIDGES-Korpus (Odebrecht u. a., 2016) die zweite Lösung bevorzugt. Weitere häufige Probleme
sind etwa die Behandlung von Eigennamen oder von extinkten Wortformen (z.B. Zehern für
neuhochdeutsch Tränen).4

Automatisierung

Erkennt man prinzipiell den Nutzen einer Normalisierung an, so ist die nächste Frage, mit
welchen Methoden eine Normalisierung automatisch erzeugt werden kann. Bisherige Ansätze
zu diesem Thema lassen sich grob in folgende Bereiche einteilen:5

1. Tokenbasierte Ersetzung mit Hilfe eines „Wörterbuchs“ (Rayson u. a., 2005; Bollmann,
2012).

2. Regelbasierte Verfahren, die entweder mit manuell definierten Regeln arbeiten (Fix, 1980;
Koller, 1983) oder Regeln automatisch aus Trainingsdaten ableiten können (Ernst-Gerlach
und Fuhr, 2006; Bollmann u. a., 2011b).

4Kapitel 2 widmet sich diesen grundsätzlichen Fragen der Normalisierung ausführlich.
5Kapitel 4 bespricht diese Ansätze ausführlicher.

xvi

3. Anwendung von Distanzmaßen, um mit Hilfe eines Lexikons die moderne Wortform mit
der geringsten Distanz zur historischen Ausgangsform zu finden (Robertson und Willett,
1993; Kempken u. a., 2006; Pettersson, Megyesi und Nivre, 2013).

4. Statistische Verfahren zur maschinellen Übersetzung (character-based statistical machine
translation, CSMT), die auf Buchstabenebene angewandt werden, um eine historische
Wortform in eine Normalisierung zu „übersetzen“ (Pettersson, Megyesi und Tiedemann,
2013; Scherrer und Erjavec, 2013; Ljubešić u. a., 2016b).

5. Lernverfahren aus dem Bereich der neuronalen Netze, oft auch als „Deep Learning“
bezeichnet (Bollmann u. a., 2017; Korchagina, 2017).

Insbesondere die Anwendung von neuronalenNetzen für diese Aufgabe ist noch vergleichsweise
wenig erforscht; dabei haben neuronale Netze in den letzten Jahren enorme Popularität erlangt
und in sehr vielen NLP-Anwendungen gute bis herausragende Ergebnisse erzielt (vgl. Goldberg,
2017, Abs. 1.3 für eine umfassende Übersicht).

Die ausführliche Untersuchung eines neuronalen Netzes für die automatische Normalisierung
ist daher der Kernpunkt dieser Arbeit. Für einen Vergleich mit bereits etablierten Systemen wäh-
le ich das Norma-Tool (Bollmann, 2012), welches Verfahren aus den Bereichen 1–3 implemen-
tiert, sowie das Tool cSMTiser (basierend auf Ljubešić u. a., 2016b), welches den CSMT-Ansatz
(Bereich 4) benutzt.

Korpora

Um Systeme, die mit Ansätzen des maschinellen Lernens arbeiten, einsetzen zu können, werden
zunächst Trainingsdaten benötigt. Auch für die effiziente maschinelle Evaluation eines automa-
tischen Normalisierungsverfahrens sind manuell geprüfte „Golddaten“ unerlässlich. Um alle
hier untersuchten Verfahren auf einer möglichst diversen Menge historischer Texte trainieren
und evaluieren zu können, ziehe ich historische Korpora aus acht verschiedenen Sprachen
heran: Deutsch, Englisch, Isländisch, Portugiesisch, Schwedisch, Slowenisch, Spanisch, sowie
Ungarisch.6

Die Korpora decken unterschiedliche Zeiträume vom 14. bis zum 19. Jahrhundert ab, enthalten
unterschiedliche Textgenres wie z.B. religiöse und wissenschaftliche Abhandlungen, amtliche
Dokumente, oder persönliche Korrespondenzen, und haben einen Umfang von ca. 55.000 bis
325.000 Wörtern (vgl. Tabelle 3.1).

Die neuronale Encoder-Decoder-Architektur

Neuronale Netze bilden eine Klasse von maschinellen Lernverfahren, die auf einer Verket-
tung vieler einzelner, meist nicht-linearer, Funktionen („künstliche Neuronen“) basieren. Diese

6Insgesamt ergeben sich zehn verschiedene Datensets, da ich für das Deutsche gleich zwei Korpora heranziehe
und das slowenische Korpus in zwei verschiedene Sprachstufen geteilt ist. Kapitel 3 widmet sich der detaillierten
Beschreibung aller Korpora.

xvii

Zusammenfassung (Summary in German)

Funktionen haben Parameter („Gewichtungen“), die während des Trainings modifiziert werden.
Für eine allgemeine Einführung empfiehlt sich Chollet (2017) oder Goldberg (2017).7

Encoder-Decoder-Modelle sind insbesondere im Bereich der maschinellen Übersetzung populär
geworden (Cho, Merrienboer, Gülçehre u. a., 2014; Sutskever u. a., 2014). Sie bestehen im
Wesentlichen aus zwei Komponenten:8

1. dem Encoder, der eine Eingabesequenz erhält und in einen numerischen Vektor umwandelt
bzw. kodiert; und

2. dem Decoder, der die vom Encoder erzeugte Vektorrepräsentation erhält und in eine
Ausgabesequenz dekodiert.

Im Fall der Normalisierung ist die Eingabesequenz eine historische Wortform, die als Folge von
einzelnen Buchstaben bzw. Zeichen repräsentiert wird; die Ausgabesequenz ist entsprechend
die zugehörige normalisierte Wortform. Dieses Modell wird in Abbildung 6.2 illustriert.

Eine Schwierigkeit beim Einsatz neuronaler Netze besteht darin, die optimale Architektur für
einen gegebenen Einsatzzweck zu finden. Ich beschränke mich hier auf die Untersuchung
von Encoder-Decoder-Modellen, die aus sogenannten LSTM-Komponenten9 (Hochreiter und
Schmidhuber, 1997) bestehen. Dabei führe ich eine ausgiebige Hyperparameter-Optimierung
durch, um die Anzahl an LSTM-Ebenen in Encoder und Decoder, ihre Dimensionalität (d.h. die
Anzahl künstlicher Neuronen pro Ebene), sowie die Parameter „Dropout“ und „Learning Rate“
des Trainingsverfahrens zu optimieren.10

Des Weiteren untersuche ich eine Reihe potentieller Verbesserungen des Encoder-Decoder-
Modells: den Attention-Mechanismus, das Beam-Search-Decoding, sowie die Konstruktion
eines Ensembles aus fünf unabhängig voneinander trainierten Modellen. Ich zeige anhand
von Evaluationen auf einer Teilmenge der historischen Datensets, dass alle diese Mechanis-
men im Schnitt die Akkuratheit des Modells (gemessen als prozentualer Anteil der korrekt
normalisierten Wörter) verbessern. Die Verwendung eines lexikalischen Filters, der nur die
Erzeugung von Wörtern aus einem vorgegebenen modernen Lexikon erlaubt, zeigte hingegen
nur in Einzelfällen einen positiven Effekt.

Multi-Task Learning

Neben dem oben beschriebenen Modell, welches jeweils auf einem einzelnen Datenset trainiert
und evaluiert wird, experimentiere ich außerdem mit dem Training auf zwei Datensets gleich-
zeitig.11 Dies geschieht mit Methoden des Multi-Task Learning (MTL; Caruana, 1993), welches
auf der Idee basiert, dass ähnliche oder verwandte Aufgaben besser zusammen gelernt werden
können als unabhängig voneinander.

7In dieser Arbeit gibt Kapitel 5 eine grundlegende Übersicht.
8Das Encoder-Decoder-Modell wird in Kapitel 6 behandelt.
9Long Short-Term Memory; eine häufig verwendete Komponente neuronaler Netze, die speziell zur Verarbeitung
langer, sequentieller Eingaben (z.B. Wort- oder Zeichenfolgen) entwickelt wurde.

10Vgl. Abschnitt 6.2.5 für eine Kurzbeschreibung der letztendlich verwendeten Konfiguration.
11Dieser Ansatz wird in Kapitel 8 behandelt.

xviii

Im Kontext dieser Arbeit betrachte ich die Normalisierung auf unterschiedlichen Sprachen bzw.
Datensets als „verwandte Aufgaben“ im Sinne des MTL. Hierzu teste ich drei verschiedene
Ansätze, MTL mit dem oben vorgestellten Encoder-Decoder-Modell umzusetzen. Der beste
dieser Ansätze modifiziert das Modell, indem für jedes Datenset ein separater „Prediction Layer“
verwendet wird; dies ist die letzte Ebene des Decoders, welche die normalisierte Zeichenfolge
vorhersagt. Wird das Modell beispielsweise auf Englisch und Spanisch gleichzeitig trainiert,
so durchlaufen die Daten für beide Sprachen denselben Encoder und Decoder, mit Ausnahme
der allerletzten Ebene, welche sprachspezifisch ist. Dies zwingt sowohl den Encoder als auch
den Decoder, sprachunabhängige Repräsentationen zu lernen, während durch die separaten
„Prediction Layer“ einem Teil des Netzes ermöglicht wird, sprachspezifische Transformationen
zu lernen. Abbildung 8.1 illustriert dieses Modell.

Ich evaluiere diesen MTL-Ansatz auf allen paarweisen Kombinationen der historischen Da-
tensets. Ziel dieser Evaluation ist es, herauszufinden, (i) ob das parallele Training auf zwei
Datensets bessere Modelle hervorbringt, und (ii) welche Datensets dabei am meisten voneinan-
der profitieren. Es stellt sich heraus, dass MTL nur in Einzelfällen hilfreich ist. Hauptkriterium
dabei ist die Größe des Trainingssets: kleinere Datensets können stark vom MTL-Verfahren
profitieren, während die Modelle bei größeren Datensets mit MTL oft sogar schlechtere Norma-
lisierungen produzieren. Die spezifische Kombination der Datensets – ob also z.B. verwandte
oder weiter entfernte Sprachen kombiniert werden – scheint dabei nur eine untergeordnete
Rolle zu spielen.

Evaluation

In einer vergleichenden Evaluation trainiere und evaluiere ich Norma, cSMTiser, und das
vorgestellte Encoder-Decoder-Modell separat auf jedem der zehn historischen Datensets.12 Das
primäre Evaluationskriterium ist dabei die „Word Accuracy“, d.h. der prozentuale Anteil der
korrekt normalisierten Wörter. Ergebnis dieser Evaluation ist, dass alle drei Ansätze oft recht
nah beieinander liegen, das CSMT-Modell jedoch auf fast allen Datensets das beste Ergebnis
liefert. Die absolute „Word Accuracy“ liegt bei CSMT je nach Datenset zwischen 87% und 96%
(vgl. Tabelle 10.2).

Neben dieser quantitativen Beurteilung der Normalisierungsmethoden widme ich mich auch
der Frage, wie die Qualität der fehlerhaften Normalisierungen genauer bewertet werden kann,
und ob die verschiedenen Methoden sich in dieser Hinsicht unterscheiden. Eine manuelle Feh-
leranalyse von zufälligen Stichproben fehlerhafter Normalisierungen zeigt, dass oft mehr als die
Hälfte dieser Fälle durchaus brauchbare Vorschläge enthalten. So wird z.B. das deutsche ſůchent
plausibel als suchend normalisiert, aber dennoch als Fehler gewertet, da in den Korpusdaten
sucht als Gold-Normalisierung angegeben ist.

Als besonders vielversprechender Ansatz stellt sich in diesem Zusammenhang das Stemming
heraus, d.h. die Reduktion von Wortformen auf ihre Wortstämme. Eine Evaluation auf Basis
der Wortstämme kann Aufschluss darüber geben, wieviele Normalisierungsfehler lediglich auf
Unterschiede in Flexionsendungen o.ä. zurückzuführen sind. So zeigt sich z.B., dass dies für
12Kapitel 7 präsentiert ausführliche Vergleiche und Analysen der verschiedenen Normalisierungsansätze auf

Development-Daten, während Kapitel 10 die Ergebnisse durch eine Evaluation auf Test-Daten verifiziert.

xix

Zusammenfassung (Summary in German)

das Spanische auf bis zu 40% der fehlerhaften Normalisierungen des Encoder-Decoder-Modells
zutrifft. Ein automatischer Stemming-Algorithmus ist für viele Sprachen verfügbar, weshalb
diese Evaluationsmethode meist mit wenig Aufwand angewandt werden kann.

Eine weitere Analyse legt nahe, dass das Encoder-Decoder-Modell von einer besseren Model-
lierung der normalisierten Wortformen, z.B. durch ein zeichenbasiertes Sprachmodell oder
bidirektionales Decoding, profitieren könnte. Ansonsten zeigen die meisten Analysen jedoch
vor allem Unterschiede zwischen den Datensets auf, während die einzelnen Normalisierungs-
methoden sich dabei weniger unterscheiden. So gibt es beispielsweise eine große Schnittmenge
zwischen den fehlerhaften Normalisierungen des neuronalen Netzes und cSMTiser, d.h. beide
Methoden haben größtenteils dieselben Wortformen richtig zu normalisieren gelernt.

Zuletzt evaluiere ich die Methoden in einem Trainingsszenario mit nur 5.000 Tokens pro
Datenset.13 Ziel dabei ist, herauszufinden, wie die Methoden sich bei einer geringeren Menge an
Trainingsdaten verhalten, wie sie in der Praxis sehr wahrscheinlich ist. Als Ergebnis kann man
festhalten, dass das Encoder-Decoder-Modell hier deutlich besser abschneidet, insbesondere
wenn es mit Multi-Task Learning und lexikalischem Filter verwendet wird. Das CSMT-Modell
liefert jedoch auch hier äußerst gute Resultate.

Fazit

Ich untersuche in dieser Dissertation die Anwendbarkeit eines neuronalen Encoder-Decoder-
Modells auf die automatische Normalisierung historischer Texte. Dabei verwende ich his-
torische Korpora aus acht verschiedenen Sprachen, um das Modell zu evaluieren und mit
anderen Ansätzen zu vergleichen. Trotz ausgiebiger Optimierung des neuronalen Netzes durch
Hyperparameter-Tuning und zusätzliche Techniken wie Attention-Mechanismus und Ensem-
bling, die jeweils für sich betrachtet das Modell allesamt verbessern, erzielt es letztendlich
keine Verbesserungen gegenüber einem bestehenden Ansatz, der auf statistischer maschineller
Übersetzung (CSMT) basiert.

Obwohl dies in gewisser Weise ein „Negativresultat“ für das präsentierte Encoder-Decoder-
Modell ist, glaube ich, dass diese Dissertation nicht zuletzt aus folgenden Gründen einen
wichtigen Beitrag leistet:

1. Sie präsentiert die umfangreichste Evaluation automatischer Normalisierung, die – nach
meinem besten Wissen und Gewissen – bis dato durchgeführt wurde, sowohl in Bezug
auf die getesteten Sprachen als auch auf die verglichenen Methoden.

2. Die Ergebnisse stehen in Kontrast zum derzeit in der Literatur zu beobachtenden Trend,
dass neuronale Netze auf zahlreichen NLP-Anwendungen den „klassischen“ Methoden
überlegen sind, z.B. im Bereich der maschinellen Übersetzung (Bahdanau u. a., 2014; Wu
u. a., 2016) oder auch der historischen Normalisierung (Bollmann u. a., 2017; Korchagina,
2017).

3. Die Arbeit erforscht neuartige Methoden zur (qualitativen) Analyse der automatischen
Normalisierung, von der zukünftige Arbeiten profitieren können.

13Dieses Szenario wird in Kapitel 9 eingeführt.

xx

Foreword

or How to read this thesis

This publication is a slightly revised and updated version of my PhD thesis, which was first
submitted in February 2018. Like most PhD theses, it is a lengthy work that most people would
probably not want to read from start to finish. Nonetheless, I believe that several parts of this
work can be useful to various audiences. If you are reading this and are pressed for time, here
are my thoughts as to which parts might be most interesting to you.

• If you are building or working with historical corpora and want to know more
about what normalization is, why we should do it, and how existing corpora of historical
documents handle it, you might be particularly interested in Chapter 1 (for a general
overview), Chapter 2 (for an in-depth look at the normalization task), and Chapter 3 (for
a concrete discussion of the historical datasets I used in my experiments).

• If you want to perform normalization automatically and would like to know what
approaches there are and how they perform, take a look at Chapter 4 (for a systematic
overview of previous work), the summary of my comparative analysis in Sec. 7.8, as well
as the evaluation in Chapter 10 (for some concrete numbers).

• If you are interested in neural networks for NLP or building better automatic
normalization systems, you might want to read about the encoder–decoder model I
used (Chapter 6), the quantitative and qualitative analysis of its normalization perfor-
mance (Chapter 7), and possibly my evaluation of multi-task learning and low-resource
scenarios (Chapters 8 and 9). For an even quicker overview of my results and challenges
for future work, take a look at the conclusion in Chapter 11.

Finally, most chapters end with a summary section that recaps their main findings.

Translations of non-English quotes and of examples from the datasets, when they appear, are
mostly my own. For languages that I did not have sufficient knowledge of, I consulted native
speakers or based my translation on a careful consultation of multiple dictionary and/or transla-
tion resources. Nonetheless, it is possible that some translations—particularly of normalization
examples—ended up being not completely accurate. All remaining mistakes or inaccuracies are
solely my own.

xxi

Chapter 1

Introduction

Ich woulde nu an deſer ſtunt
Gerne hoiren van dynes ſelues munt

Wat dyme kynde zu leyde is geſcheyn
Dattu mit dynen ougen hais geſeyn1

— From the N1509 text of the Anselm Corpus

Theongoing digitization efforts of libraries and researchers are makingmore andmore historical
documents available to the general public. Written records that date back hundreds of years
are usually kept and preserved at libraries; however, sometimes the access to these documents
is highly restricted because, e.g., the paper might be brittle, or already damaged due to water,
mold, or other external influences. Consequently, actually viewing and working with these
records can be a difficult task. Digitization does not only help to preserve these documents,
but also to easily distribute them in electronic form.

Many research projects aim to create digital editions of historical documents that do not simply
consist of scans of the pages, but are provided in textual form, potentially with additional
annotations such as part-of-speech (POS) tags. The advantages of such resources are numer-
ous: (i) they enable reception of the texts without the difficulties of reading old typefaces
or handwriting; (ii) they enable search queries to be performed on the texts, either based on
word forms or on linguistic features; (iii) they allow for automatic analyses of the texts, e.g.,
stylistic analysis, authorship attribution, or analysis of linguistic structures; (iv) they allow
for comparative and diachronic analyses of language development; and so on. All of these
factors open up new ways of doing humanities research that has traditionally been carried out
by manual examination and analysis of physical documents, giving rise to the umbrella term
digital humanities that has been growing in popularity in recent years (e.g., Svensson, 2010;
Berry, 2012; Berry and Fagerjord, 2017).

Examples for historical corpora or research projects in the digital humanities are plentiful
and span many different languages, time periods, text genres, and research questions. The
ARCHER corpus is a representative corpus of historical English texts frommultiple genres (Biber
et al., 1994);2 the Corpus of Historical American English (COHA) is a balanced corpus for investi-
gating language change and American culture and society (Davies, 2012);3 the Anselm Project

1“I would now, in this hour, / like to hear from your own mouth / what suffering has befallen your child / that
you have seen with your own eyes.” (Saint Anselm speaking to the Virgin Mary; my translation.)

2http://www.projects.alc.manchester.ac.uk/archer/
3https://corpus.byu.edu/coha/

1

http://www.projects.alc.manchester.ac.uk/archer/
https://corpus.byu.edu/coha/

Chapter 1 Introduction

creates a digital resource of all German records of a specific medieval treatise (Schultz-Balluff
and Dipper, 2013b);4 various Reference Corpora have been and are being created for various
stages of historical German;5 the InterGramm project investigates the language elaboration of
Middle Low German;6 the Gender and Work project researches the living conditions of men
and women in medieval Sweden by analyzing historical documents (Fiebranz et al., 2011);7 the
P.S. (Post Scriptum) project provides a collection of private letters from Early Modern Portuguese
and Spanish;8 the goo300k project constructs a corpus of historical Slovene (Erjavec, 2012);9
and many more such projects exist.

Transcribing, annotating, and/or analyzing a large amount of historical documents is typically
performed with the aid of natural language processing (NLP) tools, as performing these task
manually is immensely time-consuming and therefore often not feasible. The Reference Corpus
of Middle High German, for example, limits some of its texts to extracts of 20,000 tokens, even
though it is the result of multiple research projects spanning more than a decade of work, and
some software-based automatization was already used in the process (Klein and Dipper, 2016).
This illustrates how difficult it would be to make the entirety of documented texts in Middle
High German available in this way; and the number of historical documents from Early New
High German is yet considerably higher. More and better NLP tools for this type of data are
required to make the greater part of historical documents accessible for further research.

Note that “historical text” in this context is not a universally defined category. While the
Swedish Gender and Work corpus covers texts from the early 16th century to about 1800, the
Corpus of Historical American English contains texts from the 1810s to the 2000s. The date
range of a resource can be influenced by specific research interests—e.g., analyzing a particular
language stage—or by the existence (and accessibility) of suitable documents. From an NLP
perspective, text typically becomes more challenging to process the more different it is from
the contemporary language. Since language evolves slowly over time, this typically means
that text will be more difficult to process the older it is. For the purposes of my analyses, I will
not consider texts that are younger than the 19th century—though this is arguably an arbitrary
boundary.

I hope to have provided some background and motivation for what historical text is, what
the benefits are of making these texts available in digitized, textual form, and why NLP tools
are a crucial component for this. In the following sections, I will discuss the specific chal-
lenges for NLP when working with historical data (Sec. 1.1), the potential ways to address
them (Sec. 1.2), and which particular approach I will investigate within this thesis (Sec. 1.3).
Finally, Sec. 1.4 summarizes the main contributions of this thesis, and Sec. 1.5 gives an overview
of its structure.

4https://www.linguistics.rub.de/anselm/
5Old German: http://www.deutschdiachrondigital.de/home/?lang=en
Middle High German: https://www.linguistics.rub.de/rem/
Low German: https://vs1.corpora.uni-hamburg.de/ren/index_en.html
Early New High German: http://www.ruhr-uni-bochum.de/wegera/ref/

6https://www.uni-paderborn.de/en/research-projects/intergramm/project/
7http://gaw.hist.uu.se/?languageId=1
8http://ps.clul.ul.pt/
9http://nl.ijs.si/imp/index-en.html

2

https://www.linguistics.rub.de/anselm/
http://www.deutschdiachrondigital.de/home/?lang=en
https://www.linguistics.rub.de/rem/
https://vs1.corpora.uni-hamburg.de/ren/index_en.html
http://www.ruhr-uni-bochum.de/wegera/ref/
https://www.uni-paderborn.de/en/research-projects/intergramm/project/
http://gaw.hist.uu.se/?languageId=1
http://ps.clul.ul.pt/
http://nl.ijs.si/imp/index-en.html

1.1 Challenges for NLP on historical data

Figure 1.1: Extract from a manuscript of 15th century German, showing parts of text B3 of
the Anselm Corpus (Source: Staatsbibliothek zu Berlin – PK; http://resolver.
staatsbibliothek-berlin.de/SBB00009D8D00000000)

1.1 Challenges for NLP on historical data

Before historical texts can be processed by NLP tools, they need to be digitized in textual form.
“Textual” is used here primarily as an opposite to “graphical”, i.e., scans or other photographic
reproductions of physical pages. Textual representations can be obtained either from manual
transcriptions or by optical character recognition (OCR) tools applied to scans of the documents;
the latter approach comes with its own set of problems, though, e.g., when historical typefaces
are used or the source document is a manuscript, as in Figure 1.1.10 While this step is of course
crucial in obtaining a digitized representation of a text, I will not consider it further here, rather
focussing on the challenges that come afterwards.

After converting the historical document to digital text, we can—in principle—start applying
NLP tools to it. This could be search tools, POS taggers, syntactic parsers, named entity
recognition software, etc., usually depending on the type of research question we are interested
in. In practice, however, this proves to be challenging, as most existing NLP tools are developed
for contemporary languages. Historical language often differs significantly from its modern
equivalent in several aspects that make a naive application of these tools problematic. Rayson
et al. (2007) report that the accuracy of an English POS tagger dropped from 96% to 82%
when applied to data from Early Modern English. Similarly, Scheible et al. (2011b) obtain a
POS tagging accuracy of only 69.6% when applying a Standard German POS tagger to Early
Modern German texts.

First of all, there is the problem of tokenization: it is common for NLP tools to expect their input
to be tokenized and divided into sentences. For modern text, this usually involves splitting off
punctuation marks from words, using spaces to split a text into tokens, and disambiguating
sentence-final punctuation from other types (e.g., abbreviation markings).11 In historical text,
punctuation marks may be used quite differently from modern conventions; e.g., in the Anselm
Corpus, there is often no sentence-ending punctuation at all. Interword spacing is also not as
straightforward: e.g., a compound word might be written with or without a space between its
constituents; and particularly in the case of manuscripts, spacing can also be influenced by
spatial constraints of the page (Bollmann et al., 2011a).

10For a detailed discussion of digitization, see Chapter 4 of Piotrowski (2012).
11This is a slightly simplified description, and some other steps can be included in tokenization as well, such as

splitting up some morphologically complex units (e.g., splitting don’t into do n’t).

3

http://resolver.staatsbibliothek-berlin.de/SBB00009D8D00000000
http://resolver.staatsbibliothek-berlin.de/SBB00009D8D00000000

Chapter 1 Introduction

Historical language can also differ from its modern variant in various linguistic aspects such
as syntax, semantics, morphology, and lexicon. Inflectional processes may have changed;
semantics of certain words may have shifted; lexemes may have become extinct; and so on.12
Naturally, all of these issues can make it challenging to apply tools or resources for modern
language to this type of data. The most prevalent issue, however, is arguably that of spelling
variation, which I will discuss in the following section.

1.1.1 Spelling variation

Since historical language has typically not yet undergone a standardization process, it is not un-
common to find many different spelling variants for the same word form. Laing (1994) writes:

With Middle English we are dealing with periods when there was no generally ac-
cepted standard written variety of the vernacular manifesting stable and consistent
orthographic conventions. What we would identify as answering to ‘one and the
same word’ in Modern English may appear in a medieval text in many different
forms. Sometimes the variety is astonishing; the data in LALME13 indicate, for
instance, that for it, the personal pronoun, 45 different forms are recorded, she
has 64 and the preposition through more than 500. (Laing, 1994, p. 123)

This variety of spellings can, at least to some degree, be observed for most historical languages.
For example, in the Anselm dataset of Early New High German (introduced in Sec. 3.1.2), there
are 36 different forms of the conjunction und, 47 for the personal pronoun sie, and 53 for the
particle/preposition/adverb zu. The lack of an established standard means that spellings can
be affected by dialectal influences or individual preferences of the writer; naturally, clerical
errors can also be a factor. In many cases, this makes variant spelling the most common and
substantial difference to contemporary texts.

Importantly, though, spelling variation is of a different nature than most other categories in
which historical language can differ from the modern one. Lexical and grammatical changes
do not make historical language inherently more difficult to process—on the contrary, we can
argue that it could just be treated as a separate language in its own right, for which separate
NLP tools can be built. Practical matters of implementation aside, there is no theoretical reason
why we could not create tools that handle the syntactical, morphological, and lexical properties
of historical language just as well as for modern language.

The same cannot be said for spelling variation, however. As the name implies, spelling variation
introduces additional variance. This has consequences for almost all further processing of the
data. Consider the case of POS tagging (or any other labeling task): if a given word occurs in
ten different spelling variants, all of which are equally common, the amount of training data
required to label all of these variants correctly increases tenfold compared to a dataset without
this spelling variation. In a domain that already suffers from sparse amounts of annotated
training data, this is a severe problem.

12In Chapter 2, I will look at these issues in more detail.
13A Linguistic Atlas of Late Mediaeval English

4

1.2 Possible solutions

Even if we had large amounts of historical data for training our tools, treating all spelling
variants of a word as separate entities means missing out on useful information: if two tokens
are essentially identical except for their spelling—or, in the words of Laing (1994), “answering to
‘one and the same word’”—this knowledge can and should be exploited by a learning algorithm.
It should also be considered for search queries; having to know and individually specify all
spelling variants in order to find all instances of a word is, after all, highly impractical.

Some of the earliest computer-assisted analyses of historical texts explicitly handle the issue of
spelling variation. Usually, this is done by normalizing the variant spellings to a single form.
Fix (1980) describes such a normalization approach as a preprocessing step for lemmatization
of Old Icelandic; Koller (1983) presents a method for normalization of Old German; Klein
(1991) uses an index of normalized word forms to facilitate (pre-)lemmatization of Middle High
German. The focus on spelling variation in these early works again highlights the significance
of this aspect.

Similar arguments can be made for the problem of tokenization: e.g., the inconsistent use of
spacing can also introduce variance, and the absence or irregular use of punctuation marks
can introduce ambiguity with regard to phrase or sentence boundaries. However, problematic
interword spacing typically occurs much less frequently than spelling variation within a word,
and it is also considerably easier to mark up manually during the transcription stage, as many
corpora have done (e.g., Simon, 2014; Klein and Dipper, 2016; Odebrecht et al., 2016).

For these reasons, the aspect of spelling variation and how to handle it for natural language
processing is the main focus of this thesis.

1.2 Possible solutions

If historical language is different enough from modern language that it poses problems for
existing NLP tools, what can be done to make NLP “work” on historical data? The approaches
to this problem can broadly be fit into three main categories: (i) retraining the tool; (ii) domain
adaptation; and (iii) data adaptation.

The first solution is to retrain existing tools or machine-learning models in a supervised way
on manually annotated training data from the historical domain. This requires that a sufficient
amount of training data for the given task is available, which is often not the case. Besides
the time-consuming aspect of manual annotation, historical data may also require expert
annotators who are knowledgable in the particularities of the historical language stage.

Furthermore, manually annotated training data alone does not address the problem of increased
variance. As discussed above, the inconsistencies in spelling alone increase the required amount
of training data significantly. It is also unlikely that any set of labeled training data can capture
all forms of spelling variants that might occur in other, previously unseen texts, meaning that
models trained this way might not be able to generalize well in practice.

The second option is to view NLP for historical text as a domain adaptation problem. Here,
we assume that historical and modern language stages are just two different domains of one
language, and that we can leverage the labeled data available for the modern (or “source”)
domain to build tools that performwell on the historical (or “target”) domain. Themost common

5

Chapter 1 Introduction

approach is to combine labeled data from the source domain (which is assumed to be available
in large quantities) with either labeled or unlabeled data from the target domain (see, e.g.,
Daumé III and Marcu, 2006; Daumé III, 2007). This has the benefit of reducing or eliminating
the requirement to create manually annotated resources for the target domain, but also does
not explicitly address the variance problem discussed above.

The third option is to perform data adaptation. By this, I am referring to all methods that
transform the historical (target) data to make it look more similar to the modern (source) data.
The most common transformation here is (spelling) normalization, also called canonicalization:
the mapping of historical spelling variants to a canonical form, usually their contemporary
equivalent (e.g., Piotrowski, 2012, Ch. 6). This approach eliminates the variation in spelling. The
following is an example from a historical English text and its normalization in the Innsbruck
Letter Corpus (introduced in more detail in Sec. 3.1.1):

(1) þe
the

quene
queen

was
was

ryght
right

gretly
greatly

displisyd
displeased

with
with

us
us

both
both

Often, the aim of normalization is to apply existing tools—that have been trained on modern
data—to the normalized historical text. While spelling normalization is the most common form
of data adaptation, it is also conceivable to perform normalization on other levels, such as
morphology or syntax.

This list of options is not exhaustive: Firstly, the three approaches are not mutually exclusive
and can be combined, e.g., by performing a canonicalization step to reduce the spelling variance
before retraining on the canonicalized data. Secondly, many variations on these approaches
are conceivable: e.g., producing artificial training data for the historical domain by “adapt-
ing” modern data (Hana et al., 2011); or explicitly modifying tools by adding knowledge of
the historical domain, such as modifying the lexicon, tokenizer, and affixation module of a
POS tagger (Sánchez-Marco et al., 2011). In general, though, most approaches that do more
than just retraining tools on new data can be categorized as adapting the tool, adapting the data,
or a mixture of these two.

1.2.1 Arguments for normalization

I strongly favor the data adaptation approach in the form of normalization. This is mainly for
three reasons:

1. It addresses the issue of variance.

This is helpful for all downstream applications, regardless of which approach is chosen,
i.e., applying an existing tool to the data, retraining a tool on the normalized data, building
a new specialized tool, etc.

2. It provides useful information to all users of the data, not just NLP tools.

Normalization, when used to complement the original historical data, can provide helpful
assistance for everyone working with the data, by reducing the barrier of understanding,

6

1.3 Automatic normalization

facilitating search queries, etc. Even if not all nuances of the original text will be preserved
in a normalization, I believe there is a net benefit to be gained from it.

3. It facilitates the application of existing tools and resources.

Tools such as POS taggers and parsers might perform reasonably well on a normalized
text, depending on how different the historical language is apart from the spelling aspect;
entries from lexical or semantic databases could be linked to normalized word forms; and
so on.

For some researchers, the third aspect—reusing existing tools—is the main motivation for
performing normalization, which in this context is only seen as an intermediate step in a larger
processing chain. While I do agree this can be a useful aspect, I actually believe it is the least
important of the three. Normalization can provide useful information on its own, both to
NLP tools and to (human) users of the data.14

1.3 Automatic normalization

If normalization is a useful annotation layer for historical data, the next question is how we can
produce it automatically. After all, manually normalizing a full corpus of texts can be just as
time-consuming as creating any other type of annotation; shifting the annotation effort from,
e.g., POS tagging to normalization achieves a reduction of the spelling variation (with all the
benefits described above), but is still an inefficient way to process large amounts of texts.

1.3.1 From rules to machine translation

Automatic spelling normalization has a long history. Early approaches were usually based on
hand-crafted rules that encode regular spelling transformations (e.g., Fix, 1980; Koller, 1983).
These are easy to implement from a technical standpoint, but require expert knowledge of the
language and are inflexible with regard to new data that might show different characteristics.
Nonetheless, they can be very effective if the spelling changes are mostly regular. Later work
also explores methods to derive replacement rules automatically from training data (Koolen
et al., 2006; Bollmann et al., 2011b).

Many approaches are based on the idea that most historical spelling variants are “close” to their
modern equivalents by some form of string distance metric, and can therefore be normalized
by finding the closest modern equivalent in a lexicon (Hauser and Schulz, 2007; Jurish, 2010a;
Pettersson, Megyesi, and Nivre, 2013). These come with their own drawbacks, though, as they
often rely on a comprehensive lexicon of the modern target language, which is unlikely to
cover all proper nouns, compounds, or other specialized vocabulary that can be encountered
in a text. They also fail in cases where the underlying assumption does not hold, e.g., when a
historical word form is highly similar to a modern word that is completely unrelated.

In recent years, many works on historical normalization have utilized character-based statistical
machine translation (CSMT) (e.g., Sánchez-Martínez et al., 2013; Scherrer and Erjavec, 2013;
14Sec. 2.1 will elaborate on this aspect.

7

Chapter 1 Introduction

Pettersson, Megyesi, and Tiedemann, 2013; Ljubešić et al., 2016b; Schneider et al., 2017). Their
approach is to reuse existing software for statistical machine translation, which has long been
the state-of-the-art approach for machine translation and is therefore thoroughly tested and
optimized, and model normalization as the translation of character sequences. In other words,
instead of translating a sentence consisting of words as the atomic units, the technique is used
to translate a word consisting of characters. In most cases, CSMT was shown to perform better
than previous work; it can currently be considered the state-of-the-art approach for historical
normalization.

1.3.2 Neural networks

In the area of machine learning, neural networks have received an enormous amount of at-
tention in the last few years, often under the term deep learning. This is also true for natural
language processing: according to Young et al. (2017), up to 70% of long papers at large-
scale NLP conferences in 2016/2017 covered deep learning methods. Goldberg (2017) gives an
introduction to neural networks for NLP and cites an impressive number of tasks where they
have been successful; the following is an (incomplete) excerpt:

Fully connected feed-forward neural networks […] provide benefits for many
language tasks, including the very well basic [sic] task of language modeling,
CCG supertagging, dialog state tracking, and pre-ordering for statistical machine
translation. […]

Networks with convolutional and pooling layers […] show promising results on
many tasks, including document classification, short-text categorization, senti-
ment classification, relation-type classification between entities, event detection,
paraphrase identification, semantic role labeling, question answering, predicting
box-office revenues of movies based on critic reviews, modeling text interesting-
ness, and modeling the relation between character-sequences and part-of-speech
tags. […]

Recurrent models have been shown to produce very strong results for language
modeling, as well as for sequence tagging, machine translation, parsing, and many
other tasks including noisy text normalization, dialog state tracking, response
generation, and modeling the relation between character sequences and part-of-
speech tags.

(Goldberg, 2017, p. 4 f.)15

Even though they have been applied to “noisy text normalization” in the context of social
media text (e.g., Chrupała, 2014), neural networks have so far rarely been used for historical
normalization, despite the fact that there is an obvious candidate architecture for this task:
character-based neural machine translation (Ling et al., 2015). The state of the art for machine
translation has shifted from statistical to neural models (Bahdanau et al., 2014; Wu et al., 2016),
15The quoted passage also contains footnotes with citations for every mentioned task; they have been left out

here for brevity.

8

1.4 Aim of this thesis

so if character-based statistical machine translation (CSMT) is the state of the art for historical
normalization, could character-based neural machine translation perform even better?

A potential problem is that neural networks are typically said to work best when large amounts
of training data are available; e.g., Chollet (2017, Sec. 1.3) cites the availability of “very large
datasets” as one of the factors for the success of deep learning. Datasets for historical normal-
ization, on the other hand, are comparatively small. The GerManC-GS corpus of Early Modern
German contains about 50,000 tokens (Scheible et al., 2011a); the Reference corpus of historical
Slovene goo300k has about 300,000 tokens (Erjavec, 2012); the HGDS corpus of Old Hungarian
has about 2.2 million tokens, but the majority of them are automatically normalized, with only
a small fraction of manually checked normalizations (Simon, 2014). In comparison, Wu et al.
(2016) train an English-to-French machine translation system on 36 million sentences.

However, previous work suggests that neural models may be suitable for the normalization task
despite the small training sets. Bollmann and Søgaard (2016) and Bollmann et al. (2017) train
neural network models on small datasets of historical German, containing between 2,000 and
11,000 tokens, and show that the resulting models can outperform the previously established
Norma tool (Bollmann, 2012). Korchagina (2017) finds that a neural machine translation system
trained on about 70,000 German words performs better than both Norma and a statistical
machine translation system. Still, to the best of my knowledge, all work on neural historical
normalization so far has only been evaluated on German datasets, and Korchagina (2017)
presents the only direct comparison of neural models to CSMT.

Due to the general success of deep learning and the promising results of these previous studies,
I believe that a more thorough investigation of the suitability of neural networks for historical
normalization is warranted.

1.4 Aim of this thesis

My aim in this thesis is to apply an encoder–decoder neural network model, inspired by work
in neural machine translation (and introduced in more detail in Chapter 6), to the historical
normalization task, evaluate it on a large selection of corpora from different languages, and
compare its performance with previously established normalization systems. To this end, I will
do the following:

• Optimize the encoder–decoder architecture for the historical normalization task.

This includes tuning the number of neural network layers used in the model, tuning other
hyperparameters to find optimal settings for the task, and adding various techniques
that are shown to mostly improve the normalization accuracy, such as the attention
mechanism, beam search decoding, and model ensembling (cf. Chapter 6).

• Perform a comparative evaluation and analysis on development data.

Evaluation is performed on ten datasets from eight languages, chosen mostly based on
the availability of gold-standard normalization data (cf. Chapter 3). The output of the
encoder–decoder model is compared to that of other normalization tools, which are
selected to be representative of different previously established normalization methods

9

Chapter 1 Introduction

(cf. Chapter 4). Besides the commonly measured word accuracy, the evaluation and
analysis will also focus on more fine-grained ways to assess the quality of the automatic
normalization output (cf. Chapter 7).

• Investigate the models’ performances under multi-task learning and low-resource train-
ing.

Techniques from multi-task learning are used to train the encoder–decoder model on
two datasets in parallel, with the aim of improving the performance on each single
dataset (cf. Chapter 8). In the low-resource scenario, I repeat some of the previous
evaluations and analyses after training the models on only a small portion of the datasets,
simulating a common use case where only little training data is available (cf. Chapter 9).
In both instances, my aim is to find out if and how the performances of the models differ
compared to the full evaluation.

• Repeat selected evaluations on held-out test data to confirm the observations of the
previous analyses (cf. Chapter 10).

Overall, the current state-of-the-art normalization approach based on character-based statistical
machine translation (CSMT) is shown to perform better than the proposed neural network
model in most scenarios, including the low-resource training scenario. The qualitative analyses
provide some useful insights into the individual characteristics of the datasets, but mostly find
no major differences between the models—i.e., the CSMT and neural network models mostly
learn to normalize the same word forms and patterns. While this is in many ways a “negative
result” for neural networks, I believe this thesis is an important contribution to the field for
three reasons:

1. It is, to the best of my knowledge, the most extensive evaluation and comparison of
methods for automatic historical normalization so far. It covers more datasets and
languages than previous evaluations and compares normalization systems representing
a broad variety of previously established approaches.

2. It runs contrary to the widely reported successes of neural networks and the associated
notion that they mostly outperform “classical” approaches. It also stands in contrast
to previously published results for historical normalization that found advantages for
neural networks (e.g., Korchagina, 2017).

3. It explores novel ways to analyze the output of automatic normalization systems that
can benefit future work.

In essence, the thesis statement that I am going to substantiate in the following chapters is:

Compared to an encoder–decoder neural network architecture that has been ex-
tensively tuned and optimized, character-based statistical machine translation
still remains the better overall choice for the historical normalization task, as it
outperforms the neural model in most scenarios when evaluated on a diverse set
of ten datasets from eight languages.

10

1.5 Structure of this thesis

1.5 Structure of this thesis

The structure of this thesis is as follows:

• Chapter 2 discusses the normalization task. It explores what normalization in the context
of historical text is and what it is not, what challenges there are for deciding on a “best”
or “gold-standard” normalization, and how different corpora have chosen to address
them.

• Chapter 3 presents the corpora used inmy experiments. It describes the historical datasets,
documents any preprocessing decisions, and explores ways to analyze and compare the
spelling variation found in them. Additionally, it introduces the contemporary datasets
that are used in some of the experiments.

• Chapter 4 explores methods for performing normalization automatically. It gives an
overview of previous work in this area and describes the specific tools I have chosen to
include in the later evaluations.

• Chapter 5 introduces neural networks. It explains the basic concepts of neural network
models and how they are trained, as well as documenting any relevant implementation
details.

• Chapter 6 describes the encoder–decoder architecture. It compares encoder–decoder
models with and without an attention mechanism, performs hyperparameter tuning to
find the best hyperparameters for the model and the training procedure, and analyzes
properties of the model such as the variance of its performance under repeated training
runs.

• Chapter 7 evaluates, analyzes, and compares the normalization methods on development
data from the historical datasets. It explores various ways to analyze and measure the
quality of errors the different models make, e.g., by comparing different evaluation
measures, performing a manual error classification, applying a stemming algorithm to
the data, comparing the distribution of errors, etc.

• Chapter 8 introduces multi-task learning as a way to train the encoder–decoder model on
multiple datasets in parallel. It describes different architectures for multi-task learning
and compares them by performing pairwise training experiments, i.e., training on two
historical datasets simultaneously.

• Chapter 9 describes experiments in low-resource training, i.e., trainingwith small datasets.
It compares the different normalization methods in this scenario, investigates how their
performance differs compared to the full training scenario, and examines a training setup
where a small dataset is paired with a larger dataset using multi-task learning.

• Chapter 10 performs a final evaluation on held-out test data from the historical datasets.
It repeats some of the experiments from previous chapters to confirm that the observed
effects and conclusions remain the same when tested on previously unused parts of the
data.

• Chapter 11 concludes by summarizing the results, suggesting ways to improve the neural
network model presented here, and discussing possible directions for future research.

11

Chapter 2

Principles of normalization

In certain, perhaps in the majority of philological circles, normalization and its
twin term, regularization, are almost taboo words, and editors who normalize
their texts are liable to be ostracized.

— Markus (2000, p. 181)

Dealing with linguistic variation in historical documents has always been a concern for scholars
in the humanities. Texts written in older stages of a language, often in manuscript form
and influenced by the scribe’s dialect, pose several challenges for contemporary readers, for
instance due to the usage of unfamiliar spellings, characters, or abbreviations. It is therefore not
surprising that adjusting parts of a text to ease comprehension, such as resolving abbreviations
or unifying spelling variants, has a long tradition; Markus (2000) reports that this was common
practice for university students of medieval German back in the 1960’s.

This practice is most often called “normalization”, but many related terms exist, such as “reg-
ularization”, “modernization”, or “canonicalization”, with varying definitions regarding the
extent and nature of the adjustments. Intuitively, the concept appears to be easy to define:
when we see phrases like whych he wryteth or aduise and councell, we can recognize them as
an archaic form of writing English, and determine that their modern-day equivalents would be
which he writes and advise and counsel, respectively. In other words, a form like wryteth can
be seen as a historical spelling variant which could be changed—or “normalized”—to writes in
order to conform to modern spelling conventions.

Delving deeper into the topic, the concepts of variation and normalization are not always so
intuitive and clear. Deviant word forms can stem from the lack of orthographic conventions, but
also from phonological, morphological, or lexical differences of the writer’s language—should
all of these variations be smoothed over, or only some of them? How should extinct lexemes
be normalized that do not have a direct modern equivalent? Syntactic and morphosyntactic
variation can raise further questions, e.g., should a genitive noun phrase be changed to ac-
cusative if that is the norm of the modern language? These issues do not always just concern
word forms in isolation, as changing the case or gender of a noun could necessitate similar
changes in articles, adjectives, or pronouns that agree with it. Furthermore, it might not even
be easily decidable whether a deviant word form is the result of a different grammatical case,
phonological influences of the writer’s dialect, or just a clerical error.

There is no single “best” way to handle these issues, as the most desirable treatment will always
depend on the intended goal of the normalization. Scholars of medieval studies might be

13

Chapter 2 Principles of normalization

content with a minimal approach that only resolves abbreviations and standardizes spelling,
since they will be somewhat familiar with the morphological and syntactic peculiarities of the
historical language stage. NLP practitioners looking to apply modern tools for part-of-speech
tagging, syntactic parsing, or semantic analysis, might appreciate a more radical modernization
of the source material.

The remainder of this chapter explores these issues in more detail. Sec. 2.1 first discusses why
normalization can be useful in the context of historical texts. Sec. 2.2 looks at choices during
the digitization process of historical documents and their effect on the (digitized) source data.
Sec. 2.3 analyzes how normalization can be defined and how it differs from related terms such
as regularization or modernization, while Sec. 2.4 takes a closer look at challenges for the
normalization task and how existing guidelines and historical corpora choose to handle them.
Finally, Sec. 2.5 concludes and describes which view of the normalization task I will adopt for
the purposes of this thesis.

2.1 Why normalization?

Historical documents are a valuable resource for researchers in many fields, such as historians,
sociologists, literary scientists, linguists, lexicologists, and others. However, the raw source
material, i.e., historical manuscripts or prints, can be difficult to study: handwriting can be hard
to read; they can contain abbreviations or characters that are no longer used; the spelling of
words can be different from modern orthography; and they can exhibit a wide variety of other
linguistic differences due to dialectal features, or simply due to language development since the
time they were written. Critical editions are often used to study these texts, not only because
they compile information from several different sources of the same text, but also because
editorial adjustments are often made to reduce the above-mentioned difficulties, helping the
reader to understand the material. Indeed, Markus (2000, p. 184) argues that “unless readers
have specialised in palaeographic mediaeval practices, they need normalizing editorial help.”

There are several arguments to be made not to rely on editors alone, though. First of all, editorial
decisions are not always made transparent, and details of the source material may sometimes
be lost in editions. The decision of what or what not to preserve is made by the editor, typically
with regard to what they consider relevant for the reader. However, what is relevant strongly
depends on the individual research question—a sociologist studying medieval societies will
probably not be interested in linguistic peculiarities of the source text, while they might be the
prime interest of a historical linguist studying language change. Normalization, if performed
automatically by a software tool or provided as an annotation layer, enables scholars to work
directly with the unedited source material, while still benefiting from the help of normalized
word forms.

Secondly, the ongoing digitization efforts of libraries and corporations (such as Google Books)
are making a large amount of historical documents readily accessible to the public, sometimes
for the first time. These digital resources open up many new avenues of research that was
previously impossible or difficult to do: search queries can quickly find all occurrences of a word
or phrase (Rogers and Willett, 1991, e.g., Ernst-Gerlach and Fuhr, 2006); word frequency lists
can be extracted automatically (Baron et al., 2009); NLP tools can provide automatic annotations

14

2.2 Digitization

in order to quickly identify and extract certain linguistic structures, e.g., relative clauses (Hundt
et al., 2012) or verb phrases (Fiebranz et al., 2011; Pettersson et al., 2014b; Krasselt, 2017);
and so on. However, on texts with variant and inconsistent spelling, word form queries are
more difficult to perform, word frequency lists are inaccurate, supervised machine learning
models are harder to train, and tools already developed for modern language stages are likely to
perform poorly. Creating manual annotations or critical editions is a time-consuming process,
and simply not conceivable to do for such a large body of material.

It is important to recognize that normalization, in the sense presented here, is a tool, not
intended to substitute the source material, but rather to complement it. As an added layer of
annotation in a corpus or a digital edition, it can assist in reading, comprehending, and searching
within a document. It facilitates automatic analyses that can be based on the normalized form.
As a preprocessing step for NLP tasks, it can significantly improve their accuracy, or enable
the (re-)utilization of existing tools developed for the modern standard language. As such,
normalization is an important step to making historical documents accessible not only in
a literal sense, but in a practical sense that enables meaningful applications to be based on
them.

2.2 Digitization

Historical documents always originate in physical form, either as printed texts or as handwrit-
ten manuscripts. Before they can be processed by computational means, they therefore need
to be digitized. These digitized versions consequently become the source texts that are the
starting point for our normalization efforts. How the digitization is performed (e.g., OCR vs.
manual transcription) and which decisions were made during this stage (e.g., level of detail to
preserve) can therefore influence aspects of the normalization process.

Digitizing historical documents, at least for our purposes, means converting them to a string of
text (as opposed to, say, images of the individual pages). OCR techniques can be used to extract
a string representation from images of text, but they are difficult to apply to manuscripts, and
also face challenges on printed historical documents (cf. Piotrowski, 2012, Ch. 4).1 When OCR
is used, there is usually a manual post-processing step (e.g., Simon, 2014)—if there is not, the
normalization process will likely also have to deal with errors introduced by the OCR program,
which may be of a very different nature than the variation originating from the text’s original
scribe.

When digitized texts are based on printed editions, theymay already contain changes introduced
by the editor, regularizing some aspects of the writing such as diacritics, capitalization, or
common character substitutions such as 〈j〉 for 〈i〉 (Dipper and Schultz-Balluff, 2013). When
multiple sources from different editors form the basis of a corpus, they might even follow dif-
ferent editorial principles—Simon (2014) reports that for their corpus of Hungarian codices, the
editions had to be manually standardized so identical characters had a common representation.
Editorial decisions can also be made by the corpus creators themselves, as in the Post Scriptum
corpus, where punctuation characters have already been standardized in the transcription; e.g.,

1There is, however, active research on improving OCR on historical documents (e.g., see Berg-Kirkpatrick and
Klein, 2014; Springmann and Lüdeling, 2017), so this situation might change in the future.

15

Chapter 2 Principles of normalization

a paragraph mark in the form of a double slash is transcribed as a full stop (Vaamonde, 2017).
Digitized texts that have been (pre-)edited in some way are—at least in parts—likely to be easier
to normalize than those which are transcribed verbatim.

Often, historical texts are transcribed manually by experts of the source language. The level
of detail preserved in these transcriptions can vary, too, especially when they are based on
manuscripts, which may contain arbitrary amounts of variation of letter forms, embellishments,
or abbreviation marks conceived by the writer. Furthermore, (pre-)editorial decisions similar to
printed editions can also be made during this stage. Transcriptions in the Reference Corpus of
Middle High German, for example, conflate the “r rotunda” 〈ꝛ〉 and the plain 〈r〉, while keeping
the distinction between plain 〈s〉 and round 〈ſ 〉 (Korpushandbuch DDD-Mittelhochdeutsch
2014).

There is also the issue of tokenization, i.e. marking up token boundaries. Spacing in historical
texts can be just as variable as other spelling characteristics, and does not always correspond
to modern usage. In many corpora, the original spacing is preserved, but exceptions from word
boundaries according to modern orthography (e.g., two separate words that should be written
as one word in modern writing, or vice versa) are manually marked up in some form (Simon,
2014; Klein and Dipper, 2016; Odebrecht et al., 2016). Others keep the original spacing and only
encode modernized word boundaries at the normalization layer (Archer et al., 2015). It depends
on these decisions whether the task of normalization also has to account for modernizing the
tokenization or can already presuppose it. In manuscripts, it might not always be easy to decide
when the spacing between two letters is wide enough to be recorded as a space; cases like these
can be up to subjective interpretation, and for practical reasons, an editorial decision usually
needs to be made (cf. Marttila, 2014, p. 440).

When digitizing historical texts, there is always a tension between the desire to preserve
as many details from the source material as possible, in order to allow varied and nuanced
research questions to be investigated on the data, and concerns of usability. For this reason,
some corpora even offer multiple layers of representations; e.g., the Anselm corpus offers
a “simplified” layer that maps certain historical characters to modern equivalents, such as
mapping 〈ſ 〉 to 〈s〉 (Dipper and Schultz-Balluff, 2013). The RIDGES Herbology Corpus offers
a “clean” layer which performs similar mappings, but also differs in tokenization, providing
modern word boundaries rather than the original ones (Odebrecht et al., 2016).

Decisions made during the digitization process can have a huge impact on the suitability of
a resource for linguistic analyses. However, they are also important from an NLP perspec-
tive, since the digitized material effectively becomes the source material which all further
processing is based on. If the digitized texts already come with modern token boundaries or
simplified/standardized characters, this will probably facilitate further processing of the data.
The downside is that results achieved on this type of data will not necessarily be transferable
to new data that has not been prepared in such a way. Lastly, these factors should also be kept
in mind when comparing results from different corpora, as different results might not only
originate from linguistic differences, but also from these choices made during digitization.

16

2.3 Defining normalization

2.3 Defining normalization

So far, we have discussed why normalization can be useful, but apart from setting the vague
goal of eliminating variant word forms, we have not defined what exactly “normalization”
should entail. In this section, I will discuss how the term is used in the literature, and how it
relates to canonicalization, modernization, regularization, or standardization.

In its most literal sense, normalization can be defined as “the change of deviant word forms
according to the norm of a standard” (Markus, 1997, p. 220); similar definitions can be found
throughout the literature. But what should the standard be? Most authors agree that two main
approaches can be distinguished (e.g., Fix, 1980; Koller, 1983; Markus, 2000):

1. defining a standard based on text-internal criteria, e.g., identifying the variant that is
most commonly used, or is seen as most consistent with regard to similar word forms, in
a given work or the body of all works by an author; or

2. relying on an external resource, such as a grammar or a lexicon, to provide the standard
language which the normalization should adhere to.

Bowers (1989) calls the first approach regularization and only the latter normalization, and I
will adopt this terminology here, though not all authors strictly follow this distinction.

Regularization in this sense reduces the variance arising from inconsistencies within a text or
corpus without relying on any external resources. It lends itself to unsupervised approaches to
spelling variation that aim to find or cluster all variants of a word form, but do not necessarily
require them to be mapped to modern forms (e.g., Giusti et al., 2007; Barteld et al., 2015).
However, when a mapping to a single variant is desired, it is not clear which of the variants
should be chosen for this purpose. Simply choosing the variant that occurs most often is an
option, but might not result in a regularization that shows consistent spelling characteristics
across different word forms. Choosing the style of a well-known author is an alternative, but
not necessarily practical, as Markus (2000) notes:

In English, not even Chaucer’s version of Middle English is homogeneous and
well-known enough among Anglicists to function as the optimal norm. That role
is best played by Present-day English. (Markus, 2000, p. 185)

The latter case, i.e., normalization according to an external standard, raises the question what
the external standard should be. This can be a matter of which lexicon or grammar should be
considered the most comprehensive or authoritative, but, more fundamentally, starts with the
question whether the resource should be a historical or a modern one. Lenders et al. (1973),
in their study of Middle High German texts, choose to use both: the Middle High German
lexicon by Matthias Lexer (Lexer, 1992) as a reference for the historical word form; and the
Duden as the reference for their Modern German equivalents. They argue that this approach
circumvents difficulties due to word forms being archaic or extinct (in which case they might
not be covered by the modern lexicon), or a more recent addition to the language (and therefore
not yet covered by the historical lexicon). It also allows for approaching corpus analyses from
the perspective of either language stage. For many NLP applications, normalization to the
modern language variety will be preferable, since this allows utilizing existing resources, which
will typically be more plentiful for the present-day language than for historical stages.

17

Chapter 2 Principles of normalization

Jurish (2011) uses the term canonicalization to refer to the mapping of unknown words to
“extant canonical cognates” (p. 2), which amounts to normalization with the modern language
as its target. He chooses this term as it “has established itself in the domain of information
processing.” Baron and Rayson (2009) refer to the same concept as standardization, though the
term itself leaves open which standard it refers to.

Modernization clearly refers to the modern language as the desired standard, and is used
occasionally in this sense (e.g., Sánchez-Martínez et al., 2013; Scherrer and Erjavec, 2013).
Historically, the term is also associated with more radical changes to the source material to
conform to standards of a publisher (Bowers, 1989) or to provide a full translation of words or
phrases (Markus, 2000). Krasselt et al. (2015) distinguish two layers of normalization that they
call “normalization” and “modernization”, the latter of which covers more radical adjustments
that could be seen as closer to a full translation, such as providing a modern, semantically
equivalent word form if the historical one underwent a significant semantic shift.

In this work, I will use the term normalization in its sense of normalizing to a modern standard
language, which also appears to be the most common usage in the literature (e.g., Markus,
1997; Oravecz et al., 2010; Hendrickx and Marquilhas, 2011; Reynaert et al., 2012; Amoia and
Martínez, 2013; Pettersson, Megyesi, and Nivre, 2013; Archer et al., 2015; Krasselt et al., 2015;
Etxeberria et al., 2016; Ljubešić et al., 2016b; Schneider et al., 2017). This definition, however,
only provides the guiding principle that its target word forms should conform to a modern
standard—it does not define how to arrive at that standard, i.e., what criteria should be applied
to perform the mapping of historical word forms to modern ones. Indeed, the extent of changes
that normalization should cover is not easy to define. While Marttila (2014) speaks of a “policy
of minimal intervention”, the introduction of a separate “modernization” layer by Krasselt et al.
(2015) shows that there is a tension between staying close to the source text and producing a
normalization that is “modern enough” for its intended purpose, e.g., being understandable to
a contemporary reader, or resulting in high accuracy with modern NLP tools. In the following
section, I will look more closely at the various challenges for deciding on a normalized form
and how different corpora and guidelines chose to approach them.

2.4 Guidelines and challenges

The most striking feature of historical texts is often their lack of a standard orthography. If
normalization is the mapping of historical word forms to their modern equivalents, it seems
like a simple mapping of variant spellings to their standard form in modern orthography. This
assumption could hold true if orthography was the only feature that distinguished historical
and modern texts; but language change and dialectal influences can affect all areas of language,
including morphology, syntax, or semantics, and all of these will be reflected in the writing.

Furthermore, language change is continuous: there is not always a clear boundary between
historical variants and correct/acceptable spellings. For example, the German dative ending -e
in phrases such as im Walde ‘in the forest’ is considered somewhat archaic, but still perfectly
understandable to contemporary speakers, and even preferred in certain fixed phrases. Nor-
malizing Walde > Wald could therefore be seen as unnecessary; on the other hand, having two

18

2.4 Guidelines and challenges

interchangeable forms of the same morphological word (i.e., the dative singular of Wald) seems
like the very essence of “variation” that normalization is intended to reduce.

Extinct word forms or affixes pose an even greater challenge, as they cannot be normalized
to a modern word form on a purely graphematic level. It is not obvious what the appropriate
normalization should be in such cases—adjusting only the spelling results in an artificial form
that does not actually exist in the modern language, while replacing it with an appropriate
modern lexeme or affix constitutes a change way beyond the graphematic level, and is much
closer to a translation of the text.

In a supervisedmachine learning setting that uses existing, normalized datasets as gold-standard
data, it is easy to neglect these considerations and define the task pragmatically by the content
of the datasets used in the experiments. Ultimately, the goal of such an experimental setup
(or, at least, the easily measurable goal) is to learn to reproduce the type of annotations of the
training set on the data of the test set. However, since the details of the normalization task can
vary between different datasets, the performance of machine learning algorithms can also vary
due to that. I believe it is beneficial to be aware of these criteria when evaluating automatic
normalization methods, especially when comparing results obtained on different datasets.

In the following subsections, I will examine various criteria that need to be taken into account
for normalization, summarize how existing corpora and normalization guidelines choose to
handle them, and discuss what impact they have for NLP applications.

2.4.1 Spelling and phonology

By far the most common type of normalization is spelling normalization in the strictest sense
of the term: eliminating variant spellings of otherwise identical word forms. This is usually the
main criterion in any normalization dataset, and such a salient one that the whole process is
often called “spelling normalization”.

The aim of spelling normalization is to produceword forms that conform to themodern, standard
orthography of the language in question, and often, the notion of “modern” or “contemporary”
orthography is simply assumed to be well-defined (e.g., Rögnvaldsson et al., 2012; Erjavec, 2015).
Other datasets employ a dictionary criterion, stating, for example, that “the normalised version
should be a word form that is likely to be present in a modern language dictionary” (Pettersson,
2016, p. 50). When a particular dictionary is specified, this establishes an objective point of
reference for deciding whether a given historical word form should be normalized, and whether
a given modern word form can be used as a normalization. For German, Duden2 is often used
as the dictionary of choice (Krasselt et al., 2015; Odebrecht et al., 2016); for English, Marttila
(2014) uses the online version of the Oxford English Dictionary.3

Purely graphematic operations include normalizing character pairs that are sometimes used
interchangeably, such as 〈i〉/〈j〉, 〈i〉/〈y〉 or 〈u〉/〈v〉, in word forms like German jre > ihre or the
English aduise > advise. Replacing characters that are no longer in use, such as 〈ſ 〉 in place of
modern 〈s〉, can also fall under this category, unless these spellings were already regularized

2http://www.duden.de/woerterbuch
3http://www.oed.com/

19

http://www.duden.de/woerterbuch
http://www.oed.com/

Chapter 2 Principles of normalization

during the digitization process (cf. Sec. 2.2). The same applies to certain abbreviations found in
handwriting, such as a bar over a character used to represent a following nasal consonant (e.g.,
einē for einen). Diacritics are another common case; e.g., superscribed ‘e’ as in 〈 ea〉 in place of
modern umlaut 〈ä〉 in German, or 〈o̧〉 in place of 〈ő〉 in Hungarian (Simon, 2014).

Graphematic criteria are often grouped with phonological ones, since both are closely related,
and their normalizations can mostly be unambiguously determined. For the Anselm corpus,
Krasselt et al. (2015, p. 17) define that normalized word forms may be derived “exclusively via
phonological and/or graphematic equivalence operations.” For example, while the alternation
czu > zu ‘to’ would count as a graphematic operation since it is not phonologically motivated,
pairs like zwelf > zwölf ‘twelve’ or sunne > Sonne ‘sun’ are the result of vowel rounding or
lowering, respectively, between Early New High German and Modern German. Vaamonde and
Magro (2017) list many similar examples for Spanish and Portuguese, e.g., the common lenition
of [b] to [v] reflected in writing in word pairs such as binho > vinho ‘wine’, the elision of [d] in
aministrar > administrar ‘to administrate’, and many others.

An important property of spelling variation is that the correct normalization cannot always be
determined without looking at word context. This can be seen in Early Modern English word
pairs like bee > be, doe > do, or then > than, where we can only determine by looking at the
context whether the word needs any normalization at all, i.e., whether bee is used as a noun
describing the flying insect, or as a variant spelling of the verb to be (Archer et al., 2015, p. 16).
Another example is the normalization of my mistres eyes to my mistress’s eyes (Archer et al.,
2015, p. 13), where the normalization to a genitive form is only triggered by the contextual
usage of the word within the noun phrase. Common examples in German include jrē ‘their’,
which can be either accusative ihren or dative ihrem, and dz, which can be either the definite
article das or the conjunction dass.

Proper nouns

Proper nouns are a special case for spelling normalization: they cannot typically be found in a
dictionary, raising the question of how to determine a reference spelling, and they can preserve
archaisms that have not always changed with the rest of the language, so applying modern
spelling rules is not always appropriate. Especially for personal names, their exact spelling can
also be an individual choice.

Not all normalization guidelines explicitly mention their treatment of proper nouns, but those
that do adopt a variety of positions: Archer et al. (2015) do not normalize names (such as
Darbye, North Baiely) at all; Pettersson (2016), on the other hand, does normalize place names
(such as Upsala > Uppsala) but not personal names, reasoning that the latter do not necessarily
have unique spellings in contemporary Swedish, while place names do have a standardized
modern form. Krasselt et al. (2015) and Simon (2014) both choose to normalize proper nouns,
including personal names, though both are mainly concerned with religious texts—here, a
modern Bible translation can often be used to provide a reference spelling.

20

2.4 Guidelines and challenges

Capitalization

The usage of capital letters can be another source of high variance. In most languages, we
would expect them at the beginning of sentences or in proper nouns today, but this usage is
often not established or inconsistent in older texts. While capitalization is sometimes used for
highlighting, it often lacks any clear function, appearing in the middle of words, or being used
due to individual preferences of the writer (Markus, 1997, p. 213).

Most normalization guidelines do not explicitly describe how they treat capitalization. Marttila
(2014) only modifies capitalization for proper nouns, which are always capitalized. Belz et al.
(2017) mention that they adjust capitalization according to modern orthographic rules, but do
not modify it sentence-initially.4 Vaamonde and Magro (2017) also mention the adjustment of
capitalization as one of the principles for normalization, although without detailing their exact
approach.5

2.4.2 Morphology and morphosyntax

Variation in historical language stages can also extend to morphological processes, such as
inflectional patterns and/or affixes. On a morphosyntactic level, the selection of case and
gender may also be subject to variation. These processes go beyond the mere level of spelling,
and there are different approaches that either preserve these variations or normalize them as
well.

Historical German has many inflectional patterns that differ from modern German, e.g., the
feminine accusative ending -n (in die Nasen > in die Nase), the dative -e (in dem puche > in
dem Buch), infinitives with ge- prefix (gesein > sein), and many others. They are normalized in
both the RIDGES corpus (Belz et al., 2017, p. 43) and the Anselm corpus, although the latter
introduces a second normalization layer (called “modernization”) to keep more fine-grained
information: when there is a matching surface form for the historical variant, this is recorded as
the normalization, while any morphological adjustments are only made in the modernization.
An example for this is the phrase dese wort, which is first normalized to diese Wort—since Wort
is a valid Modern German word form—before being further modified to the plural form Worte
on the separate modernization layer (Krasselt et al., 2015, p. 19 ff.).

