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Chapter 1

Introduction

In this chapter we introduce the topic of random polytopes and some of the problems
that this subject handles. From a methodical point of view, the study of random
polytopes combines ideas and techniques from several areas of mathematics such as
convex and discrete geometry, geometric functional analysis and probability theory. We
refer to the surveys [15, 49, 66] for further discussions and results.

In the first part of the current chapter we provide an overview of the main problems
that this text approaches, together with a short historical context. This directly serves
the purpose of giving an appropriate background for the topic faced, starting from
Chapter 3.

In the second part of this chapter we provide a summary of the results presented in
the rest of the text, listing the research papers they are based on.

1.1 Overview of the problems and their motivations

The study of random polytopes constitutes an important branch of stochastic geometry,
standing at a crossroads between convex geometry and probability theory.

Although for many centuries geometry was only treated within the context of a
deterministic environment, modern mathematics has more and more dealt with the
concept of randomness throughout the past decades. Actually, this trend started even
earlier than 1933, year in which Kolmogorov posed the axioms of probability theory [55].
To confirm this statement, let us check an extract from possibly the first world-known
problem concerning random polytopes, the so called Sylvester’s four-point problem of
1864. To the ears of a modern mathematician, it makes no rigorous sense. Published
in the magazine Educational Times [81], it reads:

1



1.1. OVERVIEW OF THE PROBLEMS AND THEIR MOTIVATIONS

Figure 1.1: A convex quadrilateral (on the left side) and a reentrant quadrilateral (on
the right). Note that, in the latter case, one of the four vertices of the quadrilateral
falls inside the convex hull of the other three, as highlighted by the dashed segment.

“Show that the chance of four points forming the apices of a reentrant quadrilateral
is 1/4 if they be taken at random in an indefinite plane."

By reentrant quadrilateral, Sylvester meant that one of the four points must fall
inside the convex hull of the other three, in this way having the four points for vertices
one can draw a non-convex quadrilateral, see Figure 1.1.

One can see how the aforementioned problem is ill-posed, as Sylvester’s words do
not specify which probability distribution on the plane he intends to use. Also, there
is no such thing as a uniform probability distribution on the plane.

Among all the proposed solutions to the problem, we mention the one by Woolhouse
[88]. He decided to pick the points uniformly at random in a circle of radius r and then
let r →∞ to have some sort of approximation of a uniform distribution on the plane.
Note though that the required probability is invariant under affine transformations, so
we know from starters that the result will not depend on r. Woolhouse obtained the
value 35/12π2 ≈ 0.296 for this probability.

Naturally, one could use the same argument with any shape instead of a circle. In
such a case, the problem boils down to choosing a particular compact subset of the
plane from which one draws independent random points, and see what value it gives.

In view of this, we can formalize the problem in modern terms. When X1, . . . , Xn

are random points in Rd, their convex hull is a random polytope contained in Rd. Let
nowK be a convex, compact subset of Rd with non-empty interior. K is usually referred
to as a convex body in Rd. Therefore, one possible way to make sense of Sylvester’s
four-point problem, is the following:

Fix a convex body K in R2, and draw 4 points X1, . . . , X4 independently and uni-
formily at random inside K. Denoting by PK

4 the random convex hull of these points,

2



CHAPTER 1. INTRODUCTION

compute
P(PK

4 is a triangle ).

It is easy to compute that

P(PK
4 is a triangle ) =

4E vol2(PK
3 )

vol2(K)
,

where E denotes the expectation taken with respect to the probability measure P and
vol2(·) stands for the Lebesgue measure of R2.

Therefore, if the volume of K is prescribed, Sylvester’s problem is equivalent to
computing E vol2(PK

3 ), which depends only on the shape of K, and, being it an integral
over the plane, can be explicitly computed as long as K possesses enough symmetries.

Around fifty years after the problem was first posed, Blaschke proved in [21] that
the equilateral triangle S and the circle B represent the extremal convex bodies for
this quantity in dimension 2, i.e.

35

12π2
= E vol2(PB

3 ) ≤ E vol2(PK
3 ) ≤ E vol2(P S

3 ) =
1

3
.

Moreover, Blaschke stated that the proof could be carried out to higher dimensions,
where now S and B stand for the regular simplex and the Euclidean ball, respectively.
Unfortunately, it turned out that the issue is not quite as simple: while, on the one
hand, Groemer proved in [43] and [44] not only that for every dimension d,

E vold(P
B
d+1) ≤ E vold(P

K
d+1),

but also that for every n,

E vold(P
B
n ) ≤ E vold(P

K
n ), (1.1)

on the other hand, Blaschke’s argument is false when attempting to prove the upper
bound. In fact, the upper bound has only been proven so far for d = 2 in [35]. We refer
to [62] for further details on the history of Sylvester four-point problem.

The problem of showing whether for any K

E vold(P
K
n ) ≤ E vold(P

S
n ),

is true, still seems of difficult solution. So much in fact that it has been shown that a

3



1.1. OVERVIEW OF THE PROBLEMS AND THEIR MOTIVATIONS

positive answer would imply a solution for the so-called hyperplane conjecture which is
one of the most important standing conjectures in convex geometry.

The hyperplane conjecture asks whether it is true that every convex body of unitary
volume in any dimension admits an hyperplane which cuts a section of the body whose
volume is at least an absolute constant. For this reason, this question is also known
as slicing problem. Since it is hard to compute exactly the required quantities in a
deterministic general setting, it makes sense to see if it can be verified on a random
model with high probability. For instance, one can look for a counterexample when
drawing independent random points inside a sequence of convex bodies in increasing
dimension, and estimating the isotropic constants of the resulting random polytopes.
It turns out that for many classes of convex bodies, and different kinds of probability
distributions on them, the isotropic constant of the resulting random polytopes is
bounded with high probability.

Going back to original matter, one can observe that if we denote by f0(P ) the
number of vertices of a polytope P , then Efron’s identity, see [39],

E f0(PK
n ) =

n(1− E vold(P
K
n−1))

vold(K)
,

translates Groemer’s inequality (1.1) into

E f0(PK
n ) ≤ E f0(PB

n ),

for any dimension d ≥ 2. Inspired by such an inequality, one can ask whether it is true
that, fixing a prescribed convex body K ⊂ Rd, increasing the number of random points
also increases the expected number of i-dimensional faces fi(PK

n ) of the corresponding
random polytope, i.e.

E fi(P
K
n ) ≤ E fi(P

K
n+1).

This inquiry goes back at least to Van Vu [83]. As one may expect, precise com-
putations of geometric functionals, such as the faces number, of random polytopes
with a fixed number of vertices are of difficult solution. However, when increasing the
amount of random points inside a convex body K, the resulting random polytope Pn
will eventually tend to fill the whole space of K. In particular, the volume of Pn will
approach the whole volume of K, i.e.

vold(Pn)→ vold(K),

4



CHAPTER 1. INTRODUCTION

as n→∞. Therefore, it would be interesting to know how fast this convergence occurs,
i.e. if one can give an asymptotic estimate for the distribution of vold(K)− vold(Pn) as
n→∞, for example in terms of its moments, or see whether they satisfy a central limit
theorem. In this regard, we cite the seminal work [71] of Rényi and Sulanke, where the
authors studied the expectations of vol2(K)− vol2(Pn) in the Euclidean plane.

Furthermore, as a generalization of the concept of volume, one can study further
geometric functionals of a convex body K ⊆ Rd, the so called intrinsic volumes V`(K),
` ∈ {0, . . . , d} which describe the lower dimensional volumetric features of K. One can
think of V`(K) as the average, over all the possible `-dimensional linear subspaces L, of
the volume of the orthogonal projection of K on L. In particular, up to multiplicative
constants, Vd(K) is the usual volume of K, i.e. its Lebesgue measure, Vd−1(K) is its
surface area, V1(K) is the mean-width of K and V0(K) is its Euler characteristic, which
is a constant for every polytope in any fixed dimension.

The importance of the intrinsic volumes arises also from the celebrated Hadwiger’s
theorem, first proved in [46]. It states that any real valuation ψ taking argument in the
set of convex bodies, which is continuous and motion-invariant, is necessarily a linear
combination of intrinsic volumes. Namely, there exists (λ0, . . . , λd) ⊂ Rd+1, such that
for every convex body K ⊂ Rd,

ψ(K) =
d∑
`=0

λ`V`(K).

Hence, one may ask for the asymptotic features of the distribution of V`(K)− V`(Pn),
in particular how fast its expectation approaches 0, and its fluctuations.

Leaving the setting of a prescribed convex body in a fixed dimension for a high-
dimensional setting represents a different kind of asymptotics that one might want to
examine. For example, if we let now the ambient dimension grow to infinity, and we
take a sequence of convex bodies Kn ⊂ Rn, one in each dimension, how many points
N = N(n) do we have to pick inside of each of them, in such a way that the volumes
of the respective random polytopes PN ⊂ Kn approach, in the dimensional limit, the
whole volume of Kn, i.e.

voln(PN)

voln(Kn)
→ 1,

as n→∞?
In the next section we explain in more detail how we deal with each of the afore-

mentioned subjects, and the answers provided by this text.
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1.2. GUIDELINE

1.2 Guideline

Chapter 2 is a collection of basic and general results of probability theory, integral and
convex geometry, which will be needed, as a common resource, in several points of the
dissertation.

In Chapter 3 we discuss limit theorems for intrinsic volumes of random polytopes
in smooth convex bodies. In the earliest periods of studies, intrinsic volumes have been
investigated extensively in the setting of random polytopes that arise as convex hulls
of points chosen uniformly at random inside a prescribed convex body K in Rd. We
denote by Pn the convex hull of X1, . . . , Xn.

Results concerning the expectations of V`(Pn), ` ∈ {1, . . . , d}, have been studied, for
example, by Reitzner [69], variance bounds can be found in Böröczky, Fodor, Reitzner
and Vígh [24] and Bárány, Fodor and Vígh [11], and central limit theorems were treated
in Reitzner [70], Vu [85] and Lachièze-Rey, Schulte and Yukich [58].

Using estimates for floating bodies, in combination with a general normal approxim-
ation bound obtained by Chatterjee [32] and Lachièze-Rey and Peccati [57] originating
in Stein’s method, our contribution is a quick, transparent and direct proof of the
central limit theorems for the intrinsic volumes V`(Pn), ` ∈ {1, . . . , d}, as n → ∞.
More precisely, while the traditional methods (see [61, 70, 85]) first use a conditioning
argument to compare Pn with the floating body and to prove the central limit theorem
for a Poissonized version of the random polytopes, before pushing this result to the ori-
ginal model by de-Poissonization, we give a direct proof without making the detour just
described. In this way we also avoid the more technical theory of stabilizing functionals
developed in [58].

Furthermore, the approximation of a convex body K by means of a sequence of
random polytopes Kn is improved whenever the vertices of Kn are restricted to lie on
the boundary of K, making it a model of particular interest. Indeed, in this framework,
the expectations of V`(Kn), ` ∈ {1, . . . , d}, have been studied, for example, by Buchta,
Müller and Tichy [29], Reitzner [67], Schütt and Werner [78], and Böröczky, Fodor and
Hug [25].

However, more detailed information about moments of the intrinsic volumes is only
known for the usual volume vold(Kn). In particular, an upper variance bound was found
by Reitzner [68] and a lower variance bound together with concentration inequalities by
Richardson, Vu and Wu [72]. Only recently, Thäle [82] obtained a quantitative central
limit theorem for vold(Kn) based on Stein’s method.

In view of this, in the second part of Chapter 3 we generalize the results obtained

6



CHAPTER 1. INTRODUCTION

in [68, 72] regarding the central limit theorem to the full regime of intrinsic volumes
V`(Kn), ` ∈ {1, . . . , d}. In fact, we prove a lower variance bound following the ideas
of [11, 70, 72] and an upper variance bound in the manner of [11], making use of a
version of the Efron-Stein jackknife inequality formulated in [68]. In particular, the
upper variance bound implies a strong law of large numbers as in [11]. Secondly, we
prove a quantitative central limit theorem for V`(Kn), ` ∈ {1, . . . , d}, using a normal
approximation bound obtained in [57], extending the result of [82].

Chapter 3 is based on the papers: C. Thäle, N. Turchi and F. Wespi. “Random
polytopes: central limit theorems for intrinsic volumes” Proceedings of the American
Mathematical Society 146, 3063–3071 (2018); and N. Turchi and F. Wespi “Limit
theorems for random polytopes with vertices on convex surfaces” Advances in Applied
Probability 50 (4), 1227-1245 (2018).

In Chapter 4 we study the monotonicity of the facetes number of the convex hull Pn of
an increasing number of points, drawn independently at random in the space according
to different probability distributions, in particular the so called beta distribution and
beta-prime distribution in Rd.

More specifically, we ask the following monotonicity question:

Is it true that E fd−1(Pn−1) ≤ E fd−1(Pn)?

This question has been put forward and answered positively by Devillers, Glisse, Goaoc,
Moroz and Reitzner [36] for random points that are uniformly distributed in a convex
body K ⊂ Rd if d = 2 and, if d ≥ 3, under the additional assumptions that the
boundary of K is twice differentiable with strictly positive Gaussian curvature and that
n is sufficiently large, that is, n ≥ n(K), where n(K) is a constant depending on K.
Moreover, an affirmative answer was obtained by Beermann [19] in the case that the
random points are chosen with respect to the standard Gaussian distribution on Rd

or according to the uniform distribution in the d-dimensional unit ball for all d ≥ 2.
Beermann’s proof relies on the Blaschke-Petkantschin formula, a well known change-
of-variables formula in integral geometry. Generalizing her approach, we are able to
answer positively to the other original question, in the setting where the underlying
probability distributions are those classified by [59] (see p. 376 there) and Ruben and
Miles, [73], for which a certain scaling property is satisfied. In particular, we can apply
our results for the beta and beta-prime setting, to study similar monotonicity questions
for a class of spherical convex hulls generated by random points on a half-sphere, which
comprises as, a special case, the model recently studied by Bárány, Hug, Reitzner and
Schneider [12].

7



1.2. GUIDELINE

Chapter 4 is based on the paper: G. Bonnet, J. Grote, D. Temesvari, C. Thäle, N.
Turchi and F. Wespi). “Monotonicity of facet numbers of random convex hulls” Journal
of Mathematical Analysis and Applications 455, 1351-1364 (2017).

In Chapter 5 we switch our interest to the high-dimensional setting, meaning that
this time we aim to study objects in Euclidean spaces of increasing dimension. Once we
abandon the study of convex hulls of increasing number of points in a fixed convex body,
we have to deal with different problems. One possible question is to consider the convex
hull conv(X1, . . . , XN) of a finite number of points chosen randomly from the interior
of a convex body Kn in Rn, and investigate how many points N = N(n) are needed in
order to catch a certain portion of the whole volume of Kn as n tends to infinity. The
first seminal work in this direction was done by Dyer, Füredi and McDiarmid [37], who
proved that the expected volume of the convex hull CN = conv(X1, . . . , XN) of N > n

points chosen uniformly and independently from the vertices of the n-dimensional cube
[−1, 1]n, exhibits a phase transition when N is taken to be exponential in the dimension
n, namely, that for every ε > 0,

lim
n→∞

E voln(CN)

voln([−1, 1]n)
=

{
0 if N ≤ (2e−1/2 − ε)n

1 if N ≥ (2e−1/2 + ε)n,

where voln denotes the n-dimensional volume of a set. The method introduced in [37]
influenced a number of later works, like for instance the approach that Bárány and
Pór [17] used to prove the existence of ±1 polytopes with a super-exponential number
of facets. Subsequently, new volume threshold results were established by Gatzouras
and Giannopoulos [41] for random polytopes generated by a wide class of probability
measures µ in Rn, as well as Pivovarov [63], who treated the case of independent points
with respect to the Gaussian measure in Rn and the uniform measure on the Euclidean
sphere. We stress that the authors in both [41] and [63] exploit the method of [37],
which due to its geometric viewpoint seems to be applicable for a wide variety of
probability distributions.

In the fifth chapter, we establish thresholds for the volume of beta and beta-prime
random polytopes introduced in the previous chapter. The high-dimensional geometry
of sets arising from these models of randomness have been studied extensively; for
instance, in terms of properties of their volume [45], facet numbers [23] or intrinsic
volumes [51]. Asymptotic estimates on the expected volume of the beta polytope in fixed
dimension were derived by Affentranger [1]. Note also, that the gnomonic projection
of a uniformly distributed point on the half-sphere is beta-prime distributed, which is

8



CHAPTER 1. INTRODUCTION

exploited in [23] and [50]. One of the main results presented is that the threshold in
the beta model consists of a super-exponential number N of random points.

Chapter 5 is based on the paper: G. Bonnet, G. Chasapis, J. Grote, D. Temesvari
and N. Turchi “Threshold phenomena for high-dimensional random polytopes” to appear
in Communications in Contemporary Mathematics (2018+).

In Chapter 6 we maintain the high dimensional setting, turning our interest towards
the slicing problem for random polytopes whose vertices lie on the boundary of isotropic
convex bodies, i.e. convex bodies K ⊂ Rn of unit volume whose barycenter is at the
origin and inertia matrices are constant multiples L2

K of the identity matrix. The
constant LK is the isotropic constant of the body K and the question is whether or not
there exists an absolute constant C ∈ (0,∞) such that LK ≤ C for all space dimensions
n ∈ N and all isotropic convex bodies K ⊂ Rn. The hyperplane or isotropic constant
conjecture is one of the outstanding open problems that first appeared explicitly in a
work of Bourgain [26]. The currently best bound LK ≤ C 4

√
n, which is due to Klartag

[52], improves by a logarithmic factor the previous bound of Bourgain [27]. While this
problem is still open in its general form, the isotropic constant of several special classes
of convex bodies is in fact known to be bounded. Examples include zonoids and duals of
zonoids [10], unconditional convex bodies [26, 56] and unit balls of Schatten classes [56].
Against this background, Klartag and Kozma [54] started to investigate the isotropic
constant of random convex sets, as it is known since the groundbreaking work of Gluskin
on the Banach-Mazur compactum [42] that random constructions often display some
kind of extremal behaviour. Their ideas were taken up by Alonso-Gutiérrez [3], Alonso-
Gutiérrez, Litvak and Tomczak-Jaegermann [5], Dafnis, Giannopoulos and Guédon [33]
and Hörrmann, Prochno and Thäle [48] to prove boundedness of the isotropic constant
for several classes of random polytopes with probability tending to 1, as the space
dimension tends to infinity. An entirely different approach was used by Hörrmann, Hug,
Reitzner and Thäle [47] for zero cells of a class of Poisson hyperplane tessellations.

This chapter acts as a natural continuation of [3] and [48], where random polytopes
generated by random points on `p-spheres have been investigated. Here we take a more
general point of view and consider random convex hulls whose points are distributed
according to the cone (probability) measure on a convex surface, i.e. on the boundary
of an arbitrary (isotropic) convex body K ⊂ Rn. This chapter can also be regarded as
a complement to [5, 33], where the random points were selected uniformly at random
from the interior of K. More precisely, we prove

(i) that the isotropic constant LKN of a random polytope generated by n < N < e
√
n

9



1.2. GUIDELINE

independent random points on the boundary of an isotropic convex body K ⊂ Rn

satisfies

LKN ≤ C

√
log

2N

n

with probability at least 1− c1e
−c2n− e−c3

√
N for absolute constants C, c1, c2, c3 ∈

(0,∞);

(ii) that if K is in addition symmetric with respect to all coordinate hyperplanes (i.e.
if K is unconditional), we even have that

LKN ≤ C

with probability bounded below by 1− c1e
−c2n for all N > n.

The result (i) for general K resembles the so-far best known upper bound for the
isotropic constant of random convex hulls in [5], where the generating points were
selected with respect to the uniform distribution on K. Similarly, our result (ii) is the
analogue to the main finding in [33], where boundedness of the isotropic constant of
random convex hulls was obtained in the unconditional case. However, we emphasize
that as in [3, 48] our bounds cannot be concluded from those in the existing literature,
since the cone probability measure on the boundary of an isotropic convex body is
not log-concave. To study the isotropic constant of random polytopes for which the
generating measure is not log-concave was in fact the main source of motivation for
this work and its predecessors [3, 48].

Chapter 6 is based on the paper: J. Prochno, C. Thäle and N. Turchi “The isotropic
constant of random polytopes with vertices on convex surfaces” to appear in Journal
of Complexity (2019+).
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Chapter 2

Preliminaries

In this chapter we introduce the notation, the mathematical tools from geometry and
probability theory, and some preparatory general results that we need in multiple parts
of the rest of text.

2.1 General notation

Let N = {1, 2, . . .} be the set of natural numbers. For d ∈ N, we work in the d-
dimensional Euclidean space Rd with standard inner product 〈 · , · 〉 and induced norm
‖ · ‖2. We uIe’ sually indicate by e1, . . . , ed the standard orthonormal base of Rd.

More generally, for p ∈ [1,∞] we introduce the p-norm of x = (x1, . . . , xd) ∈ Rd by
putting

‖x‖p :=


( d∑
i=1

|xi|p
)1/p

if p <∞,

max{|x1|, . . . , |xd|} if p =∞.

By Bdp we denote the unit ball in Rd with respect to the p-norm and we let Sd−1
p denote

its boundary. Bdp and Sd−1
p are usually referred to as `p-ball and `p-sphere, respectively.

For the special case p = 2, we may write ‖·‖, Bd and Sd−1 instead of ‖·‖2, Bd2 and Sd−1
2 ,

respectively.
For any set A, we indicate by 1A the indicator function of A, i.e.

1A(x) =

{
0 if x /∈ A,

1 if x ∈ A.

11
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With a slight abuse of notation, given an event E, we may indicate

1{E} =

{
0 if E does not occur,

1 if E occurs.

For example, for the event “x ∈ A”, the notation 1{x ∈ A} means 1A(x). The
cardinality of A is then defined as

#A = |A| :=
∑
x∈A

1A(x),

i.e. the number of its elements.
For a set A ⊆ Rd we indicate by ∂A its boundary and by intA its interior.
If A ⊆ Rd is also Lebesgue measurable, we denote by vold(A) its Lebesgue measure,

i.e.
vold(A) =

∫
Rd

1A(x) dx.

When more clarity of notation is required, we may refer to the Lebesgue measure as λ
instead of dx. We will write A ∈ B(Rd) to indicate that A is a Borel set of Rd.

Given sets A ⊂ Rd and I ⊂ [0,∞), we define the set IA ⊂ Rd as

IA :=
{
rx ∈ Rn : r ∈ I, x ∈ A

}
.

When I = {r}, r ∈ [0,∞) we also write rA instead of {r}A. Moreover, conv(A) will
denote the convex hull of A.

Given two sequences of numbers positive real numbers (an)n∈N and (bn)n∈N we
will use the notation an � bn for an = o(bn), meaning that an/bn → 0, as n → ∞.
Analogously, we will use an � bn meaning an/bn → +∞, as n → ∞. Furthermore,
we write an ∼ bn, if an/bn → 1, as n → ∞. We also write an . bn for an = O(bn),
i.e. if there exists a constant C ∈ (0,+∞) such that an ≤ Cbn for all n large enough.
Whenever bn . an . bn, we may write bn = Θ(an).

Finally, we denote the set {1, . . . , n} by [n].

12



CHAPTER 2. PRELIMINARIES

2.2 Basic definitions of probability

Fix a probability space (Ω,F ,P). Given a random vector on it, X : Ω → Rd, the
expectation of X, is defined whenever X ∈ L1(P) as

EX :=

∫
Ω

X(ω) dP(ω).

The probability measure µ := P ◦X−1 is referred to as the probability distribution of
X, or law of X, and it holds that

EX =

∫
Rd
x dµ(x).

We say that X is centred whenever EX = 0. The variance of X is then defined as

VarX := E ‖X − EX‖2
2.

The comulative distribution function of a real random variable X is defined as

FX(x) := P(X ≤ x), x ∈ R.

We say that X is a continuous random variable whenever its law µ is absolutely
continuous with respect to the Lebesgue measure λ, is which case we call probability
density, or just density, the Radon-Nikodym derivative f ≥ 0 of µ with respect to λ,
i.e. dµ = f dλ, in which case

E g(X) =

∫
Rd
g(x)f(x) dx.

We say that a random vector has a standard Gaussian distribution, or standard normal
distribution, if it has density

f(x) =
1

(2π)d/2
exp
(
−‖x‖

2
2

2

)
, x ∈ Rd.

A sequence of real random variables (Xn)n∈N is said to converge in distribution to the
real random variable X if

lim
n→∞

FXn(x) = FX(x),

13
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for any x at which FX is continuous. Analogously, a sequence of random vectors
(Xn)n∈N ⊂ Rd converges in distribution to the random vector X if

lim
n→∞

P(Xn ∈ A) = P(X ∈ A), (2.1)

for any Borel set A such that P(∂A) = 0.

2.3 Notions of convex and integral geometry

For every A ⊆ Rd, we indicate with conv(A) the convex hull of A in Rd, meaning the
smallest convex set C ⊆ Rd, such that A ⊆ C. Here, the term “smallest” refer to the
property of being the minimal set C, with respect to partial order given by the inclusion
of sets in Rd, satisfying the property that A ⊆ C. It can be shown that such minimal
set is, in fact, unique.

Equivalently, conv(A) is the intersection of all the convex sets containing A, namely:

conv(A) =
⋂
{C ⊆ Rd : A ⊆ C, C is convex}.

Whenever A = {x1, . . . , xd} ⊂ Rd, we will also write conv(x1, . . . , xd) and [x1, . . . , xd],
meaning conv({x1, . . . , xd}). In such a case, A is called a convex polytope, or simply a
polytope.

We say that K ⊆ Rd is a convex body if it is a compact convex set with non empty
interior intK, and we indicate it’s boundary by ∂K, i.e. ∂K = K \ intK. Note that a
convex set of Rd is measurable, hence vold(K) is always well defined without further
assumptions.

The support function of K is defined by

hK(u) = sup{〈x, u〉 : x ∈ K}, u ∈ Sd−1,

and it uniquely characterizes K in Rd.
Let u ∈ Rd and h ∈ R. We denote by H(u, h) the hyperplane {x ∈ Rd : 〈x, u〉 = h}.

The corresponding halfspaces {x ∈ Rd : 〈x, u〉 ≥ h} and {x ∈ Rd : 〈x, u〉 ≤ h} are
denoted by H+(u, h) and H−(u, h), respectively.

There exists a norm associated to any symmetric convex body K, called the
Minkowski functional of K. It is defined for every x ∈ Rd as

‖x‖K := inf{r > 0 : x ∈ rK}.
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Note, in particular, that ‖x‖K = 1 if and only if x ∈ ∂K. In the case where K is an an
`p-ball it is possible to compute that

‖x‖Bdp = ‖x‖p

for every x ∈ Rd. However, in general such norm does not admit a close expression in
the coordinates of x.

