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Abstract

As a relatively new imaging modality, photoacoustic imaging is on the verge
of being established as a clinical diagnosis tool. One promising application
is the characterization of atherosclerotic plaques to identify an optimal treat-
ment. While sound-scattering medium heterogeneities of biological tissues are
the foundation of ultrasound imaging, the same kinds of tissues are usually
assumed to be acoustically homogeneous in photoacoustic imaging. Ignoring
these heterogeneities in a photoacoustic reconstruction causes artifacts. In
this dissertation, a model based reconstruction algorithm is introduced that
considers acoustic scattering. The method returns accurate results but also
requires exact background information. In the progress of the dissertation,
artifacts associated with heterogeneous media are classified as either aberra-
tion artifacts, which blur the image and are caused by refraction, or as clutter
artifacts, which appear as disturbing structures in the image and are caused by
reflection. A reconstruction algorithm based on a paraxial wave propagation
model is introduced that compensates for aberration artifacts. The algorithm
requires knowledge about the underlying heterogeneity distribution, but it is
shown that imperfect heterogeneity data derived from reflection mode ultra-
sound imaging are sufficient. To address the suppression of clutter, a third
algorithm is introduced, which derives information about the heterogeneities
directly from reflection mode ultrasound measurements. Combining the two
methods results in a powerful and yet computationally efficient reconstruction.
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1
Introduction

Photoacoustic (PA) imaging takes advantage of the photoacoustic effect for the
visualization of optical object properties by the detection of acoustic waves.
Alexander Graham Bell was the first person to report the photoacoustic effect
in 1881, when he observed the generation of sound during the modulated
exposure of a metal plate to direct sun light [25].

If an optically absorbing object is exposed to temporally varying light intensi-
ties, the absorption forces an expansion, depending on the thermal properties
of the object and the expansion is followed by a compression after the exposure.
This deformation is passed to the surrounding medium and propagates as an
acoustic wave, where the amplitude of the wave reflects the optical absorption
properties of the object.

In the last decades, photoacoustic imaging has evolved as one of the fastest
developing imaging techniques in biomedical imaging, with various appli-
cations and techniques [110]. The huge interest in this modality is usually
explained by the fact that photoacoustic imaging manages to comprise the
benefits of optical imaging in terms of image contrast and the benefits of
ultrasound imaging in terms of penetration depth [119,125].

Overviews about modern photoacoustic setups, methods and algorithms can
be found in [19, 92, 177, 178, 186]. Clinical applications range over a large
set of disciplines, such as oncology [52,61,72,106,123,166], rheumatology
[117,175,184], ophthalmology [39,113,197], dermatology [56,135,140] and,
on a preclinical level, neurology [66,112,189]. In this dissertation, another
application will be addressed that has recently drawn a strong interest in PA
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research: the detection and classification of arteriosclerosis in the carotid
artery [12,50,104]. Exploiting the spectroscopic property of PA imaging by
applying different laser wavelengths for excitation, there is a high potential
of determining compositions of atherosclerotic plaques, which is believed to
provide evident information about the probability of plaque to rupture and to
cause severe brain damage [65]. A major challenge of carotid artery imaging is
the required penetration depth [12,50,104]. Besides hardware based system
optimization, very accurate reconstruction algorithms are substantial to achieve
this goal.

PA imaging is often described as a modality that benefits from the low impact
of ultrasound scattering. This assumption is usually taken as axiomatic and
most standard reconstruction algorithms assume constant acoustic properties
[16,33,101,185]. Compared to pure optical methods, which definitely suffer
from diffuse scattering more than ultrasound generated by the PA effect, this
assumption might be correct. Ultrasound scattering is reported to be up to
three orders of magnitude weaker than optical scattering [186, p. 2]. However,
in the light of ultrasound imaging being a modality that intrinsically depends
on the presence of acoustic heterogeneities in biological tissue and which
particularly images these heterogeneities, the question arises, if the neglection
of acoustic scattering in PA imaging is always justified.

Most of the image distortions and artifacts related to acoustically hetero-
geneous media using a linear array PA systems can be classified as “clutter”,
reflection artifacts, and as “aberration”, or refraction artifacts. Clutter, or back-
scatter artifacts, arise from PA waves that propagate into the tissue and are
back-reflected by acoustic heterogeneities. The skin is a crucial source of clutter
as the light intensity at the skin surface is very strong and, simultaneously,
the absorption in skin is usually higher than for most other tissues [73,143].
Adjacent to clutter, aberrations are artifacts associated with wave refraction
during the transmission of PA waves through acoustic heterogeneities towards
the sensor. This process can be assigned to variations in the speed of sound
(SOS), which cause wave front distortions. As a result, the structures in the PA
reconstruction are misplaced and deformed [44,182].

The main goal of this thesis is to establish a thorough understanding of the
physical processes related to artifacts that are caused by acoustically heteroge-
neous media in PA imaging and to introduce novel methods to reduce them.
This can also be viewed as the task to consider the acoustic medium properties
in the forward imaging model in order to account for these properties during
the inversion of the model. All considerations in this dissertation refer to
applications using linear array sensors. While PA imaging in full-view systems
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CHAPTER 1. INTRODUCTION

with a sensor area enclosing the imaged object have already been investigated
(see [10] for an overview), the impact of heterogeneities for linear arrays have
barely been addressed, even though most clinical applications require a setup
in reflection mode using linear arrays. The drawback of linear arrays compared
to a full-view sensor lies in the fact that the inversion is always associated with
an ill-posed problem due to a mathematically incomplete measurement data
set. Methods like time reversal [76–78] or half-time integration [11], which
are often employed for full-view inversions in heterogeneous media, do not
return exact results.

Besides the aim to conquer the issue of reconstruction in heterogeneous
media by employing an accurate wave model, an engineering-orientated view
will be taken on the topic in terms of applicability to actual imaging systems
that can operate in real time and do not provide any a-priori knowledge about
the heterogeneities. The problem of heterogeneous media is divided into the
main causes that actually harm image quality, which are clutter and aberrations.
Dedicated methods to account for the individual problems are introduced that
are designed to be accurate enough to account for the respective source of
problem but are still simple enough to be implemented in fast algorithms.

The dissertation is organized as follows: Chapter 2 introduces into the phys-
ical basics of the photoacoustic effect and common imaging methods. Also,
state-of-the-art photoacoustic reconstruction methods in homogeneous media
are presented. In addition, the topic of atherosclerotic diseases is stressed as
a high impact application that will be dealt with throughout the dissertation
and to which most experiments and simulations refer. While chapter 2 only
discusses reconstruction algorithms that assume acoustically homogeneous me-
dia, chapter 3 addresses the impact of acoustically heterogeneous propagation
media by a physical description of several PA wave propagation models in the
presence of scattering potentials. Based on a literature research, the two major
impacts of the acoustic heterogeneities, which are clutter and aberrations are
identified. Prior approaches in literature that address these causes of artifacts
are discussed. In chapter 4, a novel full wave inversion for PA measurements in
heterogeneous media is introduced. Afterwards, the advantages and disadvan-
tages of a full wave inversion are discussed and two approaches to account for
specific artifacts of heterogeneous media in PA imaging are presented, one for
clutter and one for aberrations. Artifacts that are associated with aberrations
are discussed in chapter 5 and a novel approach is introduced to account
for speed-of-sound variations in the medium during back propagation in an
efficient way, which is based on a paraxial wave propagation. The method is
applied to simulation data and experimental data and its accuracy compared

3



to conventional methods is discussed. A dedicated in-plane clutter reduction
is derived in chapter 6 as a numeric least-squares solution to the inversion of a
scatter model. Also, a simplified scatter estimation and subtraction method
is introduced. The performance of the clutter reduction approach is assessed
for both simulation data and experimental data and approaches to reduce
the computation time and to broaden the range of applicability are presented.
Finally, all results are summarized in chapter 7 and explicit conclusions are
drawn.
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2
Fundamental Photoacoustic Imaging

Principles

Generally speaking, the photoacoustic (PA) effect, or thermoacoustic effect,
describes the generation of an acoustic wave during the thermo-elastic ex-
pansion of matter due to the absorption of modulated electromagnetic radi-
ation. The photoacoustic effect was discovered by Alexander Graham Bell
in 1880 [25]. Bell observed that chopped sunlight generates sound waves
when being directed at optically absorbing materials. The first applications
were in the field of communication, where he used the PA effect to transmit
voice wirelessly [119]. After a long period with few publications in that topic,
Veingerov revived photoacoustic research in 1946 [176], when he determined
the composition of gases using the PA effect. The first time photoacoustics
were exploited for imaging was in 1994, when Kruger et al. [103] located
the sources of PA waves in a volume containing a lipid emulsion. Apart from
thermo-elastic expansion, other processes can also generate acoustic waves in
response to electromagnetic exposure, such as radiation force, vaporization
and material ablation [157]. However, since these effects play a minor role in
PA imaging [20,157], they are neglected here.

In clinical PA imaging, the photoacoustic effect is employed to create to-
mographic images of biological tissue by detecting an ultrasound wave that
is excited by the irradiation of pulsed, or sometimes modulated, laser light.
While irradiating the tissue, the light is scattered and absorbed. Due to diffuse
scattering in the tissue, the light is distributed throughout the image area. If
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2.1. THE PHOTOACOUSTIC EFFECT AND WAVE PROPAGATION

the light is absorbed by certain tissue components, the instantaneous heating
due to absorption forces an expansion of the absorbing component, according
to its thermo-elastic properties. This expansion leads to a local pressure rise,
the PA source, which initiates an acoustic wave. The amplitude of the acoustic
source is directly connected to the light intensity, the thermo-elastic properties
of the medium and the absorption coefficient of the absorbing component.
Detecting the sound wave as a function of time at multiple positions at the
surface of the observed tissue produces a set of measurement data that contains
information about the source distribution. The aim of photoacoustic imaging
is to retrieve the source distribution by finding an inverse description of this
measurement process.

In this chapter, the physical basics of optical light propagation, thermo-elastic
expansion and photoacoustic wave propagation are introduced, followed by a
discussion on the number of dimensions required for simulations and recon-
structions in photoacoustic imaging with linear arrays. Then, an introduction
into photoacoustic imaging principles and an overview of common systems
are given. In the end of the chapter, atherosclerosis in the carotid artery is
presented as a high impact application that will be dealt with throughout this
dissertation and the high potential of PA imaging in this field is emphasized.

2.1 The Photoacoustic Effect and Wave
Propagation

The process of converting radiation into mechanical waves is referred to as
thermo-elastic energy conversion. Besides the possibility of employing mi-
crowaves in the field of thermo-acoustics, the most common radiation is within
the visible or infrared light spectrum. This dissertation deals with pulsed laser
light emission in the near infrared range, as it is most applicable for imaging
biological tissue. Especially in the range between 700 nm and 900 nm, light
can penetrate deeply into the tissue. This wavelength range is also referred
to as the optical window of biological tissue [186]. On exposure to pulsed
laser light, biological tissue generates sound waves by the photoacoustic effect,
whose strength depends on the absorption properties of the respective tissue
components. This chapter will briefly address the optical path but will focus
on the acoustic part as it is more relevant for this dissertation. A more detailed
explanation of all involved optical processes can be found in [20].
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CHAPTER 2. FUNDAMENTAL PHOTOACOUSTIC IMAGING PRINCIPLES

2.1.1 Relevant Optical Processes
Photoacoustic imaging can generally be divided into a purely optical part de-
scribing the light generation, light propagation and absorption that generates
a temperature increase, and a purely acoustic part that consists of instant
acoustic sources due to the temperature rise generating acoustic waves, which
can be detected. This section deals with the optical part. The light propagation
is mainly determined by the tissue dependent scattering and absorption prop-
erties, where scattering is the dominant process. In biological tissue, the mean
free path length for scattering of infrared light is in the order of 0.1 mm, while
the mean free path length for absorption can reach up to 10-100 mm [178, p.2].
Absorption, however, is the relevant process for the photoacoustic effect as it
characterizes the amount of converted optical energy.

Light Generation One main characteristic of a photoacoustic imaging sys-
tem is the employed source of light. To convert optical energy into acoustic
energy via thermo-elastic expansion, the absorbed light is required to exhibit a
temporally varying intensity. Due to a low energy conversion efficiency of the
photoacoustic effect, a high light power is required to attain a sufficient signal-
to-noise ratio (SNR) of the detected acoustic signal. As a suitable solution to
produce high intensity modulated light, pulsed lasers are the most common
light source in PA imaging. Other light sources that produce light of modulated
intensity are less common, but have also been employed [6, 53, 138, 148].
Besides pulsed light, chirps have also been applied in combination with pulse
compression techniques to obtain a certain bandwidth, providing a spatial
resolution in the image [53,138,169]. However, short light pulses with a high
ratio of the generated acoustic signal amplitude to the applied optical energy
are most promising for biomedical applications. Therefore, this dissertation
focuses on pulsed lasers for light excitation.

Lasers are a special class of light sources that are mainly distinguished
from other light sources in their monochromacity, coherence length, beam
quality or intensity [97]. A basic laser setup consists of a coherent optical
amplifier that is embedded into an optical resonator. In the optical amplifier,
atoms are excited by the absorption of light. Besides absorption, two other
major interactions between atoms and photons exist, which are spontaneous
emission and stimulated emission. In case of a population inversion, which
occurs when the amount of excited atoms exceeds the amount of unexcited
atoms, stimulated emission becomes the dominant effect over absorption and
the medium acts as an amplifier. To achieve population inversion, external
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2.1. THE PHOTOACOUSTIC EFFECT AND WAVE PROPAGATION

energy needs to be deposited, which is called pumping. Common pumping
sources are other lasers, gas discharges or flash lamps. The optical resonator
stabilizes the laser light in terms of monochromacity and coherence. In the
simple case of a Fabry Perot Etatlon, it consists of two mirrors, between which
one specific mode can create a standing wave [125,146].

Common laser sources for PA imaging are solid state lasers, such as Q-
switched Nd:Yag lasers, which exhibit pulse energies of several joules at pulse
durations in the range of 5 ns [20, p.45]. However, Nd:Yag lasers operate at a
fixed wavelength of 1064 nm, which does not allow for spectral PA imaging. For
that reason they are often combined with optical parametric oscillators (OPO).
An OPO consists of an optically nonlinear crystal, which is embedded into an
optical resonator and can be seen as a laser system that is pumped by another
laser. Once the pump beam illuminates the nonlinear crystal, it interacts
with random fluctuations (quantum noise) of two other wavelengths that are
amplified by the resonator. The wavelengths of the generated light beams can
be tuned by the orientation of the nonlinear crystal within the resonator [125,
p.39f]. Besides Nd:Yag lasers, other laser sources have been employed for
photoacoustic imaging. Ti:Sapphire lasers [136,161], for example, exhibit a
low conversion efficiency but have the advantage to be tunable in the range of
700-1050 nm. Alexandrite lasers [52], moreover, are also tunable in a certain
wavelength range and can be Q-switched to produce pulses of equal energy as
Q-switched Nd:Yag lasers. The largest spectral range can be achieved by dye
lasers, which have also been employed for PA imaging [180,195]. However,
the specific dyes only cover a small range of wavelengths and need to be
exchanged to sweep through a larger spectral range [125].

Semiconductor lasers have recently been established as a cost and space
efficient alternative to the above mentioned lasers. In a semiconductor, light
is emitted when electrons in the conduction band recombine with holes in
the valence band. Even though semiconductor lasers cannot generally be
tuned over large wavelength ranges, their compactness and low costs allow
for the possibility to combine several laser diodes of different wavelengths.
While, initially, the pulse energy ranged within a few microjoules [58, p.25],
recent developments show that pulse energies beyond 1 mJ are actually feasible
[36,37]. In combination with very high pulse repetition frequencies that can
be attained, high amounts of light energy can be delivered in a short time
and the results of multiple pulses can be averaged. Even though, in terms of
laser safety regulations, it is more eligible to apply a small number of high
energetic pulses than to apply many low energetic pulses, diode lasers can
be employed for PA imaging even in vivo [100]. Another advantage of the
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CHAPTER 2. FUNDAMENTAL PHOTOACOUSTIC IMAGING PRINCIPLES

use of laser diodes is the ability to simultaneously apply multiple wavelengths,
which, in combination with coding strategies, can be exploited to increase the
signal-to-noise ratio (SNR) [21,22,24].

Recently, the use of light emitting diodes (LED) has been investigated in the
context of PA imaging [1–4]. While LEDs exhibit even lower pulse energies
than semiconductor lasers, they are even more cost efficient and can easily be
combined in LED arrays, which allows for a large illumination surface. This
concept has already been integrated in a commercial PA system by PreXion [1].

In most PA systems, the light is delivered to the tissue surface by optical wave
guides. In the case of laser diodes or LEDs, the light source can also directly be
attached to the skin [1], or can be integrated in the ultrasound transducer [36].
The general aim in the design of the optical path is to maximize the amount
of light delivered into the tissue, which depends on many factors, such as
the angle of incidence, optical refractive index of the optical components, the
illuminated area and distance to the image plane. The influence of such factors
has been investigated in [20].

Scattering While the light beam irradiates the tissue, it undergoes strong
scattering. On the one hand, this is beneficial in terms of distributing the light
all over the image area. On the other hand, strong scattering causes light to be
scattered out of the image plane. In most biological tissues, scattering is the
most dominant effect. The mean free path length is in the order of 0.1 mm.
The strongest scattering appears for structures of a size in the order of the
wavelength that have a strong mismatch in refractive index to the background.
The average refractive index varies between 1.34 to 1.62. The most exact
description of the scattering behavior of a spherical particle is provided by
Mie theory. However, for particles sizes that are significantly smaller than the
wavelength, Rayleigh theory becomes very accurate [178, p.17ff].

The most common quantity to describe the scattering behavior of a material
is the scattering coefficient µs, which is usually expressed in 1/cm. It can be
seen as total scatter cross sectional area per unit volume and relates to the
scattering cross section σs by [178]:

µs = nsσs, (2.1.1)

where nS is the volumetric scatterer density. Generally, µs only quantifies the
probability for a scattering event for a certain traveling distance, but does
not take into account the propagation direction. Hence, it is not sufficient to
estimate the scattering over depth, especially because scattering in biological
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tissue is not isotropic in general. Hence, for rough estimations and light
simulations, the reduced scatter coefficient µ′s is usually employed, which
provides the probability of a scattering event over depth by reducing the scatter
coefficient by an anisotropy factor g, which is also material dependent [20]:

µ′s = µs(1− g). (2.1.2)

The anisotropy factor takes into account the material’s scattering directivity
and is negative, if back scattering is the dominant process, and positive, if
forward scattering is the dominant process. If g equals 0, the scattering is
isotropic and the reduced scattering coefficient equals the scattering coefficient.
For biological tissue in the near infrared region, typical values for µsare around
100cm−1 and g is around 0.9 [186].

Absorption Apart from scattering, light incident on matter can also be ab-
sorbed, which means the light energy is transferred to other kinds of energy
such as thermal energy. While optical absorption is indispensable to generate
photoacoustic waves, strong absorption in the upper tissue layers is not desired,
because it can attenuate the light too much, such that lower structures are not
exposed to sufficient amounts of light.

The absorption quality of a certain material is usually quantified by the
absorption coefficient µa, which reflects the probability of photon absorption
per unit path lengths and can be referred to the particle’s cross section for
absorption σa by [178, p.5]:

µa = naσa, (2.1.3)

where na is the absorber density.
When light passes through absorbing material, it is attenuated and the light

intensity decreases with depth. The intensity profile over depth I(z) is usually
described by Beer’s law [178, p.5]:

I(z) = I0 exp(−µaz), (2.1.4)

where I0 is the initial intensity at z = 0 and µa is assumed constant within
[0, z]. If the material is both scattering and absorbing, the intensity decays
with the effective attenuation coefficient µe f f . A common approximation for
the effective attenuation coefficient in biological tissue is given by [162]:

µe f f =
q

3µa(µa +µ′s) (2.1.5)
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and can be derived by diffusion theory. Replacing µa by µe f f in 2.1.4 yields an
appropriate estimation of the light attenuation over depths in a homogeneous
medium.

So far it has been neglected that both µa and µ′s are actually functions of the
wavelength λ. The wavelength dependence of the absorption coefficient can
be exploited to characterize the tissue in multispectral PA imaging. However,
the pressure generated by the photoacoustic effect depends on two factors,
the absorption coefficient and the light intensity. The light intensity might
be estimated based on general tissue properties, but these can vary strongly
between different individuals, different locations in the body and even over
time [18,84]. Nevertheless, quantitative imaging and tissue characterization
are popular topics in PA research [193]. The most common approach is
the determination of blood oxygenation, which is feasible due to the strong
variations of the absorption spectrum of blood at different oxygenation levels.
Oxygenation is of high importance in diagnostics, for example in oncology,
because it reflects the metabolic state of lesions [59,107,186].

The mean free path length for absorption in biological tissue in the near
infrared region is about 10-100 mm and thus, absorption is generally less likely
than scattering. The strongest absorbers are hemoglobin, melanin and, with
increasing wavelengths, water [178].

2.1.2 Thermo-Elastic Energy Conversion
As mentioned before, absorption is the key interaction for photoacoustic energy
conversion. Absorbed light is converted into acoustic energy by thermo-elastic
expansion, which is elaborated in this chapter. For the following relations to
hold, two conditions regarding the light pulse lengths must be met, thermal
confinement and stress confinement. The entire physical model used in this
dissertation relies on short light pulses that are within thermal confinement
and stress confinement.

Thermal confinement requires the pulse length to be distinctly smaller than
the thermal relaxation time τth, which quantifies the thermal diffusion process:

τth =
d2

c

αth
, (2.1.6)

where dc is the characteristic size of the heated region in m and αth is the
thermal diffusivity in m2

s . Stress confinement, on the other hand, requires the
light pulse lengths to be distinctly smaller than the respective stress relaxation
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time τs, which quantifies the pressure propagation and is given by:

τs =
dc

c0
(2.1.7)

with c0 as speed of sound of the heated region. In principle, PA imaging is also
feasible with longer light exposure, if the light intensity varies, as described in
section 2.1.1, but for this, more complex thermodynamic processes need to
be considered in the imaging model. If the light pulse length is significantly
smaller than the thermal and stress relaxation time, the absorption of light
causes an instantaneous heating. The amount of light energy that is converted
into heat is characterized by the heating function H(r , t) in J

md s , where r is
the spatial coordinate in a generally d-dimensional space and t is the temporal
coordinate. The heating function can also be described as absorbed energy
density and is dependent on the optical properties of the tissue by

H(r , t) = µa(r )I(r , t). (2.1.8)

This becomes obvious considering that the energy that is gained by absorption
is exactly the energy that the light radiation loses. For a plane light wave, the
absorbed energy density can be seen as the negative spatial derivative of the
light intensity in z-direction:

H = −∂z I = µa I0 exp(−µaz) = µa I . (2.1.9)

Since the speed of light is several orders of magnitudes higher than the speed
of sound, the optical propagation occurs on time scales that are irrelevant
for the acoustic propagation. Thus, the light distribution is usually assumed
instantaneous and the light intensity I(r , t) can be separated into a spatial
part Ir(r ) and a temporal part η(t):

I(r , t) = Ir(r )η(t) (2.1.10)

with
´
ηd t = 1, such as in [177, p.29]. As η(t) describes a pulse it also

vanishes for t < 0 and after a finite value Tp, such that η(t) = 0, t /∈ [0, Tp].
The heating function can likewise be separated:

H(r , t) = Hr(r )η(t). (2.1.11)

For infinitely short laser pulses, the heating function can be modeled as η(t) =
δ(t) with δ being the delta distribution. In that case, the heating function
is directly proportional to an instantaneous pressure increase, which is also
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referred to as initial pressure distribution p0 and is the quantity of interest in
PA imaging [181, p.311]:

p0(r ) = ΓHr(r ). (2.1.12)

The proportionality coefficient Γ is called Grüneisen parameter and is defined
as:

Γ =
β c2

0

C
(2.1.13)

with β being the coefficient for thermal volume expansion, c0 being the back-
ground speed of sound and C being the heat capacity . The Grüneisen param-
eter, in general, also depends on space, which further complicates quantitative
imaging of µa. However, in contrast to the other tissue properties, Γ is also
temperature dependent. This fact has been exploited in several setups for
tissue characterization [155,170,171].

In summary, the instant pressure rise due to the absorption of short light
pulses can be related to the light properties and the tissue properties by:

p0(r ) = Γµa(r )Ir(r )

With a given initial pressure distribution p0(r ), the entire model reduces to
a completely acoustic model. Hence, if quantitative imaging of the actual
tissue parameters is not aimed for, the issue of reconstruction is an entirely
acoustic inverse problem that aims for retrieving an initial value to the pressure
wavefield that is characterized by p0(r ).

2.1.3 The Photoacoustic Wave Equation
This chapter aims for the derivation of a very general photoacoustic wave
equation considering various wave properties. However, an exhaustive de-
scription of all involved processes will not be given. Only wave properties
that play a role in this dissertation will be taken into account. Therefore, the
acoustic medium properties are reduced to heterogeneous scattering potentials.
Acoustic attenuation is not considered, which can be justified by the limited
penetration depth of PA imaging and, apart from small animal imaging appli-
cations, by relatively low acoustic frequencies. Also, visco-elastic effects and
nonlinear sound propagation will not be considered, such that the wavefield
can be expressed by the scalar pressure and linearized differential equations
can be used. The neglection of attenuation, nonlinear sound propagation and
viscosity are also discussed in [177, p.28].
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The photoacoustic wave equation originates in two first order differential
equations. The first one is the linear invicid force equation, which is also
refereed to as Euler equation and reflects a conservation of momentum [178,
p.288]:

∂t t u(r , t) = −ρ(r )−1∇p(r , t). (2.1.14)

Here, u ∈ Rd is the particle displacement with d being the number of con-
sidered space dimensions, ρ(r ) is the space dependent mass density and
p(r , t) is the acoustic pressure. The second first order equation is the thermal
expansion equation, which is sometimes referred to as generalized Hooke’s
law [178, p.287]:

∇ · u(r , t) = −κ(r )p(r , t) + βT (r , t) (2.1.15)

with κ being the medium’s compressiblity, β being the thermal coefficient of
volume expansion and T being the medium’s temperature.