For some of these cases, it is unclear whether they should be considered historical variants
that need normalization. The dative -e, for example, is considered obsolete in modern German,
yet still survives in many idiomatic or fixed phrases (e.g., im Bilde sein ‘to be in the know’,
am Fuße des Berges ‘at the foot of the mountain’) and is intelligible to contemporary speakers.
Nonetheless, both Anselm and RIDGES choose to normalize it to a form without the -e suffix.

4“Wortbildung und Großschreibung, die nicht der modernen Orthographieregeln [sic] entsprechen, werden
angeglichen.” (‘Word formation and capitalization not conforming to modern orthographic rules are ad-
justed.’) (Belz et al., 2017, p. 177, my translation)
“Satzanfänge bleiben kleingeschrieben, wenn sie im Original auch kleingeschrieben sind.” (‘Beginnings of a
sentence remain lower-cased when they are lower-cased in the original as well.’) (Belz et al., 2017, p. 43, my
translation)

5“La normalización ortográfica de las formas originales, incluyendo la acentuación y la inserción de mayúsculas
donde corresponda.” (‘Orthographic normalization of the original forms, including accents and the insertion
of capitalization where appropriate.’) (Vaamonde and Magro, 2017, p. 5, my translation)

21

Chapter 2 Principles of normalization

Another example is ward, a preterite form of werden (‘to become’, also used as an auxiliary
indicating passive voice), which is considered archaic or “poetic” compared to the standard form
wurde. In RIDGES, it is preserved in the normalization, while the Anselm corpus also allows
ward in the normalization, but changes it to wurde in the extra modernization layer (Krasselt
et al., 2015, p. 21).

Derivational morphemes are another, related source of variation. Belz et al. (2017) describe
the word form stachelecht for modern stachelig ‘thorny’ as using an extinct derivational
morpheme -echt, which they normalize to the appropriate modern equivalent, here -ig. The
adjectival/adverbial suffix -lich is often used in places where it is considered ungrammatical
today, such as in volkomenlich, which would be vollkommen ‘complete(ly)’ in modern German.
Krasselt et al. (2015) treat these cases like extinct word forms (cf. Sec. 2.4.3), only using the
modern vollkommen on the second modernization layer. In the RIDGES corpus, treatment of
these cases depends on whether the base lexeme can be used as a valid word form on its own: on
the one hand, we can find examples like krefftiglich > kräftig ‘strong’ where the normalization
simply drops the suffix; on the other hand, forms like manniglich and gemeiniglich are treated
like extinct word forms (and normalized graphematically only, cf. Sec. 2.4.3) since *mannig and
*gemeinig do not constitute accepted modern German words.

While the RIDGES corpus normalizes morphological variation whenever possible, it also follows
the rule that “case and gender inflection are not normalized to modern German forms” (Ode-
brecht et al., 2016, p. 9). An example for gender variation is the Early New High German
neuter noun das Milz ‘the spleen’, which is a feminine noun (die Milz) in Modern German.
Case inflection refers to morphosyntactic adjustments within a phrase, as in man trinke des
wassers ‘one should drink the water’ (Belz et al., 2017, p. 187), which uses a genitive noun
phrase (des Wassers) where modern German syntax requires the accusative case (das Wasser).
While RIDGES does not adjust these examples for case and/or gender at all, the Anselm corpus
utilizes the extra modernization layer for this purpose.

So far, all examples in this section have been for German, which is not surprising given its rich
morphology, though similar examples exist in other languages as well. Pettersson (2016) gives
an Old Swedish inflected verb form tillbragte ‘spent (time)’, which uses an archaic inflectional
paradigm and is therefore normalized to modern tillbringade. Early Modern English has the
second-person singular verb ending -st in forms like wouldst or didst, which Archer et al. (2015)
decide to normalize to would and did, respectively, although they mention that some corpora
leave forms like doth and hath unchanged (p. 14).

Vaamonde and Magro (2017) describe similar cases in verb inflection of Old Spanish, but choose
to only normalize them on a graphematic level:6 examples include the second-person preterite
verb form digistes > dijistes, which would actually be dijiste in modern Spanish, or the -des
suffix in second-person plural forms such as cantabades, which is replaced by -(e)is in modern
Spanish (cantabais). The corpus of Old Hungarian codices takes a similar approach, “preserving
all words and morphemes, even those which do not exist in Modern Hungarian” (Simon, 2014,
p. 8). As an example, they give the word form fekette ‘laid’, an inflected adverbial participle

6“Todas las formas marcadas como verb_paradigm no se modernizan a su correspondiente forma estándar. Solo
se normaliza la grafía[.]” (‘All the forms marked as verb_paradigm are not modernized to their corresponding
standard form. Only the spelling is normalized.’) (Vaamonde and Magro, 2017, p. 27, my translation)

22

2.4 Guidelines and challenges

which shows subject agreement, while adverbial participles in Modern Hungarian are not
inflected in any way.

For research in historical language development, preserving morphological and morphosyn-
tactic features that have fallen out of use is certainly desirable, since it enables analyses that
would otherwise not be possible. From an NLP perspective, any linguistic feature that is not
seen in modern language data, and therefore in the training data for most of our tools, poses an
additional challenge. Particularly, normalizations that retain archaic morphemes or inflection
patterns no longer satisfy the dictionary criterion (cf. Sec. 2.4.1), which can be a drawback when
relying on an NLP tool that utilizes a contemporary dictionary or wordlist.

2.4.3 Lexicon and semantics

Language change can also affect the lexicon: word forms found in historical texts may have
become extinct in contemporary language, or might have changed their meaning so that they
would no longer be used or considered acceptable in the given context. Similar to morphological
change, different degrees of handling these cases are conceivable: keeping the historical lexeme;
normalizing it on the level of spelling only; replacing it with the modern word form that is most
similar in meaning; or a mixture of these approaches in form of a multi-layered annotation.

All corpora and guidelines I investigated choose to keep extinct or archaic forms, offering at
least one layer of normalization that retains the lexeme, but typically standardizes the spelling
in some way. Archer et al. (2015) keep archaic word forms like oft, morrow, or the personal
pronoun thine, although they do normalize different spellings of these forms to a single spelling
variant, e.g., ofte > oft and thyne > thine. In a similar vein, Marttila (2014, p. 445) describes
normalizing the individual components of “nonce words or spontaneous formations”, citing
ontrusse > on-truss (meaning ‘to truss upon’) as an example. Simon (2014) normalizes only
the spelling of extinct word forms from Old Hungarian, such as ýsa > isa ‘certainly’, where
Modern Hungarian would use bizony; Erjavec (2012) does the same for Slovene.7 One possible
challenge with this approach is that there is no contemporary dictionary that can be relied
upon for the “correct” spelling of these word forms, and therefore some level of subjectivity
might be involved in these decisions. Consequently, Pettersson (2016, p. 50) writes that she
normalizes archaic word forms “according to intuition”, citing the Swedish example brofougde >
brofogde, which refers to an occupational title (‘surveyor of bridges’) that is no longer in use.

Extinct word forms can be handled more naturally when a historical dictionary is used as
the point of reference. Marttila (2014) uses the Middle English Dictionary8 for this purpose;
Krasselt et al. (2015) use the Middle High German dictionary by Lexer (1992).9 This ensures
that all spelling variants are mapped to one common form, but leads to normalizations which
neither consist of an extant lexeme nor conform to modern spelling rules; e.g., in the case of
the Anselm corpus, zehern > zeheren ‘tears’ or gutleichen > guotlichen ‘friendly’. Here, the
additional modernization layer is used instead to provide a modern translation of these words
(here, Tränen and freundlich). Importantly, though, choosing this route means there is no layer

7“Where the word does not exist anymore in the contemporary language only its spelling is modernised.” (Erjavec,
2012, p. 2259)

8https://quod.lib.umich.edu/m/med/
9http://www.woerterbuchnetz.de/lexer

23

https://quod.lib.umich.edu/m/med/
http://www.woerterbuchnetz.de/lexer

Chapter 2 Principles of normalization

that keeps the historical lexeme while modernizing the spelling, which is the most commonly
found approach in other corpora.

Apart from the Anselm corpus, many other corpora also provide a second level of annotation
that provides glosses or translations. For German, the RIDGES corpus offers an “explanation”
column for extinct word forms, but otherwise only normalizes them graphematically as in
Vergeſz > Vergess (Belz et al., 2017, p. 43). The same approach is taken by Erjavec (2015) for
Slovene. For Spanish and Portuguese, Vaamonde and Magro (2017) also provide an additional
field for normalized spellings of “variant lexemes”, but do not extend this to archaic or extinct
lexemes. In particular, they require that variant word forms marked in this way must stem
from the same lemma as its standard form.10

Since most corpora only normalize archaic word forms for spelling, they do not modify words
that still exist in the contemporary language, but have undergone a significant semantic shift.
When a gloss or translation is provided, this can be extended to instances of semantic shift as
well—Erjavec (2015) explicitly mentions doing this. Krasselt et al. (2015) list many examples
for changes in meaning, such as wib > Weib ‘woman’, which is considered archaic or even
derogatory today, but historically used in a neutral fashion. It is therefore given the additional
modernization Frau as its closest neutral equivalent in Modern German.

As with morphological changes, there are many arguments in favor of preserving archaic
or extinct word forms: not only does it enable studies on lexical change, but it also avoids
losing nuances of meaning, as there might not always be a perfectly equivalent modern
translation. However, this category arguably poses the greatest challenge for NLP applications,
mostly because they cannot draw on any modern resources (like corpora or dictionaries)
when processing them. From the perspective of automatic normalization, for example, extinct
lexemes with normalized spelling cannot be matched or verified against an existing modern
resource. Using the most appropriate extant equivalent as the target normalization, on the
other hand, changes the nature of the normalization task considerably: contrary to most types
of variation, this is a word-level operation that can no longer be reasonably broken down to
character-level transformations.

2.4.4 Syntax and punctuation

Syntactical variation is not typically considered for normalization. Since one common goal of
normalization is to provide a basis for further automatic processing of the text, often involving
further annotations which should be projected onto the source tokens, it is desirable to restrict
the normalization to a purely token-level annotation of the source text. Instead, syntacti-
cal changes—particularly involving word ordering—can be seen as the boundary between
normalization and a full translation.

Punctuation is a similar case. On the one hand, it also shows a high degree of variance: some
historical texts do not contain punctuation marks at all, or only very sparsely; and if they do,
their usage can differ significantly from modern conventions. However, the modern usage
10“La forma no estándar y la forma estándar deben compartir un mismo étimo y un mismo lema.” (‘The standard

and non-standard forms must share the same source word and lemma.’) (Vaamonde and Magro, 2017, p. 20, my
translation)

24

2.5 Conclusion

of punctuation is often based on syntactical considerations, and correctly placing, changing,
or removing a punctuation mark is dependent on a potentially large context window. This is
contrary to the normalization of alphabetic tokens, which is mostly driven by the surface form
of the token itself.

If a punctuation mark should be inserted according to modern rules where none is present in
the historical text, it is not obvious how this annotation should be recorded, since there is no
source element to annotate. Vaamonde (2017) includes the adjustment of punctuation in the
normalization step, and in the case of insertions, inserts an empty element into the source text
which is then “normalized” with the respective modern punctuation mark. On the other hand,
if only existing punctuation marks are normalized, the usefulness of punctuation within the
normalized text is limited.

2.5 Conclusion

“Normalization” in the context of historical texts can be defined in many different ways, and
the most desirable definition always depends on its intended purpose. Typically, they involve a
trade-off between preserving features of the source material that are deemed interesting or
relevant for future research, and improving the usability and/or accuracy of NLP tools on the
data. In some cases, corpora contain multiple layers of normalization that enable the user to
choose the one they consider most appropriate for their use case. Importantly, variation in
historical language can go beyond the mere surface form of a word, and extend to areas such
as morphology, semantics, and syntax.

In the context of this thesis, I am mostly interested in normalization both as an aid for users of
a corpus and as a way to enable or improve the application of downstream NLP applications,
such as part-of-speech taggers or parsers. This is best achieved by normalizing to the modern
standard variety of the language in question, which is also the most common approach, and
the most common usage of the term normalization (cf. Sec. 2.3).

To this end, most guidelines and/or corpora characterize the task of normalization as the
token-level mapping of historical variant word forms to a single, unified word form, which
should be graphematically close to the original form and covered by a contemporary dictionary
whenever possible. Exceptions are made mainly for tokens containing archaisms, i.e., extinct
lexemes or morphemes, or archaic inflection patterns. In these cases, most corpora choose to
preserve the archaic feature and normalize the spelling only, even though the resulting word
form will not be covered by a modern dictionary. There is no consensus on proper nouns; they
are sometimes normalized, sometimes not. Morphosyntactic, syntactic, and semantic variation
is usually not considered; this distinguishes normalization from a full translation task.

I do not consider capitalization as part of the normalization task, but rather treat it as a
separate problem. To that effect, I will consider all data to be case-insensitive—in practice,
that means lowercasing all word forms. First of all, the nature of capitalization is different
from other aspects of writing, as it is an additional feature of a character that does not change
the intrinsic value it represents. Indeed, it is not clear how much ambiguity is introduced by
discarding normalization. In German, common nouns are capitalized as a rule, and while it
is possible to find many example phrases in German that become ambiguous without proper

25

Chapter 2 Principles of normalization

capitalization,11 these tend to be rather artificial and rare (Müller, 2016, p. 53 f.), leading Hoberg
and Hoberg (1975) to conclude that capitalization is not a necessary feature of the written
language.12 Secondly, when capitalization is used for proper nouns, restoring it essentially
amounts to performing named entity recognition; sentence-initial capitalization, on the other
hand, requires syntactic analysis to find sentence boundaries, but no other part of normalization
includes syntactic considerations. Lastly, it is questionable whether correct capitalization can
be successfully learned from spelling normalization data, since (i) the model has to learn an
additional feature—capitalization—on top of the character transformations themselves, and
(ii) uppercase characters occur much less frequently than lowercase characters, amplifying the
already challenging problem of training data sparsity. Restoring correct capitalization, often
called truecasing, is also known as a separate problem in the context of machine translation,
and algorithms proposed to perform this task (e.g., Vlad Lita et al., 2003; Wang et al., 2006;
Susanto et al., 2016) can conceivably also be used on spelling normalization output.

For similar reasons, I also exclude punctuation marks from my definition of normalization.
Their placement is also syntactic in nature, making it impracticable to represent the task of
modernizing them by means of character-level transformations. This is particularly true when
the normalization introduces modern punctuation marks that have no equivalent in the histori-
cal text. Even when such cases are disallowed, including punctuation marks potentially distorts
the evaluation: when a historical text already uses them similarly to modern conventions, their
normalization is usually trivial, leading to easy gains in normalization accuracy that other texts
with fewer or no punctuation marks do not get.

11A common example is der gefangene Floh ‘the captured flea’ vs. der Gefangene floh ‘the prisoner fled’.
12“Weder die Struktur der deutschen Sprache an sich noch die – äußerst geringe – Zahl der bei Kleinschreibung

auftretenden Doppeldeutigkeiten machen die Großschreibung erforderlich.” (‘Neither the structure of the
German language itself nor the – extremely low – number of ambiguities occuring with lower-case writing
necessitate the use of capitalization.’) (Hoberg and Hoberg, 1975, p. 167, my translation)

26

Chapter 3

Corpora

Computerized corpora can be said to have revolutionized the study of the history
of English. [… They] give us an opportunity to master huge quantities of textual
material, to collect and sort evidence with a speed and level of accuracy that the
scholars of earlier decades could only have dreamt of.

— Rissanen (2000)

All systems for automatic normalization discussed and evaluated in this thesis are trained and
evaluated on manually prepared gold-standard datasets. This chapter presents all datasets that
are used in the later experiments and discusses their properties.

Sec. 3.1 introduces the historical datasets for the experiments, the types of texts they contain,
and further references in case there is previous work on these datasets. Sec. 3.2 summarizes
preprocessing decisions that were applied to all datasets, while Sec. 3.3 introduces a method to
generate character-aligned versions of the datasets that are used for some analyses. Sec. 3.4
explores ways to analyze and measure certain properties of the datasets, such as the ambiguity
of mapping historical to normalized tokens and the similarity between datasets. Finally, Sec. 3.5
also introduces contemporary language resources that are used in some experimental setups to
aid the normalization process.

3.1 Historical datasets

For supervised learning and evaluation of normalization, we rely on historical text collections
that provide gold-standard normalizations on a token level. “Gold-standard” means that
normalizations must have been created manually, or at least manually checked and corrected
after an automatic normalization step. This serves to ensure that the normalization is somewhat
reliable and our models do not just learn to reproduce another machine learning model’s
output; although it is not always clear how consistent these annotations actually are, as inter-
annotator agreement is rarely performed (but cf. Bollmann et al., 2016). Furthermore, as
Chapter 2 discussed in detail, the exact guidelines used to produce the normalization can and
do differ between projects. “Token-level” means that normalizations should be aligned to the
historical word forms or provided as annotations to them; datasets that simply provide two
separate versions of a text (historical and normalized) are not considered, as the models used
in my experiments operate on a token level, and adding an automatic word alignment step is
potentially error-prone.

27

Chapter 3 Corpora

Dataset Language Corpus Corpus Reference

DEA German Anselm Wegera (2014)
DER German RIDGES Odebrecht et al. (2016)
EN English ICAMET Markus (1999)
ES Spanish Post Scriptum Vaamonde (2017)
HU Hungarian HGDS Simon (2014)
IS Icelandic IcePaHC Rögnvaldsson et al. (2012)
PT Portuguese Post Scriptum Vaamonde (2017)
SLB Slovene (Bohorič) goo300k Erjavec (2012)
SLG Slovene (Gaj) goo300k Erjavec (2012)
SV Swedish Gender and Work Fiebranz et al. (2011)

Dataset Time Period Genre Tokens Dataset Reference

Train Dev Test

DEA 14th–16th c. Religion 233,947 45,996 45,999 Bollmann et al. (2017)
DER 1482–1652 Science 41,857 9,712 9,587 –
EN 1386–1698 Letters 147,826 16,334 17,644 Pettersson (2016)
ES 15th–19th c. Letters 97,320 11,650 12,479 –
HU 1440–1541 Religion 134,028 16,707 16,779 Pettersson (2016)
IS 15th c. Religion 49,633 6,109 6,037 Pettersson (2016)
PT 15th–19th c. Letters 222,525 26,749 27,078 –
SLB 1750–1840s Mixed 50,023 5,841 5,969 Ljubešić et al. (2016b)
SLG 1840s–1899 Mixed 161,211 20,878 21,493 Ljubešić et al. (2016b)
SV 1527–1812 Mixed 24,458 2,245 29,184 Pettersson (2016)

Table 3.1: Overview of historical datasets, giving some details about the source corpus and
texts as well as an abbreviation used throughout this work (“Dataset”), a reference
that describes the corpus in more detail (“Corpus Reference”), and a reference from
which the dataset and splits were taken, if applicable (“Dataset Reference”); number
of tokens refers to final dataset splits after preprocessing (cf. Sec. 3.2).

28

3.1 Historical datasets

Previous work on historical normalization is often concerned with performance on one par-
ticular target language, although comparisons exist between different domains and language
stages (e.g. Ljubešić et al., 2016b) or between different writers and dialects (e.g. Bollmann et al.,
2011a; Bollmann and Søgaard, 2016). In this work, the focus will be on comparisons across
different languages; to this effect, I will use datasets from eight different languages, and mostly
train and evaluate on a single dataset per language (with few exceptions). While cross-language
comparisons of automatic normalization methods have been done before (e.g. Etxeberria et al.,
2016; Pettersson et al., 2014a; Pettersson, 2016), this is—to the best of my knowledge—the most
extensive evaluation performed thus far.

The languages used in my experiments are English, German, Hungarian, Icelandic, Portuguese,
Slovene, Spanish, and Swedish. Whenever possible, I have re-used available datasets (including
their splits into training, development, and test sets) from previous work, both for better
comparability and easier reproduction of results. The English, Hungarian, Icelandic, and
Swedish datasets are taken from Pettersson (2016).1 The German Anselm dataset is based on
the data used in Bollmann et al. (2017). The Slovene dataset is taken from Ljubešić et al. (2016b).
The Spanish and Portuguese datasets are described in Vaamonde (2017) but have, to the best of
my knowledge, not been used in normalization experiments so far. The same applies to the
German RIDGES dataset (Odebrecht et al., 2016).

Table 3.1 gives an overview of all historical datasets and the size of their training/development/
test sets after preprocessing (cf. Sec. 3.2). The following extracts show sample passages from
each dataset along with the annotated normalization:

(DEA) deſe
diese

wort
wort

ſpricht
spricht

vnſer
unser

liber
lieber

here
herr

iheſus
jesus

criſtus
christus

czu
zu

eyme
einem

iczlychen
ieteslichen

menſchen
menschen

(DER) ſeind
sind

ſÿ
sie

doch
doch

alle
alle

auſz
aus

den
den

vier
vier

elementen
elementen

gemiſchet
gemischt

vnd
und

eins
eins

feüchter
feuchter

deñ
denn

das
das

ander
andere

(EN) whan
when

your
your

graciouse
gracious

erthely
earthly

persoune
person

from
from

your
your

inward
inward

spirit
spirit

ys
is

dessolued
dissolved

(ES) anque
aunque

tomeys
toméis

mui
muy

mucho
mucho

travajo
trabajo

tengola
téngola

guardada
guardada

pa
para

quando
cuando

dios
dios

sea
sea

servido
servido

(HU) o̗
ő
zauoc
szavuk

ėſmėǵ
ismét

felèmèluē
felemelvén

kèzdėnc̣
kezdének

ſirńoc
sírniuk

èlmēnèc
elmenjek

èzèkèt
ezeket

tolga
toldja

ez
ez

a
a
noemi
noémi

azeꝛt
azért

io̗uo̗
jöve

(IS) þá
þá

sem
sem

hanz
hans

gödverk
góðverk

voru
voru

i
í
og
og

þá
þá

vrdu
urðu

hanns
hans

gödverk
góðverk

miklu
miklu

þýngre
þyngri

enn
en

ill
ill

(PT) cõ
com

a
a
poenetencia
penitência

que
que

lhe
lhe

derão
deram

pera
para

avisar
avisar

aos
aos

snres
senhores

do
do

sancto
santo

oficio
ofício

(SLB) ter
ter

ne
ne

bodi
bodi

nevéren
neveren

zhe
če

ſe
se

zherna
črna

perſt
prst

premozhi
premoči

tezhe
teče

od
od

nje
nje

rjav
rjav

mòk
mok

(SLG) in
in

privéže
priveže

na
na

vsak
vsak

konec
konec

niti
niti

drobtino
drobtino

kruha
kruha

in
in

verže
vrže

vse
vse

kokóšem
kokošim

breskevno
breskvino

vkuhanje
vkuhanje

lovre
lovre

(SV) blef
blev

av
av

rätten
rätten

afsagdt
avsagt

det
det

en
en

syyn
syn

och
och

rådhgångh
rådgång

nu
nu

nästkommande
nästkommande

wårdagh
vårdag

hållas
hållas

1Many thanks to Eva Pettersson for kindly providing me with these datasets.

29

Chapter 3 Corpora

The following sections describe each dataset in more detail.

3.1.1 English

The historical English data comes from the Letter Corpus of ICAMET, the Innsbruck Computer
Archive of Machine-Readable English Texts (Markus, 1999), also referred to as the Innsbruck
Letter Corpus.2 It consists of 469 complete letters written between 1386 and 1698, totaling about
182,000 words.

Markus (1997, 2000) discusses some aspects of normalizing texts from the Prose Corpus of
ICAMET, but little information can be found that pertains to the manual normalizations in
the Letter Corpus. Some editorial decisions have already been applied to the source texts, e.g.,
replacing 〈ſ 〉 with 〈s〉, although other historical characters such as the letter thorn 〈þ〉 are
retained.

However, inspecting the data reveals some of the properties of the manual normalization. For
example, we can see that extinct word forms are replaced with modern ones:

(1) And
And

I
I
lete
let

hym
him

wete
know

he
he

that
that

putte
put

it
it
downe
down

chull
shall

pay
pay

therefore
therefore

(2) for
for

þe
the

good
good

of
of

pees
peace

betwix
between

boþe
both

reaumes
realms

In Ex. (1), the word form wete (from Middle English witan, cognate with German wissen ‘to
know’) has been replaced with its modern semantic equivalent know. Lexemes that are archaic,
but not necessarily extinct, can also be replaced, such as betwix in Ex. (2), which is normalized
as between even though betwixt arguably still exists in present-day English.3

The normalization also takes inflection and context into account, as Ex. (3) shows:

(3) and
and

yf
if

enythyng
anything

be
is

theryn
therein

to
too

myche
much

or
or

to
too

litell
little

Here, be could conceivably be left unmodified in the normalization, but is normalized as the
inflected form is instead. The normalization to > too can only be derived from the context, as to
is a valid modern word, but the context makes it clear that this is not the intended word in this
case.

The training, development, and test splits for this dataset are taken from Pettersson (2016).

2https://www.uibk.ac.at/anglistik/projects/icamet/
3It is attested in various dictionaries such as the Cambridge Dictionary or Merriam-Webster; see, e.g.:
https://dictionary.cambridge.org/dictionary/english/betwixt

https://www.merriam-webster.com/dictionary/betwixt

30

https://www.uibk.ac.at/anglistik/projects/icamet/
https://dictionary.cambridge.org/dictionary/english/betwixt
https://www.merriam-webster.com/dictionary/betwixt

3.1 Historical datasets

3.1.2 German

For the German experiments, I use two different datasets derived from two different corpora:
the Anselm corpus and the RIDGES Herbology corpus. While both contain texts in Early New
High German from a similar time period, they differ significantly in at least two aspects: (i) text
genre, as the Anselm corpus contains religious texts while RIDGES is a corpus of scientific
texts; and (ii) normalization guidelines, as the two corpora differ in how they treat inflectional
variation, archaisms, and tokenization.

Anselm Corpus

The corpus St. Anselmi Fragen an Maria (“Questions of Saint Anselm to [the Virgin] Mary”),
or just Anselm Corpus for short, is a collection of several written records of a medieval trea-
tise (Schultz-Balluff and Dipper, 2013a; Wegera, 2014).4 The final corpus will consist of up to
69 versions in Early New High German, written between the 14th and 16th centuries in various
dialectal regions.

At the time of my experiments, the corpus is not yet officially released. Therefore, I use
preliminary versions of a subset of the corpus, consisting of 46 texts exported on June 14,
2017, with a total size of about 326,000 tokens.5 This selection is mostly identical to that used
in previous experiments which trained and evaluated on texts individually (Bollmann and
Søgaard, 2016; Bollmann et al., 2017); in those experiments, the first 1,000 tokens of each text
were used as the test set, the next 1,000 tokens as the development set, and the remainder as the
training set. This split was chosen over a randomized sample due to the semi-parallel nature of
the texts, causing them to have a substantial overlap in vocabulary and structure. By always
taking the test/dev splits from the beginning of each text, the training sets will never contain
those parts of the texts and some of the vocabulary that is specific to them, hopefully resulting
in a slightly less biased evaluation.

For the experiments in this work, I concatenate all splits from the individual texts into a single
dataset. However, since the test sets have already been evaluated on in previous work, but
the development sets have not been utilized so far, the roles of those sets are now switched.
Therefore, my development set consists of the first 1,000 tokens from each text (previously
used as test sets in Bollmann and Søgaard (2016) and Bollmann et al. (2017)), while the test set
consists of the following 1,000 tokens from each text (the previously unused development sets).
The training set is again built from the remaining parts of the texts.

An important feature of the corpus is the distinction between two tokenization layers, diplo-
matic—i.e., as found in the original source text—and modernized. These two layers differ
whenever word boundaries in the historical text do not align with expected boundaries in
contemporary German, no matter if this discrepancy is due to idiosyncracies of the document
or due to linguistic change. This means that the modernized tokenization already resolves
some of the issues that normalization might otherwise have to solve: for example, the historical

4https://www.linguistics.rub.de/anselm/
5The texts used are b, B, B2, B3, Ba, Ba2, Be, D3, D4, H, Hk, Ka, KÄ1492, KJ1499, Le, M, M2, M3, M4, M5, M6, M7,
M8, M9, M10, Me, n, N, N2, N3, N4, N1500, N1509, N1514, s1495, s1496/97, Sa, Sa2, Sb, SG, St, St2, Stu, T, W, and
We.

31

https://www.linguistics.rub.de/anselm/

Chapter 3 Corpora

ſoltu ‘should you’ needs to be normalized as two words, sollst du, in modern German, but the
modernized tokenization layer already splits the source word into two parts:

(4) ſolt
sollst

u
du

should you

This arguably simplifies the normalization task a bit. However, since all annotations—including
the normalizations—are attached to tokens in the modernized tokenization, this is the layer
that will be used here.

Krasselt et al. (2015) describe the normalization guidelines that were used to produce the
gold-standard normalizations. In addition to the normalization, they introduce a modernization
layer that offers a more radical adjustment of the source word in the following three cases:
(i) inflectional changes (i.e., the closest normalization results in a word form that would be
inflected differently in contemporary German); (ii) semantic shift (i.e., the word is used dif-
ferently today and would not be appropriate in the given context); and (iii) extinct word forms.
In those cases, the normalization provides the closest modern equivalent on a graphematic level,
while the modernization also adjusts the inflection or uses a completely different lexeme. Since
most corpora and guidelines take a more conservative approach and err on the side of staying
closer to the historical word form (cf. Secs. 2.4.2 and 2.4.3), I do not use the modernization layer
in any of these cases, and use only the normalization as the gold-standard data.

The Anselm corpus also provides different layers of character representations, notably one
“UTF” layer with Unicode representations of the historical word forms, and one “simplified”
layer. The latter only consists of characters in the modern German alphabet, simplifying the
original tokens by mapping, e.g., ſ > s, but also implementing heuristics to map a nasal bar
to one of (e)n/(e)m. Since this arguably constitutes a form of pre-normalization, I choose to
only use the original representation. Furthermore, since longer passages of foreign-language
material (e.g., Latin passages) are explicitly marked up in the corpus, I filter them before
constructing the splits.

To illustrate the nature of the corpus and its normalization, consider the following examples,
which are taken from the development sets of different texts (B2, Hk, SG, andW, respectively):

(5) a. sante
sankt

anſhelm
anselm

der
der

bad
bat

vnſer
unser

liebe
liebe

frauwe
frau

von
von

hymelriche
himmelreich

alczü
allzu

lange
lange

zijt
zeit

b. sant
sankt

anſhelmus
anselm

der
der

pat
bat

vnſer
unser

frawen
frauen

von
von

hymelreich
himmelreich

lange
lange

zeit
zeit

c. sant
sankt

anſelm
anselm

batt
bat

vnſer
unser

liebē
lieben

frowen
frauen

lang
lang

zit
zeit

d. sannd
sankt

anſhalm
anselm

pat
bat

unſer
unser

frawn
frauen

von
von

himlreich
himmelreich

lange
lange

czeit
zeit

Saint Anselm asked our (dear) lady (from heaven) for a long time

32

3.1 Historical datasets

It is not difficult to find such examples of semi-parallel text passages across different texts
in the corpus. However, they also demonstrate the high amount of variation among them:
Frau ‘woman/lady’ is spelled as frauwe, frawen, frowen, or frawn; in total, there are 80 different
variants of Frau(en) in the dataset, with 22 of them occuring at least 10 times.

The examples also show the difficulties of normalizing a highly inflected language such as
German: the modern equivalent of the accusative noun phrase ‘our dear lady’ would be unsere
liebe Frau; however, the historical sources in Ex. (5) all use vnſer/unſer without the final –e,
and frawn/frawen/frowen suggests the modern plural form Frauen. Since Krasselt et al. (2015)
require the normalization to be based purely on graphematic and phonological adjustments,
they are unser Frauen in these cases, while the expected unsere Frau is only annotated on the
modernization layer.

RIDGES Herbology Corpus

The project Register in Diachronic German Science (RIDGES)6 is concerned with the analysis of
scientific language from the mid-15th to the 20th century. To this end, the RIDGES Herbology
Corpus contains a collection of “herbal treatises, lectures, and scientific texts” (Odebrecht et al.,
2016); in version 6.0, it contains 50 excerpts from the time period 1482–1914 (Lüdeling et al.,
2017).

The dataset used here is made up of 16 texts from 1482 to 1652; newer texts were deliberately
excluded as they tend to show significantly less variation. From each text, 70% of all sentences
are randomly sampled to be included in the training set, while another 15% each are used for
the development and test sets.7

Details about the normalization process are described in Odebrecht et al. (2016, p. 9 ff.); further
information can be found in the official corpus documentation (Belz et al., 2017). Their principles
differ in subtle ways from those of the Anselm corpus. While the latter normalizes extinct
lexemes to a standard historical form provided by a dictionary, the RIDGES corpus normalizes
them to modern German orthography without changing the lexeme (e.g., vinſtere > Finstere,
instead of the modern Finsternis). However, this does not apply to extinct morphemes, which
are replaced with modern equivalents if possible; or removed, as in the case of the obsolete
adverbial suffix -lich, e.g., machtigklich > mächtig. The same example is treated like an extinct
word form in the Anselm corpus (Krasselt et al., 2015) and given the normalization mehticlich,
a Middle High German dictionary form given by Lexer (1992).

Furthermore, while there is no morphosyntactical normalization and no adjustment of gender
or grammatical case (Belz et al., 2017, p. 43), the RIDGES guidelines are more flexible with
regard to smaller morphological adjustments. From the 1487 text Gart der Gesundheit :

(6) wie
wie

verzeren
verzehren

wir
wir

vnſer
unsere

blůmen
blumen

vnd
und

vnſer
unsere

krafft
kraft

how we consume our flowers and our strength

6https://korpling.org/ridges/
7Many thanks to Uwe Springmann, Bryan Jurish, and Martin Klotz for preparing the texts and dataset splits.

33

https://korpling.org/ridges/

Chapter 3 Corpora

Here, the historical vnſer is normalized to the correct inflected form unsere, while the excerpts
from Ex. (5) showed that the Anselm corpus normalizes to the orthographically closest form
unser, reserving the correctly inflected form for a separate layer.

Lastly, tokenization is also handled slightly differently in the two datasets. When a historical
word form corresponds to more than one normalized word form, as in ſoltu > sollst du, the
historical word form is not split up in the dataset as in the Anselm corpus (cf. Ex. (4)). Moreover,
when two historical words need to be joined in the normalization, they will be combined into
one historical token that contains a space character, while the Anselm dataset never contains
spaces within tokens.

3.1.3 Hungarian

The Hungarian dataset is a manually normalized subset from the project Hungarian Generative
Diachronic Syntax (HGDS)8 (Simon, 2014), containing eleven Old Hungarian codices from 1440
to 1541; this subset (including the splits) is taken from Pettersson (2016) and contains about
167,500 tokens in total.

Information about the digitization and normalization process can be found both on the project
website9 and in Simon (2014). Normalization was guided by two main principles (Simon, 2014,
p. 8):

1. “Adherence to the original text”, meaning that all lexemes and morphemes are preserved,
even when they have no equivalent in Modern Hungarian.

2. “Consistency”, stating that all variant word forms should bemapped to a single normalized
form that corresponds to Modern Hungarian spelling rules.

Tokenization was also performed manually during normalization, and words could be joined
or split up if the original word boundaries did not conform to modern spelling rules (Simon,
2014, p. 7).

Hungarian spelling in the 14th–16th century was highly inconsistent, particularly due to
the challenges of adapting the Latin alphabet to a language with a distinct inventory of
phonemes (Oravecz et al., 2010). The need to represent phonemes that did not exist in Latin
makes Hungarian spelling—both historical and modern—very rich in diacritics, as the following
examples from the dataset may illustrate:

(7) a. gèꝛmėkimnc̣
gyermekeimnek
my children

b. iſtènō̗c
istenünk
our God

8http://omagyarkorpusz.nytud.hu/en-intro.html
9http://omagyarkorpusz.nytud.hu/en-descr.html#norm

34

http://omagyarkorpusz.nytud.hu/en-intro.html
http://omagyarkorpusz.nytud.hu/en-descr.html#norm

3.1 Historical datasets

c. o̗vèlėc
ővelük
with them

d. tv̇uèlètėc
tiveletek
with you

3.1.4 Icelandic

The Icelandic dataset originates from the Icelandic Parsed Historical Corpus (IcePaHC),10 a
diachronic, parsed corpus of Icelandic texts from the late 12th century to the present (Rögn-
valdsson et al., 2012). The subset used for the experiments is taken from Pettersson (2016)
and contains four manually normalized texts from the 15th century, “three sagas […] and one
narrative-religious text” (Pettersson, 2016, p. 80), adding up to about 63,000 tokens.

Example (8) shows an excerpt from the dataset, illustrating that the normalization can involve
the addition of diacritics (such as a > á) or the introduction of the letter ‘eth’ (d > ð).

(8) þeir
þeir

badu
báðu

sina
sína

modr
móður

þeinkia
þenkja

upp
upp

áá
á

sitt
sitt

fyrra
fyrra

lif
líf

og
og

bidia
biðja

uorn
vorn

herra
herra

miskunnar
miskunnar

they asked their mother to think about her former life and ask for our lord’s mercy

There is no detailed description of the normalization process for these texts, but Rögnvaldsson
et al. (2012) suggest that deciding on a normalized word form usually does not pose many
challenges:

There was no accepted spelling standard until the 20th century[…]. However, since
the morphology is the same, it is usually relatively straightforward to convert older
spelling to the modern standard and get legible text.

(Rögnvaldsson et al., 2012, p. 1978)

This does not mean, of course, that historical Icelandic spelling is not rich in variation; particu-
larly for diplomatic editions of texts, spelling “is often highly irregular” (Rögnvaldsson et al.,
2012, p. 1979). For example, the modern Icelandic væri can be found in the historical dataset as
uæri, uéri, være, véri, or uęri.

3.1.5 Slovene

The Slovene data comes from goo300k,11 a reference corpus of historical Slovene containing
books from various genres (including plays, fiction, and religious books) as well as selected
newspaper issues (Erjavec, 2012). This corpus has been previously used in a number of experi-
ments on automatic normalization (Scherrer and Erjavec, 2016; Etxeberria et al., 2016; Ljubešić
et al., 2016b); the data and the training, development, and test splits used here are taken from
10http://www.linguist.is/icelandic_treebank/Icelandic_Parsed_Historical_Corpus_(IcePaHC)
11http://nl.ijs.si/imp/index-en.html

35

http://www.linguist.is/icelandic_treebank/Icelandic_Parsed_Historical_Corpus_(IcePaHC)
http://nl.ijs.si/imp/index-en.html

Chapter 3 Corpora

Ljubešić et al. (2016a). In this resource, the corpus has been split up into two parts (cf. Ljubešić
et al., 2016b):

1. Bohorič, containing texts published after 1750 that were written in the Bohorič alphabet.

2. Gaj, containing texts written before 1900 in the Gaj alphabet, which became the dominant
alphabet for writing Slovene around 1843 (cf. Erjavec, 2015, p. 755 f.).

This split was not only motivated by the different alphabets, but also by further standardization
processes of the Slovene language:

The introduction of the Gaj alphabet was also closely preceded by a new grammar
and subsequent standardisation of the language, therefore the change in the alpha-
bet makes a convenient split between very non-standard and slightly non-standard
historical language. (Ljubešić et al., 2016b, p. 147)

For these reasons, and for comparability with previous work, I choose to adopt the same dataset
split in my experiments. Exaxmple (9) gives a sample of the Bohorič part of the corpus, while
Example (10) is taken from the Gaj part:

(9) kadar
kadar

je
je

pak
pa

enkrat
enkrat

sraſlu
zraslo

je
je

vęzhi
večje

kakòr
kakor

vſe
vsa

sęliſha
zelišča

inu
in

poſtane
postane

enu
eno

drèvú
drevo

once grown it is bigger than all herbs and becomes a tree

(10) je
je

še
še

mnogo
mnogo

napčnih
napačnih

misel
misli

drevésa
drevesa

blizo
blizu

polja
polja

so
so

poljskim
poljskim

pridelkam
pridelkom

škodljive
škodljive

there are still many wrong thoughts [that] trees near fields are harmful to the field crops

Note particularly the frequent use of 〈ſ 〉 in the Bohorič part (but not in the Gaj part) and the
generally higher frequency of spelling variants that are changed in the normalization.

Erjavec (2015, p. 765 f.) describes the word-level normalization process in more detail (albeit
referring to it as “modernisation”). The main principle is “giving [tokens] the inflected word
form in contemporary orthography”, while any archaic elements resulting from inflectional,
semantic, or lexical differences are retained; an additional, separate annotation is used to
provide a gloss or a modern translation in these cases.

3.1.6 Spanish and Portuguese

The datasets for Spanish and Portuguese are both derived from the corpus of the Post Scrip-
tum (P.S.) project,12 which contains a broad collection of unpublished, private letters from
Spain and Portugal written between the 16th and 19th centuries (CLUL, 2014). A subset of this
corpus—about 120,000 tokens for Spanish and 276,000 tokens for Portuguese—was normalized
manually.13

12http://ps.clul.ul.pt/
13Many thanks to Rita Marquilhas for providing me with the manually normalized parts of this corpus.

36

http://ps.clul.ul.pt/

3.1 Historical datasets

To generate the dataset splits, each text is first categorized by century according to the metadata
provided by the corpus files. From each century, 80% of all sentences are randomly selected for
the training set, another 10% for the development set, and the final 10% for the test set of their
respective language. This procedure is supposed to somewhat balance the large time period
covered by the corpus.

Vaamonde (2017) provides a detailed technical description of the corpus, including a discussion
of transcription and editing conventions. Detailed annotation guidelines, including those for
the normalization, are laid out by Vaamonde and Magro (2017). They follow the principle of
purely orthographic normalization:

Las modificaciones realizadas sobre el texto se ciñen únicamente al nivel ortográfico,
por lo que no se eliminan ni añaden palabras respecto del contenido original de la
carta. Tampoco se interviene sobre el nivel léxico: se conservan los regionalismos y
los arcaísmos léxicos, así como cualquier otra forma léxica no estándar, si bien estos
casos son tratados en un nivel independiente para facilitar su recuperación[.]14

(Vaamonde and Magro, 2017, p. 5)

This means that archaisms are preserved whenever possible, both on amorphological and lexical
level (cf. the discussions on pp. 22 and 24). Different levels of adjustments can be annotated in
the data (cf. Vaamonde, 2017, p. 84):

• fform: expanded form of abbreviations, or free form of contractions;

• dform: a dialectal or non-standard form; and

• nform: the normalized form.

Vaamonde and Magro (2017, p. 19) give the example hagora, which receives the normalization
(nform) ahora and the non-standard form (dform) agora. Abbreviations and contractions are not
assigned a normalized form, but are resolved on the separate ‘fform’ layer; e.g., the historical
token q is expanded there as que.

For the datasets used in my experiments, the target normalization is considered to be the
‘nform’ whenever it is given. When this normalized form is not available, an expanded form
given by ‘fform’ is used if possible. If neither form is annotated, the original word form is
considered to be the normalization. The ‘dform’ is never used here.

Example (11) is taken from the Spanish part, Example (12) from the Portuguese part of the
corpus:

(11) y
y
qndo
cuando

no
no

hallare
hallare

q
qué

ebyarme
enviarme

pa
para

çenar
cenar

ebye
envíe

huebos
huevos

q
que

aqllo
aquello

çenare
cenaré

and when one cannot find what to send me for dinner, send eggs, that [is what] I will eat
14‘The modifications made to the text are limited solely to the orthographic level, so that words are neither deleted

nor added with respect to the original content of the letter. There is also no intervention on the lexical level:
archaic vocabulary and regionalisms are conserved like any other non-standard lexical form, although these
cases are handled on a separate level to facilitate their retrieval.’ (my translation)

37

Chapter 3 Corpora

(12) he
e

vos
vos

ão
hão

de
de

fazer
fazer

perguntas
perguntas

se
se

são
sou

resebido
recebido

cõvosquo
convosco

e
e
aveis
haveis

de
de

dizer
dizer

q
que

não
não

and [they] shall ask you questions on whether I was with you15 and you shall say no

Note that for Spanish, the historical text often lacks accents where the normalization has them.
Also, abbreviations such as q > que, vra > vuestra, or snres > senhores (cf. p. 29) are relatively
frequent throughout both datasets.

3.1.7 Swedish

The evaluation of Swedish uses data from the Gender and Work (GaW) corpus,16 containing
historical documents about the occupations of men andwomen before the 19th century (Fiebranz
et al., 2011). The normalized dataset is from Pettersson (2016) and consists of 1,200 randomly
sampled sentences (about 56,000 tokens) from “11 court records texts and 4 church documents
from the time period 1527–1812” (p. 49).

Example (13) shows a short excerpt:

(13) när
när

det
det

skedt
skett

ähr
är

will
vill

rätten
rätten

lagligen
lagligen

i
i
detta
detta

ährendet
ärendet

sluta
sluta

when this has happened, the court will legally decide in this matter

The principles for normalization are described in Pettersson (2016, p. 49 ff.); the main criterion
is that normalized word forms should be “likely to be present in a modern language dictio-
nary” (p. 50; cf. also Sec. 2.4.1). Archaic lexemes constitute an exception and are only normalized
in spelling, though morphological adjustments are sometimes performed: Pettersson (2016,
p. 51) gives the example närvarellse ‘presence’, which could be orthographically normalized to
närvarelse, but is instead changed to the appropriate modern equivalent närvaro.

Pettersson et al. (2012, p. 335) give some examples for regular spelling changings from 17th cen-
tury Swedish; the chosen examples are all found in the Swedish dataset used here as well:

• Substitution of letters to a phonologically similar variant, e.g., qvarn > kvarn ‘mill’

• Deletion of repeated vowels, e.g., saak > sak ‘thing’

• Deletion of mute letters, e.g., dömbdess > dömdes ‘was sentenced’

• Changing of spelling influenced by other languages such as German, e.g., schall >
skall ‘shall’

15lit. ‘I was received with you’
16http://gaw.hist.uu.se/?languageId=1

38

http://gaw.hist.uu.se/?languageId=1

3.2 Preprocessing

3.2 Preprocessing

This section describes the preprocessing steps that were applied to all datasets, both historical
and modern ones (when applicable). All examples, statistics, and experiments will be based on
the preprocessed versions of the datasets. In particular, when statistics for datasets that have
been used in previously publications differ from those presented here, this is likely to be due to
the preprocessing decisions implemented here.

The input data for this step is already tokenized, and in the case of historical datasets, addi-
tionally provides one target normalization for each token. Tokenization is typically supplied
by the datasets (cf. Secs. 3.1 and 3.5 for details). Preprocessing then consists of the following
steps: (i) removing punctuation; (ii) lowercasing all characters; (iii) substituting digits; and
(iv) performing Unicode normalization.

First, instances where either the historical token or its normalization consist only of punctuation
characters are removed.17 Whenever a string contains punctuation, but not exclusively, it is
neither removed nor altered in any way. This affects all tokens where punctuation characters
have not been split off in the tokenized data, e.g. for abbreviations. After that, all characters
are converted to lowercase.18 Rationales for both of these decisions have been discussed in
Sec. 2.5.

In the historical datasets, whenever a token contains digits and the normalization is identical to
the source token, all digits are replaced with zeroes. Typically, digits appear only infrequently
in texts, but in a high (and potentially limitless) number of combinations. At the same time,
they are usually not affected by normalization. This preprocessing step makes learning easier
for the automatic normalization models in the trivial cases where digits just need to be copied
over. When the normalization modifies a source token containing digits, they are not changed;
e.g., this happens when a digit is used in place of a morpheme, as in the Spanish 8bre >
octubre ‘October’, or when it is used in the normalization of Roman numerals (vii > 7).

Finally, Unicode normalization is performed on all characters. While most datasets already
use Unicode, this does not guarantee that the same characters are always represented in an
identical way. A common example are letters with diacritics: for example, the character 〈ÿ〉
has its own Unicode codepoint (U+00FF), but can also be represented as a combination of plain
〈y〉 and a combining diaeresis (U+0079 and U+0308).

The Unicode standard defines normalized forms of Unicode strings, which allows conversion
of strings to always use either the composed or decomposed forms of such characters (Davis
and Whistler, 2017). However, it is not clear which representation is preferable in the context
of normalization: using decomposed forms allows a model to learn rules separately for an
alphabetic character and its diacritic mark or combining character, which might be desirable
in some cases—e.g., learning that a nasal bar often corresponds to modern 〈n〉 or 〈m〉—but
not in others where this complex source character is mapped to a single normalized character.
Furthermore, always decomposing characters leads to unnatural representations in many
languages (such as German or Hungarian), where umlauted or accented characters are seen as

17“Punctuation characters” for this purpose are all characters in string.punctuation in Python 3.5.
18This is implemented by calling lower() on Unicode strings in Python 3.5.

39

Chapter 3 Corpora

clearly distinct from their plain counterparts. For this reason, and for the sake of consistency
between datasets, I choose to convert all characters to their composed forms instead.19

Note that this still does not guarantee that all datasets use consistent and valid representa-
tions for all characters. Simon (2014) reports that the Hussite 〈t∫ 〉, a character resembling a
capital letter ‘L’, has no Unicode codepoint and is therefore encoded as 〈č〉 in the Hungarian
dataset (Sec. 3.1.3). The English dataset (Sec. 3.1.1) still uses digits instead of the proper Unicode
codepoints to represent some characters, e.g., 〈3〉 in place of the Middle English letter “yogh” 〈ȝ〉.
These issues, however, are beyond the possibilities of an automatic preprocessing step.

3.3 Character alignment

The training data for the normalization experiments consists of word pairs matching historical
tokens to their gold-standard normalizations. Some normalization tools internally perform char-
acter alignment of this data: the Norma tool derives replacement rules and learns edit weights
based on character-aligned word forms, while the cSMTiser tool applies statistical machine
translation on a character level, which requires calculating an alignment between characters as
well. (Both tools will be introduced in more detail in Secs. 4.2.1 and 4.2.2, respectively.)

Explicitly generating character-aligned data can still be useful for data analysis. In particular,
I will use character alignments of the datasets for measuring spelling variation and dataset
similarity (Sec. 3.4) as well as analyzing the generalization capabilities of the proposed neural
networkmodel by relating its (word-level) performance to properties of the character alignments
(Sec. 7.5).

3.3.1 Iterated Levenshtein alignment

Character alignment is performed using the same method as in the Levenshtein-based nor-
malizer of the Norma tool (cf. Bollmann, 2013a, p. 22). It is based on the observation that
the algorithm for calculating Levenshtein distance of two strings can be modified to obtain
character alignments for these strings (by recording the edit operations required to transform
one string into the other), but these alignments are not necessarily unique. Consider the
example jre > ihre, which has a Levenshtein distance of 2 that can be reached in two different
ways (Bollmann, 2013a, p. 18):

(14) a. j
i h

r
r
e
e

b.
i
j
h
r
r
e
e

However, alignment (14-a) is much more plausible than (14-b), since writing 〈j〉 for modern 〈i〉
is very common in historical German texts. This is the motivation for using iterated Levenshtein
distance alignment, originally intended for aligning word pronunciations (Wieling et al., 2009).
19This corresponds to the Normalized Form C (NFC) as defined by Davis and Whistler (2017).

40

3.3 Character alignment

Its main idea is to resolve ambiguities by adjusting the weights of edit operations so that more
plausible alignments (such as j > i) are assigned lower weights. More precisely, it uses pointwise
mutual information (PMI) (Church and Hanks, 1990) to derive these weights automatically
from training data. A slightly modified version of the original algorithm is used here:20

1. Character alignments are generated using the weighted Levenshtein algorithm; initially,
the weights are set to 1 for all replacement, insertion, and deletion operations.

2. PMI values are calculated for all character pairs and used to update the weights for
individual edit operations (see below for details).

3. Steps 1 and 2 are repeated until the weights no longer change significantly.

If 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑇 are source (= historical) and target (= normalized) characters, respectively,
their PMI value is calculated as:

PMI(𝑥, 𝑦) = log2 (
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦))

(3.1)

Here, 𝑝(𝑥) and 𝑝(𝑦) are the relative frequencies of the source and target character, respectively,
among all alignment pairs, while 𝑝(𝑥, 𝑦) is the relative frequency of the alignment (𝑥, 𝑦), i.e.,
the number of times this alignment was observed divided by the number of all alignment pairs.
The weight 𝑑(𝑥, 𝑦) for aligning 𝑥 and 𝑦—i.e., the cost of the edit operation x > y—is then set as
follows:

�̂�(𝑥, 𝑦) = max
�̃�∈𝑆,�̃�∈𝑇

(PMI(�̃� , �̃�)) − PMI(𝑥, 𝑦) (3.2)

𝑑(𝑥, 𝑦) =
�̂�(𝑥, 𝑦)

max�̃�∈𝑆,�̃�∈𝑇 �̂�(�̃� , �̃�)
(3.3)

The higher the PMI of the aligned characters—i.e., the closer their association—the lower �̂�(𝑥, 𝑦)
will be. To bring the new weights in line with the default costs of zero for identity alignments
and one for all replacements, insertions, and deletions, they are normalized to be within the
range [0, 1] (Equation (3.3)).

This adjustment of weights cannot only serve to disambiguate two or more alignments with
the same minimal Levenshtein distance, but also result in new alignments that were previously
not considered. Take the following example from the Anselm dataset:

(15) a. e
e
r
r
b
b
e
s
ſ
c
h
h
a
a
f
f
t
t

b. e
e
r
r
b
b
e ſ
s c

h
h
a
a
f
f
t
t

20The implementation is publicly available at https://github.com/mbollmann/levenshtein/.

41

https://github.com/mbollmann/levenshtein/

Chapter 3 Corpora

Alignment (15-a) has a plain Levenshtein distance of 2, as it can be reached by performing two
substitutions (e > s and ſ > c), while (15-b) is more plausible (as it correctly aligns ſ > s), but
has a Levenshtein distance of 3. After iterative Levenshtein distance alignment on the Anselm
dataset (cf. Sec. 3.3.2), Example (15-b) actually ends up being the preferred alignment with the
lowest associated cost.

On the other hand, the algorithm does not guarantee to always produce sensible alignments.
Consider the word pair nitt > nicht (from the German RIDGES dataset):

(16) a. n
n
i
i
t
c h

t
t

b. n
n
i
i c h

t
t
t

Here, alignment (16-a) is produced, which dubiously maps 〈t〉 to 〈c〉, while the preferred
alignment should arguably not align these elements at all, as in (16-b). Other instances are
not downright wrong, but at least debatable—vowels with nasal bars, for example, tend to be
aligned to the letter representing the nasal sound rather than the vowel:

(17) d
d e

ē
n

This latter example could be addressed by using decomposed forms of Unicode characters (cf.
Sec. 3.2) so that the diacritic is treated as a separate entity from the vowel.

Finally, the datasets frequently contain instances that are inherently undecidable. This usually
happens when one of the layers contains a doubled character while the other does not, as in
this example from the Innsbruck Letter Corpus:

(18) a. w
w

r
r
i
i
t
t t

e
e
n
n

b. w
w

r
r
i
i t

t
t
e
e
n
n

There is no way to distinguish between these two alignments with weighted Levenshtein
distance alone, as both will always have the same cost associated with them, no matter the
weight configuration. In those cases, the first of those alignments is always chosen.

3.3.2 Generating aligned datasets

To generate the character alignments for each dataset, the algorithm for iterative Levenshtein
distance alignment (described in the previous section) is trained on the combined training and
development sets of each historical corpus, and then applied to training, development, and test
sets. However, these alignments may contain insertions, i.e., characters in the normalization

42

3.4 Analyzing variation

that are not aligned to any character in the historical word form. Consider this alignment of
the word pair orubelly > horribly from the English dataset:

(19)
h
o
o
r
r r

u
i
b
b
e l
l
l y
y

In this example, the initial 〈h〉 and the second 〈r〉 of the normalization horribly have no
equivalent in the source word. This is problematic when we want to use this character-aligned
data as input for an normalization algorithm: while the alignments are known for the gold-
standard training (and evaluation) datasets, during test time, the positions where insertions
will occur are still unknown. More precisely, the segmentation of the historical word form can
only depend on the word form itself, since its normalization is yet to be generated. Bollmann
et al. (2011b) address this problem by inserting epsilon symbols between all characters to which
inserted characters are aligned, but this is only a partial solution as any number of characters
can be inserted at any given position.

The solution chosen here is identical to that of Bollmann and Søgaard (2016), which is to
perform a leftward merging of inserted characters. This means that instead of being unaligned,
inserted characters are now linked to the historical character left to the position of the insertion.
Consequently, it is possible for historical characters to be aligned to more than one normalized
character. This works in all cases except when an insertion occurs at the beginning of a word,
since there is no historical character to the left of this position. Therefore, all historical word
forms are prepended with an epsilon symbol (𝜀) to serve as the alignment target for these
insertions.

Deletions, on the other hand, do not need special treatment in this scenario. On the normalized
side, there are also aligned with an epsilon symbol (𝜀) to make the deletion process more explicit.
With these processing steps, the final character-aligned version of Example (19) looks like
this:

(20) 𝜀
h
o
o
r
rr

u
i
b
b
e
𝜀
l
l
l
𝜀
y
y

3.4 Analyzing variation

The performance of automatic normalization is influenced by a variety of factors; one which has
been extensively discussed (in Secs. 2.4 and 3.1) is the differences in the guidelines and decisions
employed when creating the gold-standard data that we train and evaluate on. Furthermore, not
all historical written language is created equal. There is the question of time period: a “historical
text” might be a document from the 9th century or from the 19th, but the older a document, the
more different it will be from contemporary language. However, languages and their writing
traditions changed to different degrees, and languages underwent their standardization process
at different times, making the age of a document alone a poor predictor for how challenging it
will be to normalize. Various other factors—e.g., text genre, manuscript vs. print, education of
the scribe—may also play a role in this.

43

Chapter 3 Corpora

Dataset Tokens Types TTR HNR sHNR

Hist Norm Hist Norm

DEA German (Anselm) 233,947 24,915 6,517 0.1065 0.0279 3.8231 1.1468
DER German (RIDGES) 41,857 9,698 7,210 0.2317 0.1723 1.3451 1.0663
EN English 147,826 17,942 9,760 0.1214 0.0660 1.8383 1.0952
ES Spanish 97,320 12,717 9,302 0.1307 0.0956 1.3671 1.0548
HU Hungarian 134,028 44,005 25,817 0.3283 0.1926 1.7045 1.0834
IS Icelandic 49,633 9,451 8,040 0.1904 0.1620 1.1755 1.0468
PT Portuguese 222,525 25,874 15,499 0.1163 0.0697 1.6694 1.0951
SLB Slovene (Bohorič) 50,023 14,256 10,824 0.2850 0.2164 1.3171 1.0829
SLG Slovene (Gaj) 161,211 34,089 30,143 0.2115 0.1870 1.1309 1.0213
SV Swedish 24,458 7,768 5,914 0.3176 0.2418 1.3135 1.0835

Table 3.2: Ratios of types and tokens on the training sets; TTR = type/token ratio on the
historical text (Hist) and its gold-standard normalization (Norm); HNR = histori-
cal/normalized type ratio; sHNR = standardized HNR, calculated as the average HNR
over chunks of 1,000 tokens.

A simple way to assess the extent of variation within a dataset is to look at the relationship
between types and tokens. Table 3.2 gives an overview of the amount of tokens as well as
types on either the original (historical) or the normalized side of the token pairs. type/token
ratios (TTRs) are given for completeness’ sake; they vary considerably between datasets (e.g.,
ranging between 2.79% and 24.18% on the normalized types), but are also not really comparable,
since they are sensitive to a variety of properties such as corpus size, lexical variation, and
morphological properties of the language.

Instead, we look at the historical/normalized type ratio (HNR), defined as the number of types
in the source text divided by the number of types in its normalization.21 Table 3.2 shows that
the Slovene/Gaj dataset is the least variant one in this regard, with a HNR of 1.1309; this is
also the most “modern” dataset in terms of time periods, containing only texts written after
around 1840. The German/Anselm dataset, on the other hand, is an extreme outlier, with almost
four times as many historical types than modern ones (HNR 3.8231). This can partially be
explained by its limited lexical diversity, as it is based on a collection of semi-parallel texts,
which are expected to overlap significantly in vocabulary. The fact that it has less types in its
normalization than the RIDGES dataset, despite it being more than five times larger in terms
of tokens, further supports this hypothesis. At the same time, the historical versions of the
Anselm texts originate from scribes of various dialectal regions, resulting in a highly diverse
set of spellings—and, therefore, a comparatively high amount of historical types.

The example above suggests that the HNR can serve to highlight certain types of bias in a
dataset. It also shows, however, that this score conflates effects of spelling variation and lexical
diversity. To reduce the effect of corpus size and compilation, we also calculate the standardized
historical/normalized type ratio (sHNR). Inspired by similar approaches for type/token ratios
(TTRs), the sHNR is calculated by dividing the corpus into chunks of 𝑛 tokens, calculating

21This is equivalent to the ratio of the historical and normalized TTRs.

44

3.4 Analyzing variation

Dataset Word-based Char-based

ID MFN ID MFN

DEA German (Anselm) 29.58% 94.36% 58.66% 83.33%
DER German (RIDGES) 43.80% 95.55% 69.17% 90.82%
EN English 74.94% 98.02% 73.25% 92.58%
ES Spanish 72.90% 97.18% 73.90% 93.85%
HU Hungarian 17.62% 98.00% 57.44% 78.33%
IS Icelandic 46.69% 92.39% 66.99% 87.12%
PT Portuguese 65.33% 97.41% 70.95% 91.36%
SLB Slovene (Bohorič) 41.07% 98.29% 64.44% 90.70%
SLG Slovene (Gaj) 86.24% 99.04% 79.48% 97.56%
SV Swedish 59.85% 99.18% 73.31% 90.60%

Table 3.3: Accuracy on the training sets if tokens were left unchanged (ID) or mapped to their
most frequent normalizations (MFNs), both on the standard word-aligned and the
character-aligned versions of the datasets.

the HNR for each chunk, and then taking the average of these scores. To calculate sHNR
in Table 3.2, we use 𝑛 = 1000. Here, German/Anselm still has the highest ratio by a large
margin, though the tendencies change a bit for some other datasets. For example, the Hungarian
dataset has a noticeably higher HNR than Slovene/Bohorič—1.70 vs. 1.32, respectively—while the
standardized score is almost the same for both (sHNR 1.08). This suggests that the comparatively
higher HNR of Hungarian might be a product of its larger total size, and not necessarily of
greater spelling variation.

Table 3.3 provides a different way of quantifying variation, both on a word level and a char-
acter level (cf. Sec. 3.3), by giving the percentage of words/characters that do not change in
the normalization (columns “ID”) and the theoretical accuracy obtained by mapping each
word/character to its most frequent normalization (columns “MFN”).

The first, column “ID”, shows the extent of spelling variation in terms of how many words
and/or characters are affected by it. In the Hungarian dataset, only 17.6% of words do not need
any normalization, while 86.2% are left unchanged in Slovene/Gaj. This again confirms that
the spelling of the Slovene/Gaj dataset is closest to its contemporary language compared to
all other datasets; at the same time, the Slovene texts written in the older Bohorič alphabet
show considerably more variation. These numbers could conceivably help explain some of the
different approaches to spelling normalization in previous work. For example, the VARD tool for
English first detects if a word form is a spelling variant at all before trying to normalize it (Baron
and Rayson, 2008), while the Norma tool (originally developed for German) makes no such
distinction and runs its normalization algorithms on all input word forms equally (Bollmann,
2012). The former approach makes sense if at most one in four word forms needs to be
normalized at all (as for the English dataset in Table 3.3), while a variant detection step is
arguably less necessary if less than 30% of words do not need normalization (as in the German
Anselm dataset).

45

Chapter 3 Corpora

While these numbers show how many words are affected by (spelling) variation, they provide
no information on how different these word forms are from their modern counterparts. This
question can be addressed by looking at the character-aligned data (from Sec. 3.3) instead. As an
example, compare the Portuguese dataset with German/RIDGES: the former has a much higher
percentage of unchanged words (65% vs. 44%), while the percentage of unchanged characters
is roughly comparable between the two (71% vs. 69%). This suggests that while fewer word
forms need to be normalized in Portuguese compared to German/RIDGES, in the words that do
change, more characters need adjusting in the Portuguese dataset. In general, the numbers for
the character-aligned datasets are much closer together than the word-based scores, with most
datasets hovering around 70% unchanged characters.

The percentage for most frequent normalizations (MFNs) in Table 3.3 is determined by counting
the number of word pairs that map a historical token to the most frequent normalized word
form observed for all instances of that historical type. This can be seen as a measure of
ambiguity, discussed more thoroughly in Sec. 3.4.1, as this score will be lower the more often a
historical type is normalized as different contemporary word forms.22 Consequently, it gives
an impression of how context-dependent the normalization task is—if all historical word types
only had a single correct normalization (i.e., the MFN accuracy is 100%), there would be no
need to consider word context to disambiguate them when generating the normalization.

In practice, the MFN accuracy for most datasets is above 97%. This provides a good justification
for using word forms in isolation as the input to the normalization algorithm, as almost all
previous work on normalization has done (cf. Chapter 4): less than 3% of all gold-standard
normalizations will be unreachable in such a scenario. Furthermore, it is not guaranteed that
including word context in the normalizer’s decisions will allow us to reach these remaining
3% of word forms, as they might also be the result of inconsistent annotation or idiosyncracies
of the data. On the other hand, some datasets show more variation in this regard, particularly
the Icelandic one with a MFN accuracy of only 92.4%. This suggests that Icelandic might profit
more than other languages from an approach that considers word context.

3.4.1 Measuring ambiguity

The analysis above already touched upon the issue of ambiguity: historical source types that
have more than one gold-standard target normalization. Looking at the MFN frequency (in
Table 3.3) already provides some insight into the extent of ambiguity, but it is a very shallow
measure, as it does not give any indication about the distribution of ambiguous word forms. A
lower MFN percentage could be the result of many slightly ambiguous words or a few highly
ambiguous ones (or anything in-between). For further analyses or improvements to our models,
we might also be interested in knowing what the most problematic word forms in this regard
are.

For this purpose, let us define the ambiguity 𝛼 of a historical word type or token 𝑤 as follows:

𝛼(𝑤) = log2 (
𝑐(𝑤)

MFN(𝑤))
(3.4)

22However, it can also be influenced by inconsistencies in the gold-standard normalizations.

46

3.4 Analyzing variation

Here, 𝑐(𝑤) is the number of tokens 𝑤 in the dataset, and MFN(𝑤) is the number of times they
are assigned their most frequent normalization. For example, if the historical word form ye
occurs 30 times in a dataset and is normalized as you in 20 of these instances, and as the (or
anything else) in the rest, then 𝑐(‘ye’) = 30 and MFN(‘ye’) = 20, resulting in an ambiguity score
of 𝛼(‘ye’) ≈ 0.585.

More generally, if a historical source type is completely unambiguous, i.e., all instances of it
are always assigned the same normalization, then 𝑐(𝑤) = MFN(𝑤) and therefore 𝛼(𝑤) = 0. On
the other hand, if 𝛼(𝑤) = 1, this means that the most frequent normalization only makes up
50% of all occurrences of this word type. The lower the MFN for a word type, the higher 𝛼
will be, up to a theoretical maximum of log2 𝑐(𝑤) (if every instance of the word had a different
normalization).

