Contents

Abstract i
Acknowledgment iii
Contents v

1 Introduction and Motivation 1
 1.1 Objectives of the Present Work ... 4
 1.2 Organization of the Present Work ... 4

I Theoretical Framework 7

2 The Finite Element Method 9
 2.1 Introduction to the Finite Element Method 9
 2.2 Finite Elements for Linear Elasticity 10
 2.2.1 The Weak Form of an Initial Boundary Value Problem in LE 10
 2.2.2 Discretization of the Weak Form with Finite Elements for LE 14
 2.2.3 Example: Plate with Circular Hole under Uniaxial Tension 21
 2.3 The Finite Element Method for the Modeling of Porous Media 24
 2.3.1 Introduction .. 24
 2.3.2 The Principle of Effective Stress 25
 2.3.3 The Conservation of Mass ... 25
 2.3.4 Darcy’s Law ... 27
 2.3.5 Equilibrium Equations .. 27
 2.3.6 Weak Form of an Initial Boundary Value Problem in PE 29
 2.3.7 Discretization of the Weak Form with Finite Elements for PE 30
 2.3.8 Time Domain Discretisation .. 33
 2.3.9 Example: Consolidation Test ... 34
3 Extended Finite Element Formulation

3.1 Introduction to the Extended Finite Element Method 39
3.2 Basic Equations of a Body with a Discontinuity 40
 3.2.1 Divergence Theorem ... 40
 3.2.2 The Weak Form of the Governing Equations 41
3.3 The XFEM Discretization of Governing Equations 43
3.4 Numerical Implementation of Fractures 46
 3.4.1 Enrichment Function for a Domain with Fracture Interface 46
 3.4.2 The Signed Distance Function 47
 3.4.3 Numerical Integration of Elements with Discontinuity 49
 3.4.4 Example: System with Vertical Strong Discontinuity 53
3.5 Numerical Implementation of Voids 55
 3.5.1 XFEM Realization for Tensions on Hole Surfaces 56
 3.5.2 Example: Plate with Hole under Tension 57
3.6 The XFEM Technique for Linear Elastic Fracture Mechanics 61
 3.6.1 The Basis of Linear Elastic Fracture Mechanics 61
 3.6.2 The XFEM Discretization of Governing Equations 64
 3.6.3 The Stress Intensity Factors 68
 3.6.4 Crack Growth Criteria .. 72
 3.6.5 Example: Plate with Crack under Tension 75
 3.6.6 Example: A Plate with Two Off-Center Holes and Two Cracks .. 77
3.7 Numerical Implementation of Fracture Junctions 78
3.8 Example: A Plate with Two Cracks Propagating from Two Centered Holes 81

4 Simulation of Hydraulic Fracturing 83

4.1 Introduction to the Simulation of Hydraulic Fracturing 83
4.2 Models for Hydraulic Fracturing in Impermeable Reservoir Rock 85
 4.2.1 The Khristianovic-Geertsma-de Klerk (KGD) Model 85
 4.2.2 Analytical Solutions for the KGD Fracture Model by Geertsma and de Klerk and Spence and Sharp 85
 4.2.3 Analytical Solutions for the KGD Fracture Model by Detournay .. 87
4.3 Hydraulic Fracturing in Impermeable Reservoir Rock using XFEM 92
 4.3.1 Governing Equations of the Coupled Hydro-Mechanical Problem 93
 4.3.2 Weak Form of the Governing Equations of the Coupled Hydro-Mechanical Problem 94
 4.3.3 Spatial Discretization .. 95
 4.3.4 Discretization in Time ... 97
 4.3.5 Newton-Raphson Algorithm 97
 4.3.6 Coupled Solution Algorithm 98
 4.3.7 Example: Hydraulic Fracturing in Impermeable Reservoir Rock . 99
 4.3.8 Example: Junction of Multiple Hydraulic Fractures 105
4.4 Models for Hydraulic Fracturing in Permeable Reservoir Rock 109