Applying ∇· to (2.1.14) and ∂t t to (2.1.15), the redundant term ∇ · ∂t t u
can be substituted yielding the photoacoustic wave equation with respect to a
spatially varying compressiblity and mass density:

∇ · (ρ(r )∇p (r , t))−κ (r )∂t t p (r , t) = −β∂t t T (r , t). (2.1.16)

It can be very useful to express the scattering potentials compressiblity κ and
mass density ρ by their respective variations γκ and γρ, which are defined as
percental deviations from the respective steady parts κ0 and ρ0:

γκ = (κ(r )− κ0)/κ0
γρ = (ρ(r )−ρ0)/ρ(r )

. (2.1.17)

Note that γκ is normalized by the respective steady part, whereas γρ is nor-
malized by the respective alternating part, which ensures good readability
of the wave equation. The right hand side of (2.1.16) can be expressed in
terms of the heating function H(r , t), which has been introduced in section
2.1.2, because the heating function is directly proportional to the temperature
variation in time [178, p.287]:

H(r , t) = ρ0C∂t T (r , t) (2.1.18)

with C being the heat capacity. Substituting (2.1.17) and (2.1.18) into (2.1.16)
and using the steady part of the speed of sound c0 as:

c0 = (κ0ρ0)
−1/2 (2.1.19)
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the general photoacoustic wave equation in heterogeneous media reads as:
�

∆− c−2
0 ∂t t

�

p(r , t) = −βC−1∂t H(r , t)

+∇ ·
�

γρ(r )∇p(r , t)
�

+c−1
0 γκ(r )∂t t p(r , t).

(2.1.20)

In this notation, the equation appears as a wave equation with three source
terms, where the first source term reflects photoacoustic sources, which do
not depend on the acoustic wavefield p, but the two other source terms are
scattering sources according to compressiblity variations and mass density
variations, whose strength does depend on p.

To relate the photoacoustic wavefield p to the initial pressure distribution
p0, (2.1.12) is substituted into (2.1.20), yielding:

�

∆− c−2
0 ∂t t

�

p(r , t) = −c−2
0 ∂tη(t)p0(r )

+∇ ·
�

γρ(r )∇p(r , t)
�

+c−2
0 γκ(r )∂t t p(r , t).

(2.1.21)

To be exact, if Ht is not delta-like, meaning the laser pulse length is in the
order of the measured frequencies of the photoacoustic wave, p0 is not ex-
actly an initial source distribution, since the source is not an instantaneous
source. Therefore, p0 will from now on be referred to as photoacoustic source
distribution, reflecting the spatial distribution of a temporally varying acoustic
source.

In the frame of this thesis, this is the most general version of the photoa-
coustic wave equation. Subsequent chapters will deal with simplifications for
this wave equation that are supposed to be accurate enough to solve a certain
problem. In section 2.2 of this chapter, conventional reconstruction algorithms
neglecting scattering are presented. This can be a valid assumption in some
cases and is essential if low computational complexity is the most crucial factor
for an application. However, it is accordingly shown in chapter 3 that this
simplification can also harm image quality severely for strongly scattering
media, large source contrasts and for high penetration depths. Hence the
adjacent chapters deal with approaches to consider more accurate representa-
tions of the wave equation. In the end, the final aim of this dissertation is to
assess the required trade off between accuracy of the underlying model and
the complexity of computation and accuracy of reconstruction.

15



2.1. THE PHOTOACOUSTIC EFFECT AND WAVE PROPAGATION

2.1.4 The Number of Space Dimensions
In the previous sections, the general case of d space dimensions was always
considered. Most of the theorems in this dissertation basically apply to an
arbitrary positive number of considered dimensions higher than or often even
equal to one. The only requirement is that the hyperplane, on which the
signal is measured, is always defined in a space that has one dimension less
than the wavefield space. For the three-dimensional case, this would imply
a measurement on an area. In fact, two dimensional ultrasound detection
arrays exist and are a popular research topic [83]. The single elements of two
dimensional arrays can usually not be accessed simultaneously, due to the huge
amount of required cables. A two dimensional array with 256× 256 elements,
for example, would require 65536 coaxial connections to the ultrasound front
end electronics. A common way to circumvent this, is to apply pre-beamforming
where elements are already connected in groups [111]. Obviously, this implies
less flexibility in signal processing. Furthermore, as state of the art, most
imaging devices and setups exhibit one dimensional arrays, such as linear
arrays and many algorithms, even if applicable on three dimensions, only run
sufficiently fast on in two dimensions. For those reasons, this dissertation will
be restricted to the use of commonly used one-dimensional linear arrays. This
evokes the question, if an imaging model derived in two dimensions is suitable
for a sound propagation in three dimensions that is evaluated in one slice.
Obviously, this is not exactly the case. A two dimensional model matches a
three dimensional space, in which all quantities on the third dimension are
constant. In contrast, the acoustic wave in a linear-array excitation travels in
a three dimensional space with an elevational focus. Multiple effects, such
as effective attenuation, out-of plane scattering and elevational focus effects
cannot be considered in a two dimensional model. However, if the impact of
out-of-plane interactions with the imaging plane is small, a complete neglection
of the third dimension will significantly simplify the derivation of imaging
algorithms. Thus, the impact of a model that is derived in two dimensions
and applied to three dimensional acquisitions using an elevationally focused
linear array will be discussed in this chapter and an idea of the impact on
the image accuracy will be provided. In general, it can be stated that in
most of the cases, the simplification to a two dimensional model will yield
a reconstruction result that does not perfectly reflect the actual distribution,
but most of the algorithms should still return adequate data. Since, in the
frame of this dissertation, quantitative imaging is not aimed for, the problems
associated with the two dimensional modeling should generally be negligible.

16



CHAPTER 2. FUNDAMENTAL PHOTOACOUSTIC IMAGING PRINCIPLES

An extensive discussion on two dimensional modeling of PA imaging with
linear arrays can be found in [101].

The Impact of the Wave Front Shape

The shape of the wavefront that originates in a point source in time and space
is significantly different for three than for two space dimensions. The function
characterizing such a system response to a point source is called Green function
and can be employed to compute the solution to wavefields with arbitrary
source distributions. For the homogeneous wave equation, which implies the
left hand side of (2.1.21) equaling zero, the two dimensional free-field Green
function in time and space domain writes as [17]:

g
(2D)

0 =
Θ(tc0 − |r |)

2π
p

(tc0)2 − |r |2
(2.1.22)

with Θ being the Heaviside function defined as Θ(ξ) =

¨

0 , ξ < 0

1 , ξ≥ 0
. The

respective three dimensional Green function writes as [17]:

g
(3D)

0 =
δ(tc0 − |r |)

4π|r |
, (2.1.23)

where δ signifies the delta-distribution with δ(ξ) = ∂ξΘ(ξ). Both Green
functions equal zero for tc0 < |r |, equal infinity for tc0 = |r | and disappear for
(tc0 − |r |)→∞. Still, there are two major differences. At first, the amplitude
of a solution according to g(3D)

0 scales differently with distance from the source

position to the observing position than g
(2D)

0 . This is due to energy conservation,
since the energy is distributed either over a sphere or over a circle. Secondly,
g
(3D)

0 is instantly zero for tc > |r |, while g
(2D)

0 converges to zero but never
actually equals zero. This effects, for example, the mathematical validity of
time reversal algorithms, since waves that exist until infinity cannot correctly
be temporally reversed, since they cannot completely be measured [76].

The effect of deriving the model in two dimensions and applying it to a
measurement on one line in a three-dimensional space creates two effects
related to the wave fronts: The strength of sources in higher depths and the
spatial extent of these sources are both overestimated. The overestimated
amplitude could approximately be solved by a weighting of the reconstructed
sources. The overestimation in spatial extent might be mitigated by inverse
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filtering. However, this effect is less crucial for realistic band limited data, as
shown in Figure 2.1.1, where the wave fronts of a point source with Gaussian
pulse excitation of 10 MHz center frequency and 50% fractional bandwidth
are compared for a 2D and a 3D Green function.

position / mm
-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1
2D Green
3D Green

(a)

position / mm
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0
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(b)

Figure 2.1.1: Comparison of 2D and 3D Green functions where all functions
are normed to a maximum value of one; Green functions in 2D
and 3D (a), bandlimited Green functions with center frequency
of 10 MHz and a fractional bandwidth of 50%

The Impact of Elevational Directivity

An acoustic sensor with infinitely small extent into the neglected dimension
would have a constant directivity into this dimension. In the following, this
dimension will be referred to as the elevational dimension. To enable imaging
in one image plane and to increase sensitivity, an actual acoustic sensor exhibits
a large elevational extent and is usually combined with an acoustic lens, that
causes a focus effect into the image plane. This implies that at a specific
depth, most of the signal that can be detected actually originates from the
image plane. Apart from this focus depth, however, sources out of the plane
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can also contribute to the measured signal. For structures that are constant
along the respective wave fronts, this does not make a difference to a perfect
image slice. For structures that are differently shaped into elevational direction,
however, this implies that the reconstructed sources will always differ from
the actual distribution in the slice defining the image plane. A very important
problem associated with such out-of-plane sources in PA imaging is called
“direct clutter”. Direct clutter primarily occurs, when the incident light is
absorbed in the skin apart from the image plane and creates a wave traveling
elevationally towards the transducer, which is then misinterpreted as a source
from a certain depth in axial direction. Furthermore, the illumination can have
an impact on the sensitivity distribution in elevational direction. In [23], a
bending of the image plane towards the light source was observed for a single
sided illumination, which is due to the fact that higher fluences can overcome
the sensitivity decrease due to elevational focusing.

Figure 2.1.2: Sensitivity map of Fullphase transdcuer in dB [23] © 2017 IEEE

The same problem that was described here for acoustic sources holds for
acoustic scatterers. The effect of the elevational directivity cannot completely
be reversed, if no additional information about the elevational distribution
of sources or scatterers is provided. However, assuming a decently designed
acoustic lens and moderate variations of the source and scatterer distributions
in elevational direction close to the image plane, these effects can be assumed
not to affect the reconstructed image too much.
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2.2 Conventional Photoacoustic Reconstruction
Most PA reconstruction algorithms do not account for heterogeneous medium
properties. While the investigation of the impact of this simplification and a
demonstration of methods to conquer this problem will be the main purpose
of this dissertation, this chapter gives a quick overview over such standard
reconstruction algorithms that neglect acoustic heterogeneities. All listed
methods refer to a linear array imaging setup as depicted in Figure 2.2.1 and
are here generally described for an infinite aperture. They are divided into
algorithms in the time and space domain and algorithms in the frequency
domain.

p0(r)

c(r)

Ω

x

z

y

Figure 2.2.1: Imaging geometry with linear array sensor at z = 0 indicated by
gray rectangles, speed of sound distribution (gray) overlayed by
colored PA source distribution

2.2.1 Time-Space Domain Methods
The probably most intuitive and least model based approach to perform a PA
reconstruction is the delay-and-sum (DAS) method. In a DAS reconstruction,
the travel times ∆t from each pixel at (x , z) to each transducer element at
(x ′, 0) are defined by:

∆t =
Æ

(x − x ′)2 + z2/c0 (2.2.1)
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and the channel data are read out at the respective travel times followed by a
summation over all channels:

p(DAS)
0 (x , z) =

ˆ ∞
−∞

pm(x
′,∆t(x ′, x , z))d x ′ (2.2.2)

In this continuous definition of the linear array transducer, x ′ is the location
on the transducer, which is assumed to be infinite, while an actual transducer
is limited to a finite interval [x1, x2] and has discrete element positions. This
approach is very common and its accuracy and computational efficiency de-
pends strongly on the interpolation method that is employed to read out the
discrete data set at the continuous delays ∆t.

The model based representation of the delay and sum algorithm is known
as universal back propagation (UBP) and is based on an actual mathematical
inversion [185]:

p(UBP)
0 (x , z) =

ˆ
2
π

sin(φ)
1−∆t∂∆t

(x − x ′)2 + z2
pm(x

′,∆t)d x ′ (2.2.3)

where φ(x , x ′,z) is the angle from the detector element at (x ′, 0) to the recon-
structed pixel (x , z) and ∂∆t is the partial derivative operator with respect to
∆t. Comparing the UBP and DAS algorithms, the only difference is the term
2
π sin(φ) (1−∆t∂∆t)/

�

(x − x ′)2 + z2
�

, which can be rewritten as a convolu-
tion with pm (2.2.3). The mapping law between pm and p0 by ∆t, however,
is exactly the same. The mapping law for one explicit channel is depicted in
Figure 2.2.2, which yields the reconstruction of one axial line after lateral
integration.

2.2.2 Frequency Domain Methods
Besides the relation between measurement data and image data in time-space
domain there is also a relation in the temporal and spatial frequency domain,
which can be used to derive reconstruction algorithms. The relation, the
respective forward and inverse mapping laws as well as different approaches to
use the relation for reconstruction in the frequency domain are demonstrated
in the following.
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Figure 2.2.2: Correspondence of time domain data grids; the measurement
data grid (a) is mapped on the image data grid (b) followed by
an integration along the green lines to get the reconstruct the
pixels indicated by the green squares, all axes are normalized to
their maximum value

The K-Space Relation

A fundamental relation between the space of measurements and the object
space, or, in other words, the photoacoustic source distribution and the mea-
surement on a line sensor is referred to as k-space relation. It states that each
data point in the two dimensional spectrum of pm corresponds to one data
point in the two-dimensional spectrum of p0, which has been demonstrated in
various publications [15,16,187]:

pm(kx , kt) =
ktη(kt)
2c0κz

p0(kx , kt

q

1− k2
x/k

2
t ), (2.2.4)

where kt is the temporal wave number associated with the temporal angular
frequency ω by kt = ω/c0. The impulse response η(t), which has been
mentioned before in (2.1.21), is usually described as laser pulse shape but can
also include the system’s acousto-electric impulse response. There are some
alterations of this equation. Mostly, the impulse response is not considered,
which turns the problem into an initial value problem and in some approaches,
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a solid-wall boundary condition is applied instead of a matched boundary
condition, which leads to a relation with a cosine transform instead of a
Fourier transform [33,101,102].

The k-space relation in (2.2.4) describes a mapping law, where each position
in the two dimensional spatial frequency domain of p0 corresponds to one
position in the temporal-spatial frequency domain of pm, which makes it easy
to invert. In forward direction, the frequency grid of the image data is not
regular and the mapping law is described by:

(kx , kz) = (kx , kt

q

1− k2
x/k

2
t ). (2.2.5)

This can be inverted to read out the image frequencies in the measurement
frequency grid:

(kx , kt) = (kx ,
q

k2
x + k2

z ) (2.2.6)

which results in a regular grid of image data. Solving this relation for the
initial pressure distribution p0 on it’s regular spatial frequency grid (kx , kz),
yields:

p0(kx , kz) =
2c0kz

κtη (κt)
pm(kx ,

q

k2
x + k2

z ). (2.2.7)

This implies that the amplitude of reconstructed image data at the frequency
vector (kx , kz) depends on the spectrum of the impulse response at kt =
Æ

k2
x + k2

z . Figure 2.2.3 shows the frequency domain mapping. According to
the bending of the shape of the mapped grid, the frequency domain mapping
seems to resemble the mapping law in time-space domain in Figure 2.2.2, but
here, one position in the image data directly corresponds to one position in
the measurement data without the need for integration. The calculation of the
inverse of η(kt) is generally problematic, especially in the presence of noise
and thus, η(kt) is often approximated by 1. In chapter 4.2.2, a Wiener filter
approach to account for η is demonstrated instead.

Inversion Approaches

There are different approaches how to use the k-space relation for a PA recon-
struction. In the frame of this dissertation, they are categorized as “grid
mapping”-methods, a “non-uniform Fourier”-method and a “filtered back
propagation”-method.
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Figure 2.2.3: Correspondence of frequency domain data grids: the measure-
ment data grid (a) directly corresponds with the image data
grid (b), all axes are normalized to the temporal sampling wave
number k(s)t = 2π fs/c0 and only the positive sideband is shown.

Grid mapping methods perform an interpolation in the frequency domain.
The usual line of action is to assign values to p0 on an equidistant frequency
grid that are read out of pm on a curved grid according to the inverse mapping
law in (2.2.6). Such an approach was used in the inherent PA reconstruction
in the k-wave toolbox [172]. Theoretically, a mapping can also be applied the
other way around by making use of the forward mapping law in (2.2.5). The
line of action would be to map the values of pm from an equidistant grid to a
non-equidistant grid of p0 and to perform an interpolation that reads out these
scattered values on an equidistant grid (kx , ky). This approach rather matches
the illustration in Figure 2.2.3 but requires scattered interpolation while the
first approach only requires gridded interpolation. The key component of a
grid mapping is the interpolation approach, as a falsely interpolated frequency
generates errors throughout the image. In [88], a forward relation for discrete
data based on the mapping law in (2.2.6) is introduced and a regularized
truncated interpolation scheme to retrieve p0 is derived.

An alternative to grid mapping by interpolation is to numerically calculate
the respective Fourier integral onto a non-equidistant grid, which is here
referred to as non-uniform Fourier method:

p0(kx , kz) =
2c0kz

κtη (κt)

ˆ ∞
−∞

pm(kx , t)exp(−iκt t)d t (2.2.8)

24



CHAPTER 2. FUNDAMENTAL PHOTOACOUSTIC IMAGING PRINCIPLES

with the artificial temporal wave number:

κt :=
q

k2
x + k2

z . (2.2.9)

The manual computation of non-uniform Fourier integrals is time consuming,
since no fast Fourier methods can be applied. However, there are methods
to approximate non-uniform Fourier integrals with the temporal efficiency
of fast Fourier transforms (FFT), which are referred to as non-equispaced or
non-uniform fast Fourier transforms [51]. This approach has been used for PA
imaging by Haltmeier at al. [71]. Again, an alternative line of action to (2.2.8)
can be realized by using the forward k-space relation (2.2.4) and applying
an inverse Fourier transform in the direction of the non-equidistant spatial
frequency κz , defined as:

κz := kt

q

1− k2
x/k

2
t , (2.2.10)

which results in:

p0(kx , z) =
ˆ ∞
−∞

2c0κz

ktη(kt)
pm(kx , kt)exp(iκzz)dκz . (2.2.11)

This integral cannot be numerically calculated without interpolation. However,
it is possible to formulate an analytic solution to the Fourier integral by an
integral substitution with κz := kt

q

1− k2
x/k

2
t and with the differential element

dκz =
−ktp
k2

t−k2
x

dkt , which results in the filtered back propagation algorithm:

p0(kx , z) = −2c0

ˆ ∞
−∞

exp(iκzz)
η(kt)

pm(kx , kt)dkt . (2.2.12)

This resembles the Fourier synthetic aperture focusing technique (FSAFT) algo-
rithm described in [28], with the only difference that the filter term 2c0/η(kt)
was neglected there. This algorithm will be extended by an operation that
accounts for acoustically heterogeneous media during the back propagation in
chapter 5.

In terms of computational effort, Fourier methods can exploit the direct
correspondence of each pixel in the image space with one pixel in the measure-
ment space. The computationally intensive Fourier transforms can often be
computed by efficient fast Fourier methods. If, however, only a small region of
interest of the image is required for reconstruction, time-space domain meth-
ods can compute these efficiently by only evaluating the pixels in this region,
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while the evaluation of a small region of interest still requires all frequency
positions to be read out to avoid wrapping of image structures into the region
of interest. Also, time-space domain methods might easily be accelerated by
dedicated hardware, since each pixel can be computed in parallel.

2.3 Photoacoustic Imaging Systems
Like all imaging modalities, photoacoustic imaging requires a forward model
of the measurement process. This forward model relates the photoacoustic
source distribution to measurement data on the surface of the imaged object.
The task of reconstruction is to determine an inverse model to the forward
model that relates the measurements on the surface to a source distribution.
In general, a forward model is a simplified solution to the photoacoustic wave
equation (2.1.21). The corresponding inverse model needs to be discretized
and can then be implemented as a reconstruction algorithm. While such
reconstruction algorithms will be presented throughout this dissertation, this
chapter rather addresses the hardware components by providing an overview
about systems that were proposed in research as well as already available
commercial systems.

In general, a photoacoustic imaging system consists of a laser that emits
light, which illuminates the tissue of interest and an acoustic sensing device,
which can be a commercial ultrasound system with the ability to trigger the
laser or to be triggered by the laser. Sometimes, custom made ultrasound
probes and ultrasound systems are employed for dedicated PA imaging.

Many setups consist of a transducer surface that encloses the imaged area
completely or almost completely in the image plane [167,174,183]. Such a
full view setup is very fortunate in terms of reconstruction, but applications are
limited, since the light can only be completely distributed in the imaged area if
the imaged object is small or translucent. Hence, this technique is very common
in small animal imaging [29,62]. Another application is breast imaging, since
the female breast can be illuminated from all sides and is fairly translucent. A
review about PA breast imaging can be found in [124]. In other PA setups, an
actual signal processing based reconstruction does not need to be performed.
For example in photoacoustic microscopy, a small laser beam or the acoustic
receive focus scans the surface of the object and two dimensional or even three
dimensional distributions can directly be attained [135,189,190,195]. Lately,
non-contact imaging systems have been introduced, which, in contrast to
usually employed piezo-based transducers, measure vibrations on the surface
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using interferometry [145].
Apart from the aforementioned approaches, this dissertation focuses on

handheld linear arrays for combined photoacoustic and ultrasound (PAUS)
acquisition. The first real-time combined photoacoustic and ultrasound (PAUS)
system was reported in 2006 by Niederhauser et al. [133]. The system com-
prises a custom made ultrasound system and a Q-switched alexandrite laser
that generates laser pulses, which were delivered through an optical fiber and
a prism-mirror combination to the skin with a radiant exposure of 5mJ/cm².
Many comparable systems using a commercial ultrasound probe that is con-
nected to a light guide through which the laser is guided towards the tissue
with an illumination from both sides have been introduced. Most of those
systems use a Q-switched Nd:Yag laser [96] [60], sometimes in combination
with an OPO [70]. Such a setup has also been marketed as a commercial
system by VisualSonics (Fujifilm) [131].

Another approach is the so called PA enabling device (PED) that has been
proposed in [127]. The PED can be connected to an ultrasound probe and
the sound is reflected by an acoustic mirror by 90 degrees. The laser light is
transmitted through the acoustic mirror, such that the illumination appears
right in the ultrasound image plane.

In contrast to systems that employ commercial ultrasound probes, dedicated
transducers have been designed for photoacoustic imaging by several groups.
The MSOT system by Ntziachristos [30], for example, consists of a circularly
shaped array with a small laser window on top and is capable of deep tissue
imaging, such as imaging of the carotid artery in vivo [50]. Razansky et al.
proposed a 2D array with 256 elements and a solid angle view of 90° with
illumination through a hole in the transducer center. This system is able to
acquire multi-wavelengths 3D data in real time [46].

To enable the transition of PA imaging from a laboratory based research
modality to a clinical imaging tool, much effort has been dedicated to improve
costs and compactness of PA systems. One approach to achieve this is to move
from bulky solid state lasers to cheap and space efficient laser diodes. In
general, laser diodes do not exhibit as much pulse energy as solid state systems,
but this can partially be compensated for by higher repetition frequencies [58].
Earlier diode based systems [99] were developed further and have been proven
to enable real time PA imaging with laser diodes, such as the system in [36].
This system was developed in the frame of the 7th Framework research project
FULLPHASE and currently improved in the Horizon 2020 project CVENT. Some
of the experimental data in this dissertation was acquired with this or similar
systems exhibiting even higher pulse energies and multiple wavelengths.
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Other groups also suggested to move from laser diodes to LEDs as mentioned
in section 2.1.1. More details about some of the mentioned systems can be
found in [159, p.17ff].

2.4 Atherosclerosis as a High Impact
Application

Among the long list of clinical applications of PA imaging, the characterization
of atherosclerosis is an attractive candidate to significantly benefit from the
potential of photoacoustics. The term atherosclerosis describes the accumula-
tion of lipids and fibrous elements in arterial vessels. Its related complications
are considered as the most common cause of death in western societies [116].

Atherosclerotic lesions start as a fatty streak underlying the endothelium of
large arteries, which are the cell layers closest to the lumen. These are caused
by monocytes migrating into the intima and differentiating into macrophages
(see Fig. 2.4.1). Via scavenger receptors, the macrophages take up oxidized
low density lipoproteins which leads to esterification and hence the formation
of lipid droplets and foam cells that contain high amounts of cholesterol esters.
Smooth muscle cells are a key factor in the evolution of complex lipid lesions
as they migrate into the intima and contribute to foam cell formation by taking
up modified lipoproteins and by synthesizing extracellular matrix proteins to
form a fibrous cap enclosing the lipid pool. An evolving lipid pool leads to
narrowing of the vessel lumen, which can harm the perfusion of subsequent
organs. Acute cardiovascular events, however, rather result from rupture of
the atherosclerotic plaques [65], which can lead to myocardial infarction or
stroke, depending on where the lesion is located.

In this dissertation, atherosclerotic lesions in the carotid artery are in focus
as they are accessible to state of the art PA imaging systems [50]. Disruption
of plaques in the carotid artery can lead to occlusive thrombi in the brain and
cause strokes.

Besides genetic risk factors, such as hypertension, diabetes mellitus, the male
gender and the metabolic syndrome, certain environmental factors promote the
development of atherosclerotic lesions, which are smoking, the lack of exercise,
a high fat diet and certain infectious agents [65]. Medical treatments often
focus on lowering the risk of atherosclerosis, for example by treating hyper-
tension. Above that, antiplatelet drugs and statins are potential lipid lowering
drugs [95]. Statins can significantly prevent the progression of atherosclerosis
but not all patients respond to them [65]. Above medical interventions, en-
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Figure 2.4.1: The process of plaque generation, adapted from Fig. 2 and Fig.
3 in [65]

darterectomy or stenting are the most common surgical procedures, both of
which are highly invasive methods with a risk of peri-operative stroke. Hence,
surgery should only be applied if the risk of plaque disruption is high. However,
it is not always trivial to identify plaques that are prone to rupture [95].