Table 3.4 gives an overview of the distribution of 𝛼 on the different datasets. The percentage of
fully unambiguous words (i.e., 𝛼 = 0) varies between 48.2% (for German Anselm) and 93.6% (for
Swedish), but is mostly in the range of 50%–75%. Icelandic again stands out as having rather
high ambiguity, with almost 20% of tokens having an ambiguity score of 𝛼 > 0.3, a considerably
higher ratio than any other dataset. For most datasets, the average 𝛼 across all tokens tends to be
below 0.05, exceptions being Icelandic and the German corpora. In combination, these numbers
suggest that most historical tokens tend to have relatively unambiguous normalizations, with
alternative normalized forms either occuring only rarely, or being limited to a small number of
word types.

Figure 3.1 provides a more detailed visualization of the ambiguity distribution by showing the
values of 𝛼 at a given percentile. First of all, the plot shows that values of 𝛼 > 1 are extremely
rare, affecting less than 1% of all tokens. Furthermore, the graphs for most datasets follow a very
similar distribution, with the major exceptions again being German (with both the Anselm and
the RIDGES dataset being relatively close together) and Icelandic. The latter already branches
off noticeably around the 76th percentile and mostly stays on top of all other graphs, meaning
that most of the top 24% of tokens in the Icelandic dataset (in terms of ambiguity) have a higher
𝛼 score than those of the other datasets.

Finally, we can use our definition of ambiguity to not only measure and visualize the ambiguity
distribution, but also to identify the most ambiguous word types. However, looking at 𝛼 alone
is not very helpful, as the tokens with the highest 𝛼 scores tend to occur only a handful of times.
Words have a higher impact on the normalization accuracy when they are both ambiguous and
relatively frequent. To that effect, we calculate a weighted version �̂� by taking the geometric
mean of 𝛼 and the relative token frequency:

�̂� (𝑤) =
√
𝛼(𝑤) ∗

𝑐(𝑤)
∑ 𝑐(�̃�)

(3.5)

Table 3.5 shows the ten most ambiguous word types according to this measure in each of the
datasets.

47

Chapter 3 Corpora

Dataset Token ambiguity Distribution of 𝛼

𝛼 = 0 0 < 𝛼 ≤ 0.3 𝛼 > 0.3 avg 95th pct max

DEA German (Anselm) 48.19% 40.15% 11.66% 0.1011 0.8078 2.0000
DER German (RIDGES) 62.17% 27.19% 10.64% 0.0787 0.5850 1.5850
EN English 49.15% 47.24% 3.61% 0.0338 0.1799 2.0000
ES Spanish 56.03% 40.46% 3.50% 0.0479 0.2410 1.5850
HU Hungarian 73.24% 23.35% 3.41% 0.0345 0.1855 1.5850
IS Icelandic 62.32% 18.02% 19.66% 0.1376 0.8634 1.5850
PT Portuguese 49.64% 47.09% 3.27% 0.0435 0.1631 2.1699
SLB Slovene (Bohorič) 84.67% 11.79% 3.53% 0.0301 0.1375 1.5850
SLG Slovene (Gaj) 80.17% 18.25% 1.57% 0.0162 0.0526 1.7004
SV Swedish 93.61% 4.69% 1.70% 0.0148 0.0123 1.5850

Table 3.4: Token ambiguity on the training sets; left half shows the percentage of tokens falling
in a given range of 𝛼; right half shows the average 𝛼, the 𝛼 score at the 95th percentile,
and the maximum 𝛼 on the datasets.

70 75 80 85 90 95 100
percentile

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

al
ph
a

DEA
DER
EN
ES
HU
IS
PT
SLB
SLG
SV

Figure 3.1: Distribution of ambiguity scores (𝛼) as a quantile function; for any given value 𝑥𝑖 on
the x-axis, 𝑥𝑖 percent of all tokens in the dataset have an ambiguity score 𝛼 ≤ 𝑓 (𝑥𝑖).

48

3.4 Analyzing variation

Word Count 𝛼 �̂� Normalizations

in 3685 0.8078 0.1128 ihn (2105), in (1573), ein (4), en (3)
das 2996 0.8303 0.1031 dass (1685), das (1308), da (3)
daz 2409 0.7304 0.0867 dass (1452), das (957)
dat 904 0.9013 0.0590 das (484), dass (419), da (1)
wer 451 0.9968 0.0438 wäre (226), wer (204), war (20), wär (1)
was 1556 0.2806 0.0432 war (1281), was (274), wasser (1)
her 205 1.3941 0.0350 her (78), er (62), herr (49), heer (12), höre (1), hier (1),

hör (1), haar (1)
het 636 0.4302 0.0342 hat (472), hätte (120), hatte (42), es (1), hattte (1)
dz 374 0.7014 0.0335 dass (230), das (138), des (6)
waz 580 0.4217 0.0323 war (433), was (147)

(a) German (Anselm)

Word Count 𝛼 �̂� Normalizations

das 791 0.3375 0.0799 das (626), dass (165)
ein 446 0.5530 0.0768 ein (304), eine (109), einen (31), einer (1), einem (1)
dann 106 0.8699 0.0469 denn (58), dann (48)
dẽ 62 1.1468 0.0412 dem (28), den (27), der (4), denen (2), des (1)
dz 88 0.7045 0.0385 das (54), dass (33), des (1)
wider 62 0.9542 0.0376 wieder (32), wider (27), widder (2), weder (1)
diſz 68 0.8021 0.0361 dies (39), dieses (21), das (4), diese (4)
ſein 80 0.6781 0.0360 sein (50), seine (14), sind (10), seiner (3), seinen (2),

seines (1)
vil 51 0.7182 0.0296 viel (31), viele (16), vielen (4)
weiſz 31 1.0473 0.0279 weiß (15), weise (8), weiße (4), weisheit (1), weisen (1),

weißem (1), weißer (1)

(b) German (RIDGES)

Table 3.5: Top 10 ambiguous words (by weighted �̂�) in the training sets

49

Chapter 3 Corpora

Word Count 𝛼 �̂� Normalizations

be 1638 0.1799 0.0446 be (1446), by (104), been (35), are (27), is (23), am (2),
the (1)

then 267 0.8709 0.0397 then (146), than (121)
ye 374 0.3133 0.0282 you (301), the (63), ye (5), we (2), yes (2), they (1)
yt 113 0.6304 0.0220 it (73), that (40)
ther 151 0.4310 0.0210 there (112), their (38), since (1)
here 207 0.3098 0.0208 here (167), hear (30), her (5), their (4), year (1)
the 5504 0.0105 0.0198 the (5464), you (28), they (9), that (2), by (1)
a 1492 0.0352 0.0189 a (1456), have (14), an (8), he (3), on (2), ado (1), has (1),

i (1), and (1), a((1), as (1), ah (1), o’ (1), à (1)
mr 91 0.5305 0.0181 mister (63), mr. (14), mr (12), master (2)
ben 67 0.7085 0.0179 been (41), be (7), are (7), ben (7), benjamin (3), bene-

dicta (1), have (1)

(c) English

Word Count 𝛼 �̂� Normalizations

es 4816 0.0992 0.0597 és (4496), is (312), ez (4), ás (2), es (2)
monda 447 0.2845 0.0308 mondá (367), monda (65), monda´ (12), mondja (3)
meg 489 0.1855 0.0260 meg (430), még (51), míg (4), megy (2), mégy (2)
kezde 69 0.8991 0.0215 kezde (37), kezdé (32)
mikoron 121 0.4759 0.0207 mikoron (87), mikor (34)
el 190 0.2479 0.0187 el (160), él (17), ily (9), élj (3), ez (1)
mēt 42 1.0704 0.0183 mint (20), mert (16), ment (6)
ada 52 0.8425 0.0181 adá (29), ada (23)
v̇tet 49 0.7567 0.0166 őt (29), őtet (20)
felele 54 0.6674 0.0164 felele (34), feleleˊ (11), felelé (8), felül (1)

(d) Hungarian

Word Count 𝛼 �̂� Normalizations

enn 840 0.6671 0.1063 en (529), enn (310), og (1)
nu 579 0.8782 0.1012 nú (315), nu (258), un (6)
j 564 0.8634 0.0991 i (310), í (252), j (2)
suo 439 0.4973 0.0663 svo (311), sou (128)
uar 318 0.6835 0.0662 var (198), aur (120)
med 403 0.4550 0.0608 með (294), med (109)
þier 172 0.8413 0.0540 þér (96), þeir (76)
kongr 154 0.9092 0.0531 kóngur (82), göngur (72)
þu 213 0.6472 0.0527 þú (136), ðu (76), þu (1)
sier 143 0.9504 0.0523 sér (74), sjer (69)

(e) Icelandic

Table 3.5: Top 10 ambiguous words (by weighted �̂�) in the training sets (cont.)

50

3.4 Analyzing variation

Word Count 𝛼 �̂� Normalizations

a 7979 0.1631 0.0765 a (7126), à (604), há (188), anos (23), ana (15), arroba (3),
amigo (3), o (3), ao (2), ah (2), antónio (2), alma (1), al-
teza (1), ano (1), almeida (1), e (1), antunes (1), antónia (1),
alpoim (1)

esta 874 0.5841 0.0479 esta (583), está (291)
o 5710 0.0813 0.0457 o (5397), ao (235), ou (65), ó (8), os (3), aos (1), oh (1)
he 1585 0.2251 0.0400 é (1356), e (192), hei (30), he (3), em (2), aí (2)
ma 480 0.5760 0.0352 minha (322), maria (99), ma (35), má (10), mesma (7),

mau (2), meia (1), manuel (1), há (1), me (1), mãe (1)
m 140 1.8074 0.0337 mercê (40), maria (40), me (13), muito (10), muitos (10),

majestade (6), mano (4), mesmo (3), miranda (3),
manuel (3), minha (2), mestre (1), m (1), meu (1), mor-
eira (1), martiniano (1), matias (1)

d 288 0.8480 0.0331 de (160), dona (49), dom (47), deus (8), da (7), do (6), d. (4),
di (2), diogo (2), don (1), doutor (1), adeus (1)

nos 524 0.4447 0.0324 nos (385), nós (138), nosso (1)
s 191 1.1345 0.0312 são (87), sua (22), santo (20), senhor (19), santa (10),

se (8), seu (6), senhora (4), scilicet (3), senhoria (3),
soror (2), as (1), santidade (1), santos (1), servidor (1),
sacramento (1), serva (1), seja (1)

as 1320 0.1532 0.0301 as (1187), às (118), anos (13), das (1), hás (1)

(f) Portuguese

Word Count 𝛼 �̂� Normalizations

esta 546 1.1979 0.0820 esta (238), está (170), ésta (138)
a 2917 0.1906 0.0756 a (2556), ha (327), años (32), aquí (1), arroba (1)
mi 1049 0.2485 0.0518 mi (883), mí (165), mía (1)
m 145 1.3985 0.0456 mano (55), muchos (32), maría (16), me (12), majes-

tad (9), manos (4), merced (3), mil (3), mi (2), mis (2),
memorias (2), medina (1), muchas (1), misericordioso (1),
madre (1), no (1)

el 1787 0.1064 0.0442 el (1660), él (127)
se 1110 0.1234 0.0375 se (1019), sé (85), si (5), septiembre (1)
como 632 0.1848 0.0346 como (556), cómo (75), comercio (1)
s 110 1.0534 0.0345 su (53), señor (36), servidor (4), seguro (4), san (2), sus (2),

seda (1), s (1), siempre (1), señora (1), señoría (1), se (1),
suyo (1), suya (1), si (1)

tu 255 0.4245 0.0334 tu (190), tú (64), tus (1)
este 291 0.3711 0.0333 este (225), éste (38), esté (27), estén (1)

(g) Spanish

Table 3.5: Top 10 ambiguous words (by weighted �̂�) in the training sets (cont.)

51

Chapter 3 Corpora

Word Count 𝛼 �̂� Normalizations

s 272 0.8976 0.0699 z (146), s (126)
s’ 183 0.6702 0.0495 z (115), s (65), iz (3)
ko 115 0.4705 0.0329 ko (83), kot (32)
is 225 0.1844 0.0288 iz (198), z (15), s (10), zlahkoma (1), izmed (1)
se 93 0.3894 0.0269 se (71), si (22)
she 89 0.2469 0.0210 že (75), še (14)
more 32 0.6781 0.0208 more (20), mora (12)
ſvojim 32 0.6077 0.0197 svojim (21), svojem (11)
leto 37 0.5090 0.0194 leto (26), le-to (11)
leta 26 0.7004 0.0191 leta (16), le-ta (10)

(h) Slovene (Bohorič)

Word Count 𝛼 �̂� Normalizations

ko 469 0.2081 0.0246 ko (406), kot (63)
ste 169 0.5061 0.0230 ste (119), sta (50)
o 293 0.2004 0.0191 o (255), ob (37), zilogoro (1)
z 978 0.0526 0.0179 z (943), s (35)
svojim 91 0.4854 0.0166 svojim (65), svojem (25), svoje (1)
vsaki 61 0.6828 0.0161 vsak (38), vsaki (23)
ti 344 0.1179 0.0159 ti (317), tej (25), ta (1), tem (1)
tak 49 0.8074 0.0157 tak (28), tako (21)
saj 92 0.3738 0.0146 saj (71), vsaj (21)
veči 36 0.9220 0.0143 večji (19), večjo (9), večje (7), večja (1)

(i) Slovene (Gaj)

Word Count 𝛼 �̂� Normalizations

bemälte 47 0.9696 0.0432 bemälda (24), bemälde (23)
haffua 26 0.8931 0.0308 har (14), ha (12)
hafwa 32 0.6077 0.0282 ha (21), har (11)
j 50 0.2863 0.0242 i (41), ni (7), j (2)
här 34 0.3326 0.0215 här (27), herr (7)
alt 24 0.4150 0.0202 allt (18), att (6)
kunne 13 0.7004 0.0193 kunna (8), kunde (4), kunnat (1)
hafva 14 0.6374 0.0191 ha (9), har (5)
ware 7 1.2224 0.0187 vara (3), vare (3), var (1)
wåre 7 1.2224 0.0187 våra (3), vore (2), vår (1), var (1)

(j) Swedish

Table 3.5: Top 10 ambiguous words (by weighted �̂�) in the training sets (cont.)

52

3.4 Analyzing variation

Many of the ambiguities in Table 3.5 are the result of homophones or near-homophones that are
clearly distinguished in contemporary orthography, but not (necessarily) in historical writing.
Prominent examples include: das/dat/daz/dz in the German datasets, which can be normalized
as either the definite article das or the conjunction dass; the German in from the Anselm dataset
which can be either the preposition in or the pronoun ihn; the English then > then/than or ther >
there/their ; the Spanish and Portuguese esta that is normalized as either the demonstrative
pronoun esta or the inflected verb form está; or the Slovene preposition z/s, which is often just
written as s/s’ in the historical texts. In Swedish, which has very few ambiguous word forms,
a common source of ambiguity appears to be the obsolete forms haffua/hafwa/hafva of the
modern ha/har ‘(to) have’.

Other cases are exemplary of the nature of a dataset or its normalizations. In German/RIDGES,
many common ambiguities arise from historical word forms missing inflectional suffixes, such
as diſz > dies/dies(e|es), ſein > sein/sein(e|er|en|es), or weiſz > weiß/weiß(e|er|em), while examples
like these are not prominent in the Anselm dataset. This is a consequence of their different
normalization guidelines, as the Anselm corpusmoves the adjustment of inflectionalmorphemes
to a separate layer (cf. the discussion on p. 32), while the RIDGES corpus treats it as a normal
part of normalization. The Post Scriptum corpus stands out for containing a high number of
abbreviations, with many one-letter or two-letter tokens—such as a, d, m, ma, or s—mapping
to an unusually high number of normalizations. For example, in the Portuguese dataset, the
historical token s is normalized as são/se/seu/sua, but also as senhor/senhora ‘mister/lady’,
santo/santos/santa ‘holy/sacred’, santidade ‘sanctity’, sacramento ‘sacrament’, and a few others.
English also has a few of these cases, with ben including the normalizations benjamin and
benedicta.

Icelandic is of particular interest, since it has the highest curve in the ambiguity distribution of
Figure 3.1 and is quite different from all other datasets in this regard. Comparing the normal-
ization targets in Table 3.5e to the word forms in the modern Icelandic datasets introduced in
Sec. 3.5, we find that many of the gold-standard normalizations are unattested there: e.g., the
contemporary resources have nú, but not nu; svo but not sou; þú but neither ðu nor þu; etc.
This leads me to believe that the increased frequency of ambiguous word forms might—at least
in parts—be the result of erratic or inconsistent normalizations in the gold-standard data.

3.4.2 Measuring similarity

A question that will be analyzed in later chapters (Ch. 8 and 9) is whether training on a pair of
datasets in parallel can yield better results than training on a single dataset in isolation, and if so,
whether the effectiveness of a dataset pairing can be traced to common (or diverging) properties
of these datasets. For the latter aspect, I propose an approach to measure the similarity between
two datasets.

Dataset similarity is estimated here by transforming the training sets into feature vectors,
applying term frequency–inverse document frequency (tf–idf) weighting, then measuring

53

Chapter 3 Corpora

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

1

0.91 1

0.53 0.51 1

0.48 0.45 0.59 1

0.42 0.42 0.42 0.43 1

0.43 0.45 0.48 0.43 0.4 1

0.42 0.37 0.56 0.87 0.38 0.4 1

0.49 0.44 0.47 0.54 0.36 0.38 0.54 1

0.39 0.36 0.48 0.62 0.39 0.42 0.61 0.82 1

0.59 0.61 0.65 0.54 0.46 0.6 0.49 0.45 0.49 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: Cosine similarity of datasets based on tf–idf of historical character bi- and trigrams

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

1

0.9 1

0.21 0.12 1

0.02 0.01 0.06 1

0.14 0.12 0.14 0.43 1

0.03 0.02 0.05 0.25 0.26 1

0.06 0.03 0.12 0.61 0.33 0.16 1

0.64 0.67 0.09 0.03 0.12 0.03 0.1 1

0.13 0.06 0.41 0.02 0.09 0.03 0.1 0.19 1

0.14 0.09 0.22 0.02 0.14 0.08 0.16 0.22 0.18 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Cosine similarity of datasets based on tf–idf of non-identical character alignments

54

3.4 Analyzing variation

pairwise cosine similarity between the datasets. This is also called the cosine coefficient. For a
dataset 𝑑 ∈ 𝐷 and a feature 𝜑, we define the tf–idf score to be:

tf–idf(𝜑, 𝑑) = tf(𝜑, 𝑑) ∗ idf(𝜑) (3.6)

= tf(𝜑, 𝑑) ∗ (ln
|𝐷|

df(𝜑)
+ 1) (3.7)

Here, tf(𝜑, 𝑑) is the number of times feature 𝜑 appears in dataset 𝑑, while df(𝜑) is the number of
datasets that contain feature 𝜑. The addition of 1 in Eq. (3.7) is done to prevent features that are
present in all datasets from vanishing completely, which emphasizes similarity over individual
differences.23

Figure 3.2 shows the pairwise similarity of datasets when using character bi- and trigrams from
the historical text as features. This serves to give an impression of how similar the historical
datasets are in terms of spelling. Not surprisingly, datasets of the same or similar languages
score highest in this comparison: the German Anselm and RIDGES datasets show the highest
similarity (0.91), with the pairs Portuguese–Spanish (0.87) and Slovene Bohorič–Gaj (0.82)
following close behind. Some of the other scores also vaguely follow language families: take
Swedish as an example, for which the highest similarity scores occur with the English, Icelandic,
and German datasets, i.e., those from the other Germanic languages. Similarly, Hungarian,
which is the only dataset from a Finno-Ugric language, has the lowest overall scores (< 0.46).

Figure 3.3 shows dataset similarity when using non-identical character alignments (from
Sec. 3.3) as features; identical alignments—i.e., whenever a character is normalized as itself—are
filtered out because of their high frequency across all datasets. This comparison highlights the
similarity in terms of character-based normalizations, i.e., it takes the mapping of historical
to contemporary spelling into account. Again, the two German datasets are the most similar
ones (0.9), while Portuguese–Spanish has a considerably lower score (0.61). The Slovene
datasets, however, receive a very low score of 0.19 in this evaluation, which makes sense since
they were written in different alphabets. Interestingly, Slovene/Bohorič also shows a high
similarity (0.64–0.67) to both of the German datasets. The Bohorič alphabet was “modelled on
the German one” (Erjavec, 2015, p. 755) and frequently uses 〈ſ 〉 for modern 〈s〉, a substitution
that almost never appears in the other datasets except for German and, to a lesser extent,
Hungarian. Other scores seem to be more coincidental: e.g., the similarity of 0.43 between
Spanish and Hungarian appears to be caused by both datasets frequently mapping vowel
characters to their accented counterparts, such as a > á or e > é, although the usage of acute
accents is of course different between the two languages.

23I calculated dataset similarities with many more configurations than shown here. When using the more
traditional definition of inverse document frequency without the +1 term, many dataset pairs receive a
similarity score of zero because tf–idf(𝜑, 𝑑) = 0 for many features 𝜑. Also, different features (e.g., character
bi-/trigrams vs. character alignments) tend to produce nearly identical similarity scores. The variant of tf–idf
in Eq. (3.7) was ultimately chosen because it allows for more interesting and diverse perspectives on the data.

55

Chapter 3 Corpora

3.5 Contemporary datasets

In addition to the historical datasets, some experimental setups also make use of a contemporary
language resource. Firstly, the rule-based and distance-based algorithms of Norma (cf. Sec. 4.2.1)
require a list of valid target word forms to function properly. Secondly, adding a lexical filter
that only allows “valid” word forms to be generated can also be a helpful strategy for neural
network models.

Themain criteria for a resource to be usable in this way are: (i) it should consist of inflected word
forms; (ii) it should have a comprehensive coverage of the modern language, and particularly
all parts of speech; and (iii) it should be relatively noise-free, i.e., not contain any non-words.
Ideally, we would like to use a carefully curated full form lexicon for this purpose; however,
such a lexicon is not readily available for many languages. A simpler alternative is to derive a
list of word forms from a corpus.

For my experiments, I mainly consider two different resources of contemporary language: the
Europarl corpus (Koehn, 2005) and modern Bible translations. The only exception is Icelandic,
which is the only language in my experiments that is not represented in Europarl, so other
modern Icelandic resources are used instead. The following sections describe all the resources,
why they were chosen, and some of their properties.

3.5.1 Europarl

The Europarl corpus24 is a parallel corpus of European parliament proceedings from 1996
to 2011 (Koehn, 2005). Release v7 of the corpus, which is the one used here, contains between 7
and 55 million words per language from a total of 21 European languages. The corpus is freely
available online, including parallel corpora for all language pairs that include English.

There are several reasons for choosing Europarl as one of the contemporary language re-
sources:

1. It is freely available and covers all languages used in my experiments except one (Ice-
landic).

2. Since it is based on carefully transcribed and translated parliament speeches, it is com-
paratively free of spelling errors, non-words, or other features of informal writing that
are likely to be found in, e.g., a corpus derived from the web.

3. Its parallel nature allows us to control for size, domain, and vocabulary of the contempo-
rary dataset for all covered languages.

An obvious drawback is that the domain of these texts—political speeches—is quite distant
from that of the historical texts, which for the most part contain religious treatises, scientific
texts, and personal letters (cf. the overview in Table 3.1). The main alternative here is to use
more varied corpora that are available for each given language; I choose the parallel corpus
here for better comparability.
24http://www.statmt.org/europarl/

56

http://www.statmt.org/europarl/

3.5 Contemporary datasets

Not all languages in the Europarl corpus are represented in equal quantities. In order to obtain
comparable datasets for each language, I choose to only use sentences which are represented in
all of the seven languages investigated here (English, German, Hungarian, Portuguese, Slovene,
Spanish, and Swedish; Icelandic is not available in the Europarl corpus). This is done via a
simple heuristic: Based on the parallel corpus files from the Europarl website, I first extract all
non-English sentences and index them by their aligned English counterparts. Then, all English
sentences that do not have equivalents in all of the six other languages are filtered out (along
with their translations). The remaining sentences are tokenized using the tokenization script
provided by the Europarl corpus, lowercased, and used to obtain a wordlist for each language
by extracting all word types.

This process results in about 450,000 sentences per language, with each language consisting
of a total of 10–13 million tokens and between 55,000 and 268,000 types (cf. the overview in
Table 3.6).

3.5.2 BÍN and MÍM

Since the Europarl corpus does not cover Icelandic, a different resource needs to be used for
that language. I follow Pettersson (2016) in using a combination of two Icelandic resources:
the Beygingarlýsing íslensks nútímamáls (BÍN),25 a database of Modern Icelandic inflected word
forms (Bjarnadóttir, 2012); and all tokens from the Tagged Icelandic Corpus (Mörkuð íslensk
málheild, MÍM)26 (Helgadóttir et al., 2012) occurring at least 100 times. This frequency threshold
“is chosen due to a considerable amount of noisy corpus data” (Pettersson, 2016, p. 80).

The BÍN database is a very extensive resource, contributing about 2.9 million word types, while
the high-frequency words from the MÍM corpus constitute only about 9,300 types. However,
the latter also includes function words while BÍN does not.

3.5.3 Bible

Modern Bible translations share many of the traits of the Europarl corpus: they are readily
available for many languages, consist of carefully edited text, and constitute highly parallel
texts. Moreover, they are more likely to overlap in domain with historical texts, which are
often religious in nature. This makes it another ideal resource for contemporary word forms.

The data used here comes from the parallel Bible corpus by Christodouloupoulos and Steedman
(2015).27 It contains Bible translations in more than 100 languages, among them complete Bible
texts (both Old and New Testament) for all eight languages investigated here. Plain text files
were extracted from the corpus files using specialized, open-source processing tools,28 while
tokenization was done with the Europarl tokenizer, before again lowercasing all words and
collecting word types.

25http://bin.arnastofnun.is/data/
26http://mim.hi.is/
27http://christos-c.com/bible/
28https://github.com/christos-c/bible-corpus-tools

57

http://bin.arnastofnun.is/data/
http://mim.hi.is/
http://christos-c.com/bible/
https://github.com/christos-c/bible-corpus-tools

Chapter 3 Corpora

Language Bible Modern Historical (Train)

Types Resource Types Resource Types

English 12,572 Europarl 54,752 ICAMET 9,760
German 20,492 Europarl 164,005 Anselm 6,517

RIDGES 7,210
Hungarian 64,332 Europarl 268,391 HGDS 25,817
Icelandic 35,389 BÍN+MÍM 2,875,081 IcePaHC 8,040
Portuguese 29,374 Europarl 85,304 Post Scriptum 15,499
Slovene 39,528 Europarl 124,609 goo300k (Bohorič) 10,824

goo300k (Gaj) 30,143
Spanish 27,089 Europarl 84,255 Post Scriptum 9,302
Swedish 23,776 Europarl 140,066 GaW 5,914

Table 3.6: Overview of contemporary word types in the modern Bible translation, the Europarl
corpus (or BÍN+MÍM for Icelandic), and of the gold-standard normalizations in the
training set of the historical corpora.

The resulting wordlists contain about 600,000 to 800,000 tokens per language. This is con-
siderably less than for the Europarl corpus (cf. Sec. 3.5.1), and suggests that the Bible alone
might be a little too short for extracting a comprehensive full form wordlist. Therefore, I use it
only as a supplement to the other contemporary language resources, and not as a standalone
replacement.

3.5.4 Coverage

For each historical dataset, there are now two external sources of modern inflected target word
forms: (i) a modern Bible translation (Sec. 3.5.3); and (ii) another modern corpus or dictionary
resource—BÍN+MÍM for Icelandic (Sec. 3.5.2), and Europarl (Sec. 3.5.1) for the other languages.
In addition to those, we can also include the gold-standard normalizations of the respective
training sets in our list.

Table 3.6 gives an overview of the number of word types obtained from these three sources.
The training sets always provide the lowest amount of types, suggesting that the addition
of external resources can be helpful to increase coverage. Of these, the modern resources
(Europarl/BÍN+MÍM) provide significantly more word types than the Bible translations.

However, a larger amount of types is not necessarily always better. Noise in the corpus, i.e.,
words that are not actually valid forms of the target language, does not provide any value,
but can increase the number of types significantly. This should not be much of an issue here,
though, as the resources were chosen specifically to be relatively free of noise. Another factor
is how well the chosen resources cover the gold-standard normalizations on the datasets we
evaluate on—since the contemporary resources are intended to guide the normalization process
by providing valid target word forms, the effectiveness of a resource is restricted by how much
it overlaps with the set of correct target normalizations.

58

3.5 Contemporary datasets

Dataset Bible Modern Bible+Modern Train All

DEA German (Anselm) 9.17% 8.37% 5.46% 3.63% 1.52%
DER German (RIDGES) 19.37% 15.93% 12.11% 10.15% 5.32%
EN English 11.58% 5.38% 4.35% 3.76% 1.81%
ES Spanish 12.02% 6.44% 5.25% 4.62% 1.64%
HU Hungarian 27.52% 33.55% 19.02% 11.64% 7.17%
IS Icelandic 22.44% 13.50% 13.10% 9.22% 3.55%
PT Portuguese 11.74% 7.01% 5.35% 3.44% 1.45%
SLB Slovene (Bohorič) 16.88% 16.44% 11.61% 14.64% 6.15%
SLG Slovene (Gaj) 21.52% 15.92% 12.19% 11.65% 6.29%
SV Swedish 28.51% 20.54% 16.93% 16.08% 8.29%

Table 3.7: Tokens in the development sets of the historical corpora not covered by the contem-
porary language resources; Modern = wordlist extracted from BÍN+MÌM for Icelandic
(Sec. 3.5.2) or Europarl for all other languages (Sec. 3.5.1); Train = wordlist extracted
from gold-standard normalizations of the respective training sets.

Table 3.7 shows how many of the gold-standard normalizations from the development sets
of the historical datasets are not covered by the contemporary wordlists. Essentially, this is
the percentage of target normalizations that cannot be reached if the given resource is used to
strictly filter the normalization candidates. In this sense, a higher percentage is worse because
it reduces the maximum normalization accuracy we can obtain. Importantly though, this does
not mean that a lower score is always better: a list containing all possible strings—with all
combinations of all characters—would naturally include all possible normalizations, resulting
in 0% of normalizations not covered, but such a list is obviously not very useful. Therefore,
these numbers only provide an upper bound on the usefulness of the resources for filtering
normalizations.

The numbers show that wordlists extracted from the training sets of the corpora almost always
provide a better coverage of the development sets than the Bible and the other modern resource
combined, the only exception being Slovene (Bohorič). This demonstrates the large effect of
domain bias, since training and development sets are always taken from the same corpus, while
the external resources are taken from different corpora and domains. This is true even for the
datasets of religious texts when compared to the Bible: the Bible does not cover 9.17% of word
forms of the German Anselm development set, while its training set is only missing 3.63% of
these word forms; the differences are even higher for the other religious corpora (e.g., 22.44%
vs. 9.22% for Icelandic, or 27.52% vs. 11.64% for Hungarian). Combining the training sets with
the external resources always results in a large decrease of this figure, though, again suggesting
that such a combination can be beneficial. With all three resources combined, the percentage
of tokens not covered is between 1.45% and 8.29%.

The lowest scores are obtained on the English, German, Portuguese, and Spanish datasets. The
two German datasets, however, show a large discrepancy, with the RIDGES dataset having
significantly worse coverage than the Anselm dataset in all configurations (e.g., 5.32% vs. 1.52%
on all resources combined). This effect could result from a bias in the Anselm dataset due to
its semi-parallel nature (cf. Sec. 3.1.2), causing it to be less diverse in terms of vocabulary. The

59

Chapter 3 Corpora

difference to the RIDGES dataset could be further influenced by the latter containing a higher
number of proper nouns or Latin terms (e.g., herbal terms) or using different normalization
guidelines.

The Hungarian dataset shows some of the highest numbers of Table 3.7, with a missing coverage
of 33.55% when using the Hungarian part of the extracted subset from the Europarl corpus, and
7.17% when using all three resources combined. At the same time, this Europarl subset as well
as the Hungarian Bible translation contain much more types than their respective counterparts
in the other languages (cf. Table 3.6), e.g., about 268,000 types in the Hungarian Europarl subset
compared to 164,000 types in the second-largest subset (German). This is almost certainly an
effect of the morphological properties of Hungarian: being an agglutinative language, words
will typically consist of a higher number of morphemes, resulting in a larger variety of word
types. Compare this to English, which has lost most of its inflection, and consequently has by
far the lowest amount of types within the external resources (e.g., 55,000 types in Europarl) as
well as the lowest percentage of tokens not covered by them (4.35%). These figures suggest that
an approach based on full form wordlists might generally be less suitable for morphologically
rich languages.

Another notable data point comes from the Icelandic corpus, which uses BÍN+MÍM as its
modern resource instead of Europarl. The number of types contained within them is almost
2.9 million, exceeding those in the Europarl subsets by more than a factor of 10 (cf. Table 3.6).
Still, this huge amount of types is not reflected in the coverage on the historical dataset, which
is only average among all datasets, with 13.5% of tokens missing in the wordlist from BÍN+MÍM.
The numbers for Swedish are equally surprising, as the coverage here profits the least from
its own training set, resulting in the highest number of missing tokens there (16.08%) as well
as for all resources combined (8.29%). This is unexpected since Swedish morphology is much
closer to that of English than, e.g., Hungarian, meaning that this effect cannot be explained
by morphological properties. Instead, it is possible that these numbers highlight another
shortcoming of full form wordlists: proper nouns. These form an open-ended class that can
only ever be partially covered by a finite list of words. The Swedish dataset contains official
records about the occupation of citizens (cf. Sec. 3.1.7), which are likely to include a high number
of personal names and place names.

3.6 Summary

This chapter introduced all corpora that will be used in the following chapters, both historical
ones (providing datasets for automatic normalization) and contemporary ones (serving as
auxiliary data for some of the normalization approaches). In total, the corpora cover eight
languages: English, German, Hungarian, Icelandic, Slovene, Spanish, Swedish, and Portuguese.
Whenever possible, dataset splits from previous work on normalization have been reused.

The guidelines used to create the gold-standard normalizations can and do differ between
corpora (Sec. 3.1). Detailed normalization guidelines are not always published in the first place—
information was particularly sparse on the English and Icelandic datasets. In most corpora,
word forms are adjusted to the correct (contemporary) inflected forms in their respective context.
Notable exceptions are the German/Anselm dataset, where inflection is not modified at all in

60

3.6 Summary

the “normalization” layer, and German/RIDGES, which does not adjust inflection for gender
and/or grammatical case when these do not conform to modern conventions. Treatment of
archaic elements is handled very differently: some corpora always replace themwith equivalent
contemporary lexemes or morphemes (English, German/Anselm), some always preserve them
and only normalize them graphematically (Hungarian, Slovene, Spanish, Portuguese), while
others preserve extinct lexemes but not bound morphemes (German/RIDGES, Swedish).

For the contemporary datasets, mainly two corpora are used: Europarl and a dataset consisting
of bible translations (Sec. 3.5). They have been chosen primarily for their coverage of languages,
as the only language that is not covered is Icelandic in the Europarl corpus, for which two
Icelandic resources (BÍN and MÍM) have been selected instead. Preprocessing for all datasets—
historical and contemporary—includes the removal of punctuation, lowercasing of all characters,
substitution of digits, and performing Unicode normalization (Sec. 3.2).

Finally, a large part of this chapter was concerned with quantifying properties of the datasets,
particularly (intra-dataset) ambiguity and (inter-dataset) similarity (Secs. 3.3 and 3.4). I proposed
an ambiguity measure 𝛼 that is based on the frequency of a historical token compared to its
most frequent normalization, and showed that the historical datasets differ significantly in this
regard (Fig. 3.1), with Icelandic and the German corpora containing relatively many tokens
with ambiguous normalizations, while Slovene/Gaj and Swedish contain relatively few. For
dataset similarity, I proposed a measure based on cosine similarity of tf–idf scores, and showed
that it reflects, e.g., the close relationship between Spanish and Portuguese, or the close relation
of Slovene/Bohorič spelling to German orthography (Fig. 3.3).

61

Chapter 4

Methods for automatic
normalization

(Semi-)automatic normalization of historical texts has a long history. As soon as computers
were utilized for philological analyses, scholars noted the troubles caused by excessive spelling
variation:

[S]i deux mots diffèrent si peu que ce soit, ce sont pour [la machine] deux mots
totalement différents. La collation automatique fournit alors une masse de variantes
inutiles et insignifiantes, qu’il faudra ensuite éliminer.1 (Froger, 1970, p. 212)

Earlier attempts to perform normalization automatically often rely on word substitution lists
or hand-crafted rules that encode common spelling variants; they are typically tailored to one
specific language and require expert knowledge of that language (and its historical variant)
to build. Other attempts are inspired by automatic spelling correction, essentially treating
historical word forms as “misspellings” of the modern words. These methods typically use
some form of phonetic coding algorithm or a string distance measure to find the correct
modern cognate. Later approaches try to infer spelling characteristics automatically from a
training set of manually normalized word forms, e.g. to learn a set of replacement rules. More
recent work is based on the application of statistical machine translation or neural network
models. These supervised algorithms are not strictly language-specific and do not require
manually encoding domain knowledge, but they are reliant on having a manually normalized
training resource. Nonetheless, since corpora with manual normalization layers are becoming
increasingly available, supervised models have become the de facto method of choice in recent
years.

In the context of spelling correction, Pollock (1982) classifies automatic methods into two
groups: absolute and relative. Absolute methods infer the correct spelling directly from the
deviant word form, e.g. by means of replacement rules, while relative methods make use of
a reference list of correct target word forms, e.g. by calculating distance scores. Piotrowski
(2012) applied this classification to historical spelling normalization methods. For the following
overview, I will not adopt this classification, but rather group normalization methods by the
main technique(s) they employ. To this end, I will distinguish the following techniques:

1‘If two words differ even slightly, they are two completely different words to the machine. Automatic collation
then supplies a large amount of unnecessary and unimportant variants which consequently have to be
eliminated.’ (Froger, 1970, p. 212, my translation)

63

Chapter 4 Methods for automatic normalization

• wordlist mapping, which simply lists variants together with their modern form;

• rule-based methods, applying some form of transformation rules which can be either
manually designed or learned from training data;

• distance-based methods, employing a string distance measure such as Levenshtein dis-
tance (Levenshtein, 1966);

• statistical models, typically based on established techniques from statistical machine
translation; and

• neural models, implementing some form of neural network.

Not every work on normalization can be strictly classified into one of these categories; e.g., some
methods use distance measures to derive replacement rules, while others use a combination
of approaches. Nevertheless, I believe that each of these categories represents a conceptually
or methodically different approach to this task, to the extent that this classification results in
a useful aggregation of previous work. In the terminology of Pollock (1982), distance-based
methods can mostly be described as a relative strategy, while most of the other categories fall
under absolute strategies.

In the context of this work, I am mainly concerned with spelling normalization as the mapping
of different historical variants to a single modern word form, e.g., for improved accuracy of
downstream applications, or for use as an additional layer of information in an annotated corpus.
However, not all work that deals with normalization shares this perspective. In particular,
work in the context of information retrieval (IR) is often concerned with finding equivalent
variant word forms given a modern word form as a search query. This is, in a way, going in the
opposite direction: it does not require connecting each historical token to a single modern form,
but rather generating plausible historical variants based on a modern token (cf. Pilz et al., 2007).
Furthermore, while I am dealing with normalizing to inflected forms, a substantial amount of
work approaches the task from the perspective of lemmatization, which is not concerned with
morphology. While results from these works may not be directly comparable to normalization
as it is presented here, the overlap is substantial enough to warrant inclusion in the following
overview.

Historical text is not the only domain that concerns itself with (spelling) normalization. Con-
temporary dialectal texts, for example, face very similar challenges (cf. Samardžić et al., 2015;
Scherrer and Ljubešić, 2016). Social media data, e.g. from Facebook or Twitter, is typically also
full of variation, and similar considerations apply that make it desirable to map this data to a
standard language form (cf. Eisenstein, 2013; Baldwin and Li, 2015). Indeed, many approaches
for historical spelling normalization have also been applied to social media language, and vice
versa. There are a few notable properties of social media language, though, that distinguish it
from the historical domain: reduplication of letters (whaaaaat), typing errors resulting from
the ideosyncracies of keyboard layouts, frequent use of acronyms (afk, brb), emoticons (:-)),
URLs, hashtags, etc. These features result in specific choices during the preprocessing step or
require additions/alterations to the normalization step—e.g., inserting placeholders for URLs,
reducing duplicated letters, detecting and resolving acronyms, and so on. For these reasons, I
feel that normalizing social media data is different enough from the historical domain to be
treated as a separate problem, although it can be worthwhile to consider which methods from
this area could be adapted to the historical domain (and vice versa).

64

4.1 Previous work

Finally, techniques used for other string-to-string transduction tasks can also be applicable
to normalization, particularly when they employ generic sequence-to-sequence algorithms.
Examples for such tasks include transliteration (e.g., Knight and Graehl, 1998; Li et al., 2009) or
morphological inflection generation (e.g., Durrett and DeNero, 2013; Faruqui et al., 2016).

In the remainder of this chapter, I will first give an overview of previous work on automatic
normalization (Sec. 4.1), grouped by the categories presented above, before describing two
specific normalization tools that I will use for a comparative evaluation (Sec. 4.2).

4.1 Previous work

This section will give an overview of previous work on historical text normalization, following
the classification laid out previously on page 63.

4.1.1 Wordlist mapping

The conceptually simplest form of automatic normalization is to look up each historical word
form in a pre-compiled list that maps it to its supposed “best” normalization. This approach
can go by many names, such as dictionary lookup or lexical substitution; I will mainly call it
wordlist mapping here.

Compiling a list of “known variants” is the main principle of the first VARD tool (Rayson et al.,
2005), a semi-automatic normalization tool for Early Modern English. Its main goal is to assist
the user in finding and normalizing variant historical forms; the list of known variants (along
with their normalizations) is used to highlight these potentially variant forms and suggest
modern substitutions. VARD 2 keeps this substitution list as one of several normalization
components (Baron and Rayson, 2008).

Wordlist mapping is also a critical component of the Norma tool (Bollmann, 2012). During
training, a list of all historical tokens along with their gold-standard normalizations is compiled.
For normalization, this list is applied in a fully automatic fashion as the first step in a “chain”
of normalizers. Each historical token is first looked up in the wordlist: if it is found there, it is
replaced with the most frequent normalization that was seen for this word during training; if it
is not, other algorithms are used to suggest a normalization candidate (cf. Sec. 4.2.1 for more
details).

Despite its simplicity, the wordlist mapping approach can often provide correct normalizations
with a high degree of accuracy, as the later evaluations (e.g., in Sec. 7.2) will also show. Its
main drawback, of course, is that it does not generalize in any way to previously unseen word
forms, as it does nothing more than memorize the training data. Still, the high effectiveness
of this memorization means it should not be easily dismissed as a potential component in a
normalization system.

65

Chapter 4 Methods for automatic normalization

4.1.2 Rule-based approaches

While spelling variants in historical texts can be numerous and inconsistent, it is usually possible
to identify patterns that occur frequently and in texts by more than one writer. A common
example from German (as well as some other languages) is the letter 〈v〉, which can be used in
the same way as modern 〈v〉—i.e., to represent a labiodental fricative—or in place of modern 〈u〉.
Rule-based systems try to encode these regularities in the form of replacement rules, typically
including some form of context information to discriminate between the different usages of a
character.

Some of the earliest approaches to historical text normalization are rule-based, with rules being
manually created for one particular target language. Fix (1980) describes such an approach
for normalization of Old Icelandic lemmata. It is comprised of several processing steps, some
of which implement normalization rules of the form “replace 〈i〉 with 〈j〉 in front of a vowel.”
Koller (1983) describes a system for Old German which segments word forms into morphemes
before applying similar replacement rules, e.g.:

(1) u f * *V

This rule defines a substitution u > f whenever 〈u〉 appears morpheme-initially (*) and is
followed by a vowel grapheme (*V). The system is designed for a grammar consisting of up to
150 replacement rules.

Bollmann et al. (2011b) describe a system that uses similar normalization rules, but instead of
defining them manually, the rules are derived automatically from a training set of gold-standard
normalizations.2 In contrast to Ex. (1), these rules may not refer to grapheme classes (such as
vowels or consonants) but only to individual graphemes, though they may also refer to word
boundaries and sequences of graphemes, e.g.:

(2) j → ih / # _ n

This rule describes the substitution j > ih when 〈j〉 is preceded by a word boundary (#) and
followed by 〈n〉. Rules are not only learned for actual modifications, but also for “identities” of
characters between the historical and modern word, and from all applicable rules, only the most
probable one (based on frequencies in the training corpus) is applied during normalization.

The context restrictions in replacement rules are necessary to prevent overgeneralization and,
consequently, producing the wrongmodern word forms. However, many systems are concerned
with an information retrieval (IR) perspective of finding historical variant spellings given a
modern word form (e.g. Hauser et al., 2007). In this scenario, rule-based systems can produce
a list of potential candidate spellings which are then matched against the historical corpus.
While these systems still need to balance precision and recall of the generated word forms,
they can afford to use more general and fuzzy rules, since their output is a list of candidates
instead of a single, accurate word form.

2Sec. 4.2.1 describes this system in more detail.

66

4.1 Previous work

Barnbrook (1996, Chapter 8) describes a simple system for finding spelling variants in Chaucer’s
Canterbury Tales: word pairs that differ by only one letter are extracted, and a frequency analysis
is performed to rank the types of differences found between the pairs. Most likely differences
included “〈i〉 substituted for 〈y〉”, inserted 〈u〉, word-final 〈e〉, and doubled characters (〈a〉, 〈c〉,
〈e〉, 〈o〉, and 〈t〉). Applying these characteristics to modern word forms results in candidates for
spelling variants which are then looked up in the historical text; e.g., brought was mapped to
the historical variants broughte, broghte, and broght. Essentially, this approach can be described
as applying very broad replacement rules that are not restricted by context.

Many approaches in IR also rely on rules defined by domain experts. Pilz et al. (2006) describe
a fuzzy search engine for historical German texts that uses rules “derived from statistical
analyses, historical publications, linguistic principles, and expert knowledge.” Giusti et al.
(2007) use 43 manually developed transformation rules for Brazilian Portuguese, some of which
are context-dependent while others are not. However, their goal is to cluster spelling variants,
which means that their rules do not necessarily have to describe a mapping to a modern form.
Porta et al. (2013) implement context-aware phonological sound change rules for Old Spanish,
using edit transducers to convert input strings to phonemic representations and (after applying
the sound changes) back to sequences of graphemes.

Etxeberria et al. (2016) utilize a finite-state transducer for modeling phonological changes,
which is trained on a set of gold-standard normalizations. Besides evaluating on historical
Basque, they found that their model outperforms Porta et al. (2013) on Spanish and Scherrer
and Erjavec (2016), who use a machine-translation approach, on Slovene.

Koolen et al. (2006) describe another method to construct rules automatically from a training
sample. Their rules are derived based on phonetic sequence similarity as well as relative
frequencies of consonant/vowel sequences and character n-grams, and evaluated on a text
collection of historical Dutch. Similarly, Ernst-Gerlach and Fuhr (2006) describe an algorithm to
automatically learn a set of probabilistic transformation rules, which is then used to transform
a modern word form into a set of historical spellings.

In general, most of the work with rule-based normalization systems has been carried out with
the IR task in mind. A possible explanation is that transformation rules tend to overgeneralize,
and it is not obvious how to apply them in a scenario where a single target normalization is
desired. An exception is the VARD 2 tool (Baron and Rayson, 2008), which uses context-free
“letter replacement rules” to find variant spellings. However, these rules only make up one
of several components used by the tool; and at least for its interactive mode, the generated
normalizations only constitute a set of suggestions for the user, making overgeneralization less
of a problem.

Nonetheless, the approach by Bollmann et al. (2011b) shows that fully automatic rule-based
methods can be used for producing a single modern target normalization, while the eval-
uation by Etxeberria et al. (2016) suggests that such models can be competitive with other
approaches.

67

Chapter 4 Methods for automatic normalization

4.1.3 Distance-based approaches

Edit distance, also called Levenshtein distance after Levenshtein (1966), is a measure of the
difference between two strings.3 In its most commonly used form, the edit distance between
two strings is defined to be the minimum number of edits required to transform one string
into the other, where “edits” can be either: (i) the insertion of a character; (ii) the deletion of a
character; or (iii) the substitution of one character with another.

Weighted Levenshtein distance is a variant of this measure that allows to assign weights to
individual edit operations. For a set of edit operations that transform string 𝑎 into string 𝑏,
consider the sum of its weights; the distance between 𝑎 and 𝑏 is then defined as the minimum
sum from all possible sets of edit operations that transform 𝑎 into 𝑏. Under this definition,
the “plain” Levenshtein distance is simply a special case where the weight for all insertions,
deletions, and substitutions is set to 1. Note that while plain Levenshtein distance is always
symmetric (i.e., LD(𝑎, 𝑏) = LD(𝑏, 𝑎) for all possible strings 𝑎, 𝑏), its weighted variant does
not need to be; e.g., the transformation j > i does not need to have the same weight as the
transformation i > j.

Normalization approaches that use distance metrics are most commonly found when normal-
ization is performed in the context of information retrieval (IR). This is because, by definition, a
distance metric requires two strings to compare, which is a natural fit for an IR scenario that
aims to match up a search term with relevant word forms in a (historical) document.

Robertson and Willett (1993) investigate this exact scenario for queries on 16th–18th century
English texts and find that edit distance is one of the methods giving the best results (the
other being the longest common subsequence metric). Kempken et al. (2006) perform a similar
evaluation on historical German and also find edit distance to be effective, additionally proposing
FlexMetric, a form of weighted Levenshtein distance with a training algorithm to derive weights
automatically from manually defined training word pairs. Hauser and Schulz (2007) similarly
learn edit distance weights for IR on historical English and German, but additionally introduce
an unsupervised algorithm that tries to match up spelling variants with lexicon entries.

Mapping historical tokens to their standardized forms in a modern lexicon or corpus is another
common use case for distance metrics. Kestemont et al. (2010) show that plain Levenshtein
distance is quite effective for lemmatization by taking the lemma from the closest word form
in a training corpus. Jurish (2010a) includes a distance-based transducer in a normalization
pipeline. The Norma tool (Bollmann, 2012) includes a distance-based normalization component
that is inspired by FlexMetric and works by finding the lexicon entry with the lowest distance
to the historical source string. Pettersson, Megyesi, and Nivre (2013) find a similar approach to
be more effective than hand-crafted rules on Swedish.

String similarity measures can also be used to compile a dictionary of historical spelling variants
in an unsupervised way (Amoia and Martínez, 2013; Barteld et al., 2015); this can be seen as a
“clustering” of the historical variant forms, whereas mapping them to a single normalized form
is not necessarily desired. Adesam et al. (2012) use the Levenshtein algorithm to automatically

3Technically, the term “edit distance” can be applied to other metrics that measure similarity (or dissimilarity)
between strings as well; Levenshtein distance is probably the most common edit distance metric, though, and
the two terms will be used interchangeably throughout this thesis.

68

4.1 Previous work

derive “substitution rules” from training data, which are then used to link up historical Swedish
word forms with lexicon entries; Halteren and Rem (2013) describe a comparable approach for
Dutch. Arguably, these latter approaches could also be classified as “rule-based” since they are
described in terms of replacement rules, although they use distance metrics to derive these
rules and apply them in a fashion very similar to an edit distance algorithm.

Generally, besides the IR scenario, distance-based approaches lend themselves to situations
where a sizeable corpus or lexicon of the target language is available. Since they can work in an
unsupervised way, they are a good fit when no or only little training data for the normalization
task is available, although they can usually be improved by supervised training.

4.1.4 Statistical models

It is possible to take a probabilistic view of the normalization task, in which the goal is to
optimize the probability 𝑝(𝑡|𝑠) that a contemporary word form 𝑡 is the normalization of a
historical word form 𝑠. This can be interpreted as a noisy channel model, traditionally used for
spelling correction (e.g., Brill and Moore, 2000) or machine translation, where the historical
token is seen as a “distorted” version of the contemporary word, which is to be “restored”.
Some approaches apply the noisy channel model directly (e.g., Oravecz et al., 2010; Etxeberria
et al., 2016); most, however, rely on existing toolkits from statistical machine translation (SMT),
such as Moses (Koehn et al., 2007), and apply them to the normalization task.

Traditionally, the input for SMT systems has been a sequence of tokens; historical normal-
ization applies these systems to a sequence of characters instead. This variant, also called
character-based statistical machine translation (CSMT), was introduced by Vilar et al. (2007) and
successfully applied to transliteration and the translation of closely related languages (Tiede-
mann and Nabende, 2009; Nakov and Tiedemann, 2012), two tasks that can be seen as very
similar to historical normalization. Character-based approaches have become common for all
forms of machine translation since then, though they are mostly used in a neural network
framework (Ling et al., 2015).

For normalization, CSMT has been applied to Spanish (Sánchez-Martínez et al., 2013), Icelandic
and Swedish (Pettersson, Megyesi, and Tiedemann, 2013), Slovene (Scherrer and Erjavec, 2013,
2016; Ljubešić et al., 2016b), as well as Hungarian, German, and English (Pettersson, 2016), where
it was usually found to outperform previous approaches. Pettersson et al. (2014a) compare a
filtering method, a distance-based approach, and a CSMT system on five languages and find
that the CSMT system often (though not always) performs best. Schneider et al. (2017) compare
the VARD 2 tool to CSMT on an English dataset and find that VARD 2 performs slightly better,
although they note that VARD 2 was specifically developed and tuned for historical English,
while the CSMT-based approach is not constrained to a specific language. Besides historical
texts, CSMT has also successfully been applied to the normalization of dialectal texts, e.g.,
dialectal Swiss (Samardžić et al., 2015; Scherrer and Ljubešić, 2016).

Over the last few years, the CSMT-based approach has been both the most popular and the most
successful overall for historical normalization, and can be considered the current state-of-the-art
approach for this task.

69

Chapter 4 Methods for automatic normalization

4.1.5 Neural network models

Artificial neural networks constitute a family of machine learning algorithms that has become
enormously popular in recent years, often branded under the term “deep learning”, referring
to the architecture of these models as a “deep” stack of individual layers. They have been
successfully applied to a wide variety of NLP tasks, including sentiment classification, question
answering, part-of-speech tagging, discourse parsing, and many others; see Goldberg (2017,
Sec. 1.3) for a broad overview.

Previous work has applied neural networks to the normalization of historical German, either
using a sequence labeling approach (Al Azawi et al., 2013; Bollmann and Søgaard, 2016) or an
encoder–decoder architecture (Bollmann et al., 2017; Korchagina, 2017).4 In all cases, the neural
network has been found to outperform the Norma tool, while Korchagina (2017) also finds it to
outperform a CSMT system. However, these evaluations were only focused on German and
often performed using very small datasets.

Neural network models have also been highly successful in the field of machine translation,
where they are often applied on a character level analogous to CSMT (e.g., Ling et al., 2015;
Chung, Cho, et al., 2016; Wu et al., 2016; Lee et al., 2017). Considering this and the fact that
CSMT-based systems are often used for historical normalization, it is surprising that neural
networks have not been evaluated more thoroughly for this task. Some examples exist for
noisy text normalization in the social media domain (e.g., Chrupała, 2014; Lusetti et al., 2018)
or for lemmatization of historical texts (Kestemont et al., 2016), although the application to
historical normalization is still rare.5

For this reason, the evaluation of (one particular kind of) neural network models on a large
and varied set of historical corpora and their comparison to previously established methods is
the central goal of this thesis.

4.2 Methods for comparison

In this thesis, I will focus on the description and analysis of a neural network model for
normalization that will be introduced in later chapters (Ch. 5 & 6). To compare this model to
previously established normalization methods, I will utilize two existing software tools:

1. Norma, which combines wordlist mapping, rule-based, and distance-based approaches.

2. cSMTiser, which uses established statistical machine translation software.
4Chapters 5 and 6 will introduce the neural encoder–decoder architecture in more detail.
5Between the time of my original thesis submission and preparing this revised version (09/2018), several works

have been published on historical normalization with neural network models. Robertson and Goldwater (2018)
compare soft and hard attention models, and also provide learning curves for training with different training
set sizes. Domingo and Casacuberta (2018) evaluate both word-based and character-based models—with
character-level models being superior for this task—and find that SMT outperforms the NMT approach. Tang
et al. (2018), however, report the opposite result when evaluating with character error rate (CER) on five
different datasets; they also compare many different neural architectures. Finally, Hämäläinen et al. (2018)
evaluate SMT, NMT, an edit-distance approach, and a rule-based finite state transducer, and advocate for a
combination of these approaches to make use of their individual strengths.

70

4.2 Methods for comparison

4.2.1 Norma

Norma (Bollmann, 2012) is a normalization tool originally developed for the Anselm Corpus (cf.
Sec. 3.1.2). It is freely available6 and has so far only been evaluated on varieties of historical
German (Bollmann et al., 2011a, 2012; Bollmann, 2013a; Korchagina, 2017). Norma combines
three different approaches:

1. A simple wordlist substitution.

2. A rule-based normalizer that applies rewrite rules on a character level, taking the imme-
diate context into account.

3. Amethod usingweighted Levenshtein distance to find the likeliest normalization candidate
from a list of target word forms.

These components can either be used on their own or composed into a “normalizer chain”, in
which case they are applied in the order shown above, with methods further down the chain
only being called if the previous one was not able to find a result (e.g., due to the historical
word not being included in the word substitution list). Furthermore, all components learn their
parametrization automatically from training data; none of them is specifically tailored towards
German.

The wordlist substitution method simply learns the substitutions found in the training data.
Whenever there is ambiguity, i.e., a historical token has been mapped to different normalized
tokens, the most frequent substitution is always chosen.

The rule-based method derives rewrite rules from the training pairs by aligning them using the
Levenshtein algorithm and merging neighboring alignments. Example rules are (2) or (3):

(3) a. u → üh / f _ h (substitution rule)
b. 𝜀 → m / m _ e (insertion rule)
c. n → 𝜀 / e _ # (deletion rule)
d. v → v / # _ o (identity rule)

Rule (3-a) describes the substitution u > üh between the two characters 〈f 〉 and 〈h〉. Since
word forms are always processed left to right, the left context refers to the already-normalized
portion of the word, while the right context always refers to the remaining portion of the
historical token. Therefore, substitution (3-a) could have been learned from a training pair like
vuren > führen, for example. Context can also refer to word boundaries (#), while the source or
target of a rule can also be an empty element (𝜀), indicating an insertion (rule (3-b)) or deletion
(rule (3-c)) of a character. In addition to those modifications, “identities”—i.e., positions where
characters are not changed—are also learned. During normalization, the normalizer attempts
to find the most probable sequence of rules (where probability is defined by the rule frequency
in the training corpus) that leads to a valid target word form.

A contemporary corpus or full form lexicon is used to define what counts as a “valid” target
word form for the rule-based approach. The weighted Levenshtein distance method also requires

6https://github.com/comphist/norma

71

https://github.com/comphist/norma

Chapter 4 Methods for automatic normalization

such a resource, as it simply picks the word form from that resource with the lowest distance to
the historical word. Distance is calculated using a modified version of Levenshtein distance that
assigns weights to individual edit operations, which in turn are derived from the Levenshtein
alignments of the training data.

4.2.2 cSMTiser

cSMTiser is a freely available tool for normalization using character-based statistical machine
translation (CSMT).7 It builds upon the SMT toolkit Moses (Koehn et al., 2007), essentially
implementing the system described by Ljubešić et al. (2016b). The basic idea is to apply Moses
on a sequence of characters (as opposed to a sequence of words), normalizing a historical word
form by “translating” it into a modern one on a character level.

To perform word-level normalization, each word is first split up into its characters, and a “word
separator” symbol is added to the beginning and end of each word; e.g., if ‘÷’ is the word
seperator symbol, the word pair ayeins > against would be represented as:

(4) a. ÷ a y e i n s ÷

b. ÷ a g a i n s t ÷

The resulting word pairs are then fed into the Moses pipeline, i.e., GIZA++ (Och and Ney, 2003)
is used to perform character alignment between the training pairs, and the statistical model is
trained on them. Afterwards, a separate tuning set is used to perform parameter tuning using
minimum error rate training (MERT).

The tool includes options for automatic tokenization, lowercasing, and truecasing of the
data. I do not make use of any of these options, since the datasets are already tokenized and
preprocessed (cf. Sec. 3.2) before feeding them into the tool. By default, cSMTiser trains a
(character-based) language model of order 6 on the target-side training data, which I also did
not change. Optionally, cSMTiser can use additional contemporary language data to improve
this language model.

Essentially, cSMTiser provides a front-end for utilizing Moses for the normalization task, by
taking care of the necessary data pre- and post-processing and providing sensible defaults for
Moses’ configuration files. It constitutes an easy, “off-the-shelf” solution for normalizing texts
using CSMT.

7https://github.com/clarinsi/csmtiser

72

https://github.com/clarinsi/csmtiser

Chapter 5

Neural network basics

Although deep learning is a fairly old subfield of machine learning, it only rose
to prominence in the early 2010s. In the few years since, it has achieved nothing
short of a revolution in the field[.]

— Chollet (2017)

The neural network revolution has happened. We are living in the aftermath.
— Hanson and Olson (1991)

The main focus of this work is on using neural network models for automatic historical text
normalization. On the one hand, neural networks have become enormously popular for many
NLP tasks, and many publications are available describing the same or very similar types of
networks as used here. On the other hand, neural networks are often very complex—involving
many parameters and decisions that often cannot be exhaustively described due to page limits—
and there is no single agreed-upon standard for many of their components.1 Consequently,
many variations of their core concepts are used in practice, but not always documented in
detail.

The purpose of this chapter is to introduce the basic components of the neural networks used in
this work, and document any relevant details of their implementation. While some of the core
concepts and the motivation behind them will also be explained, this chapter cannot possibly
replace a thorough, general introduction to neural networks—for that, see Goodfellow et al.
(2016), Goldberg (2017) or Chollet (2017).

All neural networks models described and evaluated in this thesis are implemented using
Keras (Chollet et al., 2015).2 Any parameter or implementation detail that is not explicitly
described is identical to the default behavior of Keras 1.2.2.

Sec. 5.1 briefly introduces neural networks in general, while Sec. 5.2 describes the individual
neural network layers that will be used in my models. Sec. 5.3 discusses aspects of the training
procedure.

1“Unfortunately, it is often the case that inferring the exact model form from reading its description in a research
paper can be quite challenging. Many aspects of the models are not yet standardized, and different researchers
use the same terms to refer to slightly different things.” (Goldberg, 2017, p. 174)

2https://keras.io/

73

https://keras.io/

Chapter 5 Neural network basics

b

output 𝐻(𝑥 ⋅ 𝑤 + 𝑏) ∈ {0, 1}

weighted sum 𝑥 ⋅ 𝑤 + 𝑏 ∈ ℝ

input 𝑥 ∈ ℝ4 + bias 𝑏

Figure 5.1: Perceptron for binary classification

5.1 Basic concepts

Neural networks belong to the huge family of machine learning algorithms. This means that
instead of being specifically programmed for a given task, they are trained to perform that
task, typically in a supervised manner by observing training pairs of input data and the desired
gold-standard output(s). The neural part refers to these models being composed of artificial
neurons, a type of mathematical function that calculates its output as a weighted sum of its
inputs followed by some non-linear activation function. The network part refers to the fact that
several of these functions are used in succession, with the output of one artificial neuron being
connected to the input of another one, forming a directed graph or network. This “stacking”
of individual components can lead to very “deep” networks where an input is passed through
many different functions before an output is produced, giving rise to the term deep learning for
this type of models.

The simplest type of neural network is the perceptron (Rosenblatt, 1958; Freund and Schapire,
1999). It can be defined as follows:3

𝑓 (𝑥) = 𝐻(𝑥 ⋅ 𝑤 + 𝑏) (5.1)

Here, the input 𝑥 ∈ ℝ𝑛 is an 𝑛-dimensional vector, while the weight vector 𝑤 ∈ ℝ𝑛 and the bias
term 𝑏 ∈ ℝ are parameters of the model that are adjusted during training. 𝐻 is the Heaviside
step function, defined as:

𝐻(𝑥) =
{
1 𝑥 > 0
0 𝑥 ≤ 0

(5.2)

Figure 5.1 shows a visualization of this basic perceptron, which can be used for binary classifi-
cation problems. It can also be extended to multi-class classification by replacing the weight
vector with a weight matrix𝑊 ∈ ℝ𝑛×𝑚 (where𝑚 is the number of output classes), the bias term
with a bias vector 𝑏 ∈ ℝ𝑚, and the step function with the argmax function:

𝑓 (𝑥) = argmax(𝑥 ⋅ 𝑊 + 𝑏) (5.3)

This function essentially runs 𝑚 perceptrons in parallel—one for each possible output class—
and instead of applying the step function, the magnitude of the calculated value is used in
determining which class is the most likely prediction. Importantly, the parameters 𝑊 and 𝑏

3Some definitions of the perceptron omit the bias and assume that it is part of the input vector 𝑥 (e.g., by having
one dimension of the input vector always be 1); others use the sign function instead of the step function 𝐻,
which returns {−1, +1} instead of {0, 1}, but is functionally equivalent.

74

5.1 Basic concepts

output layer

hidden layer

input layer

Figure 5.2: A multi-layer perceptron with one hidden layer

can be learned in a supervised manner from training data (for details of the training algorithm,
see, e.g., Freund and Schapire, 1999).

The perceptron, either single-class or multi-class, is an example of a linear classifier. Conse-
quently, it can only work well on problems where the input vector space ℝ𝑛 is linearly separable
with regard to the output classes. In practice, this means that the composition of the input
vector is often carefully tuned to make linear separability more likely, a process also known as
feature engineering.

The multi-layer perceptron (MLP) circumvents this problem by introducing a non-linear func-
tion 𝑔:

𝑓 (𝑥) = argmax(𝑔(𝑥 ⋅ 𝑊1 + 𝑏1) ⋅ 𝑊2 + 𝑏2) (5.4)

In practice, common choices for 𝑔 are the hyperbolic tangent (tanh) or the sigmoid function.
In the context of neural networks, 𝑔 is also referred to as the activation function. With this
definition, 𝑓 (𝑥) is now a composition of two artificial neurons: the non-linear inner function
𝑔(𝑥 ⋅ 𝑊1 + 𝑏1), and the outer perceptron (𝑥 ⋅ 𝑊2 + 𝑏2) which takes the output from the inner
function as its input. Since the output of the inner function is never directly observed, it is also
called a hidden layer. Figure 5.2 shows one possible visualization of this model.

This multi-layer perceptron effectively consists of a non-linear transformation followed by a
linear classifier; the purpose of the non-linear transformation—i.e., the hidden layer—is to map
the input data into a vector space where it is linearly separable (e.g., Goldberg, 2017, p. 43). It is
possible to add an arbitrary number of additional hidden layers before the linear transformation:
simply replace the input vector 𝑥 in Eq. (5.4) with another non-linear transformation 𝑔𝑖(𝑥 ⋅𝑊𝑖+𝑏𝑖).
However, even anMLPwith a single hidden layer is a universal function approximator (Cybenko,
1989): i.e., with the right set of weight matrices 𝑊1,𝑊2 and bias vectors 𝑏1, 𝑏2, the MLP
function 𝑓 ∶ ℝ𝑛 ↦ ℝ𝑛 as defined in Eq. (5.4) can approximate any other function 𝐹 ∶ 𝑋 ↦ 𝑋
as long as that function is continuous and defined on a compact subset 𝑋 of ℝ𝑛.