Let P be a polytope and H be an hyperplane of Rd. If F := P ∩ H 6= ∅, we
say that F is a face of P if either P ⊆ H+ or P ⊆ H−. If the affine hull of F is
i-dimensional, i ∈ {0, . . . , d − 1}, then we say that F is a i-dimensional face of P . In
particular 0-dimensional faces are called vertices, 1-dimensional faces are edges and
(d− 1)-dimensional faces are called facets.

The information about the amount of faces that a polytope P ⊆ Rd possesses is
encoded in a d-dimensional vector called the f-vector of P , namely,

f(P ) =
(
f0(P ), . . . , fd−1(P )

)
,

where, for any ∈ {0, . . . , d− 1},

fi(P ) := #{F ⊆ Rd : F is a i-dimensional face of P}.

We indicate by K+
2 the set of convex bodies whose boundary is twice differentiable and

has positive Gaussian curvature everywhere.
For a set K ⊂ Rd, we shall write Hq

K for the q-dimensional Hausdorff measure on
K.

We will use the notation ∆d−1(x1, . . . , xd) to indicate the (d−1)-dimensional volume
of the convex hull of d points x1, . . . , xd.

The volume of Bd is denoted by κd and it holds

κd =
πd/2

Γ
(
1 + d

2

) .
Analogously, we indicate by ωd the Hausdorff measure of Sd−1 and it holds ωd = dκd. We
indicate with ^(u, v) the angle between two vectors u, v ∈ Rd. For a linear subspace V
of Rd, we define ^(u, V ) := inf{^(u, v) : v ∈ V }. Given a subset U ⊆ Rd, its projection
onto Rd−1 is denoted by projRd−1U = {x ∈ Rd−1 : (x, y) ∈ U for some y ∈ R}.
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2.3.1 Intrinsic volumes.

Let ` ∈ {0, . . . , d}, we denote by G(d, `) the Grassmannian of all `-dimensional linear
subspaces of Rd, which is supplied with the unique Haar probability measure ν`, see
[74].

Let K ⊂ Rd be a convex body. For L ∈ G(d, `), we write K|L to indicate the the
orthogonal projection of K onto L. Then K|L is an `-dimensional convex set, so it
remains well-defined its Lebsegue measure vol`(K|L). In view of this, we define for any
` ∈ {0, . . . , d}, the `-th intrinsic volume of K as a suitable normalization of the average
`-dimensional volume of its orthogonal projections, more specifically

V`(K) :=

(
d

`

)
κd

κ`κd−`

∫
G(d,`)

vol`(K|L) ν`(dL) , (2.2)

which is known as Kubota’s formula, see [76, Equations (6.11) and (5.5)].
The intrinsic volume can be equivalently defined as the non-negative coefficients of

the polynomial in t that arises from Steiner’s formula, (see e.g. [74, Equation (4.2.27)]),
namely

vold(K + tBd) =
d∑
`=0

td−`κd−`V`(K).

In particular, Vd(K) is the ordinary volume vold(K), Vd−1(K) is half of the surface area,
V1(K) is a constant multiple of the mean width and V0(K) is the Euler-characteristic
of K.

2.3.2 Isotropic convex bodies

A convex body K ⊂ Rd is called isotropic whenever vold(K) = 1, it’s centred, i.e. for
any θ ∈ Sn−1 ∫

K

〈x, θ〉 dx = 0

and there exists a constant L2
K such that∫

K

〈x, θ〉2 dx = L2
K

for all θ ∈ Sd−1.
LK is then called the isotropic constant of K. Note that an isotropic convex body
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satisfies ∫
K

‖x‖2
2 dx =

d∑
i=1

∫
K

〈x, ei〉2 dx = dL2
K .

Let GL(d) indicate the for the group of invertible linear transformations on Rd (see
[8, Definition 10.1.6].). It is a well know fact (see [28, pag. 73])that every centred
convex body admits an isotropic linear image, i.e. for any K centered, there exists
T ∈ GL(d) such that TK is an isotropic convex body. Moreover, for any convex body
K, the quantity

min

{
1

d vold TK
1+2/d

∫
z+TK

‖x‖2
2 dx : z ∈ Rd, T ∈ GL(d)

}
, (2.3)

only depends on the affine class of K, so we can define the isotropic constant L2
K of

every convex body as the term in Equation (2.3) (see [28, Definition 2.3.6]).
This means that the study of the isotropic constant of convex bodies can be restricted

to the class of isotropic convex bodies. A class of convex bodies of particular interest is
constituted by the so called unconditional isotropic convex bodies. They are defined as
those convex bodies of unitary volume, which are invariant under reflection with respect
to every coordinate hyperplane. Geometrically, this also means that if K contains x,
then every y ∈ K as long as yi ∈ [−xi, xi] for every i ∈ {1, . . . , d}. Normalized `p-balls
are therefore an example of unconditional isotropic convex body.

The hyperplane conjecture states that there exists an absolute constant c > 0

such that for every dimension d ∈ N and every centered convex body K ⊂ Rd with
vold(K) = 1, there exists θ ∈ Sd−1 such that

vold−1(K ∩ θ⊥) ≥ c,

where θ⊥ indicates the hyperplane orthogonal to θ and passing through the origin.
Since there exist absolute constants c1, c2 > 0 such that for every isotropic convex

body K ⊂ Rd and for any θ ∈ Sd−1 (see [c]o BGVV),

c1

LK
≤ vold−1(K ∩ θ⊥) ≤ c2

LK
,

the hyperplane conjecture is equivalent to conjecturing that there exists C > 0 such
that

LK ≤ C,

for every convex body K in any dimension.
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2.3.3 Isotropic log-concave probability measures

A probability measure µ on Rn is called log-concave, if for all compact subsets A,B of
Rn and all λ ∈ [0, 1]

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ.

µ is called isotropic, if its barycentre is at the origin, i.e.∫
Rn
〈x, θ〉 dµ(x) = 0

holds for every θ ∈ Sn−1, and satisfies the isotropic condition, that is,∫
Rn
〈x, θ〉2 dµ(x) = 1

for all θ ∈ Sn−1.
Note that isotropic log-concave probability measures generalize the concept of uni-

form probability distribution on an isotropic convex body K ⊂ Rn, for the probability
measure LnK1L−1

K K dx is isotropic log-concave.
An important property of isotropic log-concave probability measures is represented

by the so-called thin-shell concentration property of isotropic log-concave probability
measures. Answering a central question in asymptotic convex geometry (see [6]),
Klartag [53, Theorem 1.4] proved that an isotropic log-concave measure is typically
concentrated on a “thin spherical shell” around the Euclidean ball of radius

√
n. The

statement reads as follows.

Theorem 2.1. Let µ be an isotropic log-concave probability measure in Rn. Then, for
every ε ∈ (0, 1),

µ
({
x ∈ Rn :

∣∣‖x‖2 −
√
n
∣∣ ≥ ε

√
n}) ≤ Cn−cε

2

, (2.4)

for some absolute constants c, C > 0.

Results of this type are closely linked to the long-standing thin shell conjecture. It
asks, whether it’s true that exists and absolute constants C > 0 such that

E
(
‖X‖2 −

√
n
)2 ≤ C

for any random vector X distributed according to an isotropic and log-concave prob-
ability measure on Rn. We refer to the monograph [28] for further information on the
history of this problem, recent improvements of Theorem 2.1, as well as the general
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theory of isotropic log-concave probability measures.

2.4 Special functions

The Gamma function is defined as

Γ(x) :=

∫ ∞
0

sx−1e−s ds x > 0.

Its relevance is highlighted by the following characterization: the Gamma function is
the unique function on the positive reals such that Γ(1) = 1, Γ(x + 1) = xΓ(x) and
it is logarithmically convex, i.e. its logarithm is a convex function on the positive
reals. Hence, the Gamma function coincides with a shift of the factorial function on
the natural numbers, i.e. Γ(n+ 1) = n! for any n ∈ N.

The following inequality on the ratio of Gamma function will be of special interest,
and, in the form stated here, is a particular case of Wendel’s inequality (see e.g. eq.
(7) in [86]), but written in a similar form already earlier in [7].

Lemma 2.2. For every x > 1,

1√
x
<

Γ(x)

Γ(x+ 1
2
)
<

1√
x− 1

.

A direct consequence of the previous lemma is that Γ(x+1/2) ∼
√
xΓ(x) as x tends

to infinity.
Starting with the Gamma function, one can define the Beta function by means of

the formula

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0.

Note that by definition, the Beta function is symmetric in its arguments. Moreover, it
is well-known that it admits the following integral representation,

B(x, y) =

∫ 1

0

sx−1(1− s)y−1 ds, a, b > 0.
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Chapter 3

Intrinsic Volumes of Random
Polytopes in Convex Bodies

In this chapter we discuss the fluctuations of the intrinsic volumes of random polytopes
generated by independent random points, uniformly distributed inside a smooth convex
body, or on its surface.

Fix a space dimension d ≥ 2, let n ≥ d + 1. Let K ⊂ Rd be a prescribed convex
body , which we assume to have a boundary ∂K which is twice differentiable and has
positive Gaussian curvature everywhere. We summarize these conditions by writing
K ∈ K2

+. We will establish limit theorems for the intrinsic volumes of random polytopes
in K, according to two different models:

1. uniform inside K: We let X1, . . . , Xn be independent identically distributed ran-
dom points, uniformly distributed in K, namely

P(X1 ∈ A) =
vold(A ∩K)

vold(K)

for any A ∈ B(Rd). Notice that from this definition we can then assume that
vold(K) = 1 without loss of generality, so we will from now on. We denote as Pn
the random polytope that is the convex hull of these random points, namely

Pn := conv(X1, . . . , Xn).

2. uniform on the surface of K: X1, . . . , Xn are independent identically distributed
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random points, uniformly distributed on ∂K, namely

P(X1 ∈ B) =
Hd−1
∂K (B)

Hd−1
∂K (∂K)

for any B ∈ B(∂K). With a slight abuse of notation we will indicate in this
chapter Hd−1(·) the aforementioned probability measure. We denote by Kn the
random polytope that arises as the convex hull of the aforementioned random
points, namely

Kn := conv(X1, . . . , Xn).

Note that in this model, unlike in the previous one, every random point is a vertex
of the polytope, due to the curvature of the boundary.

For ` ∈ {1, . . . , d}, we indicate by V`(Pn) and V`(Kn) the `-th intrinsic volume of Pn
and Kn, respectively.

The purpose of this chapter is to prove central limit theorems for V`(Pn), as n→∞
and upper variance bounds, law of large numbers and central limit theorems for V`(Kn),
filling this way some of the gaps in the existing literature.

3.1 Background material

3.1.1 Floating bodies

We recall the concept of the floating body, that was introduced independently in [13]
and [79].

We define the function v : K → R by

v(x) := min{vold(K ∩H) : H is a half space in Rd containing x}.

Then, the set
K(t) = K(v ≥ t) := {x ∈ K : v(x) ≥ t}

is called the floating body of K with parameter t > 0. The wet part of K is defined by

K(t) = K(v ≤ t) := {x ∈ K : v(x) ≤ t}.
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In a similar way, we define the function s : K → R by

s(x) := min{Hd−1(∂K ∩H) : H is a half space in Rd containing x}.

The surface body of K with parameter t > 0 is defined by

K(s ≥ t) := {x ∈ K : s(x) ≥ t}.

Analogously, we set
K(s ≤ t) := {x ∈ K : s(x) ≤ t}.

We rephrase a result of Bárány and Dalla [16], which has also been proved by Vu
[84] using different techniques, see also Lemma 2.2 in [66]. Note that in the following
statement, in fact, smoothness of the boundary is not needed.

Lemma 3.1. For any β ∈ (0,∞), there exists a constant c = c(β, n) ∈ (0,∞) only
depending on β and on n such that the probability of the event that Pn does not contain
the c logn

n
-floating body is at most n−β, whenever n is sufficiently large.

The concept of the surface body is convenient in view of Lemma 3.2, which clarifies
its connection with the random polytope Kn.

Lemma 3.2. [72, Lemma 4.2] For all α ∈ (0,∞), there exists a constant cα ∈ (0,∞)

only depending on α such that

P(K(s ≥ τn) 6⊆ Kn) ≤ n−α,

where
τn := cα

log n

n
.

3.1.2 Further geometric tools

A nice feature of the smoothness of K, is provided from the fact that for every point
x ∈ ∂K, there exists a paraboloid Qx, given by a quadratic form bQx , osculating at x.
The following precise description of the local behaviour of the boundary of a convex
body K ∈ K2

+ is due to Reitzner [67].

Lemma 3.3. [67, Lemma 6] Let K ∈ K2
+ and choose δ > 0 sufficiently small. Then,

there exists a λ > 0, only depending on δ and K, such that for each x ∈ ∂K the
following holds. Identify the hyperplane tangent to K at x with Rd−1 and x with the
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origin. The λ-neighbourhood Uλ of x in ∂K defined by projRd−1 Uλ = λBd−1
2 can be

represented by a convex function f (x)(y) ∈ C2, i.e. (y, f (x)(y)) ∈ ∂K for y ∈ λBd−1
2 .

Denote by f (x)
ij (0) the second partial derivatives of f (x) at the origin. Then,

bQx(y) =
1

2

∑
i,j

f
(x)
ij (0)yiyj

and it holds that
(1 + δ)−1bQx(y) ≤ f (x)(y) ≤ (1 + δ) bQx(y)

for y ∈ λBd−1
2 .

Moreover, whenever K ∈ K2
+, there exists a unique unit outward normal ux for each

x ∈ ∂K. The intersection of K with H+(ux, hK(ux)− h) is denoted by CK(x, h). We
call CK(x, h) a cap of K at x of height h. A cap CK is called an ε-cap if vold(C

K) = ε.
Analogously, a cap CK with Hd−1(CK ∩ ∂K) = ε is called an ε-boundary cap. For the
cap CBd(x, h), the central angle is defined as

α(h) := max{^(x, y) : y ∈ CBd(x, h)}.

In the next Lemma we state two well-known relations regarding ε-caps and ε-
boundary caps.

Lemma 3.4. [72, Lemma 6.2] For a given K ∈ K2
+, there exist constants ε0, c1, c2 > 0

such that for all 0 < ε < ε0 we have that for any ε-cap CK of K,

c−1
1 ε(d−1)/(d+1) ≤ Hd−1(CK ∩ ∂K) ≤ c1ε

(d−1)/(d+1)

and for any ε-boundary cap C̃K of K,

c−1
2 ε(d+1)/(d−1) ≤ vold(C̃

K) ≤ c2ε
(d+1)/(d−1).

This result will be used to relate Lemma 3.2 in terms of the classic floating body.
For the next geometrical Lemma we assume that ε is sufficiently small.

Lemma 3.5. [83, Lemma 6.2] Let x be a point on the boundary of K and D(x, ε) the
set of all points on the boundary which are of distance at most ε to x. Then, the convex
hull of D(x, ε) has volume at most c3ε

d+1, where c3 > 0 is a constant.

The following result is known as the economic cap covering theorem, see [11, 13].
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Proposition 3.6. [11, Theorem 4] Assume that K is a convex body with unit volume
and let 0 < t < t0 = (2d)−2d. Then, there are caps C1, . . . , Cm and pairwise disjoint
convex sets C ′1, . . . , C ′m such that C ′i ⊂ Ci for each i, and

1.
⋃m
i=1C

′
i ⊂ K(t) ⊂

⋃m
i=1Ci,

2. vold(C
′
i) & t and vold(Ci) . t for each i,

3. for each cap C with C ∩K(v > t) = ∅, there is a Ci containing C.

We conclude this section with a statement from [11, Lemma 1], about the measure
of the set of linear subspaces of Rd that form a small angle with a fixed vector, which
will be useful later. See also [18, Lemma 10].

Lemma 3.7. For fixed z ∈ Sd−1 and small a > 0,

ν`({L ∈ G(d, `) : ^(z, L) ≤ a}) = Θ
(
ad−`

)
, ` ∈ {1, . . . , d}.

3.1.3 Bounds for normal approximation

Let X and Y be two random variables with cumulative distribution functions FX(u) =

P(X ≤ u) and FY (u) = P(Y ≤ u), respectively. Note that X and Y need not to
be defined on a common probability space. Thus, we interpret P on the appropriate
probability space in each case.

We define the Wasserstein distance between X and Y as

dW (X, Y ) := sup
h∈Lip1

∣∣Eh(X)− Eh(Y )
∣∣ (3.1)

where the supremum is running over all Lipschitz functions h : R→ R with Lipschitz
constant less or equal than 1.

The Kolmogorov distance between the random variables X and Y is defined by

dK(X, Y ) = sup
u∈R
|FX(u)− FY (u)|.

A nice feature of the Wassertein and the Kolmogorov distance is that they metrize the
convergence in distribution, i.e. given a sequence of random variables (Xn)n∈N and
another random variable Y such that lim

n→∞
dW (Xn, Y ) = 0 or lim

n→∞
dK(Xn, Y ) = 0, then

(Xn)n∈N converges in distribution to Y .
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As far as symmetric statistics of independent and identically distributed random
variables are concerned, like the intrinsic volumes V`(conv(X1, . . . , Xn)) are, quantitat-
ive bounds for normal approximation in terms of the aforementioned distances have
been deeply investigated, see e.g. [90]. More recently, developments of Stein’s theory
were deployed to provide new bounds using the so called difference operators. We now
introduce one of such machineries, originating from [32] and refined in [57].

Let S be a Polish space. Consider a function f : ∪nk=1 S
k → R that acts on the

point configurations of at most n ∈ N points of S. Let f be measurable and sym-
metric, i.e. invariant under permutations of the arguments. In the setting of this
chapter, S will be either a smooth convex body or its boundary, while f is an in-
trinsic volume of the convex hull of its arguments. Given a point x = (x1, . . . , xh) ∈
∪nk=1S

k, we indicate with xi the vector obtained from x by removing its i-th co-
ordinate, namely xi := (x1, . . . , xi−1, xi+1, . . . , xh). Analogously, we define xij :=

(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xh).
We now define the first- and second-order difference operators, applied to f , as

Dif(x) := f(x)− f(xi) and Di,jf(x) := f(x)− f(xi)− f(xj) + f(xij),

respectively. We indicate with X = (X1, . . . , Xn) a random vector of elements of S.
Let X ′ and X̃ be independent copies of X. A vector Z = (Z1, . . . , Zn) is called a
recombination of {X,X ′, X̃}, whenever Zi ∈ {Xi, X

′
i, X̃i} for every i ∈ {1, . . . , n}. For

a subset A ⊆ {1, . . . , n} of the index set, we write XA = (XA
1 , . . . , X

A
n ) with

XA
i :=

Xi : i /∈ A,

X ′i : i ∈ A.

In order to rephrase the normal approximation bound from [57], it is convenient to
define the following quantities, namely,

γ1 := sup
(Y,Y ′,Z,Z′)

E
[
1{D1,2f(Y ) 6= 0}1{D1,3f(Y ′) 6= 0}D2f(Z)2D3f(Z ′)2

]
,

γ2 := sup
(Y,Z,Z′)

E
[
1{D1,2f(Y ) 6= 0}D1f(Z)2D2f(Z ′)2

]
,

γ3 := E
[
|D1f(X)

∣∣4] ,
γ4 := E

[
|D1f(X)|3

]
,

γ5 := sup
A⊆{1,...,n}

E
[
|f(X)D1f(XA)3|

]
,
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CHAPTER 3. INTRINSIC VOLUMES OF RANDOM POLYTOPES

where the suprema in the definitions of γ1 and γ2 run over all combinations of vectors
(Y, Y ′, Z, Z ′) or (Y, Z, Z ′) that are recombinations of {X,X ′, X̃}.

Proposition 3.8. [57, Theorem 5.1] LetW := f(X1, . . . , Xn) and assume that EW = 0

and 0 < EW 2 <∞. Moreover, let N be a standard Gaussian random variable. Then,
the following bound for the normal approximations hold:

dW

(
W√

VarW
,N

)
.

√
n

Var W

(√
n2γ1 +

√
nγ2 +

√
γ3

)
+

n

(Var W )
3
2

γ4;

dK

(
W√

VarW
,N

)
.

√
n

VarW
(
√
n2γ1 +

√
nγ2 +

√
γ3) +

n

(VarW )
3
2

γ4 +
n

(VarW )2
γ5.

3.2 Random points inside the convex body

We prove the following theorem on the intrinsic volume of Pn.

Theorem 3.9. Let K ⊂ Rn be a convex body with twice differentiable boundary and
strictly positive Gaussian curvature everywhere. Then, for all ` ∈ {1, . . . , n}, one has
that (V`(Pn)−EV`(Pn))/

√
VarV`(Pn) converges in distribution to a standard Gaussian

random variable N , as n→∞. More precisely,

dW

(
V`(Pn)− EV`(Pn)√

VarV`(Pn)
, N

)
. n−

1
2

+ 1
d+1 (log n)3+ 2

d+1 .

Note that the rate of convergence in Theorem 3.9 does not depend on `.
In the proof of our result we will make use of the following lower and upper variance

bounds, proven by Bárány, Fodor and Vígh [11], namely,

n−
d+3
d+1 . VarV`(Pn) . n−

d+3
d+1 (3.2)

for all ` ∈ {1, . . . , n}.
According to Lemma 3.1, we see that for any β ∈ (0,∞) there exists a constant

c = c(β, d) ∈ (0,∞) such that the random polytope [X2, . . . , Xn] contains the floating
body K(c logn/n) with high probability. More precisely, denoting the latter event by B1,
it holds that for sufficiently large n,

P(Bc
1) ≤ (n− 1)−β ≤ c1n

−β , (3.3)

where c1 ∈ (0,∞) is a constant independent of n. Note that we choose β large enough
(β = 5 will be sufficient for all our purposes).
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3.2. RANDOM POINTS INSIDE THE CONVEX BODY

Next, we let Y, Y ′, Z, Z ′ be recombinations of our random vector X = (X1, . . . , Xn)

and denote by B2 the event that
⋂
W∈{Y,Y ′,Z,Z′}[W4, . . . ,Wn] contains K(c logn/n). By

the union bound it follows that the probability of Bc
2 is also small:

P(Bc
2) ≤ c2n

−β , (3.4)

where c2 ∈ (0,∞) is again a constant independent of n.

Remark 1. Let us point out that the result concerning V`(Pn), is not totally new.
Central limit theorems for general ` ∈ {1, . . . , d} were known for a long time only for
the Poisson setting in the the special case that K is the n-dimensional Euclidean unit
ball, see the paper of Calka, Schreiber and Yukich [30]. We also refer to the paper of
Schreiber [77] for the case ` = 1. Only very recently (in parallel and independently of us)
Lachièze-Rey, Schulte and Yukich [58] gave a proof for the general case by embedding
the problem into the theory of so-called stabilizing functionals.

Proof of Theorem 3.9. Assume without loss of generality that K has volume one. The
idea of the proof is to apply the normal approximation bound in Proposition 3.8 to the
random variables

W = f(X1, . . . , Xn) := V`([X1, . . . , Xn])− EV`(Pn).

To this end, we need to control, in particular, the first- and second-order difference
operators DiW = DiV`(Pn) and Di1,i2W = Di1,i2V`(Pn) for i, i1, i2 ∈ {1, . . . , n}.

Conditioned on the event B1, we use Kubota formula to estimate the first-order
difference operator applied to the intrinsic volume functional V`(Pn) as follows:

D1V`(Pn) =

(
d

`

)
κn

κ`κd−`

∫
G(d,`)

vol`((Pn|L) \ ([X2, . . . , Xn]|L)) ν`(dL)

× 1{X1 ∈ K \K(c logn/n)}.
(3.5)

For the sake of brevity we will indicate [X2, . . . , Xn] by Pn−1. On the event B1 we
first notice that vol`((Pn|L) \ (Pn−1|L)) is zero if X1 ∈ Pn−1. So, we can restrict to
the situation that X1 ∈ K \ Pn−1, which conditioned on B1 occurs with probability
vold(K \ Pn−1) . vold(K \K(c logn/n)) . (log n/n)

2
d+1 , cf. [14, Theorem 6.3].

Suppose now that the convex body K is the normalized Euclidean unit ball in Rn.
It is our aim to define a full-dimensional cap C such that Pn \ Pn−1 is contained in C.
For this reason, we define z to be the closest point to X1 on ∂K (we notice that z is
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CHAPTER 3. INTRINSIC VOLUMES OF RANDOM POLYTOPES

uniquely determined if K(c logn/n) is non-empty). We define the visible region of z is
defined as

Visz(n) := {x ∈ K \K(c logn/n) : [x, z] ∩K(c logn/n) = ∅} .

By definition of the floating body K(c logn/n), the diameter of Visz(n) is equal to
c3(log n/n)

1
d+1 , where c3 ∈ (0,∞) is a constant not depending on n. Let us de-

note by D(z, c3(log n/n)
1
d+1 ) the set of all points on the boundary of K which are

of distance at most c3(log n/n)
1
d+1 to z. Then, it follows from [84, Lemma 6.2] that

C := conv(D(z, c3(log n/n)
1
d+1 )) has volume of order at most log n/n. Moreover, C is

in fact a spherical cap and the central angle of it is denoted by α. For a subspace
L ∈ G(d, `), one has that (Pn|L) \ (Pn−1|L) ⊆ C|L. The volume vol`(C|L) of the
projected cap C|L is vol`(C|L) . (log n/n)

`+1
d+1 . Indeed, the height of C|L keeps the

order of the height of C, namely (log n/n)
2
d+1 , while the order of its base changes from

((log n/n)
1
d+1 )d−1 to ((log n/n)

1
d+1 )`−1, since L is a subspace of dimension `. Note that,

by construction of C, if ^(z, L), the angle between z and L, is too wide compared to
α , then C|L ⊆ Pn−1|L, for sufficiently large n. In particular, (Pn \ Pn−1)|L ⊆ Pn−1|L,
which implies Pn|L = Pn−1|L. In fact, it is easily checked that the integrand in (3.5) can
only be non-zero if ^(z, L) . α (the constant can be taken to be 2 in the case of the ball).
Therefore, we can restrict the integration in (3.5) to the set {L ∈ G(d, `) : ^(z, L) . α}.
It is not difficult to verify that α . vold(C)

1
d+1 , see also Equation (27) in [11].

Taken all together, this yields

D1V`(Pn) .

(
log n

n

) `+1
d+1

ν`

({
L ∈ G(d, `) : ^(z, L) . vold(C)

1
d+1

})
× 1{X1 ∈ K \K(c logn/n)} .

According to Lemma 3.7 and the fact that vold(C) . log n/n, it holds that

ν`

({
L ∈ G(d, `) : ^(z, L) . vold(C)

1
d+1

})
.

(
log n

n

) d−`
d+1

,

which in turn implies

D1V`(Pn) .

(
log n

n

) `+1
d+1
(

log n

n

) d−`
d+1

1{X1 ∈ K \K(c logn/n)}

=
log n

n
1{X1 ∈ K \K(c logn/n)} .