Characterization of the involved constituents of the atherosclerotic lesions by
medical imaging might play a key role in the risk assessment of atherosclerotic
plaques. According to Lusis et al., efficient non-invasive diagnostic methods
are on high demand [116]. Angiography, for example, is a powerful tool
to localize a stenosis. However, it does not provide any information about
the cause of the stenosis or the composition of potential plaques. The same
holds for intravascular ultrasound (IVUS), which, nevertheless, can generate
highly resolved images of the arterial walls and can visualize highly echogenic
calcifications. In contrast, intravascular multi spectral optical coherence to-
mography (OCT) can be used for characterization of lipids but for the sake of
a penetration depth that is limited to approximately 1 mm. Both IVUS and
OCT are invasive methods. Non-invasive imaging modalities, such as magnetic
resonance imaging (MRI) and computed tomography (CT) usually require long
acquisition times and suffer from motion artifacts. Ultra-fast CT can minimize
motion artifacts but still does not provide information about the composition
of plaques [5].
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Photoacoustic imaging has the potential to be a cost efficient, real time
capable alternative to the above mentioned modalities and may provide both
morphological information and functional information about atherosclerotic
plaques. The penetration depth has been shown to be sufficient for the visual-
ization of the carotid artery [50]. Also, the possibility to acquire images with
a spectral information by tuning the laser wavelength is a unique feature of
PA imaging and has already been exploited to determine the composition of
human vessel walls with lipid cores ex vivo [5]. This allows for numerous
approaches to estimate the vulnerability of plaques. Plaque rupture is known
to be more likely to occur, if the lesion has a fibrous cap, a high concentration
of lipid-filled macrophages in the plaque’s shoulder region and a large necrotic
core [38,109]. Neovascularization is also investigated to play a role in plaque
instability [65,128]. Also, for the femural artery, the risk of the restenonis after
removal was reported to be related to the plaque’s composition [47]. Hemor-
rhage into the plaque has been found out to correlate with plaque rupture even
though it was not identified as a cause [134]. For these mentioned indicators
of plaque vulnerability, PA imaging is a promising tool to be employed for
identification. Besides attempts to access the carotid artery by illumination
through the skin [50], an illumination by a probe inserted in the pharynx has
been suggested [104], as well as intra vascular PA probes [90,91].

All findings presented in this dissertation can apply to any application of
PA imaging in acoustically heterogeneous media. Due to the high impact
of atherosclerosis, however, the benefit of increasing the PA image quality
is motivated by the improvement of carotid artery imaging throughout this
dissertation. Since, compared to other applications of PA imaging, the carotid
artery is a fairly deep target, problems associated with heterogeneous media,
such as aberrations and clutter, might be of higher impact than for superficial
targets. Therefore, a numerical phantom of a cross section of the carotid artery
was designed that will be used to demonstrate the benefit of the proposed
algorithms in simulation studies. The phantom comprises a photoacoustic
source distribution and a speed of sound distribution (see Fig. 2.4.2), whose
shapes have been derived from ultrasound images of the neck provided by Dr.
Michael Jäger from the University of Bern. The boundaries were segmented
manually and the resulting map was compared to an anatomic atlas to assign
one kind of biological tissue to each region. Respective material properties
for both PA source distribution and SOS distribution were then assigned to
the regions, which are listed in table 2.4.1 and which have been derived from
literature.
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Property Tissue Value Unit

speed of sound

skin 1730 m/s
fat 1450 m/s

muscle 1590 m/s
blood 1575 m/s
fascia 1525 m/s
water 1480 m/s

absorption coefficient blood 5 1/cm

Table 2.4.1: Properties of carotid artery phantom (SOS and PA source distribu-
tion) derived from [67, p.12], [13, p.313] and [142].
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Figure 2.4.2: Numerical carotid artery phantom; nomalized photoacoustic
source distribution (a), speed of sound distribution in m/s (b)

31



3
Acoustic Heterogeneities in Photoacoustic

Imaging

The main purpose of this dissertation is to develop methods that account for
acoustic heterogeneities during a photoacoustic reconstruction. Therefore, in
this chapter, a full wave model for a forward propagating photoacoustic wave
in a heterogeneous medium is derived. The derivation resembles that of a
general US imaging forward model in some aspects, but, based on a thorough
literature reserach, it has not been demonstrated for PA imaging before. After-
wards, the impact of these heterogeneities in actual imaging environments is
discussed. In the progress of this chapter, artifacts related to heterogeneous
media are classified as clutter artifacts and aberration artifacts. The respec-
tive mechanisms leading to these artifacts are described and approaches from
literature dealing with the reduction of the respective artifact are presented.

3.1 Photoacoustic Wave Propagation in
Heterogeneous Media

The aim of the following derivation is to find a solution to p(r , t) according to
the photoacoustic wave equation in heterogeneous media that was derived in
chapter 2.1.3 as (2.1.21). To ensure a readily comprehensible notation, the
photoacoustic source and the scatter operator are henceforth expressed by
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q(r , t) and Vγ(r ), respectively:

q(r , t) := −c−2
0 ∂tη(t)p0(r )

Vγ(r ) :=
�

∇ ·
�

γρ(r )∇
�

+ c−2
0 γκ(r )∂t t

� . (3.1.1)

To avoid confusions, it should be clarified that, in this notation, applying
the term ∇ ·

�

γρ(r )∇
�

to p(r , t) equals ∇ ·
�

γρ(r )∇p(r , t)
�

. Furthermore, to
increase readability, the homogeneous wave operator � and the heterogeneous
wave operator �γ are defined as:

� :=
�

∆− c−2
0 ∂t t

�

�γ :=
�

�− Vγ(r )
� . (3.1.2)

In this notation, the photoacoustic wave equation in heterogeneous media
(2.1.21) reduces to

�γ p(r , t) = q(r , t). (3.1.3)

In the following, an analytical solution to (3.1.3) is derived by means of
Green functions. The concept of Green functions, which are also referred
to as “Green’s functions”, was introduced by George Green in 1828 as an
approach to solve inhomogeneous partial differential equations [27, p.56ff].
The quantities q(r , t), γρ(r ) and γκ(r ) are assumed to be spatially confined
to a region Ω and q(r , t) is furthermore temporally confined to t ∈ [0,∞[,
such that q(r , t),γρ(r ),γκ(r ) ∈ Ψ with Ψ = Ω × [0,∞[. The solution to
the photoacoustic wave equation in (3.1.3) can be expressed in terms of the
outgoing full wave Green function for heterogeneous media gγ as (compare [49,
p.394]):

p(r , t) =
ˆ

Ψ

gγ(r , t, r ′, t ′)q(r ′, t ′) dr ′d t ′, (3.1.4)

where gγ is a function of γρ and γκ and solves:

�γ gγ(r , t, r ′, t ′) = δ(r − r ′)δ(t − t ′). (3.1.5)

Unlike the free field outgoing Green function g0, which solves

� g0(r − r ′, t − t ′) = δ(r − r ′)δ(t − t ′), (3.1.6)

a closed form to describe gγ analytically does not exist. Its argument can
furthermore not be expressed as difference of the source location and time
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and the readout location and time (r − r ′, t − t ′). However, it can be related
to g0 and the scattering potentials by (compare [49, p.391]):

gγ(r , t; r ′, t ′) = g0(r − r ′, t − t ′)
+
´
Ψ g0(r − r ′′, t − t ′′)Vγ(r ′′, t ′′)gγ(r ′′, t ′′; r ′, t ′)dr ′′d t ′′ .

(3.1.7)

Note that, as discussed in chapter 2.1.4, all examples in this dissertation are
presented in two dimensions and, hence, g0 equals g

(2D)

0 in (2.1.22). Sub-
stituting (3.1.7) into (3.1.4), the photoacoustic wavefield can generally be
described as the superposition of the wavefield that would have evolved in a
homogeneous medium ph and a scattered wavefield psc:

p(r , t) = ph(r , t) + psc(r , t), (3.1.8)

where ph matches the solution to wave equation �ph = q and the scattered
wavefield psc depends on the full wavefield p:

ph(r , t) =
´
Ψ g0(r − r ′, t − t ′)q(r ′, t ′) dr ′d t ′

psc(r , t) =
´
Ψ g0(r − r ′′, t − t ′′)Vγ(r ′′, t ′′)p(r ′′, t ′′)dr ′′d t ′′ . (3.1.9)

While ph can be solved directly using the solution for g
(2D)

0 in (2.1.22), there is
no direct solution to psc , since it is a function of the full wavefield p, which is
not a known quantity. Still, the solution to p(r , t) in (3.1.8) can be expressed
only as a function of known quantities. Therefore, (3.1.8) is solved for ph after
substituting psc from (3.1.9), which yields:

ph = [1− G0Vγ]p (3.1.10)

with the operator G0 defined as G0 :=
´
Ψ dr ′d t ′ g0(r − r ′, t− t ′). The operator

G0Vγ describes single scattering of the wavefield it is applied to. Solving
(3.1.10) for p and substituting ph according to (3.1.9) yields:

p = [1− G0Vγ]
−1G0q. (3.1.11)

This inverse operator in (3.1.11) can now be rewritten by making use of
Neumann series expansion, which is related to the geometric series (compare
[49, p.225]):

p(r , t) =
∞
∑

i=0

�

G0Vγ
�i

G0q(r 0, t0) . (3.1.12)
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Here, the term (G0Vγ)i denotes a recursive application of GγVγ for i times, such
that:

�

G0Vγ
�i+1
=
ˆ

dr id t i g0(ri+1 − ri , t i+1 − t i)Vγ
�

G0Vγ
�i

(3.1.13)

with
�

G0Vγ
�0
= 1, (3.1.14)

This series expansion is commonly referred to as Born series. For (3.1.12) to
hold, the series must converge. This condition is met for sufficiently small
values of Vγ, or, according to (3.1.1), for sufficiently small values of γκ and γρ
and low temporal frequencies. Substituting Vγ from (3.1.1) into (3.1.12), the
photoacoustic wavefield p only depends on the known free field Green function
g0 and on the observable quantities q(r , t), γρ(r ) and γκ(r ). In consequence,
an exact direct solution to (3.1.3) is shown to exist, even though it contains an
infinite series and is difficult to compute precisely. In the notation in (3.1.12), it
is clearly visible, that the generated photoacoustic pressure depends linearly on
the photoacoustic source distribution q, while the dependence on the scatterer
distributions is nonlinear due to the exponents of Vγ. This is important in
terms of solving the inverse problem, as reconstructing sources in a known
scatterer distribution is a linear problem, while reconstructing scatterers is not
linear, even if the source distribution is known. Truncating (3.1.12) for i > 1
returns the Born approximation, which, in contrast, sets p into a linear relation
with γρ(r ) and γκ(r ). A more general description of how to solve a radiation
problem in heterogeneous media analytically by using Green functions can be
found in [49].

To attain a numerical solution to the wavefield, all quantities can be dis-
cretized and equation (3.1.12) can be solved using numerical operations.
However, due to the infinite series, this approach is unpractical and it is more
common to generate discrete solutions by employing direct numerical solutions
to the wave equation (3.1.3). Various approaches for forward simulations of
photoacoustic wavefields in heterogeneous media have been proposed. Sheu et
al. presented a time domain model based on finite differences [156], which is
a very general solution that even incorporates a detailed thermoacoustic model
of the thermo-elastic conversion. Other approaches employ finite elements
instead of finite differences [194]. As both finite difference and finite element
methods require a very dense spatial sampling of about 10 grid points per
wavelengths, pseudo-spectral methods are a very popular alternative. By ap-
plying the spatial derivatives, which are required for numerically extrapolating
the wavefield, in the Fourier domain, the number of required grid points in a
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three dimensional problem can be reduced by over 90% [177, p.25]. Pseudo-
spectral methods either solve the second order wave equation (3.1.3) [121],
or they solve coupled first order equations, such as those in (2.1.14) and
(2.1.15) [34]. The second approach was employed for the open source Matlab
toolbox “k-wave”, which was developed by Treeby et al. in 2010 [14] and
which is available at www.k-wave.org.

3.2 Photoacoustic Reconstruction in
Heterogeneous Media

The impact of acoustic heterogeneities in biological tissue on the quality of
photoacoustic images has been assessed in various publications, whereas,
mostly, only the speed-of-sound deviations were under investigation. The
variations of speed of sound in soft tissues are usually stated to vary within
10% [168]. The associated scattering effects cause artifacts in the reconstructed
images, if the heterogeneities are not corrected for [44]. Some publications
focus on the impact of strong scatterers such as air inclusions or bones [40]. In
the system proposed by Xia et al., the impact of heterogeneities is validated as
minor for weakly scattering tissue, but clearly noticeable for strongly scattering
tissue [182]. However, other groups state a relevant impact in media with
weakly deviating SOS distributions such as breast tissue [191, 192]. Small
variations in the speed of sound, are also investigated in [44] in a simulation
study and an ex vivo mouse study. Here, a strong impact of the heterogeneities
is stated but the impact of the accuracy of the refraction model for compensating
algorithms is claimed to be small.

Besides the reduction of artifacts, there is also the potential to improve the
image quality above the quality of images in a homogeneous medium if the
acoustic heterogeneities are considered during reconstruction. Generally, the
measurements are incomplete due to an aperture of limited size and due to
measurements on discrete positions with sensor elements of finite size. For
that reason, a reconstruction is usually an ill posed problem. Especially in
a setup with a standard linear array, a lot of information is lost during the
measurement. This evokes the question if back scattered and refracted waves
that are redirected to the transducer can provide additional information about
the source distribution that would not have been obtained in a homogeneous
medium.

To describe the forward model of a photoacoustic measurement in acousti-
cally heterogeneous media, the evolving wave in (3.1.12) is read out at the
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sensor line, which is defined to be the line at z = 0 throughout this dissertation.
The respective measurement is from now on referred to as pm with:

pm(x , t) :=
ˆ ∞
−∞

dz p(r , t)δ(z) = p(x , 0, t). (3.2.1)

It should be noted that an actual measurement operation consists of more
than just sifting the pressure at an infinite sensor line. Precise measurement
modeling would comprise more properties, such as the averaging over the
transducer element size, a sifting at the element positions of finite number and
the introduction of accurate boundary conditions to the wavefield. However,
for most purposes, a mathematical modeling of the measurement as simple
readout out operation is sufficient. The aim of a photoacoustic reconstruction
in heterogeneous media is now to find an inverse operation to the following
forward model, which maps the source distribution p0 onto the measurement
data pm:

pm(x , t) =

�

−c−2
0

ˆ ∞
−∞

dzδ(z)
∞
∑

i=0

�

G0Vγ
�i

G0∂tη(t)

�

p0(r ), (3.2.2)

which follows from substitution of (3.1.1) and (3.1.12) into (3.2.1).
In the progress of this section, the problem of acoustic scattering in pho-

toacoustic imaging is first viewed as one complete problem and previous
approaches to account for this full-wave scattering including the complete
physical model in the reconstruction are presented. Then, the artifacts associ-
ated with heterogeneous media will be categorized as either reflection related
artifacts, which will be referred to as clutter, or as refraction related artifacts,
which will be referred to as aberration. Mathematically, the two processes can
be distinguished by dividing the Green function into upward traveling part g+0
and downward traveling part g−0 in relation to the z-axis. This yields the two
Green functions:

g+0 (r , t) :=
Θ(tc0 − |r |)

2π
p

(tc0)2 − |r |2
(1−Θ(z)) (3.2.3)

g−0 (r , t) :=
Θ(tc0 − |r |)

2π
p

(tc0)2 − |r |2
Θ(z)

withΘ being the Heaviside distribution. The respective Green function operator
G0 can thus be split up in to G0 = G+0 + G−0 and so can the scattered wave psc:
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psc = p+sc + p−sc

p+sc =
∞
∑

i=1

�

G0Vγ
�i

G+0 q. (3.2.4)

p−sc =
∞
∑

i=1

�

G0Vγ
�i

G−0 q

Note that (3.2.4) is derived from (3.1.12) leaving out the index i = 0 in the sum,
as this index represents the homogeneous field by (G0Vγ)0G0q = G0q = ph.
This notation will be used to differentiate between parts of the wave that lead
to different kinds of artifacts, where p+sc is associated with clutter and p−sc is
associated with aberrations, while the full wave scatter problem is described
by:

p = ph + p+sc + p−sc . (3.2.5)

3.2.1 Full Wave Scattering
In the case of a full-view measurement, a common method to include acoustic
heterogeneities in a photoacoustic reconstruction is time reversal. While
originally introduced as a method, where a measurement is temporally reversed
and physically re-emitted by the transducers [55], the term time reversal is
nowadays also used to describe a reconstruction technique. In a photoacoustic
time reversal reconstruction, the measurement data is reversed in time and then
synthetically emitted in a simulation and the resulting wavefield is evaluated
at the time corresponding to the light emission, returning an estimate of the
initial pressure distribution [35,76,173].

In a full view measurement in odd dimensions and if no scatterers are in-
volved, time reversal recreates the actual wavefield perfectly [49, 76, p.81].
In even dimensions, the signal does not completely decay due to the infinite
Green function (e.g. (2.1.22) in two dimensions). Hence, the signal cannot be
inverted without being measured for an infinite time. In scattering media, the
inversion is not perfect, due to the possible occurrence of so called trapping
heterogeneities, where parts of the wave never exit the solution area and can
thus not be measured [76]. Even for non-trapping media, the reconstruction
algorithm can introduce artifact trapping due to imperfect boundary condi-
tions in the simulation [35]. However, a time reversal reconstruction of a
full view measurement in a scattering medium in two dimensions usually
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returns satisfying data, even though the problem is ill posed [76]. In contrast
to time reversal methods, which directly return the final result after one back-
propagation, Huang et al. have investigated an iterative method, where the
image is updated after a pair of forward and backward propagation, while
the backpropagation is calculated using an adjoint operator to the forward
operator [79].

In all mentioned cases, the distribution of acoustic heterogeneities is sup-
posed to be known in order to use it for the reconstruction. For exactly
known acoustic properties, Stefanov et al. have derived sharp conditions
for uniqueness [165]. However in an actual clinical measurement, informa-
tion about the actual speed-of-sound distribution is generally not availible.
The primary question that is diversely discussed throughout literature, is the
question if a joint reconstruction of both the photoacoustic sources and the
acoustic heterogeneities can be obtained from only photoacoustic measure-
ments. Mathematically, it has been shown by Stefanov et al. that the linearized
problem is unstable, indicating that the actual nonlinear problem might also
be unstable [164]. However, several groups have presented algorithms that
succeed in finding an approximate solution to this problem, at least for a full
view measurement with sensors surrounding the imaged object. Huang et al.
have presented a nonlinear iterative algorithm that alternatingly updates the
speed of sound and the initial pressure distribution [80]. Using Marquard and
Tikhonov regularization and simple structures for speed of sound and initial
pressure in a simulation study, a joint reconstruction turned out satisfying
results. However, Huang et al. conclude that their work also demonstrates
the numerical instability of this problem. An algorithm based on a finite ele-
ment discretization of the Helmholtz equation is presented in [194]. Using
a Marquard and Tikhonov regularization scheme for the inversion, they suc-
ceeded in the joint reconstruction of phantoms with matching shapes of the
speed-of-sound inclusion and the photoacoustic source distribution. Besides
regularization, there are other approaches to include a priori knowledge about
the scattering distribution, for example by manually determining the general
shape of structures with a deviating speed of sound [198].

As many imaging systems are able to acquire ultrasound measurements in
addition to photoacoustic measurements, another important question is, if the
acoustic heterogeneities can be determined using ultrasound measurements
and if this estimation is sufficient to solve the photoacoustic reconstruction
correctly. Such an approach has been investigated in thermoacoustic tomogra-
phy [93] and photoacoustic tomography [122] by estimating a speed-of-sound
distribution based on transmission ultrasound data. As an alternative to actu-
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ally acquiring a transmission or reflection ultrasound measurement, Dean-Ben
et al. placed an optical point absorber of known location in the imaged re-
gion [45]. An alternative way to retrieve the speed-of-sound distribution was
presented by Huang et al., where information about the shape and acoustic
properties of a monkey scull was retrieved from computed tomography (CT)
data in order to use it for the photoacoustic reconstruction [78].

Still, all approaches mentioned in this section rely on a full view detector.
Even though it has been shown that, under certain conditions, the limited view
problem for a known SOS distribution exhibits a unique solution [163], only
one of the mentioned publications considers the case of a limited view [79].
Non of the mentioned approaches relied on measurements with a linear array.
In chapter 4 of this dissertation, a full wave reconstruction for linear arrays
will be derived and assessed in terms of achievable scattering and limited view
artifact reduction and the applicability to clinically relevant measurements.

3.2.2 Aberrations
Most mentioned approaches above rely on computationally expensive methods,
mostly because of the necessity to simulate acoustic waves during reconstruc-
tion, sometimes even multiple times, if the nature of the algorithm is iterative.
Aiming for real-time solutions it is important to focus on the actual problems as-
sociated with scattering and to determine simpler models to account for those.
Hence, in the following, the artifacts introduced by acoustic heterogeneities in
photoacoustic imaging are categorized as clutter artifacts or aberration arti-
facts. Respective algorithms either compensate for reflections or for distortions
of the wavefront introduced by acoustic heterogeneities. In contrast to clutter
artifacts, where reflections lead to artifacts in the image, aberrations do not
introduce additional structures into the image but rather distort the image
itself, such that actual shapes cannot be recovered anymore. These artifacts can
be assigned to refraction of the photoacoustic wave during the transmission of
acoustically heterogeneous media, especially a heterogeneous speed-of-sound
distribution. Here, aberration is defined as those image degradations that
originate in p−sc in (3.2.4), such that the forward model reads as:

p(r , t)t ph(r , t) + p−sc(r , t), (3.2.6)

or, in full notation:

p(r , t)t
∞
∑

i=0

�

G0Vγ
�i

G−0 q(r ′, t ′). (3.2.7)
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One method to reduce aberration artifacts is the optimization of a global value
for the speed of sound, where the actual distribution is neglected [31,191].
Such an idea has also been extended to a layered medium model [98]. Methods
relying on the spatial coherence of the waves from actual sources have been
applied to increase the contrast of deeper sources in aberrating media [108,
141]. In a circular sensor setup, aberrations can lead to inconsistencies of the
data reconstructed from opposing sensor sides. This encouraged the approach
of the so called “half time reconstruction”, which suppresses the contribution of
certain sensors during the reconstruction [11]. The approach has been further
developed by introducing a dedicated weighting of certain channels [41].
In [40] and [42] a statistical model is incorporated and the channel data is
weighted according to the probability to exhibit a scattered signal.

None of the aforementioned methods explicitly models the acoustic hetero-
geneities. Publications that actually consider the speed-of-sound distribution
during reconstruction differ mostly in the underlying accuracy of the model de-
scribing the influence of the speed-of-sound deviation. Straight ray approaches
compute the delays of waves traveling straight through the inhomogeneous
medium in a delay-and-sum beamformer [43,44]. Zhang et al. have performed
a cross correlation over the entire circularly acquired measurement data set,
in order to determine the respective delays [196]. Jose et al. employed a
propagation model of higher accuracy by using ray tracing based on the Eikonal
approximation [94]. A similar approach was used by Wang et al. [179].

In general, there is an obvious trade-off between the accuracy of the model
and the related computational effort. In the frame of this dissertation, a
new reconstruction method is introduced that replicates the actual wavefield
very accurately and at the same time, can be computed very efficiently (see
chapter 5). The method is based on a paraxial approximation of the Helmholtz
equation.

3.2.3 Clutter
In photoacoustic imaging, clutter is the general term to describe artifacts
associated with reverbing sound waves. The sound waves originating in a
photoacoustic source and traveling away from the transducer are scattered back
towards the transducer. The reflected waves of strong sources can overcome
the amplitude of the waves that originate in weaker photoacoustic sources and,
hence, these sources can be obscured in the photoacoustic image. This effect is
amplified by the fact that skin, which is known to contain high concentrations
of melanin, is generally a strong photoacoustic absorber. At the same time, the
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fluence at the skin is very high compared to fluences in deeper tissue. This
generates a very strong wave at the tissue’s surface, whose reverbing wave
generates leads to high intensity structures in deeper image regions [57,73,
143]. It should be noted that, sometimes, the term clutter is also associated with
waves from out-of-plane sources, which also produces artifacts that obscure
the actual structures [143]. However, in the scope of this dissertation, this so
called “direct clutter” will not be considered, since it is not a result of medium
heterogeneities, but a question of the illumination configuration. Thus, the
term clutter will henceforth imply that indirect clutter is addressed.

The problem of clutter has been frequently reported and intensively inves-
tigated [57, 73, 143]. Mathematically speaking, the scattered wave p+sc , as
specified in (3.2.4), is now defined as the part of the wave leading to clutter
and the aberration wave p−sc is ignored. This leads to the following approximate
forward model:

p(r , t)t ph(r , t) + p+sc(r , t), (3.2.8)

or, in full notation:

p(r , t)t

�∞
∑

i=1

�

G0Vγ
�i

G+0 + G−0

�

q(r ′, t ′). (3.2.9)

Ever since photoacoustic imaging has gained attention in research, a lot of
work has been dedicated to suppress clutter artifacts. One approach relies on
the assumption that scattered waves are of lower spatial coherence than direct
photoacoustic waves and can hence be suppressed in a short-lag beamforming
approach [7, 141]. Another way to distinguish between clutter and actual
sources relies on decorrelation of the clutter signal by tissue deformation. The
related approach is referred to as displacement compensated averaging (DCA)
and tracks the displacements using ultrasound imaging [86,89]. The differing
shifts of direct and scattered waves during tissue deformation are also exploited
in the LOVIT method, where the deformation is forced by an acoustic radiation
force, either from an external transducer [85], or by the same transducer
that records the photoacoustic measurement [137]. A decorrelation of clutter
induced by variations in the illumination configuration is exploited in [132].
Recently, first investigations to train a neural network to distinguish between
clutter and actual sources in a controlled simulation study with single point
scatterers and point sources has been acquired [8].
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None of the aforementioned approaches takes the actual scatterer distribu-
tion into account to create the forward model. In fact, since the actual scatterer
distribution is generally unknown, a model incorporating the scattering process
seems useless. However, information about the scatterers might be retrieved
from additionally acquired ultrasound measurements. In the frame of this
dissertation, the idea of incorporating information from plane wave ultrasound
measurements to reduce clutter artifacts will be assessed (see chapter 6). A
comparable method called PAFUSion was recently developed by Singh et al.
and has already been shown to be applicable in vivo [158,160]. In contrast
to PAFUSion, the algorithm presented in in this dissertation is derived and
operates in the spatial and temporal frequency domain, which allows for effi-
cient computations. Also, an alternative approach with an actual inversion of
the model instead of a subtraction of the estimated clutter will be presented
(see chapter 6.3.2). The operation in the frequency domain also allows for the
emission of less waves by an advanced interpolation method, which will be
demonstrated in chapter 6.4. The benefit in computational effort might be an
important step towards real time application.
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4
Full Wave Reconstruction in Heterogeneous

Media

The reconstruction methods introduced in chapter 3.2.1 all rely on a consid-
eration of the full scattered wave during reconstruction of the photoacoustic
sources. However, non of them was designed for a linear array and only a few
consider a limited view.