In theory, MLPs are capable of expressing almost any function that we might wish to learn, such
as mapping historical word forms to normalized ones. The problem, indeed, is in the learning,
as the theoretical guarantee of universal approximation makes no claims about the learnability
of such a function. Essentially, all neural network layers more complex than the MLP are
designed to make learning easier, and different types of layers guide the learning process in
different ways.

75

Chapter 5 Neural network basics

5.2 Layers

5.2.1 Embedding layer

Since we are working with character-level models, the input to a model consists of historical
word forms represented as sequences of characters. In mathematical terms, the simplest way
to represent a character 𝑐 ∈ 𝛴 is as a one-hot vector, i.e., a vector 𝑣 ∈ ℝ|𝛴| that has a value of 1
on one dimension assigned to that character, and 0 everywhere else.

An embedding layer maps the one-hot representation of a character to a vector space with
dimensionality 𝑑𝑚. It is essentially a lookup table assigning each input value a dense vector
representation. Mathematically, it performs a simple dot product:

𝑓 (𝑣) = 𝑣 ⋅ 𝑊𝑚 (5.5)

The matrix 𝑊𝑚 ∈ ℝ|𝛴|×𝑑𝑚 stores the embedded vectors for each input character. Eq. (5.6) shows
an example input and output of the embedding layer:

𝑣 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
⋮
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↦ 𝑓 (𝑣) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0.57
−0.71

⋮
0.01

−1.72

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.6)

The main purpose of this operation is to capture generalizations: in a one-hot representation,
each possible input value is distinct from any other value, while in anℝ𝑑𝑚 vector space, distances
and similarities between input values can vary. In the normalization setting, input characters
that behave similarly in terms of their normalization—e.g., 〈s〉 and 〈ſ 〉 both often mapping
to 〈s〉—should ideally be mapped to dense vectors that are close together in the embedding
space.

The size 𝑑𝑚 of the embedding space is a hyperparameter that can be freely chosen. Normally,
we would expect it to be considerably smaller than the size of the alphabet 𝛴 to encourage the
model to learn generalizations. Sec. 6.2 will discuss this in more detail.

In practice, the embedding layer can either be initialized randomly and trained jointly with the
rest of the model, or initialized with pre-trained embeddings instead. For the latter approach, it
is common to train a language model that uses embeddings (e.g., Kim et al., 2016), then re-using
these learned embeddings for a different NLP task. For many languages, such pre-trained
embeddings are also available for download.4 However, since we are dealing with historical
languages, which are unlikely to have pre-trained embeddings,5 and embeddings of characters
are considerably less complex to learn than word embeddings (due to the size of the alphabet

4E.g., https://github.com/minimaxir/char-embeddings
5Although word embeddings for some historical languages do exist: https://nlp.stanford.edu/projects/
histwords/

76

https://github.com/minimaxir/char-embeddings
https://nlp.stanford.edu/projects/histwords/
https://nlp.stanford.edu/projects/histwords/

5.2 Layers

being considerably smaller than the pool of all possible word forms), no pre-trained embeddings
are used here.

5.2.2 Dense layer

A densely-connected layer, or just dense layer for short, is a common type of neural network
layer that simply performs a weighted multiplication of its inputs followed by an activation
function 𝑔:

𝑓 (𝑥) = 𝑔(𝑥 ⋅ 𝑊 + 𝑏) (5.7)

If 𝑥 ∈ ℝ𝑑𝑥 is the input vector, then 𝑊 ∈ ℝ𝑑𝑥×𝑑𝑦 is the weight matrix and 𝑏 ∈ ℝ𝑑𝑦 is a bias vector,
where 𝑑𝑥 is the dimension of the input and 𝑑𝑦 the dimension of the output space. The layer is
called “densely connected” because each component of the input vector contributes to each
component of the output vector. This is identical to the hidden layer of an MLP (cf. Eq. (5.4)
and Fig. 5.2). The dimension 𝑑𝑦 is also sometimes referred to as the number of units in a layer,
as the layer essentially performs one simple perceptron calculation per dimension.

In the normalization models, dense layers are most often used as the last layer in a model to
predict the most likely output character. In this function, their purpose is to transform their
input vector (which can be of arbitrary size) to a probability distribution over the set of all
possible target characters. To achieve this, the output dimension is set to the size of the target
alphabet (i.e., 𝑑𝑦 = |𝛴𝑡|), and the softmax function is used as the activation function:

𝑔(𝑥) = softmax(𝑥) =
exp 𝑥

∑𝑚
𝑖=1 exp 𝑥𝑖

(5.8)

Applying the exponential function ensures that all values are positive, and normalizing them
by the sum of all values ensures that they sum to 1, thereby constituting a valid probability
distribution.

5.2.3 Recurrent layers

In many NLP tasks, including our normalization task, the input to a model is not a single data
point, but a sequence of data points, such as a sequence of words forming a sentence, or (as
in our case) a sequence of characters forming a word. These data points are interdependent,
and the order they appear in provides crucial information. Recurrent layers, or recurrent neural
networks (RNNs), aim to capture these sequential relationships of the input. For a comprehensive
overview, see Goldberg (2017, chapters 14 and 15).

Many variants of RNNs exist. Commonly, they operate by using a state vector (or hidden state)
that is carried over between the elements of the input sequence. The sequential dimension of
the input is often referred to as the time dimension, with individual positions in the sequence
being referred to as timesteps of the data.

77

Chapter 5 Neural network basics

𝑥𝑡

𝑓 (𝑥𝑡)

(a) Compact

𝑥1 𝑥2 𝑥𝑛−1 𝑥𝑛

⋯

𝑓 (𝑥1) 𝑓 (𝑥2) 𝑓 (𝑥𝑛−1) 𝑓 (𝑥𝑛)

(b) Unrolled

Figure 5.3: Two representations of the same recurrent neural network (RNN)

In its simplest instantiation, an RNN is identical to the dense layer in Eq. (5.7) with the addition
of an internal state vector that carries over between timesteps (Elman, 1990):

ℎ0 = 0⃗ (5.9)
ℎ𝑡 = 𝑔(𝑥𝑡 ⋅ 𝑊 + ℎ𝑡−1 ⋅ 𝑈 + 𝑏) (5.10)

𝑓 (𝑥𝑡) = ℎ𝑡 (5.11)

Here, the input is assumed to be a sequence of vectors 𝑥 = {𝑥1, … , 𝑥𝑛}, where each 𝑥𝑡 ∈ ℝ𝑑𝑥 .
Consequently, the learnable parameters of the layer are a weight matrix 𝑊 ∈ ℝ𝑑𝑥×𝑑ℎ that
transforms the input vector, a weight matrix 𝑈 ∈ ℝ𝑑ℎ×𝑑ℎ that transforms the hidden state of the
previous timestep (ℎ𝑡−1), and a bias vector 𝑏 ∈ ℝ𝑑ℎ . The output of this simple RNN is identical
to its hidden state; depending on the task, either the full sequence of hidden states ℎ1, … , ℎ𝑛
can be used (e.g., for a sequence labeling task) or only the last timestep ℎ𝑛 (to obtain a single
vector for the entire sequence).

Figure 5.3a shows a common visualization of an RNN layer; the looping arrow is intended to
represent the recurrent connection, i.e., the hidden state vector that is carried over to the next
timestep. When the number of timesteps is finite, the loop can also be unrolled to show the
model over the full sequence, as in Figure 5.3b. Here, the unit at each timestep is a copy of the
same RNN layer with identical parameters. The latter visualization will be preferred from now
on.

Long short-term memory layers

In principle, the RNN architecture presented above allows to capture any kind of input–output
dependencies as long as the output at timestep 𝑡 only depends on information from input
timesteps 1, … , 𝑡. This is because the model is able to transfer information from any timestep
to any following timestep via its hidden state vector. In practice, actually getting the model
to learn these dependencies becomes exceedingly difficult as the distances grow—this is a
fundamental problem of the common backpropagation algorithm (cf. Sec. 5.3) for training
neural networks (Bengio et al., 1994).

The long short-termmemory (LSTM) is a type of RNN intended to address this issue (Hochreiter
and Schmidhuber, 1997). While it is not the only type of layer that has been proposed to solve
the problem of long-term dependencies, it is certainly the most widely used and has been

78

5.2 Layers

𝑥𝑡

𝑓 (𝑥𝑡)

𝑓𝑡 𝑖𝑡 ̃𝑐𝑡 𝑜𝑡

tanh

×

×

+× 𝑐𝑡

ℎ𝑡

Figure 5.4: A long short-term memory (LSTM) network; rectangular cells represent internal
dense layers, while circular cells represent pointwise operations; illustration adapted
from Olah (2015).

proven to be successful for many NLP tasks (Goldberg, 2017, p. 181; or cf. Sutskever et al., 2014;
Lample et al., 2016; Plank et al., 2016, and many more).

The LSTM is different from the simple RNN introduced above by keeping two internal states:

1. the hidden state ℎ𝑡, which is combined with the input to serve as the basis for all further
calculations; and

2. the cell state 𝑐𝑡, which is designed to carry information over long stretches of time and
therefore functions as a form of “memory” for the LSTM.

The calculations performed by the LSTM are in essence just an elaborate combination of
densely-connected neural network layers. In total, an LSTM unit is made up of four different
of these layers, which all receive as input both the previous hidden state ℎ𝑡−1 and the LSTM’s
current input 𝑥𝑡:

• a forget gate 𝑓𝑡 that determines how much and which parts of the memory cell state to
keep (or to forget);

• an update layer that produces a new candidate cell state ̃𝑐𝑡;

• an input gate 𝑖𝑡 that determines how much and which parts of the candidate cell state to
integrate into the current cell state; and

• an output gate 𝑜𝑡 that determines how much and which parts of the new cell state to copy
into the new hidden state and, therefore, the cell’s output.

79

Chapter 5 Neural network basics

Figure 5.4 illustrates how these layers are combined to form an LSTM unit. In mathematical
terms, they are defined as follows:

𝑓𝑡 = 𝜎(𝑥𝑡 ⋅ 𝑊𝑓 + ℎ𝑡−1 ⋅ 𝑈𝑓 + 𝑏𝑓) (5.12)
̃𝑐𝑡 = tanh(𝑥𝑡 ⋅ 𝑊𝑐 + ℎ𝑡−1 ⋅ 𝑈𝑐 + 𝑏𝑐) (5.13)
𝑖𝑡 = 𝜎(𝑥𝑡 ⋅ 𝑊𝑖 + ℎ𝑡−1 ⋅ 𝑈𝑖 + 𝑏𝑖) (5.14)
𝑜𝑡 = 𝜎(𝑥𝑡 ⋅ 𝑊𝑜 + ℎ𝑡−1 ⋅ 𝑈𝑜 + 𝑏𝑜) (5.15)

As before, 𝑊∗ ∈ ℝ𝑑𝑥×𝑑ℎ and 𝑈∗ ∈ ℝ𝑑ℎ×𝑑ℎ denote weight matrices for the inputs and hidden states,
respectively, while the 𝑏∗ ∈ ℝ𝑑ℎ denote bias vectors. Notice that the equations (5.12)–(5.15) each
describe a densely-connected layer, identical to that defined in Eq. (5.7) if the input is defined
as the concatenation of 𝑥𝑡 and ℎ𝑡−1. Furthermore, the input, output, and forget gates use the
sigmoid (𝜎) activation function, while the update layer that calculates ̃𝑐𝑡 uses the hyperbolic
tangent (tanh).

With these layers, the internal states of the LSTM are then calculated as follows:

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ ̃𝑐𝑡 (5.16)
ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡) (5.17)

As before, the internal states are initialized to zero (𝑐𝑡 = ℎ𝑡 = 0⃗), and the output of the LSTM is
identical to its hidden state (𝑓 (𝑥𝑡) = ℎ𝑡).

For simplicity’s sake, LSTM units will be visualized the same way as the simple RNN units
in Figure 5.3b, except that each rectangular unit now represents an LSTM cell as depicted in
Figure 5.4.

Bi-directional RNNs

So far, all recurrent layers processed their input timesteps from left to right. As a consequence,
information derived from an input timestep can only be propagated to future timesteps, but
never to previous ones. However, it is conceivable that the normalization of a character
depends on information from both its left and right context—the same is true for many other
NLP tasks.

A common solution in this situation is to use a bi-directional RNN (Schuster and Paliwal, 1997;
Graves and Schmidhuber, 2005). This is simply a combination of two independent recurrent
layers: a forward layer which reads the input sequence from left to right, and a backward layer
which reads the input sequence from right to left.6 The output of the bi-directional layer is
constructed as the concatenation of the individual RNN outputs:

𝑓 (𝑥𝑡) = (RNNforward(𝑥𝑡), RNNbackward(𝑥𝑡)) (5.18)

6Alternatively, the same recurrent layer can be used for both forward and backward passes, but this is not done
here.

80

5.3 Training

𝑥1 𝑥2 𝑥𝑛−1 𝑥𝑛

⋯

⋯

⊕ ⊕ ⊕ ⊕

𝑓 (𝑥1) 𝑓 (𝑥2) 𝑓 (𝑥𝑛−1) 𝑓 (𝑥𝑛)

Figure 5.5: A bi-directional recurrent neural network (RNN)

Figure 5.5 illustrates this approach. If only a single output vector is desired, the RNN’s outputs
after reading the whole input sequence are used—this will be the last element of 𝑥 for the
forward layer, but the first element of 𝑥 for the backward layer:

𝑓 (𝑥) = (RNNforward(𝑥𝑛), RNNbackward(𝑥0)) (5.19)

For uni-directional recurrent layers, the dimensionality 𝑑ℎ of their hidden state is also the
dimensionality of the output vector. For bi-directional layers, the output vector will have
the size of the combined forward and backward layers’s hidden states. As a convention, a
“bi-directional RNN with hidden dimensionality 𝑑ℎ” will refer to a composition of forward and
backward RNNs with 1

2
𝑑ℎ dimensions for their hidden states, and only even numbers for 𝑑ℎ

will be used in this case.

Bi-directional RNNs are commonly used for many NLP tasks, including dependency pars-
ing (Kiperwasser and Goldberg, 2016) or sequence tagging tasks such as POS tagging or named
entity recognition (Huang et al., 2015; Lample et al., 2016).

5.3 Training

The previous sections discussed the components of the neural network models and what their
trainable parameters are, but have not touched upon the question how to actually train them,
i.e., how to find appropriate values for their weight matrices and bias vectors to produce the
desired outputs. This section summarizes all relevant aspects of the training process.

5.3.1 Objective function

In Sec. 5.1, we established that the models are trained in a supervised manner using pairs of
historical tokens and their gold-standard normalization. Additionally, we need an objective
function (or loss function) that quantifies how well the model matches the training data. Since
the goal is to predict normalized characters, a natural choice for the objective function is the

81

Chapter 5 Neural network basics

categorical cross-entropy loss, also called negative log-likelihood loss (Goldberg, 2017, p. 27). Let
𝑦𝑖 be the gold-standard probability of outputting the 𝑖-th character from our alphabet (of size𝑚),
and �̂�𝑖 the probability predicted by the model, then the cross-entropy 𝐿(�̂�, 𝑦) is defined as:

𝐿(�̂�, 𝑦) = −
𝑚

∑
𝑖=1

𝑦𝑖 log �̂�𝑖 (5.20)

The goal of the training process is then to find a set of weights for the neural network layers
that minimizes the average cross-entropy loss over all training samples. A prerequisite for
using this objective function is that the neural network outputs a probability distribution over
all possible characters, which is achieved by using the softmax function on the final layer (cf.
Sec. 5.2.2).

5.3.2 Optimizer

Training the layer weights is done using gradient-based optimization with backpropagation
through time, the most common type of algorithm to train neural networks with recurrent
layers. For details of the training procedure and the concepts behind it, see Goodfellow et al.
(2016, chapters 8 and 10.2.2) or Goldberg (2017, chapters 2.8 and 5). The general idea is to
compute the gradients of the network parameters—i.e., the weight matrices and bias vectors—
with respect to the loss function 𝐿 over the training set, and stochastically update the parameters
based on these gradients (Goldberg, 2017, p. 30 f.).

An optimization algorithm specifies how exactly this stochastic parameter update is performed;
the most basic algorithm is stochastic gradient descent (SGD). Here, I will only be using the
Adam optimization algorithm instead (Kingma and Ba, 2014). While there is evidence that
stochastic gradient descent can achieve better generalization (Wilson et al., 2017), Adam is
used here because I found it to be considerably less sensitive to its hyperparameters settings,
making it easier to obtain good results across different configurations.7

5.3.3 Batch size

Neural networks can often take a long time to train. A common optimization is to feed training
data into the network in batches; i.e., instead of calculating the training error and updating the
model’s parameters after each training sample, these updates are only performed after seeing
𝑚 training samples, where 𝑚 is also called the batch size.

This method speeds up the training process since gradient computations are performed less
often and the hardware capabilities for parallelization can be utilized more effectively. However,
since model updates happen less frequently, more passes over the training data can be needed

7I found that stochastic gradient descent often showed erratic behavior, with training accuracy first improving,
then degrading again or even dropping to zero. Of course, this could be mitigated with careful hyperparameter
tuning. The Adam optimizer also performed differently based on its hyperparameters, but almost never showed
this pathological behavior. Since I am evaluating on a variety of different configurations and datasets, an
extensive tuning of learning parameters for all configurations did not seem feasible, and Adam appeared to be
the better choice overall due to its more stable performance.

82

5.3 Training

for the model parameters to converge. Essentially, choosing a batch size is a trade-off between
these two factors and mainly affects the total training time of a model (Bengio, 2012).

All experiments in this work are run with a batch size of 50, which I found to perform well
with the normalization models.

5.3.4 Randomization of samples and initial weights

When training neural networks, the order in which samples from the training data are pro-
cessed can have an effect on the learning process and the final state of the model. For this
reason, a common technique is to shuffle the training samples before each epoch. This is done
automatically by the Keras library.

Another important factor in training neural networks is how the parameters—i.e., the weight
matrices—are initialized before training. Due to the way the networks are trained, they cannot
simply be initialized to zero or any other constant value, as that would cause all gradients—and,
therefore, the weight updates—to be either zero or be identical across all dimensions of the
weight matrix. Random or probabilistic initialization of weights is key to successful training
of neural networks (Goodfellow et al., 2016, Sec. 8.4). In this work, I always use the default
initialization strategies as defined by Keras 1.2.2.8

The random shuffling of training samples and the probabilistic nature of the weight initialization
means that different restarts of the same training procedure will yield different results. To
make results deterministic, the random number generator is always initialized with a fixed
seed—also determined randomly—before each training run, and in each group of experiments,
the same fixed seed is used for all runs unless explicitly stated otherwise.

5.3.5 Dropout

Dropout is a common technique to prevent neural networks from overfitting on the training
data (Srivastava et al., 2014). Its main idea is to randomly drop a fraction of the inputs during
training—i.e., set some elements of the input vectors to zero—in order to make the model
less reliant on having the full information from the training data. A dropout rate (or simply
dropout) of 0.2, for example, means that 20% of each input vector is randomly set to zero during
training.

The Keras implementation of dropout on recurrent layers follows Gal and Ghahramani (2016).
Dropout is used both on the inputs and the recurrent connections of each RNN layer, although
different dropout masks are used for each. However, the samemasks are used for every timestep.
In other words, the same randomly generated dropout mask is used for all inputs to all recurrent
layers, while another randomly generated mask is used for all recurrent connections of all
recurrent layers.

8cf. https://keras.io/initializers/

83

https://keras.io/initializers/

Chapter 5 Neural network basics

5.3.6 Early stopping

Another technique to prevent overfitting is early stopping. Typically, a model is trained for a
certain, pre-defined number of epochs, where an epoch refers to a full pass over the training set.
Training for too few epochs can result in suboptimal performance because the model has not
converged to a good state yet; training for too many epochs can result in overfitting, where the
model performance continues to improve on the training set, but starts to decline on a separate
test or validation set.

Early stopping monitors model performance on a separate validation set after every epoch,
and stops the training process if the validation error no longer significantly improves. More
precisely, if ̄𝐿𝑖 is the average cross-entropy loss (cf. Sec. 5.3.1) on the validation set after epoch 𝑖,
then the criterion for early stopping is ̄𝐿𝑖−1 − ̄𝐿𝑖 < 0.001. The validation error does not always
improve in a strictly monotonic fashion; therefore, training is only stopped when the criterion
is met for the second time9 during the training process. Additionally, a snapshot of the model’s
state is saved after every epoch, and only the state with the best validation accuracy is kept
after training ends.

9For experiments with smaller datasets of less than 10,000 tokens, a larger number of epochs (up to a maximum
of 10) without improvement is allowed before training stops.

84

Chapter 6

Encoder–decoder model

We have seen that the normalization task can be modeled using machine translation techniques
applied on a character level: Sec. 4.1.4, for example, discussed previous work on normalization
using statistical machine translation. For machine translation using neural networks, a pop-
ular framework is the encoder–decoder architecture (Cho, Merrienboer, Gülçehre, et al., 2014;
Sutskever et al., 2014). In this chapter, I will analyze the suitability of encoder–decoder models
for historical text normalization.

Figure 6.1 shows the basic concept of any encoder–decoder model: the input—in our case,
a historical word form—is fed into the encoder, which produces a vector representation of
this input; i.e., it encodes that input into a single vector of fixed (but potentially very high)
dimensionality. This vector is fed into the decoder, which then produces the normalized word
form; i.e., it decodes the supplied vector into the desired output. For NLP tasks, encoders and
decoders typically take the form of RNNs (as in Cho, Merrienboer, Gülçehre, et al., 2014), but in
principle, any type of network can be used, such as convolutional networks (e.g., Kalchbrenner
and Blunsom, 2013; Gehring et al., 2016) or hybrid networks consisting of both convolutional
and recurrent components (e.g., Vosoughi et al., 2016).

Sec. 6.1 describes the models used in this work in more detail. Sec. 6.2 discusses the hyperpa-
rameter settings for these models in the context of normalization, and Sec. 6.3 analyses and
compares the different models.

a y e i n s

Encoder

a g a i n s t

Decoder

(0.18, −0.22, ⋯ , 0.56, 0.07)
vector representation

Figure 6.1: Basic encoder–decoder architecture for normalization

85

Chapter 6 Encoder–decoder model

h y e # # h i g h

⊕

⊕

h i g h #

Decoder
RNNs

Encoder
RNNs

Dense
layer

Embedding
layers

Figure 6.2: Encoder–decoder model with a stack of two bi-directional RNNs for the encoder (left)
and a stack of two uni-directional RNNs for the decoder (right)

6.1 Model description

The base model investigated here uses LSTMs for its encoder and decoder (Sec. 6.1.1). Addi-
tionally, a variant of this model using an attention mechanism is tested (Sec. 6.1.2).

6.1.1 Base model

Figure 6.2 shows the base model used in the experiments. It is made up of these main com-
ponents: (i) an encoder consisting of a stack of bi-directional LSTMs (bi-LSTM; cf. Sec. 5.2.3);
(ii) a decoder consisting of a stack of uni-directional LSTMs followed by a dense prediction
layer (cf. Sec. 5.2.2); and (iii) embedding layers for both the encoder’s and the decoder’s inputs (cf.
Sec. 5.2.1).

This model is almost identical to that proposed by Sutskever et al. (2014) for neural machine
translation and used by Bollmann et al. (2017) for historical text normalization, with the main
exception of always using bi-directional layers in the encoder.

The encoder can consist of any number of LSTM units; if more than one LSTM layer is used,
the outputs of one layer are fed as inputs into the next layer. Bi-directional LSTMs are chosen
to allow dependencies to flow in both directions. Sutskever et al. (2014) note that in their
setup (using uni-directional LSTMs), reversing the input sequences was beneficial, which they
believe to be the result of shorter dependencies within the model—the first elements of the
input sequence being closer to the first elements of the target sequence in the decoder. With
bi-directional layers, both ends of the input sequence are connected directly to the decoder (cf.
Fig. 6.2).

The internal states of the 𝑛-th bi-directional LSTM after reading the full input sequence—i.e.,
the last character for the forward layer and the first character for the backward layer—are
concatenated and used to initialize the internal states (ℎ0, 𝑐𝑜) of the 𝑛-th decoder LSTM. As a
consequence, the encoder and decoder will always use the same number of recurrent layers.

86

6.1 Model description

The input to the encoder is a historical word form as a sequence of characters, padded on
each end by a special “word separator” symbol. The output of the decoder is the normalized
word form as a sequence of characters, with an added “end of word” symbol. During decoding,
this symbol is used to determine when to stop generating more characters, which allows the
decoder to produce output sequences of arbitrary lengths.

Additionally, the decoder uses input feeding: the input to the decoder at timestep 𝑡 is the
predicted character at timestep 𝑡 − 1. For the first decoder timestep, a special “start symbol” is
used. This method explicitly conditions the decoder’s output not only on its current internal
states, but also on the previously generated character. Besides making the model aware of its
predictions at previous timesteps, this also allows us to influence the decoding process via beam
search or filtering (cf. Sec. 6.1.3). At the same time, this is the main reason why the decoder
uses uni-directional LSTMs only, since the input feeding introduces left-to-right dependencies
that are hard to reconcile with bi-directional layers.

Training is done using categorical cross-entropy on the individual decoder outputs (cf. Sec. 5.3.1)
and teacher forcing, which means that the gold-standard predictions are always fed into the
decoder inputs, regardless of whether the decoder has already learned to correctly predict
them. Only at test time are the actual model predictions fed into the next decoder timestep.
While this is a common approach for this type of model, it is not without drawbacks, as the
loss function does not take global accuracy into account, and the teacher forcing potentially
introduces a discrepancy of the decoder inputs between training and test time. These issues
can be addressed with more sophisticated training methods (e.g., Bengio et al., 2015; Wiseman
and Rush, 2016), but these will not be considered here.

Finally, while the input and output sequences can theoretically be of arbitrary lengths, in my
experiments I introduce a length cutoff to reduce the runtime for training and decoding. The
maximum input length for the encoder is set to 22 characters, while the maximum output
length for the decoder is 20 characters. These limits were set so that they affect less than 0.02%
of samples from any of the datasets.1 When training the model, word pairs above these limits
are simply discarded; for evaluation, they are included so as to not distort the results.2

6.1.2 Attentional model

The encoder–decoder models presented above all have a common bottleneck, which is the
vector representation passed from the encoder to the decoder (cf. Fig.6.1): the input sequence
can be of arbitrary length, while its encoded vector representation will always be of the same
fixed size. For machine translation, Cho, Merrienboer, Bahdanau, et al. (2014) show that the
performance of such an encoder–decoder model degrades as the input sequences get longer.

The attention mechanism was introduced to address this issue (Bahdanau et al., 2014). Instead
of generating a single vector to represent the whole input sequence, the encoder generates a
vector for each timestep, and a connection is introduced at each decoder timestep that passes on

1For datasets other than Swedish, it is actually less than 0.01% of samples.
2The historical input word forms will be truncated in these cases, with the most likely consequence that the
model will produce an incorrect normalization.

87

Chapter 6 Encoder–decoder model

h y e

Attention model 𝑓att ×

g h

i g

ℎ𝑡−1 𝑧𝑡

Figure 6.3: Encoder–decoder model with attention mechanism

a weighted combination of these encoded vectors. Intuitively, this allows the decoder to focus
on different parts of the encoded input sequence at different times of the decoding process.

Figure 6.3 shows an illustration of the attention mechanism. At its core is the attention model,
which takes the decoder’s current hidden state and the encoder outputs to determine which
parts of the sequence to focus on. Here, the attention model will simply be a multi-layer
perceptron (cf. Sec. 5.1). The weighted combination of encoder outputs, also called the context
vector (𝑧𝑡), is then integrated into the hidden state of the decoder’s next timestep.

Many different variants of attention have been proposed, e.g., using different functions for the
attention model, conditioning only on parts of the encoder outputs or enforcing monotonicity
constraints, or using the context vector as the decoder’s input (see, e.g., Luong, Pham, et al.,
2015; Cohn et al., 2016). The model used here closely follows those of Bahdanau et al. (2014)
and Xu et al. (2015).3 In particular, feeding the weighted encoder vectors into the decoder’s
hidden state—instead of simply using them as the decoder’s input—allows us to still use the
input feeding approach described above (cf. p. 87).

3I experimented with many other variations of the attention mechanism, including the use of different scoring
functions such as the simple dot product or weighted multiplication (Luong, Pham, et al., 2015, Sec. 3.1) and
local attention models with monotonic or predictive alignment (Luong, Pham, et al., 2015, Sec. 3.2). I could not
find a clear advantage of any of these alternatives on a small development dataset, so I did not explore them
further.

88

6.1 Model description

Technical description

Let 𝑓att be the attention model and 𝑟 = 𝑟0, … , 𝑟𝑛 the outputs of the encoder. The context vector 𝑧𝑡
is then calculated as a weighted combination of the encoder outputs 𝑟, where the weights 𝛼𝑖
are determined by the softmax function applied to the output of the attention model 𝑓att:

𝑒𝑡,𝑖 = 𝑓att(ℎ𝑡−1, 𝑟𝑖) (6.1)

𝑧𝑡 =
𝑛

∑
𝑖=0

𝛼𝑡,𝑖𝑟𝑖 (6.2)

=
𝑛

∑
𝑖=0

softmax(𝑒𝑡,𝑖)𝑟𝑖 (6.3)

=
𝑛

∑
𝑖=0

exp 𝑒𝑡,𝑖
∑𝑛

𝑗=1 exp 𝑒𝑡,𝑗
𝑟𝑖 (6.4)

The attention model is a multi-layer perceptron (MLP) with trainable parameters 𝑊att, 𝑈att ∈
ℝ𝑑ℎ×𝑑ℎ , 𝑏att, 𝑣att ∈ ℝ𝑑ℎ :4

𝑓att(ℎ𝑡−1, 𝑟𝑖) = tanh(𝑟𝑖 ⋅ 𝑊att + ℎ𝑡−1 ⋅ 𝑈att + 𝑏att) ⋅ 𝑣att) (6.5)

The context vector 𝑧𝑡 is fed back into the decoder’s hidden state by essentially concatenating it to
the previous timestep’s hidden state—the LSTM equations from Eq. (5.12)–(5.15) are augmented
by the dot product of 𝑧𝑡 and its weight matrix 𝑍∗ ∈ ℝ𝑑ℎ×𝑑ℎ :

𝑓𝑡 = 𝜎(𝑥𝑡 ⋅ 𝑊𝑓 + ℎ𝑡−1 ⋅ 𝑈𝑓 + 𝑧𝑡 ⋅ 𝑍𝑓 + 𝑏𝑓) (6.6)
̃𝑐𝑡 = tanh(𝑥𝑡 ⋅ 𝑊𝑐 + ℎ𝑡−1 ⋅ 𝑈𝑐 + 𝑧𝑡 ⋅ 𝑍𝑐 + 𝑏𝑐) (6.7)
𝑖𝑡 = 𝜎(𝑥𝑡 ⋅ 𝑊𝑖 + ℎ𝑡−1 ⋅ 𝑈𝑖 + 𝑧𝑡 ⋅ 𝑍𝑖 + 𝑏𝑖) (6.8)
𝑜𝑡 = 𝜎(𝑥𝑡 ⋅ 𝑊𝑜 + ℎ𝑡−1 ⋅ 𝑈𝑜 + 𝑧𝑡 ⋅ 𝑍𝑜 + 𝑏𝑜) (6.9)

Similar to Xu et al. (2015), the initial hidden and cell states of the decoder LSTM are set as the
output of a dense layer on the averages of the encoder outputs:

ℎ0 = tanh((
1
𝑛

𝑛

∑
𝑖=0

𝑟𝑖) ⋅ 𝑊init,h + 𝑏init,h) (6.10)

𝑐0 = tanh((
1
𝑛

𝑛

∑
𝑖=0

𝑟𝑖) ⋅ 𝑊init,c + 𝑏init,c) (6.11)

6.1.3 Decoding

In all models described above, each output character is fed back into the decoder as input for its
next timestep. During training, the gold-standard output characters are known and can simply
be set as the decoder’s input (cf. p. 87). At test time, a decoding strategy must be used.

4Note that I assume that the dimensionality 𝑑ℎ of the hidden state is identical between the encoder and the
decoder, which will be the case in my experiments, but is not a strict requirement.

89

Chapter 6 Encoder–decoder model

The simplest strategy is to dynamically iterate over all timesteps and output the character with
the highest probability as predicted by the model. This process continues until the special “end
of word” symbol is predicted, at which point the decoding stops. This strategy is also known as
greedy decoding.

One drawback of this approach is that it only considers the predicted probabilities locally
for each timestep, but for evaluation, we are mostly interested in optimizing word accuracy,
i.e., performance over the full output sequence. Beam search decoding can help to produce
better global predictions by keeping a list of the 𝑛 most likely candidate sequences, where 𝑛 is
also called the beam size. At each timestep, beam search considers the concatenation of each
sequence already in the candidate list with all possible output characters, adds the probabilities
of the output characters to the probability of the sequence, then filters the list to keep only the
best 𝑛 candidates. When the “end of word” symbol is predicted for a sequence, that sequence is
no longer updated further. Decoding continues until all 𝑛 best candidates have reached the
“end of word” symbol, at which point the sequence with the highest probability is chosen as the
output. For the experiments in this work, I always use a beam size of 𝑛 = 5, as this was found
to work reasonably well in preliminary experiments; this is also the same beam size chosen
in Bollmann et al. (2017).

In addition to these decoding strategies, we can use dictionary filtering (or lexical filtering)
to restrict the list of possible candidate sequences. This is inspired by the Norma tool (cf.
Sec. 4.2.1), which constrains the outputs of its rule-based and distance-based normalizers to
those contained within a list of valid contemporary word forms. This behavior can easily be
replicated in the encoder–decoder model: during decoding, sequences which cannot lead to
a valid target word form—i.e., sequences that do not occur as a word-initial substring in the
contemporary dictionary resource—are filtered out of the list of candidates. Similarly, the
“end of word” symbol can only be predicted if the generated word is contained within the
dictionary.

6.2 Hyperparameter tuning

One of the more challenging aspects of training a neural network successfully is the selection
of good hyperparameters. While the model descriptions above specify the general architecture,
some details still need to be determined, such as the number of LSTMs to use for the encoder
and decoder (cf. Fig. 6.2), the dimensionality 𝑑ℎ of the network layers (cf. Sec. 5.2), or the dropout
rate to be used during training (cf. Sec. 5.3.5). These settings are usually determined before the
training procedure starts, and are referred to as hyperparameters to distinguish them from the
model’s parameters (such as the weight matrices) that are fit to the training data.

In many studies, the selection of hyperparameters is done manually, for example by try-
ing a few chosen combinations—often determined by previous work and/or the researcher’s
intuition—and picking the best one. This is partly due to the lack of definitive guidelines for
hyperparameter selection, and partly due to the often prohibitively long training times of these
networks. A good neural machine translation model, for example, can easily take days or

90

6.2 Hyperparameter tuning

weeks to train even on comparatively powerful hardware.5 Testing dozens or even hundreds of
different hyperparameter combinations is not feasible in these situations.

The normalization models considered here, on the other hand, are comparatively fast to train.
For the tuning experiments reported below, the average time of a training run was around thirty
minutes; the exact times vary, of course, depending on the dataset and the hyperparameter
configuration.6 This enables us to perform a more extensive hyperparameter search than
is typically done in the literature. An exhaustive search, however, is still not feasible: e.g.,
if five hyperparameters are to be tested with ten different values each, this would result in
105 different hyperparameter combinations—testing all of them would take almost six years
in total! For this reason, I conduct these tuning experiments on a reduced selection of the
historical datasets, and split up the tuning into two phases, considering hyperparameters of the
model—i.e., number of layers and their dimensionality—and hyperparameters of the learning
procedure—i.e., learning rate and dropout rate—separately.

Sec. 6.2.1 describes which datasets are used for hyperparameter tuning. Sec. 6.2.2 describes the
tuning procedure. The tuning of the model (hyper)parameters is discussed in Sec. 6.2.3, while
the learning parameters are discussed in Sec. 6.2.4.

6.2.1 Tuning datasets

One challenge in hyperparameter tuning is that properties of the dataset can conceivably
affect the optimal parameter settings, and thus, using different datasets for tuning might
result in different “optimal” configurations being found. To reduce the dataset bias and find a
configuration that works reasonably well across many different datasets, it seems desirable
to perform hyperparameter tuning on more than just a single dataset. On the other hand,
tuning hyperparameters individually for each dataset is both computationally expensive and
not representative for most application scenarios, where training data is scarce and separate
tuning data not necessarily obtainable.

As a compromise, I perform hyperparameter tuning on only five of the ten historical datasets
(cf. Sec. 3.1) and only use a subset of each dataset. More precisely, the following five datasets
are chosen:

• English (Sec. 3.1.1), as its texts are among the oldest represented in this study (cf. Tab. 3.1);

• the German Anselm dataset (Sec. 3.1.2), as it has the highest HNR (cf. Tab. 3.2) and is also
an outlier in the ambiguity score distribution in Fig. 3.1;

• Hungarian (Sec. 3.1.3), as it is the least similar to the other datasets based on the compar-
ison in Fig. 3.2;

• Icelandic (Sec. 3.1.4), as it stands out the most in the ambiguity score distribution in
Fig. 3.1; and

5For example, Google trains an English-to-French neural machine translation model in around 6 days, using
96 (sic!) NVIDIA Tesla K80 GPUs (Wu et al., 2016).

6This is on a single NVIDIA GeForce GTX 980 GPU. The shortest training run took 6 minutes, while the longest
took 5 hours and 43 minutes.

91

Chapter 6 Encoder–decoder model

• the Slovene Gaj dataset (Sec. 3.1.5), as it is the most “modern” dataset in terms of the time
periods represented (cf. Tab. 3.1) and has a low quantity of spelling variation (cf. Tab. 3.3).

For each of these datasets, 50,000 tokens are randomly selected from the training set to serve
as the reduced training set for hyperparameter tuning. The only exceptions are the German
Anselm dataset, where a balanced selection is taken from the beginning of each of the texts
it consists of (due to the biased nature of the dataset, discussed in Sec. 3.1.2), and Icelandic,
where the full training set consisting of 49,633 tokens is chosen (cf. Tab. 3.1). For the subset
used to evaluate the trained model, 5,000 tokens are selected from the development sets of the
respective corpora in the same fashion.

This construction of tuning datasets has the advantage of keeping the runtime of the tuning
process more manageable, as the computational cost of training the models is similar across
the datasets, but lower than training on the full sets, which are up to 234,000 tokens in size.
Additionally, as the ideal hyperparameter configuration might be sensitive to the size of the
training set, keeping this size constant eliminates one potentially confounding factor from the
comparison.

6.2.2 Tuning procedure

There are several strategies for finding a good configuration of hyperparameters, such as grid
search or random search;7 in this work, I am using the tree-structured Parzen estimator (TPE)
algorithm (Bergstra et al., 2011) as implemented by the hyperopt library (Bergstra et al., 2013).8
The general idea is to use knowledge of previous hyperparameter trials to try to predict which
new set of hyperparameters is most likely to improve results further. At the start of the
optimization process, hyperparameters are drawn randomly from a pre-defined probability
distribution, and the model is trained and evaluated using this set of parameters. After a certain
number of trials,9 the TPE algorithm is used to select new parameters instead, which is likely
to choose parameters close to those that produced good results in the previous runs.

Training the models is done using early stopping (cf. Sec. 5.3.6) by validating on the 5,000-token
evaluation set (as described above) after each training epoch. The highest word accuracy
among all epochs on this evaluation set is considered to be the final accuracy score for the
hyperparameter trial (and reported back to the hyperopt library).

6.2.3 Model parameters

For the hyperparameters of the model itself, I consider these three different variables:

• the size of the embedding layers, i.e., the dimensionality 𝑑𝑚 of the vector space ℝ𝑑𝑚 into
which the input characters are projected (cf. Sec. 5.2.1);

7See http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html for an in-
formal, but illustrative overview.

8http://hyperopt.github.io/hyperopt/
9Judging from the source code, it appears that hyperopt uses 20 random trials by default, but this is not clearly
documented.

92

http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html
http://hyperopt.github.io/hyperopt/

6.2 Hyperparameter tuning

• the depth of the model, i.e., how many LSTM layers to stack in the encoder and decoder
(cf. Fig. 6.2); and

• the size of the hidden layers, i.e., the dimensionality 𝑑ℎ of each LSTM layer in the encoder
and decoder stack (cf. Sec. 5.2.3).

Increasing the dimensionality of layers increases the number of trainable parameters a model
has. Too few parameters might make it hard or impossible for the model to fit the data in a
good way. More parameters mean a higher model capacity, but also a longer training time
and the potential for lower generalization—after all, in a hypothetical scenario with limitless
capacity, a model could simply learn to memorize all training samples, while we would like it
to be able to generalize beyond these previously seen examples.

Model parameters, such as the size of the embedding layer, are often selected empirically, and
their values can vary greatly between different experimental setups:

Unfortunately, there are no theoretical bounds or even established best-practices
in this space. […] In current research, the dimensionality of word-embedding
vectors range between about 50 to a few hundreds, and, in some extreme cases,
thousands. (Goldberg, 2017, p. 99)

For neural machine translation using words as input, Cho, Merrienboer, Gülçehre, et al. (2014)
use a dimensionality of 500 for the embedding layer and a dimensionality of 1000 for the hidden
layers, while Sutskever et al. (2014) and Luong, Pham, et al. (2015) use a size of 1000 for both.
However, this is not necessarily a good guideline for our normalization models, as word-based
models have a much larger vocabulary size than character-based ones—Sutskever et al. (2014)
report using an input vocabulary of 160,000 words—and processing full sentences requires a
higher capacity than processing single words.

For character-based machine translation, Ling et al. (2015) use an embedding size of 50 and
a hidden layer size of 150, considerably lower than those of the word-based counterparts. In
previous work on normalization, Bollmann et al. (2017) used a dimensionality of 128 for both
embedding and hidden layers.

Some encoder–decoder approaches use only a single RNN/LSTM for their encoder and de-
coder (e.g., Bahdanau et al., 2014; Cho, Merrienboer, Gülçehre, et al., 2014; Bollmann et al.,
2017). However, Sutskever et al. (2014) found that stacking several layers of LSTMs performed
significantly better; they use a stack of four layers in their experiments.

For tuning the normalization models, I experiment with using either a single LSTM layer or
stacks of two or three layers (i.e., depth ∈ {1, 2, 3}). The size of the embedding layer is varied
between 10 and 80 (with a step size of 5), while the size of the hidden layers are tuned within
the range of 20 to 500 (with a step size of 20). The initial probability distribution is uniform over
these value ranges. For each dataset, a total of 100 trials with different parameter configurations
(as suggested by the TPE algorithm) are run.

This approach to tuning the model hyperparameters is, again, not exhaustive. For example,
there is no fundamental reason why the number of layers in the encoder should have to match
the number of layers in the decoder; similarly, each of the different LSTM layers could have a

93

Chapter 6 Encoder–decoder model

different dimensionality.10 Bahdanau et al. (2014), for example, use 1000 units in their decoder
and 1000 units for each of the forward and backward RNNs in their bi-directional encoder,
corresponding to a dimensionality of 2000 according to the definition used here (cf. p. 81).
However, tuning the layers separately adds more hyperparameters to the tuning procedure,
exponentially increasing its computational cost, while it is unclear whether this is actually
beneficial. Therefore, I choose the simpler approach here.

Base model

Figure 6.4 shows the results of the tuning trials on the base model as a function of each individual
model hyperparameter; each point in the graph represents the result from one trial, and each
column only analyzes a single hyperparameter, encompassing all possible values of the other
two hyperparameters.

The general trends appear to be similar across all five datasets. For the size of the hidden layers,
there is a sharp increase in accuracy as the layer size increases, up until a dimensionality of
around 100, where the gain from increasing the layer size further seems to taper off. The size
of the embedding layers shows very similar tendencies, although using very small values here
(≤ 20) appears to hurt the overall accuracy less compared to the hidden layers. Interestingly,
there is no clear tendency that increasing the dimensionality beyond a certain point hurts the
model’s accuracy; in all cases, higher values seem to result in comparable or slightly better
accuracy scores. For some datasets, such as German and Icelandic, a slight downward trend
can be observed for particularly high-dimensional hidden layers (> 400), but since this decrease
is much smaller than the overall variance in the accuracy scores, it is unclear whether this is
an actual effect or just noise. Testing with even higher layer sizes might shed some more light
on this, but since the results do not suggest that this could result in a significant accuracy gain,
I do not investigate this further.

The depth of the model appears to have only a minor impact on the best obtainable accuracy.
In particular, models with only one LSTM layer are able to perform better or comparably well
than those with two or three layers. This is somewhat surprising, since adding more layers
increases the model’s complexity considerably, both by significantly increasing its total number
of parameters and by adding more nonlinear activation functions. These results suggest that
the normalization task can already be modeled sufficiently well with single-layer encoders and
decoders, and the increased capacities by stacking more layers are not really needed for this
task.

So far, we only looked at the effects of each hyperparameter individually. This does not tell
us which combination of hyperparameter values produced each given result, and neglects to
consider the interaction between the hyperparameters. For example, it is conceivable that
two-layer models perform best with very different hidden layer sizes than single-layer models,
but these results are conflated when looking at the effect of the hidden layer size in Figure 6.4.
Therefore, Figure 6.5 provides a different view on the data, plotting the exact combinations
of hyperparameters that were tested and visualizing the model accuracy in three discrete
10For the non-attentional model, the decoder’s hidden states are initialized with the output of the encoder,

which requires the dimensionalities to match, but this could theoretically be overcome by adding another
transformation between them. For the attentional model, no such restriction exists.

94

6.2 Hyperparameter tuning

categories: “best” trials—defined as being within 0.1 percentage points (pp) of the best result—,
“good” trials—within 1 percentage point of the best result—and all “other” trials.

Regarding the model depth, most results in the “good” and “best” categories are found in the
single-layer models. A notable exception is the Hungarian dataset, which shows an equal
preference for depths one and three;11 i.e., stacking more layers is not detrimental here, but
also not clearly advantageous to a single layer. For Slovene, results in the “good” category
are spread out more across different model depths, but most “best” results are again found in
single-layer configurations. In all cases, there does not seem to be a clear advantage of using
more than one LSTM layer, reaffirming the impression that using a single layer is sufficient for
the normalization task.

Within the group of trials using a depth of one, the best results are achieved with a hidden
layer size 𝑑ℎ ≥ 300. Some datasets—like English and Hungarian—seem to work better with
even higher dimensionalities of up to 500, the maximum that was tested, while others—such
as Icelandic and Slovene—also work well with slightly smaller values. In general, choosing
𝑑ℎ = 300 appears to be a good compromise between model size and validation accuracy, which
is the value I will use for further experiments.

The embedding size shows considerably more variation. On English and Icelandic, any di-
mensionality 𝑑𝑚 ≥ 20 seems to work equally well, and a similar tendency can be observed for
Slovene and 𝑑𝑚 ≥ 35. For German and Hungarian, on the other hand, the “good” and “best”
results are concentrated on values of 𝑑𝑚 ≥ 60. Since those datasets show worse performance
with embeddings of lower dimensionality, but no datasets perform generally worse with high-
dimensional embeddings, the size of the embedding layers will be set to 𝑑𝑚 = 60 for further
experiments.

Attentional model

The encoder–decoder model with attention (cf. Sec. 6.1.2) builds on the base model by changing
the way the encoder’s hidden states are integrated into the decoder. In particular, the encoder
now produces one output vector per timestep (i.e., per character in the historical word form).
This means that the information encoded in these hidden vectors is now potentially very
different, as they do not have to capture the full word form, but can focus on more local
information. Due to this, it is conceivable that much smaller sized vectors are sufficient or
maybe advantageous in attentional models.

Since running the hyperparameter trials is computationally expensive and the models are other-
wise very similar, I choose not to repeat the full trial runs with the attentional model, but rather
focus on varying the hidden layer size only. Since concentrating on a single hyperparameter
reduces the search space significantly, I decide to perform these trials in a deterministic manner

11The best results are achieved for high embedding and hidden layer sizes, i.e., parameter combinations in the
upper right area of the plot. Very few such configurations have been tried in the case of Hungarian and
depth = 2. It is possible that if more configurations with high layer sizes had been tried with two-layer models
(e.g., by running more trials or having a different random selection of initial trials), these models with depth = 2
would have had a similar share of “good” results compared to depths one and three.

95

Chapter 6 Encoder–decoder model

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu
ra
cy

English

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu
ra
cy

Germ
an

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu
ra
cy

Hungarian

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu
ra
cy

Icelandic

1 2 3
depth

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu
ra
cy

10 20 30 40 50 60 70 80
embedding size

20 100 200 300 400 500
hidden layer size

Slovene

Figure 6.4: Accuracy of the base encoder–decoder model on the development sets as a function
of each individual model hyperparameter

96

6.2 Hyperparameter tuning

20 100 200 300 400 500

10

20

30

40

50

60

70

80

em
be
dd
in
g
si
ze

depth = 1

20 100 200 300 400 500

depth = 2

20 100 200 300 400 500

English

depth = 3

20 100 200 300 400 500

10

20

30

40

50

60

70

80

em
be
dd
in
g
si
ze

20 100 200 300 400 500 20 100 200 300 400 500

Germ
an

20 100 200 300 400 500

10

20

30

40

50

60

70

80

em
be
dd
in
g
si
ze

20 100 200 300 400 500 20 100 200 300 400 500

Hungarian

20 100 200 300 400 500

10

20

30

40

50

60

70

80

em
be
dd
in
g
si
ze

20 100 200 300 400 500 20 100 200 300 400 500

Icelandic

20 100 200 300 400 500
hidden layer size

10

20

30

40

50

60

70

80

em
be
dd
in
g
si
ze

20 100 200 300 400 500
hidden layer size

20 100 200 300 400 500
hidden layer size

Slovene

Figure 6.5: Combinations of model hyperparameter values categorized by the distance of their
accuracy 𝑎𝑖 to the dataset’s overall best accuracy 𝑎max; “best”×××××××××: |𝑎max − 𝑎𝑖| ≤ 0.001,
“good” •: 0.001 < |𝑎max − 𝑎𝑖| ≤ 0.01, “other” : |𝑎max − 𝑎𝑖| > 0.01.

97

Chapter 6 Encoder–decoder model

0.75

0.80

0.85

0.90

0.95
ac
cu
ra
cy

English German

Base model
Attentional model

100 300 500
hidden layer size

0.75

0.80

0.85

0.90

0.95

ac
cu
ra
cy

Hungarian

100 300 500
hidden layer size

Icelandic

100 300 500
hidden layer size

Slovene

Figure 6.6: Accuracy of the attentional encoder–decoder model on the development sets, com-
pared to that of the base model trials with similar hyperparameters (depth = 1,
embedding size 𝑑𝑚 ∈ {55, 60, 65}).

by testing all hidden layer sizes in the range [60, 500] with a step size of 40.12 The model depth
is fixed to one, while the size of the embedding layers is fixed to 60, as determined by the
hyperopt trials for the base model above.

Figure 6.6 shows the results of those trial runs in comparison to base model trials with similar
hyperparameters; since not many trial runs of the base model used an embedding size of
exactly 60, those with 𝑑𝑚 = 55 and 𝑑𝑚 = 65 are also included in the plot. The results suggest that
very small values of the hidden layer size 𝑑ℎ can perform worse, but otherwise the accuracy
scores are relatively steady across different values of 𝑑ℎ. While it appears that slightly smaller
values (around 200) might be sufficient here, there is also no strong argument against reusing
the value 𝑑ℎ = 300 that was chosen for the base model, which I adopt here for simplicity’s
sake. Additionally, the results show that the attentional model outperforms the base model on
average—with the possible exception of the English dataset—justifying the use of the attention
mechanism.

However, there is one drawback of the experimental setup that needs to be considered when
interpreting these results: I only vary the size of all hidden layers simultaneously, i.e., chang-
ing 𝑑ℎ means changing the hidden layer sizes in both the encoder and decoder at the same
time. While the encoder is used differently in the attentional model (as explained above), there
is no clear reason why the decoder should also profit from a reduced dimensionality in this
1260 is chosen as the lower bound (compared to 20 in the previous runs) as that is the size of the embedding

vectors as determined by the previous hyperopt trials, and it did not seem sensible to make the hidden layers
smaller than the embedding layers that feed into them.

98

6.2 Hyperparameter tuning

model. In other words, a more thorough investigation of the effect of hidden layer sizes on the
performance of attentional models should probably consider 𝑑ℎ independently for the encoder
and the decoder. I have not done this here, but rather only focussed on the case of identical
values for all layers since it is conceptually simpler.

6.2.4 Learning parameters

For the hyperparameters of the learning algorithm, I consider two different variables:

• the dropout rate, i.e., the fraction of the layer inputs that is randomly set to zero during
training (cf. Sec. 5.3.5); and

• the learning rate of the Adam optimization algorithm, called “stepsize” in Kingma and Ba
(2014), i.e., an approximate bound for how large the parameter updates are (cf. Sec. 5.3.2).

Dropout is a common regularization technique supposed to prevent overfitting, with many
deep learning models using some amount of dropout in their training; e.g., Zaremba et al. (2014)
experiment with dropout rates of 0.5 and 0.65, and Bollmann et al. (2017) use a rate of 0.3. In
the tuning experiments here, I consider dropout rates in a uniform distribution over the range
[0, 0.9]. As with the model hyperparameters, this is not an exhaustive approach, as the dropout
rate is set globally for all parts of the model—it is conceivable, for example, to use different
dropout rates for the embedding layers and the recurrent layers (e.g. Gal and Ghahramani,
2016).

The Adam algorithm is an adaptive optimization algorithm, i.e., the actual learning rate is
calculated individually for each parameter update, and the learning rate hyperparameter only
gives an approximate bound for these updates. Kingma and Ba (2014) suggest a value of
𝛼 = 0.001 as a good default setting. For tuning, I consider values in the range [0.0001, 0.1], but
since minor changes to the learning rate should be less important than its general order of
magnitude, the values are drawn from a logarithmically uniform distribution in this case.

These learning hyperparameters are only tuned on the base encoder–decoder model, with the
resulting configurations being used for the attentional model as well. As only two hyperpa-
rameters are tuned (compared to the previous three), only 30 trial runs are performed for each
dataset.

Figure 6.7 shows the results of the hyperparameter tuning for each of the two learning param-
eters individually. High dropout rates > 0.5 always lead to a noticeable decline in accuracy;
the same is true for high learning rates that, after a certain point (approx. 𝛼 > 0.005), cause
the model accuracy to steadily decrease the higher 𝛼 becomes. For dropout, the best values
are mostly found in the range [0, 0.4], while the ideal learning rate is typically concentrated
around the suggested default setting 𝛼 = 0.001.

This impression is mostly confirmed by the plot in Figure 6.8, which again shows the model
accuracy categorized into “best”, “good”, and “other” results with regard to the combination of
the two hyperparameters (cf. p. 94). For English and Hungarian, the better results are centered
around a dropout rate of about 0.2; German and Icelandic prefer the same or slightly lower
dropout rates, while Slovene works better with slightly larger ones. In general, a dropout rate

99

Chapter 6 Encoder–decoder model

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu
ra
cy

English

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu
ra
cy

Germ
an

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu
ra
cy

Hungarian

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu
ra
cy

Icelandic

0.0 0.2 0.4 0.6 0.8
dropout

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu
ra
cy

10−4 10−3 10−2 10−1

learning rate

Slovene

Figure 6.7: Accuracy of the base encoder–decoder model on the development sets as a function
of each individual learning hyperparameter; dashed lines represent the highest
accuracy from the model hyperparameter trials.100

6.2 Hyperparameter tuning

10−4

10−3

10−2

10−1
le
ar
ni
ng

ra
te

English German

0.0 0.2 0.4 0.6 0.8
dropout

10−4

10−3

10−2

10−1

le
ar
ni
ng

ra
te

Hungarian

0.0 0.2 0.4 0.6 0.8
dropout

Icelandic

0.0 0.2 0.4 0.6 0.8
dropout

Slovene

Figure 6.8: Combinations of learning hyperparameter values categorized by the distance of their
accuracy 𝑎𝑖 to the dataset’s overall best accuracy 𝑎max; “best”×××××××××: |𝑎max − 𝑎𝑖| ≤ 0.001,
“good” •: 0.001 < |𝑎max − 𝑎𝑖| ≤ 0.01, “other” : |𝑎max − 𝑎𝑖| > 0.01.

of 0.2 appears to be a good compromise. No scenario clearly prefers learning rates that deviate
from the default, except maybe the German dataset which suggests that a slightly increased
value might be beneficial. In conclusion, though, the results do not offer a good reason to
deviate from the default of 𝛼 = 0.001.

6.2.5 Final hyperparameter settings

Tuning of the model hyperparameters showed that, except for some particularly low values,
the encoder–decoder model for the normalization task is not particularly sensitive to the exact
dimensions of the embedding and hidden layers. Also, stacking more than a single LSTM layer
does not seem to be beneficial in most scenarios. Learning parameters are more sensitive to
extreme values: dropout noticeably decreases accuracy beyond a certain rate (around 0.4),
while the learning rate of the Adam optimizer is also best left unchanged from its default.

While some datasets behave slightly differently from others—Hungarian, for example, seems to
slightly favor deeper and higher-dimensional models—the overall results are similar enough to
select a single configuration for all datasets. For all further experiments, the encoder–decoder
models will use the following hyperparameters:

• a depth of one, i.e., a single LSTM layer in the encoder and decoder;

• embedding layers with dimensionality 𝑑𝑚 = 60;

101

Chapter 6 Encoder–decoder model

• hidden layers with dimensionality 𝑑ℎ = 300;

• a dropout rate of 0.2; and

• a learning rate for Adam of 𝛼 = 0.001.

These settings apply to both the base model and the attentional model.

6.3 Analysis

In the previous section, I determined which configuration of hyperparameters to use. The
tuning process also provided first clues that the attentional model has a slight advantage over
the base model. In this section, I will analyze the properties of the encoder–decoder model
further, to answer questions such as:

• How stable is the training process, i.e., how do the results vary for different restarts of
the training process?

• Is the attentional model always preferable to the base model on all datasets?

• What is the impact of the different decoding techniques introduced in Sec. 6.1.3?

To address those questions, I will train encoder–decoder models—with the hyperparameter
settings provided in Sec. 6.2.5—on all datasets and evaluate them using the development portion
of those datasets. Importantly, since my goal is to analyze the model’s properties and possibly
improve its performance further, I do not yet evaluate on the test sets here and do not compare
the results to other normalization methods, which will be done in Chapter 10.

6.3.1 Stability of the training process

Training a neural network is not a fully deterministic process; different training runs can lead to
different parameter configurations being learned and, consequently, different accuracy scores of
the resulting model. This is mainly due to two factors (cf. Sec. 5.3.4): (i) the random initialization
of weights before the start of the training process; and (ii) the shuffling of the training data
before each training epoch. While this process can technically be made deterministic by fixing
the seed of the random number generator, this only shifts the source of the randomness to the
choice of the seed value.

Another factor potentially leading to varying accuracy scores of multiple training runs is the
question of when to stop training. In this work, I always use early stopping (cf. Sec. 5.3.6),
which stops training when the accuracy on the validation set has stopped improving. While
this is a deterministic criterion, it does not guarantee that training stops at an ideal point—it
cannot be ruled out that validation accuracy would improve further at some later point in time
if training were continued. Different random restarts could exhibit different behaviors in this
regard, and it is possible that some training runs result in lower accuracy only because they
were stopped too early.

102

6.3 Analysis

Dataset Base model Attentional model

min max avg. 𝑠 min max avg. 𝑠

DEA 87.05% 87.98% 87.53% 0.4467 87.49% 88.14% 87.78% 0.2378
DER 85.60% 86.34% 86.02% 0.3213 86.42% 87.25% 86.91% 0.3042
EN 93.36% 93.80% 93.52% 0.2037 93.52% 94.02% 93.78% 0.2301
ES 93.41% 93.85% 93.60% 0.1612 93.53% 94.32% 93.99% 0.3170
HU 87.09% 87.56% 87.39% 0.1961 88.03% 89.36% 88.75% 0.4905
IS 84.11% 84.99% 84.57% 0.3479 83.84% 85.73% 84.55% 0.7286
PT 93.57% 93.87% 93.71% 0.1361 93.61% 94.01% 93.88% 0.1557
SLB 89.18% 89.90% 89.40% 0.2909 89.44% 89.85% 89.61% 0.1564
SLG 94.39% 94.88% 94.66% 0.1912 94.96% 95.39% 95.17% 0.1639
SV 85.92% 87.71% 87.17% 0.7244 88.33% 89.31% 88.71% 0.4078

Table 6.1: Statistics over five independent training runs per dataset and model type;
min/max/avg correspond to minimum, maximum, and average validation accuracies
for all training runs, while 𝑠 denotes the sample standard deviation.

For estimating the true performance of a neural network model, it is desirable to quantify the
variance from starting the training process with different random seeds. Otherwise, it is difficult
to judge the significance of different accuracy scores from two experimental settings—i.e., are
we observing an actual effect, or just random variation? Statistical significance testing can be
misleading here, as it might be able to tell us that experimental setup A performs significantly
better than setup B, but cannot make any guarantees that a different random restart of A will
yield the same result, or in fact whether the result holds true when averaging the results of
running A and B multiple times with different seeds. In fact, a recent study by Reimers and
Gurevych (2017) showed that simply changing “the seed value for the random number generator
can result in statistically significant (𝑝 < 10−4) differences for state-of-the-art systems”13 for
sequence tagging.

Therefore, if we do not factor in the stability of the training process under different random
initializations, any claims about generalization to other datasets (or even reproducibility on
different hardware or software versions!) are, at best, to be treated with caution.

Variance

The simplest, although somewhat computationally expensive, way to estimate the variance of
the training process—including the effect of early stopping—is to train the same model several
times with different random initializations and compare the results. Therefore, for each dataset,
I choose to train and evaluate both the base encoder–decoder model and its attentional variant
five times each. The same five randomly determined seeds were used in each configuration to
initialize the random number generator.

13Emphasis by the authors.

103

Chapter 6 Encoder–decoder model

DEA DER EN ES HU IS PT SLB SLG SV

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Va
lid
at
io
n
ac
cu
ra
cy

Base model
Attentional model

Figure 6.9: Validation accuracy of five different initializations per dataset and model type

The full results of these experiments are shown in Figure 6.9; in addition to that, Table 6.1 gives
a summary of minimum/maximum/average scores and their sample standard deviation.14 The
spread of the observed accuracy scores ranges from 0.3 pp (Portuguese, base model) to almost
1.9 pp (Icelandic, attentional model). Generally, there is a tendency for this spread to be lower
the higher the absolute accuracy scores become; e.g., with the base model, German (Anselm &
RIDGES), Icelandic, and Swedish all have an average accuracy below 88% with 𝑠 > 0.3, while
English, Spanish, Portuguese, and Slovene/Gaj average an accuracy above 93% with 𝑠 < 0.21,
but some exceptions to this exist (such as Hungarian).15 A similar, but weaker, tendency can be
found correlating the standard deviation to the size of the validation dataset (cf. Tab. 3.1).16

Compared to the effect sizes often reported in historical normalization, which are not seldom
below 2 pp (e.g., Reynaert et al., 2012; Pettersson et al., 2014a; Bollmann et al., 2017), the
standard deviations of the encoder–decoder models appear to be relatively high. Indeed, the
results highlight the perils of relying on a single training run to draw conclusions about model
performance. Consider the case of Icelandic: if we wanted to evaluate the accuracy of the base
model vs. the attentional variant and, by chance, selected the random initializations of the
results on the extreme ends of the spectrum, we could either report an improvement for the
attentional model of 1.62 pp (cf. Tab. 6.1, “min” for base, “max” for attentional) or a decline in

14The sample standard deviation is defined as 𝑠 =
√

1

𝑛−1
∑𝑖(𝑥𝑖 − ̄𝑥)2, where 𝑥𝑖 is the accuracy of the 𝑖-th training

run, ̄𝑥 is the average accuracy of all runs, and 𝑛 is the total number of runs (here, 𝑛 = 5).
15Calculating Spearman’s 𝜌 for the average accuracy and the standard deviation 𝑠, there is an inverse correlation

of 𝜌 ≈ −0.77 for the base model and 𝜌 ≈ −0.58 for the attentional model.
16Spearman’s 𝜌 ≈ −0.45 (base model), 𝜌 ≈ −0.38 (attentional model).

104

6.3 Analysis

accuracy of 1.15 pp (“max” for base, “min” for attentional). This corresponds to a change to the
error rate by -10.2% or +7.7%, respectively. Considering the size of the validation set (around
6,100 tokens), the first result would turn out to be statistically significant with 𝑝 < 0.05 using a
chi-squared test,17 albeit the second one would not.

6.3.2 Base vs. attentional model

To help answer the question if the attention mechanism is effective, i.e., if the attentional model
performs better on average than the base model, we can look at the entirety of the training runs
in Fig. 6.9. For some datasets, such as Hungarian or Swedish, the results are pretty clear, as each
training run with attention performs strictly better than each of the runs without attention.
For other datasets, the results of the two setups are much closer together, and the advantage of
the attentional model is uncertain.

Looking at the separate training runs per dataset, we can estimate if the average accuracy
scores of the base and attentional model are equal by usingWelch’s 𝑡-test.18 Using a significance
level of 5%, we find that:

• the attentional model is significantly better than the base model on German/RIDGES,
Hungarian, Slovene/Gaj, and Swedish (𝑝 < 0.05);

• the attentional model only barely misses the significance threshold on the Spanish dataset
(𝑝 ≈ 0.051); and

• there is no significant difference on English & Portuguese (𝑝 ≈ 0.1), Slovene/Bohorič (𝑝 ≈
0.2), German/Anselm (𝑝 ≈ 0.3), and Icelandic (𝑝 ≈ 0.96).

A different approach of comparing the models is to look at the averages for each dataset (cf.
Tab. 6.1) and perform a paired 𝑡-test comparing the difference between base and attentional
models. The improvement of the attentional model turns out to be significant with 𝑝 < 0.01.

In summary, while it is questionable whether the attention mechanism improves accuracy
in all datasets, it significantly improves it in at least some of them, and is an unnecessary
addition at worst—in particular, it never degrades the average performance. Therefore, unless
computational complexity is an issue (as the attentional model is slightly more complex than
the non-attentional one), the results suggest that there is no downside to always using the
attentional encoder–decoder variant for historical normalization.
17To clarify: the result of the chi-squared test is not “wrong”, as the worst base model (among the five training

runs evaluated here) probably does perform significantly worse than the best attentional model. It is just
misleading to apply it here, in the sense that these two models are not representative of the average results
that you would obtain from repeating these experiments several times with different initializations. The
question we ask of the chi-squared test—i.e., is the difference between these particular initializations of the
neural networks significant?—is just not the question we are ultimately interested in.

18This assumes the scores of the different training runs follow a normal distribution, which is not strictly known,
but not an unreasonable assumption.