(3.6)

To extend the argument for the general case, we argue as in [11, Section 6]. Namely,

29



3.2. RANDOM POINTS INSIDE THE CONVEX BODY

since K is compact, we can choose γ ∈ (0,∞) and Γ ∈ (0,∞) to be, respectively, the
global lower and the global upper bound on the principal curvatures of ∂K. Remark
5 on page 126 of [74] ensures that under our assumptions on the smoothness of the
convex body K all projected images of K also have a boundary with the same features
as ∂K, and we choose γ and Γ such that they also bound from below and above the
principal curvatures of each `-dimensional projection of K. Since we can approximate
∂K locally with affine images of balls, the construction of the cap C above and the
relations regarding its volume, its central angle and the subspaces L which ensure
C|L ⊆ Pn−1|L are not affected. Due to this, the relations

vol`(C|L) . (log n/n)
`+1
d+1 , α . vold(C)

1
d+1 . (log n/n)

1
d+1

and
^(z, L) . α

from the above argument still hold, but this time the implicit constants depend on γ
and Γ. From here, the bound (3.6) can be obtained in the same way as for the ball.

Moreover, on the complementBc
1 ofB1, we use the trivial estimateD1V`(Pn)≤ V`(K)

and thus conclude that

E[(D1V`(Pn))p] = E[(D1V`(Pn))p 1B1 ] + E[(D1V`(Pn))p 1Bc1 ]

.

(
log n

n

)p
vold(K \K(c logn/n)) .

(
log n

n

)p+ 2
d+1

for all p ∈ {1, 2, 3, 4}, where we applied the probability estimate (3.3) in the second
step, which ensures that the second term can be made very small for large n (the choice
for p is motived by our applications below). As a consequence, we can already bound
the terms appearing in the normal approximation bound in Proposition 3.8 that involve
γ3 and γ4. Namely, using the lower variance bounds (3.2) we see that

√
n

VarV`(Pn)

√
γ3 .

√
n

n−
d+3
d+1

(
log n

n

)2+ 1
d+1

= n−
1
2

+ 1
d+1 (log n)2+ 1

d+1 ,

n

(VarV`(Pn))
3
2

γ4 .
n

n−
3
2
d+3
d+1

(
log n

n

)3+ 2
d+1

= n−
1
2

+ 1
d+1 (log n)3+ 2

d+1 .

Next, we consider the second-order difference operator. For z ∈ K \ K(c logn/n), we
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CHAPTER 3. INTRINSIC VOLUMES OF RANDOM POLYTOPES

define the visibility region

Visz(n) := {x ∈ K \K(c logn/n) : [x, z] ∩K(c logn/n) = ∅} ,

where [x, z] denotes the closed line segment which connects x and z.
On the event B2 it may be concluded from (3.6) that Dif(V )2 . (log n/n)2 for all

i ∈ {1, 2, 3} and V ∈ {Z,Z ′}.
We note that on B2 the following inclusion holds:

{D1,2f(Y ) 6= 0} ⊆ {Y1 ∈ K \K(c logn/n)} ∩ {Y2 ∈ K \K(c logn/n)}

∩ {VisY1(n) ∩ VisY2(n) 6= ∅}

⊆ {Y1 ∈ K \K(c logn/n)} ∩
{
Y2 ∈

⋃
x∈VisY1 (n)

Visx(n)

}
.

The same applies to D1,3f(Y ′) as well. We thus infer that

E
[
1{D1,2f(Y ) 6= 0}1B2

]
≤ P

(
Y1 ∈ K \K(c logn/n)

)
P

(
Y2 ∈

⋃
x∈VisY1 (n)

Visx(n)

∣∣∣∣ Y1 ∈ K \K(c logn/n)

)

≤ P
(
Y1 ∈ K \K(c logn/n)

)
sup

z∈K\K(c logn/n)

P

(
Y2 ∈

⋃
x∈Visz(n)

Visx(n)

)
= vold

(
K \K(c logn/n)

)
sup

z∈K\K(c logn/n)

vold

( ⋃
x∈Visz(n)

Visx(n)
)
.

Since the diameter of the previous union is of order (log n/n)
1
d+1 , it follows from [83,

Lemma 6.2] that

∆(n) := sup
z∈K\K(c logn/n)

vold

( ⋃
x∈Visz(n)

Visx(n)
)
.

log n

n
.

Moreover, on the complement Bc
2 of B2 we estimate all the indicator functions by one

and the value of all difference operators by the constant V`(K). Since P(Bc
2) is small

in n (recall (3.4)), this readily implies

γ2 .

(
log n

n

)4

vold(K \K(c logn/n)) ∆(n) .

(
log n

n

)5+ 2
d+1

.
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3.2. RANDOM POINTS INSIDE THE CONVEX BODY

Analogously, we can bound γ1. First, suppose that Y1 = Y ′1 . Then, conditioned on B2,

{D1,2f(Y ) 6= 0} ∩ {D1,3f(Y ′) 6= 0}

⊆ {{Y1, Y2, Y
′

3} ⊆ K \K(c logn/n)} ∩ {VisY2(n) ∩ VisY1(n) 6= ∅}

∩ {VisY ′3 (n) ∩ VisY1(n) 6= ∅}

⊆ {Y1 ∈ K \K(c logn/n)} ∩
{
{Y2, Y

′
3} ⊆

⋃
x∈VisY1 (n)

Visx(n)

}
,

and arguing as before leads to

E
[
1{D1,2f(Y ) 6= 0}1{D1,3f(Y ′) 6= 0}1B2

]
≤ P

(
Y1 ∈ K \K(c logn/n)

)
sup

z∈K\K(c logn/n)

P

(
{Y2, Y

′
3} ⊆

⋃
x∈Visz(n)

Visx(n)

)
≤ vold(K \K(c logn/n)) ∆(n)2 .

Note that the case Y1 6= Y ′1 gives a smaller order since, by independence, it leads to an
extra factor vold(K \K(c logn/n)). Thus, by conditioning on B2 and its complement, we
obtain

γ1 .

(
log n

n

)4

vold(K \K(c logn/n)) ∆(n)2 .

(
log n

n

)6+ 2
d+1

.

Now, the other terms appearing in the normal approximation bound in Lemma Pro-
position 3.8 can be estimated using the lower variance bounds (3.2) as follows,

√
n

VarV`(Pn)

√
n2γ1 .

√
n

n−
d+3
d+1

√
n2 ·

(
log n

n

)6+ 2
d+1

= n−
1
2

+ 1
d+1 (log n)3+ 1

d+1 ,

√
n

VarV`(Pn)

√
nγ2 .

√
n

n−
d+3
d+1

√
n ·
(

log n

n

)5+ 2
d+1

= n−
1
2

+ 1
d+1 (log n)

5
2

+ 1
d+1 .

Putting together all estimates, we arrive at

dW

(
V`(Pn)− EV`(Pn)√

VarV`(Pn)
, N

)
. n−

1
2

+ 1
d+1

(
(log n)3+ 1

d+1 + (log n)
5
2

+ 1
d+1

+ (log n)2+ 1
d+1 + (log n)3+ 2

d+1

)
. n−

1
2

+ 1
d+1 (log n)3+ 2

d+1

(3.7)

in view of the normal approximation bound in Proposition 3.8. In particular, as n→∞,
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this converges to zero and so the random variables

W`(Pn) =
V`(Pn)− EV`(Pn)√

VarV`(Pn)

converge in distribution to the standard Gaussian random variable n. The proof of
Theorem 3.9 is thus complete.

3.3 Points on the surface of the convex body

We switch our interest to the random polytope Kn, whose vertices are drawn independ-
ently and uniformily on the boundary of K. Our first result concerns asymptotic lower
and upper bounds, respectively, for the variances of the intrinsic volumes.

Theorem 3.10. Let K ∈ K2
+. Choose d independent random points on ∂K according

to the probability distribution Hd−1 and let Kn be their convex hull. Then, for all
` ∈ {1, . . . , d},

VarV`(Kn) = Θ
(
n−

d+3
d−1

)
.

Based on a result stated in [67, Theorem 1] concerning the behaviour of V`(K) −
E[V`(Kn)], the upper variance bound of Theorem 3.10 implies a strong law of large
numbers.

Theorem 3.11. In the set-up of Theorem 3.10 and for all ` ∈ {1, . . . , d}, it holds

P
(

lim
n→∞

(
V`(K)− V`(Kn)

)
· n

2
d−1 = cK,`

)
= 1,

for some constants cK,` ∈ (0,∞) that depend on K and `.

The constants cK,` appear in an explicit form in [67, Theorem 1] and can be expressed
in form of integrals of the principal curvatures of K.

Next, we introduce the standardized intrinsic volume functionals, defined by

W`(Kn) :=
V`(Kn)− EV`(Kn)√

VarV`(Kn)
, ` ∈ {1, . . . , d}.

We prove the following central limit theorem for such functionals.

Theorem 3.12. In the set-up of Theorem 3.10 and for all ` ∈ {1, . . . , d}, it holds

dK
(
W`(Kn), N

)
. n−

1
2 (log n)3+ 6

d−1 ,
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where N is a standard Gaussian random variable. In particular, W`(Kn) converges in
distribution to N , as n→∞.

Remark 2. Note that the rate of convergence in Theorem 3.12 does not depend on `.
Moreover, the same rate of convergence was already obtained in [82] for the case ` = d.

Remark 3. Contrarily to the previous central limit theorem Theorem 3.9, when Pn was
treated, using dW this time would not improve the rate of convergence, as it will appear
in the proof that the extra term from the upper bound of the Kolmogorov distance in
Proposition 3.8 does not have a higher order than the other terms, which are present
in both the Wassertein and the Kolmogorov distance bounds.

3.3.1 Lower variance bound

In order to prove a lower variance bound, we first introduce in Section 3.3.2 a geometrical
construction taken from [72, Section 3.1]. More precisely, for x ∈ ∂K and h sufficiently
small, we define d + 1 disjoint subsets of CK(x, h) ∩ ∂K which are denoted by D′i(x),
i = 0, . . . , d. Later, in Section 3.3.3 we fix some particular points y1, . . . , yn ∈ ∂K and
hn. The event that exactly one random point is contained in each D′i(yj), i ∈ {0, . . . , d},
and every other point is outside of CK(yj, hn) ∩ ∂K is indicated by Aj, j ∈ {1, . . . , n}.
Then, our strategy is as follows. By conditioning on the σ-field F generated by the
positions of all X1, . . . , Xn except those which are contained in D′0(yj) with 1Aj = 1, it
will turn out that

Var[V`(Kn)] ≥ E[Var[V`(Kn)|F ]] = E

[
n∑
j=1

Varj[V`(Kn)]1Aj

]
,

where the variances Varj[·] are taken over Xj ∈ D′0(yj). Finally, it remains to determine
the behaviour of Varj[·] and P(Aj), j ∈ {1, . . . , n}. This way we bound the variance
from below by a quantity that is asymptotically of the desired order.

3.3.2 Auxiliary geometric construction

Let E be the standard paraboloid given by

E = {z = (z1, . . . , zd) ∈ Rd : zd ≥ z2
1 + · · ·+ z2

d−1}.

We construct a simplex S in CE(0, 1) in the following way. The base is a regular simplex
whose vertices v1, . . . , vd lie on ∂E ∩ H(ed, 1/(3(d − 1)2)) while v0 = (0, . . . , 0) is the
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v0

S

vd v1

E 2E

H(ed, 1)

1

1
3(d−1)2

Figure 3.1: Construction of the simplex S.

apex of S. Notice that 2E ∩H(ed, 1) has radius
√

2, while the inradius of the base of
the simplex is 1/(

√
3(d − 1)2) and therefore, {λz ∈ Rd : λ ≥ 0, z ∈ S} ∩H(ed, 1) has

inradius 3(d− 1)2/(
√

3(d− 1)2) =
√

3. In particular, this implies that

{λz ∈ Rd : λ ≥ 0, z ∈ S} ⊇ 2E ∩H(ed, 1),

see Figure 3.1 for the construction of S. For i ∈ {0, 1, . . . , d}, let v′i be the orthogonal
projection of vi onto span{e1, . . . , ed−1}. Consider B0 := Bd−1

2 (v′0, r) ⊆ Rd−1 and
Bi := Bd−1

2 (v′i, r
′) ⊆ Rd−1, i ∈ {1, . . . , d}, for some radii r and r′ to be chosen later.

Let bE be the quadratic form associated with E, i.e. bE(y) = ‖y‖2 for y ∈ Rd−1. For
i ∈ {0, . . . , d}, we define the lift B′i := b̃(Bi) on ∂E of the sets Bi, where b̃ indicates the
mapping

b̃ : Rd−1 → ∂E, y 7→ (y, bE(y)).

Note that, if r and r′ are small enough, then, by continuity, for any (d+ 1)-tuple of
points xi ∈ B′i, the following still holds,

{λz ∈ Rd : λ ≥ 0, z ∈ [x0, . . . , xd]} ⊇ 2E ∩H(ed, 1). (3.8)

Then, we extend the aforementioned argument to arbitrary caps of ∂K. For each
point x ∈ ∂K, we consider the approximating paraboloid Qx of K at x. Let Tx(K)

be the tangent space of K at the point x. The space Tx(K) can be identified with
Rd−1 having x as its origin. Then, there exists a unique affine map Ax such that
Ax(C

E(0, 1)) = CQx(x, h) while mapping the coordinate axes onto the coordinate axes
of Tx(K) × R. We define Di(x) := Ax(Bi), i ∈ {0, . . . , d}. Then, it is true that
vold−1(Di(x)) = c1 h

d−1
2 for a constant c1 > 0. We define now D′i(x) := f̃ (x)(Di(x)),
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x

x1
xd

KD′d(x)

Dd(x)

D′1(x)

D1(x)
Tx(K)

[x0, . . . , xd]

x0

Figure 3.2: Example of a simplex [x0, . . . , xd].

where
f̃ (x) : U → ∂K, y 7→ (y, f (x)(y))

for a neighbourhood U ⊆ Tx(K) of x. Since K ∈ K2
+, there exist positive lower and

upper bounds for the curvature. Thus, due to the curvature bounds of K, it holds that

cKh
d−1
2 ≤ Hd−1(D′i(x)) ≤ CKh

d−1
2 , (3.9)

where cK and CK are positive constants depending only on K.
By continuity, if every xi belongs to a ball Bd(vi, η), (3.8) is preserved whenever

η > 0 is small enough. Moreover, we can choose r and r′ to be small enough such that for
every x ∈ ∂K and every i ∈ {0, . . . , d}, D′i(x) ⊆ Ax(Bd(vi, η)). Indeed, define for ε > 0

and every i ∈ {0, . . . , d}, the set Ui = {(x, y) ∈ Rd : x ∈ Bd−1
2 (projRd−1 vi, η/2), y ∈ [(1+

ε)−1bE(x), (1 + ε)bE(x)]}. If ε is small enough, then Ui ⊆ Bd(vi, η). Using Lemma 3.3,
we can take h small enough such that (1 + ε)−1bQx(y) ≤ f (x)(y) ≤ (1 + ε)bQx(y). In
particular, if we choose r, r′ < η/2, then D′i(x) ⊆ Ax(Ui) ⊆ Ax(Bd(vi, η)). One can
choose a point xi ∈ D′i(x) for any i ∈ {0, . . . , d}, as in Figure 3.2. As a consequence of
the previous inclusion, we have

{λz ∈ Rd : λ ≥ 0, z ∈ [x0, . . . , xd]} ⊇ 2Qx∩H(ux, hK(ux)−h) ⊇ K∩H(ux, hK(ux)−h),

(3.10)
where the last inclusion holds whenever h ≤ h0 for h0 sufficiently small. Therefore,
from now on r, r′ and h0 are chosen such that the previous argument holds true.
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3.3.3 Proof of the lower bound

In this section we combine tools from [11, 70, 72]. Let K ∈ K2
+ and X1, . . . , Xn be

independent random points that are chosen from ∂K according to the probability
distribution Hd−1. Due to [70, Lemma 13], we can choose d points y1, . . . , yn ∈ ∂K
and corresponding disjoint caps of K, namely, CK(yj, hn) for j ∈ {1, . . . , n}, with
hn = Θ

(
n−

2
d−1

)
. For all i ∈ {0, . . . , d} and j ∈ {1, . . . , n}, we define the sets {Di(yj)}

and {D′i(yj)} as in Section 3.3.2. Let Aj, j ∈ {1, . . . , n}, be the event that exactly
one random point is contained in each D′i(yj), i ∈ {0, . . . , d}, and every other point is
outside of CK(yj, hn) ∩ ∂K.

Lemma 3.13. [72, Section 3.2] For n large enough, and all j ∈ {1, . . . , n}, there exists
a constant c ∈ (0, 1) such that P(Aj) ≥ c.

Proof. The probability of the event Aj is

P(Aj) = n · (n− 1) · · · (n− d)P(Xi+1 ∈ D′i(yj), i ∈ {0, . . . , d})

×P(Xi+1 /∈ CK(yj, hn) ∩ ∂K, i ∈ {d+ 1, . . . , n− 1})

= n · (n− 1) · · · (n− d)
d∏
i=0

Hd−1(D′i(yj))
n−1∏
k=d+1

(1−Hd−1(CK(yj, hn) ∩ ∂K)).

Combining Lemma 3.4, [70, Lemma 13] and Equation (3.9), we obtain

P(Aj) ≥ c2n
d+1n−d−1(1− c3n

−1)n−d−1 ≥ c > 0,

where all constants are positive.

Let F be the σ-field generated by the positions of all X1, . . . , Xn except those
which are contained in D′0(yj) with 1Aj = 1. Assume that 1Aj = 1Ak = 1 for some
j, k ∈ {1, . . . , n} and without loss of generality that Xj and Xk are the points in D′0(yj)

and D′0(yk). By Equation (3.10), it is not possible that there is an edge between Xj and
Xk. Therefore, the change of the intrinsic volume affected by moving Xj within D′0(yj)

is independent of the change of the intrinsic volume of moving Xk within D′0(yk). As a
consequence, we obtain

Var[V`(Kn)|F ] =
n∑
j=1

Varj[V`(Kn)]1Aj ,

where the variances Varj[·] are taken over Xj ∈ D′0(yj), compare with [11].
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For j ∈ {1, . . . , n} and i ∈ {0, . . . , d}, let zij be an arbitrary point in D′i(yj). We
indicate with Nj the normal cone of the simplex [z0

j , . . . , z
d
j ] at vertex z0

j . Let Sj be the
cone with base H(uz0j , hK(uz0j )− hn) ∩ 2Qx and vertex z0

j . Note that uz0j is the unique
unit outer normal of K at z0

j . The corresponding normal cone of Sj at z0
j is denoted

by n̄j. Moreover, the angular aperture of Sj at z0
j is at most c′K

√
hn, where c′K > 0 is a

constant that depends on K. Because of this and Equation (3.10), we can find sets Σj

such that
Sd−1 ∩Nj ⊂ Sd−1 ∩ n̄j ⊂ Sd−1 ∩ (uz0j + c′K

√
hnBd) =: Σj. (3.11)

We fix j ∈ {1, . . . , n} and zij ∈ D′i(yj) for all i ∈ {1, . . . , d}. Let Fj := [z1
j , . . . , z

d
j ] and

define
Ṽ`(z;Fj) :=

(
d

`

)
κd

κ`κd−`

∫
G(d,`)

1{L∩Σj 6=∅} vol`
(
[z, Fj]|L

)
ν`(dL),

for any z ∈ D′0(yj) and any ` ∈ {1, . . . , d}.

Lemma 3.14. Let j ∈ {1, . . . , n} and let Xj be a point chosen with respect to the
normalized Hausdorff measure restricted to D′0(yj). Then,

Varj[Ṽ`(Xj;Fj)] = Θ
(
n−2 d+1

d−1

)
, ` ∈ {1, . . . , d}.

Proof. Note that [Xj, Fj]|L is a simplex in L ∈ G(d, `) with base Fj|L and additional
point Xj|L. As a consequence, the height of [Xj, Fj]|L is proportional to hn and

vol`−1(Fj|L) = Θ
(
h
`−1
2

n

)
,

where L ∈ G(d, `) with L ∩ Σj 6= ∅. Thus,

vol`
(
[Xj, Fj]|L

)
= Θ

(
h
`+1
2

n

)
.

Due to Lemma 3.7 and Equation (3.11), it follows∫
G(d,`)

1{L∩Σj 6=∅} ν`(dL) = ν`({L ∈ G(d, `) : L ∩ Σj 6= ∅}) = Θ
(
h
d−`
2

n

)
.

Therefore, we obtain
Ṽ`(Xj;Fj) = Θ

(
h
d+1
2

n

)
.

Let X1
j and X2

j be independent copies of Xj, then

|Ṽ`(X1
j ;Fj)− Ṽ`(X2

j ;Fj)| = Θ
(
h
d+1
2

n

)
,
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since the heights of X1
j |L and X2

j |L are different with probability 1. Using hn =

Θ
(
n−

2
d−1

)
, we obtain

Varj
[
Ṽ`(Xj;Fj)

]
=

1

2
E
[∣∣Ṽ`(X1

j ;Fj)− Ṽ`(X2
j ;Fj)

∣∣2]
= Θ

(
n−2 d+1

d−1

)
.

We can now proceed with the proof of the lower variance bound.

Proof of the lower bound of Theorem 3.10. Let F be the σ-field defined as above. The
conditional variance formula implies that

Var[V`(Kn)] = E[Var[V`(Kn)|F ]] + Var[E[V`(Kn)|F ]] ≥ E[Var[V`(Kn)|F ]].

As already mentioned, F induces an independence property. Therefore, we obtain

Var[V`(Kn)|F ] =
n∑
j=1

Varj[V`(Kn)]1Aj =
n∑
j=1

Varj[Ṽ`(Xj;Fj)]1Aj .

Finally, applying Lemma 3.13, Lemma 3.14 and taking expectation yields

Var[V`(Kn)] & n−2 d+1
d−1

n∑
j=1

P(Aj) & n−2 d+1
d−1n = n−

d+3
d−1 .

3.3.4 Upper variance bound

In the following, we find an upper bound for VarV`(Kn), ` ∈ {1, . . . , d}. The proof is
based on the Efron-Stein jackknife inequality and follows the ideas of [11]. In contrast
to [11], we use the concept of surface body, in particular, Lemma 3.2 about the fact
that the surface body is contained in the random polytope Kn with high probability.
Moreover, we make use of Lemma 3.4 for our estimates. The proof is given in full
details for the case K = Bd2. From a geometric point of view this case is easier to
handle. However, the general case is also related to this basis case. The corresponding
arguments are stated at the end of the proof.

Proof of the upper bound of Theorem 3.10. First, let K = Bd. We indicate with Tn the
event that the surface body K(s ≥ τn) is contained in Kn. Let ` ∈ {1, . . . , d}. Applying
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the Efron-Stein jackknife inequality from [68] yields

Var[V`(Kn)] . nE
[
(V`(Kn+1)− V`(Kn))2

]
= nE

[
(V`(Kn+1)− V`(Kn))21Tn

]
+ nE

[
(V`(Kn+1)− V`(Kn))21T cn

]
.

(3.12)

It is obvious that (V`(Kn+1)− V`(Kn))2 ≤ V`(K)2 and E[1T cn ] = P(T cn). Since the para-
meter α can be chosen arbitrarily big in Lemma 3.2, the second term in Equation (3.12)
is negligible in the asymptotic analysis. By Equation (2.2), we obtain

Var[V`(Kn)] . nE
[
(V`(Kn+1)− V`(Kn))21Tn

]
. nE

[∫
G(d,`)

vol`((Kn+1|A) \ (Kn|A))ν`(dA)

×
∫
G(d,`)

vol`((Kn+1|B) \ (Kn|B)) ν`(dB)1Tn

]
. nE

[∫
G(d,`)

∫
G(d,`)

vol`((Kn+1|A) \ (Kn|A)) vol`((Kn+1|B) \ (Kn|B))

× 1Tnν`(dA)ν`(dB)

]
.

(3.13)

If Xn+1|A ∈ Kn|A, then the set (Kn+1|A) \ (Kn|A) is clearly empty. Otherwise,
(Kn+1|A) \ (Kn|A) consists of several disjoint simplices which are the convex hull of
Xn+1|A and those facets ofKn|A that can be “seen” fromXn+1|A. For I = {i1, . . . , i`} ⊂
{1, . . . , n}, we indicate with FI the convex hull of Xi1 , . . . , Xi` . Note that FI and FI |A
are (` − 1)-dimensional simplices with probability 1. The closed half space in Rd

which is determined by the hyperplane A⊥ + aff FI and contains the origin is denoted
by H0(FI , A). The other half space is H+(FI , A). The corresponding `-dimensional
half spaces in A are denoted by H0(FI |A) and H+(FI |A). Let F̃(A) be the set of
(`− 1)-dimensional facets of Kn|A that can be seen from Xn+1|A. It is defined by

F̃(A)={FI |A : Kn|A ⊂ H0(FI |A), Xn+1|A ∈ H+(FI |A), I = {i1, . . . , i`} ⊂ {1, . . . , n}}.

Note that F̃(A) is random since it depends on the points X1, . . . , Xn. In the following
we use a deterministic version of it for fixed points x1, . . . , xn. The deterministic version
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is denoted by F(A). Therefore,

(3.13) . n

∫
Sd−1

· · ·
∫
Sd−1

∫
G(d,`)

∫
G(d,`)

( ∑
F∈F(A)

vol`([xn+1|A,F ])

)

×
( ∑
F
′∈F(B)

vol`([xn+1|B,F
′
])1Tn

)
ν`(dA)ν`(dB)Hd−1(dx1) · · ·Hd−1(dxn+1).

(3.14)

Next, the integration is extended over all possible index sets I, J and the order of
integration is changed. As a consequence, we obtain

(3.14) . n

∫
G(d,`)

∫
G(d,`)

∫
(Sd−1)n+1

(∑
I

1{FI |A ∈ F(A)} vol`([FI , xn+1]|A)
)

×
(∑

J

1{FJ |B ∈ F(B)} vol`([FJ , xn+1]|B)1Tn

)
×Hd−1(dx1) · · ·Hd−1(dxn+1)ν`(dA)ν`(dB).

Note that [FI , Xn+1]|A and [FJ , Xn+1]|B are contained in the associated caps C`(I, A) :=

H+(FI , A) ∩ Bd and C`(J,B). Moreover, we use the abbreviation

Cd(I, A) = (H+(FI |A) + A⊥) ∩ Bd.

We indicate with V`(I, A) = vol`(C`(I, A)) and vold(I, A) = vold(Cd(I, A)) the volumes
of these caps. Therefore, the variance is bounded by

Var[V`(Kn)] . n
∑
I

∑
J

∫
G(d,`)

∫
G(d,`)

∫
(Sd−1)d+1

1{FI |A ∈ F(A)}V`(I, A)1{FJ |B ∈ F(B)}

× V`(J,B)1TnHd−1(dx1) · · ·Hd−1(dxn+1) ν`(dA) ν`(dB),

where the summation extends over all `-tuples I and J . Of course, these tuples may
have a non-empty intersection. However, if the size of I ∩ J is fixed to be k, then the
corresponding terms in the sum are independent of the choice of i1, . . . , i` and j1, . . . , j`.
For any k ∈ {0, 1, . . . , `}, we indicate with F the convex hull of X1, . . . , X` and by G
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the convex hull of X`−k+1, . . . , X2`−k. As in [11], we obtain

VarV`(Kn) . n
∑̀
k=0

(
n

`

)(
`

k

)(
n− `
`− k

)∫
G(d,`)

∫
G(d,`)

∫
(Sd−1)n+1

1{FI |A ∈ F(A)}V`(I, A)

× 1{FJ |B ∈ F(B)}V`(J,B)1TnHd−1(dx1) · · ·Hd−1(dxn+1) ν`(dA) ν`(dB).