The limited view is a major challenge for full wave reconstructions, since ac-
tual time reversal requires the waves from all directions to be back propagated
into the tissue. Also, in a limited view scenario, part of the image informa-
tion can be lost due to the fact that waves carrying the information about a
certain structure might not be directed towards the transducer. The considera-
tion of heterogeneities has a huge potential, as scattering might redirect the
waves towards the transducer. Many algorithms do not differentiate between
compressibility variations and density variations, which both contribute to
scattering but differ in the directivity of the scattered wave.

Another issue is the impulse response, which incorporates the laser pulse
shape and the electro-acoustic impulse response and which is usually not
considered in the reconstruction. An appropriate treatment of the full im-
pulse response is an essential feature when it comes to the performance of an
algorithm in the presence of noise.

In this section, an iterative reconstruction method is introduced and assessed,
that is based on a complex photoacoustic imaging model. The model considers
variations in compressiblity and density as well as the full temporal impulse
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response of the imaging setup. By analytically deriving an adjoint operator
to the forward model operator, a Landweber iteration scheme is employed
to find a solution to the inverse PA imaging problem. The derivation and
elementary results were part of a Master’s thesis [149]. The method has also
been published in a conference article [150].

4.1 The Landweber Method
Let R be the operator mapping the photoacoustic sources p0 onto the measure-
ments pm by pm = Rp0. An analytic solution of R was derived in chapter 3 (see
(3.2.2)). A general Landweber iteration algorithm is derived by applying the
adjoint operator R∗ to both sides:

R∗pm = R∗Rp0 (4.1.1)

and rewriting it as fix point equation:

p0 = p0 − R∗ (Rp0 − pm) . (4.1.2)

By introducing a relaxation parameter α, this can be rewritten as an iterative
algorithm with iteration index k:

p(k+1)
0 = p(k)0 −αR∗

�

Rp(k)0 − pm

�

, (4.1.3)

which is called the Landweber iteration and equals the gradient descent that
solves the respective least-squares problem. While R is a linear operator, a
similar algorithm can be derived for non-linear operators using the adjoint of
the Fréchet-derivative of the forward operator [139]. The Landweber iteration
is regularizing in a sense that the inverse of the number of applied iterations
kmax can be interpreted as regularization parameter λ = 1/kmax [114,139].
This section deals with an application of the Landweber method to the inverse
photoacoustic imaging problem, including an analytic derivation for the adjoint
operator as well as a description of the implementation.

4.1.1 Mathematical Framework and Theory
Let p(r, t) be the acoustic pressure at r= (x , z) ∈ R2. Ω

′
is an open subset of

the half-space Ω = R2\{z ≤ 0} and is the solution domain for the inverse pho-
toacoustic problem. On it’s significant boundary at δΩ=

�

(x , z) ∈ R2
�

� z = 0
	

,
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a transducer is located and positions on the transducer are described by the vec-
tor r s = (x , 0). Variations of the propagation mediums mass density variation
γρ(r) and compressibility variation γκ(r) are restricted to Ω

′
(see (2.1.17) for

definition). A similar definition of the geometry was made in [75] for an ultra-
sound tomography reconstruction algorithm. The derivation of the Landweber
method starts with the photoacoustic wave equation for heterogeneous media
as presented in (2.1.21) (see derivation in chapter 2.1.3):

∆p(r , t)−
1+ γκ

c2
0

∂t t p(r , t)−∇ ·
�

γρ∇p(r , t)
�

= −c−2
0 p0(r)∂tη(t) .(4.1.4)

Since the evolving field depends linearly on the source term, η(t) can also
contain the band-pass behavior of the transducer, even though, technically,
the respective filtering is applied during the measurement and not during
excitation. The source distribution p0 is assumed to be restricted to the area
Ω. An initial condition forces the wavefield to equal zero before the excitation
starts and a boundary condition forces a rigid behavior of the transducer:

p(r, t) = 0, ∧ ∂t p(r, t) = 0, (r, t) ∈ Ω×R<0. (4.1.5)

∇p(r , t) · n = 0, (r, t) ∈ δΩ× [0, T] (4.1.6)

The equations (4.1.4)-(4.1.6) describe a time varying source problem with the
restriction that the temporal and the spatial source terms are separable. Here,
∇p(r , t) · n is the spatial derivative of p in normal direction to the detection
line.

The problem to be solved is the reconstruction of the spatial source distri-
bution p0(r), using the information gained by the actual measurement of the
pressure pm (rs, t) on the sensor area. Therefore, the medium’s heterogene-
ity distributions γρ(r) and γκ(r) are considered to be known. The operator
R : L2 (Ω) −→ L2 (δΩ× [0, T]) maps a current source distribution p0(r) onto
the respective measurement p (rs, t), which is the solution of the time varying
source problem in eqs. (4.1.4)-(4.1.6) .

R p0 = p(rs, t) (4.1.7)

The inverse operator R−1 could be applied on actual measurement data pm(rs, t)
and would yield a direct solution of s. If R is ill-posed or not bijective, which is
the case for an incomplete measurement with a linear array, a direct inversion
is not feasible and a suitable p̂0 solution can be gained using the least-square-
method:

p̂0 = R∗ (R R∗)−1pm (4.1.8)
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with R∗ being the adjoint operator to R.
Instead of solving (4.1.8), here, a Landweber optimization approach is

suggested [105], where the adjoint operator is utilized to translate an error
in the measurement to an error in the image. The forward propagation of a
current estimation of p0 and the backward propagation of the error are iterated,
until the error is sufficiently small. Therefore, a random initial distribution
p(0)0 is chosen and the recursive equation:

p(k+1)
0 = p(k)0 +α · R

∗
�

pm − R p(k)0

�

(4.1.9)

is applied, where α is a relaxation factor that needs to be determined em-
pirically. The term [pm − R p0] describes the error of the measurement and
the application of R∗ maps the error of the measurement to an error in the
image space. The adjoint operator R∗ is derived in the next section. The initial
distribution p(0)0 was chosen to be p(0)0 (r) = 0 in Ω for all following experiments.
Note that the relaxation factor can also depend on the iteration step, as well
as on space and then reads as αk(r). In [114] a linear decrease over time is
suggested.

4.1.2 The Adjoint Operator
The adjoint operator R∗ reads as:

(R∗p(rs, t)) (r) = c−2
0

ˆ T

0
Z(r, t)∂tη(t)d t (4.1.10)

where Z(r, t) is an auxiliary field, which meets the conditions of the following
final value problem:

∆Z(r , t)− 1+γκ
c2
0
∂t t Z(r , t)−∇ ·

�

γρ∇Z(r , t)
�

= 0 (4.1.11)

Z(r, t) = 0 ∧ ∂t Z(r, t) = 0, (r, t) ∈ Ω×R>T (4.1.12)

∇Z(r s, t) · n= p (r s, t) , (r s, t) ∈ δΩ× [0, T] (4.1.13)

where n is the normal vector on the detection area. Eqs. (4.1.11) - (4.1.13)
constitute a final value problem. The boundary condition (4.1.13) expresses
that the spatial derivative of the field Z normal to the sensor area equals the
measurement data. Note that the field Z fulfills the homogeneous acoustic
wave equation for inhomogeneous media, but does not represent a pressure,
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since, according to (4.1.13), it has the dimension of pressure multiplied by
length. It must be seen as a mathematical construct that serves as an auxiliary
field to allow for a computation of the adjoint operator R∗.

The derivation of R∗ is accomplished via the definition for adjoint operators:

〈R∗p, p0〉L2(Ω) = 〈p, R p0〉 L2(δΩ×[0,T]) (4.1.14)

where 〈A, B〉 signifies the inner product in the respective space. For arbitrary
functions p, Z on Ω× [0, T] the following identity has been proven (compare
equation (A.8) in [75] with the arbitrary functions w and z) :

ˆ T

0

ˆ
Ω

�

∆p(r , t)−
1+ γκ

c2
0

∂t t p(r , t)−∇ ·
�

γρ∇p(r , t)
�

�

Z (r, t) drd t

=
ˆ T

0

ˆ
Ω

�

∆Z (r, t)−
1+ γκ

c2
0

∂t t Z(r , t)−∇ ·
�

γρ∇Z(r , t)
�

�

p(r , t) drd t

+
ˆ T

0

ˆ
δΩ

�

1− γρ
�

(p(r , t)∇Z(r , t) · n− Z(r , t)∇p(r , t) · n) dS(r)d t

+
ˆ
Ω

1+ γκ
c2

0

[p(r , t)∂t Z(r , t)− Z(r , t)∂t p(r , t)]T0 dr (4.1.15)

Using the definition of p and Z in (4.1.4)-(4.1.6) and (4.1.11)-(4.1.13), and
the fact that γρ vanishes on the boundary, (4.1.15) reduces to

´ ´
Z(r, t)∂tη(t) d t · c−2

0 p0(r) dr=
´ ´

p(r, t)∇Z · n dS(r)d t(4.1.16)

⇒
¬´ T

0 Z(r, t)∂tη(t)d t, c−2
0 p0(r)

¶

= 〈p(rs, t), ∇Z · n〉 (4.1.17)

Substituting (4.1.7) and (4.1.13) and comparing this to (4.1.14), the adjoint
operator R∗ (r) reads as:

R∗p = c−2
0

ˆ T

0
Z(r, t)∂tη(t)d t (4.1.18)

4.1.3 Implementation
The Landweber reconstruction algorithm was implemented in Matlab, while
both forward and back propagation are realized as pseudo spectral acoustic
wavefield simulations using the k-wave toolbox [14]. The data flow of the
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Landweber iteration for PA data is visualized in Fig. 4.1.1. The algorithm
requires the photoacoustic measurement data pm(x , t), the acoustic medium
properties γκ(r ) and γρ(r ) and an initial estimation of the source distribution

p̂(0)0 (r ) as input, while p̂(0)0 (r ) does not require a-priori knowledge and can
be a zero distribution. The algorithm starts with a forward propagation of
p̂(0)0 (r ), generating the estimated measurement data p̂m. Subtracting p̂m from
the actual measurement pm yields the error in the space of measurements
p(er r)

m . The error is temporally reversed and employed as source to the back
propagation generating the auxiliary field Z(r , t). The field Z is temporally
back-reversed and the inner product over Z and the temporal derivative of the
impulse response over time yields the update term ∆p0, which is scaled by
the scalar relaxation factor α and added to the current estimation of the PA
source p̂0. This procedure is repeated in each iteration and the final result for
p̂0 is the final reconstruction result. The iteration can be terminated after a fix
number of iterations or when the measurement error reaches a threshold.

p̂
(0)
0 (r)

p̂0(r)
forward

propagation
p̂m(x, t) -

pm(x, t)

p
(err)
m (x, t)

reverse timep
(err)
m (x,−t)backward

propagation
Z(r, t)

∫
Z(−t)∂tηdt

∆p0(r)

+

γρ(r), γκ(r)

simulations

·α

inputs

Figure 4.1.1: Flow chart showing the Landweber reconstruction
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Computation of the Forward Propagation

For the forward simulation, a time varying pressure source problem with the
impulse response η(t) as temporal excitation is solved by k-wave. To attain a
simulation grid that is completely independent of the transducer characteristics,
the entire first row of the solution grid is read out as sensor and the actual
channel data is retrieved by interpolation. Therefore, the sensor data set
is resampled to the temporal grid of the measurement data by upsampling
using zero padding in the frequency domain and a linear interpolation of
the up-sampled data at the time steps defined by the acquisition delay and
the sampling frequency of the actual measurement. Spatial resampling is
accomplished by applying the inner product of the sensor data psim(x , z = 0, t)
and a rect-function with the shape of the respective transducer element, such
that

p̂m(x i , t) =
´

psim(x , z = 0, t)rect ((x i − x)/∆e) d x (4.1.19)

where x i is the location of the i-th of Nel transducer elements and ∆e is the
element width.

For an accurate computation, the rect-function has to be analytically low-
pass filtered before it can be discretized according to the Nyquist theorem.
This is especially required, since the width of one element∆e is not necessarily
a multiple of the sample width ∆x and the transducer elements might not
be centered on the simulation grid. The low-pass filtered version of the rect-
function rectlo with discretization width ∆x and element width ∆e calculates
as:

rectlo(x ,∆x ,∆e) = rect(x/∆e) ∗ sinc(x/∆x)

=
´∞
−∞ rect(x ′/∆e)sinc((x − x ′)/∆x)d x ′

=
´ ∆e/2
−∆e/2 sinc((x − x ′)/∆x)d x ′

= −∆x
´ (x−∆e/2)/∆x
(x+∆e/2)/∆x sinc( x̃)d x̃

=∆x · sinint((x +∆e/2)/∆x)

−∆x · sinint((x −∆e/2)/∆x),

(4.1.20)

using the sine integral function sinint(x) =
´ x

0 sin(x ′)/x ′d x ′.

50



CHAPTER 4. FULL WAVE RECONSTRUCTION

Computation of the Backward Propagation

The backward propagation that creates the auxiliary field Z(r , t) is imple-
mented as a final value problem according to (4.1.11) - (4.1.13). A pressure
source is defined at the transducer line and the spatial derivative is accounted
for by a finite difference approximation of order one:

Z(x , z =∆z, t)− Z(x , z = 0, t)
∆z

≈ p(er r)
m (x , t) (4.1.21)

Solving (4.1.21) for Z(x , z = 0, t), a Dirichlet boundary condition in depen-
dence on the current field can be applied by forcing the pressure value at z = 0
to be dependent on the current pressure value at the consecutive pixel in axial
direction at z =∆z:

Z(x , z = 0, t)≈ −Z(x , z =∆z, t)− p(er r)
m (x , t)∆z (4.1.22)

A similar approach was used for back propagation in [75]. The fact that the first
order finite difference in (4.1.21) is centered in ∆z/2 leads to an increasing
displacement of the field over iterations, which can be accounted for by reading
out the field Z at an offset of ∆z/2 by interpolation.

Like in the forward propagation, a conversion from the array data of the
measurement error p(er r)

m to source data of the simulation p(er r)
sim is required,

since the respective grids are not necessarily equal. Again, the temporal
resampling is acquired by upsampling in the frequency domain and linear
interpolation. The spatial resampling is performed by computing a weighted
sum over all rect-functions that determine the shape of the transducer elements.
These rect-functions are summed up and weighted by the pressure value in
the respective channel at the current time step:

p(er r)
sim (x , t) =

∑Nel
i=1 p(er r)

m (x i , t)rectlo ((x − x i)/∆e) (4.1.23)

Computation of the Update Term

The update is calculated by the application of the adjoint operator to the
error in the space of measurements according to (4.1.9). Since the field
Z(r , t) is excited by a finite difference that is centered at z = ∆z/2 (see
(4.1.21)), Z has to be shifted by ∆z to ensure an exact mapping, which
is accomplished by linear interpolation between subsequent pixels in axial
direction. Instead of differentiating η(t) over time (see (4.1.18)), the auxiliary
field Z is differentiated over time. Applying the derivative to Z instead of η is
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valid if the negative value of the resulting update term ∆p0 is used, due to the
following relation:

´
Z(t)∂tη(t)d t =

´
∂t (η(t)Z(t)) d t −

´
η(t)∂t Z(t)d t

= [Z(t)η(t)]∞−∞ −
´
η(t)∂t Z(t)d t

= −
´
η(t)∂t Z(t)d t,

(4.1.24)

which is the case for finite time impulse responses with η→ 0 for t →±∞.
The derivative is computed as a first order finite difference over two temporal
samples by:

∂t Z(t)≈
Z(t +∆t)− Z(t −∆t)

∆t
(4.1.25)

such that the differentiated quantity is centered at t. Due to numerical problems
of the wavefield near the sensor line, the first 10 axial rows of the update
term are set to 0 to assure convergence. The relaxation factor α is determined
empirically and the optimal choice might vary with the measurement setup
and the phantom’s complexity.

4.2 Reconstruction with Known Heterogeneities
In a first step, the theoretical capabilities of the method to improve photoa-
coustic images are stressed. The heterogeneities are assumed to be known
during the photoacoustic reconstruction, such that possible inaccuracies can
directly be assigned to the algorithm and not imperfect heterogeneity data. All
measurements in this section were acquired by numeric simulations providing
absolute ground truth information about the heterogeneities and the actual
PA source distribution. After investigating general properties in terms of the
improvement of resolution and the recovery of lateral image features, the
capabilities to deal with noise and, finally, the impact in a realistic clinical
scenario are assessed.

4.2.1 Assessment of General Capabilities
By considering the acoustic heterogeneities and the system’s temporal impulse
response, the resolution of a Landweber reconstruction is expected to outper-
form the resolution of a standard reconstruction. In addition, the Landweber
iteration might even be able to restore structures that would not have been
measured by a limited view detector without scattering. Both of these features
are assessed in this section using dedicated numerical phantoms.

52



CHAPTER 4. FULL WAVE RECONSTRUCTION

Resolution

In order to quantitatively determine the benefit of the Landweber method
in comparison to a standard reconstruction that does not consider acoustic
heterogeneities, measurements of a numerical phantom were simulated using
the pseudo-spectral simulation environment k-wave [14]. The properties of
the simulation are gathered in table 4.2.1. The numerical phantom comprises
three photoacoustic point sources that are arranged in a triangle, such that a
lateral profile and an axial profile through two sources can easily be obtained
in order to derive a measure for the resolution (see Fig. 4.2.1). The point
sources, which have the size of one pixel, are embedded in a randomly varying
SOS distribution with a Gaussian distribution and 5% standard deviation. The
blue rectangle in the speed-of-sound distribution signifies the region of interest
(ROI) of the sources that is magnified in Fig. 4.2.1-a.

Property Value Unit

grid size 256× 256 pixels
grid area 29.9× 29.9 mm2

center frequency 2 MHz
fractional bandwidth 78 %
transducer elements 216

pitch 1.389 mm
kerf 0 mm

laser pulse FWHM 1 ns

Table 4.2.1: Simulation properties for the “point-source” phantom
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Figure 4.2.1: Numerical “resolution” phantom, PA source distribution (a), mass
density distribution (b), compressibility distribution (c)

As the image mainly consists of point sources, it can be used to assess
the spatial resolution of the reconstruction. Besides diffraction limitations
due to the limited view and blurring of the structures that can be assigned
to scattering, the temporal impulse response η(t) is the dominating factor
affecting the spatial resolution. The impulse response of this simulated imaging
system is a combination of the temporal laser pulse shape and the electro-
acoustic impulse response of the transducer and is depicted in both time and
frequency domain in Figure 4.2.2. According to the PA k-space relation (see
(2.2.4)), one temporal frequency of the measurement data correspond to
the magnitude of the frequency vector in the PA source distribution. Hence,
the temporal bandwidth of the impulse response is mapped on a ring in the
reconstructed image. For that reason, the wavenumbers corresponding to
the−6 dB band limit of the impulse response are plotted into the following
image spectra of the reconstruction results to provide insights on the capability
of a reconstruction method to recover suppressed frequencies.
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Figure 4.2.2: Impulse response η(t) and transfer function η(ω) - point source

Figure 4.2.3 shows the reconstruction results in the same ROI around the
point sources as the phantom in Figure 4.2.1 was depicted. The results of
a standard reconstruction that does not consider the medium properties are
compared to the results of the Landweber method after one and 10,000 iter-
ations on a linear intensity scale before envelope detection. Looking at the
space domain images, a blurring and distortions of the point sources can be
recognized in the reference reconstruction, while the location of the sources
seems to be accurately recovered by the Landweber method. After one itera-
tion, the sources are locatable but still appear blurred. After 10,000 iterations,
most of the intensity is concentrated onto the pixels of the actual point sources.
Looking at the image spectra, the image content of the reference reconstruction
decays strongly outside the band limits and the damping is even stronger in
the Landweber reconstruction after one iteration. This can be explained by the
adjoint in (4.1.18) acting as a filter on the wavefield with the derivative of the
impulse response, which generally lowers the spatial resolution. However, it
can be seen that lateral frequencies, which are strongly damped in the reference
reconstruction, are restored even after one iteration. After 10,000 iterations,
the intensity in strongly damped frequency regions far beyond the −6 dB limit
in both axial and lateral direction indicate a recovery of information that was
assumed to be lost or at least strongly attenuated during the measurement
process.
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Figure 4.2.3: Reconstruction results of the “point-source” phantom in space
and spatial frequency domain; standard reconstruction (a,d),
Landweber reconstruction after 1 iteration (b,e), Landweber
reconstruction after 10.000 iterations (c,f), Dynamic Range of
log-compressed spectra: 30 dB

Figure 4.2.4 shows the lateral and axial profiles through the two respective
point sources on a linear scale after envelope detection in comparison to
the reference reconstruction and the Landweber reconstruction after 10,000
iterations. In both directions, the two sources cannot be separated at all in the
reference reconstruction, whereas the Landweber methods results in clearly
distinguishable peaks with dips of −11.1 dB in axial direction and −14.0 dB
in lateral direction compared to their respective maximum values.
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Figure 4.2.4: Axial (a) and lateral (b) profiles - point source

Limited View Compensation

Apart from an improved resolution, another question that is assessed is in
how far artifacts associated with the limited view can be omitted by consid-
ering scattering in the reconstruction. A source distribution in the shape of
a circular disc is depicted in Figure 4.2.5-a. Lateral boundaries of the disc
source propagate into lateral direction and, hence, the respective wave fronts
are not measured by the limited size aperture described (see properties in
table 4.2.2). However, it can be expected that the speed-of-sound distribution
depicted in Figure 4.2.5-b, which consists of one tilted transition from one
SOS to another SOS, might redirect those wave fronts toward the transducer
due to reflection. In that case, the image quality could actually benefit from
heterogeneous media, since information that seems to be not contained in the
measurement data can actually be recovered.
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Property Value Unit

grid size 256× 256 pixels
grid area 29.9× 29.9 mm2

center frequency 2 MHz
fractional bandwidth 50 %
transducer elements 216

pitch 1.389 mm
kerf 0 mm

Table 4.2.2: Simulation properties for the “disc-source”-phantom
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Figure 4.2.5: Numerical “disc-source” phantom; PA source (a), SOS (b)

Figure 4.2.6 shows the respective reconstruction results of the standard
reconstruction, again in comparison to the Landweber reconstruction after
one and after 10,000 iterations. In fact, the lateral boundaries appear to be
clearly visible in the Landweber reconstruction after one iteration and the
boundaries become sharper during the iteration process. In addition, the
scattering artifact, which seems to mirror the disc at the SOS boundary, is
gone. However, there is still another reflection artifact, which refers to that
part of the wave that is transmitted through the SOS boundary during back
propagation. The amplitude of this new artifact is reduced within 10,000
iterations, but cannot be completely eliminated.
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Figure 4.2.6: Reconstruction results of the “disc-source” phantom; standard
reconstruction (a), Landweber reconstruction after 1 iteration
(b), Landweber reconstruction after 10.000 iterations (c)

4.2.2 The Impact of Noise
In the absence of noise, a recovery of suppressed spatial frequencies can be
achieved by filtering with the inverse of the impulse response η(t). Hence, to
state a benefit of the Landweber method, a comparison of the reconstruction
results of measurement data corrupted by noise in inevitable. As first step on
the way to a fair comparison of noisy data, the performance of the Landweber
method is assessed on non-noisy but strongly band limited data. This was
achieved by the application of an impulse response that does not exhibit a
Gaussian spectrum, but is cropped at the −6 dB limits in the frequency domain.
The respective impulse response and the spectrum are depicted in Figure 4.2.7.
The main purpose of this study is to verify, if any effect during the reconstruction
might be able to recover spatial frequencies that have not been transferred
by the wave, for example by the scattering of evanescent waves during the
excitation.
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Figure 4.2.7: Impulse response η(t) (a) and transfer function η(ω) (b) for a
strongly band limited measurement

Again the reconstruction results are depicted in space domain and in spatial
frequency domain (see Fig. 4.2.8). Now, all results are within the absolute
band limits, even after 10,000 iterations. A difference can only be stated in the
lateral frequencies, which can still be recovered using the Landweber iteration.
However, this comparison shows that the Landweber method cannot recover
frequencies that are completely suppressed during the measurement. This is
supported by the line profiles in Figure 4.2.9, where the lateral resolution can
be strongly improved by the Landweber method, but the axial resolution is in
the range of the axial resolution of the standard reconstruction. As expected,
the Landweber iteration fails to recover spatial frequencies that have not been
propagated as wave and the increase of resolution in Figure 4.2.3 can only be
assigned to an amplification of damped frequencies. This implies that, in the
presence of noise, it cannot be expected that image features of frequencies way
below the noise level can be correctly recovered. If the bandwidth of images
reconstructed from noisy data is increased, this means that the Landweber
method is rather a powerful noise filter but does not conquer the resolution
limit.
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Figure 4.2.8: Reconstruction results of the “point-source” phantom in space
domain and spatial frequency domain for a strongly band limited
impulse response; standard reconstruction (a,d) , Landweber
reconstruction after 1 iteration (b,e), Landweber reconstruction
after 10.000 iterations (c,f), Dynamic Range of log-compressed
spectra: 20 dB
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Figure 4.2.9: Axial (a) and lateral (b) profiles - point source with strongly band
limited impulse response

Now, the original impulse response is employed, but the measurement data
is corrupted by Gaussian noise with a peak signal to noise ratio (PSNR) of
−30 dB, meaning the square of the highest value in the actual signal is at 3.16%
of the noise power. The point sources cannot be seen at all in the standard
reconstruction (see Figure 4.2.10). The images of the Landweber reconstruc-
tion are very noisy, but in principle, the general shape of the point sources
can still be recovered. The improvement over iterations is very small, but the
spectra suggest a significant improvement in spatial resolution. The increase of
bandwidth of previous results without noise in Figure 4.2.3, however, cannot
be reached any more. These results might demonstrate that the Landweber
method is an effective tool for noise compensation, as it amplifies frequencies
that are slightly damped but suppresses frequencies that are dominated by
noise.
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Figure 4.2.10: Reconstruction results of the “point-source” phantom in space
domain and spatial frequency domain for noisy data (PSNR
−30 dB); standard reconstruction (a,d) , Landweber recon-
struction after 1 iteration (b,e), Landweber reconstruction after
10.000 iterations (c,f), Dynamic Range of log-compressed spec-
tra: 20 dB