105

Chapter 6 Encoder–decoder model

Dataset Base model Attentional model

Best single Ensemble Best single Ensemble

DEA 87.98% 88.64% 88.14% 89.11%
DER 86.34% 87.68% 87.25% 88.40%
EN 93.80% 94.48% 94.02% 94.82%
ES 93.85% 94.33% 94.32% 94.46%
HU 87.56% 89.57% 89.36% 90.64%
IS 84.99% 85.79% 85.73% 85.73%
PT 93.87% 94.50% 94.01% 94.67%
SLB 89.90% 90.77% 89.85% 90.60%
SLG 94.88% 95.40% 95.39% 95.62%
SV 87.71% 89.00% 89.31% 89.62%

Avg. 𝛥 – +0.93 – +0.63
Avg. ER – -9.34% – -6.80%

Table 6.2: Validation accuracy of model ensembles compared to the best individual model;
“Avg. 𝛥” shows the average difference to the best individual models (in percentage
points), while “Avg. ER” gives the average error reduction (in percent); best result
per dataset highlighted in bold.

6.3.3 Ensembles

As we have seen above, one way to deal with a model’s variance during evaluation is to train
it repeatedly with different initializations and, instead of relying on a single training run, to
report average accuracy scores. Another option is to consider a model ensemble, i.e., using a
combination of the individually trained models to generate predictions (e.g., Hashem, 1997;
Goldberg, 2017, p. 60). The general idea here is that each individual model has learned slightly
different things, and by combining the knowledge of all of them, we can obtain a model that
generalizes better. Another view is that an ensemble “smoothes out” the individual errors made
by each model.

To test if ensembling can help in our case, I combine the models trained in Sec. 6.3.1 using an
ensemble averaging approach. Each model outputs a probability distribution over the set of
possible (normalized) characters; in this approach, each model is run independently on the
input data and the output probabilities from all models are averaged to form the output of
the ensemble. This does not require any internal modifications of the involved models, which
means it can be used with any type of model and decoding technique.

Table 6.2 shows the accuracies of the model ensembles. In almost all cases, the ensemble
performs better than the best of the five individual models it is composed of. The only exception
here is the ensemble of the attentional models for Icelandic, which “only” performs equally well
as its best component (but note that the latter also is an extreme outlier in terms of accuracy,
cf. Fig. 6.9). Overall, this is a strong result in favor of the ensembling approach.

In most cases, the attentional ensemble performs better than the base ensemble for the same
dataset. However, this does not hold true for Icelandic and Slovene/Bohorič, where the base

106

6.3 Analysis

ensembles slightly outperform the attentional ones. Still, the general tendency that using the
attention mechanism is advantageous holds for ensembles as well.

Finally, it should be noted that ensembling could be performed in many other ways than the one
evaluated here. The combination of models could be done using a weighted average, possibly
giving more weight to better-performing models. The individual models need not be the result
of fully independent training runs, but could also be multiple snapshots of the same model
saved at different epochs during the training process—this would reduce the overall training
time considerably, as only a single full training run is needed. The models do not even have to
be of the same type; an ensemble could combine models trained with different hyperparameter
settings, or even models of completely different architectures, as long as all of them output a
probability distribution over identical output classes. It is left up to future research to determine
if more sophisticated ensembles could improve performance even further.

6.3.4 Effect of decoding technique

All evaluations performed so far have used greedy decoding for their predictions, i.e., they
simply choose the best normalized character (as predicted by the model) at each timestep
until the full normalized word form is generated. Sec. 6.1.3 discussed this in more detail and
introduced beam search and lexical filtering as possible enhancements to the decoding process.
Here, I will analyze if these techniques actually improve the model’s performance.

First, I use all of the models trained in Sec. 6.3.1 and evaluate them again, but this time using
beam search decoding (with a beam size of five). The distributions of the resulting accuracy
scores vary from those presented in Fig. 6.9, but the general conclusions do not change: the
standard deviations cannot be shown to be significantly lower or higher compared to those
using greedy search (as shown in Tab. 6.1), and looking at the average scores, the attentional
model still significantly outperforms the base model. Comparing the two decoding techniques,
the average scores for beam search are indeed higher than those for greedy decoding. However,
as the evaluation above has shown that ensembles are preferable to any model in isolation, I
will focus my evaluation on the model ensembles here.

Table 6.3 shows the accuracies of the model ensembles for various decoding techniques. In
addition to greedy and beam search decoding, I also combine beam search with lexical filtering,
using the modern resources described in Sec. 3.5 as the basis for the lexical filters.

The results show that beam search performs better than greedy search in almost every instance;
in cases where greedy search is better or equally good, this is only by a tiny margin (of ≤ 0.2 pp).
On the other hand, the improvements are relatively small: for the base ensemble, beam search
gets an error reduction of only 3.3% when averaged over all datasets, while the attentional
ensemble gets only 0.6%. In comparison, the introduction of the ensembling technique achieved
an average error reduction of 9.3% and 6.8%, respectively (cf. Tab. 6.2), making it potentially
more rewarding than the choice of decoding technique.

Lexical filtering does not generally seem to help, and even decreases accuracy for most datasets.
Indeed, whether the filtering is helpful seems to depend most on the dataset: it improves
accuracy for German/Anselm, English, Icelandic, and Portuguese, though in general, the gains
are pretty small, with the Anselm dataset in the base ensemble showing the most improvement

107

Chapter 6 Encoder–decoder model

Dataset Base ensemble Attentional ensemble

Greedy Beam Beam+Filter Greedy Beam Beam+Filter

DEA 88.64% 88.92% 89.43% 89.11% 89.31% 89.76%
DER 87.68% 88.33% 87.46% 88.40% 88.51% 87.78%
EN 94.48% 94.73% 94.97% 94.82% 94.81% 94.91%
ES 94.33% 94.42% 94.38% 94.46% 94.61% 94.34%
HU 89.57% 90.08% 87.58% 90.64% 90.81% 88.10%
IS 85.79% 85.97% 86.09% 85.73% 85.63% 85.84%
PT 94.50% 94.67% 94.80% 94.67% 94.71% 94.87%
SLB 90.77% 90.91% 89.71% 90.60% 90.58% 89.44%
SLG 95.40% 95.55% 91.89% 95.62% 95.62% 91.68%
SV 89.00% 89.62% 87.39% 89.62% 89.62% 88.02%

Avg. 𝛥 – +0.30 -0.95 – +0.05 -0.89
Avg. ER – -3.34% +10.58% – -0.58% +10.34%

Table 6.3: Validation accuracy of model ensembles for different decoding techniques; greedy
decoding, beam search decoding, and beam search decoding combined with lexical
filtering (cf. Sec. 6.1.3), using the corpora from Sec. 3.5 as its basis; “Avg. 𝛥” shows
the average difference to greedy decoding (in percentage points), while “Avg. ER”
gives the average error reduction/increase (in percent); best result per dataset and
model type highlighted in bold.

(+0.65 pp compared to beam search without the filtering). On the other hand, when lexical
filtering is not beneficial, the loss in accuracy can be pretty severe: for the attentional models,
Hungarian loses 2.71 pp, while Slovene/Gaj loses 3.94 pp.

It makes sense that the performance of the filtering step depends heavily on the evaluated
dataset, as its effectiveness is dependent on the overlap between the dataset’s vocabulary
and the content of the full-form lexicon. Whenever the filtering decreases the accuracy, the
lexicon is missing more word forms from the target dataset than it helps to correct nonsensical
word forms. The percentage of these “missing” word forms was shown in Tab. 3.7; indeed, both
Hungarian and Slovene/Gaj have a high percentage of word forms not covered by the lexical
resources (7.2% and 6.3%, respectively), while the percentages are comparatively low for those
datasets that benefit from filtering. This is not a strict correlation, though: the highest rate of
missing tokens is found in the case of Swedish (8.3%), which does lose accuracy from lexical
filtering, but less so than other datasets. A possible explanation is that the majority of tokens
that cannot be normalized correctly with the filter was not correctly normalized without the
filter either.

In general, comparing the effects of the lexical filtering to the coverage of the modern resources
reported in Tab. 3.7, a good rule of thumb appears to be that we should aim for a coverage
greater than 96%—preferably even greater than 98%—in order to expect some improvements or,
at least, not risk a significant loss of accuracy from the filtering step.

108

6.4 Summary

6.4 Summary

In this chapter, I introduced an encoder–decoder model for historical normalization, tuned its
hyperparameters, and analyzed its variance as well as the effect of different decoding strategies.
The model uses character-level inputs, standard LSTM units for the encoder and the decoder,
and optionally uses an attention mechanism over the encoded representations (Sec. 6.1).

Hyperparameter tuning was performed using the TPE algorithm on a reduced subset of five of
the historical datasets (Sec. 6.2). First, three model parameters were tuned: the depth (i.e., the
number of LSTM layers) of the encoder and decoder, the size of the hidden layers, and the size of
the embedding layers. Afterwards, two learning parameters are tuned on the best-performing
model configuration: dropout rate and learning rate. Overall, the results were stable enough to
justify selecting a single hyperparameter configuration for all further experiments and datasets,
which is summarized in Sec. 6.2.5.

In the analysis part (Sec. 6.3), the training of the encoder–decoder model was shown to have
a high variance, sometimes leading to significantly different accuracy scores between two
training runs of the same model configuration. Model ensembling is a possible solution to
this problem, as it consistently outperformed the accuracy of the best single training run.
The attentional model sometimes outperformed the base model without attention, and was
roughly equal in performance in other cases. Finally, when it comes to decoding techniques,
beam search almost always leads to minor accuracy improvements over greedy search. The
same cannot be said for lexical filtering, which should be used with caution, as it increased
normalization accuracy on some datasets but noticeably decreased it on others.

109

Chapter 7

Comparative analysis

Unfortunately, errors committed by most MT systems span the gamut from
innocuous to severe, and current systems seldom realize when they commit
severe errors. Thus, a 95% [fully automatic high-quality translation] system in
the worst case produces a translated text that is analogous to a jar of cookies,
only 5% of which are poisoned. Such a cookie jar is useless without a complete
professional analysis to localize the poisoned ones.

— Carbonell and Tomita (1985)

The previous chapters have introduced the normalization task, discussed challenges and previ-
ous work, and described and analyzed an encoder–decoder neural network model for normal-
ization. In this chapter, I will compare this neural network model to previously established
normalization methods.

This evaluation will not be confined to quantitative measures of model performance, but also
consider qualitative differences in the model outputs, to help answer questions such as:

• What kinds of errors do the models make? Are most erroneous normalizations just
slightly off, or complete nonsense? Can different evaluation measures help to highlight
different qualities of the normalized words?

• Do the models have different strengths and weaknesses? Do different models work best
on different languages? When model A outperforms model B, does it get all the same
words correct as B plus a few more, or is there much less overlap?

• What types of words are most problematic? Can we predict when a normalization is likely
to be wrong? Is there a common theme that can help us identify areas of improvement?

To approach these questions, I will first perform an extensive analysis on the development
sets of all datasets. This includes analyzing individual examples from the datasets to find out
more about the qualitative aspects of the automatic normalization, as well as testing different
measures and approaches of quantifying a model’s performance that could then be tested on
the actual test sets.

Sec. 7.1 will first give an overview of the individual normalization methods that will be com-
pared, while Sec. 7.2 evaluates them on the development sets and discusses advantages and
disadvantages of different evaluation measures, such as word accuracy and character error rate.
The following sections then delve deeper into a qualitative error analysis: Sec. 7.3 presents a

111

Chapter 7 Comparative analysis

manual error classification on the German and English datasets; Sec. 7.4 looks at word stemming
as a means of detecting normalization errors that are morphological in nature; Sec. 7.5 analyzes
the models’ capabilities to generalize by looking at words that were unknown during training,
or words with unknown normalization patterns; Sec. 7.6 investigates ways to automatically
predict whether a generated normalization is likely to be wrong; and Sec. 7.7 looks at the overlap
of correctly and incorrectly normalized tokens between normalization methods, analyzing
whether different normalizers are mostly correct on the same set of historical tokens.

7.1 Overview of normalization methods

All evaluations are performed by training each of the following tools and models separately on
the training sets of each historical dataset described in Sec. 3.1:

1. The Norma tool (cf. Sec. 4.2.1), where I distinguish between three different settings:

a) NormaM: using only the “mapper” component of Norma, as it implements a simple
wordlist substitution, which is a trivial normalization method that serves as a
“low-effort” baseline;

b) NormaR+W: using only the rule-based (R) andWeighted-Levenshtein-based (W) com-
ponents of Norma, as those are the actual character-based normalization algorithms
provided by the tool; and

c) NormaAll: using all three components together, as this is the way Norma is intended
to be used in production.

For the rule-based and Levenshtein-based components, the modern datasets introduced
in Sec. 3.5 are used as Norma’s lexicons.

2. The cSMTiser tool with default settings (cf. Sec. 4.2.2), using the development set as the
tuning set for the Moses decoder, with two different scenarios:

a) CSMT: training a (character-based) language model on the training data (default);
or

b) CSMT+LM: training a (character-based) language model on the training data plus
the word forms from the modern datasets (cf. Sec. 3.5), as the authors claim this is
the easiest way to improve the system’s accuracy.1

3. The encoder–decoder model with attention (cf. Sec. 6.1.2) using the hyperparameter
settings described in Sec. 6.2.5, trained using early stopping (cf. Sec. 5.3.6) by validating
on the development set, and evaluated using beam search (cf. Sec. 6.1.3) in the following
scenarios:

a) NNAvg: The average of five independently trained models, as an indicator of the
average performance to be expected when training only a single encoder–decoder
model;2

1https://github.com/clarinsi/csmtiser/blob/8545f89/config.py#L43
2However, as this is computationally expensive to train and evaluate, I only include this figure in some of the
evaluations.

112

https://github.com/clarinsi/csmtiser/blob/8545f89/config.py#L43

7.2 Evaluation measures

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

NormaM 83.48 82.51 92.60 92.09 73.93 82.39 91.90 80.77 94.12 83.65
NormaR+W 77.15 84.11 90.31 88.98 80.82 82.93 87.57 85.86 90.10 83.61
NormaAll 88.26 87.27 94.51 94.52 86.20 86.07 94.57 88.41 92.04 87.88

CSMT 89.39 88.65 95.01 95.08 91.48 87.12 95.27 92.06 96.26 91.98
CSMT+LM 86.63 88.88 95.04 95.17 91.55 87.02 95.30 91.97 96.28 91.85

NNAvg 87.90 87.08 93.91 94.04 89.02 84.50 93.99 89.65 95.17 88.75
NNEns 89.31 88.51 94.81 94.61 90.81 85.63 94.71 90.58 95.62 89.62
NNEns+F 89.76 87.78 94.91 94.34 88.10 85.84 94.87 89.44 91.68 88.02

MFN 95.46 96.41 98.71 97.40 98.62 93.12 97.74 98.49 99.13 99.73

Table 7.1: Word accuracy of different normalization methods (cf. Sec. 7.1) on the development
sets of the historical datasets, in percent; best result for each dataset highlighted in
bold; bottom line gives the theoretical maximum accuracy obtainable when the most
frequent normalization (MFN) was chosen for each historical type (cf. Sec. 3.4).

b) NNEns: An ensemble of five independently trained models (cf. Sec. 6.3.3), as this was
shown to perform significantly better than any single model in isolation; and

c) NNEns+F: The same ensemble evaluated with lexical filtering (cf. Sec. 6.1.3), using
the training data plus the modern datasets (cf. Sec. 3.5) as the lexicon.

7.2 Evaluation measures

All evaluations so far—e.g., during the hyperparameter tuning in Sec. 6.2—have looked at word
accuracy, i.e., the percentage of normalized word forms that exactly match the gold-standard
target normalizations from the evaluation dataset. I will first present the same evaluation
for all the different models in my comparison, discuss the results, and then go on to consider
shortcomings of the accuracy measure and potential alternatives.

Table 7.1 shows the word accuracy of different normalization methods on the development
sets of the historical datasets. The results show a pretty clear trend: despite the extensive
hyperparameter tuning process and the addition of techniques such as model ensembling, beam
search, and lexical filtering, the CSMT-based approach outperforms the neural network on all
datasets except one, German/Anselm. A slight caveat is that the systems are evaluated on the
same subsets of the data that are also used for tuning (in cSMTiser) or early stopping (in the
encoder–decoder models), potentially biasing the results a bit—refer to the final evaluation in
Chapter 10 for a comparison without these drawbacks.

On some datasets, the advantage of cSMTiser appears to be quite substantial, with improvements
of almost 2.4 pp on Swedish and about 1.5 pp on Icelandic and Slovene/Bohorič compared to the
best encoder–decoder setup. In other cases, the gains are smaller, with German/Anselm being

113

Chapter 7 Comparative analysis

the only dataset that sees a small improvement (+0.37 pp) for the encoder–decoder approach
over cSMTiser, and even then only with the addition of the lexical filtering step. Curiously,
adding the same modern German lexicons to the language modeling step of cSMTiser decreases
its performance significantly (by almost 2.8 pp), which is an unusual result; in all other cases,
the accuracy scores of the CSMT models with or without the additional modern language data
are within approximately ±0.2 pp of each other. As with the lexical filtering in the encoder–
decoder model, adding the extra contemporary data to the language model of cSMTiser is not
always beneficial, and any gains obtained from this addition are relatively small.

The baselines provided by the Norma tool are also very strong, especially in the NormaAll setting
that uses all of Norma’s components. On many datasets, it even outperforms the average single
encoder–decoder model, and in the case of Icelandic, it also outperforms the encoder–decoder
ensemble. However, the NormaAll setting also makes use of the trivial (but effective) wordlist
mapping technique, which could conceivably be used to improve the other systems as well, a
hypothesis that is investigated in the error distribution analysis in Sec. 7.7. Therefore, it seems
fairer to compare the cSMTiser and encoder–decoder results to the NormaR+W scenario, i.e., the
character-based components of Norma. Here, the accuracy scores are often considerably worse,
often in the range of 2–5 pp compared to NormaAll and worst for German/Anselm, where
NormaR+W only achieves 77.2% accuracy compared to 88.3% by NormaAll. This highlights that
the mapping approach is actually a crucial part of Norma’s performance.

The different scenarios of the encoder–decoder model were already compared in Secs. 6.3.3
and 6.3.4, except that the NNAvg score is now also based on beam-search decoding instead
of greedy decoding, which does not change the overall conclusions. The final evaluation in
Sec. 10.2 will show that similar effects can be observed on the test set splits.

7.2.1 Character error rate

While word accuracy is simple and easily interpretable, it is also a very crude measure, as it
classifies normalizations into “correct” and “incorrect” without any consideration for the type
of mismatches in the incorrect forms. For example, if a model correctly normalizes the stem of a
word but gets the inflectional suffix wrong (e.g., kynges > kings instead of the target king’s), this
is treated the same way as a normalization that is completely inappropriate (e.g., ayeins > aliens
instead of the target against), even though the former is still somewhat useful while the latter
is not. Sometimes, the notion of a single “correct” normalization itself is challengeable, e.g.,
when the contemporary language allows for multiple acceptable variants (consider the English
-ize/-ise in verbs such as recognize/recognise). The discussion of normalization guidelines in
Sec. 2.4 presented many more examples of this kind.

A more fine-grained evaluation measure that is also frequently applied to the normalization
task (e.g., Pettersson et al., 2014a; Ljubešić et al., 2016b; Tang et al., 2018) is the character error
rate (CER). In analogy to the word error rate sometimes used in evaluating machine translation
systems, the character error rate can be defined as the Levenshtein distance between a predicted
normalization and a gold-standard (or reference) normalization divided by the length of the
reference normalization; cf. Equation 7.1.

114

7.2 Evaluation measures

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

NormaM 0.395 0.304 0.396 0.323 0.415 0.393 0.381 0.460 0.455 0.295
NormaR+W 0.396 0.322 0.439 0.423 0.322 0.407 0.466 0.525 0.425 0.331
NormaAll 0.393 0.321 0.471 0.413 0.328 0.422 0.499 0.553 0.436 0.310

CSMT 0.350 0.258 0.397 0.408 0.251 0.421 0.488 0.577 0.541 0.244
CSMT+LM 0.379 0.262 0.401 0.413 0.261 0.429 0.490 0.568 0.546 0.240

NNEns 0.367 0.258 0.418 0.435 0.263 0.410 0.455 0.504 0.504 0.230
NNEns+F 0.397 0.306 0.473 0.455 0.292 0.431 0.501 0.524 0.407 0.320

Table 7.2: Average character error rate (CER) (as defined in Eq. (7.1)) on the subset of incorrect
normalizations; lowest value for each dataset highlighted in bold.

CER(�̂�, 𝑦) =
LD(�̂�, 𝑦)

|𝑦|
(7.1)

Here, �̂� is the normalization predicted by a model, while 𝑦 is the correct reference normalization.
TheCER for an entire dataset is then calculated as the average CER of all tokens in that dataset.

While this measure appears to complement word accuracy well by providing insight about
character-level mismatches, I argue that it is not very useful when applied to a dataset as a
whole. This is because for any normalization system that already achieves a high word accuracy,
the character error rate will highly correlate with the accuracy score, simply due to the fact that
CER(�̂�, 𝑦) = 0 whenever �̂� = 𝑦. For example, comparing the word accuracy scores in Tab. 7.1
with the same configurations evaluated using CER, they correlate with Pearson’s 𝑟 ≈ −0.93. In
other words, the average CER over the whole dataset conflates the questions of (i) how many
word forms are normalized correctly, and (ii) how different the incorrectly predicted word
forms are from their gold-standard targets. Since word accuracy can already answer the former
question, we should focus on using character error rate to address the latter question, which
can be done by calculating the average CER on the set of incorrect normalizations only.

Evaluation

Table 7.2 shows the results of this evaluation.3 The distribution of the lowest CER scores, high-
lighted in bold, shows a different picture compared to that of the global word accuracy scores.
Here, the mapper component of Norma is often closest to the correct target normalization, with

3The figures for the Slovene datasets in this and most other character-level evaluations are, unfortunately, a bit
distorted. The test and development sets of Slovene contain a few instances (about 200) of historical word
forms without any gold-standard normalization; this was done in cases where the correct normalization
required a change in token boundaries that cannot be performed without knowledge of token context (Nikola
Ljubešić, personal communication, June 20, 2017). I did not want to exclude these instances completely
so that word-level and character-level evaluations remain comparable; instead, I treat the gold-standard
normalizations for these instances as a string of length 1 that does not match any other character in the
dataset.

115

Chapter 7 Comparative analysis

Dataset Original Target Predictions

without filter with filter

DEA vnvro unfroh unvor unverfroren
DER reinblumen rheinblumen reinblumen reinbekommen
EN lefftenaunte lieutenant leftenant left
HU mordosnac mardosnak mordosnak mord
PT emgelica angélica ingélica inglesa
SLG možitvijo možitvijo možitvijo moži
SV halfbrodher halvbroder halfbroder half roder

Table 7.3: Examples for incorrect normalizations with a higher character error rate (CER) in
the encoder–decoder ensemble with filtering

CSMT and NNEns also having the lowest score on some datasets. The character-level algorithms
of Norma, on the other hand, often show a much higher error rate; e.g., on Spanish, NormaM
has a CER of 0.32, while it is 0.42 for NormaR+W.

Overall, there is no clear “winner” in terms of lower error rate between the CSMT approach
and the neural models. However, comparing the encoder–decoder ensemble with and without
lexical filtering, we observe that adding the filter almost always increases the CER, sometimes
considerably so (e.g., from 0.42 to 0.47 on English, and from 0.23 to 0.32 on Swedish). This
is remarkable, as the filtering is intended to guide the normalization process by restricting
the possible outputs to known “valid” word forms, consequently preventing the model from
generating nonwords, i.e., string that do not form valid words in the target language. The much
higher error rates show that, when the model is wrong, the filtering step can tend to produce
normalizations that are farther from the desired target form.

Table 7.3 shows some example normalizations for this phenomenon. When it is incorrect, the
neural network model with lexical filtering sometimes produces very short normalizations. For
example, on English, the NNEns model normalizes lefftenaunte > leftenant, which is incorrect
as the expected normalization is lieutenant, but still shows some reasonable applications of
spelling transformations (e.g., -naunte > -nant). It is also a non-word, which the lexical filtering
is supposed to prevent, but the effect is arguably more harmful in this particular case, as the
model with filtering only produces left instead.

We can also observe the opposite case, i.e., the filtering step producing unreasonably long
suggestions, as in the German example vnvro > unfroh, which the NNEns model normalizes as
unvor, but as unverfroren when filtering is used. In the German lexicon, the shortest entry that
starts with unv- is 9 characters long, with most entries being 12 characters or more. Due to
this, once the beam search algorithm has removed any alternatives not starting with unv- (and
the prediction without filtering suggests that the model favors this sequence), it cannot stop
generating characters until it has reached one of these entries, however unlikely these now
might be.

The examples also illustrate the issue of compounding, which is usually a productive process
and therefore challenging for approaches relying on a lexicon. The Swedish halfbrodher >
halvbroder ‘half brother’, for example, is partly correctly normalized by the encoder–decoder

116

7.2 Evaluation measures

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

NormaM 0.016 -0.016 0.036 0.026 -0.005 0.080 0.031 0.011 0.043 0.003
NormaR+W -0.036 -0.008 0.048 0.030 -0.145 0.064 0.043 0.023 0.164 0.014
NormaAll 0.007 0.014 0.127 0.093 -0.106 0.122 0.112 0.038 0.178 0.099

CSMT -0.032 -0.091 0.024 0.029 -0.197 0.129 0.055 -0.053 0.014 -0.059
CSMT+LM -0.031 -0.075 0.025 0.042 -0.190 0.125 0.057 -0.051 0.011 -0.062

NNEns 0.004 -0.090 0.050 0.079 -0.167 0.114 0.047 -0.083 0.005 -0.052
NNEns+F 0.039 0.001 0.135 0.139 -0.111 0.150 0.116 0.004 0.154 0.134

Table 7.4: Absolute difference between the character error rate (CER) of the models’ incorrect
predictions and that of the unnormalized word forms, when compared to the gold-
standard normalization; negative scores indicate that the model is better (i.e., has a
lower CER), positive scores indicate that unnormalized forms are better.

model as halfbroder, but as the target word is not covered by the modern lexical resource,
adding lexical filtering produces half roder instead. The lexical filter, as it is implemented here,
does not try to account for compounding in any way. A possible solution would be to explicitly
allow compound formation from words in the lexicon, but care has to be taken with such an
approach, as allowing arbitrary conjoined lexicon entries can quickly lead to almost any string
being passed through, defeating the purpose of the filter. I do not explore this issue further.

Magnitude of the errors

The examples from Table 7.3 also suggest that, for the model with lexical filtering, it might
actually have been better to not modify the source token at all—or, better yet, lift the strict
lexicon requirement—than to produce a normalization that is highly inappropriate. This leads
us to the question if we can detect these inappropriate candidates somehow without referring
to the gold-standard normalization, a question I will come back to in Sec. 7.6.

We can also use the character error rate to assess whether cases like these are representative
(for a normalizer’s “incorrect” suggestions) or rather outliers. To do that, we can again look
at the subset of incorrect predictions, but calculate the CER between the original (historical)
word forms and the gold-standard normalizations, then subtract that from the CER of the
normalizer’s predictions. In other words, we estimate whether the incorrect normalizations
are still “closer” to the correct target word forms than the unnormalized tokens. If not, the
normalization has arguably done more harm than good in these cases.

Table 7.4 shows these absolute differences. Negative scores indicate that on average, the
model’s incorrect normalizations still have a lower CER than the unnormalized word forms.
Remarkably, this is only consistently the case for the Hungarian dataset and, to a lesser extent,
for German/RIDGES. On all other datasets, the improvements from the normalizers are either
very small, or the error rate is actually lower for the unnormalized tokens. This effect appears
to be relatively independent from the choice of normalization method.

117

Chapter 7 Comparative analysis

These figures show that if we could reliably detect normalization candidates that are very likely
to be incorrect, the average character error rate could actually be improved by falling back on
the historical word form—i.e., not normalizing the token at all—in these cases.

7.2.2 Further alternatives

Character error rate is not the only character-level evaluation measure that could be applied to
normalization. I also experimented with a measure based on the length of the longest common
subsequence (LCS) of the candidate and reference word forms, again normalized by the length
of the reference word form. The idea behind this approach is that mismatches in the middle of
a token are probably more severe than those at the beginning or the end, as the former are
more likely to affect the root of the word form, while the latter could be the result of wrongly
normalized affixes.

An evaluation with this LCS-based measure showed that (i) when evaluated on the full dataset,
it correlates strongly with both word accuracy and character error rate (Pearson’s |𝑟 | > 0.95);
and (ii) when evaluated on the subset of incorrect normalizations, it still correlates strongly
with CER (Pearson’s 𝑟 ≈ −0.89). A possible explanation is that for normalization candidates
with few errors, these errors indeed tend to occur more often towards the beginning or end
of a word form, causing the length of the LCS to be high while the edit distance is low. All in
all, however, the LCS measure did not seem to provide sufficient additional insight over the
CER measure to warrant a more detailed analysis.

Due to the parallels of the normalization task with (character-level) machine translation, it
stands to reason that evaluation measures commonly used in machine translation could be
applied to normalization as well, such as the popular Bleu score (Papineni et al., 2002). However,
here the differences between the two tasks are more significant than their commonalities: e.g.,
measures like Bleu are invariant to word reordering, with the justification that in translations
of a sentence, the contained phrases need not necessarily appear in the same position for the
translations to be equivalent. The same cannot be said for characters in a normalized word
form. Here, an acceptable normalization will probably always be close to the gold-standard
normalization both in the number of matching characters and their position and ordering; a
property that Levenshtein distance (onwhich CER is based) alreadymeasures well. Furthermore,
even within the field of machine translation, measures like Bleu are not uncontroversial (see,
e.g., Callison-Burch et al., 2006). In conclusion, they do not seem like a good fit for evaluating
the normalization task.

Some papers (e.g., Pettersson et al., 2014a) also evaluate word-level normalization performance
in terms of precision, recall, and F-score. These measures are highly relevant when normalization
is done in the context of information retrieval—i.e., finding matching historical spellings in a
document given a contemporary word form—and can also be insightful when the normalization
process includes variant detection—i.e., the algorithm first decides if a historical word form is
actually a variant spelling or not—or when the normalizer returns multiple candidates. However,
in the evaluation scenario presented here, each historical word form is assigned exactly one
normalization candidate; furthermore, compared to labeling tasks such as POS tagging, the
number of gold-standard target types is considerably higher and potentially unbounded. For
these reasons, I do not believe precision and recall scores are useful measures here.

118

7.3 Error classification

7.2.3 Limits of quantitative measures

Using character-level measures such as character error rate (CER) gives an impression of the
extent of errors a systemmakes, but not necessarily their quality. While a lower CERmeans that
normalization candidates are closer to their desired targets, even a single character can change
the meaning of a word significantly. For example, in the German/Anselm dataset, the neural
network ensemble normalizes vrô > froh ‘glad’ as früh ‘early’ and yrre > ihre ‘her/their’ as
irre ‘mad’. These errors distort themeaning significantly, but result in a Levenshtein distance of 1
to the reference normalization. Similar examples from English include gode > god normalized
as good and veale > veil normalized as veal.

On its own, a character-level evaluation measure based on Levenshtein distance does not give
an indication of the nature or the distribution of errors. Therefore, the remainder of this chapter
will explore options to analyze normalization errors in more detail.

7.3 Error classification

In order to get an overview of the nature and type of normalization errors that occur, I choose
to first manually evaluate small samples of the normalized data from the development sets of
the German and English corpora.4 For each dataset and model, I investigate a randomly chosen
subset of 100 incorrect normalizations—i.e., normalizations that do not match the gold-standard
provided by the dataset—and classify them into one of these five categories:

1. Valid: predictions that should actually be considered correct, either because the gold-
standard form is questionable (e.g., because it contains an obvious spelling error) or the
gold-standard and prediction can be considered perfectly interchangeable.

Examples:

• EN: king’s vs. king’s (two different characters used for the apostrophe)

• DER: vbermaſſigẽ > übermässigen predicted as übermäßigen (ss can be considered
an acceptable substitution of ß5)

2. Good: predictions that could be considered correct, depending on context. Generally, I
chose this category whenever I would consider the prediction reasonable given only the
historical word form and without knowing the gold-standard normalization or the word
context.

Examples:

• EN: wyse > ways predicted as wise (reasonable alternative based on the spelling)

• EN: be > are predicted as be (undecidable without context)
4For corpora in other languages, I did not feel confident enough in my language abilities to properly judge all
incorrect normalizations.

5While German orthography has hard rules about when to use ß vs. ss, some varieties—like Swiss Standard
German—only use ss, and substituting ß > ss very rarely creates ambiguity.

119

Chapter 7 Comparative analysis

• DEA: ſůchent > sucht predicted as suchend (indicative verb form vs. present partici-
ple; graphematically correct normalization without considering context)

3. Fair: predictions that are incorrect because they result in a non-word, but still transform
some parts of the word form correctly.

Examples:

• EN: cholde > should predicted as chould

• EN: meynteigne > maintain predicted as meintain

• DEA: geſchriffte > schrift predicted as geschrift

4. Bad: erroneous predictions, either from applying wrong transformations, producing
nonsensical word forms, modifying the word when it does not need to be normalized, or
not modifying the word form at all when it needs to be changed.

Examples:

• EN: faulsly > falsely predicted as faulsly (missing any normalization)

• EN: t’acertaine > to ascertain predicted as trace taint

• DEA: yecklich > jeglich ‘any’ predicted as igel ‘hedgehog’

5. Other: historical tokens that are non-words (e.g., Roman numerals) or clearly foreign-
language material (e.g., Latin) and probably should not be counted for an evaluation.

Naturally, this classification involves some degree of individual judgement and is not fully
objective. The Good category in particular leaves room for interpretation; e.g., instead of
judging based on similarity alone, a historical linguist might consider sound changes or known
historical spelling variants to evaluate the plausibility of a candidate word form. I take a more
naive approach here, using only my intuitive judgement and, when in doubt, erring on the side
of accepting a normalization as “Good”.

7.3.1 Results

Figure 7.1 visualizes the results of this analysis for incorrect normalizations of the CSMT model
and the encoder–decoder model with and without filtering. I also looked at samples from
Norma and the CSMT+LM model, but did not find significantly different patterns, so I did not
explore them further. Due to the small sample size and the degree of subjectivity involved,
findings here should not be seen as definitive, but rather as indications that could prompt
further investigation.

In each configuration, there is a small number of word forms in the Valid category, particularly
in the English dataset, where many of these cases stem from different characters used for the
same symbol or punctuation marks that—despite the data being tokenized—have not been split
off from a word form. For English, this category amounts to approx. 10% of normalization
errors for all three models, which seems huge if it was representative for the full dataset. This
shows the amount of care that must be taken in preparing training and evaluation datasets,
and that despite efforts—such as Unicode normalization (cf. Sec. 3.2)—to eliminate differing

120

7.3 Error classification

Valid Good Fair Bad Other
0

10

20

30

40

50

60

70
#
of
in
st
an
ce
s

EN

CSMT
NNEns
NNEns+F

Valid Good Fair Bad Other
Error class

0

10

20

30

40

50

60

70

#
of
in
st
an
ce
s

DEA

Valid Good Fair Bad Other
Error class

DER

Figure 7.1: Error classification for randomly chosen samples of 100 incorrect normalizations,
on the English and German datasets.

representations of the same characters, some cases (e.g., apostrophes) still managed to slip
through.

Remarkably, the Good category usually represents the majority of all errors, with about
30–45 instances on English and 45–70 instances on the German datasets. This suggests that
there are many more reasonable normalization candidates than predicted by the word accuracy
score. A lot of these cases involve differences in inflection, which could also explain the
higher figures for German, since German is morphologically more complex than English.
Furthermore, correct inflectional forms can potentially be determined by considering word
context, as features of surrounding words (such as case, gender, the presence of pronouns, etc.)
might inform the correct inflection of the word form to be normalized. While the evaluation of
MFN accuracy (cf. Tab. 3.3 and the discussion on p. 46) suggested that context might only be
required for reaching the last 3% of word accuracy, the analysis here suggests that in practice,

121

Chapter 7 Comparative analysis

inflectional differences and other ambiguities that are unresolvable without context account
for a much higher percentage of errors.

“True” errors, i.e., predictions in the Bad category, are only a minority, although they still
make up between 25 and 40 cases on English. In the best case, the models have left a variant
word form unchanged; in the worst case, the normalizations can be considered highly inap-
propriate, such as the example of t’acertaine normalized as trace taint. Examples of this kind
are most frequent with the NNEns+F model, as the lexical filtering forces the model to choose
something within the lexicon, no matter how far from the historical word form it may be. This
is particularly problematic for proper nouns; e.g., we can find colford > culford normalized
as coloured, or mongommery > montgomery normalized as mango merry. Depending on the
intended application, the effect of these mistakes can range from mildly amusing to highly
embarrassing.

Some errors also reflect inconsistencies or other problems in the annotated dataset. In Ger-
man/Anselm, the abbreviation xps for christus ‘Christ’ is sometimes also normalized as jesus,
leading to mismatches between these two alternatives. Extinct word forms in Anselm are
normalized to Middle High German lexicon forms (cf. Sec. 3.1.2), which also leads to confusion
in some cases. For example, ſuſſiglich (and several spelling variants, such as ſuſziclich, ſ euſſeklich,
ſueſſigtlich, etc.) is normalized to the Middle High German form süezeclich ‘sweetish’; however,
the graphematically similar forms ſuſzlich, ſ euzlich, ſuzzleich etc. are normalized to contem-
porary süßlich ‘sweetish’ instead. This is motivated by the normalization guidelines, as the
former instances still show an additional morpheme (-ig/-ic/-ek) that is not present in the latter
forms, but due to their similarity, the encoder–decoder model incorrectly predicts ſuzzleich >
süezeclich. This shows generalization from the training data, albeit in an unintended way that
is caused by the mixing of Middle High German and Modern German forms.

Finally, comparing the classifications of Fig. 7.1 for different normalizers, the general trends are
usually similar, and while there are some outlier results (such as NNEns having noticeably more
Bad predictions on English compared to the other two models), no reliable conclusion can be
drawn due to the small sample size. On the contrary, as the proportion of the error categories
is more often comparable than it is different, the analysis suggests that if there is a significant
difference in error types between the models, it is probably relatively minor.

7.4 Stemming

A scenario that has been put forward above is that of a normalization candidate matching its
gold-standard target except for, e.g., an inflectional affix. One way to estimate the extent of
these occurrences is to compare the word forms only on the basis of their word stems. An easy
way to implement this is by using an automatic stemming algorithm.

For my experiments, I choose to perform stemming automatically using Snowball stem-
mers (Porter, 2001); more precisely, using the language-specific stemming algorithms provided
on the Snowball website.6 These algorithms cover most of the languages in the historical

6http://snowballstem.org/

122

http://snowballstem.org/

7.4 Stemming

Method Dataset

DEA DER EN ES HU PT SV

NormaM 8.07 16.36 8.19 28.12 3.03 3.79 7.08
NormaR+W 14.89 34.02 8.53 31.00 19.73 6.86 19.02
NormaAll 18.31 32.77 8.58 45.92 20.30 11.23 22.43

CSMT 18.32 36.30 7.98 44.50 19.82 6.72 25.00
CSMT+LM 13.12 36.57 7.41 46.71 19.33 7.00 25.14

NNEns 17.24 33.33 8.02 39.65 17.97 5.58 18.88
NNEns+F 17.92 32.27 8.66 41.27 24.75 12.33 20.82

Table 7.5: Percentage of incorrect normalizations that match the word stems of their gold-
standard targets; datasets not represented here had no stemming algorithms for their
target languages.

datasets, namely German, English, Hungarian, Spanish, Portuguese, and Swedish—no stem-
ming algorithms were available for Icelandic and Slovene.7 For an evaluation based on word
stems, all gold-standard and predicted normalizations are run through the Snowball stemmer
of the respective target language before being compared to see if they match.

Table 7.5 presents the results of this evaluation. They can be interpreted in two ways: (i) as the
percentage of incorrect normalizations that have matching word stems; and (ii) as the error
reduction (in percent) of the results in Tab. 7.1 if accuracy was evaluated on the basis of these
word stems (instead of the full forms). Higher values are arguably better, in the sense that this
indicates more word forms that have at least their stems normalized correctly. I will first look
more closely at the differences between the datasets and some examples that were matched by
the stemming process, before taking a look at differences between the normalization systems.

7.4.1 Dataset comparison

Table 7.6 shows several examples for incorrect normalizations with matching stems from all
datasets in this evaluation; some of them will be discussed below.

English is among the datasets with the lowest percentage of matching word stems, which is
not too surprising, considering that English has relatively little morphology. Examples that
have been matched this way are the above-mentioned conflation of plural -s and genitive -’s (in
lordes > lords instead of the gold-standard lord’s), but also more sophisticated cases such as the
normalization recomaundehyde > recommend, which is counted as incorrect since the correct
target word form is recommended, but matches when using the stemming approach. Cases like
these demonstrate why an evaluation based solely on word accuracy falls short: surely the
prediction given by the system is highly useful here and should not be treated the same way as,
e.g., leaving recomaundehyde unnormalized.

7The exact transformations performed by the Snowball Stemmer depend on the language-specific algorithm, but
usually include suffix stripping and accent removal; cf. the examples in Tab. 7.6 or the descriptions on the
Snowball stemmer’s website.

123

Chapter 7 Comparative analysis

Dataset Original Target Prediction Stem

DEA ch euſſ küsse kuss kuss
DEA fu̇z fuß füße fuss
DEA gedingn̄ gedinges gedingen geding
DEA manicvaltec mannigfaltige mannigfaltig mannigfalt
DEA vorhte furcht fürchte furcht

DER beweiſung beweis beweisung beweis
DER derſelbig derselbe derselbige derselb
DER halb halber halbes halb
DER ſein seine sein sein
DER st eam̃en stämme stämmen stamm

EN begineing beginning begining begin
EN imagin imagine imagin imagin
EN lordes lord’s lords lord
EN possiblelie possibly possible possibl
EN recomaundehyde recommended recommend recommend

ES anima anima ánima anim
ES enbie envíe envié envi
ES esta está esta esta
ES memo memorias memorio memori
ES reziberas recibirás reciberás recib

HU atÿanak atyjának atyának aty
HU helÿen helyén helyen hely
HU iersalomba jeruzsálembe jeruzsálemba jeruzsál
HU wy̋tezy̋ vitézi vitézei vitéz
HU yduewzewlendewk üdvözülendőek üdvözülendők üdvözülendő

PT deixarão deixarão deixaram deix
PT paçara passara passará pass
PT respondera responderá respondera respond
PT sor senhora senhor senhor
PT tenh tenha tenho tenh

SV bemälte bemälde bemälda bemäld
SV thenne denna denne denn
SV tilsamman tillsammans tillsamman tillsamman
SV tingskiötta tingsköta tingskötta tingsköt
SV wendes vänds vändes vänd

Table 7.6: Examples of incorrect normalizations with matching stems; all predictions are from
the encoder–decoder ensemble without filtering.

124

7.4 Stemming

The examples also show some pitfalls of the stemming approach. For example, imagin > imagine
has not been modified at all by the encoder–decoder system, but is still counted as a match
here as the stemmer cuts off the final -e. Since the stemmer does not consider whether an input
string is actually a valid word form of the target language, but simply tries to apply a set of
rules to strip off known affixes, stem matching may lead to “false positives” when an incorrect
normalization happens to yield the same stem, but is not actually a valid word.

An interesting observation in Table 7.5 is that on German, the RIDGES dataset consistently
has about twice the percentage of matching stems of the Anselm dataset. This is almost
certainly a consequence of the different normalization guidelines followed by the two corpora,
as discussed before in Sec. 3.1.2. While RIDGES consistently adds or modifies morphological
inflection depending on word context, as in Ex. (1), the Anselm corpus always chooses the
graphematically closest word form as the immediate normalization, even if this leads to an
ungrammatical phrase when taken in context, as in Ex. (2):

(1) ſein
sein-e
his-fem.sg

tinctur
tinktur
tincture.fem.sg

(2) ſein
sein
his

hant
hand
hand.fem.sg

The correct inflection here depends onword context, which I do not consider in my experimental
setup. Consequently, any normalizer is bound to get some of these instances wrong in the
RIDGES dataset, probably choosing the inflected normalized form of ſein that was observedmost
often in the training data. Stemming the normalizations then allows to find and match these
instances. On the Anselm dataset, where the gold-standard normalization is unequivocally
chosen without regard for word context, these instances would not produce “errors”—i.e.,
mismatching predictions—in the first place. This example highlights how conventions in
producing the gold-standard normalizations can have a strong impact when evaluating (and
comparing) automatic normalization results.

Spanish has the highest percentage overall in the stemming evaluation, up to 46.71% for the
CSMT+LM normalizer (cf. Tab. 7.5), while the Portuguese data—which originates from the same
corpus—has some of the absolute lowest scores (e.g., 5.58% for the encoder–decoder ensemble).
Looking at the data, the result for Spanish is mainly due to the confusion of accented characters,
which happens much less frequently in Portuguese. Indeed, this is another example of word
context being important for determining the correct spelling, e.g., to distinguish ésta (pronoun)
from está (verb), anima (verb) from ánima (noun), envíe (subjunctive form) from envié (indicative
form), etc. It is trivial to find many more examples of this kind in Spanish.

In the Portuguese dataset, a common source of errors is the confusion between the third-person
plural indicative verb suffixes -am (past/perfect) and -ão (future); in several cases, verbs with
the -ão suffix are mapped to their -am forms in the gold-standard normalizations, leading the
neural network model to overgeneralize in some cases where the -ão suffix should actually be
preserved. Again, these cases are likely only decidable with word context.

125

Chapter 7 Comparative analysis

7.4.2 Model comparison

Comparing the individual normalization methods in Table 7.5, the NormaM system often shows
the lowest scores by a large margin. This is not too surprising, as the wordlist mapping is
typically a “hit-or-miss” approach: either it has learned a mapping for the historical word form,
or it simply returns the historical word unchanged. In general, the latter case is less likely
to result in a form with the correct word stem than a normalization method that performs
character-level operations. However, NormaM can also apply a learned mapping that does not
match the target normalization in a given instance, which is likely to happen when a word
form can be normalized with different inflectional forms (as in lordes > lords/lord’s).

Considering the encoder–decoder models with and without lexical filtering, they usually show
a similar percentage of incorrect normalizations matched by stemming. Two major exceptions
to this are Hungarian and Portuguese, where the model with filtering has a significantly higher
percentage (18% vs. 25% for Hungarian, 5.6% vs. 12.3% for Portuguese). The Portuguese result
is particularly striking, as the word accuracy on this dataset is almost identical for the two
systems (94.7% vs. 94.9%; cf. Tab. 7.1). This means that either the quality of errors is considerably
different between these systems, or they produce errors on different subsets of the data.

Looking at the Portuguese dataset, it seems that mostly the latter is the case. There are several
examples of word forms that need not be changed at all, but are not covered by the lexicon.
Therefore, while the model without filtering handles them correctly, the model with filtering
is forced to change them. This often results in plural nouns being changed to singular, and
vice versa; e.g., plural castelhanos and caixeiros are changed to singular castelhano ‘Castilian’
and caixeiro ‘clerk’, respectively, because only the latter forms are found in the lexicon, while
it is the other way around for miudeza ‘trifle’, which the lexicon only includes in its plural
form miudezas. This suggests that the overall word accuracy could possibly be higher for the
filtering approach if a more complete lexicon was used.

For the CSMT system, the variants with and without the additional contemporary data for
language modeling also perform similarly. The biggest outlier is German/Anselm, where the
CSMT+LM system has a considerably lower score, but this setting was an outlier in terms of
word accuracy as well. Also noteworthy is the result on Spanish, where CSMT+LM is 2.2 pp
better than the plain CSMT system, while also having a slightly better word accuracy (+0.09 pp;
cf. Tab. 7.1). In other words, the CSMT+LM system performs better in terms of word accuracy
than the variant without the added language modeling data, while also having more word stem
matches among its incorrect normalizations. This suggests that the qualitative improvement of
this system might actually be better than reflected by its word accuracy performance alone.

7.4.3 Conclusion

All in all, the stemming approach appears to be very successful in identifying mismatching,
but still partly correct normalizations. Even though it can also lead to false positives—e.g.,
incorrect predictions matching the stemmer output by chance—it is certainly more sensitive
to the type of error than Levenshtein distance. For a quantitative evaluation, it seems like a
useful measure to complement plain word accuracy, while also providing a partial insight into
the type of errors that the normalizer makes.

126

7.5 Generalization

7.5 Generalization

A crucial aspect of any supervised machine learning system is its ability to generalize, i.e., not
only perform well on data that has been seen during training, but also successfully handle
previously unseen cases. A common way to estimate this ability is to consider the model’s
performance separately on tokens that have or have not been seen during training. Here, I will
additionally investigate if and how this concept can be transferred to the character level, since
most normalizers perform character-level operations.

7.5.1 Word-level analysis

Table 7.7 shows the word accuracy separately for known and unknown tokens, i.e., historical
word forms that are or are not also contained in the training set.8

For known tokens, accuracy is consistently high, reaching 95% or more on most datasets. The
main exception is Icelandic, which only achieves 89% accuracy in the best case (CSMT+LM).
Recall, though, that the Icelandic dataset shows an unusually high level of ambiguity in its
gold-standard normalizations (cf. p. 48), which is likely to be responsible for this result.

Furthermore, the best result on known tokens is almost always achieved by Norma, more
precisely its wordlist mapping component (NormaM).9 On German/Anselm and Icelandic,
where a cSMTiser system performed better, Norma is only 0.03–0.13 pp behind. While the
difference of the other systems to Norma is also relatively small, this clearly illustrates the
effectiveness of a simple list-based replacement approach. In fact, given sufficient training
data to achieve good coverage of the replacement list, more sophisticated machine learning
approaches seem almost unnecessary for those word forms and could rather focus their efforts
on the subset of unknown tokens or, alternatively, on disambiguating those historical words
with more than one observed normalization target.

For unknown tokens, the accuracy of all systems is considerably worse. This is particularly true
for NormaAll, which never performs better than 69% and is usually more than 10 percentage
points (pp) behind the CSMT systems. The NormaM component always leaves the source
token unmodified here (since it cannot have learned a mapping for unknown words), so its
accuracy is simply indicative of the percentage of tokens that do not need a normalization (cf.
the ID columns of Tab. 3.3).

While the results for cSMTiser and the encoder–decoder model were comparable on the subset
of known tokens, on unknowns, they show the same trends as in the full evaluation (in
Tab. 7.1): the neural network performs better on German/Anselm, while cSMTiser performs
better everywhere else, typically with a margin of 2–6 pp. This suggests that the overall higher

8This classification is made without any consideration whether the corresponding gold-standard normalization
was also seen in the training set; i.e., “known token” only means that the training set contained the historical
source token, but not necessarily with the same normalization as in the development/test data.

9Since known tokens are, by definition, always contained in Norma’s list of word mappings, its other components
are never called, so NormaM is identical to NormaAll here. Likewise, unknown tokens are never contained in
the wordlist, so NormaR+W and NormaAll are identical in that case.

127

Chapter 7 Comparative analysis

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Known Tokens

Tokens 40,914 8,237 15,078 10,755 12,707 5,413 24,817 4,662 18,043 1,708

NormaM/All 93.04 93.64 97.59 96.62 96.39 88.93 97.02 96.31 98.30 98.77
NormaR+W 80.55 89.91 93.05 90.62 89.31 85.39 89.47 93.11 96.05 93.15

CSMT 93.07 92.90 97.23 96.32 95.97 89.04 96.88 96.10 98.28 98.59
CSMT+LM 90.64 93.27 97.27 96.44 96.05 89.06 96.85 96.25 98.29 98.59

NNEns 92.73 93.20 97.33 96.31 95.62 88.01 96.72 95.37 97.76 97.37
NNEns+F 92.86 93.59 97.49 96.44 95.98 88.42 96.94 96.05 98.13 98.24

Unknown Tokens

Tokens 5,082 1,475 1,256 895 4,000 696 1,932 1,179 2,835 537

NormaM 6.49 20.34 32.64 37.65 2.60 31.47 26.19 19.34 67.55 35.57
NormaR+W/All 49.74 51.73 57.48 69.27 53.85 63.79 63.15 57.17 52.24 53.26

CSMT 59.78 64.95 68.31 80.22 77.22 72.13 74.64 76.08 83.42 70.95
CSMT+LM 54.35 64.34 68.31 79.89 77.25 71.12 75.31 75.06 83.49 70.39

NNEns 61.73 62.31 64.49 74.19 75.50 67.10 68.79 71.67 82.05 64.99
NNEns+F 64.80 55.32 63.93 69.16 63.08 65.80 68.32 63.27 50.65 55.49

Table 7.7: Word accuracy on the development sets, evaluated separately on known and unknown
tokens (= tokenswhere the historical word form has been seen/not seen in the training
data); best result per category and dataset highlighted in bold.

accuracy of the CSMT system is mostly due to the better handling of unknown tokens. There
is no clear advantage for either CSMT or CSMT+LM, though.

The lexical filter sometimes causes a sizeable decrease in accuracy on unknowns; the most
extreme case of this is Slovene/Gaj, which has an accuracy of 82% for NNEns (without the filter),
but drops below 51% on NNEns+F. If this effect only happens on unknown tokens, it directly
points to an insufficient lexical coverage: the gold-standard normalizations (from the training
set) of known tokens are, by definition, included in the lexicon, so an accuracy decrease on
the unknown tokens suggests that this set of contemporary word forms was crucial for the
filtering step. Indeed, for all datasets where more than about 5% of tokens in the development
set are not covered by the lexicon (DER, HU, SLB, SLG, and SV; cf. Tab. 3.7), the accuracy on
unknowns drops by at least 7 pp with lexical filtering. The opposite is also true: when the
coverage is good, the filtering tends to hurt less or even improve performance (in the case of
German/Anselm), with the only exception of the Spanish dataset (only 1.64% of tokens missing
in the lexicon, but 5 pp decrease in accuracy).

128

7.5 Generalization

7.5.2 Character-level analysis

The analysis above shows that models do generalize well to historical word forms that were not
seen in the training set, although performance—as expected—is significantly lower. However,
whether the full token was or was not seen during training is a very coarse criterion, since
most models operate on a character level. Comparing character-level properties of the training
and evaluation data could help us to better understand which properties of unknown tokens
cause the most difficulty for the systems.

To analyze this, I turn to the character-aligned versions of the datasets that were introduced in
Sec. 3.3 and define three categories of features:

1. Character alignment: a character in the historical word form and the contemporary
character(s) it is aligned with.

2. Character tri-gram: a character tri-gram in the historical word form.

3. Character tri-gram + alignment: the combination of a character tri-gram in the
historical word form and the contemporary character(s) that the middle character of the
tri-gram is aligned with (i.e., a character alignment with its immediate context).

For each category, we can look at the subset of word pairs (i.e., a token and its gold-standard
normalization) in the evaluation that have “unknowns” in that category. For example, a word
pair has an “unknown character alignment” if its character-aligned version contains at least
one character alignment that was not seen in any word pair of the training dataset. By looking
specifically at the subset of tokens that fulfill this criterion, we can find out if the average word
accuracy on this subset is noticeably lower, giving us an indication that this property of a word
pair could be particularly challenging for a normalizer.

Table 7.8 presents the results of the evaluation for unknowns in each of the three categories.
Themore elements a category specifies, the more likely it becomes for instances of that category
to not be covered in the training set: e.g., a specific character tri-gram plus alignment is more
likely to be “unknown” than the alignment on its own. Consequently, while there are between
180 and 1,790 instances of “unknown character tri-gram plus alignment” per dataset, there are
only between 9 and 174 instances for “unknown character alignments”.

To give an example, in the Portuguese dataset, the alignment o > u is attested in many word
pairs of the training set, such as todo > tudo, deos > deus, or podera > puder, but not within
the historical character tri-gram jos, as in the example josto > justo from the development set.
Therefore, while the alignment itself is known, the latter instance would fall in the “unknown
character tri-gram plus alignment” category. On the other hand, the alignment c > d in the
word pair perca > perda was never seen in the training set in any context, and would therefore
classify as an “unknown character alignment”.

From the three categories, unknown alignments pose the greatest challenge for all systems,
with accuracy scores no greater than 26%, and sometimes falling below 8% (or even zero, on
the nine instances from Swedish). When the combination of character tri-gram plus alignment
is unknown, the systems fare significantly better, and accuracy scores improve even further
when only unknown character tri-grams are considered—despite this subset regularly being
only about half the size of the former. This reinforces the assumption that it is the unseen

129

Chapter 7 Comparative analysis

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Unknown character tri-gram + alignment

Tokens 1,790 523 398 221 812 180 524 330 459 170

NormaR+W 24.41 28.87 24.37 39.82 25.49 36.11 30.15 25.15 25.93 30.59
CSMT 34.58 34.23 38.19 47.51 48.28 39.44 36.83 43.33 37.25 44.12
CSMT+LM 28.32 34.23 37.19 44.80 48.15 41.11 38.55 40.91 37.25 44.71
NNEns 41.28 31.93 30.40 32.13 45.44 37.78 30.34 39.70 34.86 41.18
NNEns+F 46.03 34.23 35.68 38.91 46.55 41.11 42.65 38.79 20.04 38.82

Unknown character tri-gram

Tokens 790 265 149 94 330 106 178 185 209 109

NormaR+W 35.95 40.75 31.54 57.45 33.94 53.77 46.07 38.38 44.98 36.70
CSMT 50.76 53.96 54.36 65.96 66.97 57.55 65.73 65.41 76.56 62.39
CSMT+LM 40.13 54.34 53.69 67.02 67.27 61.32 65.17 63.78 76.56 63.30
NNEns 57.47 50.57 51.01 53.19 62.42 58.49 57.87 64.86 74.64 56.88
NNEns+F 59.24 44.91 42.28 54.26 55.76 59.43 62.36 56.22 33.49 41.28

Unknown character alignment

Tokens 174 84 48 62 88 28 96 28 53 9

NormaR+W 8.62 13.10 10.42 12.90 7.95 3.57 6.25 0.00 3.77 0.00
CSMT 7.47 7.14 8.33 22.58 13.64 3.57 3.12 0.00 1.89 0.00
CSMT+LM 3.45 8.33 8.33 20.97 12.50 3.57 4.17 3.57 1.89 0.00
NNEns 23.56 5.95 10.42 4.84 13.64 0.00 3.12 3.57 0.00 0.00
NNEns+F 24.71 15.48 14.58 14.52 26.14 7.14 12.50 7.14 1.89 0.00

Table 7.8: Word accuracy on the development sets, evaluated separately on known and unknown
tokens (= tokenswhere the historical word form has been seen/not seen in the training
data); best result per category and dataset highlighted in bold.

Dataset Original Target Predictions Alignment

NormaR+W CSMT NNEns

DEA iōgheren jüngern jungern ✔ ✔ ō → ü
EN felishippe fellowship felipe feliship ✔ i → low
ES annelo anhelo ✔ ✔ annelo n → h
HU zolǵlnac szolgálnak ✔ szolglnak ✔ ǵ → gá
IS skiftast skiptast ✔ skiftast skiftast f → p
SLB weinrutizo vajnrutico minuto weinrutico beinrutico w → v

Table 7.9: Examples of predictions for word pairs with an unknown character alignment; a
checkmark (✔) indicates that the model predicted the correct target form; the un-
known character alignment is highlighted and specified in the last column.

130

7.5 Generalization

Original Target Predictions

NormaR+W CSMT NNEns NNEns+F

alquansado alcançado ✔ ✔ alquançado ✔
carragado carregado encorajado ✔ carragado ✔
colcada colocada coçada ✔ colsada ✔
josto justo ✔ ✔ josto ✔
lisbão lisboa libano lisbam lisbam ✔
magistade majestade magistrado ✔ magistade ✔
senõ senão ✔ ✔ senho ✔

Table 7.10: Example predictions on Portuguese that are only correct with lexical filtering added
to the neural network model; all examples taken from the “unknown character
tri-gram + alignment” subset. The unknown alignments are highlighted within the
word forms; a checkmark (✔) indicates that the model predicted the correct target
form.

alignments which are most problematic, either when they have not been seen at all, or not in
the context that they appear in during the evaluation. Previously unseen character tri-grams
by themselves are much less of a challenge for the models.

Table 7.9 shows some examples for word pairs from the “unknown character alignment”
category. In German/Anselm, iōgheren > jüngern ‘disciples’ was normalized correctly by both
CSMT and NNEns, despite the transformation ō→ ü being previously unseen in the training
data. However, the training set contains 21 different spelling variants for the modern jüngern,
among them the relatively close variant form iongheren. Apparently, the surrounding characters
provide enough context for the normalizers to favor the correct prediction.

In some instances, Norma’s dictionary matching component using weighted Levenshtein
distance proves to be advantageous where other methods fail. In the Icelandic dataset, the pair
skiftast > skiptast contains the previously unseen mapping f → p. This causes both CSMT and
NNEns to fail at generating the normalization, while NormaR+W is successful (and, not shown in
Tab. 7.9, the NNEns+F model as well). Since the rule-based component can, by definition, never
apply a transformation that is not explicitly learned, this means the Levenshtein component
must be responsible for this normalization. A similar example comes fromGerman/Anselmwith
the word pair baykenſtreich > backenstreich ‘slap (in the face)’, which contains the unknown
alignment y→ c. While backenstreich does not appear in the training set, it does appear in the
lexicon. Consequently, Norma generates it correctly, while other methods produce nonsensical
suggestions (CSMT: beikenstreich, NNEns: beichenspreich, NNEns+F: beichte reich).

7.5.3 Local vs. global probabilities

Another interesting case study comes from the Portuguese dataset. Here, the neural network
model with filtering sees an accuracy improvement of 12 pp over the model without filtering
in the “unknown character tri-gram + alignment” scenario (cf. Tab. 7.9); similar tendencies can
be observed for some of the other datasets as well. Table 7.10 presents a selection of word

131

Chapter 7 Comparative analysis

pairs that are incorrect in the NNEns model, but correct when lexical filtering is added. Some of
them contain multiple “unknown” instances, which is why they are represented by underlining
instead of a separate column; e.g., in the word pair magistade > majestade, both the alignment
g > j in the context of agi and the alignment i > e in the context of gis are unseen in the training
data.

Considering the examples from Tab. 7.10, the predictions of the NNEns model always diverge
from the correct target form in the vicinity of the alignment that is “unknown” in this context.
Strikingly, the cSMTiser system gets almost all of these instances correct without the need
for a lexical filter. One hypothesis to explain this observation is that the encoder–decoder
model conditions its predictions more strongly on local features of the input string. When it
encounters 〈q〉 in the context of alquansado, it strongly prefers to leave it as 〈q〉, since this is
by far the most common alignment in the training set. While the alignment q→ c occurs in
the training set as well, it is never seen within this particular historical character tri-gram (lqu),
so the neural network assigns it a lower probability here. The lexical filtering then imposes
an external constraint on the decoder’s output which shifts the probabilities in favor of the
correct normalization.

Possibly, the CSMT system gives more weight to the global composition of the output, e.g.
via its language modeling component; in other words, while it might also assign a higher
(conditional) probability to the character normalization q→ q, this might be corrected by a
relatively low probability of the resulting output string. The encoder–decoder model, on the
other hand, can only condition its prediction on the input string and the previously generated
characters;10 i.e., when it predicts the 〈q〉 in alquançado, it can only base this off the knowledge
that the input form is alquansado and the previously generated characters are al. In particular,
it cannot “backtrack” if the output sequence as a whole becomes unlikely towards the end;
beam search is intended to mitigate this problem, but in these cases, it appears not to help
enough.

This observation suggests that the encoder–decoder approach could possibly benefit from a
stronger (character-level) language modeling component. While the lexicon filter works as
a solution in this particular case, we already saw that it can be harmful in other cases (e.g.,
see Sec. 6.3.4), so an approach with less strict constraints on the output sequence might be
preferable. In any case, a more thorough analysis of this phenomenon would be required,
though I will leave this to future work.

7.6 Predicting errors

We have seen before (e.g., in Sec. 7.2.1) that when a predicted normalization is wrong, it can
sometimes do more harm than good. Depending on the application scenario, if a normalization
candidate is highly inappropriate, it might be better to leave the word form unnormalized
instead. This leads to the question if we can detect candidates that are likely to be wrong
without referring to the gold-standard annotation in our test set.

10Remember that only the encoder is bi-directional, while the decoder operates strictly from left to right; cf.
p. 6.1.1 and the discussion of “input feeding” for more background on this.

132

7.6 Predicting errors

7.6.1 String length and edit distance

One possible assumption about correct normalizations is that they are usually close to the
historical source form. Pettersson, Megyesi, and Nivre (2013) investigate this assumption on
the training set of the Swedish “Gender and Work” dataset and find that (i) when comparing
string lengths of historical tokens and their gold-standard normalizations, 99.5% of tokens
fall into the range of [−4, +1] (i.e., the normalizations are up to four characters shorter or one
character longer than their source form); and (ii) 98.8% of (gold-standard) normalizations have
a Levenshtein distance of 4 or less to the historical source form. Inspired by this finding, we
can ask if similar ranges can be found for all datasets, and if a normalization candidate is more
likely to be incorrect when it falls outside a given range of one of these measures.

Figure 7.2 plots these two measures, i.e., edit distance and string length difference of the gold-
standard normalization to the historical word form, for the development sets of all datasets.
For the latter, the majority of normalizations in all datasets are of the same length as the
source token, with absolute length differences of two or more characters being relatively
infrequent. Edit distance shows a more nuanced picture: here, a distance of zero means that the
normalization equals the historical word form, i.e., no changes are required. This is the majority
case in only half of the datasets, which parallels the “ID accuracy” shown in Tab. 3.3.11 While
for most datasets, the percentage of tokens declines as the Levenshtein distance increases,
two major exceptions are German/Anselm and Hungarian, where a distance of one or two is
actually more frequent than the “unchanged” case. In general, with the exception of Hungarian,
distances greater than four are very infrequent, which is the same threshold that Pettersson,
Megyesi, and Nivre (2013) found.

The frequency distribution of these measures, however, does not tell us how useful they are in
identifying incorrect normalizations. The fact that a certain value (for edit distance or length
difference) is rare does not imply that a predicted normalization with this property is more
likely to be wrong—after all, a hypothetical model with 100% accuracy would also include such
instances.

To test the predictive power of these measures, we can train a logistic regression classifier (e.g.,
Smith, 2011, p. 88 f.)12 using the measured value—string length difference13 or Levenshtein
distance—as its input, and the target classes “correct” or “incorrect” as its output. The idea is
that if there is a good “threshold” above which a predicted normalization is more likely to be
wrong than correct, training a logistic regression classifier should identify this threshold.

For each normalization system and dataset, I train a classifier on the automatically normalized
development set of that dataset. Afterwards, I evaluate the classifier on the same set. If it
cannot achieve good performance on the same subset of the data it was trained on, it is unlikely
to be useful for classifying new, unseen normalizations.

11Although the numbers in Tab. 3.3 were generated on the training sets while those of Fig. 7.2 are based on the
development sets, their overall scale is quite similar.

12For all experiments, I use the implementation of logistic regression provided by the sklearn library (Pedregosa
et al., 2011), version 0.19.0.

13I use the absolute value of the length difference here, as my assumption is that a normalization candidate
becomes more likely to be incorrect the higher the absolute length difference is, regardless of whether is
shorter or longer than the historical form.