(3.15)

We indicate with Σk the k-th term in the previous sum. By symmetry, we can restrict
the summation to those tuples where vold(I, A) ≥ vold(J,B). In addition to that, we
multiply the integrand by 1{Cd(I, A) ∩ Cd(J,B) 6= ∅}. This is indeed possible because
the caps have at least the point Xn+1 in common. It follows immediately that

Σk . n2`−k+1

∫
G(d,`)

∫
G(d,`)

∫
(Sd−1)n+1

1{F |A ∈ F(A)}V`(I, A)1{Cd(I, A) ∩ Cd(J,B) 6= ∅}

× 1{G|B ∈ F(B)}V`(J,B)1{vold(I, A) ≥ vold(J,B)}

× 1TnHd−1(dx1) · · ·Hd−1(dxn+1) ν`(dA) ν`(dB).

Next, we integrate with respect to x2`−k+1, . . . , xn, xn+1. Due to the condition F |A ∈
F(A), the points X2`−k+1, . . . , Xn are contained in H0(F,A) and Xn+1 is in H+(F,A).
Therefore,

Σk . n2`−k+1

∫
G(d,`)

∫
G(d,`)

∫
(Sd−1)2`−k

(1−Hd−1(Cd(I, A) ∩ Sd−1))n−2`+k

×Hd−1(Cd(I, A) ∩ Sd−1)V`(I, A)1{Cd(I, A) ∩ Cd(J,B) 6= ∅ }V`(J,B)

× 1{vold(I, A) ≥ vold(J,B)}1TnHd−1(dx1) · · ·Hd−1(dx2`−k) ν`(dA) ν`(dB).

The assumption vold(I, A) ≥ vold(J,B) implies that the height of the cap Cd(I, A) is
at least the height of Cd(J,B). Due to Cd(I, A) ∩ Cd(J,B) 6= ∅, we find a constant β
such that Cd(J,B) is contained in β Cd(I, A). More precisely, β Cd(I, A) is an enlarged
homothetic copy of Cd(I, A), where the center of homothety z ∈ Sd−1 coincides with
the center of the cap Cd(I, A). It follows from the homogeneity that the Hausdorff
measure (restricted to β Sd−1) of β Cd(I, A) is up to a constant Hd−1(Cd(I, A) ∩ Sd−1).
Therefore,∫

(Sd−1)`−k
1{Cd(I, A) ∩ Cd(J,B) 6= ∅}1{vold(I, A) ≥ vold(J,B)}

× V`(J,B)Hd−1(dx`+1) · · ·Hd−1(dx2`−k) . Hd−1(Cd(I, A) ∩ Sd−1)`−kV`(I, A).
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As in [11], the conditions Cd(I, A) ∩ Cd(J,B) 6= ∅ and vold(I, A) ≥ vold(J,B) are only
satisfied if the angle between z and the subspace B is not larger than twice the central
angle δ of the cap Cd(I, A). Moreover, δ is bounded by

δ . vold(I, A)1/(d+1). (3.16)

Thus,

Σk . n2`−k+1

∫
G(d,`)

∫
G(d,`)

∫
(Sd−1)`

(1−Hd−1(Cd(I, A) ∩ Sd−1))n−2`+k

×Hd−1(Cd(I, A) ∩ Sd−1)`−k+1V`(I, A)2 1{^(z, B) . vold(I, A)1/(d+1)}

× 1TnHd−1(dx1) · · ·Hd−1(dx`) ν`(dA) ν`(dB).

Due to Lemma 3.4, the condition Tn can be replaced by the condition

vold(I, A) ≤ c1 (log n/n)(d+1)/(d−1)

for some constant c1 > 0. In the following, the economic cap covering theorem is used,
recall Proposition 3.6. Let h be a positive integer such that 2−h ≤ log n/n. Note that
the smallest possible value of h is h0 = −blog2(log n/n)c. According to the economic
cap covering theorem, we find for each h a collection of caps {C1, . . . , Cm(h)} which
cover the wet part of Bd|A with parameter (2−h)(`+1)/(d−1). This collection of caps is
denoted by Mh. Each cap Ci can be viewed as a projection of a d-dimensional cap
Ci(A) from Bd to A. Now we consider an arbitrary tuple (X1, . . . , X`) which has a
corresponding cap Cd(I, A) having volume at most c1 (log n/n)(d+1)/(d−1). We relate to
(X1, . . . , X`) the maximal h such that C`(I, A) ⊂ Ci for some Ci ∈Mh. This is indeed
possible since at least 2−h0 is roughly log n/n and the volume of the caps inMh tends
to zero as h→∞. As a consequence, we obtain

V`(I, A) ≤ vol`(Ci) . 2−h(`+1)/(d−1)

and
vold(I, A) ≤ vold(Ci(A)) . 2−h(d+1)/(d−1).

According to Lemma 3.4, Hd−1(Cd(I, A)∩ Sd−1) ≤ Hd−1(Ci(A)∩ Sd−1) . 2−h. Due
to the maximality of h, it holds vold(I, A) ≥ 2−(h+1)(d+1)/(d−1). In addition to that,
it follows from Lemma 3.4 that Hd−1(Cd(I, A) ∩ Sd−1) ≥ c22−(h+1), for some constant
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c2 > 0. Therefore, we obtain

(1−Hd−1(Cd(I, A) ∩ Sd−1))n−2`+kHd−1(Cd(I, A) ∩ Sd−1)`−k+1V`(I, A)2

. (1− c22−(h+1))n−2`+k2−h(`−k+1)2−2h(`+1)/(d−1).

Then, we integrate each (X1, . . . , X`) on (Ci(A))` and we use the fact 1− x ≤ exp(−x)

to obtain

exp(−c2(n− 2`+ k)2−h−1)2−h(`−k+1)2−2h(`+1)/(d−1)Hd−1(Ci(A) ∩ Sd−1)`

. exp(−c2(n− 2`+ k)2−h−1)2−h(`−k+1)2−2h(`+1)/(d−1)2−h`.

Since the volume of the wet part of B`2 with parameter 2−h(`+1)/(d−1) is Θ
(
2−2h/(d−1)

)
(note that h→∞, as n→∞), we obtain

|Mh| .
2−2h/(d−1)

2−h(`+1)/(d−1)
= 2h(`−1)/(d−1). (3.17)

Finally, this results in∫
G(d,`)

∫
(Sd−1)`

(1−Hd−1(Cd(I, A) ∩ Sd−1))n−2`+kHd−1(Cd(I, A) ∩ Sd−1)`−k+1V`(I, A)2

× 1{^(z, B) . vold(I, A)1/(d+1)}1TnHd−1(dx1) · · ·Hd−1(dx`)ν`(dB)

.
∞∑

h=h0

exp(−c2(n− 2`+ k)2−h−1)2−h(`−k+1)2−2h(`+1)/(d−1)2−h`

× |Mh|ν`({^(z,B) . vold(I, A)1/(d+1)})

.
∞∑

h=h0

exp(−c2(n− 2`+ k)2−h−1)2−h[(2`−k+1)+(d+3)/(d−1)].

Note that we used Lemma 3.7 and Equation (3.17) in the last step. As in [11], we
divide the previous sum into two parts in order to see the magnitude of the variance.
The integer h1 is defined by

2−h1 ≤ 1

n
< 2−h1+1.
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On the one hand, we have

∞∑
h=h1

exp(−c2(n− 2`+ k)2−h−1)2−h[(2`−k+1)+(d+3)/(d−1)] ≤
∞∑

h=h1

2−h[(2`−k+1)+(d+3)/(d−1)]

. n−(2`−k+1)n−(d+3)/(d−1).

On the other hand, let i = h1−h. Then, we can perform the following estimate, namely,

h1−1∑
h=h0

exp(−c2(n− 2`+ k)2−h−1)2−h[(2`−k+1)+(d+3)/(d−1)]

≤
h1−h0∑
i=1

exp(−c2(n− 2`+ k)2−h1+i−1)2−(h1−i)[(2`−k+1)+(d+3)/(d−1)]

.
h1−h0∑
i=1

exp(−c2(n− 2`+ k)2−h1+i−1)n−(2`−k+1)n−(d+3)/(d−1)2i[(2`−k+1)+(d+3)/(d−1)]

. n−(2`−k+1)n−(d+3)/(d−1)

∞∑
i=1

exp(−c22i)2i[(2`−k+1)+(d+3)/(d−1)]

. n−(2`−k+1)n−(d+3)/(d−1)

∞∑
j=1

exp(−c2j)j
5d

. n−(2`−k+1)n−(d+3)/(d−1).

As a consequence, it holds

Σk . n2`−k+1

∫
G(d,`)

n−(2`−k+1)n−(d+3)/(d−1)ν`(dA) . n−(d+3)/(d−1).

Finally, the upper bound is proven by summing up all Σk, k = 0, . . . , `, in Equa-
tion (3.15).

In order to extend the proof to the case of a convex body K ∈ K2
+, we follow the

ideas presented in [11, Section 6]. By the compactness of ∂K there exist γ > 0 and
Γ > 0, the global upper and the global lower bound on the principal curvatures of ∂K,
respectively. In our setting, all projected images of ∂K also have a boundary with
the same properties as ∂K, see for example [74, p. 126 Remark 5]. Without loss of
generality we can choose γ and Γ to be also a bound on the principal curvatures of the
boundaries of all `-dimensional projections of K. Hence, one can locally approximate
∂K with affine images of balls and the volume of an `-dimensional cap with small height
h > 0 has order h

`+1
2 . Note that CK(x, h) is the intersection of K with the hyperplane
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H̃(x, h) = {y ∈ Rd : 〈x− y, ux〉 = h}. As in [11, Equation (27)], it holds that

(
(x− hux) + γ1

√
hBd

)
∩ H̃(x, h) ⊂ K ∩ H̃(x, h)

⊂
(
(x− hux) + γ2

√
hBd

)
∩ H̃(x, h),

where the constants γ1, γ2 depend on γ and Γ. The last equation ensures that Equa-
tion (3.16) still holds.

In the fashion of [11, Section 7], we derive a strong law of large numbers from the
upper variance bound together with the following result of [67].

Proposition 3.15. [67, Theorem 1] Let K ∈ K2
+ and choose d random points on ∂K

independently and according to the probability distribution Hd−1. Then, there exist
positive constants cK,` depending on ` and the principal curvatures of K such that

lim
n→∞

(
V`(K)− EV`(Kn)

)
· n

2
d−1 = cK,`, ` ∈ {1, . . . , d}. (3.18)

For the sake of brevity, the explicit expression of cK,` is omitted here. It can be
found in [67, Equation (2)].

Proof of Theorem 3.11. Let ` ∈ {1, . . . , d}. Chebyshev’s inequality and the variance
upper bound yield

P
(∣∣V`(K)− V`(Kn)− E

[
V`(K)− V`(Kn)

]∣∣ · n 2
d−1 ≥ ε

)
≤ ε−2n

4
d−1 Var[V`(Kn)] . n−1.

Select now the subsequence of indices nk = k2. Then, it follows

∞∑
k=1

P
(∣∣V`(K)− V`(Knk)− E

[
V`(K)− V`(Knk)

]∣∣ · n 2
d−1

k ≥ ε
)
.

∞∑
k=1

k−2 <∞.

Applying the Borel-Cantelli Lemma together with Equation (3.18), we obtain that

lim
k→∞

(
V`(K)− V`(Knk)

)
· n

2
d−1

k = cK,`

holds with probability 1. Note that V`(K)−V`(Kn) is a decreasing and positive sequence.
Therefore, this gives

(
V`(K)− V`(Knk)

)
· n

2
d−1

k−1 ≤
(
V`(K)− V`(Kn)

)
· n

2
d−1 ≤

(
V`(K)− V`(Knk−1

)
)
· n

2
d−1

k ,
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whenever nk−1 ≤ n ≤ nk. Taking the limit as k → ∞, nk−1/nk → 1, which allows us
to conclude that the desired limit is reached by the whole sequence with probability
1.

3.3.5 Central limit theorem

In this last section, we prove the central limit theorem. In contrast with the model of
uniform distribution inside the body, where floating bodies were used, here we work
with surface bodies as it was already done in [82] for the case of the volume. In addition
to that, we make use of the normal approximation bound of Proposition 3.8. Since
the arguments are naturally easier to follow for K = Bd, the details are given in this
particular setting and the arguments for the general case are stated at the end of the
proof.

Proof of Theorem 3.12. First, we prove the central limit theorem for K = Bd. For
this reason, let us introduce the two events B1 and B2. The event that the random
polytope [X2, . . . , Xn] contains the surface body K(s ≥ τn) is denoted by B1. Due to
the definition of B1, it follows by Lemma 3.2 that

P(Bc
1) ≤ c1n

−α,

where c1 ∈ (0,∞) is independent of d. We denote by B2 the event that the ran-
dom polytope

⋂
W∈{Y,Y ′,Z,Z′}[W4, . . . ,Wn] contains the surface body K(s ≥ τn), where

Y, Y ′, Z, Z ′ are recombinations of the random vector X = (X1, . . . , Xn). By taking the
union bound, we obtain

P(Bc
2) ≤ c2n

−α,

where c2 ∈ (0,∞) is again independent of d. Next, for any ` ∈ {1, . . . , d}, we apply the
bound in Proposition 3.8 to the random variables

W = f(X1, . . . , Xn) := V`([X1, . . . , Xn])− EV`(Kn).

Note that DiW = DiV`(Kn) and Di1,i2W = Di1,i2V`(Kn) for i, i1, i2 ∈ {1, . . . , n}.
Conditioned on the event B1, we obtain from (2.2),

D1V`(Kn) =

(
d

`

)
κd

κ`κd−`

∫
G(d,`)

vol`
(
(Kn|L)\([X2, . . . , Xn]|L)

)
ν`(dL). (3.19)

We now define a full-dimensional cap C in such a way thatKn\[X2, . . . , Xn] is contained
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in C.
We define the visibility region (with respect to the function s) of a point z ∈ ∂K

with parameter t > 0 as

Visz(t) := {x ∈ K(s ≤ t) : [x, z] ∩K(s ≥ t) = ∅},

where again [x, z] denotes the closed line segment which connects x and z.
Consider now the visibility region VisX1(τn) of X1. By definition of the surface body

and by Lemma 3.4, the diameter of this visibility region is at most c3τ
1/(d−1)
n , where

c3 > 0. We now indicate with D(X1, c3τ
1/(d−1)
n ) the points on ∂K with distance at most

c3τ
1/(d−1)
n from X1. Then, C := conv

(
D(X1, c3τ

1/(d−1)
n )

)
is a spherical cap and it follows

from Lemma 3.5 that C has volume of order at most τ (d+1)/(d−1)
n . We call α the central

angle of C. For any subspace L ∈ G(d, `), it holds that (Kn|L) \ ([X2, . . . , Xn]|L) ⊆
(C|L). We obtain vol`(C|L) . τ

(`+1)/(d−1)
n . Indeed, the height of C|L has the same

order as the height of C, namely τ
2/(d−1)
n , while the order of its base changes from

((τn)1/(d−1))d−1 to ((τn)1/(d−1))`−1, since the dimension of L is `. By construction of C,
it now follows that if ^(X1, L), the angle between X1 and L, is too wide compared to
α, then C|L ⊆ Kn|L, for sufficiently large n. Whenever this occurs, it also holds in
particular that (Kn \ [X2, . . . , Xn])|L ⊆ Kn|L, i.e. Kn|L = [X2, . . . , Xn]|L. In fact, one
can check that the integrand in (3.19) can only be non-zero if ^(X1, L) . α. Therefore,
we can restrict the integration to the set {L ∈ G(d, `) : ^(X1, L) . α}. Moreover, it
holds that α . vold(C)1/(d+1), see e.g. [11, Equation (21)]. According to Lemma 3.7,
this gives

ν`
({
L ∈ G(d, `) : ^(X1, L) . vold(C)

1
d+1

})
. τ

d−`
d−1
n .

Putting everything together, we see that

D1V`(Kn) . τ
`+1
d−1
n · τ

d−`
d−1
n .

( log n

n

) d+1
d−1
. (3.20)

On the complement Bc
1 of B1 we use the trivial estimate D1V`(Kn) ≤ V`(K). Since

P(Bc
1) . n−α, we obtain

E[(D1V`(Kn))p] = E[(D1V`(Kn))p 1B1 ] + E[(D1V`(Kn))p 1Bc1 ]

.
( log n

n

)p d+1
d−1
,

for all p ≥ 1. As a consequence, we can bound the terms in the normal approximation
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bound which involve γ3 and γ4. Thus,

√
n

Var[V`(Kn)]

√
γ3 .

√
n

n−
d+3
d−1

( log n

n

)2 d+1
d−1

= n−
1
2 (log n)2+ 4

d−1 ,

n

(Var[V`(Kn)])
3
2

γ4 .
n

n−
3
2
d+3
d−1

( log n

n

)3 d+1
d−1

= n−
1
2 (log n)3+ 6

d−1 .

By using the Cauchy-Schwarz inequality, we can estimate γ5 as well. Namely,

γ5 ≤
√
Var[V`(Kn)] sup

A⊆{1,...,n}

√
E
[
|D1f(XA)|

]6
. n−

1
2
d+3
d−1

( log n

n

)3 d+1
d−1
.

Thus, we obtain

n

(Var[V`(Kn)])2
γ5 .

n

n−2 d+3
d−1

n−
1
2
d+3
d−1

( log n

n

)3 d+1
d−1

= n−
1
2 (log n)3+ 6

d−1 .

In the next step, we consider the terms involving the second difference operator. On
the event B2 it may be concluded from (3.20) that Dif(V )2 . (log n/n)2 d+1

d−1 for all
i ∈ {1, 2, 3} and V ∈ {Z,Z ′}. Moreover, we note that on B2 the following inclusions
hold

{D1,2f(Y ) 6= 0} ⊆ {VisY1(τn) ∩ VisY2(τn) 6= ∅} ⊆
{
Y2 ∈

⋃
x∈VisY1 (τn)

Visx(τn)

}
.

The same applies to D1,3f(Y ′). Thus,

E
[
1{D1,2f(Y ) 6= 0}1B2

]
≤ sup

z∈∂K
P

(
Y2 ∈

⋃
x∈Visz(τn)

Visx(τn)

)
.

We note that the diameter of the previous union is at most c4τ
1/(d−1)
n , where c4 > 0.

As before, we define the spherical cap C ′ := conv(D(z, c4τ
1/(d−1)
n )). It follows from

Lemma 3.5 that C ′ has volume of order at most τ (d+1)/(d−1)
n . We obtain

sup
z∈∂K

P

(
Y2 ∈

⋃
x∈Visz(τn)

Visx(τn)

)
= sup

z∈∂K
Hd−1

(( ⋃
x∈Visz(τn)

Visx(τn)

)
∩ ∂K

)
≤ sup

z∈∂K
Hd−1

(
C ′ ∩ ∂K

)
. τn,

where for the last inequality we have used Lemma 3.4. On the event Bc
2 we use the
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trivial estimate V`(K) for all difference operators and estimate all indicators by one.
Since P(Bc

2) . n−α, we obtain

γ2 .
( log n

n

)1+4 d+1
d−1
.

Analogously, we can bound γ1. Indeed, suppose that Y1 = Y ′1 (by independence, Y1 6= Y ′1

gives a smaller order), then

{D1,2f(Y ) 6= 0} ∩ {D1,3f(Y ′) 6= 0} ⊆
{
{Y2, Y

′
3} ⊆

⋃
x∈VisY1 (τn)

Visx(τn)

}

and we obtain

E
[
1{D1,2f(Y ) 6= 0}1{D1,3f(Y ′) 6= 0}

]
.
( log n

n

)2

.

Thus,

γ1 .
( log n

n

)2+4 d+1
d−1
.

Finally,

√
n

Var[V`(Kn)]

√
n2γ1 .

√
n

n−
d+3
d−1

√
n2
( log n

n

)2+4 d+1
d−1

= n−
1
2 (log n)3+ 4

d−1 ,

√
n

Var[V`(Kn)]

√
nγ2 .

√
n

n−
d+3
d−1

√
n
( log n

n

)1+4 d+1
d−1

= n−
1
2 (log n)

5
2

+ 4
d−1 .

Considering all the estimates together, we obtain by Proposition 3.8

dK
(
W`(Kn), N

)
. n−

1
2

(
(log n)3+ 4

d−1 + (log n)
5
2

+ 4
d−1

+ (log n)2+ 4
d−1 + (log n)3+ 6

d−1 + (log n)3+ 6
d−1

)
. n−

1
2 (log n)3+ 6

d−1 .

For the case of a generic K ∈ K2
+ we argue as at the end of the proof of the upper

bound of Theorem 3.10. Because of the global bounds on the principal curvatures
and the local approximation of ∂K with affine images of balls, the construction of C
and the relations regarding its volume, its central angle and the subspaces L which
ensure C|L ⊆ Kn|L are not afflicted. In particular, the asymptotic bounds vol`(C|L) .

τ
(`+1)/(d−1)
n , α . vold(C)1/(d+1) . τ

1/(d−1)
n and ^(X1, L) . α stated above still hold,

with the difference that the implicit constants depend on γ and Γ, the bounds on the
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principal curvatures of ∂K. The proof can be completed like in the case of the ball.
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Chapter 4

Monotonicity of the Facets Number
for Beta and Beta-prime Polytopes

In this chapter we study the expectation of the number of facets of convex hulls of
independent random points distributed according to certain probability distributions.
In particular, we introduce the following four classes of probability measures:

- G is the class of centred Gaussian distributions on Rd with density proportional
to

x 7→ exp
(
−‖x‖

2

2σ2

)
, σ > 0,

- H is the class of heavy-tailed distributions on Rd with density proportional to

x 7→
(

1 +
‖x‖2

2σ2

)−β
, β > d/2, σ > 0,

also called beta-prime distributions.

- B is the class of beta-type distributions on the d-dimensional centred ball Bdσ of
radius σ with density proportional to

x 7→
(

1− ‖x‖
2

2σ2

)β
, β > −1, σ > 0,

also called beta distributions.

- U comprises the uniform distributions on the (d− 1)-dimensional centred spheres
Sd−1
σ with radius σ > 0.

We show the validity of following statement:
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Theorem 4.1. Let X1, . . . , Xn ∈ Rd, n > d, be independent and identically distributed
according to a probability measure belonging to one of the classes G, H, B or U. Let

Pn−1 := conv(X1, . . . , Xn−1) and Pn := conv(X1, . . . , Xn).

Then
E fd−1(Pn) > E fd−1(Pn−1).

It will turn out that the classes G, H, B and U contain precisely the absolutely
continuous rotationally symmetric probability distributions on Rd, whose densities
satisfy the natural scaling property (4.10) below, for which monotonicity of the mean
facet number of the associated random convex hulls can be shown by means of arguments
based on a Blaschke-Petkantschin formula, see the discussion at the end of Section 4.3
for further details. In fact, our result shows that even the stronger strict monotonicity
holds.

Remark 4. It is important to note that the result is not trivial. Indeed, the fact that
since the addition of a further random point can reduce the facet number implies
that strict monotonicity of n 7→ fd−1(Pn) cannot hold for every realization, whenever
n > d+ 1. For this reason, the expectation in Theorem 4.1 is essential.

4.1 Background results from integral geometry

We denote by A(d, q) the Grassmannian of all q-dimensional affine subspaces of Rd,
where q ∈ {0, 1, . . . , d}. It is a locally compact, homogeneous space with respect to the
group of Euclidean motions in Rd. The corresponding locally finite, motion invariant
measure is denoted by µq, which is normalized in such a way that

µq({E ∈ A(d, q) : E ∩ Bd2 6= ∅}) = κd−q,

see [76]. For a subspace E ∈ A(d, q), we let λE be the Lebesgue measure on E.

4.1.1 Blaschke-Petkantschin formulas

Our proof of Theorem 4.1 heavily relies on Blaschke-Petkantschin formulae from integral
geometry. First, we rephrase a special case of the affine Blaschke-Petkantschin formula
in Rd, which appears as Theorem 7.2.7 in [76].
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Proposition 4.2. Let f : (Rd)d → R be a non-negative measurable function. Then,∫
(Rd)d

f(x1, . . . , xd) d(x1, . . . , xd)

=
ωd
2

(d− 1)!

∫
A(d,d−1)

∫
Hd

f(x1, . . . , xd)∆d−1(x1, . . . , xd)λ
d
H(d(x1, . . . , xd))µd−1(dH).

Besides the affine Blaschke-Petkantschin formula in Rd we need its spherical coun-
terpart, which is a special case of Theorem 1 in [89] and can also be found in [59,
Theorem 4].

Proposition 4.3. Let f : (Sd−1)d → R be a non-negative measurable function. Then,∫
(Sd−1)d

f(x1, . . . , xd)Hd(d−1)

(Sd−1)d
(d(x1, . . . , xd)) = (d− 1)!

∫
A(d,d−1)

∫
(H∩Sd−1)d

f(x1, . . . , xd)

×∆d−1(x1, . . . , xd)(1− h2)−
d
2 Hd(d−2)

(H∩Sd−1)d
(d(x1, . . . , xd))µd−1(dH),

where h denotes the distance from H to the origin.

4.1.2 A slice integration formula

Finally, we will make use of the following special case of the spherical slice integration
formula taken from Theorem A.4 in [9].

Proposition 4.4. Let f : Sd−1 → R be a non-negative measurable function. Then,∫
Sd−1

f(x)Hd−1
Sd−1(dx) =

∫ 1

−1

(1− t2)
d−3
2

∫
Sd−2

f(t,
√

1− t2 y)Hd−2
Sd−2(dy) dt.

4.2 Preparatory results

4.2.1 An estimate for integrals of concave functions

The proof of the main result will make use of the next lemma, as stated in [19]. Since
no proof was given in the reference, we include it here.

Lemma 4.5. Let h : (0, 1)→ R be a non-negative measurable function such that

0 <

∫ 1

0

h(s) ds <∞. (4.1)
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Further, let g : [0, 1] → R be a linear function with negative slope and root s∗ ∈ (0, 1).
Moreover, let L : R→ R be positive and strictly concave on [0, 1]. Then,∫ 1

0

h(s)g(s)L(s)d−1 ds >

∫ 1

0

h(s)g(s)`(s)d−1 ds, (4.2)

where `(s) = L(s∗)
s∗

s.