However, for a fair comparison, it should be considered that the knowledge
about the impulse response can also be exploited in the standard reconstruction
by spectral filtering of the measurement data. The Filter kernel that minimizes
the square error in the restoration of noisy filtered data is the Wiener Decon-
volution filter HW , which is defined as [118, p.107]:

HW (ω) =
1

η(ω)
|η(ω)|2

|η(ω)|2 + Pn(ω)
Ps(ω)

(4.2.1)
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with Pn(ω) being the spectral noise power density and Ps(ω) being the spectral
signal power density. A comparison between the Landweber reconstruction
results and a standard reconstruction after a Wiener deconvolution of the
measurement data was conducted in order to provide an estimate of the
capabilities of noise suppression during the Landweber reconstruction. To
neglect the impact of aberrations to the resolution, the following simulations
were acquired in a homogeneous acoustic background with c(r ) = 1480 m/s
and ρ(r ) = 1040m−3. It should be noticed that, in this case, the spectral
densities Pn(ω) and Ps(ω) can be exactly determined by determining the
spectrum of the noise free simulation data and the spectrum of the added
noise for each channel. In actual imaging scenarios, however, both Pn(ω)
and Ps(ω) need to be estimated based only on noisy measurement data. In
consequence, the application of the Wiener filter requires a-priori knowledge
and the respective results must be seen as an upper limit of what actual filtering
might be able to achieve.
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Figure 4.2.11: Reconstruction results of the “point-source” phantom in space
domain and spatial frequency domain for noisy data (PSNR
−30 dB); standard reconstruction (a,d), standard reconstruc-
tion with prior Wiener deconvolution (b,e), Landweber recon-
struction after 10.000 iterations (c,f), Dynamic Range of log-
compressed spectra: 20 dB

The reconstruction results of the standard reconstruction with and without
prior Wiener deconvolution are depicted in Figure 4.2.11-(a,d) and in Fig-
ure 4.2.11-(b,e), respectively. In both the image after Wiener deconvolution
and the Landweber image, spatial frequencies beyond the −6 dB limit are visi-
ble. The results of the Landweber reconstruction seem to exhibit more noise.
However, the line profiles in Figure 4.2.12 indicate that the spatial resolution
of the Landweber method is highly competitive with an ideal Wiener decon-
volution. Axially, the Landweber method seems to outperform the standard
reconstruction with Wiener deconvolution. In lateral direction, a comparison
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is difficult to make, but the two results are fairly similar.
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Figure 4.2.12: Axial (a) and lateral (b) profiles (Wiener) - point source and
noisy data

4.2.3 Performance Using Realistic Properties
For now, all phantoms were designed to investigate a specific property of the
reconstruction algorithm. However, the source distributions were quite unreal-
istic in order to provide information about the application of the Landweber
method to clinical measurement data. To prove a benefit of the method in
realistic tissue properties, the carotid artery phantom that was described in
chapter 2.4, and is also depicted in Figure 4.2.13, was used for a simula-
tion and reconstructed with a standard reconstruction and the Landweber
reconstruction. The respective simulation properties are listed in table 4.2.3.
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Property Value Unit

grid size 256× 256 pixels
grid area 29.9× 29.9 mm2

center frequency 2 MHz
fractional bandwidth 78 %
transducer elements 96

pitch 0.245 mm
kerf 0.049 mm

laser pulse FWHM 1 ns

Table 4.2.3: Simulation properties for the “carotid-artery” phantom
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Figure 4.2.13: Numerical “carotid artery” phantom; photoacoustic source dis-
tribution (a), speed-of-sound distribution (b)

The respective reconstruction results are depicted in Figure 4.2.14. The im-
ages are displayed on a linear scale before envelope detection. The Landweber
reconstruction succeeds in mapping the boundaries to the correct locations,
while the standard reconstruction yields distorted image features. Also, a
significant recovery of bandwidth can be stated, which becomes obvious, for
example by the fact that the lumen of the vene is filled out instead of only
showing the boundaries. It is even possible to see the signal decay within the
vessels due to the decreasing fluence, that can also be seen in the original
phantom.
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Figure 4.2.14: Landweber reconstruction results for the carotid artery phan-
tom; standard reconstruction (a), Landweber reconstruction
after 10,000 iterations (b)

4.3 Reconstruction with Estimated
Heterogeneities

While the previous studies focused on general properties of the Landweber
method and assumed the heterogeneity distributions to be exactly known
within the reconstruction, this section addresses the applicability of the Landwe-
ber reconstruction to clinically relevant scenarios, where the speed-of-sound
distribution is not exactly known, but might be estimated. In general, as
pointed out in chapter 3.2.1, ultrasound imaging is a promising tool to derive
information about the acoustic properties and many PA systems allow for the
additional acquisition of ultrasound images. However, it can generally be
expected that the results from reconstruction algorithms that derive medium
properties are imperfect. Therefore, the first study in this section will be dedi-
cated to the question in how far degradations of the acoustic heterogeneity
distribution harm the reconstruction results of the Landweber reconstruction.
This is assessed by actively blurring and misplacing the actual heterogene-
ity distribution. In a second experiment, again based on simulation data of
the numerical carotid artery phantom (see Figure 4.2.13), the performance
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of the Landweber reconstruction is assessed when the heterogeneity distri-
butions are acquired from reflection mode ultrasound measurements using
a non-linear iterative ultrasound reconstruction method [75]. Just like the
Landweber method, the non-linear ultrasound reconstruction is based on an
iterative scheme, where the image is updated by a numerically computed
pair of forward and adjoint operators. However, here, two parameters are
reconstructed, which are the relative medium properties for compressibility γκ
and density γρ. Since the dependence of the measured wave on the medium
properties is not linear, the forward operator was differentiated using a Fréchet
derivative before the determination of the adjoint operator, which has also
been demonstrated in [129,130]. Finally, since, in ultrasound imaging, the
wave excitation can be varied and an US measurement comprises a set of US
measurements in the same medium for different incoming waves, the optimiza-
tion is realized as a Kaczmarz method, where the individual measurements are
randomly permuted and an update is calculated for each measurement instead
of optimizing the whole forward problem at once before updating [139]. The
two adjoint operators for compressibility R

′∗
κ and density R

′∗
ρ read as:

�

R
′∗
κ p(us)

m

�

(r ) = +
´ T

0 c−2
0 Z (us)(r , t)∂t t p

(us)(r , t)d t
�

R
′∗
ρ p(us)

m

�

(r ) = −
´ T

0 ∇Z (us)(r , t) · ∇p(us)(r , t)d t
(4.3.1)

where p(us)
m is the ultrasound measurement data, p(us) the respective ultrasound

wavefield and Z (us)(r , t) is an auxiliary field that is defined exactly as Z(r , t)
in (4.1.11) - (4.1.13) in relation to p(us). The update is calculated by back
propagating the current error in the space of measurements via the adjoint
operators and adding the result to the current estimation of the medium
parameters:

γ̂κi+1 = γ̂κi +ακR
′∗
ρ (p̂

(us)
m,i − p(us)

m )
γ̂
ρ
i+1 = γ̂

ρ
i +αρR

′∗

ρ(p̂
(us)
m,i − p(us)

m )
. (4.3.2)

Here, γ̂κi and γ̂ρi are the estimations of the compressibility variation and the

density variation in the i-th iteration and p̂(us)
m,i is the forward propagation in

the current medium properties. ακ and αρare the relaxation parameters that
need to be found empirically. A detailed description of the entire method can
be found in [74].
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4.3.1 The Limits of Reconstruction in Estimated
Heterogeneities

The first experiment assesses the robustness of the Landweber reconstruction
to false heterogeneity maps. As it can be assumed that heterogeneity maps
derived from ultrasound images will never be exact, in this experiment the
actual SOS distribution that has been used to generate PA measurement data
is manipulated and the effect on the Landweber reconstruction results is
evaluated. Two scenarios are investigated, a misplaced SOS distribution and a
blurred SOS distribution. Again, to be able to accurately interpret the results,
a simple numerical phantom is chosen that matches the one in Figure 4.2.5,
comprising a disc-shaped source distribution and a single tilted SOS transition.
The original SOS distribution and the two distorted distributions are depicted
in Figure 4.3.1. The shift is in the order of the center wavelength (0.94λc) and
the blurring kernel has a standard deviation in the order of twice the center
wavelength (1.88λc), where the center wavelength is λc = 0.74 mm.
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Figure 4.3.1: Distorted SOS distribution of numerical “disc-source” phan-
tom; original SOS distribution (a), shifted SOS distribution (b),
blurred SOS distribution (c)

The respective reconstruction results after 100 iterations are found in Fig-
ure 4.3.2. While the boundaries of the disc phantom are clearly visible and
form a correct circle, the lateral boundaries are clearly displaced in the shifted
phantom and the respective boundaries that are backpropagated after reflec-
tion from the SOS transition are tilted. In the reconstruction with the blurred
SOS distribution, the lateral boundaries are barely visible and strong artifacts
appear on both sides. As these introduced distortions are a conceptual error
within the back propagation mode, it is not expected that the these results will
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improve with a higher number of iterations.
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Figure 4.3.2: Landweber reconstruction results of the “disc-source” phantom
with distorted SOS distribution after 1000 iterations; result using
original SOS distribution (a), result using shifted SOS distribution
(b), result using blurred SOS distribution (c)

4.3.2 SOS Estimation Using a Non-Linear Reconstruction
Finally, the performance of the Landweber reconstruction using reconstructed
medium heterogeneities and hence not requiring any a-priori knowledge of
the imaged tissue is assessed. The SOS map was derived from the Kaczmarz
ultrasound reconstruction described at the beginning of section 4.3. Again, the
carotid artery phantom was employed to provide an impression of the results
in realistic medium properties. For this simulation, the phantom was slightly
shifted in axial direction, since the Kaczmarz reconstruction generated strong
artifacts in regions very close to the transducer. In a realistic scenario, this
might be achieved by using a physical standoff or a setup in water, providing a
layer of appropriate thickness with homogeneous material properties. For the
ultrasound reconstruction, single element excitations were used. The center
frequency of the excitation pulse had to be chosen as 763 kHz, which is lower
than the transducer’s center frequency of 2 MHz. This was done to comply with
a general restriction of the method that does not allow for phase shifts of more
than π between the waves traveling in the actual medium compared to waves
traveling in the medium of the first iteration step [129]. The respective non-
linear reconstruction result after 15,000 iterations is depicted in Figure 4.3.3-c
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next to the actual SOS distribution ( Fig. 4.3.3-b) and the PA source distribution
( Fig. 4.3.3-a) and . While large homogeneous regions could not completely
be restored in the SOS reconstruction, the general shape of all structures is
recreated precisely and edges are preserved with almost no blurring.
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Figure 4.3.3: Numerical “carotid-artery” phantom; photoacoustic source distri-
bution (a), speed-of-sound distribution (b), estimated speed-of-
sound distribution by Kaczmarz reconstruction (c)

In Figure 4.3.4, the reconstruction results of the Landweber method using
the SOS map returned by the Kaczmarz reconstruction is compared to the result
using the original distribution and a Fourier backpropagation PA reconstruction
that does not consider SOS variations (see (2.2.12)). Other than the standard
reconstruction, the iterative reconstruction maps the sources to the correct
locations and restores much of the signal lost by the limited view and damped
by the impulse response of the transducer and the laser pulse. Comparing the
reconstruction in the actual speed of sound to the reconstruction in the speed
of sound estimated by the Kaczmarz method, a difference in the images can
barely be made out. A normalized error between the reconstruction result p̂0
and the actual distribution p0 was calculated for all three results in Figure 4.3.4
as:

e = E(p0−p̂0)p
E(p0)E(p̂0)

(4.3.3)

with the signal energy operator E defined applied to p0 calculates as Ep0 =´
Ω p0(r )2dr . While the standard reconstruction returned a normalized error

of 15.6 dB, the Landweber reconstruction based on the actual SOS distribution
returned an error of 2.8 dB and the Landweber reconstruction based on the
Kaczmarz SOS estimation returned 3.5 dB.
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Figure 4.3.4: Reconstruction results of numerical “carotid-artery” phantom;
standard reconstruction (a), Landweber reconstruction after
10,000 iterations using the acutal SOS disitribution (b), Landwe-
ber reconstruction after 10,000 iterations using SOS distribution
estimated by the Kaczmarz reconstruction (c)

4.4 Discussion and Conclusions
In this chapter, an iterative photoacoustic reconstruction algorithm that is based
on the Landweber method was derived and studied. The algorithm considers
a set of properties of the measurement that are usually neglected during
reconstruction, such as the transducer dimensions, the impulse responses
of the transducer and the laser excitation and, most important, acoustical
heterogeneities.

First, the general capabilities of the method with exactly known hetero-
geneity distributions were tested. The reconstruction results in section 4.2.1
show that the resolution of band filtered measurements in the presence of
both compressibility scatterers and mass density scatterers can be strongly
improved using the Landweber iteration and improves with an increasing
number of iterations. It was furthermore shown that the presence of acoustic
heterogeneities is not necessarily a harm to the reconstruction. Once the het-
erogeneities are considered in the reconstruction, the image quality can even be
significantly improved by restoring structures, which generate waves that are
only measured by a limited aperture after scattering (see section 4.2.1). It was
shown in section 4.2.2 that the Landweber reconstruction does not succeed in
recovering spatial frequencies that have not been propagated due to complete
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suppression of the referring temporal frequencies in the impulse response (see
Fig. 4.2.8). However, damped frequencies can be efficiently recovered, even in
the presence of noise (see Fig. 4.2.10) and the results are very close to a Wiener
deconvolution of the measurement data, where both noise spectrum and signal
spectrum are exactly known (see Fig. 4.2.11). The recovery of lateral struc-
tures is much more effective using the Landweber method than using Wiener
deconvolution. It is questionable if the high computational effort justifies
this improvement over direct filtering methods, but at least when scattering
dominates the image quality, the Landweber reconstruction might still be the
best choice. In a simulation that imitates a clinical measurement of the carotid
artery, the benefits of the Landweber iteration above a standard reconstruction
were proven in section 4.2.3. Even though the SOS deviations in the region of
the carotid artery are comparably low, there is a significant degradation of the
image if the SOS distribution is not considered. The Landweber reconstruction
succeeds in restoring the actual shape and quite much of the bandwidth of the
actual phantom.

After the general assessment, the capabilities of the Landweber reconstruc-
tion for an imperfectly known acoustic heterogeneity distribution were stressed.
First, the algorithms vulnerability to distortions of the employed heterogeneities
was investigated by shifting and blurring the respective distribution. In the
tested scenario, small deviations from the actual distribution lead to significant
artifacts in the reconstruction (see section 4.3.1). It is likely that a conver-
gence for imperfect data cannot be assured. Considering that, compared to
the employed center wavelength, only slight manipulations of the underlying
SOS distribution were made, the robustness of the Landweber reconstruction
to imperfect heterogeneity data must be highly questioned. However, in the
frame of simulated data, it could be shown that similar results could be pro-
duced without any a-priori knowledge about the acoustic heterogeneities (see
section 4.3.2). By employing a non-linear US reconstruction based on single
element emissions, a highly resolved SOS distribution could be estimated.
Even though the estimation exhibited some artifacts, the result of the Landwe-
ber reconstruction based on the estimated SOS distribution did not deviate
strongly from a result, where the actual distribution was used. Still, especially
in the light of the Kaczmarz US reconstruction not yet having been applied to
experimental data and being restricted in the employed temporal frequencies,
an actual application of the Landweber method in a clinical PA imaging system
is currently not likely. For that reason, less model based but more robust and
efficient algorithms to account for acoustic heterogeneities will be introduced
in the following chapters of this dissertation.
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5
Refraction-Compensating Reconstruction

In this chapter, a new method to account for aberrations in PA imaging is
introduced that will be referred to as paraxial back propagation (PBP). The
method is validated on simulation data and on in-vivo data. Some of the
methods and results have been published in a conference article [153].

As pointed out in section 3.2.2, the quantity that is responsible for aber-
rations is the speed of sound. Therefore, within this chapter, variations in
acoustic properties are limited to variations in the speed of sound. Variations
of mass density and compressibility leading to a constant SOS may still gener-
ate scattering of the wave but do not delay or advance wave fronts. Hence,
such scatterers do not contribute to aberrations and, in consequence, are not
addressed here.

The method that is introduced in this chapter relies on a paraxial wave
propagation model, which is related to the Fresnel approximation and is
valid for waves that have a predominant propagation direction. The key
component of the approximation is a split step approach, which separates
diffraction and refraction of the wave into two consecutive steps during a
wavefield extrapolation. This model is able to efficiently approximate wave
front distortions by variations in the SOS by considering forward scattering,
while backscattering is completely neglected. The benefit of the neglection of
backscattered waves during back propagation will be investigated by comparing
the method to a direct time reversal approach.

Paraxial approximations, which are also referred to as parabolic approxi-
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5.1. A PARAXIAL WAVE PROPAGATION MODEL

mations, have been used for imaging and simulations in other contexts. Be-
sides the split step approach, there are variations of the model, for exam-
ple the “non-stationary phase shift” or the “phase shift and interpolation ap-
proach” [120]. Due to the necessity to calculate multiple wavefields, however,
these approaches can be expected to be more time consuming than the split
step. In numerical studies, a propagation model resembling the one that is
proposed in this chapter was used for an iterative reconstruction algorithm
in transmission ultrasound tomography [9, 64] and a direct approach in re-
flection tomography [81,82]. Other applications of paraxial approximations
for imaging or simulations can be found in the field of optics [54, 68] or
geophysics [120].

5.1 A Paraxial Wave Propagation Model
For the consideration of aberrations, backscattering is not of interest but rather
the phase delays of the wave, which are introduced by speed of sound variations.
Hence, the first simplification for this method is the neglection of those parts of
density variations and compressiblity variations that do not affect the speed of
sound according to c = (ρκ)−1/2. For the sake of a compact notation, the speed
of sound variation will henceforth be represented by it’s relative deviation γc(r)
of the actual SOS c(r) from the reference SOS c0 by γc(r ), which is defined as:

γc(r) = c0/c(r)− 1. (5.1.1)

The respective Helmholtz equation, which is the temporal frequency domain
representation of the wave equation, reads as:

∆p+ k2
t (1+ γc)

2p = 0 (5.1.2)

with kt being the temporal wave number according to kt =ω/c0, withω being
the angular temporal frequency and c0 being the scalar reference SOS. Note
that the paraxial approximation is a general wave propagation model and
hence, for now, the photoacoustic sources are neglected. Also, in this wave
model, mass density variations are not as accurately included as in the general
wave equation for heterogeneous media in (2.1.21).

The paraxial extrapolation of a pressure field in z-direction is derived in
line with [9], where a similar approach was used for simulating the wave
propagation in transmission ultrasound tomography. Applying an envelope
transformation with:

p(r) = eikt zu(r) (5.1.3)
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CHAPTER 5. REFRACTION-COMPENSATING RECONSTRUCTION

a substitution into the Helmholtz equation (5.1.2) yields:

∂x xu+ ∂zzu+ 2ikt∂zu+ k2
t

�

(1+ γc)
2 − 1

�

u= 0. (5.1.4)

For p being a plane wave that propagates into z-direction, u is constant in z.
For all plane wave solutions to p with a small angle in relation to the z-axis,
u varies slowly with z. Thus, in these cases ∂zzu can be neglected and the
differential equation can be factorized to

(∂z + ikt + iktQ) (∂z + ikt − iktQ)u= 0 (5.1.5)

with Q being a pseudo differential operator that is defined as:

Q :=
q

k−2
t ∂x x + (1+ γc)2, (5.1.6)

which can be approximated by:

Q t
q

1+ k−2
t ∂x x + γc (5.1.7)

as suggested in [54] and also employed in [9]. Note that the factorization in
(5.1.5) is only valid, if the commutator of the two operators Q and ∂z + ikt :

[∂z + ikt ,Q] = ∂zQ−Q∂z (5.1.8)

can be neglected, which is the case for n varying slowly with z [9]. The two
factors in (5.1.5) result in two separable differential equations, where one
describes the forward propagating wave envelope u+ and one the backward
propagating wave envelope u− in relation to the z-axis. The formal solution
after solving for u+ or u− and evaluating at z +∆z yields an extrapolation
formula of the fields for given values at z:

u−(x , z +∆z) = e−ikt (1−Q)∆zu−(x , z)
u+(x , z +∆z) = e−ikt (1+Q)∆zu+(x , z)

(5.1.9)

For this, γc is required to be constant over z within the interval [z, z +∆z],
which is from now on referred to as one slice. Assuming the SOS varying
slowly with z, this assumption is not expected to harm the results too much
and its impact will decrease with decreasing ∆z. Using the approximation of
Q in (5.1.7), Lie-Trotter splitting of the two summands of this approximated Q
can be employed, assuming they commute [69]. Then the solutions read as:

u∓(x , z +∆z) = e−ikt∆ze±ikt

�

γc(x ,z)+
p

1+k−2
t ∂x x

�

∆zu∓(x , z) , (5.1.10)
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where the pseudo spectral operator exp(±ikt((1+ k−2
t ∂x x)1/2 ∓ 1)∆z) can

be expressed in the frequency domain as exp(±ikt((1− (kx/kt)2)1/2 ∓ 1)∆z)
using the Fourier pair x ↔ kx . In consequence, the extrapolation of forward
and backward propagating envelope fields can be approximated by:

u∓(x , z +∆z) = e−ikt∆ze±iktγc(x ,z)∆z

·F−1
kx

�

e±iκz∆zFx {u∓(x , z)}
	

(5.1.11)

with κz := kt((1−(kx/kt)2)1/2 yielding a solution to the forward and backward
propagating pressure fields according to (5.1.3), that writes as:

p∓(x , z +∆z) = e±iktγc(x ,z)∆z

·F−1
kx

�

e±iκz∆zFx {p∓(x , z)}
	

.
(5.1.12)

This solution can be understood heuristically as a separation of the wave
propagation into two processes. The first process describes the diffraction of
the wave, assuming a constant SOS. The diffraction is applied by shifting each
mono frequent plane wave, measured in one axial plane, into its propagation
direction, such that the axial component of the shift matches ∆z. The second
process describes the refraction of the wave, which is applied by adjusting the
phase of the wavefield according to the actual SOS at each lateral location
within∆z. As a directive information of the wave cannot directly be addressed
in the space domain, this step assumes that the whole wavefield would have
propagated directly into z-direction. The error induced by this simplification
vanishes with decreasing ∆z.

The efficiency of the paraxial split step approach might be explained as
follows: For the wave diffraction, the propagation angle of the plane waves
is of importance, where one plane wave angle corresponds to one lateral
frequency in the frequency domain of x . On the other hand, for the refraction,
the spatial distribution of the SOS distribution in the respective slice is of
importance. Separating diffraction and refraction into two successive steps
while alternating from space domain to spatial frequency domain, the wavefield
can be extrapolated efficiently, as the Fourier transforms can be computed using
fast Fourier algorithms. The recursive nature of the paraxial approximation
is necessary, since a direct computation of the propagation through multiple
slices ∆z is not possible. This is due to the fact that the phase shift in the
frequency domain and the phase shift in the space domain do not commute,
which becomes obvious, when regarding them as a convolution in x followed
by a multiplication in x .
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5.2 Paraxial Photoacoustic Back Propagation
The aim of a photoacoustic reconstruction is to deduce the initial pressure
distribution p0(r) from the temporal measurement of the respective wavefield
at the sensor, which is now referred to as pm(x , t) = p(rs, t). The initial
pressure distribution is defined as the acoustic wavefield at t = 0, which is the
moment of laser illumination. Note that a laser pulse shape deviating from a
temporal delta impulse will only result in a temporal filtering of the respective
signals if thermal confinement is met. In consequence, the forward problem
can be modeled by an initial value problem that is defined by the Helmholtz
equation (5.1.2) and the boundary conditions:

p(r, t = 0) = p0
∂t p(r, t = 0) = 0

(5.2.1)

as long as p is evaluated at times t > 0. Obviously, this initial value problem
can be solved by determining the entire wavefield p(r, t) and evaluating it
at t = 0. This corresponds to determining the entire wavefield p(r, kt) and
integrating over kt , because p(t = 0) =

´
p(kt)exp(ikt0)dkt =

´
p(kt)dkt .

The approximation of the entire wavefield can be achieved based on the
recursion formula (5.1.12) as an extrapolation into positive z-direction of the
wavefield traveling into negative z-direction p−. This is because only PA waves
traveling backward in regard to the z-axis can be measured by a transducer at
z = 0. Finally, the paraxial back propagation can be computed by the following
instruction:

p−(x , z = 0, kt) = pm(x , kt)
p−(x , z +∆z) = eiktγc(x ,z)∆z

·F−1
kx

�

eiκz∆zFx {p−(x , z)}
	

p(px)
0 (r) = 1

2π

´∞
−∞ p−(r, kt)dkt

(5.2.2)

with p(px)
0 being the paraxial estimation of the initial pressure distribution p0.

5.3 Implementation
While the diffraction term exp(iκz∆z) in (5.2.2) is independent of z, the
refraction term exp(iktγc(x , z)∆z) depends on z and needs to be computed
for each slice individually. This and many more important considerations have
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to be made for a discrete implementation of the paraxial back propagation
(PBP) algorithm. They will be discussed in the following section. Also, when
the algorithm is tested, the real benefit of a paraxial approximation can only
be assessed in comparison to other algorithms that are able to compensate for
SOS variations in a PA reconstruction. Therefore, in this chapter, issues during
the implementation and suggestions to account for those are discussed and
two reference algorithms are introduced, one more model based and one less
model based than PBP.

