Contents

Abstract i
Acknowledgment iii
Contents v
List of Symbols ix
List of Abbreviations xv

1 Introduction 1
 1.1 Background .. 1
 1.2 Motivation .. 3
 1.3 Literature review .. 6
 1.3.1 Numerical simulation in mechanized tunneling 6
 1.3.2 Uncertainty and reliability analyses 7
 1.3.3 Surrogate models ... 9
 1.4 Overview of the dissertation 11
 1.4.1 Content of the dissertation 11
 1.4.2 Structure of the dissertation 13

2 Numerical Model for Mechanized Tunneling Processes 15
 2.1 Overview ... 15
 2.2 Numerical model ekate for shield driven tunnels in soft soils 16
 2.3 Prediction capability ... 20
 2.3.1 Numerical model .. 22
 2.3.2 Validation ... 23

3 Uncertainty in Mechanized Tunneling 27
 3.1 Aleatoric Uncertainty .. 27
 3.1.1 Stochastic numbers 28
3.2 Epistemic Uncertainty ... 30
 3.2.1 Intervals ... 31
 3.2.2 Fuzzy numbers ... 32
3.3 Polymorphic Uncertainty 33
 3.3.1 Probability boxes .. 34
 3.3.2 Fuzzy stochastic numbers 34
3.4 Uncertainty quantification 35
3.5 Computing with uncertain parameters 37
 3.5.1 Computing with stochastic numbers 37
 3.5.2 Computing with intervals and fuzzy numbers 39
 3.5.3 Computing with polymorphic uncertainty 46

4 Simulation-and-Monitoring-based Strategy for TBM Steering Assistance 49
 4.1 Simulation-based surrogate modeling strategy 50
 4.1.1 Hybrid surrogate model for deterministic data 50
 4.1.2 Hybrid surrogate model for interval data 51
 4.1.3 Hybrid surrogate model for fuzzy data 53
 4.2 Monitoring-based strategy 55
 4.2.1 Surrogate models updating with measurement 55
 4.2.2 Retraining with measurement 56
 4.2.3 Monitoring locations 58

5 Surrogate Models in Mechanized Tunneling 59
 5.1 Design of Experiments 60
 5.2 Artificial Neural Network 63
 5.2.1 Network Structure 64
 5.2.2 Learning Algorithms 69
 5.3 Proper Orthogonal Decomposition 72
 5.3.1 POD with interpolation 74
 5.3.2 POD with missing data 80
 5.3.3 POD for settlement sensor placement 84
 5.4 Non-Negative Matrix Factorization 85
 5.4.1 NNMF-RBF .. 88
 5.4.2 Gappy NNMF .. 88

6 Verification of the Hybrid Surrogate Models 93
 6.1 Verification of the deterministic hybrid surrogate model 93
 6.2 Verification of the interval hybrid surrogate model 95
 6.3 Verification of the fuzzy hybrid surrogate model 100

7 Application Examples in Mechanized Tunneling 107
 7.1 Real-time prediction of deterministic surface settlement fields 108
8 SMART Application

8.1 Project overview module ... 146
8.2 Monitoring module ... 147
8.3 Prediction module .. 149
8.4 Additional features ... 150
 8.4.1 Damage analysis .. 150
 8.4.2 Reliability analysis ... 151
 8.4.3 Design stage ... 153

9 Conclusions

9.1 Summary and concluding remarks 155
9.2 Outlook ... 157

Bibliography ... 159

List of Figures .. 177

List of Tables .. 183

About the author ... 185