Proof. We start by exploiting the positivity and strict concavity of L. For s ∈ [0, s∗),
it implies that

L(s) = L
( s
s∗
s∗
)
>

s

s∗
L(s∗), (4.3)

while for s ∈ (s∗, 1], it gives
L(s) <

s

s∗
L(s∗). (4.4)

Since the derivative of g is negative, g is positive on [0, s∗) and negative on (s∗, 1].
Splitting the integral on the left hand side of (4.2) at the point s∗ and using (4.3) and
(4.4), respectively, yields∫ 1

0

h(s)g(s)L(s)d−1 ds

=

∫ s∗

0

h(s)g(s)L(s)d−1 ds+

∫ 1

s∗
h(s)g(s)L(s)d−1 ds

>

∫ s∗

0

h(s)g(s)
( s
s∗
L(s∗)

)d−1

ds+

∫ 1

s∗
h(s)g(s)

( s
s∗
L(s∗)

)d−1

ds

=

∫ 1

0

h(s)g(s)`(s)d−1 ds.

This completes the argument.

4.2.2 Computation of marginal densities

Recall the definitions of the distribution classes H, B and U. As it will be clear later
on, it suffices to consider the cases where the scale parameters σ, i.e. the radius of the
supporting ball - are equal to 1. For this reason, from now on we restrict to these cases
and denote the density of a distribution in H by

pH,β(x) = π−d/2
Γ(β)

Γ(β − d
2
)
(1 + ‖x‖2)−β , x ∈ Rd , β > d/2 , (4.5)
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that of a distribution in B by

pB,β(x) = π−d/2
Γ(d

2
+ β + 1)

Γ(β + 1)
(1− ‖x‖2)β , x ∈ Bd2 , β > −1 ,

and note that the uniform distribution on Sd−1 has density

pU(x) =
1

ωd
, x ∈ Sd−1 ,

with respect to the spherical Lebesgue measure. The next lemma provides formulas
for the densities of the one-dimensional marginals of these distributions and shows,
that the classes B and H are in some sense closed under one-dimensional projections.
Since all distributions we consider are rotationally symmetric, it is sufficient to consider
projections onto the first coordinate. We would like to emphasize that the proof of
Lemma 4.6 uses in an essential way the scaling property (4.10) below of the involved
densities.

Lemma 4.6. Let Π: Rd → R be the projection onto the first coordinate, namely
Π(x1, . . . , xd) = x1 for any (x1, . . . , xd) ∈ Rd.

(i) Let P ∈ H be a distribution with density pH,β for some β > d/2. Then, the image
measure of P under Π has density

fH,β(x) = π−1/2 Γ
(
β − d−1

2

)
Γ
(
β − d

2

) (1 + x2)
d−1
2
−β, x ∈ R.

(ii) Let P ∈ B be a distribution with density pB,β for some β > −1. Then, the image
measure of P under Π has density

fB,β(x) = π−1/2 Γ
(
β + 1 + d

2

)
Γ
(
β + d+1

2

) (1− x2)
d−1
2

+β, x ∈ [−1, 1].

(iii) Let P ∈ U be the uniform distribution on Sd−1. Then, the image measure of P
under Π has density

fU(x) = π−1/2 Γ
(
d
2

)
Γ
(
d−1

2

)(1− x2)
d−3
2 , x ∈ [−1, 1].

Proof. To prove (i) we put x = (x1, . . . , xd) ∈ Rd, y := (x2, . . . , xd) and also define
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cH,d,β := π−d/2 Γ(β)
Γ(β−d/2)

. Then,∫
Rd−1

cH,d,β
(
1 + ‖x‖2

)−β
d(x2, . . . , xd)

=

∫
Rd−1

cH,d,β(1 + x2
1)−β

(
1 +

‖y‖2

1 + x2
1

)−β
dy

= (1 + x2
1)−β

∫
Rd−1

cH,d,β
(
1 + ‖z‖2

)−β
(1 + x2

1)
d−1
2 dz

= (1 + x2
1)

d−1
2
−β cH,d,β
cH,d−1,β

∫
Rd−1

cH,d−1,β

(
1 + ‖z‖2

)−β
dz

=
cH,d,β
cH,d−1,β

(1 + x2
1)

d−1
2
−β,

where we used the substitution z = y/
√

1 + x2
1. Plugging in the constants yields the

desired result.
Next, we consider the distribution with density pB,β. For x = (x1, . . . , xd) ∈ Bd, we

put again y := (x2, . . . , xd) and abbreviate cB,d,β := π−d/2
Γ( d

2
+β+1)

Γ(β+1)
. Then, similarly as

above, we compute∫
Bd−1

cB,d,β
(
1− ‖x‖2

)β
d(x2, . . . , xd)

=

∫
Bd−1

cB,d,β(1− x2
1)β
(

1− ‖y‖
2

1− x2
1

)β
dy

= (1− x2
1)β
∫
Bd−1

cB,d,β
(
1− ‖z‖2

)β
(1− x2

1)
d−1
2 dz

= (1− x2
1)

d−1
2

+β cB,d,β
cB,d−1,β

∫
Bd−1

cB,d−1,β

(
1− ‖z‖2

)β
dz

=
cB,d,β
cB,d−1,β

(1− x2
1)

d−1
2

+β,

where we used the substitution z = y/
√

1− x2
1. Again, simplification of the constants

yields the desired result.
Finally, we consider the case of the uniform distribution on Sd−1. We denote by F

the distribution function of the image measure of P = ω−1
d H

d−1
Sd−1 under the orthogonal

projection map Π and let x1 ∈ [−1, 1]. Using the slice integration formula from
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Proposition 4.4, we obtain

F(x1) =
1

ωd
Hd−1

Sd−1

({
u ∈ Sd−1 : Π(u) ∈ [−1, x1]

})
=

1

ωd

∫
Sd−1

1{Π(u) ∈ [−1, x1]}Hd−1
Sd−1(du)

=
1

ωd

∫ x1

−1

(1− t2)
d−3
2

∫
Sd−2

Hd−2
Sd−2(dy) dt

=
ωd−1

ωd

∫ x1

−1

(1− t2)
d−3
2 dt.

Differentiation with respect to x1, together with the definitions of ωd and ωd−1, complete
the proof.

In what follows, we shall denote by FH,β, FB,β and FU the distribution functions
corresponding to the densities fH,β, fB,β and fU computed in Lemma 4.6, respectively.

Remark 5. The marginal densities of the Gaussian distributions G can also be computed
along the lines of the proof of Lemma 4.6. This yields one-dimensional Gaussian
marginals. Since random convex hulls of Gaussian points have already been treated in
[19], we decided to concentrate on the classes H, B and U.

4.3 Proof of the main result

Based on the results from the two previous sections we are now able to present the
proof of our main result.

Proof of Theorem 4.1. For the classes G, H, B and U it is sufficient to consider the
case that the scale parameter σ is equal to 1, since the mean facet number is invariant
under rescalings.

The case of the class G has already been treated in [19], so we refer to Theorem
5.3.1 there.

Next, we consider the heavy-tailed distribution on Rd with density pH,β(x) =

cH,d,β(1 + ‖x‖2)−β, where β > d/2 and cH,d,β = π−d/2 Γ(β)
Γ(β−d/2)

. Following the ideas
of [19], we start with the equality

E fd−1(Pn) = E
∑

1≤i1<...<id≤n

1{conv(Xi1 , . . . , Xid) is a facet of Pn}

=

(
n

d

)
P(conv(X1, . . . , Xd) is a facet of Pn),

(4.6)
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which holds due to the fact that the random points X1, . . . , Xn are independent and
identically distributed. Let us denote by H ∈ A(d, d − 1) the affine hull of the (d −
1)-dimensional simplex Pd spanned by X1, . . . , Xd. In the case that Pd is a facet
of Pn, all the remaining points Xd+1, . . . , Xn have to lie in one of the (open) half-
spaces determined by H. If we denote by ΠH the orthogonal projection onto H⊥, the
orthogonal complement of H, we observe that Pd is a facet of Pn if and only if the
point ΠH(Pd) is not contained in the interior of the interval ΠH(Pn) on H⊥. Therefore,
using Lemma 4.6, the affine Blaschke-Petkantschin formula from Proposition 4.2 and
the abbreviation F ∗ = FH,β(ΠH(Pd)), we get for the probability that Pd is a facet of
Pn,

P(conv(X1, . . . , Xd) is a facet of Pn)

=

∫
(Rd)d

(
(1− F ∗)n−d + (F ∗)n−d

) d∏
i=1

cH,d,β(1 + ‖xi‖2)−β d(x1, . . . , xd)

= c

∫
A(d,d−1)

∫
Hd

(
(1− F ∗)n−d + (F ∗)n−d

)
∆d−1(x1, . . . , xd)

d∏
i=1

cH,d,β(1 + ‖xi‖2)−β

× λdH(d(x1, . . . , xd))µd−1(dH).

Next, we use the theorem of Pythagoras to decompose, for each i ∈ {1, . . . , d}, the
norm ‖xi‖. Namely, writing ‖ · ‖H for the Euclidean norm in H ∈ A(d, d− 1) and h for
the distance from H to the origin in Rd, we have that

‖xi‖2 = ‖xi‖2
H + h2.

Therefore and as already used in the proof of Lemma 4.6, the last term of the integrand
can be rewritten as

(1 + ‖xi‖2)−β = (1 + h2 + ‖xi‖2
H)−β = (1 + h2)−β

(
1 +
‖xi‖2

H

1 + h2

)−β
. (4.7)

Moreover, since each hyperplane H = H(u, h) is uniquely determined by its unit normal
vector u ∈ Sd−1 and its distance h ∈ [0,∞) to the origin, the integration over A(d, d−1)

can be replaced by a twofold integral over Sd−1 and [0,∞). Using the substitutions
yi = xi/

√
1 + h2 with λH(dxi) = (1 + h2)(d−1)/2λH(dyi), the rotational invariance of

the underlying probability measure, and writing F (h) for FH,β(h) as well as f(h) for
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fH,β(h), gives in view of Lemma 4.6 that

P(conv(X1, . . . , Xd) is a facet of Pn)

= c

∫
Sd−1

∫ ∞
0

∫
Hd

(
(1− F (h))n−d + F (h)n−d

)
∆d−1(x1, . . . , xd)

× (1 + h2)−dβ
d∏
i=1

cH,d,β

(
1 +
‖xi‖2

H

1 + h2

)−β
λdH(d(x1, . . . , xd)) dhHd−1

Sd−1(du)

= c

∫
Sd−1

∫ ∞
0

(
(1− F (h))n−d + F (h)n−d

)
(1 + h2)−d(β−

d−1
2 )+ d−1

2 dhHd−1
Sd−1(du)

×
∫
Hd

∆d−1(y1, . . . , yd)
d∏
i=1

cH,d−1,β

(
1 + ‖yi‖2

H

)−β
λdH(d(y1, . . . , yd))

= c

∫ ∞
0

(
(1− F (h))n−d + F (h)n−d

)
(1 + h2)−d(β−

d−1
2 )+ d−1

2 dh

= c

∫ ∞
−∞

(1− F (h))n−df(h)d(1 + h2)
d−1
2 dh,

where we also used the fact that the integral over Hd is a finite constant given by
Equation (72) in [59] and which only depends on the space dimension d and on β.

Write now s = F (h) and L(s) = f (F−1(s))
√

1 + (F−1(s))2 to obtain

P(conv(X1, . . . , Xd) is a facet of Pn) = c

∫ 1

0

(1− s)n−dL(s)d−1 ds.

Thus, combination of the above computation with (4.6) yields the representation

E fd−1(Pn)− E fd−1(Pn−1)

= c

∫ 1

0

[(n
d

)
(1− s)−

(
n− 1

d

)]
(1− s)n−d−1L(s)d−1 ds.

(4.8)

In order to apply Lemma 4.5, we have to verify that L(s) is strictly concave on
(0, 1). We prove this by showing that the second derivative of L(s) is negative. So,
let cH,1,β := π−1/2 Γ(β)

Γ(β−1/2)
and recall that f(x) = cH,1,β(1 + x2)

d−1
2
−β from Lemma 4.6.

Furthermore, from the definition of F it follows that

(
F−1(s)

)′
=

1

f (F−1(s))
=

1

cH,1,β
(
1 + (F−1(s))2) d−1

2
−β
. (4.9)
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We recall that

L(s) = f
(
F−1(s)

)√
1 + (F−1(s))2 = cH,1,β

(
1 + (F−1(s))2

) d
2
−β
.

Hence, using (4.9), the first derivative of L(s) is

L′(s) = cH,1,β

(d
2
− β

)(
1 + (F−1(s))2

) d−2
2
−β

2F−1(s)
(
F−1(s)

)′
= 2
(d

2
− β

)(
1 + (F−1(s))2

)− 1
2F−1(s)

and, thus, for the second derivative we find that

L′′(s) = 2

(
d

2
− β

)[(
1 + (F−1(s))2

)− 1
2
(
F−1(s)

)′
−1

2

(
1 + (F−1(s))2

)− 3
2 2
(
F−1(s)

)2 (
F−1(s)

)′]
= 2

(
d

2
− β

)(
F−1(s)

)′ [(
1 + (F−1(s))2

)− 1
2 −

(
1 + (F−1(s))2

)− 3
2
(
F−1(s)

)2
]

=
2

cH,1,β

(
d

2
− β

)(
1 + (F−1(s))2

)β−1− d
2
[
1 + (F−1(s))2 − (F−1(s))2

]
= − 2

cH,1,β

(
β − d

2

)(
1 + (F−1(s))2

)β−1− d
2

< 0,

where the last inequality follows from the fact that β > d/2. As a consequence, we can
apply Lemma 4.5 to deduce that

E fd−1(Pn)− E fd−1(Pn−1)

= c

∫ 1

0

[(
n

d

)
(1− s)−

(
n− 1

d

)]
(1− s)n−d−1L(s)d−1 ds

>

(
L(d/n)

d/n

)d−1(
n

d

)∫ 1

0

(1− s)n−d−1sd−1
(

(1− s)− n− d
n

)
ds

=

(
L(d/n)

d/n

)d−1(
n

d

)(
B(d, n− d+ 1)− n− d

n
B(d, n− d)

)
= 0,

where we used the well-known relation B(d, n − d + 1) = n−d
n

B(d, n − d) for the beta
function.
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As the next case we consider the class B of beta-type distribution on the unit ball
Bd2 with density fB,β for some β > −1. In this case the proof follows almost line by
line the proof for H, up to some minor modifications. In particular, (4.8) stays the
same except that now L(s) = f (F−1(s))

√
1− (F−1(s))2, where F (h) = FB,β(h) and

f(h) = fB,β(h). Therefore, it follows that

L′′(s) = − 2

cB,1,β

(
β +

d

2

)(
1− (F−1(s))2

)−β−1− d
2 ,

where the constant cB,1,β is cB,1,β := π−1/2Γ(β + 3
2
)Γ(β + 1)−1. Since F−1(s) ∈ (−1, 1),

we obtain L′′(s) < 0 and can conclude as in the proof for the class H presented above.
Finally, we consider the case of the uniform distribution on Sd−1. Here we get by

applying the spherical Blaschke-Petkantschin formula from Proposition 4.3 and using
the abbreviations F (h) = FU(h) and f(h) = fU(h),

P(conv(X1, . . . , Xd) is a facet of Pn)

= c

∫
A(d,d−1)

∫
(H∩Sd−1)d

(
(1− F (h))n−d + F (h)n−d

)
∆d−1(x1, . . . , xd)(1− h2)−

d
2

×Hd(d−2)

(H∩Sd−1)d
(d(x1, . . . , xd))µd−1(dH)

= c

∫
Sd−1

∫ 1

0

∫
(H∩Sd−1)d

(
(1− F (h))n−d + F (h)n−d

)
∆d−1(x1, . . . , xd)(1− h2)−

d
2

×Hd(d−2)

(H∩Sd−1)d
(d(x1, . . . , xd)) dhHd−1

Sd−1(du)

= c

∫
Sd−1

∫ 1

0

(
(1− F (h))n−d + F (h)n−d

)
(1− h2)d

d−2
2

+ d−1
2
− d

2 dhHd−1
Sd−1(du)

×
∫

(Sd−2)d
∆d−1(y1, . . . , yd)Hd(d−2)

(Sd−2)d
(d(y1, . . . , yd)),

where the substitution xi = yi
√

1− h2 with Hd−2
H∩Sd−1(dxi) = (1 − h2)

d−2
2 Hd−2

H∩Sd−1(dyi)

was used. In particular, this transforms the integration over (H ∩ Sd−1)d into a d-fold
integral over the unit sphere in H, which in turn has been identified with Sd−2 due
to rotational invariance. Since the integral over (Sd−2)d is a known positive constant
only depending on d (the precise value can be deduced from [76, Theorem 8.2.3], for
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example), we get by rotational invariance of the underlying distribution that

P(conv(X1, . . . , Xd) is a facet of Pn)

= c

∫ 1

0

(
(1− F (h))n−d + F (h)n−d

)
(1− h2)d

d−3
2

+ d−1
2 dh

= c

∫ 1

−1

(1− F (h))n−df(h)d(1− h2)
d−1
2 dh.

As a consequence, also for the uniform distribution on Sd−1 we arrive at an expression
of the form (4.8), this time with L(s) = f(F−1(s))

√
1− (F−1(s))2. From this point

on, the proof can be completed as in the case of the distribution class H or B. This
completes the argument.

Remark 6. Let p : Rd → [0,∞) denote a probability density. By a careful inspection
of the proof of Theorem 4.1 we see that the following properties of the density p have
been used there. First of all, we used that p is spherically symmetric, that is, p(x)

only depends on x = (x1, . . . , xd) ∈ Rd via ‖x‖. By abuse of notation, we shall write
p(r) : (0,∞)→ [0,∞) with r2 = x2

1 + . . .+ x2
d for the radial part of the density p.

This was essential to apply the Blaschke-Petkantschin formulas, which use the
invariant hyperplane measure µd−1. Moreover, given H ∈ A(d, d− 1) with distance h
to the origin, we have used that we can find ϕ(h), ψ(h) > 0 such that

p(
√
r2 + h2) = ϕ(h) p

( r

ψ(h)

)
(4.10)

for all r > 0. For example, for the density pH,β, β > d/2, the scaling property (4.10) is
satisfied with ϕ(h) = (1 + h2)−β and ψ(h) =

√
1 + h2, see (4.7). This scaling property

has been used when we separated what happens within H from the contribution that
arises from the distance ofH to the origin. However, all rotationally symmetric densities
with (almost everywhere differentiable) radial part satisfying the scaling property (4.10)
with an (almost everywhere differentiable) function ψ have been classified by Miles
[59] (see p. 376 there) and Ruben and Miles [73]. They precisely correspond to the
distributions in the classes G, H, B as well as to the exceptional distributions in U, for
which Theorem 4.1 is formulated.

On the other hand, this does not mean that G, H, B and U contain the only
rotationally symmetric distributions on Rd for which such computations are possible.
For example, the density with radial part pβ,j(r) = cβ,d,j r

2j/(1 + r2)β, r > 0, j ∈
{0, 1, 2, . . .} and β > j + d/2, which does not belong to the class H whenever j > 0,
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satisfies the following generalization of the scaling property (4.10):

pβ,j
(√

r2 + h2
)

=

j∑
k=0

ϕk(h)pβ,k

( r

ψ(h)

)
,

with
ϕk(h) =

(
j

k

)
h2(k−j)(1 + h2)−β, k ∈ {0, . . . , j}

and
ψ(h) =

√
1 + h2.

One can check that the 1-dimensional marginal density of pβ,j equals

fβ,j(x1) =

j∑
k=0

(
j

k

)
cβ,d,j
cβ,d−1,k

x
2(k−j)
1 (1 + x2

1)k+ d−1
2
−β,

and that from here on the argument based on the affine Blaschke-Petkantschin formula
can be applied term-by-term. Unfortunately, the computations in such and similar
situations become quite involved. Moreover, to classify all rotationally symmetric
densities on Rd for which these computations can be performed seems to be out of
reach.

One might also ask whether the method based on Blaschke-Petkantschin formulas
yields monotonicity of the mean facet number in such situations where the random
points X1, . . . , Xn are independent with distributions belonging to one of the classes
G, H, B and U, but not necessarily the same (a so-called mixed case). That is, some
of the Xi’s are Gaussian, some distributed according to a distribution in H etc. (but
within each class we choose every time the same scale parameter σ). Unfortunately,
this does not work and, in fact, the method breaks down. The reason is that each
distribution class requires its individual substitution, which is adapted to its respective
scaling property (4.10). The resulting different rescalings in the hyperplane H distort
the relationship between the (d− 1)-volume in H before and after the transformation,
cf. [73].

4.4 Random convex hulls on a half-sphere

In this section we consider an application of Theorem 4.1 to convex hulls generated by
random points on a half-sphere. We fix d ≥ 2, denote by Sd−1 the d-dimensional unit
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sphere in Rd+1 and define the half-sphere

Sd−1
+ = {y = (y1, . . . , yd+1) ∈ Sd−1 : yd+1 > 0} .

Furthermore, we let S be the class of probability distributions on Sd+ that have density

pS,α(y) = cS,α y
α
d+1, y = (y1, . . . , yd+1) ∈ Sd+, α > −1,

with respect to the spherical Lebesgue measure on Sd−1
+ . Here, cS,α > 0 is a suitable nor-

malization constant. In particular, choosing α = 0 shows that the uniform distribution
on Sd−1

+ belongs to the class S.
For fixed α > −1 and n ≥ d+ 1 we let X1, . . . , Xn be independent random points

that are distributed on Sd+ according to the density pS,α. By Sn we denote the spherical
convex hull of X1, . . . , Xn, that is, the smallest spherically convex set in Sd−1

+ containing
the pointsX1, . . . , Xn. For the special choice α = 0, this model has recently been studied
in [12]. In particular, it is shown in [12] that for this choice of α the mean number of
facets E fd−1(Sn) of the spherical random polytope Sn converges to a finite constant
only depending on d, as n→∞ (a similar result is in fact valid for all distributions in
S, see [2, 31, 38]). As a special case, our next result shows the somewhat surprising
fact that this limit is approached in a strictly monotone way.

Theorem 4.7. Let X1, . . . , Xn, n ≥ d + 1, be independent and identically distributed
according to a probability measure belonging to the class S. Then,

E fd−1(Sn) > E fd−1(Sn−1).

Proof. Let g : Rd → Sd−1
+ be the mapping defined as

g(x) =
( x1√

1 + ‖x‖2
, . . . ,

xd√
1 + ‖x‖2

,
1√

1 + ‖x‖2

)
,

with inverse given by
g−1(y) =

( y1

yd+1

, . . . ,
yd
yd+1

)
(this is known as the gnomonic projection). Let Dg be the Jacobian matrix of g and
put Jg(x) :=

√
det Dg(x)ᵀDg(x). Then, it holds that

Jg(x) = (1 + ‖x‖2)−
d+1
2 ,
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see [20, Proposition 4.2]. Moreover, for a measurable subset A ⊂ Rd and a measurable
function f : A→ R the area formula [40, Theorem 3.2.3] says that∫

A

f(x) dx =

∫
g(A)

f ◦ g−1(y)(Jg ◦ g−1(y))−1Hd
Sd−1
+

(dy).

Next, we notice that 1 + ‖g−1(y)‖2 = y−2
d+1 and apply the formula with f(x) = pH,β(x)

for some β > d/2:∫
A

cH,d,β (1 + ‖x‖2)−β dx =

∫
g(A)

cH,d,β y
2β−d−1
d+1 Hd

Sd−1
+

(dy),

where cH,d,β = π−d/2Γ(β)/Γ(β − d
2
) is the normalization constant of the density pH,β

defined in (4.5). As a result, we see that the density pS,2β−d−1 on Sd+ is the push-forward
of the density pH,β on Rd under g. Note also that 2β − d− 1 > −1 since β > d/2 and
that the uniform measure on the half-sphere corresponds to the choice β = (d+ 1)/2.

The above discussion shows the following. Let Pn be the random convex hull in Rd

generated by n independent points with density pH,β. Then, the push-forward of Pn
has the same distribution as the spherical random polytope Sn with α = 2β − d − 1.
Moreover, the facets of Pn are in one-to-one correspondence with those of Sn. As a
consequence, the mean facet number of the spherical random polytope Sn is the same
as the mean facet number of the random convex hull Pn, i.e.

E fd−1(Sn) = E fd−1(Pn).

Thus, the monotonicity follows from Theorem 4.1.
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Chapter 5

Threshold Phenomena for the Volume
of Random Polytopes

Let N and n be natural numbers, N > n, and X1, X2, . . . , XN be independent and
identically distributed random points in Rn. As in the previous chapter, we consider
two different probability distribution models:

(a) The Beta model, with parameter β > −1: X1 has density proportional to

(1− ‖x‖2
2)β, x ∈ Bn2 .

We are interested in the random polytope given by

P β
N,n := conv(X1, . . . , XN).

(b) The Beta-prime model, with parameters β > n/2 and σ > 0: X1 has density
proportional to (

1 +
‖x‖2

2

σ2

)−β
, x ∈ Rn.

As before, we consider the random polytope

P̃ β,σ
N,n := conv(X1, . . . , XN).

In this chapter, we prove threshold results for the volumes and intrinsic volumes of P β
N,n

and the content of P̃ β,σ
N,n with respect to log-concave isotropic measures, as the space

dimension tends to infinity. In particular, it turns out that the polytope P β
N,n tends to

capture the whole volume of Bn2 only if the number of points N is superexponential in

69



n. We illustrate in Figure 5.1 some 2-dimensional simulations of beta polytopes. The
case β = 0 corresponds to the uniform distribution on the unit ball.

Figure 5.1: some examples of typical 2-dimensional beta polytopes P β
400,2 inside the

unit circle, according to different values of the parameter β. Note how the bigger is
beta, the less spread is the polytope. In red are highlighted the vertices, whose number
decreases while β increases.

Theorem 5.1 (Threshold for beta polytopes). Fix ε ∈ (0, 1) and let −1 < β = β(n)

and N = N(n) be sequences. Then,

lim
n→∞

E voln(P β
N,n)

voln(Bn2 )
=


0 if N ≤ exp

(
(1− ε)

(
β +

n+ 1

2

)
log n

)
,

1 if N ≥ exp
(

(1 + ε)
(
β +

n+ 1

2

)
log n

)
.

A special case of Theorem 5.1 is of particular interest. By its very definition
(see Section 5.1.1 below), the beta distribution for β = 0 coincides with the uniform
probability measure on the Euclidean ball Bn2 . The following is thus an immediate
corollary of Theorem 5.1.

Corollary 5.2. Fix ε ∈ (0, 1) and let N = N(n) be a sequence of positive integers.
Let X1, . . . , XN be independent random points uniformly distributed on Bn2 and set
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BN,n := conv(X1, . . . , XN). Then,

lim
n→∞

E voln(BN,n)

voln(Bn2 )
=


0 if N ≤ exp

(
(1− ε)n+ 1

2
log n

)
,

1 if N ≥ exp
(

(1 + ε)
n+ 1

2
log n

)
.

Moreover, since the uniform distribution on the unit sphere Sn−1 arises as the weak
limit of the beta distribution, as β → −1 (see for example the proof of Theorem 2.7 in
[45]), the result of Theorem 2.4 in [63] can be recovered by Theorem 5.1.