Evanescent Waves

Despite the mathematical correctness of the diffraction term exp(ikt(1 −
(kx/kt)2)1/2∆z) in (5.2.2), the presence of noise or even numerical inaccura-
cies in the evanescent parts of the measurement data prevents a reconstruction
from generating adequate image results. Evanescent parts are referred to as
the areas in the two dimensional spectrum of pm, where the absolute of the
lateral spatial frequency is higher than the absolute of the temporal wave
number |kx |> |kt |. Looking at kt < kx < 0, the argument of the exponential
function in the diffraction term ikt(1− (kx/kt)2)1/2∆z becomes real with a
positive sign, which implies that the amplitudes of the evanescent parts in the
measurement data increase exponentially during backward propagation. In
fact, this is the correct inversion of the negative sign of the argument during
forward propagation, where evanescent amplitudes decrease exponentially.
However, for imperfect measurement data, the amplification of evanescent
parts during back propagation is crucial. For that reason, the diffraction term
was set to 0 for |kx |> |kt | and, hence, not allowing evanescent amplitudes to
be propagated at all. The respective propagation model reads as:

p−(x , z +∆z) = eiktγc(x ,z)∆z

· F−1
kx

�

eieκz∆zFx

�

p−(x , z)
		

(5.3.1)

with

eκz =

¨

kt

Æ

1− (kx/kt)
2 , |kx | ≥ |kt |

0 ,otherwise
(5.3.2)

The Damping Layer

While temporal zero padding is not required, because the field is evaluated at
t = 0 and not ealier, the periodic nature of discrete Fourier pairs evokes the
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necessity to avoid lateral wrapping of waves exiting the lateral borders of the
reconstruction area. This might be realized by zero padding in x-direction.
Here, we introduce a more efficient way, which resembles to the concept of
perfectly matched layers in finite difference or pseudo spectral simulation
methods [26]. An additional layer is padded onto both lateral ends of the
measurement data set pm with pm = 0 for x /∈ [x1, x2] and x1 and x2 being
the start position and end position of the linear array in x . A layer width
of 16 pixels was found to be a good trade-off between wave supression and
computation time1. The heterogeneity distribution γc(r ) was padded with
zeros likewise. After each recursion step, a lateral Tukey window was multiplied
to all frequencies of the wavefield p at the current depth, damping all values
in the padded area, such that the pressure value was eventually zero at the
boundaries of the padded region but the damping was smooth enough to
suppress strong reflections into the solution area. Mathematically speaking,
the recursion step in (5.2.2) is supplemented with the Tukey window function
wTuke y as:

p−(x , z +∆z) = wTuke y(x)e
iktγc(x ,z)∆z

· F−1
kx

�

eieκz∆zFx

�

p−(x , z)
		

(5.3.3)

with wTuke y(x) being defined as:

wTuke y(x) =







(1− cos(π(x − x1 +∆xp)/∆xp))/2 , x1 −∆xp ¶ x ¶ x1

1 , x1 < x < x2

(1+ cos(π(x − x2)/∆xp))/2 , x2 ¶ x ¶ x2 +∆xp
(5.3.4)

within the interval x ∈ [x1 −∆xp, x2 +∆xp], where the original lateral grid is
defined within the interval [x1, x2] and ∆xp is the lateral width of the padded
area. The application of the damping window is visualized in Figure 5.3.1,
where exemplary reconstruction results are displayed without damping window,
with a 2 pixel damping window and with a 16 pixel damping window. The
respective windowing functions are plotted as green line above the plots. The
image without damping window exhibits some strong structures on the left and
right side above the actual sources, which can be assigned to wrapping artifacts.
In the image with 2 pixels padding width, wrapping cannot appear because all

1Note that, referring to a transducer with λ-spacing and a computation grid with the same
spacing as the transducer, 16 pixels equals 16 times the center wavelength.
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wave amplitudes exiting the solution area are set to 0. However, there are still
some significant artifacts visible, which can be assigned to reflections, due to
the fast decay of the wave amplitudes over space within the padded area. These
reflections are strongly suppressed in the image, where the 16 pixels damping
window was applied. Note that, instead of an additional multiplication with
the Tukey window, γc can also be chosen to be imaginary in that area to apply
an artificial attenuation. Since the numerous executions of the lateral fast
Fourier transforms (FFT) is the most time consuming operation in the paraxial
back propagation, it is recommended to choose the number of pixels in lateral
direction including the damping layer to exhibit small maximum prime factors,
which will lead to an efficient computation of the FFT [32]. In the plots in the
results section of this chapter, the padded pixels are always cropped off after
the reconstruction for an accurate visualization.
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Figure 5.3.1: Comparison of lateral damping layer sizes in PBP reconstruction;
no damping layer (a), 2 pixels damping layer (b), 16 pixels
damping layer (c), dynamic range: 20 dB, more information
about the data set can be found in section 5.5.3.

The Transmission Factor

Besides wave attenuation by dissipative energy conversion, which is not con-
sidered here, the wave front of a forward propagating wave is attenuated by
reflections due to the power distribution into the transmitted and the reflected
wave. For given acoustic properties, this behavior can be included into the
paraxial wave propagation model by introducing a transmission factor for a
wave propagating into negative z-direction. A general transmission factor in
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conduction theory for a wave traveling into negative z-direction is defined
as [144]:

T−(z +∆z) =
2Z(z)

Z(z) + Z(z +∆z)
(5.3.5)

with Z(z) = ρ(z)c(z) being the medium’s impedance, where it is assumed that
Z is constant within the interval z ∈ [z, z +∆z[ and the transitions occurs
at z +∆z. Assuming a homogeneous density and using (5.1.1), T can be
expressed as a function of γc as:

T−(z +∆z, y) = 2
�

1+
1+ γc(z, x)

1+ γc(z +∆z, x)

�−1

(5.3.6)

This inclusion into the forward model has also been suggested by Gemmeke et.
al [63]. A straight forward approach to include the transmission factor into
the backward wave model is to multiply the inverse value of the transmission
factor with the backward propagated wave in the recursion step, which, after
including the aforementioned damping window, reads as:

p−(x , z +∆z) = wTuke y(x)/T
−(x , z +∆z)eiktγc(x ,z)∆z (5.3.7)

· F−1
kx

�

eieκz∆zFx

�

p−(x , z)
		

Hence, the amplitude loss due to reflections during the forward propagation
can be accounted for without actually computing the reflected wavefields.

5.3.1 Reference Algorithms
The paraxial reconstruction will be compared to two other heterogeneous
reconstruction methods within the scope of this chapter. The first reconstruc-
tion method is a less model based approach using a delay-and-sum formalism,
where individual delays are computed for each combination of a pixel location
and a sensor element location by ray tracing:

∆t(r, rs) =
ˆ |rs−r|

0

1
c(r+ s · es)

ds. (5.3.8)

Here, r is the location of the current pixel to reconstruct, rs = (xs, 0) is the
location of the respective sensor element in the lateral interval xs ∈ [x1, x2]
and es = (rs − r)/|rs − r| is the unity vector pointing from r to rs. The integral
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is evaluated as discrete sum over an index j with s = j ·∆s, with incremental
distance ∆s matching the lateral element pitch and the values of c(r) are
queried at r + j · ∆s · es using nearest neighbor interpolation. The initial
pressure distribution p0(r) is then estimated by evaluation of the measurement
data at the specific delays followed by lateral integration:

p(ra y)
0 (r) =

ˆ x2

x1

pm(xs,∆t(r, rs))drs (5.3.9)

which, again, is computed as discrete sum over all channels. This method
corrects for delays caused by a heterogeneous SOS distribution, treating acous-
tic waves as straight rays, and not accounting for refraction or scattering. A
comparable model was suggested by Dean-Ben et al. in [44].

In contrast to this straight ray approach, a time reversal reconstruction is
a strictly model based approach and has been widely used for PA imaging
in heterogeneous media (see chapter 3.2.1). In time reversal imaging, the
photoacoustic measurement is temporally inverted and treated as Dirichlet
boundary condition in the computation of a time reversal field pTR(r, t) [188]:

pTR(r, t) =
ˆ ˆ

∂Ω

pm(r
′
s, T − t ′)∂z′ g

(D)
γ (r, r′s, t, t ′)dr′sd t ′. (5.3.10)

Here, T is the time during which the measurement was recorded and g(D)γ is
the full wave Green function that is subject to the Dirichlet boundary condition
on ∂Ω [188]. While the analytic solution of g(D)γ is not obvious, (5.3.10) can
be computed using numerical wavefield solvers, such as finite difference or
pseudo-spectral methods. In such simulations, the boundary condition can be
implemented as a forced time varying source term located at the transducer
surface [172]. To estimate the initial pressure distribution p0, the time reversal
field is evaluated at t = T :

p(TR)
0 (r) = pTR(r, T ) (5.3.11)

In principle, time reversal assumes that physical processes are invariant of
their temporal direction, meaning it can not be distinguished, if an event
happened forward or backward in time. Hence, if the complete wavefield
propagating out of an observation domain is propagated back into the domain,
the complete wavefield is reversed. In consequence, back propagating the
measured wavefield and evaluating it at t = 0 should recover the exact initial
pressure distribution. However, in case of a limited view, where only a part of
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the wavefield is back propagated, this implies that reflected waves occur that
would have been canceled out in a full view back propagation. These additional
reflections can appear as false sources in the initial pressure distribution. In
consequence, time reversal comes with the advantage of accounting for all
involved reflections in the forward process, but if the time reversal data is
incomplete, it might be even better to neglect these reflections in order to
reduce artifacts. Figure 5.3.2 illustrates this problem on a one dimensional
grid, comparing the data measured and back propagated from either only one
side of the solution area (limited view), or both sides of the solution area
(full view). In addition, a limited-view time reversal that does not consider
the SOS inclusion is shown. After the complete time reversal at t = 0, the
limited view solution that considers the SOS inclusion can map the source to
the correct position but exhibits additional peaks close to the inclusion. In
contrast, these artifacts do not occur for the limited view backpropagation that
does not consider the SOS inclusion. However, in that case, the source is also
not mapped onto the correct position. Accounting for refraction but neglecting
reflections, paraxial back propagation has the potential of combining both
features, a correct mapping and no additional scatter artifacts, which will be
investigated in the following.
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Figure 5.3.2: One dimensional time reversal in a heterogeneous medium with
an inclusion c of 30% deviation from the background SOS c0 in
the interval indicated by the dark gray background; (a) wave-
field at t = T − 0.13T showing the back propagating waves
before entering the region of deviated SOS (b) wavefield at t = 0
showing the estimated initial pressure distribution. Here, a full
view means a detection and back propagation from both ends
of the solution area, while a limited view means detection and
backpropagation from only the left side.
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5.4 Aberration Correction in Known
Heterogeneities

The first experiments are designed to assess the general capabilities of the
PBP method. For now, the SOS distribution is considered to be known, which
certainly does not hold for actual clinical data sets. However, in order to have
the results independent from inaccuracies of a speed of sound reconstruction,
the assumption of known SOS distributions is inevitable to verify the method.
Approaches to combine PBP with SOS reconstructions, such that no a priori
knowledge about the actual distribution is required, will be presented in
section 5.5.

5.4.1 General Capabilities in Comparison to Other
Methods

The general capabilities of the paraxial back propagation were assessed on well
controlled simulation data. A numerical phantom was designed that consists
of two point sources in a speed of sound background with circular inclusions
of random size and random SOS deviation as depicted in Figure 5.4.1. The
simulation settings are listed in table 5.4.1.

Property Value Unit

grid size 128× 128 pixels
grid area 12.8× 12.8 mm2

center frequency 11.75 MHz
fractional bandwidth 80 %
transducer elements 128

pitch 0.1 mm
kerf 0 mm

Table 5.4.1: Simulation properties for Random SOS discs phantom

87



5.4. ABERRATION CORRECTION IN KNOWN HETEROGENEITIES

20 40 60 80 100 120

20

40

60

80

100

120
0

0.2

0.4

0.6

0.8

1

(a)

20 40 60 80 100 120

20

40

60

80

100

120 1300

1400

1500

1600

1700

sensor

(b)

Figure 5.4.1: Numerical “point-source” phantom with random SOS inclusions;
PA source distribution (a), SOS distribution (b)

Figure 5.4.2 shows the reconstruction results after envelope detection on a
linear intensity map and the respective line profiles through the point sources
on a logarithmic scale. While the homogeneous reconstruction distributes the
sources all over the lower image area, the ray-tracing algorithm focuses on the
actual location more successfully, but still does not allow for a separation of the
two point sources. In contrast to that, both the paraxial reconstruction and the
time reversal approach succeed in mapping the peaks of the two sources onto
the actual source locations and the two sources are clearly distinguishable with
a dip in the range of −15 dB. In terms of computation time, the PBP clearly
outperforms time reversal by a factor of 20.5 (see caption of Fig. 5.4.2) but
by a factor of 6.2 slower than the homogeneous reconstruction. It should be
noted that these computation times are highly dependent on the respective
implementation and on the specific imaging grids and can therefore not be
generalized.
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Figure 5.4.2: Comparison of reconstruction methods for random SOS inclu-
sions (computation times in brackets); standard reconstruction
(0.11 s) (a,e), ray tracing DAS reconstruction (16.58 s) (b,f),
paraxial reconstruction (0.68 s) (c,g), time reversal reconstruc-
tion (13.94 s) (d,h)

In order to attain a more complete idea of how PBP and time reversal com-
pete with each other in terms of the image quality, the experiment was extended
by separating the part of the SOS distribution accountable for transmission
scattering and the part accounting for reflection scattering. In addition, a
comparison of the two methods in a homogeneous medium was conducted.
The respective SOS distributions and reconstruction results are depicted in
Figure 5.4.3. The first phantom, which only exhibits transmission scattering
(Figure 5.4.3-a) leads to comparable spatial distributions for both methods,
indicated by similar dips between the two point sources (see Figure 5.4.3-j).
However, the amount of artifacts above the sources is higher for the time
reversal method (second column in Figure 5.4.3), which can be attributed
to back reflection during the back propagation in limited view time reversal
(see Fig. 5.3.2 for explanation). However, it should be mentioned that these
artifacts are only visible due to the logarithmic intensity scale on the large
dynamic range of 50 dB. In the scenario with heterogeneities only behind the
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sources (Figure 5.4.3), which implies that only reflection scattering occurs,
the amount of artifacts of the two methods is similar. However, the dip be-
tween the two sources is about 3 dB deeper for time reversal, which might be
assigned to the fact that reflected waves during time reversal back propagation
are remapped onto the source location, while the PBP does not account for
backscattering. This indicates that, for heterogeneities behind the source,
backscattering during back propagation is actually desired, while it corrupts
image quality for heterogeneities in front of the sources. The reconstruction in
the homogeneous medium in the last column of Figure 5.4.3 is only a reference
verifying that the artifacts in the other configuration can actually be attributed
to scattering.
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Figure 5.4.3: Comparison of PBP and time reversal reconstruction methods for
differently located SOS inclusions; the three SOS distributions
(a-c), time reversal results (d-f), PBP results (g-i) and profiles
with time reversal in blue and PBP in green (j-l), axes according
to Fig. 5.4.2
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5.4.2 Performance Using Realistic Properties
The SOS deviations in Section 5.4.1 generated strong aberration artifacts, such
that the accuracy of the paraxial back propagation algorithm could be assessed
in detail. However, in order to draw direct conclusions about the benefit of
the method being applied to realistic clinical tissue properties, numerically
generated measurement data of the carotid artery phantom, which is described
in detail in chapter 2.4, provide more insights. The photoacoustic source dis-
tribution and the SOS distribution are depicted in Figure 5.4.4. The simulated
transducer exhibited 96 elements with a pitch of 0.45 mm, a kerf of 0.49 mm,
a center frequency of 7.5 MHz and a fractional bandwidth of 78%.
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Figure 5.4.4: Numerical “carotid artery” phantom; photoacoustic source dis-
tribution (magnified to visualize the hemorrhage) (a), speed of
sound distribution (b)

The following results address the benefit of the PBP in comparison to a stan-
dard reconstruction that does not consider SOS variations. The first question
is in how far SOS variations can distort the image in a realistic scenario and in
how far the PBP can compensate for these distortions. In order to visualize
the extent of distortions of the shape, an overlay image of the reconstructed
image on the actual source distribution is depicted in Figure 5.4.5. Without
applying any noise and depicting the PA images on a logarithmic intensity
scale with a dynamic range of 30 dB, all boundaries can clearly be seen. In
contrast to the distorted shape of the standard reconstruction, the PBP returns
a well defined contour along the actual boundaries of the vessels. Especially
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the small structure at (20.9, 3.2) mm, which mimics a hemorrhage, appears to
be less blurred than in the standard reconstruction.
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Figure 5.4.5: Comparison of reconstructions of “carotid artery” phantom in an
overlay image with the reconstructed source distribution over
the actual source distribution on a gray scale; standard recon-
struction (a), PBP (b) (DR 50dB)

Besides a slightly corrupted interpretability due to the false allocations of the
boundaries, it can be expected that blurring of small structures will decrease
their maximum signal strength and might disappear in noisy data. Therefore,
Gaussian noise was added to the numerically generated measurement data
with a signal to noise ratio (SNR) of −9 dB. The respective results of the PBP,
again in comparison to a standard reconstruction are shown in Figure 5.4.6.
For this scenario, the hemorrhage at (20.9,3.2) mm is clearly visible in the
PBP reconstruction but can hardly be distinguished from noise in the standard
reconstruction.
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Figure 5.4.6: Comparison of reconstructions of “carotid artery” phantom for
noisy data (SNR -9dB); standard reconstruction (a), PBP (b)
(dynamic range 25 dB)

5.5 Aberration Correction in Estimated
Heterogeneities

In contrast to the previous results, which validated the general capabilities of
PBP, this section addresses the actual applicability of the method in clinically
relevant scenarios, where the SOS distribution is generally unknown. First,
the SOS information provided to the reconstruction algorithm is actively ma-
nipulated in order to verify the robustness of the algorithm in a controlled
simulation setup with realistic medium properties. Then, the performance of
the method using an SOS distribution that was reconstructed from plane wave
reflection mode data is assessed. The algorithm for the SOS reconstruction was
introduced as “computed ultrasound tomography in echo mode” (CUTE) [87]
and exploits the linear relation between the inverse of the SOS distribution
and phase delays of waves received from different transmission angles. The
respective algorithm for the reconstruction was provided by Andreas Ihrig.
Finally, paraxial back propagation is applied to in vivo data showing murine
tissue, where two regions were segmented from an US image and values for the
SOS of ultrasound gel and general tissue were assigned to these two regions.
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5.5.1 Assessment of Robustness
The ability of the PBP to retrieve PA sources in an imperfectly reconstructed
SOS distribution is estimated by actively impairing the accuracy of a known
SOS distribution and verifying the effect on the photoacoustic reconstruction.
The main purpose of this investigation is to figure out, if, for a clinically relevant
tissue composition, imperfect information about the SOS distribution can still
improve the image quality compared to algorithms that do not consider the
SOS variation at all.

Here, the SOS distribution employed for the PBP is convolved with a Gaussian
filter of increasing variance. This attempt specifically aims for investigating the
robustness of a reconstruction for a decreasing resolution of a hypothetical SOS
reconstruction. The filter kernel was normalized in order not to scale the SOS
distribution during blurring. Gaussian noise was added to the measurement
data resulting in an SNR of −9 dB. The reconstruction results with a Gaussian
convolution kernel of 1 mm (Fig. 5.5.2-e,f) and 3 mm (Fig. 5.5.2-g,h) full
width at half maximum (FWHM) are compared to the reconstruction results
with perfectly known SOS (Fig. 5.5.2-c,d) and to a standard reconstruction
(Fig. 5.5.2-a,b). The filter kernels are depicted in Figure 5.5.1.
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Figure 5.5.1: Normalized lowpass filter kernels with Gaussian distribution;
1 mm FWHM (a), 3 mm FWHM (b)
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Figure 5.5.2: Comparison of different stages of blurring of the SOS distribution

during PBP reconstruction; SOS distributions: homogeneous (a),
no blurring (c), 1 mm blurring (e), 3 mm blurring (g), respective
PA reconstructions in dB (b,d,f,h)
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In this example, the hemorrhage at (3.1,20.8) mm can hardly be seen in
the standard reconstruction, while it is clearly visible in the PBP image with a
perfectly known SOS distribution. Using the blurred distribution with 1 mm
FWHM filter yields a reconstruction, where the hemorrhage is still clearly
visible. Even with 3 mm FWHM blurring, the hemorrhage still peaks out of
the background noise but is seemingly distorted.

5.5.2 Combination with a Speed of Sound Reconstruction2

The fact that an SOS distribution of low resolution might be sufficient to
improve the image quality of the PA reconstruction arises the question if
reconstructed SOS distributions might achieve comparable results. Therefore,
the accuracy of a paraxial back propagation based on an SOS distribution that
is generated by reflection ultrasound tomography (CUTE), as introduced by
Jaeger et al. [87], is investigated. Again, simulations were used to generate
both PA and plane wave US measurement data using a numerical phantom as
depicted in Figure 5.5.3a and Figure 5.5.3b. In CUTE, the SOS distribution is
estimated from phase shifts in US data from different transmit waves. For this
experiment, 13 plane wave measurements were simulated with transmit angles
between −30° and 30° in steps of 5°. Each of these sets is a linear combination
of 11 adjacent plane waves in 0.5° steps. The regularization parameter for the
Tikhonov problem inversion was set to 7.5 · 10−2. The CUTE reconstruction
result is depicted in Figure 5.5.3c. While the lateral shape of the SOS inclusions
could be restored fairly accurately, the axial shape appears blurred.

2Some text passages in this section were published in [153] © 2017 IEEE. The CUTE reconstruc-
tions were performed by M.Sc. Andreas Ihrig (Ruhr-Universität Bochum).
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Figure 5.5.3: Numerical “point-source” phantom with single SOS inclusion
and CUTE reconstruction; magnified PA source distribution (a),
SOS distribution with ROI of PA sources (b), SOS distribution
reconstructed with CUTE (c)

Accordingly, photoacoustic data was generated and reconstructed using a
homogeneous reconstruction (Fig. 5.5.4-a), using the paraxial back propaga-
tion with the actual SOS distribution (Fig. 5.5.4-b) and using the paraxial back
propagation with the SOS distribution returned by the CUTE reconstruction
(Fig. 5.5.4-c). The results were compared to the actual source distribution
(Fig. 5.5.3-a).
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Figure 5.5.4: Comparison of PA reconstruction results of “point-source” phan-
tom with single SOS inclusion; standard reconstruction (a), PBP
with actual SOS distribution (b), PBP with reconstructed SOS
distribution (c)

While the sources in the homogeneous reconstruction are misplaced and
blurred, the paraxial back propagation maps the sources onto the correct
locations and does not exhibit any visible side lobes. Even though the CUTE
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reconstruction is not perfect, the PA reconstruction results based on the CUTE
SOS distribution match those, where the actual SOS distribution was employed,
very well. As CUTE computes SOS distributions according to phase changes, the
reconstructed distribution might succeed in applying the correct phase delays
during PA back propagation, even though the underlying SOS reconstruction
is imperfect.
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Figure 5.5.5: Comparison of profiles through point sources in the standard
reconstruction, in the PBP reconstruction with actual SOS dis-
tribution and in the PBP reconstruction with the estimated SOS
distribution

5.5.3 In Vivo Example3

The PA reconstruction by paraxial back propagation was validated on data from
an in vivo experiment. The entire measurement was planned and executed by
the staff at the European Institute for Molecular Imagig (EIMI) in Münster and
the respective data sets were made available for this dissertation. Photoacous-
tic and B-mode ultrasound images were acquired using a preclinical ultrasound
system (Vevo 2100, Fujifilm VisualSonics Inc., Toronto, Canada) and a tun-
able (680–970 nm) OPO laser platform (VevoLAZR, Fujifilm VisualSonics Inc.,
Toronto, Canada). Light pulses of approximately 15 ns were delivered through
optical fibers terminating in the head of an LZ-550 ultrasound transducer
(Fujifilm VisualSonics Inc., Toronto, Canada, center frequency: 40 MHz, band-
width: 32–55 MHz). PA images were taken with pulse energies < 30 mJ. In

3Some text passages in this section were published in [153] © 2017 IEEE
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vivo PA imaging was performed on a single male 17-week old C57/BL6 mouse
anaesthetized with isoflurane (1.2–1.7% v/v in O2). All experiments were
performed in accordance with the German Laws for Animal Protection and
were approved by the local authority (North Rhine-Westphalia State Agency
for Nature, Environment and Consumer Protection).

The acquired B-mode images were employed to estimate the SOS distri-
bution. Therefore, two areas were segmented in the B-mode image, one
background area representing the surrounding ultrasound gel and one tissue
area. The segmentation was acquired as threshold gray value segmentation
with the threshold at 1% maximum image intensity followed by a morpho-
logical closing operation using a disc-shaped structure element of 16 pixels
radius. Two standard values for the SOS were assigned to the resulting areas,
1480 m/s for ultrasound gel and 1540 m/s for tissue. The B-mode US image
and the resulting approximated SOS distribution are shown in Figure 5.5.6.
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Figure 5.5.6: B-mode US image on log-scale in dB (a) and SOS distribution in
m
s segmented from the B-mode image (b)

The results of a homogeneous PA reconstruction using only the SOS value of
tissue in comparison to the paraxial back propagation using the approximated
SOS distribution are depicted in Figure 5.5.7. As first impression, one can
notice that the homogeneous reconstruction appears more noisy. This can
be explained by the fact that peak sources, such as small vessels, have a
reduced amplitude when being blurred by aberrations, which reduces the
lower threshold for a fix dynamic range and thus includes more noise. In
addition, the shapes of certain structures in the paraxial reconstruction meet
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the expectations better than in the standard reconstruction. For instance, the
carotid artery, which is depicted in Figure 5.5.8-b and 5.5.8-e, appears more
circular using the paraxial reconstruction. Also, small sources that might be
assigned to vessels, such as the one in Figure 5.5.8-a and 5.5.8-d, appear as
a bow in the standard reconstruction but are point shaped in the paraxial
reconstruction. Two overlay images of PA data on US data comparing the
homogeneous reconstruction to the paraxial back propagation are shown in
Figure 5.5.9.
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Figure 5.5.7: Comparison of reconstruction results of in vivo images on log-
scale (dynamic range: 30dB); standard reconstruction (a), PBP
using SOS distribution segmented from B-mode image (b), green
frames signify the ROIs that are magnified in Fig. 5.5.8
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Figure 5.5.8: Magnified ROIs of Fig. 5.5.7 on a linear intensity scale; ROIs in
standard reconstruction (a-c), respective ROIs in PBP reconstruc-
tion (d-f)
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Figure 5.5.9: Comparison of reconstruction results of in vivo images on log-
scale (dynamic range: 30dB) as overlay image PA over B-mode
US; standard reconstruction (a), PBP using SOS distribution
segmented from B-mode image (b)

5.6 Discussion and Conclusions
As a new approach to reduce aberration artifacts in PA imaging, a back prop-
agation model based on a paraxial approximation of the wave equation was
introduced in this chapter. The method is called paraxial back propagation
(PBP) and uses a Fourier split step to separate diffraction and refraction pro-
cesses during the back propagation of a PA measurement. While the diffraction
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step assumes the wave to propagate in a homogeneous medium, the refraction
step corrects the wave fronts according to the mediums heterogeneities but
assumes a fix propagation direction. The split step is applied by phase shifts
of the wavefield while alternating between lateral space domain and lateral
frequency domain, which can be computed with high efficiency by using fast
Fourier algorithms. A damping layer at the lateral boundaries was introduced
as an alternative to zero padding, allowing the lateral width to be reduced by
almost a factor of two (depending on the geometry). Since the lateral Fourier
transform and it’s inverse are applied in each axial slice for all temporal fre-
quencies, a reduction of lateral pixels is very beneficial in terms of computation
time.

