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Abstract

Abstract

Materials properties are driven by a complex interplay of chemistry, atomic
structure and microstructure. This interplay has to be accurately described
to improve materials properties or to discover new materials by computer
simulations. On the atomic level, this can be achieved in many cases with
density-functional theory (DFT). However, the DFT method is limited to
small systems due to the computational cost such that it is not possible to
use it for simulations of representations of a material of more than a few
hundred atoms and to investigate broad ranges of the chemical composition.
Analytic bond-order potentials (BOPs) are based on the tight-binding (TB)
approximation and are systematically derived from DFT. They are compu-
tationally very efficient and allow one to simulate much larger systems and
composition ranges. However, a careful parametrization of the interatomic
interaction is required to obtain accurate predictions. Only for a few systems,
analytic BOP models have been parametrized so far because of the signifi-
cant effort which is needed to obtain good parametrizations. Therefore, many
questions in materials science cannot be investigated with the powerful ana-
lytic BOPs.
In this work, three new concepts are developed, which facilitate the parame-
trization process. Firstly, TB parametrizations across the periodic table are
obtained for 1711 systems with respect to a consistent DFT reference. The
parametrizations show clear chemical trends across the periodic table and pro-
vide a robust reference for refined models. Secondly, a map of local atomic
environments is developed, which allows for an intuitive classification of the
local atomic and electronic structure. Thirdly, an automated parametrization
protocol for d-valent analytic BOPs is defined, which is initialized by the set
of TB parametrizations across the periodic table and enables a systematic
transferability optimization to reference structures which are selected from
the map of local atomic environments. This generic protocol is applied to
parametrize an analytic BOP for the element Re.
The developed concepts facilitate and accelerate the development of analytic
BOP models and form a parametrization procedure that can be routinely ap-
plied. This paves the way to analyse complex systems with multiple elements
with analytic BOPs.

iii



iv



Zusammenfassung

Zusammenfassung

Die Eigenschaften von Materialien ergeben sich aus einem komplexen Zusam-
menspiel der Chemie, atomaren Struktur und Mikrostruktur. Dieses Zusam-
menspiel muss genau beschrieben werden, um mittels Computersimulationen
Materialeigenschaften zu verbessern und neue Materialien zu entdecken. Dies
kann in vielen Fällen mit Dichtefunktionaltheorie (DFT) auf atomarer Ebene
erreicht werden. Allerdings ist die DFT Methode durch die Rechenzeit auf
kleine Systeme beschränkt, sodass es nicht möglich ist, sie für Simulatio-
nen von Materialrepräsentationen von mehr als ein paar hundert Atomen zu
nutzen und breite Bereiche der chemischen Zusammensetzung zu untersuchen.
Analytische Bond-Order Potentiale (BOPs) basieren auf der Tight-Binding
(TB) Näherung und sind systematisch von der DFT hergeleitet. Sie sind
rechnerisch sehr effizient und erlauben, große Systeme und Zusammenset-
zungsbereiche zu simulieren. Allerdings ist eine sorgfältige Parametrisierung
der interatomaren Wechselwirkung nötig, um genaue Vorhersagen zu erhal-
ten. Bisher wurden wegen des signifikanten Aufwands nur für einige wenige
Systeme analytische BOP Modelle parametrisiert. Daher können viele mate-
rialwissenschaftliche Fragestellungen nicht mit den leistungsfähigen analytis-
chen BOPs untersucht werden.
In dieser Arbeit werden drei neue Konzepte entwickelt, die den Parame-
trierungsprozess vereinfachen. Als Erstes werden TB Parametrierungen ge-
genüber einer konsistenten DFT Referenz über das Periodensystem für 1711
Systeme hergeleitet. Die Parametrierungen zeigen klare chemische Trends
über das Periodensystem und liefern eine stabile Referenz für weiterentwick-
elte Modelle. Als Zweites wird eine Karte der lokalen atomaren Umge-
bungen entwickelt, welche eine intuitive Klassifikation der lokalen atomaren
und elektronischen Struktur ermöglicht. Als Drittes wird ein automatisiertes
Parametrisierungsprotokoll für d-valente analytische BOPs definiert, welches
durch den Satz der TB Parametrisierungen über das Periodensystem ini-
tialisiert wird und eine systematische Transferabilitätsoptimierung gegenüber
Referenzstrukturen ermöglicht, die von der Karte der lokalen atomaren Umge-
bungen ausgewählt werden. Dieses allgemeine Protokoll wird zur Parame-
trierung eines analytischen BOP für das Element Re benutzt.
Die entwickelten Konzepte erleichtern und beschleunigen die Entwicklung an-
alytischer BOP Modelle und bilden eine Parametrierungsprozedur, welche
routinemäßig eingesetzt werden kann. Dies ebnet den Weg, komplexe Sys-
teme mit mehreren Elementen mit analytischen BOPs zu untersuchen.
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1
Introduction