133

Chapter 7 Comparative analysis

≤-5 -4 -3 -2 -1 0 +1 +2 +3 +4 ≥+5
Length difference

0.0

0.2

0.4

0.6

0.8

pe
rc
en
ta
ge

DEA
DER
EN
ES
HU
IS
PT
SLB
SLG
SV

0 1 2 3 4 5 6 7 8 9 ≥10
Levenshtein distance

0.0

0.2

0.4

0.6

0.8

pe
rc
en
ta
ge

DEA
DER
EN
ES
HU
IS
PT
SLB
SLG
SV

Figure 7.2: String length difference and Levenshtein distance between historical tokens and their
gold-standard normalizations, given as the percentage of tokens in the development
set of each dataset with a certain length difference (where positive numbers mean
the normalization is longer than the historical word form) or edit distance.

134

7.6 Predicting errors

Dataset Length difference Levenshtein distance

Tokens Precision Recall F-score Tokens Precision Recall F-score

NormaAll
DEA 527 0.56 0.05 0.10 261 0.57 0.03 0.05
DER 216 0.83 0.15 0.25 183 0.70 0.10 0.18
EN 170 0.72 0.14 0.23 213 0.57 0.14 0.22
ES 19 0.11 0.00 0.01 34 0.06 0.00 0.01
HU 725 0.65 0.20 0.31 472 0.49 0.10 0.17
IS 62 0.82 0.06 0.11 42 0.60 0.03 0.06
PT 16 0.25 0.00 0.01 80 0.17 0.01 0.02
SLB 338 0.80 0.40 0.53 267 0.63 0.25 0.36
SLG 445 0.78 0.21 0.33 1,090 0.71 0.47 0.56
SV 94 0.69 0.24 0.36 82 0.61 0.18 0.28

CSMT

DEA 67 0.09 0.00 0.00 46 0.24 0.00 0.00
DER 11 0.18 0.00 0.00 7 0.43 0.00 0.01
EN 56 0.29 0.02 0.04 55 0.22 0.01 0.03
ES 4 0.00 0.00 0.00 4 0.00 0.00 0.00
HU 0 – 0.00 – 1 0.00 0.00 0.00
IS 0 – 0.00 – 28 0.25 0.01 0.02
PT 0 – 0.00 – 3 0.00 0.00 0.00
SLB 0 – 0.00 – 1 1.00 0.00 0.00
SLG 0 – 0.00 – 18 0.22 0.01 0.01
SV 0 – 0.00 – 1 0.00 0.00 0.00

NNEns+F

DEA 156 0.44 0.01 0.03 332 0.56 0.04 0.07
DER 108 0.71 0.06 0.12 179 0.71 0.11 0.19
EN 118 0.60 0.09 0.15 193 0.48 0.11 0.18
ES 19 0.11 0.00 0.01 41 0.22 0.01 0.03
HU 251 0.66 0.08 0.15 313 0.58 0.09 0.16
IS 5 1.00 0.01 0.01 55 0.64 0.04 0.08
PT 15 0.20 0.00 0.00 89 0.26 0.02 0.03
SLB 39 0.90 0.06 0.11 74 0.68 0.08 0.14
SLG 455 0.80 0.21 0.33 1,011 0.71 0.42 0.52
SV 45 0.71 0.12 0.20 110 0.64 0.26 0.37

Table 7.11: Precision, recall, and F-score of a logistic regression classifier on detecting incorrect
normalizations, based on either string length difference or Levenshtein distance
between historical word form and normalization candidate; “Tokens” gives the
number of normalizations classified as incorrect.

135

Chapter 7 Comparative analysis

Table 7.11 shows the results of this evaluation for some of the models, in terms of tokens
predicted as “incorrectly normalized”, as well as precision, recall, and F-score (e.g., Powers,
2011) on the task of identifying the “incorrect” normalizations.14

String length difference appears to be a very poor predictor for normalizer correctness. For
CSMT, only a negligible amount of incorrect normalizations (if any) are correctly identified
using this criterion, regardless of the dataset.15 For NormaAll and the neural network ensemble
with filtering (NNEns+F), the results are slightly better, although the F-score is rarely above 0.25,
with the maximum F-score being 0.53 (on Slovene/Bohorič with NormaAll).

Levenshtein distance is roughly comparable in terms of F-scores. For NormaAll and NNEns+F,
this classifier achieves a comparatively high F-score (of 0.56 and 0.52, respectively) on the
Slovene/Gaj dataset. This is arguably the most “modern” dataset, as it requires the least amount
of changes between historical form and normalization, both on a word level and on a character
level (cf. the “ID” columns in Tab. 3.3). It also has the lowest curve in the Levenshtein distance
distribution of Fig. 7.2—i.e., it has a lower percentage of gold-standard normalizations with a
distance of one or greater than any other dataset. It appears that Levenshtein distance can be a
useful predictor mainly when the dataset is modern enough that most word forms require no
or very few modifications, but does still not work well in the general case.

For all configurations, the low F-scores are mainly a result of a poor recall. Precision is
considerably higher than recall in all cases except those where precision is zero or undefined
(due to zero instances being classified as “incorrect”). This suggests that for almost all values
of length difference and edit distance, a considerable amount of instances are indeed correct
normalizations, and a classification based solely on these criteria will therefore always fall
short. To put it another way, while it is indeed the case that most gold-standard normalizations
fall into a given range of length difference and edit distance (as Fig. 7.2 shows), it is not true
that predicted normalizations that fall outside these ranges are more likely to be wrong.

7.6.2 Normalizer scores

A different approach to error prediction is to not rely on properties of the output word forms,
but on scores generated by the normalization systems. Each system in this comparison produces
some kind of score for each candidate it generates:

• The Moses decoder used by cSMTiser outputs a log-probability score for the sequence,
i.e., the full normalized word form.16

• The final dense layer of the neural network outputs a probability for each character it
generates, from which an average probability of all characters in a normalized word form
can be derived.

14I also performed these evaluations with various combinations of features, i.e., using both string length difference
and Levenshtein distance, adding the absolute length of the strings as a feature, using Levenshtein distance
normalized by word length, etc. The classifier did not show improvements from any of these alternatives.

15In general, NormaM, CSMT+LM, and the neural network ensemble (NNEns) also produce very similar results to
those for CSMT, which is why I left them out of Tab. 7.11.

16See, e.g.: http://www.statmt.org/moses/?n=Moses.Tutorial

136

http://www.statmt.org/moses/?n=Moses.Tutorial

7.6 Predicting errors

• TheNorma tool outputs confidence scores in the range of [0, 1] (Bollmann, 2012), although
these cannot always be interpreted as probabilities, and the exact formula for deriving
them differs between each of Norma’s components.

For the neural network, I also transform the sequence probability to a log-probability score;17
i.e., if 𝑦 is the predicted normalization and 𝑦𝑖 is the 𝑖-th character of that normalization, the
final score 𝑓 (𝑦) is calculated as:

𝑓 (𝑦) = log(
∑𝑖 𝑝𝑖(𝑦𝑖)

|𝑦|) (7.2)

Table 7.12 shows the results of training a logistic regression classifier in the same manner as
before, using these normalizer scores as features. For NormaM, the wordlist mapping component
of Norma, the score appears to be a pretty good predictor for incorrect normalizations in most
cases, achieving an F-score of 0.69 or higher on most datasets. The best result is achieved for
Hungarian, where more than 4,000 incorrect normalizations are identified with a precision
of 0.97 and a recall of 0.89.

The confidence score for NormaM is calculated as the relative frequency of the normalization
over all instances of the historical source form. This means that it is related to the ambiguity
score defined in Sec. 3.4.1; since NormaM always chooses the most frequent normalization (MFN)
for a given historical word form 𝑤, its confidence score can be expressed as follows (using the
notation of Eq. (3.4)):

score(𝑤) =
MFN(𝑤)
𝑐(𝑤)

(7.3)

It is therefore related to the ambiguity score 𝛼(𝑤) via the following transformation:

score(𝑤) =
1

2𝛼(𝑤) (7.4)

However, comparing the classifier performance for NormaM in Tab. 7.12 with the datasets’
ambiguity figures shown in Tab. 3.4, the numbers do not appear to correlate in any way.18 This
unintuitive result is actually a consequence of another property of the wordlist mapper: if
the historical source form has not been seen in the training data, it is left unnormalized with
𝑠𝑐𝑜𝑟𝑒(𝑤) = 0. Looking at the threshold the logistic regression classifier has learned, it turns out
that it almost exclusively labels these unnormalized cases as incorrect (with the only notable
exception being the German Anselm dataset, where about 170 normalization candidates with
𝑠𝑐𝑜𝑟𝑒(𝑤) > 0 also fall in the “incorrect” category). In other words, the classifier performance
rather correlates with the “ID accuracy” of a dataset which specifies how often, on average, the

17Log-probabilities worked slightly better than plain probabilities for the encoder–decoder model, and signif-
icantly better for the CSMT model. For the Norma scores, taking the logarithm of the confidence score
produced worse results, so I am using the raw scores here.

18The ambiguity scores in Tab. 3.4 were calculated on the training set, but calculating them on the development
set does not change the conclusion.

137

Chapter 7 Comparative analysis

Dataset NormaM NormaR+W
Tokens Precision Recall F-score Tokens Precision Recall F-score

DEA 5,254 0.93 0.64 0.76 2,232 0.55 0.12 0.19
DER 1,475 0.80 0.69 0.74 0 – 0.00 –
EN 1,256 0.67 0.70 0.69 0 – 0.00 –
ES 895 0.62 0.61 0.61 0 – 0.00 –
HU 4,009 0.97 0.89 0.93 125 0.94 0.04 0.07
IS 696 0.69 0.44 0.54 0 – 0.00 –
PT 1,933 0.74 0.66 0.70 0 – 0.00 –
SLB 1,179 0.81 0.85 0.83 0 – 0.00 –
SLG 0 – 0.00 – 1,116 0.63 0.34 0.44
SV 537 0.64 0.94 0.77 106 0.59 0.17 0.27

Dataset CSMT CSMT+LM

Tokens Precision Recall F-score Tokens Precision Recall F-score

DEA 1,543 0.66 0.21 0.32 2,959 0.83 0.40 0.54
DER 196 0.60 0.11 0.18 177 0.60 0.10 0.17
EN 173 0.59 0.13 0.21 184 0.59 0.13 0.22
ES 40 0.62 0.04 0.08 81 0.54 0.08 0.14
HU 285 0.58 0.12 0.19 300 0.56 0.12 0.20
IS 71 0.49 0.04 0.08 43 0.49 0.03 0.05
PT 124 0.73 0.07 0.13 268 0.64 0.14 0.23
SLB 101 0.68 0.15 0.24 66 0.65 0.09 0.16
SLG 106 0.37 0.05 0.09 107 0.36 0.05 0.09
SV 72 0.61 0.24 0.35 74 0.62 0.25 0.36

Dataset NNEns NNEns+F

Tokens Precision Recall F-score Tokens Precision Recall F-score

DEA 1,817 0.71 0.26 0.39 1,843 0.71 0.28 0.40
DER 136 0.77 0.09 0.17 498 0.86 0.36 0.51
EN 88 0.68 0.07 0.13 297 0.85 0.30 0.45
ES 6 1.00 0.01 0.02 156 0.90 0.21 0.34
HU 214 0.76 0.11 0.19 1,064 0.87 0.47 0.61
IS 19 0.84 0.02 0.04 126 0.80 0.12 0.20
PT 119 0.76 0.06 0.12 413 0.85 0.26 0.39
SLB 18 1.00 0.03 0.06 239 0.92 0.35 0.51
SLG 9 1.00 0.01 0.02 1,183 0.93 0.63 0.75
SV 0 – 0.00 – 114 0.93 0.39 0.55

Table 7.12: Precision, recall, and F-score of a logistic regression classifier on detecting incorrect
normalizations, based on the normalizer-specific confidence or probability score of
a normalization candidate; “Tokens” gives the number of normalizations classified
as incorrect.

138

7.6 Predicting errors

Dataset NormaAll CSMT NNEns+F

𝛥Len Leven Score 𝛥Len Leven Score 𝛥Len Leven Score

DEA 0.15 0.11 0.36 0.00 0.01 0.34 0.06 0.12 0.41
DER 0.32 0.24 0.40 0.01 0.03 0.18 0.19 0.25 0.52
EN 0.30 0.26 0.33 0.06 0.04 0.21 0.21 0.21 0.49
ES 0.01 0.00 0.28 0.00 0.00 0.08 0.01 0.04 0.42
HU 0.32 0.18 0.43 0.00 0.00 0.23 0.21 0.20 0.60
IS 0.20 0.11 0.22 0.00 0.02 0.12 0.07 0.14 0.27
PT 0.02 0.03 0.40 0.00 0.00 0.22 0.02 0.05 0.45
SLB 0.53 0.35 0.23 0.00 0.04 0.30 0.21 0.21 0.54
SLG 0.38 0.55 0.64 0.00 0.03 0.12 0.39 0.51 0.75
SV 0.37 0.29 0.52 0.00 -0.01 0.36 0.26 0.36 0.58

Average 0.26 0.21 0.38 0.01 0.02 0.22 0.16 0.21 0.50

Table 7.13: Matthews correlation coefficient for predicting correct/incorrect normalizations
of selected normalizers, evaluated per dataset and feature (𝛥Len = absolute string
length difference; Leven = Levenshtein distance; Score = the normalizer-specific con-
fidence or probability score); best result for each dataset and normalizer highlighted
in bold.

correct normalization is actually the unnormalized source form—this also explains the high
F-score for Hungarian, which scores lowest by far using this measure (cf. Tab. 3.3).

Considering the other normalizers in Table 7.12, the classifier performance is usually much
worse, with the occasional exception of individual datasets; e.g., for CSMT+LM, the classifier
achieves an F-score of 0.54 on German/Anselm, while the average F-score on the remaining
datasets is only 0.18. For the neural network model, the classifier consistently achieves a
notably higher F-score in the setting with filtering (NNEns+F) compared to the one without
filtering (NNEns). Lexical filtering has the effect of reducing the average probability scores of
normalizations, since if it changes the prediction, this means that (at least) the candidate with
the highest probability has been filtered out. Moreover, if the correct target form is not covered
by the lexicon, it is more likely that the normalization generated by the NNEns+F model has a
low probability score. This, in turn, could result in incorrect normalizations coinciding with
low scores more often, explaining the better classifier performance in this scenario.

7.6.3 Conclusion

The evaluations in the previous sections have shown that string length difference and Leven-
shtein distance are poor predictors of incorrect normalizations, while scores reported by the
normalizers work better in some instances. However, precision/recall/F-score for predicting
incorrect normalizations do not consider the “true negative” rate, i.e., the precision of actually
predicting correct normalizations as correct. Therefore, for a final comparison of all three
criteria, I choose to calculate theMatthews correlation coefficient (Powers, 2011), which captures
the correlation between the actual and the predicted labels.

139

Chapter 7 Comparative analysis

Table 7.13 shows the Matthews coefficients for three of the normalizers, with the best result
for each dataset and normalizer highlighted in bold. A score of 0 indicates that there is no
correlation, i.e., the classifier does not perform better than random chance, while a perfect
prediction would achieve a maximum value of 1. Negative values indicate disagreement
between predicted and actual labels.

Using the normalizer scores as features consistently beats the simpler string-based criteria, no
matter which normalizer is used, reinforcing the results from the previous sections. In general,
error prediction is worst on CSMT for all types of predictors, works better on the combined
components of NormaAll, and best with NNEns+F using its probability score as feature. However,
even in the latter case, performance varies substantially among datasets, with a Matthews
coefficient between 0.27 (for Icelandic) and 0.75 (for Slovene/Gaj). In other words, while there
is a correlation between normalizer scores and the correctness of the predictions, it is not
consistent across datasets and—in most cases—not particularly strong.

Overall, these results suggest that predicting errors in the manner presented here might be
useful, e.g., to highlight potentially problematic word forms for human annotators in a manual
correction step during corpus creation, but should probably not be relied upon to find erroneous
normalizations in a fully automatic fashion.

7.7 Error distribution

Most evaluation measures, including word accuracy and character error rate, reduce the
performance of a model to a single number. This means they focus solely on the quantity
of errors that a system makes, without regard for their distribution. Hypothetically, two
models that both achieve a word accuracy of 50% could arrive at this score with a completely
disjoint set of predictions—e.g., the first model could normalize only the first half of the dataset
correctly while the second model is only correct on the second half. More generally, two
models can achieve an equal or similar accuracy/CER/etc. with different subsets of correct
normalizations.

The question of how the sets of correct (or incorrect) predictions overlap is interesting for a few
reasons. First of all, it is an indicator of how the models differ in what they have learned and
what kind of phenomena they can handle. Furthermore, if two models differ significantly in
their error distributions, it might be beneficial to combine them in some way to take advantage
of their individual strengths.19 This is the principle of the Norma tool, after all, which combines
three different normalization components to achieve a better performance than any component
would achieve in isolation (Bollmann, 2013a); a similar argument can be made for the neural
network ensembling technique. On the other hand, if the predictions of two models match
almost everywhere, they can be considered equivalent for all practical purposes.

19Indeed, Hämäläinen et al. (2018) find that combining different normalization approaches is highly beneficial;
their result was only published after the original submission of this thesis.

140

7.7 Error distribution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of tokens

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

Da
ta
se
t

Both Only NormaM Only NormaR+W

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of tokens

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

Da
ta
se
t

Both Only CSMT Only NNEns

Figure 7.3: Comparison of two normalizers with regard to the subset of tokens that are correctly
normalized by either both or only one of them; top graph compares NormaM and
NormaR+W, bottom graph compares CSMT and NNEns.

141

Chapter 7 Comparative analysis

NormaM NormaR+W NormaAll CSMT CSMT+LM NNEns NNEns+F

NormaM – 7.18% 1.50% 1.10% 1.21% 1.46% 2.29%
NormaR+W 6.58% – 0.85% 1.78% 2.04% 2.42% 1.34%
NormaAll 5.73% 5.68% – 1.62% 1.78% 2.34% 1.21%
CSMT 7.59% 8.86% 3.88% – 0.69% 2.40% 3.65%
CSMT+LM 7.43% 8.87% 3.77% 0.43% – 2.33% 3.59%
NNEns 7.14% 8.70% 3.78% 1.59% 1.79% – 2.50%
NNEns+F 7.02% 6.67% 1.71% 1.89% 2.10% 1.56% –

Table 7.14: Percentage of tokens that are normalized correctly by the row normalizer, but not
the column normalizer, averaged across all datasets

Figure 7.3 shows the distribution of correct normalizations between pairs of normalizers, i.e.,
the percentages of tokens that are normalized correctly by either both models, only the first
model, or only the second model.20

The first graph compares NormaM and NormaR+W in this way, since the combination of Norma’s
components is already known to be beneficial. Indeed, the percentage of tokens that only
one of NormaM or NormaR+W gets correct21 is relatively high, ranging from approximately 8%
(e.g., on English and Slovene/Gaj) to 20% (e.g., on German/Anselm and Hungarian). Compare
this to the word accuracy evaluation in Tab. 7.1: here, both systems achieve a very similar
accuracy on Icelandic (82.39% vs. 82.93%) and Swedish (83.65% vs. 83.61%), while the combined
NormaAll system is better by about 3–4 pp. Fig. 7.3 shows that about 15% of tokens for Icelandic
and 18% for Swedish are normalized correctly by only of these two components, providing an
explanation for the accuracy improvement when they are combined.

The second graph of Fig. 7.3 compares the CSMT system with the neural network ensemble.
If this comparison showed similar trends, this could be seen as an indication that combin-
ing these two approaches might also lead to better performance. However, the proportions
are considerably smaller here, with the highest percentage of correct, but non-overlapping
normalizations being about 7% (on Icelandic). The subsets of normalizations only predicted
correctly by NNEns are particularly small, suggesting that the neural network model does not
improve much on tokens that CSMT cannot handle. Unfortunately, this result provides little
justification for attempting to combine these two approaches, suggesting that both learn rather
similar transformations instead.

Table 7.14 provides an overview of all possible normalizer pairs. For reasons of simplicity, I
only show the average percentage of correct, non-overlapping tokens across all datasets; more
precisely, the given numbers reflect the percentage of tokens that only the row normalizer gets
correct (but the column normalizer gets incorrect). One way to interpret these numbers is to
see them as the maximum accuracy improvement that the row normalizer could potentially
contribute when combined with the column normalizer.

20Consequently, the difference of these combined sets to 100% is the percentage of tokens that both models
normalize incorrectly.

21In other words, the combined green and orange subsets in Fig. 7.3.

142

7.8 Summary

Indeed, the combination of NormaM and NormaR+W shows the highest amount of synergy
when both directions are considered: combining the potential improvement of NormaM over
NormaR+W (7.18%) and vice versa (6.58%) results in a proportion of 13.76% of tokens that only
one of the two normalizers gets correct—the highest value among all normalizer combinations.
At the same time, both the CSMT and the neural network normalizers would provide a higher
percentage of “newly correct” normalizations to either of Norma’s components.

The potential contribution of the wordlist mapping (NormaM) to CSMT/CSMT+LM or the
NNEns model, however, is comparatively low (< 1.5%). This suggests that it is less benefi-
cial to use the simple mapping approach together with either of these systems, as both CSMT
and the neural network already correctly normalize most of the tokens that could be provided
by the mapper—or, at least, considerably more than the NormaR+W system does. Also, the
given percentage is only the maximum improvement that could be achieved by combining two
methods; in practice, using the wordlist mapping technique in the same fashion as Norma—
i.e., using the prediction provided by NormaM when the historical token is contained in the
wordlist, and the prediction from CSMT/NNEns otherwise—is likely to result in a much lower
improvement.

The NNEns+F column (in Tab. 7.14) shows slightly higher percentages than NNEns, however, this
is more likely to be a result from more incorrect predictions caused by the lexical filter. It would
be more sensible to limit or remove the use of the filter first before considering a combination
with other normalizers. The combination of the two CSMT systems has the two lowest scores
in the comparison, again showing that their predictions are very similar with or without the
additional language modeling data.

7.8 Summary

This chapter provided an extensive evaluation and comparison of the neural network ensemble
with the previously established CSMT model and the Norma tool (Sec. 7.1), analyzing the
strengths and weaknesses of each approach.

I discussed different approaches to evaluating historical normalization, comparing the word
accuracy measure with the popular character error rate (CER) metric (Sec. 7.2). I argued that
CER by itself does not add much value over plain word accuracy, but that applying CER to
the subset of incorrect normalizations can provide useful insight into the output of the models.
One such observation was that incorrect predictions made by the models were often worse
(in terms of CER) than their unnormalized historical forms. This prompted me to investigate
methods to detect normalization candidates that are likely to be wrong, but I did not find a
promising approach to achieve this (Sec. 7.6).

A manual error classification study on a small subset of the German and English datasets sug-
gested that most normalizations counted as “incorrect” are actually reasonably good (Sec. 7.3),
showing the need for better evaluation methods. Stemming—i.e., comparing the normalization
output with its reference normalization on the basis of their word stems—can be a potentially
useful approach here, as it filters out errors resulting purely from, e.g., wrong inflectional
forms (Sec. 7.4). When using an automatic stemmer, this may of course also result in false

143

Chapter 7 Comparative analysis

positives due to mistakenly conflated word forms, but in my opinion, it still constitutes an
improvement over using word accuracy or CER alone.

Comparing different normalization methods, character-based statistical machine translation
(CSMT) achieved the highest word accuracy on almost all datasets, with the exception of
German (Anselm) where the neural network ensemble was slightly better. More in-depth
analysis showed that this is mostly due to superior performance of tokens that were not seen in
the training data (“unknowns”); in other words, better generalization. On the subset of known
tokens, using the wordlist mapping component of Norma resulted in the highest accuracy
on eight of the datasets, suggesting that this simple lookup method should be a part of any
normalization system (Sec. 7.5).

While the evaluation showed that CSMT outperforms an extensively tuned, state-of-the-art
neural network ensemble, I also observed that the neural model seems to generalize better
on previously unseen character alignments (Sec. 7.5.2). Further analysis suggested that the
neural network might be improved by a stronger language modelling component (Sec. 7.5.3).
Ensembling the different systems, on the other hand, did not appear to be promising (Sec. 7.7).

Based on the experiments in this chapter, my recommendation for obtaining a solid historical
normalization pipeline is to combine a simple wordlist mapping algorithm with character-based
statistical machine translation (CSMT). For evaluation, I recommend evaluating word accuracy,
character error rate (CER) on incorrect tokens, and also comparing automatically stemmed
word forms.

144

Chapter 8

Multi-task learning

[Y]ou learn to play tennis in a world that tasks you to learn many other things.
You also learn to walk, to run, to jump, to exercise, to grasp, to throw, to swing, to
recognize objects, to predict trajectories, to rest, to talk, to study, to practice, etc.
[…] Perhaps the similarities between the thousands of tasks you learn are what
enable you to learn any one of them—including tennis.

— Caruana (1993)

So far, all machine-learning approaches discussed here had one property in common: they are
trained on a single (historical) language at a time. In this chapter, I investigate ways to train
on multiple languages simultaneously, with the aim of increasing the model’s capabilities for
generalization and improving performance in low-resource scenarios.1

The concept of multi-task learning (MTL) is usually traced back to Caruana (1993, 1997). Its
main idea is summarized thusly:

Multitask learning is an approach to inductive transfer that improves generalization
by using the domain information contained in the training signals of related tasks
as an inductive bias. It does this by learning tasks in parallel while using a shared
representation; what is learned for each task can help other tasks be learned bet-
ter. (Caruana, 1997)

MTL has been applied successfully to a variety of NLP tasks. Collobert et al. (2011) demonstrate
its effectiveness for part-of-speech tagging, chunking, named entity recognition, and semantic
role labeling; Klerke et al. (2016) use eye-tracking data to improve sentence compression
models; Plank (2016) uses keystroke logs to improve shallow syntactic parsing; etc. Closer to
the learning scenario considered here, MTL has also been used to train machine translation
models on multiple languages simultaneously (e.g., Dong et al., 2015; Luong, Le, et al., 2015). For
historical normalization, Bollmann and Søgaard (2016) applyMTL to multiple source texts of the
German Anselm corpus, while Bollmann et al. (2017) use grapheme-to-phoneme transduction
as an auxiliary task with encoder–decoder models.

Here, I will focus on the multi-language scenario, training the encoder–decoder models de-
scribed in Chapter 6 on multiple of the historical datasets (from Sec. 3.1) in parallel. For practical

1Since the original time of writing this thesis, the main findings of this chapter have also been published
in Bollmann et al. (2018).

145

Chapter 8 Multi-task learning

reasons, I will only experiment with pairwise combinations of these datasets.2 This results
in more data points to compare and allows for a cleaner analysis of the interaction between
datasets; for example, can the normalization accuracy for historical Spanish be improved by
pairing it with Hungarian data, or is it better to use a closely related language like Portuguese?
Note that “datasets” do not equate “languages” in our case, since some languages—German
and Slovene—are represented in more than one dataset. However, pairing these datasets can
also be insightful, as the two German datasets follow different normalization guidelines and
cover different text genres (cf. Sec. 3.1.2) and the Slovene datasets provide data from the same
language at different historical stages.

Sec. 8.1 will introduce the MTL architectures that will then be compared on a subset of the
datasets in Sec. 8.2. Sec. 8.3 will present amore extensive evaluation of the bestMTL architecture
on all datasets.

8.1 Models

In this work, I am concerned with multi-task learning using the encoder–decoder architecture
(cf. Chapter 6). However, there are several ways to utilize this architecture in a MTL setting.
While the key idea is always to share many (if not all) model parameters between the separate
tasks, implementations can differ in which layers are shared and how exactly the different
tasks—or, in our case, datasets—are distinguished.

I will consider three main variants here:

1. a multi-task learning setup that shares the full encoder and decoder, but keeps separate
prediction layers for each dataset (MTLSplit, Sec. 8.1.1);

2. a multi-task learning setup that shares all parameters, but distinguishes datasets by
feeding a special input symbol into the encoder (MTLInput, Sec. 8.1.2); and

3. a single encoder–decoder model that is jointly trained on multiple datasets without any
means of distinguishing between them (Joint, Sec. 8.1.3).

The third variant is not strictly a MTL setup at all, but rather just combines the training splits
of several datasets and trains a single-task model with minor modifications (cf. Sec. 8.1.3); it
exists primarily as a “control group” for the other two models, and can help determine whether
potential improvements stem from the MTL-specific modifications or rather just from the
amalgamation of the training datasets.

Further variants are possible: Luong, Le, et al. (2015) propose to use task-specific encoders and
decoders, e.g., using one encoder per source language and one decoder per target language in a
multi-lingual machine translation setting. However, here the normalization task differs from
machine translation in that we are almost never interested in normalizing a historical language
to anything but its contemporary equivalent, so there is usually a one-to-one relation between

2I will assume the use of exactly two datasets in many of the examples and explanations to follow, but all
presented concepts can be applied to three or more datasets as well.

146

8.1 Models

y j a

h o ǵ

⊕

h i j a #

h o g y #

Dense layer
for dataset 2

Dense layer
for dataset 1

Figure 8.1: Multi-task learning using the encoder–decoder model (cf. Fig. 6.2) with separate
prediction layers (MTLSplit); orange components are specific to dataset 1 (here:
Hungarian), green components are specific to dataset 2 (here: Spanish), other com-
ponents are shared between the datasets; decoder inputs not shown for reasons of
clarity.

source and target data.3 In my preliminary testing, I also found it disadvantageous to keep the
full encoder or decoder layers dataset-specific, so I do not investigate these variants further
here.

8.1.1 MTLSplit: Using separate prediction layers

A common approach for MTL is to share all parts of a model except for the final prediction
component (Goldberg, 2017, p. 240 f.). In the encoder–decoder model discussed here, this means
sharing everything except the final dense layer; instead, there is now one dense layer per dataset
that is specific to that dataset. Figure 8.1 shows a visualization of this MTL model. Essentially,
this setup requires the encoder, decoder, and embedding layers to learn dataset-independent
representations, while only the final prediction layer can learn dataset-specific properties. This
is identical to the approach used in Bollmann et al. (2017).

Training is done on all of the involved datasets simultaneously. More precisely, when training
with a batch size of 50, each training step consists of processing 50 samples from each of the
datasets, then performing a parameter update based on the joint loss function. For example,
if 𝐿𝑒𝑠 and 𝐿ℎ𝑢 are the loss functions (cf. Sec. 5.3.1) for the Spanish and the Hungarian parts of

3Amany-to-one setting is also conceivable, e.g., by treating the two Slovene datasets as separate source languages
(since they were written in different alphabets) that should be normalized to the same target language, i.e.,
modern Slovene. However, we would not want to normalize, e.g., Old Spanish to Modern Hungarian, as that
could no longer be modeled as normalization, but is rather a proper translation task.

147

Chapter 8 Multi-task learning

〈ES〉 # y j a #

〈HU〉 # h o ǵ #

⊕

h i j a #

h o g y #

Figure 8.2: Multi-task learning using the encoder–decoder model (cf. Fig. 6.2) with task-specific
input symbols (MTLInput); all model components are shared, and each encoder input
is prefixed with a symbol identifying which dataset will be processed (here: 〈ES〉 for
Spanish, 〈HU〉 for Hungarian); decoder inputs not shown for reasons of clarity.

the model, respectively, the loss function for the multi-task model trained on both datasets in
parallel is:

𝐿(�̂�𝑒𝑠, �̂�ℎ𝑢, 𝑦𝑒𝑠, 𝑦ℎ𝑢) = 𝐿𝑒𝑠(�̂�𝑒𝑠, 𝑦𝑒𝑠) + 𝐿ℎ𝑢(�̂�ℎ𝑢, 𝑦ℎ𝑢) (8.1)

As a consequence, each training update is based on an equal amount of training samples
from each involved dataset. Since datasets will typically have different numbers of samples
in total, “epochs” are now defined as having seen a fixed number of samples from each one;
here, 50,000 is typically used. After training has finished, separate models are saved for each
dataset including only the components necessary for processing this dataset; i.e., prediction
and evaluation works exactly the same way as in the single-task setup.

Early stopping (cf. Sec. 5.3.6) is still used in the multi-task scenario. After each training epoch,
the model is validated against the held-out validation sets from each dataset, and snapshots of
the model’s state are saved independently for each dataset if its validation accuracy improved.
This means that even if the ideal number of epochs to reach the highest accuracy is different
for the datasets, only the best state for each dataset will be used in the end. Training ends only
after the validation accuracy for each dataset has stopped improving.

8.1.2 MTLInput: Using input identifiers

The second MTL variant is inspired by recent work in cross-lingual morphological knowledge
transfer (Kann et al., 2017; Jin and Kann, 2017). The model here is the same encoder–decoder
model as in the single-task setup, but the inputs are prepended with special symbols serving as
“dataset identifiers”. Figure 8.2 shows a visualization of this approach.

148

8.2 Model comparison

On first glance, this might not seem very different from the MTLSplit variant described above,
as the only difference in the model is that there is only a single prediction layer now. However,
since the knowledge of the dataset is now encoded in the inputs, all parts of themodel—including
the encoder and decoder—have access to this knowledge and can, in principle, learn to condition
their behavior based on which dataset they are processing. In the MTLSplit variant, on the other
hand, all components before the final prediction layers are forced to learn dataset-independent
transformations, since they have no way of distinguishing between the datasets.

Training works the same way as for the MTLSplit model from Sec. 8.1.1. However, as this is
technically implemented as a single-task model, the training data is preprocessed to ensure
the same balanced composition of samples from each dataset as in the MTLSplit variant. Early
stopping and model snapshots, however, are no longer done on a per-dataset basis, but are
conditioned on the average accuracy of the involved datasets.

8.1.3 Joint training

Finally, I consider a variant that trains a single-task encoder–decoder model jointly on multiple
datasets. This is essentially a kind of baseline for the other multi-task setups, and serves to
discern the effect of combining the training datasets from that of the MTL-specific modifications
described in Secs. 8.1.1 and 8.1.2. In other words, if this Joint model performed equally well
as the MTLSplit and MTLInput models, the added complexity of those MTL variants would not
be beneficial, and any potential improvements would result only from the combination of the
training datasets.

To make the comparison fairer, the same balancing approach is used for the training samples
as in Sec. 8.1.2; i.e., with a batch size of 50, for each batch, 50 training samples per dataset are
selected and used in the calculation of the training update. This ensures that the training results
are not distorted by an unbalanced representation of the datasets in the training data sequence.
Early stopping also works the same way as in Sec. 8.1.2.

8.2 Model comparison

The three MTL variants described in the previous sections—MTLSplit, MTLInput, and Joint—can
be combined with either the base or attentional encoder–decoder model (cf. Sec. 6.1). Even
though Sec. 6.3.2 already compared these two encoder–decoder variants and found the at-
tentional model to be superior, it is possible that the same does not hold true when training
in a multi-task setting. For example, Bollmann et al. (2017) found that combining MTL with
attention led to an overall decrease in accuracy. Therefore, I choose to evaluate both the base
and attentional variants in this comparison.

As mentioned previously, I will focus on pairwise combinations of datasets. This means that in
each MTL scenario, the model is trained on two datasets at the same time, and the resulting
model(s) are evaluated on both of these datasets separately. I choose to perform this comparison
on the same reduced selection of datasets as described in Sec. 6.2.1, and for mainly the same
reasons as well: training all pairwise combinations of ten datasets in six different configurations

149

Chapter 8 Multi-task learning

is computationally expensive, and the uniform size of the datasets removes the potential effect
of different training data sizes from the evaluation. I also train the respective single-task models
on each of these datasets in order to quantify the relative increase or decrease in accuracy from
using the MTL setups.

Results

Figure 8.3 shows the percentage error reduction or increase (compared to the single-task model)
for each of the tested configurations; Table 8.1 summarizes the results by giving the absolute
single-task performance as well as the best and average change from the different dataset
pairings, either as relative change in percentage points (Tab. 8.1a) or as percentage change of
the error rate (Tab. 8.1b).

The results show a clear trend: in general, the MTLSplit variant performs better than the
MTLInput variant, while both perform considerably better than the simple Joint training sce-
nario. In fact, the Joint models show a consistent decrease in accuracy; on average, training
in this fashion decreases accuracy by 1.06 pp (base model) and 1.42 pp (attentional model)
compared to just training on the respective dataset alone. Compared to that, the MTLSplit model
achieves an average increase of 0.33 pp (base model) and 0.49 pp (attentional model), corre-
sponding to an error reduction of 2.35% and 3.75%, respectively. The MTLInput approach lies in
between the other two, but averages a slight decline in accuracy overall.

The individual datasets behave quite differently in terms of their average improvement from
multi-task learning. The German and English datasets generally seem to profit most; e.g.,
English achieves an error reduction of up to 13.7% (Fig. 8.3, attentional model with MTLSplit,
when trained jointly with Hungarian). The highest reduction overall is observed for Slovene/Gaj,
which achieves 15.8% in the same constellation. On the other hand, the Hungarian dataset
consistently performs worse in all MTL setups except one, the attentional model with MTLSplit.
In other constellations, such as Icelandic or Slovene/Gaj in the MTLSplit and MTLInput scenarios,
the results vary between improvements and losses.

In general, the impact of MTL appears to depend more on the dataset that is being evalu-
ated than the dataset it is paired with, or at least the results are mostly inconclusive in this
regard. For example, depending on the model configuration, the German/Anselm dataset
profits most from being trained together with Hungarian (MTLSplit/base), Hungarian and
English (MTLSplit/attentional), English (MTLInput/attentional), or Slovene (MTLInput/base and
Joint/base). When training Hungarian together with Icelandic, the accuracy changes range
from minor improvements (-3%, MTLSplit/attentional) to significant losses (+23.8%, MTLInput/at-
tentional); similar effects can be observed for other pairings as well, such as Icelandic with
English (-5.9% on MTLSplit/base, but +15.4% on MTLInput/attentional).

Interpretation

Compared to the inherent variance of the training process (analyzed in Sec. 6.3.1, and particu-
larly Tab. 6.1), many of the changes observed here seem relatively minor. Combined with the
highly varied results, this makes it difficult to establish a correlation between MTL performance

150

8.2 Model comparison

DEA EN HU IS SLG

DEA

EN

HU

IS

SLG

-0.28 -12.03 -10.63 -9.82

+3.89 -3.84 -6.57 -0.71

+7.37 +13.62 +4.48 +7.12

-6.82 -5.90 -7.35 -8.02

-1.95 +5.44 +2.49 -8.30

Base model

DEA EN HU IS SLG

-9.96 -9.84 -3.70 -4.64

-12.27 -13.66 -4.97 -1.86

-1.10 -6.60 -3.03 -5.21

+6.26 +5.55 -2.18 +4.46

-3.62 -3.62 -15.79 -4.00

type
=
M
TL

Split
M
TL

Split
Attentional model

DEA EN HU IS SLG

DEA

EN

HU

IS

SLG

-1.53 -1.92 -3.81 -6.84

-1.25 -2.71 -0.53 +0.70

+11.00 +9.04 +10.55 +5.88

-5.77 -2.86 -2.62 -2.62

+12.32 +9.54 +3.10 +3.40

DEA EN HU IS SLG

-7.90 -2.47 -5.17 -4.95

-0.00 -6.40 +5.34 -1.29

+6.24 +2.12 +23.82 +1.52

+2.98 +15.37 +6.49 +5.55

-1.06 -2.51 -5.93 +2.39

type
=
M
TL

Input
M
TL

Input

DEA EN HU IS SLG

DEA

EN

HU

IS

SLG

+6.43 +9.69 +5.43 -7.49

+12.07 +0.53 +13.55 +0.70

+18.80 +16.39 +11.45 +6.01

+5.48 +5.07 -1.77 +2.27

+16.31 +9.54 +12.32 +10.83

DEA EN HU IS SLG

+1.89 +10.44 +2.08 +2.63

+18.30 +2.31 +16.69 +9.26

+19.15 +12.58 +12.35 +4.44

+13.11 +10.51 +13.71 +11.05

+8.04 +13.07 +13.60 +9.49

type
=
Joint

Joint

Figure 8.3: Percentage change of error of the multi-task models compared to the single-task
setup for pairwise training experiments; numbers are for evaluation of the row
dataset when trained together with the column dataset. Negative scores (highlighted
in blue) are improvements, positive scores (highlighted in red) are increases of the
error rate.

151

Chapter 8 Multi-task learning

Dataset Single Maximum change Average change

MTLSplit MTLInput Joint MTLSplit MTLInput Joint

Base Model

DEA 78.76% +2.28 +1.36 +1.48 +1.57 +0.72 -0.87
EN 88.64% +0.70 +0.30 -0.06 +0.19 +0.11 -0.87
HU 85.92% -0.66 -0.88 -0.90 -1.27 -1.42 -2.19
IS 82.76% +1.28 +0.94 +0.30 +1.13 +0.58 -0.51
SLG 93.74% +0.48 -0.20 -0.66 +0.02 -0.49 -0.88

Average 85.96% +0.82 +0.30 +0.03 +0.33 -0.10 -1.06

Attentional Model

DEA 79.24% +1.88 +1.52 -0.40 +1.35 +1.01 -0.96
EN 89.02% +1.32 +0.66 -0.26 +0.81 +0.05 -1.51
HU 87.08% +0.80 -0.20 -0.60 +0.49 -1.35 -1.84
IS 85.02% +0.32 -0.46 -1.76 -0.57 -1.28 -2.07
SLG 94.28% +0.78 +0.32 -0.50 +0.35 +0.10 -0.72

Average 86.92% +1.02 +0.37 -0.70 +0.49 -0.29 -1.42

(a) Single-task accuracy and relative change of accuracy (in percentage points)

Dataset Single Maximum change Average change

MTLSplit MTLInput Joint MTLSplit MTLInput Joint

Base Model

DEA 21.24% -10.73% -6.40% -6.97% -7.39% -3.39% +4.10%
EN 11.36% -6.16% -2.64% +0.53% -1.67% -0.97% +7.66%
HU 14.08% +4.69% +6.25% +6.39% +9.02% +10.09% +15.55%
IS 17.24% -7.42% -5.45% -1.74% -6.55% -3.36% +2.96%
SLG 6.26% -7.67% +3.19% +10.54% -0.32% +7.83% +14.06%

Average 14.04% -5.84% -2.14% -0.21% -2.35% +0.71% +7.55%

Attentional Model

DEA 20.76% -9.06% -7.32% +1.93% -6.50% -4.87% +4.62%
EN 10.98% -12.02% -6.01% +2.37% -7.38% -0.46% +13.75%
HU 12.92% -6.19% +1.55% +4.64% -3.79% +10.45% +14.24%
IS 14.98% -2.14% +3.07% +11.75% +3.81% +8.54% +13.82%
SLG 5.72% -13.64% -5.59% +8.74% -6.12% -1.75% +12.59%

Average 13.08% -7.80% -2.83% +5.35% -3.75% +2.22% +10.86%

(b) Single-task error and percentage change of error

Table 8.1: Comparison of multi-task learning models on the reduced datasets; “Single” gives
the performance of the single-task encoder–decoder model; other columns give the
“maximum” or “average” change for MTL from all evaluated dataset pairs. Highest
improvements highlighted in bold.

152

8.3 Full evaluation

and properties of the datasets (e.g., as discussed in Sec. 3.4). The combined results for all
evaluated dataset pairs suggest that the attentional model with the MTLSplit variant is the most
promising approach overall, as it has the highest average error reduction and the attentional
model already performs better than the base model in the single-task scenario. Beyond that, it
would be desirable to base conclusions about specific dataset pairings on results from multiple
training runs or even ensembles (as in Sec. 6.3.1), to make sure the observed effect is not simply
a result of random variation. I will come back to this below in the full evaluation.

Admittedly, my implementation of the MTLSplit setup does have one advantage over the
MTLInput variant: the former can save different model snapshots for each of the two datasets,
while the latter only saves a single model state based on the average performance across
both datasets. This is done for technical reasons, as the MTLInput variant is essentially just
a single model that processes different types of input data. However, a more sophisticated
implementation could conceivably perform a per-dataset validation for this variant, too, and
save separate “best” model states for each dataset just as with the MTLSplit variant. It could be
worthwhile to investigate whether the slightly worse performance of MTLInput is mainly due
to this difference in training.

Another thing to note is that the combination of MTLSplit and the attentional model does
not generally result in reduced accuracy (cf. Tab. 8.1), but rather helps on average, contrary
to the result reported in Bollmann et al. (2017). This could be due to a variety of factors,
such as the size of the training sets—around 5,400 on average in Bollmann et al. (2017), while
the experiments here use 50,000 tokens—or the nature of the auxiliary task—Bollmann et al.
(2017) use grapheme-to-phoneme conversion, while this work uses normalization on a different
dataset and (usually) language. More research is needed here to arrive at a conclusion.

8.3 Full evaluation

In the previous section, I compared several types of MTL models on a reduced selection of
datasets, and found that the MTLSplit approach with an attentional model provided the highest
improvements on average. However, for some datasets or dataset combinations, the effect
sizes were relatively small and the results highly varied. Therefore, I choose to perform a more
extensive evaluation of this particular MTL model that is more comparable to the single-task
setup evaluated in Sec. 6.3. This means:

1. Training and evaluating pairwise combinations of all datasets described in Sec. 3.1 and
using the full datasets instead of reduced subsets.

2. Performing multiple training runs for each dataset combination and combining them
to form a model ensemble, as this was shown to yield substantial improvements for the
single-task setup (cf. Sec. 6.3.3).

3. Using beam search decoding, as this was shown to outperform greedy decoding for the
single-task setup (cf. Sec. 6.3.4).

Since training the MTLSplit models is much more computationally expensive than training
the single-task ones, I only train three individual models for each configuration (instead of

153

Chapter 8 Multi-task learning

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

+8.72 +13.14 +14.44 +12.16 +13.23 +11.16 +15.10 +14.32 +15.85

-3.43 +0.89 +1.59 +6.22 -0.63 +4.12 +0.89 -0.09 +1.93

+12.85 +17.51 +14.17 +9.40 +14.52 +13.56 +15.37 +13.11 +19.77

+10.80 +11.67 +8.45 +10.41 +11.42 +3.38 +12.78 +10.41 +12.90

+12.73 +27.07 +12.08 +16.29 +14.05 +12.78 +15.18 +17.90 +24.37

-8.80 -5.78 -6.94 -6.17 -11.14 -5.15 -2.81 -9.34 -1.74

+20.94 +29.52 +20.36 +17.58 +19.59 +22.33 +21.64 +24.56 +32.09

-11.79 -10.44 -14.35 -12.02 -14.82 -11.56 -13.17 -17.77 -11.11

+10.13 +11.86 +7.21 +13.45 +9.95 +15.84 +13.45 +9.59 +19.61

-27.32 -20.73 -21.99 -28.02 -22.63 -13.66 -16.50 -24.60 -15.92

Figure 8.4: Percentage change of error of the MTLSplit ensemble with attention compared to
the single-task setup for pairwise training experiments; numbers are for evaluation
of the row dataset when trained together with the column dataset. Negative scores
(highlighted in blue) are improvements, positive scores (highlighted in red) are
increases of the error rate.

the five models trained in Sec. 6.3.3).4 Since the training sets are now of different sizes, I
define one epoch to consist of 50,000 tokens; i.e., training iterates over each training dataset
independently (by shuffling it and going through all of its tokens once, then re-shuffling it and
going through all tokens again, etc.), and whenever the model has seen 50,000 tokens of each
dataset, validation is performed to decide if the training should be stopped (cf. the description
of early stopping in Sec. 5.3.6). As before, model snapshots are saved independently for each
dataset (cf. p. 148).

Figure 8.4 shows the relative change of error for the MTLSplit ensemble (of three models)
compared to the single-task encoder–decoder ensemble (of fivemodels) when both are evaluated
using beam search decoding.5 Two results become immediately apparent: (i) the usefulness
of multi-task learning depends more on the dataset that is being evaluated than the one it is

4For comparison, training the single-task encoder–decoder model with attention five times on each dataset took
about 62 hours, while training the corresponding MTLSplit model three times on each dataset combination
took about 321 hours, or almost two weeks.

5I also compared the average scores of the individual models without ensembling, and the overall trends were
the same.

154

8.3 Full evaluation

trained together with; and (ii) for most datasets, the multi-task setup is now detrimental rather
than beneficial.

One hypothesis about multi-task learning is that its usefulness directly correlates with either
synergistic or complementary properties of the datasets. In other words, it is conceivable that
the performance on one dataset improves most with an MTL setup when it is paired with
another dataset that is either (i) very similar, or (ii) provides an additional signal that is useful
for, but not covered in, the first dataset. The results in Fig. 8.4 show that there can indeed be
considerable variation depending on the exact dataset combination; e.g., the error reduction
on Swedish ranges from 13.66% (when trained jointly with Icelandic) to 28.02% (when trained
jointly with Spanish). At the same time, the question whether MTL helps at all appears to
depend most on the dataset being evaluated: German/RIDGES is the only dataset that shows
both declines and improvements in the error rate—depending on which dataset it is paired
with—while for all other datasets, the error rate either always improves or always worsens.

The second result is especially surprising after the first evaluation in Sec. 8.2, where the
MTLSplit model with attention performed best on average and led to improvements—i.e., a
reduction of errors compared to the single-task model—in 17 of the 20 dataset combinations it
was evaluated on. In contrast, the evaluation in Fig. 8.4 shows that MTL leads to consistent
improvements only for the Icelandic, Slovene/Bohorič, and Swedish datasets, and decreases
performance in all other cases (with the occasional exception on German/RIDGES).

Considering the dataset statistics in Tab. 3.1, it appears that the size of the training corpus is the
most likely reason for these results. This also explains the stark contrast of this evaluation to the
one in the previous chapter, where the size of the training sets was held constant throughout
all experiments. The three corpora that benefit from MTL are also among the four with the
smallest training sets, each with less than about 50,000 tokens; the fourth corpus in that group
is German/RIDGES, the only other dataset where MTL is beneficial in at least some scenarios.
Moreover, the dataset that profits most fromMTL, Swedish, is the one with the smallest training
set of all (ca. 25,000 tokens). In the same vein, the dataset that shows the highest error increase
with MTL, Portuguese, has one of the largest training sets (ca. 220,000 tokens). On the other
hand, German/Anselm performs slightly less worse than Portuguese even though its training
set is larger, so while there is a correlation between MTL performance and training set size,
this does not appear to be the only decisive factor.

We can also consider individual dataset pairings and ask whether their performance is correlated
with the similarity of these datasets (as defined in Sec. 3.4.2). Fig. 8.4 by itself already shows
the intuitive result that pairings of identical or closely related languages result in the best
performance:6 this is true for Spanish/Portuguese as well as German Anselm/RIDGES, and also
for the Bohorič part of the Slovene corpus when trained together with the Gaj part (though not
the other way around). This coincides with the similarity scores of these datasets from Fig. 3.2.
Slovene/Gaj, on the other hand, performs best when paired with English, which is the dataset
it is most similar to according to the comparison in Fig. 3.3. However, calculating Pearson’s
correlation coefficient on either of these similarity matrices with the error change matrix from
Fig. 8.4 shows no correlation in the general case (|𝑟 | < 0.1).

6“Best” here always means “lowest percentage change of error”, even when that change is positive, i.e., the error
actually increased.

155

Chapter 8 Multi-task learning

Overall, the evaluation here suggests that multi-task learning tends to help most when the
training set is small, and can actually lead to a decline in accuracy otherwise. The choice of the
“auxiliary” dataset to pair it with seems to be less important in comparison, although choosing
data from related languages is the most promising approach.

156

Chapter 9

Low-resource training

For neural networks to generalize well, there generally must be a large amount
of data[…] Deep learning currently […] works best when there are thousands,
millions or even billions of training examples[.]

— Marcus (2018)

The historical datasets used here for training and evaluating automatic normalization systems
are, to some extent, exceptional: the smallest dataset, Swedish, has about 56,000 manually nor-
malized tokens (25,000 of which are used for training), while the largest one, German/Anselm,
has more than 325,000 tokens (cf. Tab. 3.1). These corpora can conceivably be reused when
the goal is to normalize new texts in one of the covered languages, but for many languages,
digitized historical texts with gold-standard normalization annotations are not easily available.
Producing these normalizations manually—in order to train one of the normalization systems
presented in this thesis—is a time-consuming process. Therefore, a relevant question for these
application scenarios is how the systems perform with smaller amounts of training data.

The evaluation of multi-task learning suggested that the size of the training corpus is a signifi-
cant factor for its performance, with smaller training sets benefiting more from an MTL ap-
proach than larger ones (cf. Sec. 8.3). This raises two questions: (i) Does the encoder–decoder
approach in general perform better with larger amounts of training data, or in other words, is its
performance significantly reduced with training sets that are small? (ii) Can we use multi-task
learning (with auxiliary datasets from other languages) to obtain a better performance even
with a small training set in our main language?

To simulate a low-resource training scenario, I create new training sets for each historical
corpus by taking only the first 5,000 tokens from their respective original training sets; the
development and test sets are not changed. The choice of using 5,000 tokens is somewhat
arbitrary; ultimately, this number was chosen as a compromise between making the sets signif-
icantly smaller than any of the “full” training sets (5,000 tokens is about a fifth of the smallest
training set) and still keeping them large enough for a supervised learning algorithm to extract
meaningful generalizations out of them. The tokens were taken from the beginning of the
datasets—instead of being chosen at random—in order to better resemble a real application
scenario, where it is more likely that full texts or text passages are normalized manually to
obtain training data instead of a random selection of words from the full corpus.

The evaluation here mainly repeats parts of the analyses performed on the full datasets, with
the aim to find parallels or differences in the low-resource scenario. Sec. 9.1 investigates if there

157

Chapter 9 Low-resource training

DEA DER EN ES HU IS PT SLB SLG SV

0.5

0.6

0.7

0.8

0.9
Va
lid
at
io
n
ac
cu
ra
cy

Base model (single)
Base model (ensemble)
Attentional model (single)
Attentional model (ensemble)

Figure 9.1: Validation accuracy of individual models and model ensembles in the low-resource
scenario, trained on five different initializations per dataset and model type

is a higher variance among different random restarts and if ensembling is still advantageous.
Sec. 9.2 compares the different normalization methods. Sec. 9.3 evaluates whether multi-task
learning can be particularly beneficial with small datasets, while Sec. 9.4 sums up the findings.

9.1 Variance and ensembling

The analysis of the encoder–decoder model in Sec. 6.3 showed that (i) different random restarts
of the training procedure can yield different results (in terms of test accuracy), and (ii) combining
these independently trained models to form a model ensemble substantially improves on any
single model’s result. While low-resource training should behave similarly in this regard, the
variance of the individual models’ results might be greater, due to the training process being
potentially less stable with lower amounts of data. Therefore, I choose to replicate some of the
analyses from Sec. 6.3 for the low-resource scenario.

Figure 9.1 shows the validation accuracy of the individual models (analogous to Fig. 6.9) and
the ensembles, while Table 9.1 presents the average accuracy and sample standard deviation of
the individual runs as well as the ensemble accuracy (analogous to Tabs. 6.1 and 6.2). Naturally,
the average accuracy scores are much lower, with the worst performance being observed on
Hungarian (ca. 50% with the attentional model compared to almost 89% on the full training
set; cf. Tab. 6.1) and the best on Slovene/Gaj (90% vs. 95%). At the same time, the variance of

158

9.2 Comparative evaluation

Dataset Base model Attentional model

Avg. 𝑠 Ensemble Avg. 𝑠 Ensemble

DEA 65.44% 0.5756 66.88% 65.85% 0.7328 68.36%
DER 63.61% 0.3656 65.66% 69.53% 1.2130 72.21%
EN 71.91% 0.5729 73.86% 75.78% 1.7631 79.77%
ES 77.65% 0.6562 79.36% 81.88% 0.9915 83.86%
HU 47.34% 0.4643 50.07% 50.30% 1.2095 52.53%
IS 64.78% 1.5079 66.67% 70.35% 1.1775 71.40%
PT 74.44% 0.8358 76.54% 78.62% 0.7537 80.51%
SLB 77.59% 0.9604 80.44% 82.73% 0.6045 84.30%
SLG 83.24% 0.3414 86.22% 89.73% 0.3422 90.66%
SV 73.25% 0.3221 75.77% 78.97% 0.7130 81.47%

Table 9.1: Statistics for the low-resource scenario over five independent training runs per
dataset and model type; “Avg.” gives the average word accuracy from all training runs,
𝑠 denotes the sample standard deviation, and “Ensemble” gives the word accuracy
from the ensemble of all five runs.

these scores indeed appears to be larger: while Tab. 6.1 reported standard deviations no greater
than 0.73, with most being below 0.5, the low-resource scenario produces results with standard
deviations mostly above 0.5, up to a maximum of 1.76.

Comparing the base encoder–decoder model (without attention) to the model with the attention
mechanism, we can see that the attentional variant clearly outperforms the non-attentional one
on every dataset except German/Anselm. This was not the case in the analysis using the full
training sets: there, the attentional model was significantly better on only four of the datasets
(cf. Sec. 6.3.2). Here, on the other hand, the differences between the two variants are statistically
significant with 𝑝 < 0.01 for all datasets except Anselm. This is an unintuitive result: the
attention mechanism adds complexity to the model, e.g., by way of additional weights that
need to be trained, while in a low-resource scenario, there is usually not enough data to inform
a large amount of parameters. The results here show that 5,000 tokens are already sufficient
for the attention mechanism to outperform the base model, though.

Finally, the ensembling approach is also highly beneficial in the low-resource scenario. The
accuracy of the model ensemble is consistently higher than the average accuracy—and, in most
cases, also higher than the best accuracy—of the individual models. Overall, it is advisable to
use a model ensemble whenever possible, especially since performing multiple training runs is
less computationally expensive in the case of smaller training sets.

9.2 Comparative evaluation

The preliminary evaluation in Tab. 7.1 compared different normalization methods and found
that, overall, the CSMT approach yielded the best results. It is not clear if the same effect holds
in the low-resource scenario, since normalizers might behave differently when given only low

159

Chapter 9 Low-resource training

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

NormaM 54.85 64.02 80.08 81.37 33.23 65.17 78.41 65.04 88.59 75.90
NormaR+W 65.82 76.25 85.54 86.33 59.21 73.42 82.40 82.23 85.61 77.82
NormaAll 69.70 77.11 86.00 88.05 60.26 75.25 85.86 83.26 85.90 80.58

CSMT 70.35 78.46 84.92 87.17 54.76 77.26 84.03 86.47 92.09 85.12
CSMT+LM 70.32 78.49 84.85 87.36 54.89 77.23 83.92 86.49 92.06 85.08

NNAvg 66.39 69.89 76.26 82.03 50.78 70.79 78.50 82.94 89.82 79.44
NNEns 69.46 72.97 80.16 84.04 53.22 71.71 80.29 84.57 90.52 81.56
NNEns+F 74.49 77.82 85.80 88.15 65.97 76.62 85.02 86.20 88.68 83.25

Table 9.2: Word accuracy of different normalization methods (cf. Sec. 7.1) in the low-resource
scenario, in percent, evaluated on the development sets of the historical datasets;
best result for each dataset highlighted in bold.

amounts of training data. In particular, neural networks are often said to perform best with a
high amount of training data, while the Norma tool is specifically designed to learn from very
small samples of manual normalizations.

Table 9.2 compares the word accuracy of different normalizers when trained on the 5,000-token
training sets. Norma’s results are much stronger in this scenario compared to the full evaluation
of Tab. 7.1; NormaAll achieves the highest accuracy on English and Portuguese, outperforms
the NNAvg model on all datasets except one (Slovene/Gaj), and is also better than CSMT and
NNEns on several datasets. This confirms Norma’s strengths in learning from sparse amounts
of training data.1

The cSMTiser tool also shows a good performance overall, achieving the best result on half of
the datasets. Furthermore, it outperforms the neural networks without lexical filtering—NNAvg
and NNEns—on every dataset, without exception. Clearly, the CSMT approach can handle
low-resource scenarios better than the neural networks can. Admittedly, it is possible that the
hyperparameter settings derived in Sec. 6.2 are not optimal for this case, and that the neural
networks might perform better with different settings; however, no parameter tuning was done
for cSMTiser at all, so the latter certainly shows better performance “out of the box”, which
can be an important consideration for practical applications.

Comparing CSMT to CSMT+LM, the scenario that augments the contemporary language model
with additional training data from the modern datasets, there is again no clear advantage for
either approach. It seems that either the language modeling component is not as critical, or the
5,000 tokens for training are already enough to learn a good character-based language model.
The analysis in Sec. 7.5.3 suggested that the language model might indeed be a crucial factor of
CSMT’s performance, making the second explanation appear more likely.

1Indeed, Bollmann (2013a) showed that Norma can already perform reasonably well with about 100–500 tokens
for training, so possibly, if the size of the training set was reduced even further, Norma’s advantage over the
other methods would become even more pronounced.

160

9.3 Multi-task learning

While the encoder–decoder model does not perform well in this evaluation, adding the lexical
filtering step usually results in a significant boost in word accuracy. On many datasets, lexical
filtering increases the accuracy by about 5 pp, with the biggest increase being observed for
Hungarian (66% for NNEns+F vs. 53% for NNEns; this is particularly remarkable because accuracy
goes down with filtering in the full evaluation; cf. Fig. 7.1). Consequently, the NNEns+F model
has the highest accuracy of all methods on three datasets: German/Anselm, Spanish, and
Hungarian. Slovene/Gaj is the only dataset where the filtering step leads to a slight decrease in
accuracy (from 90.52% to 88.68%).

Apparently, lexical filtering is a significant aid for the decoding step of the encoder–decoder
model. In a way, the filter can be seen as modifying the “recurrent” part of the decoder: some
output classes (at timestep 𝑡) are filtered out based on the previously predicted normalized
characters (at timesteps 0, … , 𝑡 − 1). The fact that this leads to such a significant improvement
suggests that the neural network has learned the input–output correspondences (of historical
characters to normalized characters) better than it has learned the shape of a valid target word
form, i.e., the “language modeling” part of the task.

NormaR+W uses the same modern lexical resources to generate and filter its predictions as
NNEns+F does, yet in some cases, it performs significantly worse. This shows that the neural
network model can often utilize the lexical resource better than Norma, which in turn suggests
that it has learned better input–output transformations from the training data. Again, this
comparison suggests (similar to the analysis in Sec. 7.5.3) that the neural network model is
mainly restricted by a comparatively weak modeling of the output character transitions, i.e.,
the character-based language modeling on the normalized word forms.

9.3 Multi-task learning

Chapter 8 introduced the concept of multi-task learning (MTL) and applied it to training on
two historical datasets simultaneously. The evaluation in Sec. 8.3 showed that the datasets that
profited the most from training together with another dataset were those with lower amounts
of training data. This suggests that MTL might be particularly beneficial in the low-resource
scenario, where training sets are particularly small.

To investigate this, I once more train and evaluate on all pairwise combinations of historical
datasets, with the change that the dataset being evaluated only uses its low-resource training
set instead of the full one. In other words, the pairings are now asymmetrical: a low-resource
training set is combined with the full training set of another dataset, and the resulting model
is evaluated only on the former dataset. This procedure resembles a reasonable application
scenario: if a researcher is interested in normalizing a language for which no manually normal-
ized resource exists, they could conceivably create a small batch of manual normalizations for
this language and then combine it with a corpus in another language (e.g., one of the corpora
evaluated here) using a MTL setup.

Training in this asymmetrical setup works exactly as described in Sec. 8.3, except that the batch
size is now set to 5,000 (the size of the low-resource training sets). To recap, this means that
the training algorithm always sees an equal amount of tokens from both datasets, and while
tokens are presented in a random order, no part of a training set is used twice before all of its

161

Chapter 9 Low-resource training

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

-20.57 -9.45 -8.56 -20.74 -11.89 -12.06 -8.37 -11.19 -13.12

-20.90 -16.33 -14.37 -15.53 -16.17 -18.67 -14.41 -20.78 -19.96

-12.40 -19.01 -20.36 -18.95 -17.34 -22.71 -19.51 -24.27 -17.31

-10.76 -22.83 -20.11 -22.89 -21.51 -41.60 -22.48 -30.85 -21.63

-9.02 -8.26 -5.26 -10.62 -4.05 -9.60 -7.14 -5.06 -11.28

-11.61 -14.70 -16.38 -14.76 -20.62 -18.88 -14.70 -17.07 -19.94

-13.21 -17.77 -20.96 -37.98 -19.78 -24.42 -23.03 -30.72 -19.78

-11.10 -15.62 -21.98 -21.52 -19.31 -18.12 -18.02 -46.89 -16.23

-6.08 -21.47 -23.01 -20.59 -19.64 -26.07 -22.58 -47.85 -19.97

-3.55 -15.95 -13.97 -8.22 -14.40 -12.47 -14.62 -10.40 -17.76

type
=
M
TL

Split
M
TL

Split

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

-21.27 +1.39 +0.78 -3.40 +1.28 -3.08 +4.00 +1.03 -0.06

-21.65 -13.34 -13.02 -12.80 -11.76 -14.18 -12.12 -19.43 -14.48

-0.86 -20.17 -20.58 -9.32 -7.78 -12.95 -14.76 -25.63 -9.60

-0.93 -13.96 -12.68 -4.75 -8.95 -17.56 -12.63 -22.31 -10.06

-1.01 -2.60 -1.21 -0.75 +3.22 -2.80 +3.97 +4.96 -2.35

-1.07 -8.02 -8.02 -11.78 -14.40 -10.52 -5.84 -5.12 +2.06

-1.15 -11.64 -12.82 -16.07 -16.51 -10.47 -9.74 -11.20 -11.90

-0.52 -12.34 -11.58 -2.25 -8.61 -8.79 -1.14 -43.82 -7.81

+7.22 -14.74 -12.74 -3.63 -5.57 -6.92 -1.97 -43.84 -18.51

+2.18 -12.68 +0.07 -8.22 -3.73 +4.06 -6.68 -11.64 -13.75

type
=
Joint

Joint

(a) Base model

Figure 9.2: Percentage change of error of the multi-task models (cf. Sec. 8.1) compared to
the average of the single-task models for pairwise training experiments in the
low-resource scenario; numbers are for evaluation of the row dataset (using the
low-resource training set) when trained together with the column dataset (using
the full training set).

162

9.3 Multi-task learning

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

-21.82 -9.04 -4.70 -11.84 -4.64 -6.15 -3.10 -2.02 -5.29

-13.90 -12.13 -10.62 -12.56 -12.99 -6.79 -13.60 -14.83 -16.05

-16.09 -20.14 -20.91 -24.06 -17.92 -23.94 -21.95 -24.41 -18.77

-11.40 -13.25 -20.15 -23.02 -19.67 -29.03 -23.09 -20.35 -17.34

-10.35 -10.50 -4.65 -7.28 -4.52 -4.38 +1.01 -2.07 -7.75

-7.26 -7.83 -12.38 -11.48 -10.53 -9.93 -6.50 -8.67 -14.01

-12.07 -11.96 -12.53 -20.30 -16.50 -15.42 -14.66 -14.75 -10.47

-4.97 -12.97 -9.53 -12.09 -13.09 -13.99 -9.41 -23.17 -7.89

-3.46 -9.21 -11.19 -11.36 -8.82 -10.05 -10.50 -23.55 -7.19

+8.67 -8.80 -19.54 -16.02 -10.59 -14.61 -9.56 -15.45 -9.56

type
=
M
TL

Split
M
TL

Split

DEA DER EN ES HU IS PT SLB SLG SV

DEA

DER

EN

ES

HU

IS

PT

SLB

SLG

SV

-18.42 +2.64 +1.54 -1.75 +4.54 +2.46 +3.59 +6.86 +4.30

-16.69 -6.71 -13.90 -0.21 -3.00 -4.86 -13.47 -12.56 -7.80

+2.17 -28.24 -16.74 -9.80 -10.69 -16.26 -17.74 -24.60 -6.66

+1.12 -8.48 -6.13 -4.20 +8.02 -3.73 -10.64 -13.74 -2.33

+0.27 +0.42 +2.54 -0.75 +3.55 +3.39 +2.94 +3.50 +6.18

+0.63 -1.78 +5.00 -4.54 -7.07 -1.78 -0.03 -2.64 +9.83

+3.57 -6.90 -9.45 +2.11 -6.08 -0.56 -2.36 -1.51 -7.44

+2.34 -5.30 -4.54 +2.81 -0.98 -0.98 +10.88 -21.25 -3.15

+10.78 -3.66 -2.72 +2.29 +9.12 +4.34 +14.86 -4.02 -0.93

+5.56 -8.80 -1.55 -7.32 +4.61 +15.38 -8.55 -3.78 -9.31

type
=
Joint

Joint

(b) Attentional model

Figure 9.2: Percentage change of error of the multi-task models (cont.); negative scores (high-
lighted in blue) are improvements, positive scores (highlighted in red) are increases
of the error rate.