The PBP method requires knowledge about the speed of sound variations
within the imaged region. In a first validation step, the exact SOS distribution
is assumed to be known to the reconstruction (see section 5.4). For an SOS
deviation that was beyond what can be expected from biological tissue, PBP
mapped the sources onto the correct locations, while a standard reconstruction
that did not consider these deviations generated distorted structures all over
the image area (see Fig 5.4.2). The paraxial model produces accurate results
for strong SOS deviations despite the fact that it has a predominant propagation
direction. The directivity of linear array transducers might play a role in this,
since laterally propagating waves cannot be measured efficiently, such that the
predominant propagation in axial direction might be sufficient.

Two other reconstruction approaches that can account for SOS deviations
were compared to PBP, both of which, at least in this implementation and for
the tested geometry, require more computation time by about one order of
magnitude (see Fig. 5.4.2). A ray tracing algorithm based on a delay-and-
sum reconstruction with adjusted delays was not able to restore the shape of
two close point sources in a highly scattering medium. The reason for these
strong remaining aberrations might be assigned to the inaccurate refraction
model, which is discussed in [44]. However, there, the conclusion is drawn
that for most biological tissues, the SOS deviations are not strong enough,
such that the simple refraction model is still valid. The PBP was also compared
to time reversal, which is a strongly model based approach which simulates
the back propagation of a PA measurement including multiple reflections. In
terms of image quality, time reversal and PBP achieved similar results (see
Fig. 5.4.2). In an additional experiment, it was shown that time reversal might
improve the resolution due to back reflected waves (see Fig. 5.4.3). At the same
time, back reflection also lead to additional artifacts during time reversal back
propagation, which can be explained by the lack of the wavefield that was not
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back propagated due to the limited view. PBP, however, which does not account
for back reflection, does not introduce these additional artifacts. Considering
that the chosen SOS deviations are very strong and both the improvement
in resolution due to back reflection and the artifacts due to back reflection
only have a small effect, it can be stated that back reflection effects will not
be of huge relevance for biological tissue. One point to consider, however, is
that, for large intensity differences in PA sources, weak back reflections might
already play an important role, since the resulting artifacts might obscure low
intensity sources.

In a study with a realistic tissue mimicking numerical phantom, the aberra-
tions were not strong (see Fig. 5.4.5). Still, a standard reconstruction dislocated
and blurred sources, while PBP recovered the actual shapes accurately. In the
chosen example, the hemorrhage peaked out of the noise in the PBP recon-
struction but was not visible in the standard reconstruction (see Fig. 5.4.6).

The approach’s applicability without exact knowledge about SOS distribution
was also investigated. First, the algorithms robustness to inaccurate SOS
data was assessed (see Fig. 5.5.2). To a certain degree, badly resolved SOS
distributions were sufficient to still benefit from PBP compared to a standard
reconstruction. This indicates that other SOS reconstruction methods or even
segmentation of the US images with adequate SOS values assigned to specific
areas might be sufficient. In the tested scenario, the resolution was decreased
to 1 mm and to 3 mm FWHM. According to [87, p.12], this matches the range
of resolution that can be expected from an SOS reconstruction using the CUTE
algorithm. First results of PBP based on an SOS distribution estimated by
CUTE generated promising results (see Fig. 5.5.4). In the given experiment, a
comparison of PBP using the actual SOS distribution and using a distribution
estimated by CUTE returned almost similar results, even though the two SOS
distributions differed seemingly. As CUTE attempts to find an SOS distribution
that minimizes phase delays, the result might produce correct phases of the
backpropagated PA wave, even though the SOS distribution is not correct.
However, it should be considered that the stronger the aberration become, the
more difficult it will become to apply CUTE for the SOS estimation, as CUTE is
restricted to small phase shifts.

Finally, both the applicability and the benefit to in vivo data was shown using
preclinical measurements from the European Institute of Molecular Imaging in
Münster (see Fig. 5.5.7). By separating areas of ultrasound gel and biological
tissue by threshold segmentation followed by a morphological operation, a
straight forward process to approximate an SOS distribution was presented. In
the given measurement with a large ultrasound gel layer on top of the tissue,
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the application of PBP made a significant difference to the results of a standard
reconstruction. More advanced segmentation approaches separating different
kinds of tissue based on their respective speckle pattern are imaginable and
might improve the aberration correction.

In summary, paraxial back propagation is an efficient way to account for
strong aberrations in PA imaging, in case any information about the SOS
deviations in the imaged region can be made available. The information does
not have to be very precise and can be derived from US methods. However,
aberrations in biological tissue, at least for soft tissues, are usually small, such
that less model based methods might be sufficient. Still, compared to a ray
tracing algorithm, PBP was computed much faster and might therefore be a
convincing choice.
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6
Reflection-Compensating Reconstruction

The paraxial back propagation that was introduced in chapter 5 has been
shown to compensate for aberrations, but cannot reduce clutter artifacts (see
section 3.2.3 for a detailed description of the origins of clutter). While for
the compensation of aberrations, the heterogeneity map can be imperfect to a
certain degree (see chapter 5.5.1), the results of chapter 4.3.1 indicate that
a very accurate map is needed for the compensation of reflections. State of
the art approaches that address the reduction of clutter have been listed in
chapter 3.2.3.

In the following chapter, a new approach to reduce clutter artifacts is pre-
sented that does not require additional hardware and can be integrated on
any PA system that allows for the acquisition of plane wave (PW) ultrasound
reflection measurements in addition to the PA measurements. For the method
to work, all PA sources need to be located within the field of view. For a one
dimensional linear array, this implies that the tissue has to be illuminated
beneath the transducer, for example by applying a transparent acoustic stand-
off when illuminating from the side of the transducer. In contrast to other
methods that use information from reflection ultrasound data to identify clutter
artifacts, this approach operates in the temporal and spatial frequency domain.
Exploiting relations between the respective quantities in the frequency domain,
the algorithm can be implemented with high computational efficiency. The
findings presented in this chapter have been published in [151,152,154].
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6.1 The Photoacoustic Frequency Domain
Scatter Model1

The quantities used in the following derivation can be divided into functions of
r= (x , z) ∈ Ω in the object space Ω ⊂ R2 and functions of (x , t) ∈ δΩ× [0, T]
in the measurement space δΩ× [0, T] ⊂ R2. For the latter, measurements will
be restricted to pressure signals on the line z = 0, which is assumed to be the
location of a linear array sensor. This implies quantities in the object space to
equal 0 for z ≤ 0.

Quantities in object space are the initial pressure distribution p0(r), which
is aimed for in the PA reconstruction, and the acoustic medium properties
compressibility variation γκ(r ) and mass density variation γρ(r ) (see (2.1.17)
for a definition).

The first quantity in the space of measurements is the plane wave ultrasound
measurement, which is described by p(us)

m (x , t,ϑ). Here,ϑ is the transmit angle
and is defined to equal 0 for a propagation into x-direction and to equal
π/2 for a propagation into z-direction. The second quantity in the space of
measurements is the photoacoustic measurement data set pm(x , t). Now, pm
is treated as a superposition of the pure photoacoustic measurement p(h)m , that
would have been received in a homogeneous medium, and the measurement
of the scattered wave p(sc)

m :

pm(x , t) = p(h)m (x , t) + p(sc)
m (x , t) (6.1.1)

A general solution to the scattered wavefield psc(r, kt) that results from
scattering of an incoming wave pin at the heterogeneities γρ and γκ in the
temporal frequency domain reads as [49, p. 235]:

psc(r, kt) =− k2
t

ˆ
Ω

γκ(r
′)pin(r

′, kt)gγ(r, r ′, kt)dr ′ (6.1.2)

+
ˆ
Ω

γρ(r
′)
�

∇pin(r
′, kt)

�

· ∇gγ(r, r ′, kt)dr ′.

Here, gγ(r , r ′, kt) is the full wave Green function as introduced in (3.1.7) (see
chapter 3.1 for more information). This relation can be used to model the
forward propagation in a plane wave ultrasound (PWUS) measurement p(us)

m if
the incoming wave is chosen as a plane wave pin(r, kt) := ηus(kt)exp(−ikteϑ ·r)

1Some text passages in this section were published in [152] © 2016 OSA
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and the pressure is evaluated on the sensor line r s = (x , z = 0):

p(us)
m (x , kt ,ϑ) = (6.1.3)

−ηus(kt)k
2
t

ˆ
Ω

γκ(r
′)exp(−ikteϑ · r′)gγ(r s, r ′, kt)dr ′

+ηus(kt)
ˆ
Ω

γρ(r
′)
�

∇exp(−ikteϑ · r′)
�

∇gγ(r s, r ′, kt)dr ′,

where the temporal transfer function ηus comprises the electric excitation pulse
and the two-way electro-acoustic transfer function of the transducer. The unity
vector eϑ is defined as eϑ = (cos(ϑ), sin(ϑ)) and points into the direction of
the transmitted plane wave (see Fig. 6.1.1).
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Figure 6.1.1: Carotid artery phantom showing the coordinate system and the
orientation of the transmit angle ϑ

As has been shown in chapter 2.2.2, in a homogeneous medium, the pho-
toacoustic source p0 relates to the photoacoustic measurement ph as (compare
(2.2.4)):

p(h)m (kx , kt) =
ktηpa(kt)

2c0κz
p0(kx ,κz) (6.1.4)
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Given the relations between quantities in the space of objects with quantities in
the space of measurements in (6.1.3) and (6.1.4), the scattered PA wave will
now be modeled with respect to the object functions followed by a substitution
by the respective measurement functions. The first step is to decompose the
wave that originates in a photoacoustic excitation into plane waves. In the
spatial frequency domain, the temporally evolving photoacoustic wave for
t ≥ 0 is described by [33]:

pin(kx , kz, t) = p0(kx ,kz) cos(kc0 t) (6.1.5)

with k =
Æ

k2
x + k2

z being the magnitude of the spatial frequency vector. The
wave is decomposed into plane monofrequent waves in the space domain and
temporal frequency domain by Fourier transforms followed by a transform
into polar coordinates. Plane waves that propagate into negative z−direction,
which implies angles of ϑ ∈]−π, 0[, are considered not to contribute to the
reflected clutter wave and are therefore neglected. The incoming wave is then
described by:

pin(r, kt) = −
kt

4c0π

ˆ π

0
p0(−kteϑ)exp(−ikteϑ · r)dϑ (6.1.6)

Here, ϑ accounts for the propagation direction of the individual plane waves
in relation to the x−axis. This incoming sum of plane waves is plugged into
the general solution to the inhomogeneous acoustic wave equation in (6.1.2)
as pin:

p(sc)
m (x , kt) = (6.1.7)

+
kt

4c0π

ˆ π

0
p0(−kteϑ)k

2
t

ˆ
Ω

γκ(r
′)exp(−ikteϑ · r′)gγ(r s, r ′, kt)dr ′dϑ

−
kt

4c0π

ˆ π

0
p0(−kteϑ)

ˆ
Ω

γρ(r
′)
�

∇exp(−ikteϑ · r′)
�

· ∇gγ(r s, r ′, kt)dr ′dϑ.

This relation describes the scattered PA measurement as function of the object
functions of US and PA imaging. Now the object functions can be replaced
by the respective measurement functions to attain a relation relying only on
measurable quantities. Comparing (6.1.7) to the plane wave US measurements
in (6.1.3), it can be seen that the scattered PA wave can be expressed as a
linear combination of PWUS measurements with varying transmit angles:

p(sc)
m (kx , kt) = −

kt

4c0πηus(kt)

ˆ π

0
p0(−kteϑ)p

(us)
m (kx , kt ,ϑ) dϑ (6.1.8)
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Accordingly, the initial pressure distribution p0 in (6.1.8) can be expressed
by p(h)m using (6.1.4). For that, it is required to substitute the integration
over ϑ with an integration over k(ϑ)x := kt cos(ϑ) with dk(ϑ)x = −κ(ϑ)x dϑ and
κ(ϑ)x := kt sin(ϑ). This results in an expression of the scattered PA wave relying
only on quantities in the measurement space:

p(sc)
m (kx , kt) = −

1
2πηus(kt)

ˆ kt

−kt

p(h)m (−k(ϑ)x ,−kt)p
(us)
m (kx , kt ,ϑ(k

(ϑ)
x , kt))dk(ϑ)x .

(6.1.9)

The evaluation of p(h)m at (−k(ϑ)x ,−kt) equals an evaluation of the complex
conjugate p(h)∗m at (k(ϑ)x , kt) . The angles of the plane waves in the ultrasound
measurements depend on the integration variable k(ϑ)x by:

ϑ = cos−1

�

k(ϑ)x

kt

�

. (6.1.10)

The relation in (6.1.9) does not sufficiently describe a scattered photoacoustic
wave in general. Due to the neglection of negative angles in (6.1.6), transmis-
sion scattering is not considered. In addition, (6.1.5) is only valid for t ≥ 0 and
returns a converging wave at times t < 0. This does not resemble a causal pho-
toacoustic wave propagation initialized at t = 0 and falsely creates additional
scattering of the converging wave. However, both of these simplifications have
low impact on the application for clutter reduction, since the skin, which is
the major source for the incoming wave in (6.1.6), is usually located between
the sensor and the scatterers.

6.1.1 Considerations for Model Inversion
By expressing psc as a linear combination of p(h)m and p(us)

m in (6.1.9), a forward
relation mapping p(h)m onto the actually measurable pm is straight forward.
Substituting (6.1.9) into (6.1.1) yields:

pm = (GBP + 1) ph, (6.1.11)

with the backpropagation operator:

GBP := −
1

2πηus(kt)

ˆ kt

−kt

dk
′

x p(us)
m (kx , kt ,ϑ(k

′

x , kt))C , (6.1.12)
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where C is the conjugate operator that maps a complex number onto it’s
conjugate value, such that C x = x∗. The operator notation is introduced to
ensure readability and will be continued in subsequent chapters. The aim is
now to find an inversion for (6.1.11), such that ph can be expressed only by the
measurable quantities pm and p(us)

m . The inversion, however, is challenging in
many aspects. In the scope of this chapter, two numerical inversion approaches
will be introduced that differ in accuracy and computational complexity. First,
however, some preliminary considerations about the forward model need to
be made.

Spatial Frequency Readout

The first topic to consider is how to read out the ultrasound data in (6.1.9). The
integration over the k(ϑ)x implies an integration over the transmit angle ϑ. A
huge amount of transmissions is required to attain a complete set of ultrasound
measurement data that can fulfill (6.1.10) for each frequency vector (kx , kt) in
p(h)m (kx , kt). This problem is solved by acquiring a fix set of transmissions and
by linearly interpolating the measurement data between the acquired angles.
Let ϑ be the required angle for a single combination of k(ϑ)x and kt , such that
ϑ = cos−1(k(ϑ)x /kt) and let ϑ1 and ϑ2 be the closest neighboring angles that
actually were acquired, then p(us)

m (ϑ) can be approximated by:

p(us)
m (kx , kt ,ϑ)t (1−w) · p(us)

m (kx , kt ,ϑ1) +w · p(us)
m (kx , kt ,ϑ2), (6.1.13)

where the interpolation weight w calculates as:

w= (ϑ− ϑ1)/(ϑ2 − ϑ1). (6.1.14)

Obviously, the linear interpolation becomes more accurate, the more trans-
missions are acquired. An advanced interpolation that allows for a significant
reduction of the number of required transmissions will be introduced in sec-
tion 6.4.

Temporal Frequency Matching

The second topic to consider is the matching of the temporal impulse responses
of the PA imaging process and the US imaging process. For the PA acquisition,
the impulse response ηpa comprises the temporal laser pulse shape and the
acousto-electric impulse response of the transducer. For the US acquisition, the
impulse response depends on the electric excitation pulse, the electro-acoustic
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impulse response in transmission and the acousto-electric impulse response in
reception, while the later two can be assumed to exhibit reciprocity. The inner
product of the homogeneous signal p(h)m with the ultrasound measurements
p(us)

m without filtering:

pBP := −
1

2π

ˆ kt

−kt

p(us)
m p(h)m dk(ϑ)x (6.1.15)

returns a quantity pBP that contains both impulse responses ηus and ηpa (see
(6.1.3) and (6.1.4)). According to (6.1.9), the inverse US impulse response
has to be applied to pBP before adding it to p(h)m :

pm = p(h)m +η
−1
us pBP . (6.1.16)

Applying η−1
us , however, causes trouble for weakly transferred frequencies,

especially in the presence of noise. Hence, another approach to account for
the US impulse response is required.

Figure. 6.1.2 visualizes how well the back propagated signal pBP reproduces
a clutter artifact in the actual signal pm using different filtering approaches.
The data sets for pm and pBP were generated artificially, such that pBP is a
band-filtered version of pm and white noise of 15 dB SNR was added to both
signals. The first approach is to completely ignore η−1

us :

pm t p(h)m + pBP . (6.1.17)

As depicted in Fig. 6.1.2(a,b), pBP cannot accurately recreate a scatter artifact
in pm, since the frequency ranges differ. Substituting η−1

us with the respective
Wiener deconvolution filter:

η(W )us =
1
ηus

ηusη
∗
us

ηusη∗us +
1

SNR

, (6.1.18)

improves the accuracy:

pm t p(h)m +η
(W )
us pBP . (6.1.19)

However, when applying η(W )us , the estimated artifact η(W )us pBP and the actual
artifact in pm differ by a filter ηusη

∗
us/
�

ηusη
∗
us +

1
SNR

�

(see Fig. 6.1.2(c,d)).
Instead of inverse filtering psc , the entire relation in (6.1.11) can also be

filtered with ηus:

ηus pm = ηus p
(h)
m + pBP , (6.1.20)
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such that no inverse filter is required. While, in this configuration, the frequency
ranges of estimated artifact and actual artifact actually match, it comes with
the drawback of a reduced bandwidth of the PA signal and hence a reduced
resolution the reconstructed PA image after inversion (see Fig. 6.1.2(e,f)). It is
therefore required to sacrifice resolution to gain clutter reduction.

Here, a new suggestion is made that is a combination of the two approaches
in (6.1.19) and (6.1.20). Instead of applying the full inverse US impulse
response η−1

us , a windowed version suppressing strongly amplified frequencies
ηwinη

−1
us is applied to pBP and the same windowing function is also applied to

the PA measurements:

ηwinpm = ηwinp(h)m +ηwinη
−1
us pBP (6.1.21)

The window function ηwin might be chosen as:

ηwin =
ηusη

∗
us

ηusη∗us +
1

SNR

, (6.1.22)

which, again, turns the filter ηwinη
−1
us into a Wiener deconvolution filter like

in (6.1.19). However, this time, the frequency content of the actual artifact
and the estimated artifact match. The impulse responses of PA and US are
not completely different because both are dominated by the electro-acoustic
impulse response. Also, the laser pulse shape is usually matched to this spectral
range. Hence, windowing the PA measurement with the Wiener filter of the
ultrasound impulse response is likely not to reduce the resolution too much,
but to significantly reduce noise (Fig. 6.1.2(g,h)).
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Figure 6.1.2: Comparison of signal filtering approaches for recreation of a
clutter artifact in pm by a backpropagated homogeneous mea-
surement pBP - the weaker the difference signal (gray line), the
better clutter can be reduced.
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6.2 Model Inversion by Scatter Estimation
The first approach to invert the forward relation in (6.1.11) is based on a model
simplification and is hence expected to lack accuracy. However, other than the
inversion model in section 6.3, it does not require the online computation of a
matrix inversion. Solving (6.1.11) for p(h)m yields:

p(h)m =
�

1+ G(BP)

�−1
pm (6.2.1)

with the definition of G(BP) in (6.1.12). Now, applying Neumann series expan-
sion returns:

p(h)m =
∞
∑

i=0

�

−G(BP)

�i
pm. (6.2.2)

Truncating the series after the second term (i = 1) makes the proof of conver-
gence of the series needless and results in:

p(h)m t
�

1− G(BP)

�

pm. (6.2.3)

The same result is attained by approximating p(h)m by pm in the first summand of
(6.1.11). Due to this simplification, clutter artifacts will be treated as sources
and will therefore introduce new artifacts, which, however, are of weaker
amplitude. Hence, the simplification is valid for weak scattering.

6.2.1 Implementation of the Scatter Estimation
After a discretization of (6.2.3), pm and p(h)m are written as vectors for each
temporal frequency kt , while GBP is a matrix that contains interpolated values
from the set {p(us)

m (ϑ1), p(us)
m (ϑ2), ..., p(us)

m (ϑn)} at the same temporal frequency.
In order to fine tune the result, an additional parameter α is introduced that
weights the contribution of the estimated scatter and accounts for different
signal amplitudes of PA and US signals:

p(h)m t pm −αG(BP)pm. (6.2.4)

The matrix multiplication has to be applied for each relevant temporal fre-
quency to generate a full data set ph. After this, ph is reconstructed, while
the reconstruction method might be any standard algorithm (see chapter 2.2).
Therefore, a frequency domain reconstruction is suggested (see chapter 2.2.2),
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since the data set is already in the Fourier domain. Since the reconstruction
is a linear operation, the subtraction in (6.2.3) might as well be applied after
reconstructing both pm and GBP pm. This requires the computation of two
reconstructions but allows for more precise fine tuning of α and the temporal
frequency matching that was described in section 6.1.1. The flowchart in
Fig. 6.2.1 shows how the complete algorithm is implemented, starting at the
acquisition of the measurement data for both PA and US and ending at the
retrieval of a PA image that is compensated for clutter.

pm(x, t)

p
(us)
m (x, t, ϑ1)

p
(us)
m (x, t, ϑ2)

p
(us)
m (x, t, ϑn)

2D FFT

2D FFT

2D FFT

2D FFT2D FFT

inputs

US Mesurements

PA Measurement

···
···

···

GBP (k
(ϑ)
x , kx)

Interpolation

acquired angles:

[ϑ1, ϑ2, ..., ϑn]

required angles:

ϑ = cos−1 k
(ϑ)
y

kt
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Figure 6.2.1: The clutter reduction algorithm with scatter estimation: PWUS
measurements from multiple transmission angles are Fourier
transformed, interpolated to to match the readout grid of the
PA data, then multiplied with the conjugate of the Fourier trans-
formed PA data set and the product is subtracted from the PA
data set. The resulting data set is inversely Fourier transformed
and reconstructed, returning an image that is compensated for
clutter artifacts.
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6.2.2 Results Using Scatter Estimation
The clutter reduction method based on scatter estimation and subtraction is
validated in regard to various aspects. First, the general properties of the
method are investigated using a dedicated numerical clutter phantom and
measurement data based on simulations. To proof the performance in a realistic
scenario, a strongly absorbing skin source was added to the numerical carotid
artery phantom used in previous chapters.

General Capabilities and Limits

A numerical phantom was designed to demonstrate the general capabilities
of the clutter reduction method (see Fig. 6.2.2a). The phantom consists of
four different combinations of a point source and a scatterer, which all stress
different properties. The left part comprises a point source above a bar shaped
density scatterer producing a clutter artifact. The second part matches this
configuration with the only difference that at the position, where the artifact is
expected, another source is placed that is not supposed to be canceled out with
the artifact. The third part of the phantom resembles the first configuration but
the density scatterer is replaced by a broad SOS scatterer to assess if a phase
shift of the propagating wave is sufficiently considered. In the last part, the
source is located beneath the scatterer to assess the expected drawback that,
during back propagation, the PA wave is scattered before it actually reaches
the source, which might introduce additional artifacts.

The simulated transducer had a center frequency of 3.5 MHz with a fractional
bandwidth of 80% and comprised 64 elements with a pitch of 0.15 mm (see top
of Fig. 6.2.2a). 101 plane wave measurements were simulated between −50°
and 50° relative to the z-axis. The laser pulse was modeled as a Dirac delta pulse.
The clutter reduction with artifact subtraction was applied using the filtering
method in (6.1.21). Afterwards, a Fourier back propagation reconstruction
(2.2.12) was applied to both the uncompensated and the compensated data
set.

Figure 6.2.2 shows the PA reconstruction with and without clutter reduction
(see Fig. 6.2.2-a and Fig. 6.2.2-b, respectively). An artifact power ratio is
evaluated as ratio of signal energies with and without compensation in a small
region of interest (ROI) around the artifacts. The artifact power ratio of the
left reflection is damped by 10.7 dB. The actual source located at the same
place as the second reflection artifact is not removed. The clutter artifact
underneath the SOS deviation is damped by 3.2 dB. Above the source that
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is located underneath the scatterer at position four, a new artifact appears,
which can be attributed to a reflection during back propagation before the PA
sources are reached. The amplitude of the additional artifact is 12.5 dB lower
than the other sources at that depth.