Materials properties are often determined by a complex interplay of the chem-
istry and the atomic structure of the material. Density-functional theory
(DFT) allows for accurate quantum mechanical simulations of the interatomic
interaction for most elements and atomic configurations and therefore became
a standard tool in materials science. However, the computational effort of
DFT calculations rises rapidly with system size. Therefore, simulations of
structures with more than a few hundred atoms are practically impossible
and systematic scanning for desired materials properties is limited to rather
small subsets of the atomic structure and chemical composition.
For example, Ni-base superalloys are often processed with more than ten alloy-
ing elements. The composition determines the partitioning and segregation,
which further determines the mechanical properties like the creep resistance
by the energies related to structural changes. The high number of alloying ele-
ments makes a comprehensive screening of the space of chemical compositions
within DFT impossible, e.g. to reduce the formation of brittle topologically
close-packed phases. Moreover, many important structural changes like the
movement of dislocations are hardly accessible with DFT due to the size of
the corresponding atomic configurations.
Machine-learning approaches may be used to statistically predict physical
quantities from a small set of data, which is accessible with experiments or
with DFT, but they are not able to provide a detailed understanding of the
underlying mechanisms.
Alternatively, DFT can be coarse grained in a second-order approximation to
the tight-binding (TB) theory, which is computationally faster than DFT but
has the same scaling behaviour with the system size. By a moments expan-
sion, the TB theory can be further coarse grained to the linear scaling analytic
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Figure 1.1.: Coarse graining of the electronic structure. While DFT allows in
many cases for an accurate description of the electronic structure,
the applications are limited to rather small length and time scales.
By a second-order approximation, the TB theory is derived, which is
further coarse grained in analytic BOPs by a moments expansion.

bond-order potentials (BOPs). The two coarse graining steps are illustrated
in Fig. 1.1. The scaling behaviour of analytic BOPs enables simulations of
large atomic structures and the overall decrease in computational time com-
pared to DFT allows one to perform much more simulations in a given time.
Thus, large sets of the chemical space can be scanned for desired materials
properties and it can be used to investigate complex materials such as the
mentioned Ni-base superalloys in detail. Especially with regard to the expo-
nential increase of computational power, which is observed in the last decades
and referred to as Moore’s law, the gap between system sizes which can be in-
vestigated with the cubic scaling DFT method and the linear scaling analytic
BOP method is continuously increasing. In contrast to DFT, the TB method
and the analytic BOPs require a pairwise parametrization of the interatomic
interaction. Compared to empirical potentials, the physical nature of the two
methods guarantees a robust transferability across the space of atomic envi-
ronments such that it is able to provide many qualitative predictions without
much parametrization effort. However, if quantitative predictions are needed
a careful parametrization of the interatomic interaction is required. The inter-
atomic interaction can be obtained for a particular atomic configuration with
a downfolding procedure from the DFT reference, but the model parameters
have to be further optimized to increase the transferability of the model. This
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automated
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Figure 1.2.: Structure of the present work. In Sec. 2, the electronic structure
methods employed in this work (DFT, TB, analytic BOPs) are intro-
duced. Pairwise TB parametrizations across the periodic table are
derived for a consistent reference in Sec. 3 and an electronic struc-
ture based map of local atomic environments is developed in Sec. 4,
which provides intuitive insight into the similarity of the local atomic
structure. The TB parametrizations across the periodic table and the
information which is obtained from the map of local atomic environ-
ments are used in an automated parametrization strategy, which is
developed in Sec. 5.

parametrization process turned out to be very time consuming. Therefore,
only a few parametrizations have been developed and systematically tested.
This hampers the analysis of a broader set of materials by the efficient ana-
lytic BOPs.
To allow for a fast parametrization of transferable analytic BOPs for quan-
titative predictions for arbitrary systems, three challenges have to be solved.
An understanding of the electronic interaction across the periodic table, i.e.
the chemical diversity, has to be developed in order to derive a TB reference
for the models. Moreover, an intuitive insight into the large space of atomic
environments, i.e. the geometrical diversity, is needed in order to understand
which atomic environments are relevant for the model and to understand its
transferability. Finally, these two aspects have to be combined in a general
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and robust parametrization strategy that can be routinely applied.
A solution of these three challenges is developed in the present work, whose
structure is illustrated in Fig. 1.2. Section 2 provides the basis for the follow-
ing investigations and introduces the employed electronic structure methods,
which are DFT, TB and analytic BOPs. Reference TB parametrizations
across almost all combinations of elements of the first five periods of the peri-
odic table are developed in Sec. 3. An understanding of the chemical diversity
in term of the electronic interaction across the periodic table is obtained by the
extraction of trends. In Sec. 4, the theory of analytic BOPs is employed to de-
rive moments-descriptors, which are used to construct an electronic structure
based map of local atomic environments. It is shown that the map enables an
interpretation of atomic environments in terms of the atomic geometry and
the electronic structure. Clear trends of structural stability are obtained in
the map on the level of TB and DFT. These results indicate that the map of
local atomic environments provides intuitive insight into the geometrical di-
versity. An automated parametrization strategy is developed in Sec. 5 which
makes use of the obtained insight into the chemical and geometrical diver-
sity by the TB parametrizations across the periodic table and the electronic
structure based map of local atomic environments. This strategy is applied
to parametrize a Pareto-optimal analytic BOP for Re.