Corollary 5.3. Fix ε ∈ (0, 1) and let N = N(n) be a sequence of positive integers.
Let X1, . . . , XN be independent random points uniformly distributed on Sn−1 and set
SN,n := conv(X1, . . . , XN). Then,

lim
n→∞

E voln(SN,n)

voln(Bn2 )
=


0 if N ≤ exp

(
(1− ε)n− 1

2
log n

)
,

1 if N ≥ exp
(
(1 + ε)

n− 1

2
log n

)
.

Similar threshold statements hold also for the intrinsic volumes of P β
N,n. Lemma

4.2.6 in [75].
As pointed out in [51], the expected k-th intrinsic volume of P β

N,n is directly con-
nected to the expected k-dimensional volume of Pα

N,k for some different parameter α
depending on β, k and n. Because of this, Theorem 5.1 can be applied to establish
threshold results for the intrinsic volumes Vk(P β

N,n), k ∈ {1, . . . , n}, for different regimes
of k = k(n).

On the other hand, the case that k is a fixed integer is of independent interest,
since it amounts to studying the threshold behaviour of voln(P β

N,n) as β → ∞ while
the dimension n stays fixed. We prove the following.

Theorem 5.4 (Threshold for intrinsic volumes of beta polytopes). Fix ε ∈ (0, 1) and
k ∈ N, and let −1 < β = β(n) and N = N(n) be arbitrary sequences of real and natural
numbers, respectively. Then

lim
n→∞

EVk(P
β
N,n)

Vk(Bn2 )
=


1 if N ≥ exp

(
exp
(

(1 + ε) log
(
β +

n− k
2

)))
,

0 if N ≤ exp
(

exp
(

(1− ε) log
(
β +

n− k
2

)))
.

The proof of Theorem 5.4, as well as a general discussion on threshold phenomena
for the intrinsic volumes of P β

N,n is the content of Section 5.2.3.
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Next, we treat the case of the beta-prime distribution. Since the underlying measure
is not compactly supported, in the spirit of [64], we replace the role of the normalized
volume on the ball by an arbitrary isotropic log-concave probability measure µ on Rn,
see Subsection 2.3.3 for the definition.

Theorem 5.5 (Threshold for beta-prime polytopes). Fix ε ∈ (0, 1). Let µ = µn denote
a sequence of isotropic log-concave measures on Rn, let σ = σ(n) > 0 and β = β(n) be
sequences of real numbers, and let N = N(n) be a sequence of natural numbers. Let
β − n

2
� log n.

(a) If n
σ2 � 1

β−n
2
and N ≥ 3n log n, then

lim
n→∞

Eµ(P̃ β,σ
N,n) = 1.

(b) If 1
β−n

2
� n

σ2 � 1√
β−n

2

, then,

lim
n→∞

Eµ(P̃ β,σ
N,n) =


0 if N ≤ exp

(
(1− ε) n

σ2

(
β − n

2

))
,

1 if N ≥ exp
(

(1 + ε)
n

σ2

(
β − n

2

))
.

(c) If n
σ2 →∞ and σ > e−

n
3 (in particular this holds for σ ≡ 1), then,

lim
n→∞

Eµ(P̃ β,σ
N,n) =


0 if N ≤ exp

(
(β − n

2
) log

(
(1− ε) n

σ2

))
,

1 if N ≥ exp
(

(β − n

2
) log

(
(1 + ε)

n

σ2

))
.

Since the densities of a sequence of beta-prime distributions with parameters σ2 =

2β → ∞ converge to the density of the standard multivariate Gaussian distribution,
we also recover Pivovarov’s threshold for Gaussian polytopes. We state it here in a
slightly more explicit form than in Theorem 2.2.1 from [64]. For a related result where
the log concave isotropic measures are replaced by the volume ratios of the intersection
of Gaussian polytopes with balls of arbitrary radii, see Theorem 2.1 from [63].

Corollary 5.6. Fix ε ∈ (0, 1/2). Let µ = µn denote a sequence of isotropic log-concave
measures on Rn and let N = N(n) be a sequence of natural numbers. Let X1, . . . , XN be
independent random points distributed according to the standard Gaussian distribution
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on Rn and let GN,n := conv(X1, . . . , XN). Then,

lim
n→∞

Eµ(GN,n) =


0 if N ≤ exp

((1

2
− ε
)
n
)
,

1 if N ≥ exp
((1

2
+ ε
)
n
)
.

The proofs of the above statements can be found in Section 5.2. We stress that in
all Theorems 5.1, 5.4 and 5.5, the parameter β is actually allowed to vary with the
dimension n.

5.1 Auxiliary estimates

5.1.1 The beta and beta-prime distributions

As aforementioned, our focus in this chaper is on two specific classes of probability
distributions on Rn, namely, the beta and beta-prime distributions. To introduce the
beta distribution, we set

cn,β := π−n/2
Γ
(
β + n

2
+ 1
)

Γ(β + 1)
, β > −1, n ∈ N,

and define νβ to be the probability measure on Bn2 with density function

pn,β(x) := cn,β(1− ‖x‖2
2)β, x ∈ Bn2 .

The corresponding one-dimensional marginal density function of νβ is

fβ(t) := αn,β(1− t2)β+n−1
2 , t ∈ [−1, 1],

where

αn,β :=
cn,β
cn−1,β

= π−1/2 Γ
(
β + n

2
+ 1
)

Γ
(
β + n+1

2

) .
Finally, for d ∈ [0, 1], we abbreviate

F(d) :=

∫ 1

d

fβ(t) dt.
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To introduce the beta-prime distribution, we define

c̃n,β,σ := σ−nπ−n/2
Γ(β)

Γ(β − n
2
)
, β >

n

2
, σ > 0, n ∈ N,

and let ν̃β,σ be the probability measure on Rn with density function

p̃n,β,σ(x) := c̃n,β,σ

(
1 +
‖x‖2

2

σ2

)−β
, x ∈ Rn.

Moreover, let

α̃n,β,σ :=
c̃n,β,σ
c̃n−1,β,σ

= σ−1π−1/2 Γ(β − n−1
2

)

Γ(β − n
2
)
,

so that
f̃β,σ(t) := α̃n,β,σ(1 + t2)−β+n−1

2 , t ∈ R,

is the one-dimensional marginal density function of ν̃β,σ. Analogously to the beta case,
for d ∈ [0,∞), we denote

F̃(d) :=

∫ ∞
d

f̃β,σ(t) dt.

Estimates on the asymptotic behavior of the distribution functions of νβ and ν̃β,σ, in
particular for the functions F and F̃ defined above, play a central role in our work. The
previous inequalities are used in the proof of the following bounds for the distribution
function F.

Lemma 5.7. Let d ∈ (0, 1). Then,

1

2
√
π

(1− d2)β+n+1
2√

β + n
2

+ 1
< F(d) <

1

2d
√
π

(1− d2)β+n+1
2√

β + n
2

.

Proof. Using the change of variable s = 1− t2, we write

F(d) = αn,β

∫ 1

d

(1− t2)β+n−1
2 dt =

1

2
αn,β

∫ 1−d2

0

sβ+n−1
2 (1− s)−

1
2 ds.

Note that since s ∈ (0, 1− d2), we have (1− s)−1/2 ∈ (1, d−1), so

αn,β
2

∫ 1−d2

0

sβ+n−1
2 ds < F(d) <

αn,β
2d

∫ 1−d2

0

sβ+n−1
2 ds.

The fact that
αn,β

β + n+1
2

=
1√
π

Γ(β + n
2

+ 1)

Γ(β + n
2

+ 3
2
)
,
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together with Lemma 2.2, completes the proof.

Remark 7. Note that an adaptation of the above proof yields similar estimates on the
growth of F̃ if the parameter σ is an absolute constant. For instance if σ = 1, one has
that

1

2
√
π

(1 + d2)−β+n
2√

β − n−1
2

< F̃(d) <
1√
2π

(1 + d2)−β+n
2√

β − n+1
2

(5.1)

for every d > 1. Yet, in the general case where the parameter σ could vary with β or n
we will show that the asymptotic behaviour of F̃ in terms of σ, β and n actually depends
on the growth rate of the quantity n/σ2. This will result to the different threshold
results in the statement of Theorem 5.5.

To deal with the distribution function F̃ for an arbitrary σ > 0, we will use a
different argument. Note first that a suitable substitution provides

F̃(d) =
α̃n,β,σ√

2bn

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds, bn = β − n− 1

2
and an = d

√
2bn
σ

. (5.2)

It is easy to see that α̃n,β,σ√
2bn
→ 1√

2π
whenever bn →∞. The estimates of F̃(d) which will

appear in the proof of Theorem 5.5 are based on (5.2) and the following lemma.

Lemma 5.8. Let (an)n∈N, (bn)n∈N be two sequences with an ≥ 0 and 1
2
< bn →∞.

(a) If a4n
bn
→ 0, then, ∫ ∞

an

(
1 +

t2

2bn

)−bn
dt ∼

∫ ∞
an

e−
t2

2 dt.

If additionally an →∞, then,

∫ ∞
an

(
1 +

t2

2bn

)−bn
dt ∼ e−

a2n
2

an
.

(b) If a2n
bn
→∞, then,

∫ ∞
an

(
1 +

t2

2bn

)−bn
dt ∼ 1√

2bn

(
1 +

a2
n

2bn

)−(bn− 1
2

)

.

To prove Lemma 5.8 we use need a special version of the Laplace’s method. We
refer the reader to Theorem 1.1 of [87] for a more general statement than the one we
present
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Lemma 5.9. Let h : [a,∞) → R be a strictly increasing and differentiable function.
Then, as λ→∞, ∫ ∞

a

e−λh(t) dt ∼ e−λh(a)

λh′(a)
.

Proof of Lemma 5.8. We first show a pair of auxiliary estimates. The inequality x −
x2

2
≤ log (1 + x) ≤ x gives that

1 ≤

(
1 + t2

2bn

)−bn
e−

t2

2

= exp
(
−bn log

(
1 +

t2

2bn

)
+
t2

2

)
≤ e

t4

8bn .

Therefore, for any couple of sequences 0 ≤ cn < dn, we have∫ dn

cn

e−
t2

2 dt ≤
∫ dn

cn

(
1 +

t2

2bn

)−bn
dt ≤ e

d4n
8bn

∫ dn

cn

e−
t2

2 dt,

and in particular

d4
n

bn
→ 0 ⇒

∫ dn

cn

(
1 +

t2

2bn

)−bn
dt ∼

∫ dn

cn

e−
t2

2 dt. (5.3)

If additionally cn →∞ we can get a more explicit approximation by using a substitution
and the Laplace’s method. The new estimate is

d4
n

bn
→ 0 and cn →∞ ⇒

∫ dn

cn

(
1 +

t2

2bn

)−bn
dt ∼ e−

c2n
2

cn
− e−

d2n
2

dn
. (5.4)

Since for any t, the map (1
2
,∞) 3 b 7→

(
1 + t2

2b

)−b
is decreasing, we have that for

any sequence (cn)n∈N with 1
2
< c2

n < bn,

∫ ∞
cn

(
1 +

t2

2bn

)−bn
dt ≤

∫ ∞
cn

(
1 +

t2

2c2
n

)−c2n
dt

=
√

2cn

∫ ∞
1√
2

(
1 + s2

)−c2n ds

=
√

2cn

∫ ∞
1√
2

exp
(
−c2

n log(1 + s2)
)

ds.
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Laplace’s method, see Lemma 5.9, now implies that for cn →∞,∫ ∞
1√
2

exp
(
−c2

n log(1 + s2)
)

ds ∼
exp

(
−c2

n log(5
4
)
)

c2
n

.

In particular,

bn > c2
n and cn →∞⇒

∫ ∞
cn

(
1 +

t2

2bn

)−bn
dt = o

(
e−c

2
n log( 5

4
)
)
. (5.5)

Now we have all the ingredients to show Lemma 5.8 (a), but we need to distinguish
the case where an →∞ from the case where an is bounded.

First, we assume that an is bounded. Let cn > an be a sequence such that c4n
bn
→ 0

and cn → ∞. Splitting the integral in two parts and applying (5.3) with an and cn,
gives ∫ ∞

an

(
1 +

t2

2bn

)−bn
dt =

∫ cn

an

(
1 +

t2

2bn

)−bn
dt+

∫ ∞
cn

(
1 +

t2

2bn

)−bn
dt

∼
∫ cn

an

e−
t2

2 dt+ o(1)

∼
∫ ∞
an

e−
t2

2 dt.

Second, we assume that an → ∞. We split the integral in two parts and use the
estimates (5.4) with cn = an and dn = 2an, and (5.5) with cn = 2an. This gives∫ ∞

an

(
1 +

t2

2bn

)−bn
dt =

∫ 2an

an

(
1 +

t2

2bn

)−bn
dt+

∫ ∞
2an

(
1 +

t2

2bn

)−bn
dt

∼ e−
a2n
2

an
− e−2a2n

2an
+ o

(
e−4a2n log( 5

4
)
)

∼ e−
a2n
2

an
.

To show part (b) of Lemma 5.8, note that the substitution s = (1 + t2

2bn
)−1 gives

∫ ∞
an

(
1 +

t2

2bn

)−bn
dt =

√
bn
2

∫ (
1+

a2n
2bn

)−1

0

sbn−
3
2 (1− s)−

1
2 ds.
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But, since (0, 1) 3 s 7→ (1− s)− 1
2 is increasing, we have

1 ≤

√
bn
2

∫ (1+
a2n
2bn

)−1

0 sbn−
3
2 (1− s)− 1

2 ds√
bn
2

∫ (1+
a2n
2bn

)−1

0 sbn−
3
2 ds

≤

(
1−

(
1 +

a2
n

2bn

)−1
)− 1

2

.

Observe that the right hand side of the last equation tends to 1 because a2n
bn
→∞. Thus,

the two last equations provide the equivalence

∫ ∞
an

(
1 +

t2

2bn

)−bn
dt ∼

√
bn
2

∫ (
1+

a2n
2bn

)−1

0

sbn−
3
2 ds

∼
√
bn√

2(bn − 1
2
)

(
1 +

a2
n

2bn

)−(bn− 1
2

)

∼ 1√
2bn

(
1 +

a2
n

2bn

)−(bn− 1
2

)

,

which completes the proof.

5.2 Convex hulls of random points

Recall that by P β
N,n and P̃

β,σ
N,n we denote the convex hulls arising fromN > n independent

random points in Rn, distributed according to the beta distribution with parameter β
and the beta-prime distribution with parameters β and σ, respectively.

5.2.1 Preparatory lemmas

The proofs of Theorem 5.1 and Theorem 5.5 follow the method introduced in [37] and
exploited in [63]. We thus define, for every x ∈ Rn, the functions

q(x) := inf{P(X ∈ H) : H is a halfspace containing x},

when X ∼ νβ, and

q̃(x) := inf{P(X ∈ H) : H is a halfspace containing x},

when X ∼ ν̃β,σ. The following lemma implies a way to compute q(x) and q̃(x) in terms
of the Euclidean norm of the point x ∈ Rn.
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Lemma 5.10. Let H be a halfspace at distance d ≥ 0 from the origin. Then,

(a) P(X ∈ H) = F(d), when X ∼ νβ,

(b) P(X ∈ H) = F̃(d), when X ∼ ν̃β,σ.

Proof. We prove the lemma only for the case (a), since (b) is analogous. By rotational
invariance of the measure νβ, we may assume that H = {x = (x1, . . . , xn) ∈ Rn : x1 ≥
d}. We write

P(X ∈ H) = νβ(H) =

∫
H

pn,β(x) dx = cn,β

∫
H

(1− ‖x‖2
2)β dx

= cn,β

∫ 1

d

∫
Bn−1
2

(1− ‖x‖2
2)β d(x2, . . . , xn) dx1

= cn,β

∫ 1

d

∫
Bn−1
2

(1− t2)β
(

1− ‖y‖
2
2

1− t2

)β
dy dt

= cn,β

∫ 1

d

(1− t2)β
∫
Bn−1
2

(1− ‖z‖2
2)β(1− t2)

n−1
2 dz dt

= αn,β

∫ 1

d

(1− t2)β+n−1
2

∫
Bn−1
2

pn−1,β(z) dz dt

=

∫ 1

d

fβ(t) dt = F(d),

which concludes the proof.

Corollary 5.11. For every x ∈ Rn,

(a) q(x) = F(‖x‖2),

(b) q̃(x) = F̃(‖x‖2).

Proof. As before, we discuss only the case (a). Note that q(0) = 1/2 = F(0). If
x 6= 0, let H(x) be the halfspace bounded by the tangent hyperplane to ‖x‖Bn2 at x,
not containing 0. Then, by Lemma 5.10 (a), we have

F(‖x‖2) = P(X ∈ H(x)) ≥ q(x).

Conversely, let H be a halfspace at distance d from the origin, such that x ∈ H. If
d = 0, then, P(X ∈ H) ≥ 1/2 ≥ F(‖x‖2). If d > 0, then, again by Lemma 5.10 (a), we
have P(X ∈ H) = F(d) ≥ F(‖x‖2), since d ≤ ‖x‖. It follows that q(x) ≥ F(‖x‖2).
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Using Corollary 5.11, we can relate the probability content of the random polytopes
P β
N,n and P̃ β,σ

N,n to the distribution functions F and F̃, respectively. In particular, we
upper bound the expected volume of P β

N,n in terms of F (and similarly for P̃ β,σ
N,n).

Lemma 5.12. Let A be a bounded, measurable subset of Rn.

(a) In the beta model,

P(A ⊆ P β
N,n) ≤

E vol(P β
N,n ∩ A)

vol(A)
≤ N sup

x∈A
F(‖x‖2).

(b) In the beta-prime model,

µ(A)P(A ⊆ P̃ β,σ
N,n) ≤ Eµ(P̃ β,σ

N,n ∩ A) ≤ Nµ(A) sup
x∈A

F̃(‖x‖2),

where µ is any isotropic log-concave probability measure on Rn.

Proof. (a) First, note that, for any x ∈ P β
N,n = conv(X1, . . . , XN) and any halfspace H

containing x, there must be some Xi ∈ H. This implies that

{x ∈ P β
N,n} ⊆

N⋃
i=1

{Xi ∈ H}.

Since the previous inclusion holds for any halfspace H containing x, by a union bound
and Corollary 5.11 (a), we get that

P(x ∈ P β
N,n) ≤ Nq(x) = NF(‖x‖2).

Now, using the latter estimate,

E vol(P β
N,n ∩ A) = E

∫
A

1P β
N,n(x) dx =

∫
A

P(x ∈ P β
N,n) dx ≤ N vol(A) sup

x∈A
F(‖x‖2).

This proves the upper bound. On the other hand, since the event {A ⊆ P β
N,n} implies

{vol(A) ≤ voln(P β
N,n ∩ A)}, Markov’s inequality gives

voln(A)P(A ⊆ P β
N,n) ≤ E voln(P β

N,n ∩ A),

completing the proof.
(b) The proof follows along the same line as (a), using now Corollary 5.11 (b) instead
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of (a). As above, for any halfspace H and any point x ∈ H, we have

{x ∈ P̃ β,σ
N,n} ⊆

N⋃
i=1

{Xi ∈ H}.

Again, by a union bound and Corollary 5.11 (b), we get that

P(x ∈ P̃ β,σ
N,n) ≤ Nq̃(x) = N F̃(‖x‖2).

Using this estimate, we have

Eµ(P̃ β,σ
N,n ∩ A) = E

∫
A

1P̃ β,σ
N,n(x)µ(dx) =

∫
A

P(x ∈ P̃ β,σ
N,n)µ(dx) ≤ Nµ(A) sup

x∈A
F̃(‖x‖2),

which proves the upper bound. Finally, by Markov’s inequality, we get the lower bound

µ(A)P(A ⊆ P̃ β,σ
N,n) ≤ Eµ(P̃ β,σ

N,n ∩ A),

finishing the proof.

Next, we reproduce an analogous “ball inclusion” argument as in [37] in our setting.

Lemma 5.13. (a) For any R ∈ (0, 1), the inclusion RBn2 ⊆ P β
N,n holds with probab-

ility greater than 1− 2
(
N
n

)
(1− F(R))N−n.

(b) For any R > 0, the inclusion RBn2 ⊆ P̃ β,σ
N,n holds with probability greater than

1− 2
(
N
n

)
(1− F̃(R))N−n.

Proof. Let us start with part (a). Let J ⊆ {1, . . . , N} with |J | = n. With probability
equal to one, the set {Xj}j∈J is affinely independent. Let HJ be the affine hyperplane
defined by the affine hull of {Xj}j∈J andH+

J , H
−
J be the corresponding closed halfspaces,

determined by HJ . Moreover, let X be an additional independent beta-distributed
random point and let EJ be the event, that, either P β

N,n ⊆ H+
J and P(X /∈ H)|H=H+

J
≥

F(R), or P β
N,n ⊆ H−J and P(X /∈ H)|H=H−J

≥ F(R). Note that here, and in the following,
P(X /∈ H)|H=G denotes the evaluation of the map H 7→ P(X /∈ H) for the halfspace
G ⊂ Rn.

Suppose that RBn2 * P β
N,n, so there exists some x0 ∈ RBn2 \ P

β
N,n. Then, there

exists some J ⊆ {1, . . . , N} with |J | = n such that either P β
N,n ⊆ H+

J and x0 ∈ H−J
or P β

N,n ⊆ H−J and x0 ∈ H+
J . Note that we have P(X /∈ H)|H=H+

J
≥ q(x0) ≥ F(R), or
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P(X /∈ H)|H=H−J
≥ q(x0) ≥ F(R) respectively, since ‖x0‖2 ≤ R. It follows that

{RBn2 * P β
N,n} ⊆

⋃
J⊆[N ]
|J |=n

EJ .

Clearly, using the union bound,

P(RBn2 * P β
N,n) ≤

(
N

n

)
P(E[n]).

Next, note that P(X /∈ H|H=H+
[n]

) ≥ F(R) implies P(X ∈ H|H=H+
[n]

) ≤ 1− F(R), and
similarly for H−[n]. It follows that P(E[n] | X1, . . . , Xn) ≤ 2(1− F(R))N−n. Finally, we
get that P(E[n]) = E

(
P(E[n] | X1, . . . , Xn)

)
≤ 2(1− F(R))N−n and, hence,

P(RBn2 * P β
N,n) ≤ 2

(
N

n

)
(1− F(R))N−n,

proving the statement of the lemma. The proof of part (b) is a word-by-word repetition
of the proof of (a), where now F̃ plays the role of F.

Finally, we provide an essential lemma for the proofs of Theorem 5.1 and Theorem
5.5.

Lemma 5.14. Let ε > 0 be fixed.

(a) In the beta model,

lim
n→∞

E voln(P β
N,n)

κn
=

0 if NF
(√

1− n−(1−ε)
)
→ 0,

1 if NF
(√

1− n−(1+ε)
)
− n logN →∞.

(b) In the beta-prime model,

lim
n→∞

Eµn(P̃ β,σ
N,n) =

{
0 if N F̃

(
(1− ε)

√
n
)
→ 0,

1 if N F̃
(
(1 + ε)

√
n
)
− n logN →∞.

Proof. (a) Set rn =
√

1− n−(1−ε), An = Bn2 \ rnBn2 and assume that NF(rn)→ 0. We
have that supx∈An F(‖x‖2) ≤ F(rn), since ‖x‖ ≥ rn for every x ∈ An. By using this, in
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conjunction with Lemma 5.12 (a),

E voln(P β
N,n ∩ An)

κn
≤

E voln(P β
N,n ∩ An)

voln(An)
≤ NF(rn)→ 0.

Note also that voln(rnBn2 )

voln(Bn2 )
= rnn → 0. Thus

E voln(P β
N,n)

κn
≤ voln(rnBn2 )

voln(Bn2 )
+

E voln(P β
N,n ∩ An)

κn
→ 0.

Now, we set sn =
√

1− n−(1+ε) and assume that NF(sn)− n logN →∞. From the
lower bound in Lemma 5.12 (a) with A = snBn2 we get that

E voln(P β
N,n)

κn
≥ snnP(snBn2 ⊆ P β

N,n) ∼ P(snBn2 ⊆ P β
N,n).

Hence, it suffices to show that

lim
n→∞

P(snBn2 * P β
N,n) = 0. (5.6)

By Lemma 5.13 (a), we have, using
(
N
n

)
≤ (eN/n)n,

P(snBn2 * P β
N,n) ≤ 2

(
N

n

)
(1− F(sn))N−n

≤ 2(eN/n)n exp((N − n) log(1− F(sn)))

= 2 exp
(
n log(eN/n) + (N − n) log(1− F(sn))

)
.

Since log(1− x) ≤ −x, we have

P(snBn2 * P β
N,n) ≤ 2 exp

(
n log(eN/n)− (N − n)F(sn)

)
= 2 exp

(
n log(N)−NF(sn)

)
exp
(
n
(

log
( e
n

)
+ F(sn)

))
.

Since, for n ≥ e2, we have log
(
e
n

)
+ F(sn) ≤ 0, we get

P(snBn2 * P β
N,n) ≤ 2 exp

(
n log(N)−NF(sn)

)
→ 0.

(b) Set rn = (1 − ε)
√
n, An = Rn \ rnBn2 and assume N F̃(rn) → 0. By the thin

shell property of µ, see Theorem 2.1, we have that Eµ(P̃ β,σ
N,n∩ rnBn2 )→ 0. On the other
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hand Lemma 5.12 (b) gives that

Eµ(P̃ β,σ
N,n ∩ An) ≤ N sup

x∈An
F̃(‖x‖2) = N F̃(rn)→ 0.

Therefore
Eµ(P̃ β,σ

N,n) = Eµ(P̃ β,σ
N,n ∩ rnB

n
2 ) + Eµ(P̃ β,σ

N,n ∩ An)→ 0.

Now, set sn = (1 + ε)
√
n and assume that N F̃(sn)− n logN →∞. From the lower

bound in Lemma 5.12 (b) we get that

Eµ(P̃ β,σ
N,n) ≥ µ(snBn2 )P(snBn2 ⊆ P̃ β,σ

N,n).

On one hand the thin shell property of µ, see Theorem 2.1, gives that Eµ(snBn2 )→ 1.
On the other hand, arguing exactly as in the proof of case (a), we can use the bound

P(RBn2 * P̃ β,σ
N,n) ≤ 2 exp

(
n logN −N F̃(R)

)
→ 0.

Therefore
1 ≥ Eµ(P̃ β,σ

N,n) ≥ µ(snBn2 )(1−P(snBn2 * P̃ β,σ
N,n))→ 1,

which completes the proof.

5.2.2 Proofs regarding the beta model

Based on these preparations, we proceed to the proof of Theorem 5.1 on the volume of
beta polytopes.
Proof of Theorem 5.1: Set rn =

√
1− n−(1− ε

2
). From Lemma 5.7 we get

F(rn) ≤ n−(1− ε
2

)(β+n+1
2

)√
β + n

2

= exp
(
−
(

1− ε

2

)(
β +

n+ 1

2

)
log n− 1

2
log
(
β +

n

2

))
.