163

Chapter 9 Low-resource training

tokens have been seen. For example, if a low-resource training set (of 5,000 tokens) is paired
with an auxiliary set of 50,000 tokens, training for 10 epochs means that the model will have
seen each token from the low-resource set exactly 10 times and each token from the auxiliary
set exactly once.

Furthermore, I will again compare both the encoder–decoder model with and without attention
as well as the MTLSplit variant (cf. Sec. 8.1.1) and the simple Joint training (cf. Sec. 8.1.3). This
is because it is particularly conceivable with low amounts of training data that the simpler
joint training approach—i.e., simply combining the small training set with a larger one without
any MTL technique—is already beneficial, and my aim is to discern the effect of the training
data combination from that of the MTL-specific modifications.

On the other side, I do not reconsider the MTLInput variant and I do not train model ensembles,
even though the latter was shown to be beneficial in almost all instances so far. Both choices
are only due to computational constraints, not theoretical ones.2

9.3.1 Evaluation

Figure 9.2 shows the results of the low-resource MTL evaluation, again presented as the per-
centage change of error compared to the single-task model. Since the MTL models are now the
result of a single training run (instead of an ensemble), I compare them to the average accuracy
of the individual single-task model (i.e., NNAvg). Also, in line with the other MTL evaluations
performed so far, all models are compared here using greedy decoding instead of beam search.

Some immediate observations are that (i) MTLSplit is consistently better than Joint; (ii) the
base model improves more than the attentional one with either MTL approach; and (iii) with
the possible exception of the Joint approach with the attentional model, MTL consistently
improves the accuracy over the single-task models.

The first observation—MTLSplit mostly outperforming the Joint training method—is consis-
tent with previous results from Sec. 8.2 which showed the same trend. This mostly confirms
that the modifications to the encoder–decoder model for multi-task learning as described in
Sec. 8.1.1 are advantageous to a simple combination of the training datasets. However, some
individual exceptions to this trend exist, mostly with closely related datasets: e.g., combining
German/Anselm and German/RIDGES usually yields better results in the Joint setup than in
the MTLSplit one.

The observation that the base model sees greater improvements from MTL than the attentional
one is to be expected: Sec. 6.3.2 showed that the attention mechanism often improves perfor-
mance over the base model, with the consequence that the margin for further improvement
via MTL is lower, simply due to the percentage of incorrect normalizations being lower. Still,
even in the MTL settings evaluated here, the attentional model often performs better than the
base model in terms of absolute word accuracy, on average showing an improvement of about

2Intuitively, it seems that training in a low-resource setup should be considerably faster, but this is not the case
here: (i) since the low-resource set is combined with a full training set from another corpus, convergence of
the model weights is now also influenced by the larger dataset, prolonging the training time; and (ii) due to
the asymmetrical nature of this experimental setup, twice the amount of models have to be trained to evaluate
each pairwise dataset combination compared to the previous MTL setups.

164

9.4 Summary

3 pp. The final evaluation in Chapter 10 will show and compare the actual word accuracy
scores.

Lastly, the MTL approaches—in particular MTLSplit—show consistent improvements over the
single-task baseline. For the base model, MTLSplit improves over the single-task models in
every single instance, while for the attentional model, there are only two dataset combinations
where the error increases. Even though the Joint training approach performs worse, it still
often results in an error reduction over the single-task setup. This is a stark contrast to the “full”
evaluation of MTLSplit in Fig. 8.4, where improvements where only seen for a few datasets. At
the same time, it confirms the hypothesis these results suggested, which is that the size of the
training set is a good predictor for improvements via multi-task learning. The small training
sets indeed profit from MTL, mostly regardless of which other dataset they are paired with.

Furthermore, the improvements observed here are also of a higher magnitude than those
in the full evaluation. In Fig. 8.4, the largest improvement from MTLSplit was observed for
Swedish, with an error reduction of about 28%. With the low-resource setting, error reductions
greater than 20% are not uncommon, and the highest observed percentage is almost 48% (for
Slovene/Gaj). This is not completely unexpected, though, since the single-task baseline for
low-resource training is naturally lower than that for training on the full datasets and, therefore,
the room for improvement is bigger.

Considering individual dataset pairings, it is apparent that pairs of related datasets perform
particularly well, more so than in the previous evaluations. This is true for Spanish and Por-
tuguese, Slovene/Gaj and Slovene/Bohorič, and—to a lesser extent—also for German/Anselm
and German/RIDGES. Conversely, Hungarian—which is the only Finno-Ugric language in the
evaluation—generally profits the least from MTL in terms of error reduction. While there is
considerable variance in the results for other dataset pairings as well, they are often not consis-
tent: e.g., in the MTLSplit evaluation with the base model (cf. Fig. 9.2a), German/Anselm shows
the best result when paired with Hungarian, but this effect disappears in the Joint approach
and in the attentional model. There is, unfortunately, no apparent correlation to the similarity
scores from Sec. 3.4.2 either, besides the aforementioned cases of related languages.

9.4 Summary

The evaluation with a simulated low-resource scenario, using only 5,000 tokens from each
dataset for training, has shown that—unsurprisingly—word accuracy is generally worse and
results from several training runs of the encoder–decoder model show more variance. In the
comparative evaluation, the Norma tool is stronger than before, while cSMTiser is still the
best choice overall. The neural network approach is comparatively weakest in this setting,
although the lexical filtering step mitigates this considerably. Furthermore, the option of using
multi-task learning with a larger auxiliary dataset might make the neural network models
more competitive, as it was shown to result in significant accuracy improvements. The final
evaluation (in Chapter 10) will compare the performance of selected MTL models to the other
systems when also adding beam search and lexical filtering.

165

Chapter 10

Evaluation

Evaluation is where your dreams are torn to shreds[.]
— Dan Simonson, http://blog.thedansimonson.com/?p=510

In previous chapters, all evaluations and analyses have been performed on the development
sets of the historical corpora. This was done in order to preserve the test sets for a single, final
evaluation that aims to confirm the key findings of the previous analyses.

Some of the normalizers also make use of the development data during training, making an
evaluation on the same set of tokens potentially biased. More precisely, the cSMTiser system
uses this data as the tuning set for the Moses decoder, while the neural network models use it
to decide when to stop training (via early stopping; cf. Sec. 5.3.6). The held-out test sets, on the
other hand, aim to provide an independent, less biased sample for the evaluation.1

First, I describe the methodology used for this final evaluation, i.e., which methods are compared
and how their differences are assessed (Sec. 10.1). I compare all methods using the traditional
word accuracy measure (Sec. 10.2), before performing the same evaluation using word stems
instead of full word forms (Sec. 10.3), as this was found to be the most promising measure
of normalization quality beyond the word level. I also seperately consider tokens that were
“known” or “unknown” during training in order to evaluate the generalization capabilities
of the systems (Sec. 10.4). Finally, I perform the same evaluations for the low-resource sce-
nario presented in Chapter 9 to determine whether the same observations hold as on the full
datasets (Sec. 10.5).

1Two notes about the independence/bias of the test sets:

1. All test sets originate from the same corpus as their associated training and development sets; this
alone makes them not truly independent, as they are likely to consist of similar text genres, vocabulary,
etc. However, it is rare to find two historical corpora of the same language that also (i) cover similar
historical language stages, and (ii) provide gold-standard normalizations created with similar normalization
guidelines. For this reason, a train/dev/test split of a single corpus is probably the best that can be done at
the moment.

2. Normalization is performed on tokens in isolation, and the test set is likely to contain many of the same
tokens as the training and development sets. However, it seems too artificial to remove all of these instances,
as any real-world application scenario for a normalization system will face the same situation. Instead, the
separate evaluation on “known” and “unknown” tokens can serve as an estimate for the models’ abilities
for memorization vs. generalization.

167

http://blog.thedansimonson.com/?p=510

Chapter 10 Evaluation

Evaluation Dataset Auxiliary Dataset

Full Low-resource

DEA German (Anselm) German (RIDGES) German (RIDGES)
DER German (RIDGES) German (Anselm) Swedish
EN English Hungarian Slovene (Gaj)
ES Spanish Portuguese Portuguese
HU Hungarian English German (RIDGES)
IS Icelandic Hungarian Swedish
PT Portuguese Spanish Spanish
SLB Slovene (Bohorič) Slovene (Gaj) Slovene (Gaj)
SLG Slovene (Gaj) English Slovene (Bohorič)
SV Swedish Spanish English

Table 10.1: Dataset pairings for the test set evaluation of MTL models; for each dataset that is
being evaluated (“Evaluation Dataset”), the MTL-NNEns/MTL-NNEns+F models were
trained together with the dataset (“Auxiliary Dataset”) that performed best in this
combination according to Fig. 8.4 (for the Full datasets) or Fig. 9.2b (top; for the
Low-resource datasets).

10.1 Methodology

All models are trained on the training sets and evaluated on the test sets of the historical
corpora (cf. Sec. 3.1).

For all evaluations, I mostly compare the same methods and use the same denotations as
introduced in Sec. 7.1. This includes the Norma tool in three different configurations (NormaM,
NormaR+W, NormaAll), the cSMTiser tool (CSMT), optionally trained with additional language
modeling data (CSMT+LM), and the ensemble of five individually trained encoder–decoder
models with attention (NNEns), optionally with lexical filtering (NNEns+F). These encoder–
decoder models are identical to the ones in previous evaluations, i.e., they use the attention
mechanism, beam search decoding, and the hyperparameters summarized in Sec. 6.2.5. I do not
separately report the average scores of the individual encoder–decoder models.

Additionally, I include some of the models obtained via multi-task learning (MTL) (cf. Chapter 8)
in the evaluation. The MTLSplit approach, i.e., using separate prediction layers for each of the
two languages, generally performed best and will therefore be used here. To reduce the large
amount of comparisons that result from all pairwise combinations of the datasets, I choose to
only consider the best pairing for each dataset to be evaluated, determined from the preliminary
evaluation on the development sets; i.e., Fig. 8.4 for the full datasets and Fig. 9.2b (top) for the
low-resource scenario. Table 10.1 gives an overview of these pairings. All evaluations use the
model ensembles with attention; in other words, the MTL models evaluated here are identical
to the single-task models in architecture and hyperparameters except for the modifications
specific to the MTLSplit setup.

In addition to reporting the individual normalizer’s scores on the different datasets, I also
perform tests to assess the magnitude of the differences between them. I follow Benavoli et al.

168

10.2 Accuracy

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

NormaM 83.86 82.15 92.45 92.51 74.58 82.84 91.67 81.76 93.90 83.80
NormaR+W 77.32 83.39 90.65 89.36 81.20 83.92 86.92 86.70 89.68 82.95
NormaAll 88.02 86.55 94.60 94.41 86.83 86.85 94.19 89.45 91.44 87.12

CSMT 88.82 88.06 95.21 95.01 91.63 87.10 95.09 93.18 95.99 91.13
CSMT+LM 86.69 88.19 95.24 95.02 91.70 86.83 95.18 93.30 96.01 91.11

NNEns 89.16 88.07 94.80 94.83 91.17 86.45 94.64 91.61 95.19 90.27
NNEns+F 89.78 87.12 95.10 94.39 88.70 86.65 94.56 89.95 90.80 87.02

MTL-NNEns 87.61 88.40 94.31 94.50 89.36 86.76 93.43 92.76 94.78 91.28
MTL-NNEns+F 89.00 87.42 95.00 94.32 88.18 86.68 94.15 90.33 90.65 87.24

MFN 94.64 96.46 98.57 97.40 98.70 93.46 97.65 98.71 98.96 98.97

Table 10.2: Word accuracy of different normalization methods (cf. Sec. 7.1) on the test sets of
the historical datasets, in percent; best result for each dataset highlighted in bold;
bottom line gives the theoretical maximum accuracy obtainable when the most
frequent normalization (MFN) was chosen for each historical type (cf. Sec. 3.4).

(2017) in using a Bayesian signed-rank test (Benavoli et al., 2014) to compare the performance
of two methods.2 Their approach compares the differences in accuracy scores between two
methods and allows for a range of practical equivalence (ROPE): an interval around 0 that defines
when a difference between two methods is minor enough to be practically irrelevant. How to
define this interval involves some degree of subjectivity in deciding what should be considered
a relevant difference. For my comparisons, I choose to consider a difference of 0.5 pp or less
between two accuracy scores as “practically equivalent”; i.e., the ROPE is [−0.5, +0.5]. The
average size of the test sets is roughly 20,000 tokens; a difference of 0.5 pp between two methods
will therefore, on average, represent about 100 tokens more that are normalized correctly by
the better method.

The Bayesian signed-rank test uses the observed accuracy scores—or, rather, the difference be-
tween them—to estimate the probabilities of either method A being better than method B (𝑝(𝐴 >
𝐵)), method B being better than A (𝑝(𝐵 > 𝐴)), or the two methods being equivalent within the
chosen ROPE (𝑝(𝐴 ≈ 𝐵)). For further details, see Benavoli et al. (2017, Sec. 4.2).

10.2 Accuracy

Table 10.2 shows the word accuracy on the test sets for different normalization methods. The
trends are mostly identical to those observed in the development set evaluation (in Tab. 7.1):
the cSMTiser tool provides the highest accuracy for most datasets and consistently outperforms
the encoder–decoder models, with the exception of the German/Anselm dataset. In general,
the results are very close to those of the earlier evaluation, with more than half of the accuracy

2I use the Python implementation provided by the authors at https://github.com/BayesianTestsML/tutorial.

169

https://github.com/BayesianTestsML/tutorial

Chapter 10 Evaluation

scores on the test sets being within a range of ±0.5 pp to their counterparts on the development
sets.

The MTL evaluation also follows the same trends that were observed in Fig. 8.4: datasets that
show an error reduction from MTL in Fig. 8.4 also achieve a higher accuracy in the test set
evaluation (compared to the single-task models), while those that show an error increase also
show a lower test accuracy; this is true both when comparing MTL-NNEns to NNEns and when
comparing the same models with lexical filtering, MTL-NNEns+F and NNEns+F.

However, the previous analysis only showed the percentage change in error compared to the
single-task setup, but not the resulting accuracy or how they compare to the other normalization
systems. Here, we can see that only on two of the datasets, Swedish and German/RIDGES, the
MTLSplit model actually outperforms cSMTiser. Even though Icelandic and Slovene/Bohorič get
slightly higher percentagewise improvements from MTL than German/RIDGES, their resulting
accuracies are still lower than those of CSMT/CSMT+LM.

The two corpora on which the MTL encoder–decoder models perform better than CSMT,
Swedish and German/RIDGES, are also those with the smallest training sets (of 24,458 and
41,857 tokens, respectively). This suggests that for datasets below ca. 50,000 tokens, the
MTL training approach with an auxiliary dataset can be beneficial over training cSMTiser on
the single dataset. At the same time, the improvements over CSMT+LM are comparatively small
(+0.17 pp and +0.21 pp, resp.).

German/Anselm is, again, an outlier in that the single-task NNEns/NNEns+F models achieve
a higher word accuracy than the CSMT models. Conceivably, this could be related to the
nature of the Anselm corpus, which consists of many different versions of the same text. A
quantitative measurement that shows this exceptional property is the type/token ratio (TTR)
and historical/normalized type ratio (HNR) in Tab. 3.2; the high HNR illustrates that the number
of historical variants per normalized type is exceptionally high in the Anselm corpus. Possibly,
this situation leads to a slight advantage for the neural network, though this interpretation
must be regarded with caution as Anselm is the only dataset in this evaluation that exhibits
this behavior.

Table 10.3 shows the estimated probabilities for pairwise comparisons of the methods using
the Bayesian signed-rank test (cf. Sec. 10.1). Table 10.3a first compares the different variants of
each method: NormaAll is clearly shown to be the best setting for the Norma tool, while CSMT
and CSMT+LM are practically equivalent with a probability of 96%. For the neural networks
with or without filtering, results are slightly less clear (probably due to the filtering having
different effects depending on the dataset), but on average the approaches without filtering
appear to be the safer choice.

Table 10.3b compares the best configurations for each method with each other. All methods are
shown to be better than NormaAll with a probability greater than 91%. In the other comparisons,
the results are less clear. The signed-rank test estimates a probability of 65% that CSMT words,
if CSMT does perform better than NNEns, its advantage is relatively and NNEns are equivalent
within the defined ROPE of 0.5 pp; in other minor. On the other hand, it is clear from this
evaluation that NNEns does not improve over the CSMT model.

All in all, these results reaffirm the status of CSMT as the current state-of-the-art method for
historical text normalization.

170

10.2 Accuracy

Method A Method B Probabilities

𝑝(𝐴 > 𝐵) 𝑝(𝐴 ≈ 𝐵) 𝑝(𝐵 > 𝐴)

NormaM NormaR+W 73.54 0.05 26.41
NormaM NormaAll 0.02 0.00 99.98
NormaR+W NormaAll 0.00 0.00 100.00
CSMT CSMT+LM 3.54 96.46 0.00
NNEns NNEns+F 81.61 18.39 0.00
MTL-NNEns MTL-NNEns+F 86.12 10.37 3.52

(a) Comparison between variants of each method

Method A Method B Probabilities

𝑝(𝐴 > 𝐵) 𝑝(𝐴 ≈ 𝐵) 𝑝(𝐵 > 𝐴)

NormaAll CSMT 0.00 0.24 99.76
NormaAll NNEns 0.00 4.13 95.87
NormaAll MTL-NNEns 0.15 8.23 91.62
CSMT NNEns 34.51 65.49 0.00
CSMT MTL-NNEns 80.48 19.52 0.00
NNEns MTL-NNEns 22.55 76.18 1.28

(b) Comparison between best variants of each method

Table 10.3: Method comparison on the accuracy scores from the full evaluation, expressed
as probabilities (in percent) of one method being better than the other (𝑝(𝐴 > 𝐵),
𝑝(𝐵 > 𝐴)) or both methods being approximately equivalent (𝑝(𝐴 ≈ 𝐵)), as estimated
by a Bayesian signed-rank test using a ROPE of 0.5 pp.

171

Chapter 10 Evaluation

10.3 Stemming

Sec. 7.4 investigated the hypothesis that many of the “incorrect” normalizations only differ
from their correct target form in terms of inflection, and tested this by applying a stemming
algorithm to both the predicted normalization and the gold-standard form and comparing the
results. This was shown to be a promising way to measure the quality of at least a subset of the
incorrect normalizations, so I will perform a similar evaluation on the test sets as well.

Table 10.4 shows the accuracy scores when comparing word stems instead of full word forms.
As before, the Icelandic and Slovene datasets are not included in this comparison as the Snowball
stemmer lacks a stemming algorithm for these languages (cf. Sec. 7.4). Note that the accuracy
obtained this way will always be strictly equal to or higher than the accuracy on full forms
(in Tab. 10.2), as word pairs with matching full forms will necessarily have matching word
stems as well.

In general, the rankings between the different normalization methods do not change much
when evaluating on word stems. The same trends that were observed in Tab. 10.2 can be
seen in Tab. 10.4 as well: NNEns+F is the best method on German/Anselm, MTL-NNEns is best
on German/RIDGES and Swedish, while the CSMT models outperform the other systems on
the other datasets. A minor difference is that on Spanish, CSMT is now slightly better than
CSMT+LM, although the word accuracy in Tab. 10.2 was almost identical to begin with.

Figure 10.1 shows a graphical comparison for some of the normalization methods. It mainly
reinforces the findings from above: even for a dataset like German/RIDGES, where the accuracy
scores of three normalizers are in close range of each other and the gain from stemming is
relatively high, the ranking of the methods is the same in both comparisons. An exception to
this can be found on the Spanish dataset, where MTL-NNEns is slightly better than NormaAll in
terms of word accuracy, but slightly worse in terms of word stem accuracy—although these
differences are below 0.1 pp.

The percentage of incorrect normalizations with matching word stems is roughly comparable
to the results for the development sets in Tab. 7.5. The highest percentages are again observed
for Spanish, where they are usually around 40–45%, followed by German/RIDGES with 29–34%.
Note that while the absolute gains from word stem matching—i.e., the light part of the bars
in Fig. 10.1—are higher for German/RIDGES than Spanish, the overall word accuracy is much
lower, so these instances account for a lower percentage of all incorrect normalizations.

The Bayesian signed-rank test yields very comparable results on the word accuracy and stem
accuracy. There are some differences to the scores reported in Tab. 10.3: in particular, CSMT
and NNEns are now estimated to be equivalent with a probability above 96%. However, this
result appears for both word and stem accuracy, meaning that it is caused by the exclusion of
the Icelandic and Slovene datasets rather than the effect of stemming. Since this is not a fair
comparison with the results from the previous section, I do not explicitly report the scores of
this test here.

All in all, the effect of word stem matching is mostly dependent on the dataset, but does not
differ much between normalization methods. Sec. 7.4 analysed possible causes for the observed
differences. Therefore, while the stemming approach does provide some insight about the type

172

10.3 Stemming

Method Dataset

DEA DER EN ES HU PT SV

NormaM 85.22 85.14 93.08 94.59 75.30 92.05 85.00
NormaR+W 80.43 88.35 91.49 92.74 84.83 87.78 85.81
NormaAll 90.06 90.45 95.13 96.84 89.46 94.84 89.79

CSMT 90.82 92.20 95.60 97.20 93.34 95.39 92.70
CSMT+LM 88.32 92.19 95.65 97.16 93.40 95.50 92.67

NNEns 91.03 92.08 95.22 96.86 92.79 94.96 91.89
NNEns+F 91.67 90.90 95.60 96.65 91.60 95.23 89.63

MTL-NNEns 89.81 92.34 94.75 96.75 91.17 93.83 92.83
MTL-NNEns+F 91.19 91.15 95.50 96.89 91.48 94.91 90.15

Table 10.4: Accuracy on word stems, in percent, evaluated for different normalization methods
on the test sets of the historical datasets for which a stemming algorithm was
available (cf. Sec. 7.4); best result for each dataset highlighted in bold.

DEA DER EN ES HU PT SV
Dataset

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu
ra
cy

NormaAll
CSMT+LM
NNEns
MTL-NNEns

Figure 10.1: Accuracy comparison for full words vs. word stems, on selected normalization
methods on the test sets; solid, dark bars show the word accuracy, light bars on top
show the accuracy (gain) when evaluating on word stems. (Note that the vertical
axis starts at 75%.)

173

Chapter 10 Evaluation

of errors on the predictions, it does not change the overall recommendations for or against a
particular normalizer.

10.4 Known vs. unknown tokens

Sec. 7.5 looked at the performance of the normalizers on different subsets of the data, based
on phenomena that were or were not observed in the training data. Here, I will only consider
the simplest of these criteria, namely whether the historical source token has been seen in the
training data (“known” token) or not (“unknown” token).

One motivation for repeating this particular evaluation on the test sets is that the “unknown”
tokens were not strictly unknown for all of the normalization systems; particularly, the
CSMT models use the development sets as tuning data, so it is conceivable that they have
an advantage over the other systems when evaluating on the same data. Incidentally, the
CSMT models were also the most successful ones on the “unknown” sets in Tab. 7.7.

Table 10.5 shows the results of repeating this evaluation on the test sets. Overall, they yield a
very similar outcome to the previous evaluation in Sec. 7.5: on the subset of known tokens,
NormaM generally performs best, while on the subset of unknown tokens, CSMT and CSMT+LM
obtain the best results.3 The main difference to the analysis on the development sets is that
this evaluation now includes MTL models, which perform mostly better than the single-task
models on German/RIDGES and Swedish, both on known and unknown tokens.4

Table 10.6 reports the probability scores of a Bayesian signed-rank test on some of the method
pairs. For the known tokens, the methods are mostly equivalent; NormaAll, CSMT, and NNEns
all learn to normalize them well, with MTL-NNEns being slightly behind the single-task model
in this regard. For the unknown tokens, all methods are clearly better than Norma, while CSMT
also outperforms the neural networks with a probability greater than 96%.

The overall conclusion here remains the same: simple wordlist mapping is very effective on the
subset of known tokens (although not more effective than just using CSMT), while the strong
performance of the CSMT models is mostly due to their advantage on the unknown tokens,
corresponding to a better ability to generalize to previously unseen historical word forms.

10.5 Low-resource scenario

Chapter 9 described a low-resource training scenario where the training set for each dataset was
cut down to a size of 5,000 tokens. In this section, I evaluate these models on the test sets. As in
the previous sections, this serves the purpose of (i) confirming the findings from the previous
evaluation on the development sets, and (ii) comparing the performance of selectedMTLmodels
to that of the other models. Since the low-resource training sets might conceivably profit from
different dataset pairings for multi-task learning as the full training sets, the chosen pairings

3Considering the subset of tokens that are “unknown” in both training and development sets—since CSMT also
makes use of the development set—does not change the overall picture.

4The CSMT models are slightly better on known tokens of the Swedish dataset, but the difference is minimal.

174

10.5 Low-resource scenario

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Known Tokens

Tokens 41,576 8,091 16,326 11,458 12,790 5,367 24,965 4,807 18,446 22,207

NormaM/All 92.36 93.66 97.46 96.59 96.81 89.51 97.04 97.15 98.17 97.61
NormaR+W 80.52 89.91 93.19 91.09 89.43 86.21 89.14 93.74 96.11 92.12

CSMT 92.18 93.25 97.10 96.33 96.33 89.27 96.80 96.73 98.09 97.66
CSMT+LM 90.52 93.45 97.15 96.42 96.33 88.99 96.82 96.90 98.07 97.66

NNEns 91.91 93.29 97.19 96.37 96.18 88.67 96.72 95.92 97.56 97.01
NNEns+F 91.99 93.63 97.38 96.53 96.44 89.10 96.92 96.63 97.92 97.51

MTL-NNEns 91.36 93.41 96.91 96.13 95.47 88.99 95.99 96.73 97.30 97.61
MTL-NNEns+F 91.80 93.73 97.30 96.43 96.13 89.19 96.65 97.03 97.84 97.64

Unknown Tokens

Tokens 4,423 1,496 1,318 1,021 3,989 670 2,113 1,162 3,047 6,977

NormaM 3.91 19.92 30.42 46.72 3.28 29.40 28.25 18.07 68.07 39.85
NormaR+W/All 47.25 48.13 59.18 69.93 54.83 65.52 60.62 57.57 50.71 53.73

CSMT 57.25 59.96 71.78 80.22 76.59 69.70 74.96 78.49 83.30 70.35
CSMT+LM 50.69 59.76 71.70 79.24 76.86 69.55 75.91 78.40 83.56 70.26

NNEns 63.24 59.83 65.17 77.57 75.13 68.66 70.00 73.75 80.87 68.78
NNEns+F 69.03 51.87 66.84 70.42 63.88 67.01 66.64 62.31 47.69 53.65

MTL-NNEns 52.43 61.30 62.06 76.20 69.77 68.96 63.18 76.33 79.49 71.13
MTL-NNEns+F 62.76 53.28 66.54 70.62 62.67 66.57 64.55 62.65 47.13 54.15

Table 10.5: Word accuracy on the test sets, evaluated separately on known and unknown tokens
(= tokens where the historical word form has been seen/not seen in the training
data); best result per category and dataset highlighted in bold.

Method A Method B Probabilities on Knowns Probabilities on Unknowns

𝑝(𝐴 > 𝐵) 𝑝(𝐴 ≈ 𝐵) 𝑝(𝐵 > 𝐴) 𝑝(𝐴 > 𝐵) 𝑝(𝐴 ≈ 𝐵) 𝑝(𝐵 > 𝐴)

NormaAll CSMT 0.00 100.00 0.00 0.00 0.00 100.00
NormaAll NNEns 42.08 57.92 0.00 0.00 0.00 100.00
NormaAll MTL-NNEns 76.60 23.40 0.00 0.00 0.00 100.00
CSMT NNEns 1.75 98.25 0.00 96.57 0.02 3.41
CSMT MTL-NNEns 13.01 86.99 0.00 99.86 0.03 0.11
NNEns MTL-NNEns 0.31 99.65 0.04 92.79 0.09 7.13

Table 10.6: Method comparison on the accuracy scores for known and unknown tokens, ex-
pressed as probabilities (in percent) estimated by a Bayesian signed-rank test (cf.
Sec. 10.1).

175

Chapter 10 Evaluation

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

NormaM 54.91 64.24 80.37 82.39 32.28 64.85 78.17 65.87 88.38 75.28
NormaR+W 65.79 75.87 86.27 86.52 58.27 74.29 81.73 81.76 85.08 76.92
NormaAll 69.78 76.58 86.83 88.26 59.13 76.03 85.29 82.95 85.43 79.78

CSMT 70.62 78.66 85.20 88.05 53.97 77.09 83.28 87.45 91.65 84.60
CSMT+LM 70.49 78.71 85.04 88.17 54.00 77.04 83.09 87.57 91.63 84.64

NNEns 69.59 72.90 80.79 84.40 52.83 71.49 79.82 84.72 90.30 82.01
NNEns+F 74.91 77.82 86.24 88.34 65.84 77.12 84.42 86.33 87.95 83.41

MTL-NNEns 72.63 74.23 81.53 86.70 55.36 72.88 82.14 86.46 91.14 82.39
MTL-NNEns+F 77.19 77.82 86.33 89.98 66.75 78.33 85.92 87.17 88.58 83.01

Table 10.7: Word accuracy of different normalization methods in the low-resource scenario,
in percent, evaluated on the test sets of the historical datasets; best result for each
dataset highlighted in bold.

for the MTL-NNEns and MTL-NNEns+F models are now based on the results in Fig. 9.2b (top); cf.
Tab. 10.1 for an overview.

Table 10.7 presents the word accuracy for models in the low-resource scenario. The general
trends are comparable to those from the development set evaluation (cf. Sec. 9.2), although the
neural network models—particularly in the MTL setup—outperform CSMT on more datasets
than before, e.g., on Icelandic and Portuguese. Also, the MTL models almost always perform
better than their single-task counterparts, confirming the results of Fig. 9.2.

However, for the datasets where the encoder–decoder models show the highest accuracy, the
lexical filtering is much more important than the multi-task setting is. For example, adding
lexical filtering to the NNEns model for Hungarian results in an error reduction of 27.6%,
while additionally using MTL—i.e., going from NNEns+F to MTL-NNEns+F—only gives an er-
ror reduction of 2.7%. Similar observations can be made on almost all other datasets, with
German/RIDGES and Swedish even showing no improvement from MTL with filtering. Fur-
thermore, whenever MTL-NNEns+F performs better than the CSMT models, the corresponding
single-task NNEns+F model already did so as well; the NNEns model without filtering, on the
other hand, is always worse than CSMT.

The results of the Bayesian signed-rank test in Table 10.8 basically confirm these observations.
The neural network models with lexical filtering are shown to be clearly superior to those
without filtering in Table 10.8a, while the other results are essentially the same as in the full
evaluation (cf. Tab. 10.3a). Consequently, I use the models with filtering this time for the
comparison between methods in Table 10.8b. Here, the NNEns+F model is now estimated to be
better than CSMT with a probability of 63%, while the probabilities for the multi-task learning
model over the other methods are even higher (≥ 87%).

These results suggest that both lexical filtering and multi-task learning can greatly improve the
performance when training on small datasets, although the filtering step is the more signif-
icant aspect of the two. Looking at the individual results, though, CSMT still outperforms

176

10.5 Low-resource scenario

Method A Method B Probabilities

𝑝(𝐴 > 𝐵) 𝑝(𝐴 ≈ 𝐵) 𝑝(𝐵 > 𝐴)

NormaM NormaR+W 0.03 0.00 99.97
NormaM NormaAll 0.00 0.00 100.00
NormaR+W NormaAll 0.00 0.09 99.91
CSMT CSMT+LM 0.00 100.00 0.00
NNEns NNEns+F 0.01 0.00 99.99
MTL-NNEns MTL-NNEns+F 0.05 0.01 99.94

(a) Comparison between variants of each method

Method A Method B Probabilities

𝑝(𝐴 > 𝐵) 𝑝(𝐴 ≈ 𝐵) 𝑝(𝐵 > 𝐴)

NormaAll CSMT 14.25 1.33 84.42
NormaAll NNEns+F 0.14 0.64 99.22
NormaAll MTL-NNEns+F 0.00 0.03 99.97
CSMT NNEns+F 25.93 11.05 63.01
CSMT MTL-NNEns+F 9.37 1.22 89.41
NNEns+F MTL-NNEns+F 0.00 12.91 87.09

(b) Comparison between best variants of each method

Table 10.8: Method comparison on the accuracy scores from the low-resource scenario, ex-
pressed as probabilities (in percent) of one method being better than the other
(𝑝(𝐴 > 𝐵), 𝑝(𝐵 > 𝐴)) or both methods being approximately equivalent (𝑝(𝐴 ≈ 𝐵)), as
estimated by a Bayesian signed-rank test (cf. Sec. 10.1).

MTL-NNEns+F on some datasets (e.g., 84.6% vs. 83.0% on Swedish). One possible factor might be
the lexical coverage as provided in Tab. 3.7: on all datasets where CSMT outperforms NNEns+F/
MTL-NNEns+F, the coverage of the lexicon is comparatively low.5 As a consequence, the lexical
filtering is less effective since many of the correct target normalizations cannot be reached.
Therefore, lexical coverage could possibly be used as a criterion to decide between these two
models.

5Hungarian is again an exception here, since the coverage is low there as well, but NNEns+F shows a huge
improvement over CSMT.

177

Chapter 11

Conclusion

Consistency is not always a virtue; but spelling becomes a
will-o’-the-wisp without it.
— George Bernard Shaw, from his Preface to R. A. Wilson’s

The Miraculous Birth of Language (1941)

In this thesis, I presented and analyzed an encoder–decoder neural network model for au-
tomatic normalization of historical texts. I evaluated the model on a diverse collection of
historical datasets from English, German, Hungarian, Icelandic, Portuguese, Slovene, Spanish,
and Swedish, and compared it with the previously established normalization tools Norma
(implementing wordlist mapping, a rule-based approach, and a distance-based approach) and
cSMTiser (using character-based statistical machine translation, CSMT). The general trend
observed in the evaluations is that cSMTiser is better than the other methods on most of the
datasets, and should still be considered the state of the art for historical text normalization.

Starting from a basic encoder–decoder network with LSTM layers inspired by Sutskever et al.
(2014), I tuned several hyperparameters of the model and the training algorithm and gradually
built upon it by adding an attention mechanism, using beam search decoding and lexical
filtering, and using ensembles of five independently trained models. Attention and beam search
decoding often resulted in improvements to normalization accuracy; when they did not help,
they did not significantly degrade accuracy either. Lexical filtering was more ambiguous:
depending on the dataset, its effect was sometimes beneficial, sometimes detrimental. Model
ensembling provided a consistent and significant increase in accuracy.

Furthermore, I experimented with different training scenarios: I used multi-task learning (MTL)
to train an encoder–decoder model on two datasets in parallel; and I retrained all models on
low-resource training sets of only 5,000 tokens each. I also combined these two scenarios by
using multi-task learning to improve the accuracy for a low-resource training set by pairing
it with another, full dataset. The general observation is that a dataset profits more from
multi-task learning the smaller its training set is, and that multi-task learning can even reduce
the normalization accuracy with large training sets. Pairings of closely related languages
sometimes showed notably better performance, although I could not find any correlation with
other similarity measures between datasets.

Despite all the individual improvements to the encoder–decoder model, the comparative
evaluation revealed that it is still outperformed by the CSMT system in most scenarios. This is
true for both the full evaluation and the low-resource training; only when multi-task learning

179

Chapter 11 Conclusion

is used in combination with lexical filtering in the low-resource scenario, the encoder–decoder
model performs better than CSMT on a majority of datasets. These results indicate that the
MTL+filtering approach might be practical in certain situations where little training data is
available. It is, of course, not a fair comparison of the underlying machine learning algorithms,
as the neural network is given much more data to work with in this case. This again emphasizes
the strong performance of CSMT in this evaluation.

I hope to have made a convincing case here that the lower performance of the encoder–decoder
model does not stem from a lack of optimization nor from a lack of effort to improve the
architecture. While this is mostly a negative result, I believe it is still an important contribution,
not least because it is in contrast to the general trend of neural networks achieving state-of-
the-art performance in many NLP tasks (Goldberg, 2017). Furthermore, neural network models
similar to the one analyzed here have been shown to perform very well in many related tasks
such as machine translation (Sutskever et al., 2014; Ling et al., 2015; Chung, Cho, et al., 2016),
grapheme-to-phoneme conversion (Rao et al., 2015), language correction (Xie et al., 2016),
and—of course—historical normalization (Bollmann et al., 2017; Korchagina, 2017).

As an exception to this, Schnober et al. (2016) analyze encoder–decoder models for monotone
string translation tasks such as spelling correction, lemmatization, or grapheme-to-phoneme
conversion, and in many cases find them to be inferior to traditional approaches, e.g., pruned
conditional random fields (PCRFs). While I have not experimented with PCRFs here, historical
normalization can certainly be interpreted as a monotone string translation task. In this sense,
the results reported in this thesis are supporting these findings by Schnober et al. (2016).

11.1 Evaluating automatic normalization

Substantial parts of this thesis were devoted to the issue of evaluation. The discussion of nor-
malization guidelines has shown that different corpora can employ widely differing guidelines
when it comes to the preparation of manually curated, or ”gold-standard”, normalization anno-
tation. They may differ in how they handle inflectional changes, whether they normalize proper
nouns, or whether and how they modify extinct words. Many of these decisions can influence
the performance of an automatic normalization system trained on this data. However, how
best to take them into account when comparing results on different datasets is a challenging
question; the qualitative analysis has not referred back to these individual differences as much
as I would have liked, although the different treatment of inflection in the two German datasets
did produce a noticeable effect in the word stem evaluation (see below).

Regarding evaluation measures for automatic normalization, the most suitable measure to me
still appears to be word accuracy. While character error rate is also often employed, I believe it
is not very informative over word accuracy as (i) it often correlates with it, and (ii) it does not
address the issue that not every character mismatch is alike. For example, take the Spanish
gold-standard normalization está: the (hypothetical) normalization candidates esta and estx are
identical in terms of character error rate, though it is doubtful that the latter is more useful
or ”correct” than, e.g., a much longer non-word string, while the former can actually be a
good prediction. One potential way to address this is to perform automatic word stemming on
both the predicted and the gold-standard target forms; of all the different qualitative analyses

180

11.2 Improving the neural network model

investigated here, I believe this is the most useful as it (i) provides useful additional insight
into the data and (at least a subset of) the normalization errors, and (ii) is simple to implement
for many languages where an automatic stemming algorithm is already available.

Manual error analysis can also be a very valuable, though time-consuming option. The small
error classification I performed on the German and English datasets, however, revealed that
the predicted normalization candidates are reasonable and useful in many more cases than the
word accuracy measure suggests. Such an error analysis can suggest ways to do more nuanced
automatic evaluation—e.g., by considering word stems—or inform the direction of future work
to improve normalization by highlighting specific problem areas. At the very least, it can help
to better understand and assess the output of the automatic normalizer.

11.2 Improving the neural network model

Do the results from this thesis imply that neural networks are inferior to classical methods
when it comes to historical normalization? Not at all. We can conclude that this particular
neural network architecture, using the layers and decoding techniques presented here, is most
likely inferior to classical CSMT. However, most of the research on neural networks for NLP
is relatively new, and countless variants and additional techniques have been proposed. It is
entirely conceivable that one of those might prove to be the key for making neural networks
perform better than CSMT on historical normalization.

At least one concrete area for improvement has been suggested by the qualitative evaluation,
in the case study from Portuguese in Sec. 7.5.3: having a stronger, bi-directional language
modeling component in the network’s decoder. In the architecture presented here, the decoder
part of the model only conditions its output on previously generated characters; i.e., it operates
strictly from left to right. The observed normalization errors from Portuguese suggested that
this might partly account for its weaker performance compared to CSMT. Liu, Finch, et al.
(2016) note that this is a fundamental shortcoming of RNNs, causing them to predict strong
prefixes but weaker suffixes, and suggest target-bidirectional decoding as a solution. Their
approach combines a forward and backward RNN using approximate search techniques and
could potentially be useful for the normalization task as well.

In this thesis, I focused exclusively on LSTM layers (Hochreiter and Schmidhuber, 1997) as
the components in my encoder–decoder architecture. However, several other options exist.
Gated recurrent units (GRUs; Cho, Merrienboer, Gülçehre, et al., 2014) are a structurally simpler
alternative to LSTMs that have also been successfully used for many tasks, including neural
machine translation (e.g., Chung, Cho, et al., 2016).1 A structurally very different alternative
are convolutional layers, which apply the same set of transformations over a sliding window
across a sequence, essentially functioning as “n-gram detectors” for NLP (cf. Goldberg, 2017,
Chapter 13). Bradbury et al. (2016) propose the “Quasi-RNN”, a convolutional layer intended as
a replacement for RNNs in sequence modeling tasks. Convolutional architectures have also

1I briefly experimented with GRU layers, but found no noticeable advantage over LSTMs and did not explore
them further.

181

Chapter 11 Conclusion

successfully been applied to morphological reinflection (Östling, 2016) and machine translation,
both on a word level (Gehring et al., 2017) and on a character level (Lee et al., 2017).2

The attention mechanism is another aspect that could be varied. Luong, Pham, et al. (2015)
compare a variety of approaches to attention-based neural machine translation, including
local attention mechanisms that only focus on a small part of the input sequence at a time.
Attention is often used with the idea that it allows the model to learn some form of alignment
between the input and output sequences. Liu, Utiyama, et al. (2016) experiment with supervised
attention for machine translation, i.e., explicitly training the model on what to attend at each
timestep. This could be applied to normalization by using character alignments (cf. Sec. 3.3) as
the basis for the attention model. These alignments are also monotonic, which can be explicitly
modeled in the attention component: Tjandra et al. (2017) describe a local monotonic attention
mechanism for speech processing, essentially making the model predict how far to advance
the “center of attention” at each timestep, while Aharoni and Goldberg (2017) propose hard
monotonic attention for morphological inflection generation.3

Finally, adjustments could be made to the training and/or decoding process. In the input-
feeding approach used here (cf. p. 87), the decoder receives the previously predicted character
as input when generating the next one. This creates a discrepancy between training and testing:
during training, the decoder always sees the correct target prediction of the previous character,
while during testing, these predictions may sometimes be incorrect. This can cause errors to
accumulate along the remainder of the word form, as the decoder can now be in a state that
was never seen during training. Bengio et al. (2015) propose scheduled sampling—alternating
between feeding the correct and the actually predicted output during training—to make the
decoder more robust to this scenario. Wiseman and Rush (2016) introduce a training scheme
that specifically optimizes a model for beam-search decoding. A further discrepancy is that the
model is trained by locally optimizing the correct prediction of each character, while the main
evaluation measure—word accuracy—considers the global accuracy of all predicted characters
in a word form. Shen et al. (2016) propose minimum risk training to allow a model to be trained
directly with a sequence-level loss function such as word accuracy.

In short, many changes and additions to the encoder–decoder architecture for sequence-to-
sequence learning have been and still are being suggested, particularly in the context of neural
machine translation. All of these could conceivably improve historical normalization using
these architectures as well.

11.3 Beyond token-level normalization

A common limitation of all normalization systems evaluated here is that they only operate on
a token level, i.e., they normalize single word forms in isolation. This puts an upper limit on

2I also briefly experimented with simple convolutional layers in the encoder, though without much success.
However, many variants of convolutional architectures exist, and a more thorough investigation is certainly
warranted before drawing any conclusions.

3I performed preliminary experiments with some of these local and monotonic attention variants, but could not
find any improvements over the global attention mechanism. A recent study by Robertson and Goldwater
(2018) compared the two approaches for historical normalization, also with mixed results.

182

11.3 Beyond token-level normalization

the achievable normalization accuracy, as some historical tokens will usually be ambiguous
with regard to their correct normalization, depending on context. The analysis in Sec. 3.4
investigated the extent of this issue.

However, few normalization methods have been proposed so far that take word context into
account. Jurish (2010b) uses hidden Markov models to select between different normalization
candidates depending on word context. Ljubešić et al. (2016b) experiment with “segment-level”
normalization, essentially using a string of several historical tokens without explicit word
segmentation as the input to the normalizer. This is similar to the fully character-level approach
to machine translation by Lee et al. (2017), except that historical text often comes with the
additional challenge of how to define the “segments”, since sentence boundaries are not always
available or easily detectable.

Another option to integrate context is to use a hierarchical architecture that contains both
character-level and word-level representations. Hierarchical RNN architectures have been
proposed for language modeling (Chung, Ahn, et al., 2016) and document modeling (Lin et al.,
2015); in a similar vein, Luong and Manning (2016) propose a hybrid word–character model for
neural machine translation to improve the performance on rare words. Essentially, the idea
is to treat the output of a character-level encoder (such as the one I used in my experiments)
as a representation of the full historical word form, and feed that into another, word-level
RNN layer that can transform this representation based on word context. Decoding then only
starts after this additional word-level layer.4

A simpler option is to integrate context information into the current token-level model as an
additional feature. This could be achieved by “encoding” the word context, e.g., by using a
separate character-level LSTM, and feeding the resulting context vector into the token-level
encoder–decoder network.5 Horn (2017) suggests to multiply a word embedding vector with
the average of its context vectors to obtain a context-dependent representation; this approach
could be transferred to the encoder–decoder model presented here by treating the encoder’s
output as the “word embedding” of the historical input token.

Furthermore, we can also consider NLP tasks for historical texts that go beyond normalization,
but still might profit from it. A commonly desired task is POS tagging; many previous studies
have shown that normalization can improve the performance of a POS tagger on historical
data (e.g., Scheible et al., 2011b; Bollmann, 2013b; Sang, 2016; Yang and Eisenstein, 2016;
Ljubešić et al., 2017). Combining these tasks is typically done as a pipeline, where texts are
first normalized before POS tagging is performed on the normalized data. However, it is
conceivable that both tasks could profit from a closer interaction: automatic normalization
could benefit from the knowledge of POS tags—e.g., by ruling out normalization candidates
that do not fit the most likely part-of-speech category—and POS tagging could benefit from the
knowledge of historical word forms—e.g., when two lexemes are distinguished in historical but
not in contemporary spelling. Multi-task learning architectures (e.g., Luong, Le, et al., 2015;
Søgaard and Goldberg, 2016; Yang et al., 2016) could conceivably be used to train models on

4I performed some experiments with hierarchical structures like these, but could not get the model to learn
anything reasonable at all, i.e., accuracy stayed close to 0%. Note that the complexity of the model increases
considerably with such an architecture; possibly, the amount of training data I used in my experiments is not
enough to train such a network.

5I experimented with this approach and found it to work well, but not better than the model without the context.

183

Chapter 11 Conclusion

normalization and POS tagging simultaneously in order to improve the performance on one or
both tasks.

In conclusion, there is a lot of potential for future research on natural language processing for
historical texts, both within the area of normalization and beyond it. The ongoing digitization
efforts, making more and more historical documents available in machine-readable form, will
only increase the demand for efficient NLP tools for this data in the future.

184

Bibliography

Adesam, Yvonne, Ahlberg, Malin, and Bouma, Gerlof (2012). “bokstaffua, bokstaffwa, bokstafwa,
bokstaua, bokstawa… Towards lexical link-up for a corpus of Old Swedish”. In: Proceedings of
the 11th Conference on Natural Language Processing (KONVENS 2012), LThist 2012 workshop.
Vienna, Austria, pp. 365–369. url: http://www.oegai.at/konvens2012/proceedings/54_
adesam12w/ (cited on p. 68).

Aharoni, Roee and Goldberg, Yoav (2017). “Morphological Inflection Generation with Hard
Monotonic Attention”. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for
Computational Linguistics, pp. 2004–2015. doi: 10.18653/v1/P17-1183. url: http://www.
aclweb.org/anthology/P17-1183 (cited on p. 182).

Al Azawi, Mayce, Afzal, Muhammad Zeshan, and Breuel, Thomas M. (2013). “Normalizing
Historical Orthography for OCR Historical Documents using LSTM”. In: Proceedings of
the 2nd International Workshop on Historical Document Imaging and Processing (HIP ’13).
Washington, DC, pp. 80–85. doi: 10.1145/2501115.2501131 (cited on p. 70).

Amoia, Marilisa and Martínez, José Manuel (2013). “Using Comparable Collections of Historical
Texts for Building a Diachronic Dictionary for Spelling Normalization”. In: Proceedings of the
7th Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities
(LaTeCH). Sofia, Bulgaria: Association for Computational Linguistics, pp. 84–89. url: http:
//www.aclweb.org/anthology/W13-2711 (cited on pp. 18, 68).

Archer, Dawn, Kytö, Merja, Baron, Alistair, and Rayson, Paul (2015). “Guidelines for normalising
Early Modern English corpora: Decisions and justifications”. ICAME Journal, 39, pp. 5–24.
doi: 10.1515/icame-2015-0001 (cited on pp. 16, 18, 20, 22, 23).

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua (2014). “Neural Machine Translation
by Jointly Learning to Align and Translate”. CoRR, abs/1409.0473. url: http://arxiv.org/
abs/1409.0473 (cited on pp. xx, 8, 87, 88, 93, 94).

Baldwin, Tyler and Li, Yunyao (2015). “An In-depth Analysis of the Effect of Text Normalization
in Social Media”. In: Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Denver, Colorado:
Association for Computational Linguistics, pp. 420–429. doi: 10.3115/v1/N15-1045 (cited
on p. 64).

Barnbrook, Geoff (1996). Language and Computers. A Practical Introduction to the Computer
Analysis of Language. Edinburgh: Edinburgh University Press (cited on p. 67).

Baron, Alistair and Rayson, Paul (2008). “VARD 2: A tool for dealing with spelling variation in
historical corpora”. In: Proceedings of the Postgraduate Conference in Corpus Linguistics (cited
on pp. 45, 65, 67).

185

http://www.oegai.at/konvens2012/proceedings/54_adesam12w/
http://www.oegai.at/konvens2012/proceedings/54_adesam12w/
http://dx.doi.org/10.18653/v1/P17-1183
http://www.aclweb.org/anthology/P17-1183
http://www.aclweb.org/anthology/P17-1183
http://dx.doi.org/10.1145/2501115.2501131
http://www.aclweb.org/anthology/W13-2711
http://www.aclweb.org/anthology/W13-2711
http://dx.doi.org/10.1515/icame-2015-0001
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.3115/v1/N15-1045

Bibliography

Baron, Alistair and Rayson, Paul (2009). “Automatic standardization of texts containing spelling
variation. How much training data do you need?” In: Proceedings of the Corpus Linguistics
Conference (CL 2009) (cited on p. 18).

Baron, Alistair, Rayson, Paul, and Archer, Dawn (2009). “Word frequency and key word statistics
in corpus linguistics”. Anglistik, 20(1), pp. 41–67 (cited on p. 14).

Barteld, Fabian, Schröder, Ingrid, and Zinsmeister, Heike (2015). “Unsupervised regularization of
historical texts for POS tagging”. In: Proceedings of the Workshop on Corpus-Based Research in
the Humanities (CRH). Ed. by Francesco Mambrini, Marco Passarotti, and Caroline Sporleder.
Warsaw, Poland, pp. 3–12 (cited on pp. 17, 68).

Belz, Malte, Odebrecht, Carolin, Perlitz, Laura, Schnelle, Gohar, and Voigt, Vivian (2017). An-
notationsrichtlinien zu Ridges Herbology Version 6.0. Tech. rep. Humboldt-Universität zu
Berlin. url: https://www.linguistik.hu-berlin.de/de/institut/professuren/
korpuslinguistik/forschung/ridges-projekt/releases-de (cited on pp. 21, 22, 24, 33).

Benavoli, Alessio, Corani, Giorgio, Demšar, Janez, and Zaffalon, Marco (2017). “Time for a
Change: a Tutorial for Comparing Multiple Classifiers Through Bayesian Analysis”. Journal
of Machine Learning Research, 18(77), pp. 1–36. url: http://jmlr.org/papers/v18/16-
305.html (cited on pp. 168, 169).

Benavoli, Alessio, Corani, Giorgio, Mangili, Francesca, Zaffalon, Marco, and Ruggeri, Fabrizio
(2014). “A BayesianWilcoxon signed-rank test based on the Dirichlet process”. In: Proceedings
of the 31st International Conference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara.
Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China: PMLR, pp. 1026–1034.
url: http://proceedings.mlr.press/v32/benavoli14.html (cited on p. 169).

Bengio, Samy, Vinyals, Oriol, Jaitly, Navdeep, and Shazeer, Noam (2015). “Scheduled Sampling
for Sequence Prediction with Recurrent Neural Networks”. In: Advances in Neural Information
Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett. Curran Associates, Inc., pp. 1171–1179. url: http://papers.nips.cc/paper/5956-
scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.

pdf (cited on pp. 87, 182).

Bengio, Yoshua (2012). “Practical Recommendations for Gradient-Based Training of Deep
Architectures”. In: Neural Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire
Montavon, Geneviève B. Orr, and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 437–478. doi: 10.1007/978-3-642-35289-8_26 (cited on p. 83).

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo (1994). “Learning Long-Term Dependencies
with Gradient Descent is Difficult”. IEEE Transactions on Neural Networks, 5(2), pp. 157–166
(cited on p. 78).

Berg-Kirkpatrick, Taylor and Klein, Dan (2014). “Improved Typesetting Models for Histori-
cal OCR”. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for Computational
Linguistics, pp. 118–123. doi: 10.3115/v1/P14-2020 (cited on p. 15).

Bergstra, James S., Bardenet, Rémi, Bengio, Yoshua, and Kégl, Balázs (2011). “Algorithms for
Hyper-Parameter Optimization”. In: Advances in Neural Information Processing Systems 24.
Ed. by J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran

186

https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/forschung/ridges-projekt/releases-de
https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/forschung/ridges-projekt/releases-de
http://jmlr.org/papers/v18/16-305.html
http://jmlr.org/papers/v18/16-305.html
http://proceedings.mlr.press/v32/benavoli14.html
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://dx.doi.org/10.1007/978-3-642-35289-8_26
http://dx.doi.org/10.3115/v1/P14-2020

Bibliography

Associates, Inc., pp. 2546–2554. url: http://papers.nips.cc/paper/4443-algorithms-
for-hyper-parameter-optimization.pdf (cited on p. 92).

Bergstra, James, Yamins, Daniel, and Cox, David (2013). “Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures”. In:
Proceedings of the 30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta
and David McAllester. Vol. 28. Proceedings of Machine Learning Research 1. Atlanta, Georgia,
USA: PMLR, pp. 115–123. url: http://proceedings.mlr.press/v28/bergstra13.html
(cited on p. 92).

Berry, David M., ed. (2012). Understanding Digital Humanities. Basingstoke, UK: Palgrave
Macmillan. doi: 10.1057/9780230371934 (cited on p. 1).

Berry, David M. and Fagerjord, Anders (2017). Digital Humanities. Knowledge and Critique in a
Digital Age. Cambridge, UK: Polity Press (cited on p. 1).

Biber, Douglas, Finegan, Edward, and Atkinson, Dwight (1994). “ARCHER and its challenges:
Compiling and exploring A Representative Corpus of Historical English Registers”. In: Cre-
ating and using English language corpora. Papers from the 14th International Conference on
English Language Research on Computerized Corpora. Ed. by Udo Fries, Peter Schneider, and
Gunnel Tottie. Amsterdam: Rodopi, pp. 1–13 (cited on p. 1).

Bjarnadóttir, Kristín (2012). “The Database of Modern Icelandic Inflection (Beygingarlýsing íslen-
sks nútímamáls)”. In: Proceedings of the Workshop on Language Technology for Normalisation
of Less-Resourced Languages. Istanbul, Turkey, pp. 13–18 (cited on p. 57).

Bollmann, Marcel (2012). “(Semi-)Automatic Normalization of Historical Texts using Distance
Measures and the Norma tool”. In: Proceedings of the Second Workshop on Annotation of
Corpora for Research in the Humanities (ACRH-2). Lisbon, Portugal, pp. 3–12 (cited on pp. xvi,
xvii, 9, 45, 65, 68, 71, 137).

– (2013a). “Automatic Normalization for Linguistic Annotation of Historical Language Data”.
Bochumer Linguistische Arbeitsberichte, 13. url: http://www.linguistics.rub.de/bla/013-
bollmann2013.pdf (cited on pp. 40, 71, 140, 160).

– (2013b). “POS Tagging for Historical Texts with Sparse Training Data”. In: Proceedings of
the 7th Linguistic Annotation Workshop and Interoperability with Discourse. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 11–18. url: http://www.aclweb.org/
anthology/W13-2302 (cited on p. 183).

Bollmann, Marcel, Bingel, Joachim, and Søgaard, Anders (2017). “Learning attention for histori-
cal text normalization by learning to pronounce”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada:
Association for Computational Linguistics, pp. 332–344. doi: 10.18653/v1/P17-1031 (cited
on pp. xvii, xx, 9, 28, 29, 31, 70, 86, 90, 93, 99, 104, 145, 147, 149, 153, 180).

Bollmann, Marcel, Dipper, Stefanie, Krasselt, Julia, and Petran, Florian (2012). “Manual and semi-
automatic normalization of historical spelling – Case studies from Early New High German”.
In: Proceedings of the 11th Conference on Natural Language Processing (KONVENS 2012), LTh-
ist 2012 workshop. Vienna, Austria, pp. 342–350. url: http://www.oegai.at/konvens2012/
proceedings/51_bollmann12w/ (cited on p. 71).

187

http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://proceedings.mlr.press/v28/bergstra13.html
http://dx.doi.org/10.1057/9780230371934
http://www.linguistics.rub.de/bla/013-bollmann2013.pdf
http://www.linguistics.rub.de/bla/013-bollmann2013.pdf
http://www.aclweb.org/anthology/W13-2302
http://www.aclweb.org/anthology/W13-2302
http://dx.doi.org/10.18653/v1/P17-1031
http://www.oegai.at/konvens2012/proceedings/51_bollmann12w/
http://www.oegai.at/konvens2012/proceedings/51_bollmann12w/

Bibliography

Bollmann, Marcel, Dipper, Stefanie, and Petran, Florian (2016). “Evaluating Inter-Annotator
Agreement on Historical Spelling Normalization”. In: Proceedings of the 10th Linguistic
Annotation Workshop held in conjunction with ACL 2016 (LAW-X 2016). Berlin, Germany:
Association for Computational Linguistics, pp. 89–98. url: http://anthology.aclweb.org/
W16-1711 (cited on p. 27).

Bollmann, Marcel, Petran, Florian, and Dipper, Stefanie (2011a). “Applying rule-based normal-
ization to different types of historical texts — an evaluation”. In: Proceedings of LTC 2011.
Ed. by Zygmunt Vetulani. Poznan, Poland, pp. 339–344 (cited on pp. 3, 29, 71).

– (2011b). “Rule-Based Normalization of Historical Texts”. In: Proceedings of the International
Workshop on Language Technologies for Digital Humanities and Cultural Heritage. Hissar,
Bulgaria, pp. 34–42 (cited on pp. xvi, 7, 43, 66, 67).

Bollmann, Marcel and Søgaard, Anders (2016). “Improving historical spelling normalization
with bi-directional LSTMs and multi-task learning”. In: Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical Papers. Osaka, Japan:
The COLING 2016 Organizing Committee, pp. 131–139. url: http://www.aclweb.org/
anthology/C16-1013 (cited on pp. 9, 29, 31, 43, 70, 145).

Bollmann, Marcel, Søgaard, Anders, and Bingel, Joachim (2018). “Multi-task learning for his-
torical text normalization: Size matters”. In: Proceedings of the Workshop on Deep Learning
Approaches for Low-Resource NLP. Melbourne: Association for Computational Linguistics,
pp. 19–24. url: http://aclweb.org/anthology/W18-3403 (cited on p. 145).

Bowers, Fredson (1989). “Regularization and normalization in modern critical texts”. Studies
in Bibliography, 42, pp. 79–102. url: http://xtf.lib.virginia.edu/xtf/view?docId=
StudiesInBiblio/uvaBook/tei/sibv042.xml (cited on pp. 17, 18).

Bradbury, James, Merity, Stephen, Xiong, Caiming, and Socher, Richard (2016). “Quasi-Recurrent
Neural Networks”. CoRR, abs/1611.01576. url: http://arxiv.org/abs/1611.01576 (cited
on p. 181).

Brill, Eric and Moore, Robert C. (2000). “An Improved Error Model for Noisy Channel Spelling
Correction”. In: Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics. url: http://www.aclweb.org/anthology/P00-1037 (cited on p. 69).

Callison-Burch, Chris, Osborne, Miles, and Koehn, Philipp (2006). “Re-evaluating the Role
of Bleu in Machine Translation Research”. In: Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics (EACL 2006). url: http:
//www.aclweb.org/anthology/E06-1032 (cited on p. 118).

Carbonell, Jaime G. and Tomita, Masaru (1985). “New Approaches to Machine Translation”. In:
Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation
of Natural Languages, pp. 59–74. url: http://repository.cmu.edu/compsci/355/ (cited
on p. 111).

Caruana, Rich (1993). “Multitask Learning: A Knowledge-Based Source of Inductive Bias”. In:
Proceedings of the 10th International Conference on Machine Learning (ICML), pp. 41–48. url:
http://www.cs.cornell.edu/~caruana/ml93.ps (cited on pp. xviii, 145).

– (1997). “Multitask Learning”.Machine Learning, 28, pp. 41–75. url: http://www.cs.cornell.
edu/~caruana/mlj97.pdf (cited on p. 145).

188

http://anthology.aclweb.org/W16-1711
http://anthology.aclweb.org/W16-1711
http://www.aclweb.org/anthology/C16-1013
http://www.aclweb.org/anthology/C16-1013
http://aclweb.org/anthology/W18-3403
http://xtf.lib.virginia.edu/xtf/view?docId=StudiesInBiblio/uvaBook/tei/sibv042.xml
http://xtf.lib.virginia.edu/xtf/view?docId=StudiesInBiblio/uvaBook/tei/sibv042.xml
http://arxiv.org/abs/1611.01576
http://www.aclweb.org/anthology/P00-1037
http://www.aclweb.org/anthology/E06-1032
http://www.aclweb.org/anthology/E06-1032
http://repository.cmu.edu/compsci/355/
http://www.cs.cornell.edu/~caruana/ml93.ps
http://www.cs.cornell.edu/~caruana/mlj97.pdf
http://www.cs.cornell.edu/~caruana/mlj97.pdf

Bibliography

Centro de Linguística da Universidade de Lisboa (CLUL), ed. (2014). P.S. Post Scriptum. Arquivo
Digital de Escrita Quotidiana em Portugal e Espanha na Época Moderna. url: http://ps.
clul.ul.pt (cited on p. 36).

Cho, KyungHyun, Merrienboer, Bart van, Bahdanau, Dzmitry, and Bengio, Yoshua (2014). “On
the Properties of Neural Machine Translation: Encoder–Decoder Approaches”. In: Proceedings
of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha,
Qatar: Association for Computational Linguistics, pp. 103–111. url: http://www.aclweb.
org/anthology/W14-4012 (cited on p. 87).

Cho, Kyunghyun, Merrienboer, Bart van, Gülçehre, Çaglar, Bahdanau, Dzmitry, Bougares, Fethi,
Schwenk, Holger, and Bengio, Yoshua (2014). “Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, pp. 1724–1734. doi: 10.3115/v1/D14-1179 (cited on pp. xviii, 85,
93, 181).

Chollet, François et al. (2015). Keras. https://github.com/fchollet/keras (cited on p. 73).

Chollet, François (2017). Deep Learning with Python. Shelter Island, NY: Manning. url: https:
//www.manning.com/books/deep-learning-with-python (cited on pp. xviii, 9, 73).

Christodouloupoulos, Christos and Steedman, Mark (2015). “A massively parallel corpus: the
Bible in 100 languages”. Language Resources and Evaluation, 49(2), pp. 375–395. doi: 10.1007/
s10579-014-9287-y (cited on p. 57).

Chrupała, Grzegorz (2014). “Normalizing tweets with edit scripts and recurrent neural em-
beddings”. In: Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for Computational
Linguistics, pp. 680–686. doi: 10.3115/v1/P14-2111 (cited on pp. 8, 70).

Chung, Junyoung, Ahn, Sungjin, and Bengio, Yoshua (2016). “Hierarchical Multiscale Recurrent
Neural Networks”. CoRR, abs/1609.01704. url: http://arxiv.org/abs/1609.01704 (cited
on p. 183).

Chung, Junyoung, Cho, Kyunghyun, and Bengio, Yoshua (2016). “A Character-level Decoder
without Explicit Segmentation for Neural Machine Translation”. CoRR, abs/1603.06147. url:
http://arxiv.org/abs/1603.06147 (cited on pp. 70, 180, 181).

Church, Kenneth W. and Hanks, Patrick (1990). “Word association norms, mutual information,
and lexicography”. Computational Linguistics, 16(1), pp. 22–29 (cited on p. 41).

Cohn, Trevor, Hoang, Cong Duy Vu, Vymolova, Ekaterina, Yao, Kaisheng, Dyer, Chris, and
Haffari, Gholamreza (2016). “Incorporating Structural Alignment Biases into an Attentional
Neural Translation Model”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. San
Diego, California: Association for Computational Linguistics, pp. 876–885. doi: 10.18653/
v1/N16-1102 (cited on p. 88).

Collobert, Ronan, Weston, Jason, Bottou, Léon, Karlen, Michael, Kavukcuoglu, Koray, and
Kuksa, Pavel (2011). “Natural Language Processing (Almost) from Scratch”. The Journal of

189

http://ps.clul.ul.pt
http://ps.clul.ul.pt
http://www.aclweb.org/anthology/W14-4012
http://www.aclweb.org/anthology/W14-4012
http://dx.doi.org/10.3115/v1/D14-1179
https://github.com/fchollet/keras
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
http://dx.doi.org/10.1007/s10579-014-9287-y
http://dx.doi.org/10.1007/s10579-014-9287-y
http://dx.doi.org/10.3115/v1/P14-2111
http://arxiv.org/abs/1609.01704
http://arxiv.org/abs/1603.06147
http://dx.doi.org/10.18653/v1/N16-1102
http://dx.doi.org/10.18653/v1/N16-1102

Bibliography

Machine Learning Research, 12, pp. 2493–2537. url: http://www.jmlr.org/papers/v12/
collobert11a.html (cited on p. 145).