In summary, a successful clutter reduction can be stated, which does not
suppress actual PA sources at the location of an artifact but introduces weak
additional artifacts for scatterers between the transducer and the PA source.
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Figure 6.2.2: Numerical “clutter”-phantom and results for the clutter estima-
tion approach; Overlay image of PA sources (red), SOS distri-
bution (gray) and density distribution (green) (a), PA image
without clutter reduction (b), PA images with clutter reduction
(c)
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Results for Realistic Properties

The numerical “carotid-artery” phantom that was introduced in previous chap-
ters (see Fig. 2.4.2) was adapted to exhibit a strong photoacoustic source in
the region of the skin. The phantom is visualized in Fig. 6.2.3 as an overlay
image with PA sources on a red color map and the SOS distribution on a blue
to green color map. The transducer location is indicated by the squares on
the top. The simulated transducer matches the one described in chapter 4.2.3.
Gaussian noise was added to the simulated PA measurement data resulting
in an SNR of 20 dB. Simulated PWUS measurements were acquired with 81
transmission angles between −40° and 40° in relation to the axial axis.
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Figure 6.2.3: Numerical “carotid artery”-phantom including skin source as
overlay image with PA sources (red) over the SOS distribution
(blue to green) and transducer elements indicated by blue squares
on top of the image

The uncompensated PA image (Fig. 6.2.4-a) exhibits various clutter artifacts
that appear as curved horizontal lines in the upper part and as point-like and
circular structures in the center and bottom part. The shape of the carotid
artery is hard to determine and the hemorrhage at (18.9, 3.2) mm can barely
be distinguished from the artifacts. Figure 6.2.4-b shows the estimated clutter
distribution. The image is displayed after envelope detection for visualization
purposes, while the subtraction is carried out on high frequency data before
envelope detection. In the image with clutter compensation (Fig. 6.2.4-c), all
artifacts are damped, while the actual sources appear clearly and no strong
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additional artifacts are introduced. The degree of artifact suppression differs in
different image areas. While, in the lateral center, most artifacts are completely
eliminated, artifacts in the outer lateral regions are still clearly visible. This
might be referred to a bad coverage of transmitted waves under steep angles
in those regions.
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Figure 6.2.4: Clutter reduction by subtraction for numerical “carotid-artery”
phantom; uncompensated PA image (a), reconstructed clutter
estimation (b), compensated PA image (c)

6.3 The Direct Inversion Approach
As explained in section 6.1.1, analytically solving the relation in (6.1.11) for
p(h)m is challenging. However, as alternative to a the scatter estimation approach
in section 6.2, a solution to p(h)m can be computed by a numerical inversion
minimizing the error functional:

e =
�

�

�

1+ G(BP)

�

p(h)m − pm

�

�

2
(6.3.1)

In contrast to the scatter estimation approach, a numerical inversion does not
simplify the model in (6.1.11). However, the computational effort increases.
The inverse of (1 + G(BP)) cannot be precomputed and reapplied to other
frames, as it depends on the US measurements referring to the current frame.
Fortunately, due to the formulation in the temporal frequency domain, the
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solution to (6.3.1) can be computed for each temporal frequency independently.
Compared to a model, where a single model matrix is computed and inverted,
applying several inversions of small matrices is computationally efficient. In
addition, applying an inversion allows for a simple inclusion of regularization.

6.3.1 Implementation of the Direct Inversion
While the discretization of pm and p(us)

m is the same as for the clutter estimation,
a direct inversion requires more effort for the computation of GBP with respect
to the complex conjugation in (6.1.12). In the scatter estimation model (see
(6.2.3)), it is straightforward to compute both pm and p∗m to find a solution
to p(h)m . However, in the inversion model in (6.3.1), the complex conjugation
has to be considered in the operator G(BP) to be able to find an inverse to
(1+G(BP)). Therefore, it is necessary to switch from the operator notation to a
vector-matrix notation. The matrix P(us)

m is introduced, where each element

(a, b) computes as:

P(us)
m (a,b) := p(us)

m (a ·∆kx , kt ,ϑ(b ·∆k(ϑ)x , kt)) (6.3.2)

with ∆kx and ∆k(ϑ)x denoting the lateral frequency steps of pm and the desired
p(h)m , respectively. The entire forward problem in vector-matrix notation reads
as:

pm = p(h)m + P(us)
m p(h)∗m . (6.3.3)

Now the fact that both the vector p(h)m and its complex conjugate p(h)∗m appear

in the forward relation can be considered by completely separating the real
part and the imaginary part of pm and p(h)m , which increases the number of

elements of the respective model matrix by a factor of four. The respective
forward model reads as:







ℜpm

ℑpm
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ℜ
�

I −αP(us)
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�

−αℑP(us)
m

−αℑP(us)
m ℜ

�

I +αP(us)
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ℜp(h)m

ℑp(h)m






(6.3.4)
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with I being the unity matrix and ℜ and ℑ being the real part operator and

imaginary part operator with ℜx = 1
2 (x + x∗) and ℑx = 1

2 (x − x∗). Now, the
matrix in (6.3.4) is ready for numerical inversion. To guarantee a fast and
stable computation, a least square solution is implemented to solve (6.3.4) for
ℜp(h)m and ℑp(h)m , which are combined to a complex vector p(h)m afterwards.

A flow chart showing how the direct inversion approach was implemented is
shown in Fig. 6.3.1. The algorithms resembles the one in Fig. 6.2.1, except for
the way how GBP is processed to retrieve p(h)m (see “numerical inversion”-block
in Fig. 6.3.1).

The approach of direct inversion allows for simple integration of regular-
ization. Tikhonov regularization is applied by adding an L2-norm to the error
functional of (6.3.1) in combination with a regularization parameter β:

e =
�

�

�

1+ G(BP)

�

p(h)m − pm

�

�

2
+ β

�

�Lp(h)m

�

�

2
, (6.3.5)

where L is a linear operator. Here, L is chosen as unity operator, such that the
L2 norm of p(h)m is minimized. The regularization term can be integrated into
the matrix notation in (6.3.4) by concatenating the matrix

p

β L to the system
matrix and concatenating a zero-vector to the vector pm [126]. Increasing
β suppresses the false amplification of noise in the returned vector as the
regularization ensures small values for p(h)m .
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Figure 6.3.1: The clutter reduction algorithm with direct inversion: PWUS
measurements from multiple transmission angles are Fourier
transformed, interpolated to to match the readout grid of the PA
data, then the resulting matrix is inverted using a pseudo-inverse
and multiplied to the Fourier transformed PA data set. The result-
ing data set is inversely Fourier transformed and reconstructed,
returning an image that is compensated for clutter artifacts.

6.3.2 Results Using Direct Inversion
As for the clutter reduction by scatter estimation and subtraction, the general
capabilities of numerical inversion were assessed using the numerical “clutter”-
phantom as well as the capabilities in a realistic scenario using the numerical
“carotid-artery” phantom.

General Capabilities and Limit

The same numerical phantom as in section 6.2.2 was employed to validate the
clutter reduction by direct inversion (see Fig. 6.3.2a). Here, the left artifact
was reduced by 7.9 dB, according to the artifact power ratio (see section 6.2.2
for definition). The actual source beneath the artifact at the second location
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has not been eliminated. The artifact power beneath the SOS scatterer at
location three was damped by 4.3 dB. Again, an additional artifact of low
amplitude (10.9 dB less than the sources) is introduced at location four.

127



6.3. THE DIRECT INVERSION APPROACH

50 100 150 200 250

20

40

60

80

100

120
transducer elements

PA sources

(a)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

(b)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

(c)

Figure 6.3.2: Numerical “clutter”-phantom and results for the direct inversion
approach; Overlay image of PA sources (red), SOS distribution
(gray) and density distribution (green) (a), PA image without
clutter reduction (b), PA images with clutter reduction (c)
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Results for Realistic Properties

As for the clutter subtraction method, the “carotid artery”-phantom (see
Fig. 6.2.3) was also used to assess the direct inversion method. The same
simulated measurement data with the same level of noise (SNR = 20 dB) was
used as well as the same simulated PWUS measurements with 81 transmission
angles between −40° and 40° in relation to the axial axis. As described in sec-
tion 6.3.1, Tikhonov regularization was employed with a regularization factor
of 2. The reconstruction results with and without clutter reduction are depicted
in Fig. 6.3.3. Again, most clutter artifacts are sufficiently suppressed and the
hemorrhage is clearly visible after clutter reduction was applied. However, the
clutter reduction is less accurate in the outer regions in lateral direction.
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Figure 6.3.3: Clutter reduction by direct inversion for numerical “carotid-
artery” phantom; uncompensated PA image (a), compensated PA
image (b)
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6.4 Reducing the Amount of Required Transmit
Angles2

For the clutter reduction to work properly, a high number of plane wave
measurements is required. In (6.1.9), almost every combination of kt and
k(ϑ)x results in a unique value for the transmission angle ϑ = cos−1(k(ϑ)x /kt) .
This implies that the number of required transmission angles is in the order
of the number of acquired data points per PA measurement. In terms of data
acquisition, data storage, data transfer and data processing capacities, this is
far beyond what can be expected from state-of-the-art ultrasound hardware.
Therefore, the measurement data of missing angles need to be interpolated
from the data provided by neighboring angles according to section 6.1.1. In the
following, a new approach is introduced that performs an interpolation in the
frequency domain of the US image rather than an interpolation in the domain
of the measurements. By transforming the acquired data into the object space
using Fourier domain diffraction theory, redundancies in the content of the
data obtained from different angles can be exploited.

6.4.1 Object space Interpolation
A frequency grid of the plane wave US measurement data in the temporal and
spatial frequency domain p(us)

m (kx , kt ,ϑ) is depicted in Fig. 6.4.1-a. It shows
only the positive temporal side band, which, however, contains all necessary
information. All frequency axes are scaled by the sampling wave number
k(s)t := 2πc−1

0 fs with fs as temporal sampling frequency. In Fig. 6.4.1-b, the
conventional linear interpolation process is demonstrated, where the green
grids represent the measurement data under two angles that were mapped into
the object space and the blue grid represents the readout positions of measure-
ment data under the desired angle. The following new interpolation approach
can be interpreted as an ultrasound reconstruction followed by a forward
ultrasound propagation of the wavefield that results from the transmission of
the desired angle. Since this reconstruction and this forward propagation are
executed in the frequency domain, they are computed as simple remapping
operations.

2Some text passages in this section were published in [154] © 2016 IEEE
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According to linear diffraction theory, plane wave RF data sets of different
transmit angles exhibit redundancies. That is due to the fact that different
combinations of an emitted and a received monofrequent plane wave can carry
the same information about the scattering object. These redundancies can be
exploited to deduce a plane wave measurement of a certain transmit angle by
referring to the measurements from other angles. Since one pair of emitted
and received monofrequent plane waves corresponds to one particular spatial
frequency of the scatterer distribution, the interpolation can be carried out
in the k-space of the scatterer distribution, which is hereinafter referred to
as object space. Mathematically, this relation between the US measurement
pus(ky , kt ,ϑ) and the scatterer distribution γ(ky , kz) can be expressed in the
frequency domain [48,115,147] by:

p(us)
m (kx , kt ,ϑ) =

jk2
t

2κz
γ(kx + kt cos(ϑ),κz + kt sin(ϑ)). (6.4.1)

Here, γ(kx , kz) is a general scatterer distribution and thus the object to be
reconstructed in ultrasound imaging. To be exact, (6.4.1) is a simplified version
of the actual relation that only considers heterogeneities in the compressibility
and not in the mass density of the observed object. A more precise model is
presented in [147]. It should also be noted that the relation is based on the
Born approximation and is hence rather valid for weakly scattering media.

Eq. (6.4.1) can be used to reconstruct an estimation of the scatterer distri-
bution γ̂(r ) from a set of plane wave measurements {p(us)

m (ϑ1), ..., p(us)
m (ϑn)}.

In fact, any other plane wave reconstruction algorithm can be used as well to
retrieve γ̂(r ). Substituting (6.4.1) into (6.1.9) and applying it to the estimated
scatterer distribution γ̂(r ) yields a modified scatter model:

p(sc)
m (kx , kt) = −

jk2
t

4πκz

ˆ kt

-kt

γ̂(kx + k(ϑ)x ,κz + κ
(ϑ)
z )p

(h)
m (-k

(ϑ)
y , -kt) dk(ϑ)x , (6.4.2)

where κ(ϑ)z is defined in analogy to κz as κ(ϑ)z = sgn(kt)
q

kt − k(ϑ)x . In conse-
quence, the acquired RF data can simply be mapped onto the grid in the object
space and the required angles can be read out successively. This is illustrated
in Figure 6.4.1-c, where the measurements of the two acquired angles ϑ1 and
ϑ2 are mapped onto the grid of γ and the RF data of the angle ϑ are read out.
It has to be considered that the filter term - jk2

t /(4πκz) needs to be multiplied
with the RF data when it is mapped into the object k-space and that a respective
inverse filter needs to be multiplied to the measurement data, when it is read
out.
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Figure 6.4.1: Visualization of interpolation approaches; the US measurement
data (a) is either interpolated by weighting the data of neighbor-
ing angles (b), or by mapping in the object space (c). All axes
are scaled by the half temporal sampling wave number k(s)t .
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6.4.2 Results using Object Space Interpolation
The object space interpolation was applied to the numerical “clutter”-phantom
introduced in section 6.2.2 and section 6.3.2 (see Fig. 6.3.2-a). The results for
an increasing number of considered angles are compared to the results with the
same amount of angles using measurement space interpolation (see Fig. 6.4.2).
For one angle, object space interpolation already returns a significant reduction
of the clutter artifact, while measurement space interpolation cannot be applied
at all. An artifact ratio was computed for each amount of angles as ratio of the
signal powers in a region of interest (ROI) around the leftmost artifact with and
without clutter reduction. The artifact ratio is plotted as an artifact reduction
curve in Figure. 6.4.2-g. The curve for object space interpolation reaches a
saturation level at about 7 angles, where measurement space interpolation
does not yet exhibit a significant reduction (see Fig. 6.4.2-c and Fig. 6.4.2-d).
At 25 angles, the reduction of measurement space interpolation outperforms
object space interpolation. At 91 angles, measurement space interpolation
finally reaches a reduction of 9.9 dB compared to 8.6 dB for object space
interpolation (see Fig. 6.4.2e and Fig. 6.4.2f). It should be noted that an
artifact power ratio of 0 is infeasible due to diffraction and reconstruction
artifacts that always appear in the ROI of the artifact.
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Figure 6.4.2: Comparison of clutter reduction results with interpolation in
object space and measurement space where the angles were
always distributed equidistandly: PA image using measurement
space interpolation for 1,7 and 91 angles (a,c,e), PA image using
object space interpolation for 1,7 and 91 angles (b,d,f), reduction
curves for left artifact (g)
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6.5 Application to Beamformed US data
Not all combined PA/US imaging systems allow for the acquisition of plane
wave US images. However, the clutter reduction that has been introduced
in this chapter inevitably requires ultrasound measurement data that has
been acquired using plane wave excitations. While dedicated algorithms for
other kinds of excitation are conceivable to be developed, an advantage of
an algorithm based on plane waves is given by very direct relations in the
frequency domain, as a Fourier transform resembles a decomposition of the
wavefield into plane waves. Instead of deriving a dedicated algorithm for other
US excitation methods, in this section, a general approach to apply the clutter
reduction to US image data is introduced, which is independent on how the
image data was generated. The only requirement is an access to the raw US
image data before envelope detection.

6.5.1 Forward Propagation of US Image Data
A frequency domain relation between the medium heterogeneity γ(r ) and
the respective plane wave measurement p(us)

m has already been introduced in
section 6.4.1 (see (6.4.1)). Accordingly, for a given US image γ̂(r ) retrieved by
an arbitrary reconstruction, an approximation of the plane wave measurement
data p̂(us)

m with transmission angle ϑ computes as:

p̂(us)
m (ky , kt ,ϑ) =

jk2
t

2κz
γ̂(kx + k(ϑ)x ,κz +κ

(ϑ)
z ), (6.5.1)

which can be realized as a frequency domain mapping (see Fig. 6.5.1). As
being the inverse process of a reconstruction, this mapping can be interpreted
as a forward propagation. The resulting scatter model for clutter reduction
reads exactly like the one in (6.4.2), with the only difference that γ̂(kx kz) is
not attained by mapping plane wave data onto k-space but by a 2D Fourier
transform of the given US image data. Accordingly, p̂(us)

m (ky , kt ,ϑ) can be
employed for the clutter reduction exactly as p(us)

m (ky , kt ,ϑ) has been employed
before.
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Figure 6.5.1: Visualization of forward propagation from of beamformed data
(green grid) to measurement data (blue grid) by interpolation in
the image space. All axes are scaled by the temporal sampling
wave number k(s)t .

6.5.2 Results Using Beamformed US Data
The clutter reduction algorithm was applied to beamformed US data from an
in vivo experiment that was planned and executed by the staff at the European
Institute for Molecular Imaging (EIMI) in Münster, Germany. The respective
data sets were made available for this dissertation. Like in chapter 5.5.3, pho-
toacoustic and B-mode ultrasound images were acquired using a preclinical
ultrasound system (Vevo 2100, Fujifilm VisualSonics Inc., Toronto, Canada)
and a tunable (680–970 nm) OPO laser platform (Vevo LAZR, Fujifilm Visual-
Sonics Inc., Toronto, Canada). All settings were according to the description
in chapter 5.5.3, except for the ultrasound transducer (LZ-250, Fujifilm Vi-
sualSonics Inc., Toronto, Canada, center frequency: 21 MHz). The image in
Figure. 6.5.2 shows the heart and the aortic arch of a C57/BL6 mouse as an
overlay image with PA data on a gray scale US image, where both images are
log-compressed. The dominant clutter artifacts are emphasized by a green
circle and are shown to be eliminated in the reconstruction with prior clutter
reduction.
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Figure 6.5.2: In vivo clutter reduction using B-mode US data as overlay image
with PA data in red over US data in gray: Overlay image without
clutter reduction (a), overlay image with clutter reduction (b),
dominant clutter artifacts are indicated by a green circle.

In the visualization of a magnified area around the main source and the
two clutter artifacts on a linear color map, the clutter suppression can be
evaluated more accurately (see Fig. 6.5.3). Some areas on the lateral edges of
the artifacts cannot be sufficiently suppressed. This can be attributed to the
lack of lateral information in the B-mode image, which cannot reproduce PA
waves being scattered under a steep angle. Some of the other structures might
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also be artifacts but cannot be identified because the primary source is not
within the field of view.
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Figure 6.5.3: Magnified PA images showing in vivo clutter reduction based
on B-mode US data; PA image without clutter reduction (a), PA
image with clutter reduction (b), both images are displayed on a
linear intensity map.

6.6 Discussion and Conclusions
In this chapter, a scatter model for PA waves was derived and two different
approaches to invert this model were introduced, which allow for the computa-
tion of a scatter-free image. The method requires the acquisition of plane wave
ultrasound data from various angles in addition to the PA data. The entire
computation can be executed on the measurement data and no information
about the acoustic properties is required. The model is not restricted to the
Born approximation. It requires the primary PA sources, in which the clutter
artifacts originate, to be located within the field of view. This can be assured by
an illumination beneath the transducer using an acoustic stand-off. However,
strongly absorbing structures that are out of view but still illuminated, such
as moles, might still cause reflections that cannot be accounted for. A major
challenge of the method is the consideration of the impulse response of the
ultrasound measurement. As an in-phase modeling of the scattered wave is
crucial to the method, neglecting the US impulse response makes an efficient
clutter reduction infeasible. For the case that the impulse response can be
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accurately modeled or measured, e.g. from the back reflection on a rigid
wall, it can be accounted for in the clutter reduction. A filtering scheme was
introduced that is meant to invert the US impulse response by simultaneously
reducing the amplification of noise without sacrificing too much bandwidth
(see section 6.1.1).

One approach for model inversion is based on the truncation of a Neumann
series expansion (see section 6.2). Here, a scatter artifact distribution is
estimated and subtracted from the actual measurement. While this approach
relies on a model simplification, it does not require a numerical inversion and
is therefore both robust and computationally efficient. It was shown that the
method suppresses clutter artifacts for heterogeneities in both mass density
and speed of sound (see Fig. 6.2.2). Also, an actual PA source being colocated
with an artifact was not removed. The configuration of a scatterer being placed
between PA source and transducer, an additional artifact above the scatterer
was introduced by the clutter reduction (see Fig. 6.2.2). This behavior can be
explained by scattering of the back propagated PA wave before it reaches the
initial pressure distribution. Mathematically speaking, the Green function that
was used to formulate the PA wave was a symmetrical Green function in time,
even though the PA excitation is really a causal process. Unfortunately, the
simplicity of the scatter model in the frequency domain strongly depends on this
model deviation. A formulation in the time domain might allow for suppressing
scattering during back propagation, but the comfort of the separation of the
algorithm into one equation for each temporal frequency would be lost. It
should be mentioned that in most cases, the skin is the primary source that
generates clutter and hence, these additional artifacts might usually appear
outside of the observed tissue. Also, a complete suppression of such artifacts
can be easily thought of by a minimum intensity choice between compensated
and uncompensated image for each pixel, as a higher value is always an artifact.

A second approach performs a numerical inversion by computing a pseudo-
inverse for each temporal frequency to recover non-scattered measurement
data (see section 6.3). While the online inversion demands more computational
effort than the subtraction approach, it relies on a more exact model. The lack
of robustness can be circumvented by the inclusion of Tikhonov regularization.
In the investigated scenarios, direct inversion generated comparable results to
the subtraction method, even though the achievable suppression was usually
not as strong (see Fig. 6.3.2).

In both methods, a large set of US measurements is required to ensure an
efficient clutter reduction. Data from missing angles can be interpolated by
linear interpolation between neighboring angles. Still, an angle spacing of
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about 1° is suggested, which, for an interval between ±50° already requires 91
measurements, all of which have to be acquired, transferred and processed. To
reduce the amount of required angles, an alternative interpolation method was
introduced that is based on linear US diffraction tomography and interpolates
missing data by mapping it onto a grid representing the US object data. This
interpolation relies on the Born approximation, which means that multiple
scattering is not correctly accounted for in the interpolation. Comparing the two
interpolation approaches, this object space interpolation generated significantly
better suppression for a small number of angles. Once the number of acquired
angles increased, measurement space interpolation could outperform object
space interpolation (see Fig. 6.4.2).

A principle draw back of the clutter reduction method is the restriction
to plane wave ultrasound data, which is not available on all PAUS systems.
Therefore, an adjusted method was introduced that derives the scattering
information from any high frequent US image data, regardless of how the
image was obtained (see section 6.5.2). Certainly, this implies that multiple
scattering cannot be considered any more. Also, many aspects of the clutter
reduction are harder to control. However, it was shown that an effective clutter
reduction could be performed in vivo based on B-mode ultrasound data (sse
Fig. 6.5.2). Since the US impulse response could not be accurately modeled the
clutter reduction relied on a subtraction of envelope data. Still, this example
promises a wide rage of applicability of the algorithm.
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7
Summary

In photoacoustic imaging, the waves originating in pulsed laser light absorption
are scattered at heterogeneities in the acoustic medium properties. This effect
is usually not considered in the image reconstruction, as simple algorithms
can be derived when assuming the travel distance of a wave to be a multiple
of the travel time with a constant factor. However, the assumption can cause
artifacts that blur the image or generate false structures covering the image. In
the frame of this dissertation, three methods were introduced that address the
suppression of artifacts associated with scattering of photoacoustic waves in
linear array measurements. The work is motivated by photoacoustic imaging of
the carotid artery, which is considered a promising tool in the characterization
of atherosclerotic plaques.

The first proposed approach is a Landweber iteration based reconstruction
method that relies on a pair of a forward operator and an adjoint operator
that are computed using pseudo-spectral methods. Successive computation
and updating the PA source term lead to converging algorithm that accounts
for medium heterogeneities when they are known. It was shown that the
Landweber iteration can improve the resolution in scattering media signifi-
cantly. It also performs a very accurate compensation for the imaging system’s
temporal impulse response that is determined by the laser pulse shape and the
acousto-electric impulse response. Pieces of information that are lost due to
the limited view were recovered due to the consideration of back reflection,
which simultaneously reduced reflection artifacts. In the frame of simulation
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data, it was also shown that a reconstruction without a priori knowledge yields
good results, if the heterogeneities are estimated by a nonlinear reflection
mode ultrasound reconstruction. The convergence of the method, however,
is very sensitive to the accuracy of the underlying heterogeneity map. Also,
for currently available computing performances, the effort of two wave sim-
ulations per iteration with several thousand iterations required is too high
to be a suitable solution in a clinical context, or even in real-time. For that
reason the problem of scattering of the photoacoustic wave was separated into
reflections and refraction and two less model based but efficient algorithms
were introduced to address the respective issues.

A back propagation algorithm that is based on a paraxial wave propagation
model was proposed. The algorithm is referred to as paraxial back propagation
and uses a Fourier split step approach to account for both diffraction and
refraction in two successive steps during the back propagation. The method
recovers the source distribution very accurately, even in strongly scattering
media, where a standard reconstruction distorts the photoacoustic sources.
Compared to other approaches that consider speed-of-sound variations dur-
ing the back propagation, such as time reversal, the new method could be
implemented much faster with comparably good results. A realistic model
showed that the impact of aberrations in carotid-artery imaging is expected
to be minor but the image quality could still be improved using paraxial back
propagation. The method was shown to be robust in terms of inaccurate
information about the speed of sound and could even improve the resolution
using a fairly inaccurate speed-of-sound reconstruction or a speed-of-sound
map derived from segmentation.

Besides the reconstruction method that accounts for refraction, a method
that addresses reflection artifacts, also referred to as clutter artifacts, was
introduced. The clutter reduction approach relies on the inversion of a scatter
model, where a scatter-free measurement can be computed using the informa-
tion of plane wave ultrasound measurements in reflection mode from various
transmission angles. Two approaches were shown for model inversion, both of
which could significantly reduce clutter artifacts for both mass density scatters
and speed-of-sound scatters, while actual sources obscured by clutter artifacts
were not eliminated. Additionally introduced artifacts in the clutter reduction
are likely to appear mostly outside the important image regions and might be
suppressed in the future by a straight-forward minimum-value computation
between compensated and uncompensated image. The number of required
acquisitions can be reduced using an interpolation method in the object space
of the scatterers, which, for a small number of angles, provides much better
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results than linear interpolation in the space of measurements. The approach
was also shown to be able to reduce artifacts based on B-mode ultrasound data
by using a frequency-domain mapping law based on linear diffraction theory.

In summary, it might be stated that artifacts resulting from scattering of the
photoacoustic wave can be compensated for by computationally efficient model
based reconstruction and that this scattering can be exploited to improve the
image quality. However, for this, exact heterogeneity data is required and
the computational effort is huge. Addressing aberrations and clutter in two
consecutive methods, a temporally efficient artifact reduction can be attained
that is only based on additionally acquired plane wave ultrasound data. As
both aberrations and clutter reduce the imaging depth, the implementation of
these algorithms might significantly contribute to the feasibility of real-time
photoacoustic imaging of the carotid artery.
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