The choice N ≤ exp
(
(1− ε)

(
β + n+1

2

)
log n

)
implies that

NF(rn) ≤ exp
(
−ε

2

(
β +

n+ 1

2

)
log n− 1

2
log
(
β +

n

2

))
→ 0,

as n → ∞. Combined with Lemma 5.14, this yields the proof of the first part of the
theorem.
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Set Rn =
√

1− n−(1+ ε
2

). From Lemma 5.7 we get

F(Rn) ≥ 1

2
√
π

n−(1+ ε
2

)(β+n+1
2

)√
β + n

2
+ 1

= exp
(
−
(

1 +
ε

2

)(
β +

n+ 1

2

)
log n− 1

2
log
(

4π
(
β +

n

2
+ 1
)))

.

The choice N = exp
(
(1 + ε)(β + n+1

2
) log n

)
implies that

NF(Rn) ≥ exp
(ε

2

(
β +

n+ 1

2

)
log n− 1

2
log
(

4π
(
β +

n

2
+ 1
)))

,

and thus
lim
n→∞

NF (Rn)− n logN =∞.

Combined with Lemma 5.14, this yields the proof.

Remark 8. As anticipated in Section 1, Theorem 5.1 can be formulated in a stronger
way, as follows.

Consider any function f = f(n) such that f(n) → ∞ and f(n) − log n → −∞
as n → ∞. If N ≤ exp

(
(β + n+1

2
)f(n)

)
, then, E voln(P β

N,n)/κn → 0 as n → ∞.
Analogously, for any function g = g(n) such that g(n) − log n → +∞ as n → ∞, if
N ≥ exp

(
(β + n+1

2
)g(n)

)
, then, E voln(P β

N,n)/κn → 1 as n → ∞. This is proved in
the same way as Theorem 5.1 using r2

n = 1− exp(−f(n)/2) for the upper bound and
R2
n = 1− exp(−g(n)/2) for the lower bound, respectively.
Notice that this is equivalent to replacing ε constant in the statement by ε = ε(n)

with ε(n)� 1/ log n.

Proof of Corollary 5.3: We start with the first case. Let ε ∈ (0, 1) and fix a
sequence N(n) ≤ exp((1 − ε)(n−1

2
) log n). As elaborated in [45] the weak limit of a

sequence of beta distributions on Rn for β → −1 is the unique rotational invariant
probability measure on the sphere Sn−1, for any fixed n. Since the map (x1, . . . , xN) 7→
voln(conv(x1, . . . , xN))/ voln(Bn2 ) is bounded and continuous, there exists a sequence βn
such that |E voln(P βn

N,n)−E voln(SN,n)| < ε′ voln(Bn2 ), for any ε′ > 0. By Theorem 5.1 we
have E voln(P β

N,n) ≤ ε′ voln(Bn2 ), and thus can conclude that E voln(SN,n) ≤ 2ε′ voln(Bn2 ).
The statement of the second case can be shown analogously.

5.2.3 Intrinsic volumes of the beta polytopes

For the beta distribution, there is a known formula that relates the expected k-th
intrinsic volume of P β

N,n to the expected volume of the respective k-dimensional polytope
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up to a different parameter β′. In particular, Proposition 2.3 in [51] states that

EVk(P
β
N,n) =

(
n

k

)
κn

κkκn−k
EVk

(
P
β+n−k

2
N,k

)
.

Since

Vk(Bn2 ) =

(
n

k

)
κn

κkκn−k
Vk(Bk2),

see, e.g., Equation (4.8) from [75], we have

EVk(P
β
N,n)

Vk(Bn2 )
=

EVk
(
P
β+n−k

2
N,k

)
Vk(Bk2)

. (5.7)

The above relation indicates that for any k = k(n) such that limn→∞ k(n) =∞, a
threshold behavior similar to that of Theorem 5.1 holds for the intrinsic volumes of
P β
N,n, namely, as n→∞,

lim
n→∞

EVk(P
β
N,n)

Vk(Bn2 )
=


0 if N ≤ exp

(
(1− ε)(β +

n+ 1

2
) log k

)
,

1 if N ≥ exp
(

(1 + ε)(β +
n+ 1

2
) log k

)
.

Moreover, if k = n−m for any fixed m ∈ N, the ratio on the left hand side will exhibit
a threshold behavior similar to that of the case k = n. As a special case, for m = 1,
one can deduce by Theorem 5.1 the following threshold phenomenon for the surface
area Sn−1 of P β

N,n.

Proposition 5.15. Let ε ∈ (0, 1). Then, as n→∞,

lim
n→∞

E(Sn−1(P β
N,n))

Sn−1(Bn2 )
=


0 if N ≤ exp

(
(1− ε)(β +

n+ 1

2
) log n

)
,

1 if N ≥ exp
(

(1 + ε)(β +
n+ 1

2
) log n

)
.

Still, by (5.7), determining the threshold behaviour of the k-th intrinsic volume
when k is a fixed integer would require looking into the case that the space dimension
stays fixed, while the parameter β grows to infinity. This is done in the next subsection.
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5.2.4 Volume thresholds for beta polytopes in fixed dimension

Here we present the proof of Theorem 5.4. This will come as a corollary of the following
general statement.

Theorem 5.16. Let n ∈ N be a fixed integer, δ > 1 and N = δβ.

(a) For any R ∈
(

0,
√

δ−1
δ

)
, we have that P(RBn2 ⊂ P β

N)→ 1 as β →∞.

(b) For any R ∈
(√

δ−1
δ
, 1
)
, we have that P(P β

N ⊂ RBn2 )→ 1 as β →∞.

Given Theorem 5.16, note that if N = δβ = exp(β log δ) and R1, R2 are such that
0 < R1 <

√
δ−1
δ
< R2 < 1, then

lim
β→∞

P(R1Bn2 ⊆ P β
N,n ⊆ R2Bn2 ) = 1.

In particular

lim
β→∞

P
(
Rn

1 ≤
voln(P β

N,n)

voln(Bn2 )
≤ Rn

2

)
= 1,

and since this holds for any 0 < R1 <
√

δ−1
δ
< R2 < 1, we get that

lim
β→∞

E voln(P β
N,n)

voln(Bn2 )
=
(δ − 1

δ

)n
2
.

Now since

N 7→
E voln(P β

N,n)

voln(Bn2 )

is an increasing function, then

lim
δ→∞

(δ − 1

δ

)n
2

= 1

and
lim
δ→1

(δ − 1

δ

)n
2

= 0,

we have just proved the following.

Corollary 5.17. Let n ∈ N be a fixed integer. Let f, g : (−1,∞) → R+ be functions
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with f(β)→∞ and g(β)→ 0 as β →∞, and let δ ∈ (1,∞). Then, as β →∞,

lim
n→∞

E voln(P β
N,n)

voln(Bn2 )
=


1 if N ≥ exp(βf(β)),

0 if N ≤ exp(βg(β)),(δ − 1

δ

)n
2 if N = exp(β log(δ)).

Proof of Theorem 5.4: The result is an immediate consequence of (5.7) and Corollary
5.17, with f

(
β + n−k

2

)
= (β + n−k

2
)ε and g

(
β + n−k

2

)
= (β + n−k

2
)−ε.

It remains to prove Theorem 5.16.

Proof of Theorem 5.16. (a) By Lemma 5.7 we have that

F (R) ≥ 1

2
√
π

(1−R2)β+n+1
2√

β + n
2

+ 1
,

thus

NF (R) ≥ (1−R2)
n+1
2

2
√
π

1√
β + n

2
+ 1

(δ(1−R2))β.

Observe that ε := δ(1−R2)− 1 > 0 because R <
√

δ−1
δ
. It is then easy to see that

lim
β→∞

(1−R2)
n+1
2

2
√
π

1√
β + n

2
+ 1

(1 + ε)
β
2 = +∞,

in particular NF (R) ≥ (1 + ε)β/2 for large enough β. On the other hand, by Lemma
5.13 (a),

1−P(RBn2 ⊂ P β
N) ≤ 2

(
N

n

)
(1− F (R))N−n

≤ 2Nn(1− F (R))N−n

= exp (log(2) + n log(N) + (N − n) log(1− F (R)))

≤ exp (log(2) + n log(N)− (N − n)F (R)) ,

and since logN = β log δ and n is fixed, we have that the last expression tends to 0 as
β →∞. Thus,

lim
β→∞

P(RBn2 ⊆ P β
N,n) = 1.

(b) Using integration in polar coordinates and the change of variables s = t2, we can
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see that if x is distributed according to νβ one has

P(‖x‖ ≥ R) = cn,β

∫
(RBn2 )c

(1− ‖x‖2
2)β dx

= ncn,βκn

∫ 1

R

(1− t2)tn−1 dt

=
1

B
(
β + 1, n

2

) ∫ 1

R2

(1− s)βs
n
2
−1 ds

≤ 1

B
(
β + 1, n

2

) ∫ 1

R2

(1− s)β ds =
(1−R2)β+1

B
(
β + 1, n

2

)
(β + 1)

.

Letting N = δβ and ε := 1− δ(1−R2), the above inequality implies that

NP(‖x‖ ≥ R) ≤ (1− ε)β 1−R2

B
(
β + 1, n

2

)
(β + 1)

.

Note that ε ∈ (0, 1), since R ∈
(√

δ−1
δ
, 1
)
, so using the fact that B

(
β + 1, n

2

)
∼

Γ(n/2)/(β + 1)n/2 we can easily see that

lim
β→∞

(1− ε)
β
2

1−R2

B
(
β + 1, n

2

)
(β + 1)

= 0.

In particular, NP(‖x‖ ≥ R) ≤ (1− ε)β2 if β is sufficiently large. Combining this with
the inequality log x ≥ 1− 1

x
, which holds for every x > 0, we get

0 ≥ N logP(‖x‖ ≤ R) ≥ N
(

1− 1

P(‖x‖ ≤ R)

)
≥ N

(
1− 1

1− (1−ε)β/2
N

)
= − N(1− ε)β/2

N − (1− ε)β/2
.

It follows that limβ→∞N logP(‖x‖ ≤ R) = 0. By independence, we have that

P(P β
N,n ⊆ RBn2 ) = P(‖x‖ ≤ R)N = exp(N logP(‖x‖ ≤ R)),

which gives that limβ→∞P(P β
N,n ⊆ RBn2 ) = 1, completing the proof.
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5.2.5 Proofs regarding the beta-prime model

Using Lemma 5.8 and the machinery developed in Section 5.2.1, we now proceed to the
proof of Theorem 5.5. Set

bn = β − n− 1

2
.

Under the assumptions of Theorem 5.5, bn →∞. Thus (5.2) becomes

F̃(d) ∼ 1√
2π

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds, an = d

√
2bn
σ

. (5.8)

Proof of Theorem 5.5 (a): Let ε > 0. Equation (5.8) gives that

F̃
(
(1 + ε)

√
n
)
∼ 1√

2π

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds,

with a4n
bn

= 4(1 + ε)4 n
2(β−n−1

2
)

σ4 → 0 because of the assumptions. Thus, by Lemma 5.8,

F̃
(
(1 + ε)

√
n
)
∼ 1√

2π

∫ ∞
an

e−
t2

2 dt.

Since an = (1 + ε)
√

2bnn
σ
→ 0, it follows that

F̃
(
(1 + ε)

√
n
)
→ 1

2
.

Therefore, for N = 3dn log ne and n big enough, we have

N F̃
(
(1 + ε)

√
n
)
− n logN ≥ 2

5
N − n logN

=
6

5
dn log ne − n log(3dn log ne)→∞.

Again, Lemma 5.14 yields the proof.

Proof of Theorem 5.5 (b): From (5.8), we have

F̃
(
(1− ε)

√
n
)
∼ 1√

2π

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds.

Due to the assumptions, an = (1− ε)
√

2bnn
σ
→∞ and a4n

bn
= 4(1− ε)4 n

2(β−n−1
2

)

σ4 → 0.
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Thus, by Lemma 5.8,

F̃
(
(1− ε)

√
n
)
∼ e−

a2n
2

√
2πan

=
1√

2πan
exp
(
−(1− ε)2 bnn

σ2

)
.

In particular, for N ≤ exp
(
(1− ε)2 nbn

σ2

)
and n big enough,

N F̃
(
(1− ε)

√
n
)
≤ 1

an
→ 0,

which implies
Eµ(P̃ β,σ

N,n)→ 0,

because of Lemma 5.14.

Similarly as above, we have

F̃
(
(1 + ε)

√
n
)
∼ 1√

2πan
exp
(
−(1 + ε)2 bnn

σ2

)
,

where an = (1 + ε)
√

2bnn
σ

. Because of the condition bnn
σ2 → ∞, we have that, for n big

enough,

F̃
(
(1 + ε)

√
n
)
∼ exp

(
−(1 + ε)2 bnn

σ2
− 1

2
log

bnn

σ2
− log

(
2(1 + ε)

√
π
))

≥ exp
(
−(1 + 3ε)

bnn

σ2

)
,

where the inequality holds because (1 + ε)2 < 1 + 3ε. Hence, for N = exp
(
(1 + 4ε) bnn

σ2

)
and n big enough, we have

N F̃
(
(1 + ε)

√
n
)
− n logN ≥ exp

(
ε
bnn

σ2

)
− n(1 + 4ε)

bnn

σ2

≥ exp (f(n))− 1 + 4ε

ε
nf(n),

(5.9)

where f(n) := ε bnn
σ2 . The assumption on the growth of β, together with (5.9), give that

N F̃
(
(1 + ε)

√
n
)
− n logN →∞, and Lemma 5.14 yields the proof.

Proof of Theorem 5.5 (c): From (5.8) we have

F̃
(
(1− ε)

√
n
)
∼ α̃n,β√

2bn

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds,
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where an = (1− ε)
√

2bnn
σ

. Note that a2n
bn

= (1− ε)2 2n
σ2 →∞ because of the assumption

n
σ2 →∞. Consequently, by Lemma 5.8

F̃
(
(1− ε)

√
n
)
∼ 1√

2π

√
bn√

2(bn − 1
2
)

(
1 +

a2
n

2bn

)−(bn− 1
2

)

∼ 1

2
√
bnπ

(
1 + (1− ε)2 n

σ2

)−(bn− 1
2

)

.

In particular, for N ≤ exp
(
(bn − 1

2
) log

(
(1− ε)2 n

σ2

))
and n big enough,

N F̃
(
(1− ε)

√
n
)
≤ 1√

bn
→ 0,

which implies
Eµ(P̃ β,σ

N,n)→ 0,

because of Lemma 5.14.

Similarly as above, we have

F̃
(
(1 + ε)

√
n
)
∼ 1

2
√
bnπ

(
1 + (1 + ε)2 n

σ2

)−(bn− 1
2

)

.

Set ε′ ∈
(

0, log (1+2ε)2

(1+ε)2

)
. From the last equation, it is easy to see that for N =

exp
(
(bn − 1

2
) log

(
(1 + 2ε)2 n

σ2

))
, and n big enough,

N F̃
(
(1 + ε)

√
n
)
≥ 1

4
√
bn

exp

((
bn −

1

2

)
log

(1 + 2ε)2 n
σ2

1 + (1 + ε)2 n
σ2

)
≥ exp (ε′bn) .

Observe also that log
(
(1 + 2ε)2 n

σ2

)
< n

2
because of the assumption σ > e−

n
3 . Combined

with log n� bn we get

N F̃
(
(1 + ε)

√
n
)
− n logN ≥ exp (ε′bn)− n2

2
bn →∞,

and the result follows from Lemma 5.14.

Proof of Corollary 5.6: We will prove the corollary just for the first case, since the
second is analogous. Fix ε ∈ (0, 1/2) and a sequence N(n) ≤ exp

((
1
2
− ε
)
n
)
. For

any fixed n, it holds that p̃n,β,σ(x)→ (2π)−
n
2 exp

(
−‖x‖

2
2

2

)
whenever σ2 = 2β →∞. In
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particular, for any ε′ > 0, one can find σn such that
∣∣Eµ(P̃

1
2
σ2
n,σn

N,n ) − Eµ(GN,n)
∣∣ < ε′.

We can choose σn � n and βn = 1
2
σ2
n, so that the conditions of case (b) in Theorem 5.5

are met. Therefore, for n large enough, Eµ(P̃
1
2
σ2
n,σn

N,n ) < ε′. We can conclude that
Eµ(GN,n) < 2ε′, which ends the proof.
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Chapter 6

The Isotropic Constant of Random
Polytopes with Vertices on Convex
Surfaces

Let X1, . . . , XN be independent random points, distributed on the boundary of an
isotropic convex body K in Rn, n ≥ 2, according to its cone measure CK . In this
chapter we establish that the isotropic constant of the random symmetric convex
hull of X1, . . . , XN is bounded by an absolute constant, as n tends to infinity, with
overwhelming probability, in the case where K is also unconditional, or can grow by at
most a logarithmic function of N/n, in the general case. We treat these two settings
separately.

6.1 The unconditional case

Let K be an isotropic convex body in Rn. This means that voln(K) = 1, its barycenter
is at the origin and ∫

K

〈x, θ〉2 dx = L2
K

for all directions θ ∈ Sn−1, where LK is a constant independent of θ, the so-called
isotropic constant of K.

Additionally, K is unconditional, i.e it is symmetric with respect to all n coordinate
hyperplanes. In particular, K is symmetric with respect to the origin. The cone
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probability measure µK is defined on ∂K as follows,

µK(B) :=
voln({rx : x ∈ B, 0 ≤ r ≤ 1})

voln(K)
, B ⊂ ∂K a Borel set.

Although both the cone measure and the surface measure are defined on the boundary
of a convex body, they differ as the former is concerned with the volume of the cone
spanned by a region of the boundary. However, they coincide for example on Sn−1

1 ,
Sn−1

2 and Sn−1
∞ .

The uniform distribution on a convex body K ⊂ Rn shall be denoted by νK , i.e. for
a Borel set A ⊂ Rn

νK(A) :=
voln(K ∩ A)

voln(K)
,

For N > n we let X1, . . . , XN be independent random points distributed according
to µK andKN := conv(±X1, . . . ,±XN) be the random symmetric convex hull generated
by X1, . . . , XN . We prove the following.

Theorem 6.1. Let K ⊂ Rn be an isotropic unconditional convex body, N > n and KN

the symmetric convex hull of N independent random points on ∂K with distribution
µK. Then there exist absolute constants c1, c2, C ∈ (0,∞) such that the event that

LKN ≤ C

occurs with probability at least 1− c1e
−c2n.

Remark 9. We note that the result of Theorem 6.1, in the regime whereN is proportional
to the space dimension n, follows directly from the existing literature. Indeed, in this
situation the random polytope KN has precisely N vertices with probability one and
it is known from [4] that an n-dimensional polytope P with vP > n vertices has an
isotropic constant bounded above by a constant multiple of

√
vP/n. This implies

absolute boundedness of the isotropic constant of KN even with probability one.

Let us emphasize that Theorem 6.1 generalizes the main results of both [3] and [48].
Moreover, it is the clear analogue to the main result in [33], where the authors consider
random polytopes generated by points X1, . . . , XN chosen uniformly at random from
the interior of an isotropic unconditional convex body. However, the result in [33] does
not imply Theorem 6.1 and vice versa. Although the tools we use and the strategy of
the proof rely on similar ingredients as those employed in [33] (and also that in [3, 5,
54]) there is a significant difference. In fact, one of the main ingredients in the proof of
Theorem 6.1 is a version of Bernstein’s inequality (see Lemma 6.3 below). In order to
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be able to apply it, an upper bound on the so-called ψ2-norm of linear functionals with
respect to the cone probability measure is needed. While this is well known in the case
of the uniform distribution on K, this is not the case for the cone probability measure
on ∂K, the main reason for this being the fact that the cone measure does not fit into
the theory developed for log-concave measures. We shall provide such an estimate in
Section 6.4.

6.2 The general case

We assume the same set-up as in the previous subsection, but now we drop the as-
sumption that the convex body K is unconditional. That is, we assume that K ⊂ Rn

is an isotropic convex body with cone probability measure µK . The next result is the
analogue to the main result in [5], where the authors prove a similar estimate in the case
that the random polytope is generated by points uniformly distributed in the interior
of K. However and in contrast to Theorem 6.1, for general isotropic convex bodies we
are (in general) not able to bound the isotropic constant of KN by an absolute constant
with high probability. In addition this set-up requires an upper bound for the number
of vertices of KN . Again, this is in line with the results in [5].

Theorem 6.2. Let K ⊂ Rn be an isotropic convex body, n < N ≤ e
√
n and KN the

symmetric convex hull of N independent random points on ∂K with distribution µK.
Then there exist absolute constants c1, c2, c3, C ∈ (0,∞) such that the event that

LKN ≤ C

√
log

2N

n

occurs with probability at least 1− c1e
−c2n − e−c3

√
N .

Remark 10. As in Remark 9, if N ≤ cn for some c ∈ (0,∞) the conclusion of The-
orem 6.2 is again trivial. More precisely, in this regime we even have that LKN is
absolutely bounded with probability one.

Remark 11. Observe that in the regime where e
√
n < N ≤ en one can prove that the

weaker estimate

LKN ≤ CLK

√
log

2N

n

holds with probability exponentially close to 1. This follows from the fact that one can
use part (a) of Lemma 6.10 instead of (b) to lower bound voln(KN)1/n in the final proof
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(see also the discussion after Theorem 11.3.7 in [28]). However, this estimate does not
improve Klartag’s general bound as the right-hand side is of order at least n1/4.

Remark 12. It was shawn in [3, Theorem 1.2] that if P is a polytope in Rn with fP

facets then

LP ≤ C

√
log

fP
n

(6.1)

for some absolute constant C ∈ (0,∞). Moreover, in [80] (see also [29] for the case of
the unit ball) it is proved that if ∂K is twice differentiable and has positive Gaussian
curvature everywhere the expected number of facets of KN satisfies

E fKN = cN(1 + o(1)),

as N → ∞, where c ∈ (0,∞) is some constant depending on d and on K, and o(1)

is some sequence that tends to zero. (The results in [29, 80] are formulated for the
non-symmetric convex hull of N random points in K, but it can be checked that the
order remains the same for the symmetric convex hulls.) Thus, replacing fP by E fKN
in (6.1), the result of Theorem 6.2 might be anticipated.

The proof of Theorem 6.2 is similar to the one of Theorem 6.1, but is based on
another version of Bernstein’s inequality. More precisely, while in the argument for
Theorem 6.1 we work with the so-called ψ2-norm (of a certain class of linear functionals),
in the context of Theorem 6.2 we are able to deal only with the ψ1-norm, which can
effectively be handled for arbitrary isotropic convex bodies.

6.3 Preliminaries

6.3.1 Orlicz spaces and Bernstein’s Inequality

A convex function M : [0,∞)→ [0,∞) with M(0) = 0 is called an Orlicz function. We
indicate by LM(P) the set (of equivalence classes) of random variables X : Ω→ R such
that M(|X|/λ) ∈ L1(P), for some λ > 0. We supply LM(P) with the Luxemburg norm

‖X‖M := inf{λ > 0 : E M(|X|/λ) ≤ 1},

(this notation should not lead to confusion with the Minkowski ‖ · ‖K functional associ-
ated with a convex body K).
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We point out that (LM(P), ‖ · ‖M) is a Banach space and we refer to it as the
Orlicz space associated to M . Examples of Orlicz spaces are the Lp-spaces, for every
p ∈ [1,∞), associated to the Orlicz functions x 7→ xp, and the spaces associated
to the functions ψα(x) = exp(xα) − 1, for every α ∈ [1,∞). In the particular case
α ∈ {1, 2}, the elements of the space (Lψα(Ω,P), ‖ · ‖ψα) are also called sub-exponential
and sub-Gaussian random variables, respectively.

The following result, known as Bernstein’s inequality, taken in this form from [8,
Theorem 3.5.17], allows to obtain an estimate on the tail of the distribution of a sum of
independent and uniformly sub-Gaussian random variables. It will be used in the proof
of Theorem 6.1. In the proof of Theorem 6.2, we need another version of Bernstein’s
inequality, which deals with sums of independent and uniformly sub-exponential random
variables. It is written here as a particular case of [8, Theorem 3.5.16].

Lemma 6.3. Let Y1, . . . , Yn be independent and centred random variables defined on a
common probability space (Ω,F ,P).

(a) Suppose that there exists R ∈ (0,∞) such that ‖Yi‖ψ2 ≤ R for every i ∈ {1, . . . , n}.
Then, for every t > 0,

P
(∣∣∣ n∑

i=1

Yi

∣∣∣ > tn
)
≤ 2 exp

(
− t

2n

8R2

)
.

(b) Suppose that there exists R ∈ (0,∞) such that ‖Yi‖ψ1 ≤ R for every i ∈ {1, . . . , n}.
Then, for every t > 0,

P
(∣∣∣ n∑

i=1

Yi

∣∣∣ > tn
)
≤ 2 exp

(
− tn

6R
min

{ t
R
, 1
})
.

6.3.2 Auxiliary inequalities

Although this definition relies on the 2-norm, the isotropic constant of a symmetric
convex body can be bounded from above using an average of the 1-norm. As in [33]
this bound will turn out to be very useful for our purposes. The first of the following
inequalities is taken from [28, Lemma 11.5.2], while the second is a direct consequence
of the definition of isotropic constant (Equation (2.3)). We recall that a convex body
K ⊂ Rn is symmetric provided that x ∈ K implies −x ∈ K and centred if K has its
barycentre at the origin.
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Lemma 6.4. (a) Let K ⊂ Rn be a symmetric convex body. Then there exists a
constant c ∈ (0,∞) such that

LK ≤
c

n voln(K)1+1/n

∫
K

‖x‖1 dx.

(b) Let K ⊂ Rn be a centred convex body. Then,

L2
K ≤

1

n voln(K)1+2/n

∫
K

‖x‖2
2 dx.

Since we will deal with symmetric polytopes, we will make use of the following
lemma that, together with the previous one, allows us to connect the isotropic constant
of a polytope with properties of its facets.

Lemma 6.5. (a) Let KN = conv{±y1, . . . ,±yN} ⊂ Rn be a symmetric polytope.
Then

1

|KN |

∫
KN

‖x‖1 dx ≤ 1 +
√

2

n
max

{yi1 ,...,yin}⊂{±y1,...,±yN}
ε1,...,εn=±1

‖ε1yi1 + . . .+ εnyin‖1.

(b) Let KN = conv{±y1, . . . ,±yN} ⊂ Rn be a symmetric polytope. Then

1

|KN |

∫
KN

‖x‖2
2 dx ≤ 2

(n+ 1)(n+ 2)
max

{yi1 ,...,yin}⊂{±y1,...,±yN}
ε1,...,εn=±1

‖ε1yi1 + . . .+ εnyin‖2
2.