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal function”. Mathe-
matics of Control, Signals and Systems, 2(4), pp. 303–314. doi: 10.1007/BF02551274 (cited on
p. 75).

Daumé III, Hal (2007). “Frustratingly EasyDomainAdaptation”. In: Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics. Prague, Czech Republic: Association
for Computational Linguistics, pp. 256–263. url: http://www.aclweb.org/anthology/P07-
1033 (cited on p. 6).

Daumé III, Hal and Marcu, Daniel (2006). “Domain Adaptation for Statistical Classifiers”. Journal
of Artificial Intelligence Research (JAIR), 26, pp. 101–126. url: http://hal3.name/docs/
#daume06megam (cited on p. 6).

Davies, Mark (2012). “Expanding horizons in historical linguistics with the 400-million word
Corpus of Historical American English”. Corpora, 7(2), pp. 121–157. doi: 10.3366/cor.2012.
0024 (cited on p. 1).

Davis, Mark and Whistler, Ken (2017). Unicode Normalization Forms. Unicode Standard Annex
#15. Technical report. Version 10.0.0. The Unicode Consortium. url: http://unicode.org/
reports/tr15/ (cited on pp. 39, 40).

Dipper, Stefanie and Schultz-Balluff, Simone (2013). “The Anselm Corpus: Methods and Per-
spectives of a Parallel Aligned Corpus”. In: Proceedings of the Workshop on Computational
Historical Linguistics at NODALIDA 2013. NEALT Proceedings Series 18/Linköping Electronic
Conference Proceedings 87. Oslo, Norway: Linköping University Electronic Press, pp. 27–42.
url: http://www.ep.liu.se/ecp/article.asp?issue=087&article=003 (cited on pp. 15,
16).

Domingo, Miguel and Casacuberta, Francisco (2018). “Spelling Normalization of Historical
Documents by Using a Machine Translation Approach”. In: Proceedings of the 21st Annual
Conference of the European Association for Machine Translation. Ed. by Juan Antonio Pérez-
Ortiz, Felipe Sánchez-Martínez,Miquel Esplà-Gomis,Maja Popović, Celia Rico, AndréMartins,
Joachim van den Bogaert, and Mikel L. Forcada. Alacant, pp. 129–137. url: http://hdl.
handle.net/10045/76035 (cited on p. 70).

Dong, Daxiang, Wu, Hua, He, Wei, Yu, Dianhai, and Wang, Haifeng (2015). “Multi-Task Learn-
ing for Multiple Language Translation”. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China: Association for Computational
Linguistics, pp. 1723–1732. doi: 10.3115/v1/P15-1166 (cited on p. 145).

Durrett, Greg and DeNero, John (2013). “Supervised Learning of Complete Morphological
Paradigms”. In: Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Atlanta, Georgia:
Association for Computational Linguistics, pp. 1185–1195. url: http://www.aclweb.org/
anthology/N13-1138 (cited on p. 65).

Eisenstein, Jacob (2013). “What to do about bad language on the internet”. In: Proceedings
of the 2013 Conference of the North American Chapter of the Association for Computational

190

http://www.jmlr.org/papers/v12/collobert11a.html
http://www.jmlr.org/papers/v12/collobert11a.html
http://dx.doi.org/10.1007/BF02551274
http://www.aclweb.org/anthology/P07-1033
http://www.aclweb.org/anthology/P07-1033
http://hal3.name/docs/#daume06megam
http://hal3.name/docs/#daume06megam
http://dx.doi.org/10.3366/cor.2012.0024
http://dx.doi.org/10.3366/cor.2012.0024
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://www.ep.liu.se/ecp/article.asp?issue=087&article=003
http://hdl.handle.net/10045/76035
http://hdl.handle.net/10045/76035
http://dx.doi.org/10.3115/v1/P15-1166
http://www.aclweb.org/anthology/N13-1138
http://www.aclweb.org/anthology/N13-1138

Bibliography

Linguistics: Human Language Technologies. Atlanta, Georgia: Association for Computational
Linguistics, pp. 359–369. url: http://www.aclweb.org/anthology/N13-1037 (cited on
p. 64).

Elman, Jeffrey L. (1990). “Finding Structure in Time”. Cognitive Science, 14(2), pp. 179–211. doi:
10.1016/0364-0213(90)90002-E (cited on p. 78).

Erjavec, Tomaž (2012). “The goo300k corpus of historical Slovene”. In: Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC’12). Ed. by Nicoletta
Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis. Istanbul,
Turkey: European Language Resources Association (ELRA), pp. 2257–2260. url: http://www.
lrec-conf.org/proceedings/lrec2012/pdf/445_Paper.pdf (cited on pp. 2, 9, 23, 28, 35).

– (2015). “The IMP historical Slovene language resources”. Language Resources and Evaluation,
49(3), pp. 753–775. doi: 10.1007/s10579-015-9294-7 (cited on pp. 19, 24, 36, 55).

Ernst-Gerlach, Andrea and Fuhr, Norbert (2006). “Generating Search Term Variants for Text
Collections with Historic Spellings”. In: Proceedings of the 28th European Conference on Infor-
mation Retrieval Research (ECIR 2006). Lecture Notes in Computer Science. Berlin: Springer,
pp. 49–60. doi: 10.1007/11735106 (cited on pp. xvi, 14, 67).

Etxeberria, Izaskun, Alegria, Iñaki, Uria, Larraitz, and Hulden, Mans (2016). “Evaluating the
Noisy Channel Model for the Normalization of Historical Texts: Basque, Spanish and Slovene”.
In: Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC 2016). Ed. by Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck,
Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis. Portorož, Slovenia: European Language Resources
Association (ELRA), pp. 1064–1069. url: http://www.lrec-conf.org/proceedings/
lrec2016/pdf/147_Paper.pdf (cited on pp. 18, 29, 35, 67, 69).

Faruqui, Manaal, Tsvetkov, Yulia, Neubig, Graham, and Dyer, Chris (2016). “Morphological
Inflection Generation Using Character Sequence to Sequence Learning”. In: Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. San Diego, California: Association for Computational
Linguistics, pp. 634–643. doi: 10.18653/v1/N16-1077 (cited on p. 65).

Fiebranz, Rosemarie, Lindberg, Erik, Lindström, Jonas, and Ågren, Maria (2011). “Making verbs
count: the research project ‘Gender and Work’ and its methodology”. Scandinavian Economic
History Review, 59(3), pp. 273–293. doi: 10.1080/03585522.2011.617576 (cited on pp. 2, 15,
28, 38).

Fix, Hans (1980). “Automatische Normalisierung – Vorarbeit zur Lemmatisierung eines diplo-
matischen altisländischen Textes”. In: Maschinelle Verarbeitung altdeutscher Texte. Beiträge
zum dritten Symposion, Tübingen 17.–19. Februar 1977. Ed. by Paul Sappler and Erich Straßner.
Tübingen: Niemeyer, pp. 92–100 (cited on pp. xv, xvi, 5, 7, 17, 66).

Freund, Yoav and Schapire, Robert E. (1999). “Large Margin Classification Using the Perceptron
Algorithm”. Machine Learning, 37(3), pp. 277–296. doi: 10.1023/A:1007662407062 (cited on
pp. 74, 75).

191

http://www.aclweb.org/anthology/N13-1037
http://dx.doi.org/10.1016/0364-0213(90)90002-E
http://www.lrec-conf.org/proceedings/lrec2012/pdf/445_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/445_Paper.pdf
http://dx.doi.org/10.1007/s10579-015-9294-7
http://dx.doi.org/10.1007/11735106
http://www.lrec-conf.org/proceedings/lrec2016/pdf/147_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/147_Paper.pdf
http://dx.doi.org/10.18653/v1/N16-1077
http://dx.doi.org/10.1080/03585522.2011.617576
http://dx.doi.org/10.1023/A:1007662407062

Bibliography

Froger, Jacques (1970). “La critique des textes et l’ordinateur”. Vigiliae Christianae, 24(3), pp. 210–
217. doi: 10.2307/1583073 (cited on p. 63).

Gal, Yarin and Ghahramani, Zoubin (2016). “A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks”. In: Advances in Neural Information Processing Systems 29. Ed.
by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates, Inc.,
pp. 1019–1027. url: http://papers.nips.cc/paper/6241-a-theoretically-grounded-
application-of-dropout-in-recurrent-neural-networks.pdf (cited on pp. 83, 99).

Gehring, Jonas, Auli, Michael, Grangier, David, and Dauphin, Yann N. (2016). “A Convolutional
Encoder Model for Neural Machine Translation”. CoRR, abs/1611.02344. url: http://arxiv.
org/abs/1611.02344 (cited on p. 85).

Gehring, Jonas, Auli, Michael, Grangier, David, Yarats, Denis, and Dauphin, Yann N. (2017).
“Convolutional Sequence to Sequence Learning”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup and YeeWhye Teh. Vol. 70. Proceedings
of Machine Learning Research. International Convention Centre, Sydney, Australia: PMLR,
pp. 1243–1252. url: http://proceedings.mlr.press/v70/gehring17a.html (cited on
p. 182).

Giusti, Rafael, Candido Jr, Arnaldo, Muniz, Marcelo, Cucatto, Lívia, and Aluísio, Sandra (2007).
“Automatic Detection of Spelling Variation in Historical Corpus: An Application to Build a
Brazilian Portuguese Spelling Variants Dictionary”. In: Proceedings of the Corpus Linguistics
Conference (CL2007). Ed. by Matthew Davies, Paul Rayson, Susan Hunston, and Pernilla
Danielsson. Birmingham, UK. url: http://ucrel.lancs.ac.uk/publications/cl2007/
paper/238_Paper.pdf (cited on pp. 17, 67).

Goldberg, Yoav (2017). Neural Network Methods for Natural Language Processing. Synthe-
sis Lectures on Human Language Technologies 37. Morgan & Claypool. doi: 10.2200/
S00762ED1V01Y201703HLT037 (cited on pp. xvii, xviii, 8, 70, 73, 75, 77, 79, 82, 93, 106, 147,
180, 181).

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron (2016). Deep Learning. http://www.
deeplearningbook.org. MIT Press (cited on pp. 73, 82, 83).

Graves, Alex and Schmidhuber, Jürgen (2005). “Framewise phoneme classification with bidirec-
tional LSTM and other neural network architectures”. Neural Networks, 18(5), pp. 602–610.
doi: 10.1016/j.neunet.2005.06.042 (cited on p. 80).

Halteren, Hans van and Rem, Margit (2013). “Dealing with orthographic variation in a tagger-
lemmatizer for fourteenth century Dutch charters”. Language Resources and Evaluation, 47(4),
pp. 1233–1259. doi: 10.1007/s10579-013-9236-1 (cited on p. 69).

Hämäläinen, Mika, Säily, Tanja, Rueter, Jack, Tiedemann, Jörg, and Mäkelä, Eetu (2018). “Nor-
malizing Early English Letters to Present-day English Spelling”. In: Proceedings of the Second
Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences,
Humanities and Literature. Santa Fe, New Mexico: Association for Computational Linguistics,
pp. 87–96. url: http://aclweb.org/anthology/W18-4510 (cited on pp. 70, 140).

Hana, Jirka, Feldman, Anna, and Aharodnik, Katsiaryna (2011). “A low-budget tagger for Old
Czech”. In: Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities (LaTeCH). Portland, OR, USA: Association for

192

http://dx.doi.org/10.2307/1583073
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1611.02344
http://proceedings.mlr.press/v70/gehring17a.html
http://ucrel.lancs.ac.uk/publications/cl2007/paper/238_Paper.pdf
http://ucrel.lancs.ac.uk/publications/cl2007/paper/238_Paper.pdf
http://dx.doi.org/10.2200/S00762ED1V01Y201703HLT037
http://dx.doi.org/10.2200/S00762ED1V01Y201703HLT037
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/10.1007/s10579-013-9236-1
http://aclweb.org/anthology/W18-4510

Bibliography

Computational Linguistics, pp. 10–18. url: http://www.aclweb.org/anthology/W11-1502
(cited on p. 6).

Hanson, Stephen J. and Olson, Carl R. (1991). “A Review of: “Neural Networks and Natural
Intelligence: Notes from Mudville” by Stephen Grossberg (Ed.)” Connection Science, 3(3),
pp. 332–335. doi: 10.1080/09540099108946591 (cited on p. 73).

Hashem, Sherif (1997). “Optimal Linear Combinations of Neural Networks”. Neural Networks,
10(4), pp. 599–614. doi: 10.1016/S0893-6080(96)00098-6 (cited on p. 106).

Hauser, Andreas W. and Schulz, Klaus U. (2007). “Unsupervised Learning of Edit Distance
Weights for Retrieving Historical Spelling Variations”. In: Proceedings of the First Workshop
on Finite-State Techniques and Approximate Search (FSTAS 2007). Borovets, Bulgaria, pp. 1–6
(cited on pp. 7, 68).

Hauser, Andreas, Heller, Markus, Leiss, Elisabeth, Schulz, Klaus U., and Wanzeck, Christiane
(2007). “Information Access to Historical Documents from the Early New High German
Period”. In: Digital Historical Corpora – Architecture, Annotation, and Retrieval. Ed. by Lou
Burnard, Milena Dobreva, Norbert Fuhr, and Anke Lüdeling. Dagstuhl Seminar Proceed-
ings 06491. Dagstuhl, Germany: Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany. url: http://drops.dagstuhl.de/opus/
volltexte/2007/1057 (cited on p. 66).

Helgadóttir, Sigrún, Svavarsdóttir, Ásta, Rögnvaldsson, Eiríkur, Bjarnadóttir, Kristín, and Lofts-
son, Hrafn (2012). “The Tagged Icelandic Corpus (MÍM)”. In: Proceedings of the Workshop
on Language Technology for Normalisation of Less-Resourced Languages. Istanbul, Turkey,
pp. 67–72 (cited on p. 57).

Hendrickx, Iris and Marquilhas, Rita (2011). “From old texts to modern spellings: an experiment
in automatic normalisation”. Journal for Language Technology and Computational Linguistics
(JLCL), 26(2), pp. 65–76 (cited on p. 18).

Hoberg, Ursula and Hoberg, Rudolf (1975). “lïebe genossen an einer schönen brusẗ. oder:
Erfordert die Struktur der deutschen Sprache die Großschreibung?” In: Sprachsystem und
Sprachgebrauch, Teil 2. Ed. by Paul Grebe and Ulrich Engel. Vol. 34. Sprache der Gegenwart.
Düsseldorf: Schwann, pp. 154–171. url: https://ids-pub.bsz-bw.de/frontdoor/index/
index/docId/2108 (cited on p. 26).

Hochreiter, Sepp and Schmidhuber, Jürgen (1997). “Long Short-Term Memory”. Neural Compu-
tation, 9, pp. 1735–1780 (cited on pp. xviii, 78, 181).

Horn, Franziska (2017). “Context encoders as a simple but powerful extension of word2vec”.
In: Proceedings of the 2nd Workshop on Representation Learning for NLP. Vancouver, Canada:
Association for Computational Linguistics, pp. 10–14. url: http://aclweb.org/anthology/
W17-2602 (cited on p. 183).

Huang, Zhiheng, Xu, Wei, and Yu, Kai (2015). “Bidirectional LSTM-CRF Models for Sequence
Tagging”. CoRR, abs/1508.01991. url: http://arxiv.org/abs/1508.01991 (cited on p. 81).

Hundt, Marianne, Denison, David, and Schneider, Gerold (2012). “Retrieving relatives from
historical data”. Literary and Linguistic Computing, 27(1), pp. 3–16. doi: 10.1093/llc/fqr049
(cited on p. 15).

193

http://www.aclweb.org/anthology/W11-1502
http://dx.doi.org/10.1080/09540099108946591
http://dx.doi.org/10.1016/S0893-6080(96)00098-6
http://drops.dagstuhl.de/opus/volltexte/2007/1057
http://drops.dagstuhl.de/opus/volltexte/2007/1057
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/2108
https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/2108
http://aclweb.org/anthology/W17-2602
http://aclweb.org/anthology/W17-2602
http://arxiv.org/abs/1508.01991
http://dx.doi.org/10.1093/llc/fqr049

Bibliography

Jin, Huiming and Kann, Katharina (2017). “Exploring Cross-Lingual Transfer of Morphologi-
cal Knowledge In Sequence-to-Sequence Models”. In: Proceedings of the First Workshop on
Subword and Character Level Models in NLP. Copenhagen, Denmark: Association for Compu-
tational Linguistics, pp. 70–75. url: http://www.aclweb.org/anthology/W17-4110 (cited
on p. 148).

Jurish, Bryan (2010a). “Comparing Canonicalizations of Historical German Text”. In: Proceedings
of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and
Phonology. Uppsala, Sweden: Association for Computational Linguistics, pp. 72–77. url:
http://www.aclweb.org/anthology/W10-2209 (cited on pp. 7, 68).

– (2010b). “More than words: using token context to improve canonicalization of historical
German”. Journal for Language Technology and Computational Linguistics, 25(1), pp. 23–39.
url: http://www.jlcl.org/2010_Heft1/bryan_jurish.pdf (cited on p. 183).

– (2011). “Finite-State Canonicalization Techniques for Historical German”. Doctoral disser-
tation. Potsdam, Germany: University of Potsdam. url: http://opus.kobv.de/ubp/
volltexte/2012/5578/ (cited on p. 18).

Kalchbrenner, Nal and Blunsom, Phil (2013). “Recurrent Continuous Translation Models”. In:
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing.
Seattle, Washington, USA: Association for Computational Linguistics, pp. 1700–1709. url:
http://www.aclweb.org/anthology/D13-1176 (cited on p. 85).

Kann, Katharina, Cotterell, Ryan, and Schütze, Hinrich (2017). “One-Shot Neural Cross-Lingual
Transfer for Paradigm Completion”. In: Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association
for Computational Linguistics, pp. 1993–2003. doi: 10.18653/v1/P17-1182 (cited on p. 148).

Kempken, Sebastian, Luther, Wolfram, and Pilz, Thomas (2006). “Comparison of distance mea-
sures for historical spelling variants”. In: Artificial Intelligence in Theory and Practice. Ed. by
Max Bramer. Boston, MA: Springer, pp. 295–304. doi: 10.1007/978-0-387-34747-9_31
(cited on pp. xvii, 68).

Kestemont, Mike, Daelemans, Walter, and De Pauw, Guy (2010). “Weigh your words—memory-
based lemmatization for Middle Dutch”. Literary and Linguistic Computing, 25(3), pp. 287–301.
doi: 10.1093/llc/fqq011 (cited on p. 68).

Kestemont, Mike, Pauw, Guy de, Nie, Renske van, andDaelemans,Walter (2016). “Lemmatization
for variation-rich languages using deep learning”. Digital Scholarship in the Humanities. doi:
10.1093/llc/fqw034 (cited on p. 70).

Kim, Yoon, Jernite, Yacine, Sontag, David, and Rush, Alexander M. (2016). “Character-Aware
Neural Language Models”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16). Phoenix, AZ, pp. 2741–2749 (cited on p. 76).

Kingma, Diederik P. and Ba, Jimmy (2014). “Adam: A Method for Stochastic Optimization”.
CoRR, abs/1412.6980. url: http://arxiv.org/abs/1412.6980 (cited on pp. 82, 99).

Kiperwasser, Eliyahu and Goldberg, Yoav (2016). “Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations”. Transactions of the Association of Com-
putational Linguistics, 4, pp. 313–327. url: http://www.aclweb.org/anthology/Q16-1023
(cited on p. 81).

194

http://www.aclweb.org/anthology/W17-4110
http://www.aclweb.org/anthology/W10-2209
http://www.jlcl.org/2010_Heft1/bryan_jurish.pdf
http://opus.kobv.de/ubp/volltexte/2012/5578/
http://opus.kobv.de/ubp/volltexte/2012/5578/
http://www.aclweb.org/anthology/D13-1176
http://dx.doi.org/10.18653/v1/P17-1182
http://dx.doi.org/10.1007/978-0-387-34747-9_31
http://dx.doi.org/10.1093/llc/fqq011
http://dx.doi.org/10.1093/llc/fqw034
http://arxiv.org/abs/1412.6980
http://www.aclweb.org/anthology/Q16-1023

Bibliography

Klein, Thomas (1991). “Zur Frage der Korpusbildung und zur computergestützten gramma-
tischen Auswertung mittelhochdeutscher Quellen”. In: Mittelhochdeutsche Grammatik als
Aufgabe (Zeitschrift für deutsche Philologie). Ed. by Klaus-Peter Wegera. Vol. 110. Berlin:
Schmidt, pp. 3–23 (cited on pp. xv, 5).

Klein, Thomas and Dipper, Stefanie (2016). “Handbuch zum Referenzkorpus Mittelhochdeutsch”.
Bochumer Linguistische Arbeitsberichte, 19. url: https://www.linguistics.rub.de/bla/
019-klein-dipper2016.pdf (cited on pp. 2, 5, 16).

Klerke, Sigrid, Goldberg, Yoav, and Søgaard, Anders (2016). “Improving sentence compression by
learning to predict gaze”. In: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. San Diego,
California: Association for Computational Linguistics, pp. 1528–1533. doi: 10.18653/v1/N16-
1179 (cited on p. 145).

Knight, Kevin and Graehl, Jonathan (1998). “Machine transliteration”. Computational Linguistics,
24(4), pp. 599–612 (cited on p. 65).

Koehn, Philipp (2005). “Europarl: A Parallel Corpus for Statistical Machine Translation”. In:
Proceedings of MT Summit. url: http://www.iccs.inf.ed.ac.uk/~pkoehn/publications/
europarl-mtsummit05.pdf (cited on p. 56).

Koehn, Philipp, Hoang, Hieu, Birch, Alexandra, Callison-Burch, Chris, Federico, Mercello,
Bertoldi, Nicola, Cowan, Brooke, Shen, Wade, Moran, Christine, Zens, Richard, Dyer, Chris,
Bojar, Ondřej, Constantin, Alexandra, and Herbst, Evan (2007). “Moses: Open Source Toolkit
for Statistical Machine Translation”. In: Proceedings of the ACL 2007 Demo and Poster Sessions.
Prague, Czech Republic, pp. 177–180 (cited on pp. 69, 72).

Koller, Gerhard (1983). “Ein maschinelles Verfahren zur Normalisierung altdeutscher Texte”.
In: Germanistik in Erlangen. Hundert Jahre nach der Gründung des Deutschen Seminars. Ed.
by Dietmar Peschel. Vol. 31. Erlanger Forschungen. Erlangen: Universitätsbund Erlangen-
Nürnberg, pp. 611–620 (cited on pp. xv, xvi, 5, 7, 17, 66).

Koolen, Marijn, Adriaans, Frans, Kamps, Jaap, and Rijke, Maarten de (2006). “A Cross-Language
Approach to Historic Document Retrieval”. In: Proceedings of the 28th European Conference
on Information Retrieval Research (ECIR 2006). Lecture Notes in Computer Science. Berlin:
Springer, pp. 407–419. doi: 10.1007/11735106 (cited on pp. 7, 67).

Korchagina, Natalia (2017). “Normalizing Medieval German Texts: from rules to deep learning”.
In: Proceedings of the NoDaLiDa 2017Workshop on Processing Historical Language. Gothenburg,
Sweden: Linköping University Electronic Press, pp. 12–17. url: http://www.aclweb.org/
anthology/W17-0504 (cited on pp. xvii, xx, 9, 10, 70, 71, 180).

Korpushandbuch DDD-Mittelhochdeutsch (2014). Texterfassung, Lemmatisierung, grammatische
Annotierung. Internal report. Bonn (cited on p. 16).

Krasselt, Julia (2017). “Der Verbalkomplex im Frühneuhochdeutschen. Eine korpuslinguistis-
che Untersuchung zur Serialisierung zwei- und dreigliedriger Verbalkomplexe”. Bochumer
Linguistische Arbeitsberichte, 21. url: https : / / www . linguistics . rub . de / bla / 021 -
krasselt2017.pdf (cited on p. 15).

195

https://www.linguistics.rub.de/bla/019-klein-dipper2016.pdf
https://www.linguistics.rub.de/bla/019-klein-dipper2016.pdf
http://dx.doi.org/10.18653/v1/N16-1179
http://dx.doi.org/10.18653/v1/N16-1179
http://www.iccs.inf.ed.ac.uk/~pkoehn/publications/europarl-mtsummit05.pdf
http://www.iccs.inf.ed.ac.uk/~pkoehn/publications/europarl-mtsummit05.pdf
http://dx.doi.org/10.1007/11735106
http://www.aclweb.org/anthology/W17-0504
http://www.aclweb.org/anthology/W17-0504
https://www.linguistics.rub.de/bla/021-krasselt2017.pdf
https://www.linguistics.rub.de/bla/021-krasselt2017.pdf

Bibliography

Krasselt, Julia, Bollmann, Marcel, Dipper, Stefanie, and Petran, Florian (2015). “Guidelines für
die Normalisierung historischer deutscher Texte / Guidelines for Normalizing Historical
German Texts”. Bochumer Linguistische Arbeitsberichte, 15. url: https://www.linguistics.
rub.de/bla/015-krasselt_etal2015.pdf (cited on pp. 18–24, 32, 33).

Laing, Margaret (1994). “The linguistic analysis of medieval vernacular texts: Two projects
at Edinburgh”. In: Corpora Across the Centuries. Proceedings of the First International Collo-
quium on English Diachronic Corpora. Ed. by Merja Kytö, Matti Rissanen, and Susan Wright.
Amsterdam: Rodopi, pp. 121–142 (cited on pp. xv, 4, 5).

Lample, Guillaume, Ballesteros, Miguel, Subramanian, Sandeep, Kawakami, Kazuya, and Dyer,
Chris (2016). “Neural Architectures for Named Entity Recognition”. In: Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. San Diego, California: Association for Computational
Linguistics, pp. 260–270. doi: 10.18653/v1/N16-1030 (cited on pp. 79, 81).

Lee, Jason, Cho, Kyunghyun, and Hofmann, Thomas (2017). “Fully Character-Level Neural
Machine Translation without Explicit Segmentation”. Transactions of the Association of
Computational Linguistics, 5, pp. 365–378. url: http://aclweb.org/anthology/Q17-1026
(cited on pp. 70, 182, 183).

Lenders, Winfried, Lutz, Hans-Dieter, and Römer, Ruth (1973). Untersuchungen zur automatis-
chen Indizierung mittelhochdeutscher Texte. 2nd ed. Hamburg: Buske (cited on p. 17).

Levenshtein, Vladimir I. (1966). “Binary codes capable of correcting deletions, insertions, and
reversals”. Soviet Physics Doklady, 10(8), pp. 707–710 (cited on pp. 64, 68).

Lexer, Matthias (1992). Mittelhochdeutsches Taschenwörterbuch. Mit den Nachträgen von Ulrich
Pretzel. 38th. Stuttgart: S. Hirzel (cited on pp. 17, 23, 33).

Li, Haizhou, Kumaran, A., Pervouchine, Vladimir, and Zhang, Min (2009). “Report of NEWS 2009
Machine Transliteration Shared Task”. In: Proceedings of the 2009 Named Entities Workshop:
Shared Task on Transliteration (NEWS 2009). Suntec, Singapore: Association for Computational
Linguistics, pp. 1–18. url: http://aclweb.org/anthology/W09-3501 (cited on p. 65).

Lin, Rui, Liu, Shujie, Yang, Muyun, Li, Mu, Zhou, Ming, and Li, Sheng (2015). “Hierarchical
Recurrent Neural Network for Document Modeling”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, pp. 899–907. doi: 10.18653/v1/D15-1106 (cited on p. 183).

Ling, Wang, Trancoso, Isabel, Dyer, Chris, and Black, Alan W. (2015). “Character-based Neural
Machine Translation”. CoRR, abs/1511.04586. url: http://arxiv.org/abs/1511.04586
(cited on pp. 8, 69, 70, 93, 180).

Liu, Lemao, Finch, Andrew, Utiyama, Masao, and Sumita, Eiichiro (2016). “Agreement on Target-
Bidirectional LSTMs for Sequence-to-Sequence Learning”. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI-16). Phoenix, Arizona, pp. 2630–2637. url:
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12028 (cited on
p. 181).

Liu, Lemao, Utiyama, Masao, Finch, Andrew, and Sumita, Eiichiro (2016). “Neural Machine
Translation with Supervised Attention”. In: Proceedings of COLING 2016, the 26th International

196

https://www.linguistics.rub.de/bla/015-krasselt_etal2015.pdf
https://www.linguistics.rub.de/bla/015-krasselt_etal2015.pdf
http://dx.doi.org/10.18653/v1/N16-1030
http://aclweb.org/anthology/Q17-1026
http://aclweb.org/anthology/W09-3501
http://dx.doi.org/10.18653/v1/D15-1106
http://arxiv.org/abs/1511.04586
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12028

Bibliography

Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016
Organizing Committee, pp. 3093–3102. url: http://www.aclweb.org/anthology/C16-1291
(cited on p. 182).

Ljubešić, Nikola, Erjavec, Tomaž, and Fišer, Darja (2017). “Adapting a State-of-the-Art Tagger
for South Slavic Languages to Non-Standard Text”. In: Proceedings of the 6th Workshop on
Balto-Slavic Natural Language Processing. Valencia, Spain: Association for Computational
Linguistics, pp. 60–68. url: http://aclweb.org/anthology/W17-1410 (cited on p. 183).

Ljubešić, Nikola, Zupan, Katja, Fišer, Darja, and Erjavec, Tomaž (2016a). Dataset of normalised
Slovene text KonvNormSl 1.0. Slovenian language resource repository CLARIN.SI. url: http:
//hdl.handle.net/11356/1068 (cited on p. 36).

– (2016b). “Normalising Slovene data: historical texts vs. user-generated content”. In: Pro-
ceedings of the 13th Conference on Natural Language Processing (KONVENS 2016). Vol. 16.
Bochumer Linguistische Arbeitsberichte. Bochum, Germany, pp. 146–155. url: https://
www.linguistics.rub.de/konvens16/pub/19_konvensproc.pdf (cited on pp. xvii, 8, 18,
28, 29, 35, 36, 69, 72, 114, 183).

Lüdeling, Anke, Odebrecht, Carolin, and Zeldes, Amir (2017). RIDGES-Herbology. Version 6.0.
url: https://korpling.org/ridges/ (cited on p. 33).

Luong, Minh-Thang, Le, Quoc V., Sutskever, Ilya, Vinyals, Oriol, and Kaiser, Lukasz (2015).
“Multi-task Sequence to Sequence Learning”. CoRR, abs/1511.06114. url: http://arxiv.
org/abs/1511.06114 (cited on pp. 145, 146, 183).

Luong, Minh-Thang and Manning, Christopher D. (2016). “Achieving Open Vocabulary Neural
Machine Translation with HybridWord-Character Models”. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, pp. 1054–1063. doi: 10.18653/v1/P16-
1100. url: http://www.aclweb.org/anthology/P16-1100 (cited on p. 183).

Luong, Thang, Pham, Hieu, and Manning, Christopher D. (2015). “Effective Approaches to
Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational
Linguistics, pp. 1412–1421. doi: 10.18653/v1/D15-1166 (cited on pp. 88, 93, 182).

Lusetti, Massimo, Ruzsics, Tatyana, Göhring, Anne, Samardžić, Tanja, and Stark, Elisabeth (2018).
“Encoder-Decoder Methods for Text Normalization”. In: Proceedings of the Fifth Workshop on
NLP for Similar Languages, Varieties and Dialects (VarDial 2018). Santa Fe, New Mexico, USA:
Association for Computational Linguistics, pp. 18–28. url: http://aclweb.org/anthology/
W18-3902 (cited on p. 70).

Marcus, Gary (2018). “Deep Learning: A Critical Appraisal”. CoRR, abs/1801.00631. url: http:
//arxiv.org/abs/1801.00631 (cited on p. 157).

Markus, Manfred (1997). “Normalization of Middle English prose in practice”. In: Corpus-based
Studies in English. Papers from the seventeenth International Conference on English Language
Research on Computerized Corpora (ICAME 17). Ed. by Magnus Ljung. Amsterdam: Rodopi,
pp. 211–226 (cited on pp. 17, 18, 21, 30).

– (1999). “Manual of ICAMET (Innsbruck Computer Archive of Machine-Readable English
Texts)”. Innsbrucker Beiträge zur Kulturwissenschaft, Anglistische Reihe, 7 (cited on pp. 28, 30).

197

http://www.aclweb.org/anthology/C16-1291
http://aclweb.org/anthology/W17-1410
http://hdl.handle.net/11356/1068
http://hdl.handle.net/11356/1068
https://www.linguistics.rub.de/konvens16/pub/19_konvensproc.pdf
https://www.linguistics.rub.de/konvens16/pub/19_konvensproc.pdf
https://korpling.org/ridges/
http://arxiv.org/abs/1511.06114
http://arxiv.org/abs/1511.06114
http://dx.doi.org/10.18653/v1/P16-1100
http://dx.doi.org/10.18653/v1/P16-1100
http://www.aclweb.org/anthology/P16-1100
http://dx.doi.org/10.18653/v1/D15-1166
http://aclweb.org/anthology/W18-3902
http://aclweb.org/anthology/W18-3902
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1801.00631

Bibliography

Markus, Manfred (2000). “Normalising the Word Forms in the Ayenbite of Inwit”. In: Placing
Middle English in Context. Ed. by Irma Taavitsainen, Terttu Nevalainen, Päivi Pahta, and
Matti Rissanen. Berlin: Mouton de Gruyter, pp. 181–198 (cited on pp. 13, 14, 17, 18, 30).

Marttila, Ville (2014). “Creating Digital Editions for Corpus Linguistics. The case of Potage
Dyvers, a family of six Middle English recipe collections”. Doctoral dissertation. Helsinki,
Finland: University of Helsinki, Department of Modern Languages. url: http://urn.fi/URN:
ISBN:978-951-51-0060-3 (cited on pp. 16, 18, 19, 21, 23).

Müller, Hans-Georg (2016). Der Majuskelgebrauch im Deutschen. Groß- und Kleinschreibung
theoretisch, empirisch, ontogenetisch. Vol. 305. Reihe Germanistische Linguistik. Berlin/Boston:
De Gruyter. url: https://books.google.de/books?id=-KNlCwAAQBAJ (cited on p. 26).

Nakov, Preslav and Tiedemann, Jörg (2012). “Combining Word-Level and Character-Level
Models for Machine Translation Between Closely-Related Languages”. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers). Jeju Island, Korea: Association for Computational Linguistics, pp. 301–305. url:
http://www.aclweb.org/anthology/P12-2059 (cited on p. 69).

Och, Franz Josef and Ney, Hermann (2003). “A Systematic Comparison of Various Statistical
Alignment Models”. Computational Linguistics, 29(1), pp. 19–51 (cited on p. 72).

Odebrecht, Carolin, Belz, Malte, Zeldes, Amir, Lüdeling, Anke, and Krause, Thomas (2016).
“RIDGES Herbology: designing a diachronic multi-layer corpus”. Language Resources and
Evaluation, pp. 1–31. doi: 10.1007/s10579-016-9374-3 (cited on pp. xvi, 5, 16, 19, 22, 28,
29, 33).

Olah, Christopher (2015). Understanding LSTM Networks. url: http://colah.github.io/
posts/2015-08-Understanding-LSTMs/ (visited on 11/01/2017) (cited on p. 79).

Oravecz, Csaba, Sass, Bálint, and Simon, Eszter (2010). “Semi-automatic normalization of Old
Hungarian Codices”. In: Proceedings of the ECAI 2010 Workshop on Language TEchnology for
Cultural Heritage, pp. 55–59 (cited on pp. 18, 34, 69).

Östling, Robert (2016). “Morphological reinflection with convolutional neural networks”. In:
Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology. Berlin, Germany: Association for Computational Linguistics,
pp. 23–26. doi: 10.18653/v1/W16-2003 (cited on p. 182).

Papineni, Kishore, Roukos, Salim, Ward, Todd, and Zhu, Wei-Jing (2002). “Bleu: a Method for
Automatic Evaluation of Machine Translation”. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics. url: http://www.aclweb.org/anthology/P02-
1040 (cited on p. 118).

Pedregosa, Fabian, Varoquaux, Gaël, Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand,
Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent, Vander-
plas, Jake, Passos, Alexandre, Cournapeau, David, Brucher, Matthieu, Perrot, Matthieu, and
Duchesnay, Éduard (2011). “Scikit-learn: Machine Learning in Python”. Journal of Machine
Learning Research, 12, pp. 2825–2830 (cited on p. 133).

Pettersson, Eva (2016). “Spelling Normalisation and Linguistic Analysis of Historical Text for
Information Extraction”. Doctoral dissertation. Uppsala: Uppsala University, Department

198

http://urn.fi/URN:ISBN:978-951-51-0060-3
http://urn.fi/URN:ISBN:978-951-51-0060-3
https://books.google.de/books?id=-KNlCwAAQBAJ
http://www.aclweb.org/anthology/P12-2059
http://dx.doi.org/10.1007/s10579-016-9374-3
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.18653/v1/W16-2003
http://www.aclweb.org/anthology/P02-1040
http://www.aclweb.org/anthology/P02-1040

Bibliography

of Linguistics and Philology. url: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-
269753 (cited on pp. 19, 20, 22, 23, 28–30, 34, 35, 38, 57, 69).

Pettersson, Eva, Megyesi, Beáta, and Nivre, Joakim (2012). “Rule-Based Normalisation of Histor-
ical Text – A Diachronic Study”. In: Proceedings of the 11th Conference on Natural Language
Processing (KONVENS 2012), LThist 2012 workshop. Vienna, Austria, pp. 333–341. url: http:
//www.oegai.at/konvens2012/proceedings/50_pettersson12w/ (cited on p. 38).

– (2013). “Normalisation of Historical Text Using Context-Sensitive Weighted Levenshtein
Distance and Compound Splitting”. In: Proceedings of the 19th Nordic Conference of Computa-
tional Linguistics (NODALIDA 2013). Oslo, Norway: Linköping University Electronic Press,
pp. 163–179. url: http://www.aclweb.org/anthology/W13-5617 (cited on pp. xvii, 7, 18,
68, 133).

– (2014a). “A Multilingual Evaluation of Three Spelling Normalisation Methods for Historical
Text”. In: Proceedings of the 8th Workshop on Language Technology for Cultural Heritage, Social
Sciences, and Humanities (LaTeCH). Gothenburg, Sweden: Association for Computational
Linguistics, pp. 32–41. doi: 10.3115/v1/W14-0605 (cited on pp. 29, 69, 104, 114, 118).

– (2014b). “Verb Phrase Extraction in a Historical Context”. In: The First Swedish National
SWE-CLARIN Workshop, Swedish Language Technology Conference (SLTC). Uppsala, Sweden.
url: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239452 (cited on p. 15).

Pettersson, Eva, Megyesi, Beáta, and Tiedemann, Jörg (2013). “An SMT approach to automatic
annotation of historical text”. In: Proceedings of the Workshop on Computational Historical
Linguistics at NODALIDA 2013. NEALT Proceedings Series 18/Linköping Electronic Confer-
ence Proceedings 87. Oslo, Norway: Linköping University Electronic Press, pp. 54–69. url:
http://www.ep.liu.se/ecp/article.asp?issue=087&article=005 (cited on pp. xvii, 7,
69).

Pilz, Thomas, Ernst-Gerlach, Andrea, Kempken, Sebastian, Rayson, Paul, and Archer, Dawn
(2007). “The Identification of Spelling Variants in English and German Historical Texts:
Manual or Automatic?” Literary and Linguistic Computing, 1(23), pp. 65–72. doi: 10.1093/
llc/fqm044 (cited on p. 64).

Pilz, Thomas, Luther, Wolfram, Fuhr, Norbert, and Ammon, Ulrich (2006). “Rule-based Search
in Text Databases with Nonstandard Orthography”. Literary and Linguistic Computing, 21(2),
pp. 179–186. doi: 10.1093/llc/fql020 (cited on p. 67).

Piotrowski, Michael (2012). Natural Language Processing for Historical Texts. Synthesis
Lectures on Human Language Technologies 17. Morgan & Claypool. doi: 10 . 2200 /

S00436ED1V01Y201207HLT017 (cited on pp. 3, 6, 15, 63).

Plank, Barbara (2016). “Keystroke dynamics as signal for shallow syntactic parsing”. In: Pro-
ceedings of COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, pp. 609–619. url:
http://www.aclweb.org/anthology/C16-1059 (cited on p. 145).

Plank, Barbara, Søgaard, Anders, and Goldberg, Yoav (2016). “Multilingual Part-of-Speech
Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss”. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Berlin, Germany: Association for Computational Linguistics, pp. 412–418.
doi: 10.18653/v1/P16-2067 (cited on p. 79).

199

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269753
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269753
http://www.oegai.at/konvens2012/proceedings/50_pettersson12w/
http://www.oegai.at/konvens2012/proceedings/50_pettersson12w/
http://www.aclweb.org/anthology/W13-5617
http://dx.doi.org/10.3115/v1/W14-0605
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239452
http://www.ep.liu.se/ecp/article.asp?issue=087&article=005
http://dx.doi.org/10.1093/llc/fqm044
http://dx.doi.org/10.1093/llc/fqm044
http://dx.doi.org/10.1093/llc/fql020
http://dx.doi.org/10.2200/S00436ED1V01Y201207HLT017
http://dx.doi.org/10.2200/S00436ED1V01Y201207HLT017
http://www.aclweb.org/anthology/C16-1059
http://dx.doi.org/10.18653/v1/P16-2067

Bibliography

Pollock, Joseph J. (1982). “Spelling error detection and correction by computer: some notes and
a bibliography”. Journal of Documentation, 38(4), pp. 282–291. doi: 10.1108/eb026733 (cited
on pp. 63, 64).

Porta, Jordi, Sancho, José-Luis, and Gómez, Javier (2013). “Edit transducers for spelling varia-
tion in Old Spanish”. In: Proceedings of the Workshop on Computational Historical Linguistics
at NODALIDA 2013. NEALT Proceedings Series 18/Linköping Electronic Conference Pro-
ceedings 87. Oslo, Norway: Linköping University Electronic Press, pp. 70–79. url: http:
//www.ep.liu.se/ecp/article.asp?issue=087&article=006 (cited on p. 67).

Porter,Martin (2001). Snowball: A language for stemming algorithms. url: http://snowballstem.
org/texts/introduction.html (cited on p. 122).

Powers, David M. W. (2011). “Evaluation: from Precision, Recall and F-measure to ROC, In-
formedness, Markedness and Correlation”. Journal of Machine Learning Technologies, 2(1),
pp. 37–63 (cited on pp. 136, 139).

Rao, Kanishka, Peng, Fuchun, Sak, Haşim, and Beaufays, Françoise (2015). “Grapheme-to-
phoneme conversion using Long Short-Term Memory recurrent neural networks”. In: Pro-
ceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Brisbane, Australia, pp. 4225–4229. doi: 10.1109/ICASSP.2015.7178767 (cited on
p. 180).

Rayson, Paul, Archer, Dawn, Baron, Alistair, Culpeper, Jonathan, and Smith, Nicholas (2007).
“Tagging the Bard: Evaluating the Accuracy of a Modern POS Tagger on Early Modern
English Corpora”. In: Proceedings of the Corpus Linguistics Conference. url: http://eprints.
lancs.ac.uk/13011/ (cited on pp. xv, 3).

Rayson, Paul, Archer, Dawn, and Smith, Nicholas (2005). “VARD versus Word: A comparison
of the UCREL variant detector and modern spell checkers on English historical corpora”.
In: Proceedings of the Corpus Linguistics Conference CL2005. Birmingham, UK: University of
Birmingham (cited on pp. xvi, 65).

Reimers, Nils and Gurevych, Iryna (2017). “Reporting Score Distributions Makes a Difference:
Performance Study of LSTM-networks for Sequence Tagging”. In: Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Associ-
ation for Computational Linguistics, pp. 338–348. url: http://aclweb.org/anthology/D17-
1035 (cited on p. 103).

Reynaert, Martin, Hendrickx, Iris, andMarquilhas, Rita (2012). “Historical spelling normalization.
A comparison of two statistical methods: TICCL and VARD2”. In: Proceedings of the Second
Workshop on Annotation of Corpora for Research in the Humanities (ACRH-2). Lisbon, Portugal,
pp. 87–98 (cited on pp. 18, 104).

Rissanen, Matti (2000). “The world of English historical corpora: From Cædmon to the computer
age”. Journal of English Linguistics, 28(1), pp. 7–20. doi: 10.1177/00754240022004848 (cited
on p. 27).

Robertson, Alexander M. and Willett, Peter (1993). “A Comparison of Spelling-Correction
Methods for the Identification of Word Forms in Historical Text Databases”. Literary and
Linguistic Computing, 8(3), pp. 143–152. doi: 10.1093/llc/8.3.143 (cited on pp. xvii, 68).

200

http://dx.doi.org/10.1108/eb026733
http://www.ep.liu.se/ecp/article.asp?issue=087&article=006
http://www.ep.liu.se/ecp/article.asp?issue=087&article=006
http://snowballstem.org/texts/introduction.html
http://snowballstem.org/texts/introduction.html
http://dx.doi.org/10.1109/ICASSP.2015.7178767
http://eprints.lancs.ac.uk/13011/
http://eprints.lancs.ac.uk/13011/
http://aclweb.org/anthology/D17-1035
http://aclweb.org/anthology/D17-1035
http://dx.doi.org/10.1177/00754240022004848
http://dx.doi.org/10.1093/llc/8.3.143

Bibliography

Robertson, Alexander and Goldwater, Sharon (2018). “Evaluating Historical Text Normalization
Systems: How Well Do They Generalize?” In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). New Orleans, Louisiana: Association for Computational
Linguistics, pp. 720–725. url: http://aclweb.org/anthology/N18-2113 (cited on pp. 70,
182).

Rogers, Heather J. and Willett, Peter (1991). “Searching for historical word forms in text
databases using spelling‐correction methods: Reverse error and phonetic coding methods”.
Journal of Documentation, 47(4), pp. 333–353. doi: 10.1108/eb026883 (cited on p. 14).

Rögnvaldsson, Eiríkur, Ingason, Anton Karl, Sigurðsson, Einar Freyr, and Wallenberg, Joel
(2012). “The Icelandic Parsed Historical Corpus (IcePaHC)”. In: Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC’12). Ed. by Nicoletta
Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis. Istanbul, Turkey: European
Language Resources Association (ELRA), pp. 1977–1984 (cited on pp. 19, 28, 35).

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information storage and
organization in the brain”. Psychological Review, 65(6), pp. 386–408. doi: 10.1037/h0042519
(cited on p. 74).

Samardžić, Tanja, Scherrer, Yves, and Glaser, Elvira (2015). “Normalising orthographic and
dialectal variants for the automatic processing of Swiss German”. In: Proceedings of the 7th
Language and Technology Conference. Poznań, Poland, pp. 294–298. url: https://archive-
ouverte.unige.ch/unige:82397 (cited on pp. 64, 69).

Sánchez-Marco, Cristina, Boleda, Gemma, and Padró, Lluís (2011). “Extending the tool, or how
to annotate historical language varieties”. In: Proceedings of the 5th ACL-HLT Workshop
on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH).
Portland, OR, USA: Association for Computational Linguistics, pp. 1–9. url: http://www.
aclweb.org/anthology/W11-1501 (cited on p. 6).

Sánchez-Martínez, Felipe, Martínez-Sempere, Isabel, Ivars-Ribes, Xavier, and Carrasco, Rafael C.
(2013). “An open diachronic corpus of historical Spanish: annotation criteria and automatic
modernisation of spelling”. CoRR, abs/1306.3692. url: http://arxiv.org/abs/1306.3692
(cited on pp. 7, 18, 69).

Sang, Erik Tjong Kim (2016). “Improving Part-of-Speech Tagging of Historical Text by First
Translating to Modern Text”. In: Computational History and Data-Driven Humanities. Ed. by
Bojan Bozic, Gavin Mendel-Gleason, Christophe Debruyne, and Declan O’Sullivan. Cham:
Springer International Publishing, pp. 54–64. doi: 10.1007/978-3-319-46224-0_6 (cited on
p. 183).

Scheible, Silke, Whitt, Richard J., Durrell, Martin, and Bennett, Paul (2011a). “A Gold Standard
Corpus of Early Modern German”. In: Proceedings of the 5th Linguistic Annotation Workshop.
Portland, Oregon, USA: Association for Computational Linguistics, pp. 124–128. url: http:
//www.aclweb.org/anthology/W11-0415 (cited on p. 9).

– (2011b). “Evaluating an ’off-the-shelf’ POS-tagger on Early Modern German text”. In: Pro-
ceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social

201

http://aclweb.org/anthology/N18-2113
http://dx.doi.org/10.1108/eb026883
http://dx.doi.org/10.1037/h0042519
https://archive-ouverte.unige.ch/unige:82397
https://archive-ouverte.unige.ch/unige:82397
http://www.aclweb.org/anthology/W11-1501
http://www.aclweb.org/anthology/W11-1501
http://arxiv.org/abs/1306.3692
http://dx.doi.org/10.1007/978-3-319-46224-0_6
http://www.aclweb.org/anthology/W11-0415
http://www.aclweb.org/anthology/W11-0415

Bibliography

Sciences, and Humanities. Portland, OR, USA: Association for Computational Linguistics,
pp. 19–23. url: http://www.aclweb.org/anthology/W11-1503 (cited on pp. xv, 3, 183).

Scherrer, Yves and Erjavec, Tomaž (2013). “Modernizing historical Slovene words with character-
based SMT”. In: Proceedings of the 4th Biennial International Workshop on Balto-Slavic Natural
Language Processing. Sofia, Bulgaria: Association for Computational Linguistics, pp. 58–62.
url: http://www.aclweb.org/anthology/W13-2409 (cited on pp. xvii, 7, 18, 69).

– (2016). “Modernising historical Slovene words”. Natural Language Engineering, 22(6), pp. 881–
905. doi: 10.1017/S1351324915000236 (cited on pp. 35, 67, 69).

Scherrer, Yves and Ljubešić, Nikola (2016). “Automatic normalisation of the Swiss German
ArchiMob corpus using character-level machine translation”. In: Proceedings of the 13th
Conference on Natural Language Processing (KONVENS 2016). Vol. 16. Bochumer Linguistische
Arbeitsberichte. Bochum, Germany, pp. 248–255. url: https://www.linguistics.rub.de/
konvens16/pub/32_konvensproc.pdf (cited on pp. 64, 69).

Schneider, Gerold, Pettersson, Eva, and Percillier, Michael (2017). “Comparing Rule-based
and SMT-based Spelling Normalisation for English Historical Texts”. In: Proceedings of the
NoDaLiDa 2017 Workshop on Processing Historical Language. Gothenburg, Sweden: Linköping
University Electronic Press, pp. 40–46. url: http://www.aclweb.org/anthology/W17-0508
(cited on pp. 8, 18, 69).

Schnober, Carsten, Eger, Steffen, Do Dinh, Erik-Lân, and Gurevych, Iryna (2016). “Still not there?
Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks
on Monotone String Translation Tasks”. In: Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers. Osaka, Japan: The COLING 2016
Organizing Committee, pp. 1703–1714. url: http://www.aclweb.org/anthology/C16-1160
(cited on p. 180).

Schultz-Balluff, Simone and Dipper, Stefanie (2013a). “St. Anselmi Fragen an Maria – Schritte
zu einer (digitalen) Erschließung, Auswertung und Edition der gesamten deutschsprachigen
Überlieferung (14.–16. Jh.)” In: Medienwandel/Medienwechsel in der Editionswissenschaft.
13. internationale Tagung der Arbeitsgemeinschaft für germanistische Edition 17.–20. Februar
2010, Beihefte zu editio. Ed. by Anne Bohnenkamp-Renken. Beihefte zu editio 35. Berlin/New
York: de Gruyter, pp. 177–196 (cited on pp. xvi, 31).

– (2013b). “St. Anselmi Fragen an Maria – Schritte zu einer (digitalen) Erschließung, Auswer-
tung und Edition der gesamten deutschsprachigen Überlieferung (14.–16. Jh.)” In:Medienwan-
del/Medienwechsel in der Editionswissenschaft. Ed. by Anne Bohnenkamp-Renken. Beihefte
zu editio 35. Berlin/Boston: de Gruyter (cited on p. 2).

Schuster, Mike and Paliwal, Kuldip K. (1997). “Bidirectional Recurrent Neural Networks”. IEEE
Transactions on Signal Processing, 45(11), pp. 2673–2681 (cited on p. 80).

Shen, Shiqi, Cheng, Yong, He, Zhongjun, He, Wei, Wu, Hua, Sun, Maosong, and Liu, Yang (2016).
“Minimum Risk Training for Neural Machine Translation”. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics, pp. 1683–1692. doi: 10.18653/v1/P16-
1159. url: http://www.aclweb.org/anthology/P16-1159 (cited on p. 182).

202

http://www.aclweb.org/anthology/W11-1503
http://www.aclweb.org/anthology/W13-2409
http://dx.doi.org/10.1017/S1351324915000236
https://www.linguistics.rub.de/konvens16/pub/32_konvensproc.pdf
https://www.linguistics.rub.de/konvens16/pub/32_konvensproc.pdf
http://www.aclweb.org/anthology/W17-0508
http://www.aclweb.org/anthology/C16-1160
http://dx.doi.org/10.18653/v1/P16-1159
http://dx.doi.org/10.18653/v1/P16-1159
http://www.aclweb.org/anthology/P16-1159

Bibliography

Simon, Eszter (2014). “Corpus building from Old Hungarian codices”. In: The Evolution of
Functional Left Peripheries in Hungarian Syntax. Ed. by Katalin É. Kiss. Oxford, UK: Oxford
University Press, pp. 224–236 (cited on pp. 5, 9, 15, 16, 20, 22, 23, 28, 34, 40).

Smith, Noah A. (2011). Linguistic Structure Prediction. Synthesis Lectures on Human Language
Technologies 13. Morgan & Claypool. doi: 10.2200/S00361ED1V01Y201105HLT013 (cited on
p. 133).

Søgaard, Anders and Goldberg, Yoav (2016). “Deep multi-task learning with low level tasks
supervised at lower layers”. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany: Association for
Computational Linguistics, pp. 231–235. doi: 10.18653/v1/P16-2038 (cited on p. 183).

Springmann, Uwe and Lüdeling, Anke (2017). “OCR of historical printings with an application
to building diachronic corpora: A case study using the RIDGES herbal corpus”. Digital
Humanities Quarterly, 11(2). url: http://www.digitalhumanities.org/dhq/vol/11/2/
000288/000288.html (cited on p. 15).

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov,
Ruslan (2014). “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”.
Journal of Machine Learning Research, 15, pp. 1929–1958. url: http://www.jmlr.org/
papers/volume15/srivastava14a/srivastava14a.pdf (cited on p. 83).

Susanto, Hendy Raymond, Chieu, Leong Hai, and Lu, Wei (2016). “Learning to Capitalize with
Character-Level Recurrent Neural Networks: An Empirical Study”. In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing. Austin, Texas: Association
for Computational Linguistics, pp. 2090–2095. url: http://aclweb.org/anthology/D16-
1225 (cited on p. 26).

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. (2014). “Sequence to Sequence Learning with
Neural Networks”. CoRR, abs/1409.3215. url: http://arxiv.org/abs/1409.3215 (cited on
pp. xviii, 79, 85, 86, 93, 179, 180).

Svensson, Patrik (2010). “The Landscape of Digital Humanities”. Digital Humanities, 4(1). url:
http://digitalhumanities.org/dhq/vol/4/1/000080/000080.html (cited on p. 1).

Tang, Gongbo, Cap, Fabienne, Pettersson, Eva, and Nivre, Joakim (2018). “An Evaluation of
Neural Machine Translation Models on Historical Spelling Normalization”. In: Proceedings
of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico,
USA: Association for Computational Linguistics, pp. 1320–1331. url: http://aclweb.org/
anthology/C18-1112 (cited on pp. 70, 114).

Tiedemann, Jörg and Nabende, Peter (2009). “Translating Transliterations”. International Journal
of Computing and ICT Research, 3(1) (Special Issue), pp. 33–41 (cited on p. 69).

Tjandra, Andros, Sakti, Sakriani, and Nakamura, Satoshi (2017). “Local Monotonic Attention
Mechanism for End-to-End Speech And Language Processing”. In: Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Taipei,
Taiwan: Asian Federation of Natural Language Processing, pp. 431–440. url: http://aclweb.
org/anthology/I17-1044 (cited on p. 182).

203

http://dx.doi.org/10.2200/S00361ED1V01Y201105HLT013
http://dx.doi.org/10.18653/v1/P16-2038
http://www.digitalhumanities.org/dhq/vol/11/2/000288/000288.html
http://www.digitalhumanities.org/dhq/vol/11/2/000288/000288.html
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://aclweb.org/anthology/D16-1225
http://aclweb.org/anthology/D16-1225
http://arxiv.org/abs/1409.3215
http://digitalhumanities.org/dhq/vol/4/1/000080/000080.html
http://aclweb.org/anthology/C18-1112
http://aclweb.org/anthology/C18-1112
http://aclweb.org/anthology/I17-1044
http://aclweb.org/anthology/I17-1044

Bibliography

Vaamonde, Gael (2017). Userguide for digital edition of texts in P. S. Post Scriptum. Translated
by Clara Pinto. Guidelines. url: http://ps.clul.ul.pt/files/Manual_PS_english.pdf
(cited on pp. 16, 25, 28, 29, 37).

Vaamonde, Gael and Magro, Catarina (2017). Manual de Edición y Anotación en TEITOK de los
Materiales de P.S. Post Scriptum. Guidelines. url: http://ps.clul.ul.pt/files/Manual_
Mod_Pos_Sin.pdf (cited on pp. 20–22, 24, 37).

Vilar, David, Peter, Jan-Thorsten, and Ney, Hermann (2007). “Can We Translate Letters?”
In: Proceedings of the Second Workshop on Statistical Machine Translation. Prague, Czech
Republic: Association for Computational Linguistics, pp. 33–39. url: http://www.aclweb.
org/anthology/W07-0705 (cited on p. 69).

Vlad Lita, Lucian, Ittycheriah, Abe, Roukos, Salim, and Kambhatla, Nanda (2003). “tRuEcasIng”.
In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics.
Sapporo, Japan: Association for Computational Linguistics. url: http://aclweb.org/
anthology/P03-1020 (cited on p. 26).

Vosoughi, Soroush, Vijayaraghavan, Prashanth, and Roy, Deb (2016). “Tweet2Vec: Learning
Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder”. In: Proceedings
of the 39th International ACM SIGIR conference on Research and Development in Information
Retrieval. Pisa, Italy, pp. 1041–1044. doi: 10.1145/2911451.2914762 (cited on p. 85).

Wang, Wei, Knight, Kevin, and Marcu, Daniel (2006). “Capitalizing Machine Translation”. In:
Proceedings of the Human Language Technology Conference of the NAACL, Main Conference.
New York, NY: Association for Computational Linguistics, pp. 1–8. url: http://aclweb.
org/anthology/N06-1001 (cited on p. 26).

Wegera, Klaus-Peter (2014). “Interrogatio Sancti Anselmi de Passione Domini, deutsch. Über-
lieferung – Edition – Perspektiven der Auswertung”. In: Veröffentlichungen der Nordrhein-
Westfälischen Akademie der Wissenschaften und der Künste. Vol. 445. Paderborn (cited on
pp. xvi, 28, 31).

Wieling, Martijn, Prokić, Jelena, and Nerbonne, John (2009). “Evaluating the pairwise string
alignment of pronunciations”. In: Proceedings of the EACL 2009 Workshop on Language
Technology and Resources for Cultural Heritage, Social Sciences, Humanities, and Education
(LaTeCH – SHELT&R 2009). Athens, Greece, pp. 26–34 (cited on p. 40).

Wilson, Ashia C., Roelofs, Rebecca, Stern, Mitchell, Srebro, Nathan, and Recht, Benjamin
(2017). “The Marginal Value of Adaptive Gradient Methods in Machine Learning”. url:
http://arxiv.org/abs/1705.08292 (cited on p. 82).

Wiseman, Sam and Rush, Alexander M. (2016). “Sequence-to-Sequence Learning as Beam-
Search Optimization”. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas: Association for Computational Linguistics, pp. 1296–1306.
doi: 10.18653/v1/D16-1137 (cited on pp. 87, 182).

Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V., Norouzi, Mohammad, Macherey,
Wolfgang, Krikun, Maxim, Cao, Yuan, Gao, Qin, Macherey, Klaus, Klingner, Jeff, Shah, Apurva,
Johnson, Melvin, Liu, Xiaobing, Kaiser, Lukasz, Gouws, Stephan, Kato, Yoshikiyo, Kudo, Taku,
Kazawa, Hideto, Stevens, Keith, Kurian, George, Patil, Nishant, Wang, Wei, Young, Cliff,
Smith, Jason, Riesa, Jason, Rudnick, Alex, Vinyals, Oriol, Corrado, Greg, Hughes, Macduff,

204

http://ps.clul.ul.pt/files/Manual_PS_english.pdf
http://ps.clul.ul.pt/files/Manual_Mod_Pos_Sin.pdf
http://ps.clul.ul.pt/files/Manual_Mod_Pos_Sin.pdf
http://www.aclweb.org/anthology/W07-0705
http://www.aclweb.org/anthology/W07-0705
http://aclweb.org/anthology/P03-1020
http://aclweb.org/anthology/P03-1020
http://dx.doi.org/10.1145/2911451.2914762
http://aclweb.org/anthology/N06-1001
http://aclweb.org/anthology/N06-1001
http://arxiv.org/abs/1705.08292
http://dx.doi.org/10.18653/v1/D16-1137

Bibliography

and Dean, Jeffrey (2016). “Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation”. CoRR, abs/1609.08144. url: http://arxiv.org/
abs/1609.08144 (cited on pp. xx, 8, 9, 70, 91).

Xie, Ziang, Avati, Anand, Arivazhagan, Naveen, Jurafsky, Dan, and Ng, Andrew Y. (2016).
“Neural Language Correction with Character-Based Attention”. CoRR, abs/1603.09727. url:
http://arxiv.org/abs/1603.09727 (cited on p. 180).

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun, Courville, Aaron, Salakhudinov, Ruslan,
Zemel, Rich, and Bengio, Yoshua (2015). “Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention”. In: Proceedings of the 32nd International Conference on
Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine
Learning Research. Lille, France: PMLR, pp. 2048–2057. url: http://proceedings.mlr.
press/v37/xuc15.html (cited on pp. 88, 89).

Yang, Yi and Eisenstein, Jacob (2016). “Part-of-Speech Tagging for Historical English”. In:
Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. San Diego, California: Association
for Computational Linguistics, pp. 1318–1328. doi: 10.18653/v1/N16-1157 (cited on p. 183).

Yang, Zhilin, Salakhutdinov, Ruslan, and Cohen, William W. (2016). “Multi-Task Cross-Lingual
Sequence Tagging from Scratch”. CoRR, abs/1603.06270. url: http://arxiv.org/abs/1603.
06270 (cited on p. 183).

Young, Tom, Hazarika, Devamanyu, Poria, Soujanya, and Cambria, Erik (2017). “Recent Trends
in Deep Learning Based Natural Language Processing”. CoRR, abs/1708.02709. url: http:
//arxiv.org/abs/1708.02709 (cited on p. 8).

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol (2014). “Recurrent Neural Network
Regularization”. CoRR, abs/1409.2329. url: http://arxiv.org/abs/1409.2329 (cited on
p. 99).

205

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1603.09727
http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html
http://dx.doi.org/10.18653/v1/N16-1157
http://arxiv.org/abs/1603.06270
http://arxiv.org/abs/1603.06270
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/1409.2329

Bildungsgang des Autors

1984 Geboren in Dortmund
2004 Abitur, Reinoldus- und Schiller-Gymnasium, Dortmund

2004–2009 Bachelor of Arts (B.A.) in den Fächern Mathematik und Linguistik (Schwer-
punkt Computerlinguistik), Ruhr-Universität Bochum

2009–2012 Master of Arts (M.A.) im Fach Linguistik (Schwerpunkt Computerlinguistik),
Ruhr-Universität Bochum

2011–2017 Wissenschaftlicher Mitarbeiter in verschiedenen DFG-geförderten Projekten
unter Leitung von Prof. Stefanie Dipper:

• St. Anselmi Fragen an Maria. Digitale Erschließung, Auswertung und
Edition der gesamten deutschsprachigen Überlieferung (14.–16. Jh.)

• Referenzkorpus Frühneuhochdeutsch

• Referenzkorpus Mittelhochdeutsch

2018 Promotion im Fach Computerlinguistik, Ruhr-Universität Bochum
seit 2018 Postdoc in der CoAStaL NLP Group unter Prof. Anders Søgaard, Universität

Kopenhagen

207

	Zusammenfassung (Summary in German)
	Foreword, or How to read this thesis
	Introduction
	Challenges for NLP on historical data
	Spelling variation

	Possible solutions
	Arguments for normalization

	Automatic normalization
	From rules to machine translation
	Neural networks

	Aim of this thesis
	Structure of this thesis

	Principles of normalization
	Why normalization?
	Digitization
	Defining normalization
	Guidelines and challenges
	Spelling and phonology
	Morphology and morphosyntax
	Lexicon and semantics
	Syntax and punctuation

	Conclusion

	Corpora
	Historical datasets
	English
	German
	Hungarian
	Icelandic
	Slovene
	Spanish and Portuguese
	Swedish

	Preprocessing
	Character alignment
	Iterated Levenshtein alignment
	Generating aligned datasets

	Analyzing variation
	Measuring ambiguity
	Measuring similarity

	Contemporary datasets
	Europarl
	BÍN and MÍM
	Bible
	Coverage

	Summary

	Methods for automatic normalization
	Previous work
	Wordlist mapping
	Rule-based approaches
	Distance-based approaches
	Statistical models
	Neural network models

	Methods for comparison
	Norma
	cSMTiser

	Neural network basics
	Basic concepts
	Layers
	Embedding layer
	Dense layer
	Recurrent layers

	Training
	Objective function
	Optimizer
	Batch size
	Randomization of samples and initial weights
	Dropout
	Early stopping

	Encoder–decoder model
	Model description
	Base model
	Attentional model
	Decoding

	Hyperparameter tuning
	Tuning datasets
	Tuning procedure
	Model parameters
	Learning parameters
	Final hyperparameter settings

	Analysis
	Stability of the training process
	Base vs. attentional model
	Ensembles
	Effect of decoding technique

	Summary

	Comparative analysis
	Overview of normalization methods
	Evaluation measures
	Character error rate
	Further alternatives
	Limits of quantitative measures

	Error classification
	Results

	Stemming
	Dataset comparison
	Model comparison
	Conclusion

	Generalization
	Word-level analysis
	Character-level analysis
	Local vs. global probabilities

	Predicting errors
	String length and edit distance
	Normalizer scores
	Conclusion

	Error distribution
	Summary

	Multi-task learning
	Models
	MTLSplit: Using separate prediction layers
	MTLInput: Using input identifiers
	Joint training

	Model comparison
	Full evaluation

	Low-resource training
	Variance and ensembling
	Comparative evaluation
	Multi-task learning
	Evaluation

	Summary

	Evaluation
	Methodology
	Accuracy
	Stemming
	Known vs. unknown tokens
	Low-resource scenario

	Conclusion
	Evaluating automatic normalization
	Improving the neural network model
	Beyond token-level normalization

	Bibliography
	Bildungsgang des Autors