Proof. Following the idea of [5, Lemma 3.2], we decompose KN as union of simplices
S1, . . . , Sm having pairwise disjoint interiors. Namely, let KN =

⋃m
i=1 Si with Si :=

conv{0, yi1 , . . . , yin} for every i ∈ {1, . . . ,m}. Note that for each i ∈ {1, . . . ,m} the
set Fi := conv{yi1 , . . . , yin} is an (n− 1)-dimensional simplex and that ∂KN =

⋃m
i=1 Fi.

According to [28, Lemma 11.5.4], it holds that, for each i ∈ {1, . . . ,m},

1

|KN |

∫
KN

‖x‖2
2 dx ≤ n

n+ 2
max

i∈{1,...,m}

1

|Fi|

∫
Fi

‖y‖2
2 dy.

In the discussion following [28, Lemma 11.5.4], it is also shown that

1

|Fi|

∫
Fi

‖y‖2
2 dy ≤ 2

n(n+ 1)
max

ε1,...,εn=±1
‖ε1yi1 + . . .+ εnyin‖2

2,

from which the claim (a) follows. For (b), we proceed analogously. Namely, it is stated
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in [28, Lemma 11.4.4] that

1

|KN |

∫
KN

‖x‖1 dx ≤ max
i∈{1,...,m}

1

|Fi|

∫
Fi

‖y‖1 dy.

Moreover, from [28, Lemma 11.4.5] follows that, for every i ∈ {1, . . . ,m},

1

|Fi|

∫
Fi

‖y‖1 dy ≤ 1 +
√

2

n
max

ε1,...,εn=±1
‖ε1yi1 + . . .+ εnyin‖2

2,

which, combined with the previous inequality, concludes the proof.

6.4 A ψ2-estimate for the cone measure

In order to be able to apply Bernstein’s inequality for independent and uniformly
sub-Gaussian random variables (see Lemma 6.3 (a)), we need an upper bound on
the ψ2-norm on linear functionals with respect to the cone probability measure on
the boundary of an isotropic unconditional convex body. We emphasize that such an
estimate is the key point in the proof of Theorem 6.1 and might also be of independent
interest. Bounds for the ψ2-norm of linear functionals have been subject of a number
of studies, which in turn concentrate on the case of the uniform distribution on an
isotropic convex body or, more generally, on an isotropic log-concave measure, see in
particular the work of Bobkov and Nazarov [22]. However, the cone measure does
clearly not satisfy this property and it seems that the following Bobkov-Nazarov type
estimate for the cone measure result is not available in the existing literature. We also
remark that the proof in [22] does not carry over to the cone measure case. Instead we
use the polar integration formula to deduce the estimate from the one for the uniform
distribution. In addition, this allows to identify the extremal bodies for which the
estimate is sharp, see Remark 14.

Proposition 6.6. Let K ⊂ Rn be an isotropic unconditional convex body. Then, for
every θ ∈ Rn,

‖〈·, θ〉‖Lψ2 (µK) ≤ 3
√
n‖θ‖∞.

Let us briefly comment that the result of Proposition 6.6 might be re-phrased by
saying that for an isotropic unconditional convex body K and for every θ ∈ Rn one has
that

µK({x ∈ ∂K : |〈x, θ〉| ≥ t
√
n‖θ‖∞}) ≤ 2e−

t2

9
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for all t > 0. Especially, taking θ = (1, . . . , 1), which satisfies ‖θ‖∞ = 1, we have that

µK

({
x ∈ ∂K :

‖x‖1√
n
≥ t
})
≤ 2e−

t2

9 .

We split the proof of Proposition 6.6 into three lemmas, the first being a comparison
inequality, in the spirit of [22], where we compare the absolute moments of a linear
functional on a general isotropic unconditional convex body to the ones on a rescaling
of the unit ball Bn1 .

Lemma 6.7. Let K ⊂ Rn be an isotropic unconditional convex body and V :=
√

6
2
nBn1 .

Then, for any θ ∈ Rn and every q ∈ N ∪ {0},∫
∂K

|〈x, θ〉|2q dµK(x) ≤
∫
∂V

|〈x, θ〉|2q dµV (x).

Proof. We know from the computations in [22] (see in particular [28, page 307]) that,
for any θ ∈ Rn, ∫

Rn
|〈x, θ〉|2q dνK(x) ≤

∫
Rn
|〈x, θ〉|2q dνV (x), (6.2)

since K is unconditional. Then the claim holds if for any symmetric convex body K0,∫
Rn
|〈x, θ〉|2q dνK0(x) = cn,q

∫
∂K0

|〈x, θ〉|2q dµK0(x), (6.3)

where cn,q ∈ (0,∞) can depend on n, q but not K0. We can prove Equation (6.3) using
a polar integration formula for the cone measure. It says that, for every integrable
function f : Rn → R,∫

Rn
f(x) dx = n voln(K0)

∫ ∞
0

rn−1

∫
∂K0

f(rx) dµK0(x) dr,

see [60, Proposition 1]. We apply this transformation formula to f(x) = 1K0(x)|〈x, θ〉|2q.
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Then, we get∫
Rn
|〈x, θ〉|2q dνK0(x) =

∫
Rn
|〈x, θ〉|2q 1K0(x)

voln(K0)
dx

= n

∫ ∞
0

rn−1

∫
∂K0

|〈rx, θ〉|2q1K0(rx) dµK0(x) dr

= n

∫ ∞
0

rn−1+2q

∫
∂K0

|〈x, θ〉|2q1[0,1](r) dµK0(x) dr

= n

∫ 1

0

rn−1+2q

∫
∂K0

|〈x, θ〉|2q dµK0(x) dr

=
n

n+ 2q

∫
∂K0

|〈x, θ〉|2q dµK0(x),

(6.4)

which completes the argument.

Remark 13. The quantitative dependence of the constant cn,q = n/(n+ 2q) on n and
q is of importance on its own. This will become clear in the proofs of Lemma 6.9 and
Lemma 6.12.

Lemma 6.8. For every c ∈ (0,∞),

‖〈·, θ〉‖Lψ2 (µcBn1
) = c‖〈·, θ〉‖Lψ2 (µBn1

). (6.5)

Proof. It is well known that µcBn1 coincides with the normalization of the Hausdorff
measure on c Sn−1

1 , see [65]. Then, for t > 0 large enough,∫
c Sn−1

1

exp
(
(〈x, θ〉/t)2

)
dµcBn1 (x) =

1

Hn−1
cSn1

(cSn−1
1 )

∫
c Sn−1

1

exp
(
(〈x, θ〉/t)2

)
dHn−1

cSn1
(x)

=
cn−1

Hn−1
cSn1

(cSn−1
1 )

∫
Sn−1
1

exp
(
(c〈x′, θ〉/t)2

)
dHn−1

Sn1
(x′)

=

∫
Sn−1
1

exp
(
(c〈x′, θ〉/t)2

)
dµBn1 (x′) ,

where we used the homogeneous of degree n− 1 of the Hausdorff measure in the last
step. This implies the claim by definition of the ψ2-norm.

Lemma 6.9. For every θ ∈ Rn,

√
n‖〈·, θ〉‖Lψ2 (µBn1

) ≤
√

6‖θ‖∞.

Proof. The proof follows the idea of the one in [22] (see also page 305 in [28]). Let
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q ∈ N ∪ {0}. Using the unconditionality of Bn1 , expanding the power of the scalar
product yields∫

Rn
|〈x, θ〉|2q dνBn1 (x) =

∑
qi∈N∪{0},

∑n
i=1 qi=q

(
2q

2q1, . . . , 2qn

) n∏
i=1

θ2qi
i

∫
Rn

n∏
i=1

x2qi
i dνBn1 (x),

where we used the standard notation for multinomial coefficients. Moreover, whenever
we have q1 + . . .+ qn = q, it holds∫

Rn

n∏
i=1

x2qi
i dνBn1 (x) =

n!

(n+ 2q)!

n∏
i=1

(2qi)! .

For the sake of completeness, we prove this claim by induction. Note that it is equivalent
to ∫

Bn1

n∏
i=1

x2qi
i dx =

2n

(n+ 2q)!

n∏
i=1

(2qi)! .

The equality holds for n = 1, indeed both sides are equal to 2/(1 + 2q1). Suppose that
it holds in dimension n and for exponents 2q1, . . . , 2qn whose sum is equal to 2q. We
want to prove it in dimension n+ 1 adding a new exponent 2qn+1:∫

Bn+1
1

n+1∏
i=1

x2qi
i dx1 . . . dxn+1 =

∫ 1

−1

∫
(1−|xn+1|)Bn1

n∏
i=1

x2qi
i dx1 . . . dxn x

2qn+1

n+1 dxn+1

=

∫ 1

−1

∫
Bn1

(1− |xn+1|)n+2q

n∏
i=1

y2qi
i dy1 . . . dyn x

2qn+1

n+1 dxn+1

=
2n

(n+ 2q)!

n∏
i=1

(2qi)!

∫ 1

1

(1− |xn+1|)n+2qx
2qn+1

n+1 dxn+1

=
2n+1

(n+ 2q)!

n∏
i=1

(2qi)!

∫ 1

0

(1− z)n+2qz2qn+1 dz

=
2n+1

(n+ 2q)!

n∏
i=1

(2qi)!
(n+ 2q)!(2qn+1)!

(n+ 2q + 2qn+1 + 1)!

=
2n+1

(n+ 1 + 2
∑n+1

i=1 qi)!

n+1∏
i=1

(2qi)!,

which proves the claim.
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Now, if we set α :=
√
n‖θ‖∞, then it holds that

∏n
i=1 θ

2qi
i ≤ α2qn−q. This yields

∫
Rn
|〈x, θ〉|2q dνBn1 (x) ≤

∑
qi∈N∪{0},

∑n
i=1 qi=q

(
2q

2q1, . . . , 2qn

)
α2q

nq
n!

(n+ 2q)!

n∏
i=1

(2qi)!

=
∑

qi∈N∪{0},
∑n
i=1 qi=q

n!(2q)!α2q

(n+ 2q)!nq

=

(
n+ q − 1

n− 1

)
n!(2q)!α2q

(n+ 2q)!nq
,

where in the last equality we used that the cardinality of the set of indices in the sum
is precisely

(
n+q−1
n−1

)
. Using Equation (6.4), we get∫

Rn
|〈x, θ〉|2q dµBn1 (x) =

n+ 2q

n

∫
Rn
|〈x, θ〉|2q dνBn1 (x)

≤
(
n+ q − 1

n− 1

)
(n− 1)!(2q)!α2q

(n+ 2q − 1)!nq

=
1

(n+ q) · · · (n+ 2q − 1)

(2q)!α2q

q!nq

≤ q!

2

(2α

n

)2q

,

where for the last step we used the inequality 2(2q)! ≤ (2qq!)2, which can be checked by
induction on q ∈ N, and the fact that nq ≤ (n+ q) · · · (n+ 2q − 1). When |t| < 1/(2α),
we have ∫

Rn
exp
(
(tn〈x, θ〉)2

)
dµBn1 (x) = 1 +

∞∑
q=1

t2qn2q

q!

∫
Rn
|〈x, θ〉|2q dµBn1 (x)

≤ 1 +
1

2

∞∑
q=1

(2tα)2q

= 1 +
1

2

( 1

1− 4t2α2
− 1
)
.

If t0 is such that the last expression equals 2 when evaluated in t = t0, we get that

n‖〈·, θ〉‖Lψ2 (µBn1
) ≤ 1/t0 =

√
6α =

√
6
√
n‖θ‖∞,

which completes the proof.
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Proof of Proposition 6.6. From Lemma 6.7 and the definition of ‖〈·, θ〉‖Lψ2 (µV ), we get∫
∂K

exp
(
〈x, θ〉2/‖〈·, θ〉‖2

Lψ2 (µV )

)
dµK(x)

= 1 +
∞∑
q=1

1

q!‖〈·, θ〉‖2q

Lψ2 (µV )

∫
∂K

|〈x, θ〉|2q dµK(x)

≤ 1 +
∞∑
q=1

1

q!‖〈·, θ〉‖2q

Lψ2 (µV )

∫
∂V

|〈x, θ〉|2q dµV (x)

= 2.

In particular, we have
‖〈·, θ〉‖Lψ2 (µK) ≤ ‖〈·, θ〉‖Lψ2 (µV ).

Moreover, from Lemma 6.8 and Lemma 6.9, we obtain

‖〈·, θ〉‖Lψ2 (µV ) =

√
6

2
n‖〈·, θ〉‖Lψ2 (µBn1

) ≤ 3
√
n‖θ‖∞.

The proof is thus complete.

Remark 14. Let us emphasize that we decided to use a different approach than the one
used in Lemma 6.12 below in order to gain a comparison between the cone measure
of an isotropic unconditional convex body and the cone measure of a suitably rescaled
ball with respect to the 1-norm. Also, we have made explicit every constant in our
computations.

6.5 Proof of the unconditional case

Recalling the bound for the isotropic constant presented in Lemma 6.4 (a), our proof
is naturally divided into two parts. The first is concerned with a lower bound on the
volume radius of our random polytope.

In the following Lemma, part (a) will be applied to the case of an isotropic uncon-
ditional convex body, while part (b) will be used for the general case of an isotropic
convex body.

Lemma 6.10. Let K ⊂ Rn be a convex body with voln(K) = 1 and KN the symmetric
convex hull of N independent random points on ∂K with distribution µK.
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(a) There exist constants c1 ∈ (1,∞) and c2 ∈ (0,∞) such that the event that

voln(KN)1/n ≥ c2 min

{√
log(2N/n)

n
, 1

}
has probability greater than 1− exp(−n) when N ≥ c1n.

(b) There exist constants c1 ∈ (1,∞) and c2 ∈ (0,∞) such that the event that

voln(KN)1/n ≥ c2 LK

√
log(2N/n)

n

has probability greater than 1− exp(−c1

√
N) when n ≤ N ≤ e

√
n.

Proof. Let us start with (a). We use a coupling argument that was introduced in [48].
Let Y1, . . . , YN be independent random points distributed according to the uniform
distribution on K, and define the symmetric random polytope

K̃N := conv(±Y1, . . . ,±YN).

It is proven in [33, Proposition 2.2] that if N ≥ c1n, then

voln(K̃N)1/n ≥ c2 min

{√
log(2N/n)

n
, 1

}
with probability greater than 1 − exp(−n). For i ∈ {1, . . . , N}, consider the random
variables

Xi :=


Yi
‖Yi‖K

if ‖Yi‖K 6= 0,

y ∈ ∂K if ‖Yi‖K = 0 ,

where y is a fixed but arbitrary point on ∂K. By definition, the points X1, . . . , XN are
independent and belong to ∂K. Moreover, the push-forward probability measure of
the uniform distribution νK under the map K 3 y 7→ y/‖y‖K ∈ ∂K is exactly the cone
probability measure µK on K. Indeed, for any Borel set B ⊂ ∂K,

P(Xi ∈ B) = P(Yi ∈ (0, 1]B) =
voln((0, 1]B)

voln(K)
= µK(B).

Note also that it follows from the symmetry of K that if X ∈ ∂K, then also −X ∈ ∂K.
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In particular, the symmetric random polytope

KN := conv(±X1, . . . ,±XN)

has the desired distribution. Moreover, by construction KN(ω) ⊇ K̃N(ω) for every
realization ω ∈ Ω, so that

voln(KN)1/n ≥ voln(K̃N)1/n ≥ c2 min

{√
log(2N/n)

n
, 1

}
with probability greater than 1− exp(−n).

The proof of part (b) is similar. The only change is that for the lower bound for
voln(K̃N)1/n instead of [33, Proposition 2.2] we now use [34, Theorem 4.1] in the form
of [28, Theorem 11.3.7].

Now that we have established the ψ2-estimate in the previous section, we can proceed
to bound the second quantity that we need in view of Lemma 6.3 (a).

Lemma 6.11. Let K ⊂ Rn be an isotropic unconditional convex body. For N > n let
X1, . . . , XN be independent random points distributed according to the cone measure on
∂K. Then there exist constants c, C ∈ (0,∞) such that with probability greater than
1− exp(−cn log(2N/n)) it holds

max
ε1,...,εn=±1

‖ε1Xi1 + . . .+ εnXin‖1 ≤ C n3/2
√

log(2N/n)

for all subsets of vertices {Xi1 , . . . , Xin} ⊂ {±X1, . . . ,±XN}.

Proof. We start considering the points X1, . . . , Xn. Fix a direction θ ∈ Sn−1
∞ and an

n-tuple of signs ε = (ε1, . . . , εn) ∈ {−1,+1}n. For every i ∈ {1, . . . , n}, we define the
random variables Yi := 〈εiXi, θ〉. Note that by Proposition 6.6, ‖Yi‖Lψ2 (µK) ≤ 3

√
n so

that we can apply linearity and the ψ2-version of Bernstein’s inequality (see Lemma 6.3
(a)) in order to get

P
(
|〈ε1X1 + . . .+ εnXn, θ〉| > tn

)
≤ 2 exp(−t2/72), (6.6)

for every t > 0. Now we notice that

‖ε1X1 + . . .+εnXn‖1 = sup
θ∈Sn−1
∞

|〈ε1X1 + . . .+εnXn, θ〉| = max
θ∈{−1,1}n

|〈ε1X1 + . . .+εnXn, θ〉|.
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Hence, we obtain

P

(
max

ε∈{−1,+1}n
‖ε1X1 + . . .+ εnXn‖1 > tn

)
= P

(
max

ε,θ∈{−1,1}n
|〈ε1X1 + . . .+ εnXn, θ〉| > tn

)
≤ 4nP

(
|〈ε1X1 + . . .+ εnXn, θ〉| > tn

)
≤ exp

(
(2n+ 1) log 2− t2/72

)
,

(6.7)

where we used the union bound together with the fact that, due to the unconditionality
of the Xi’s, |〈ε1X1 + . . .+ εnXn, θ〉| has the same distribution for every choice of sign
vectors ε and θ. We now consider all the subsets {Xi1 , . . . , Xin} ⊂ {±X1, . . . ,±Xn}
of cardinality n. Since there are

(
2N
n

)
≤ (2eN/n)n = exp(n log(2N/n)) of such subsets,

we can set t := C
√
n log(2N/n), with C ∈ (0,∞) sufficiently large, and use again the

union bound to get

P

(
max

{Xi1 ,...,Xin}⊂{±X1,...,±XN}
max

ε∈{−1,+1}n
‖ε1Xi1 + . . .+ εnXin‖1 > Cn3/2

√
log(2N/n)

)
≤ exp

(
(2n+ 1) log 2− (C2/72− 1)n log(2N/n)

)
≤ exp

(
− cn log(2N/n)

)
,

(6.8)

which implies the statement by taking the complementary event.

We are now prepared to complete the proof of Theorem 6.1.

Proof of Theorem 6.1. By Remark 9 the conclusion is clear ifN ≤ c1n for some constant
c1 ∈ (0,∞).

Let us next assume that there are constants c1, q ∈ (0,∞) such that c1n ≤ N ≤ ean.
Since every facet of KN is obtained as the convex hull of a subset (of cardinality n
with probability one) of all the vertices, Lemma 6.11 together with Lemma 6.5 (a)
immediately gives that

1

voln(KN)

∫
KN

‖x‖1 dx ≤ (1 +
√

2)C
√
n log(2N/n) (6.9)

with probability greater than 1− exp(−cn), where c, C ∈ (0,∞) are the same constants
as in Lemma 6.11. Combining this with Lemma 6.4 (a) and Lemma 6.10 (a), we get
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that

LKN ≤
c3

n

1

voln(KN)1/n

1

voln(KN)

∫
KN

‖x‖1 dx

≤ c3 · c−1
2 ·

1

n

√
n

log(2N/n)
· (1 +

√
2)C

√
n log(2N/n)

= (1 +
√

2) c3 · c−1
2 · C

(6.10)

with probability greater than 1− c4 exp(−c5n).
Finally, we treat the case where N ≥ ean for some constant a ∈ (0,∞). In this

case Lemma 6.10 (a) yields that voln(KN)1/n ≥ c2 for some constant c2 ∈ (0,∞)

with probability at least 1− e−n. In addition, by unconditionality of K it holds that
K ⊂ (

√
6/2)nBn1 (see, e.g., [28, p. 306]), hence

1

voln(KN)

∫
KN

‖x‖1 dx ≤
√

6/2

voln(KN)

∫
KN

n‖x‖KN dx ≤
√

6

2
n.

Thus, Lemma 6.4 (a) yields the bound

LKN ≤
c

n

1

voln(KN)1/n

1

voln(KN)

∫
KN

‖x‖1 dx ≤ c

n

1

c2

√
6

2
n =

√
6

2

c

c2

with probability at least 1− e−n. The proof is thus complete.

6.6 Proof of the general case

In this section we give a proof of Theorem 6.2. We start with the following ψ1-estimate.

Lemma 6.12. Fix an isotropic convex body K ⊂ Rn and θ ∈ Sn−1. Then there exists
an absolute constant c ∈ (0,∞) such that ‖〈·, θ〉‖Lψ1 (µK) ≤ cLK.

Proof. We recall that [28, Lemma 2.4.2] implies that

‖〈·, θ〉‖Lψ1 (µK) ≤ c sup
p≥1

‖〈·, θ〉‖Lp(µK)

p

for some absolute constant c ∈ (0,∞). Moreover, from (6.4) we deduce that

‖〈·, θ〉‖Lp(µK)

p
=
(n+ p

n

)1/p‖〈·, θ〉‖Lp(νK)

p
,
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where νK is the uniform distribution on K. This implies

‖〈·, θ〉‖Lψ1 (µK) ≤ c sup
p≥1

(n+ p

n

)1/p

sup
p≥1

‖〈·, θ〉‖Lp(νK)

p
≤ C‖〈·, θ〉‖Lψ1 (νK)

for another constant C ∈ (0,∞), since the first supremum is bounded by 2. However,
‖〈·, θ〉‖Lψ1 (νK) is bounded by a constant multiple of LK , since every isotropic log-concave
measure is known to be a so-called ψ1-measure (this is essentially a consequence of
Borell’s lemma, see [28, page 81]).

In a next step we observe that Lemma 6.10 (b) yields a lower bound for voln(KN)1/n,
which depends on the isotropic constant LK of K whenever N ≤ e

√
n. In addition,

Lemma 6.11 needs an adaptation. Especially, while in the unconditional case we could
work with the 1-norm, here we have to deal with the 2-norm instead. Such a change
causes the use of a ψ1-estimate, which leads to a different kind of Bernstein inequality
from the one used with the ψ2-estimate. Eventually, this leads to the appearance of an
additional logarithmic factor in our final result. Moreover, we have to make explicit
now the dependence on LK , since for a general isotropic convex body we do not know
whether or not this quantity is bounded by an absolute constant, as explained in the
introduction. In the end this will allow us to bound LKN independently of LK if
N ≤ e

√
n.

Lemma 6.13. Let K ⊂ Rn be an isotropic convex body. For N > n let X1, . . . , XN be
independent random points distributed according to the cone measure on ∂K. Then there
exist constants c, C > 0 such that with probability greater than 1− exp(−cn log(2N/n))

it holds
max

ε1,...,εn=±1
‖ε1Xi1 + . . .+ εnXin‖2 ≤ CLKn log(2N/n)

for all subsets of vertices {Xi1 , . . . , Xin} ⊂ {±X1, . . . ,±XN}.

Proof. The proof follows the one of Lemma 6.11 and we shall indicate the necessary
modifications.

LetX1, . . . , Xn be independent random points with distribution µK and, for θ ∈ Sn−1

and ε1, . . . , εn ∈ {−1,+1}, put Yi := 〈εiXi, θ〉 for any i ∈ {1, . . . , n}. We start by
noticing that Lemma 6.12 implies that if K ⊂ Rn is an arbitrary isotropic convex
body, we have that ‖Yi‖Lψ1 (µK) ≤ cLK for some absolute constant c ∈ (0,∞) and any
i ∈ {1, . . . , n}.

Thus, we can apply the ψ1-version of Bernstein’s inequality (Lemma 6.3 (b)), which
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implies that (6.6) needs to be replaced by

P
(
|〈ε1X1 + . . .+ εnXn, θ〉| > scLKn

)
≤ 2 exp(−sn/6),

for some parameter s > 1 to be chosen later. Taking the union bound, we get

P
(

max
ε∈{−1,+1}n

|〈ε1X1 + . . .+ εnXn, θ〉| > scLKn
)
≤ exp

(
(n+ 1) log 2− sn/6

)
.

Consider now a 1
2
-net N of Sn−1 with cardinality at most 5n (the existence of such a

net is ensured by [8, Lemma 5.2.5], for example). Applying the union bound once more
leads to

P
(

max
θ∈N

max
ε∈{−1,+1}n

|〈ε1X1+. . .+εnXn, θ〉| > scLKn
)
≤ exp

(
(n+1) log 2+n log 5−sn/6

)
.

For any θ ∈ Sn−1 there exist a sequence (θj)j∈N ∈ N N and coefficients δj ∈ [0, 21−j]

such that θ =
∑∞

j=1 δjθj (see [3]). In particular, this implies

P
(

max
θ∈Sn−1

max
ε∈{−1,+1}n

|〈ε1X1 + . . .+ εnXn, θ〉| > 2scLKn
)

≤ P
(

max
θ∈Sn−1

max
ε∈{−1,+1}n

∞∑
j=1

δj|〈ε1X1 + . . .+ εnXn, θj〉| > 2scLKn
)

≤ P
(

max
θ∈N

max
ε∈{−1,+1}n

|〈ε1X1 + . . .+ εnXn, θj〉| > scLKn
)

≤ exp
(
(n+ 1) log 2 + n log 5− sn/6

)
.

Notice that

max
θ∈Sn−1

|〈ε1X1 + . . .+ εnXn, θ〉| = ‖ε1X1 + . . .+ εnXn‖2.

Hence, applying a union bound and taking s := 42 log(2N/n), (6.8) gets replaced by

P

(
max

{Xi1 ,...,Xin}⊂{±X1,...,±XN}
max

ε∈{−1,+1}n
‖ε1Xi1 + . . .+ εnXin‖2 > 84cLKn log(2N/n)

)
≤ exp

(
− n log(2N/n)

)
.

This completes the proof.

Proof of Theorem 6.2. Again, the proof follows closely the one of Theorem 6.1 and we
shall indicate the necessary modifications.
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The regime where N ≤ cn is trivial by Remark 9. Next, as long as N ≤ e
√
n we

combine this time Lemma 6.13 with Lemma 6.5 (b) to see that (6.9) gets replaced by

1

voln(KN)

∫
KN

‖x‖2
2 dx ≤ 2C2L2

K log(2N/n)2,

which holds with probability greater than 1 − exp(−c1n), where C ∈ (0,∞) is an
absolute constant. Combining this with Lemma 6.4 (b) and Lemma 6.10 (b), we
deduce that (6.10) has to be replaced by

L2
KN
≤ 1

n voln(KN)2/n

1

voln(KN)

∫
KN

‖x‖2
2 dx

≤ 1

n

n

c2
2 log(2N/n)L2

K

C2L2
K log(2N/n)2 ≤ C2

c2
2

log(2N/n),

which holds with probability greater than 1− c3 exp(−c4n)− exp(−c5

√
N). The proof

is thus complete.
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