4
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Theory of Electronic Structure

Methods

This work uses three electronic structure methods: Density-functional the-
ory (DFT), tight-binding (TB) and analytic bond-order potentials (BOPs).
In this section, the theory for the different electronic structure methods is
summarized. Background information to many-body quantum theory is pro-
vided, which is necessary to derive the Hohenberg-Kohn equations, which are
solved in DFT. Moreover, important concepts, which are used to solve these
equations computationally, are discussed. The TB theory is introduced af-
terwards and connections of DFT and TB are presented. They are given by
(i) an approximation to the DFT energy functional, which results in the TB
bond model and (ii) a downfolding procedure, which allows one to approxi-
mate the DFT wave function by a TB basis. Afterwards, the analytic BOPs
are discussed, which are derived as a systematic approximation to TB and
are based on a moments expansion of the density of states (DOS).
The DFT method is applied in Secs. 3, 5. The connection between DFT and
TB is relevant for Sec. 3. The interpretation of the moments of the BOPs is
applied in Sec. 4 and the BOP formalism is used in Sec. 5.
This section partially summarizes textbooks and lecture notes (Refs. 1–9) and
is complemented by publications which go beyond these references.
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2.1. Background

2.1.1. Many-Body Quantum Theory

If relativistic effects are neglected, the Hamilton operator Ĥ of a many-body
system is written as a sum of operators, which define separate energy contri-
butions,

Ĥ = T̂n + T̂e + V̂n−n + V̂e−e + V̂e−n + V̂ext. (2.1)
The kinetic energy operators of the nuclei and the electrons are given by T̂n
and T̂e, separately. The operator V̂n−n defines the interaction of the nuclei and
V̂e−e the interaction of the electrons. The interaction between the nuclei and
the electrons is defined by V̂e−n and the interaction with external potentials
is defined by V̂ext. The momentum operator of nucleus I with mass MI is
defined as P̂I = −i~ ∂

∂RI
and the momentum operator of electron i with mass

m as p̂i = −i~ ∂
∂ri . With these definitions, the kinetic energy operators are

given by

T̂n =
Nn∑

I=1

P̂ 2
I

2MI

(2.2)

and
T̂e =

Ne∑

i=1

p̂2
i

2m, (2.3)

where Ne is the number of electrons and Nn is the number of nuclei. In the fol-
lowing, it is assumed that electrons and nuclei interact only via the Coulomb
interaction, i.e. magnetism is not considered. Therefore, the interaction op-
erators are given by

V̂n−n ({R}) = 1
2
∑

IJ,I 6=J

ZIZJe
2

|RI −RJ |
, (2.4)

V̂e−e ({r}) = 1
2
∑

ij,i6=j

e2

|ri − rj|
(2.5)

and
V̂e−n ({r,R}) = −

∑

iI

ZIe
2

|ri −RI |
, (2.6)

where ZI is the proton number of nucleus I. The time-independent Schrödinger
equation for this problem is written as

ĤΨs ({r}, {R}) = EsΨs ({r}, {R}) , (2.7)

where the solution Ψs({r}, {R}) depends on all electron positions {r} and all
nuclei positions {R} and s labels the state.
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It is useful to estimate the relative scale of the separate contributions to the
Hamiltonian. Therefore, dimensionless position vectors are constructed by
R̃I = RI/a0, r̃i = ri/a0, where a0 = ~2/me2 is the Bohr radius. With these
definitions, the Hamiltonian may be rewritten as

Ĥ

E0
=−

Nn∑

I=1

∂2

∂R̃2
I

−
Ne∑

i=1

m

Mn

∂2

∂r̃2
i

+ 1
2
∑

ij,i6=j

e2

|̃ri − r̃j|
− 1

2
∑

iI

ZIe
2

|̃ri − R̃I |
+ 1

2
∑

IJ,I 6=J

ZIZJe
2

|R̃I − R̃J |
,

(2.8)

where E0 = me4/~2 = 2Ry. The parameter m/Mn is the ratio of the electron
mass and the mass of the nuclei Mn, which is temporarily assumed to be
constant for all nuclei. This ratio is a small parameter and setting it to zero
corresponds to neglecting the motion of the nuclei. This is assumed in the
Born-Oppenheimer approximation.

2.1.2. Born-Oppenheimer Approximation

The assumption of the Born-Oppenheimer approximation [10] is that the mo-
tion of the electrons can be decoupled from the motion of the nuclei. This
may be justified by the assumption Mn � m or equivalently that the motion
of the electrons happens on a shorter time scale than those of the nuclei.
Consequently, the nuclei positions {R} are taken as fixed parameters when
solving the Schrödinger equation for the electrons.
The Hamiltonian of the coupled system of nuclei and electrons may be split
into

Ĥ = T̂n + Ĥe,eff , (2.9)
where

Ĥe,eff = T̂e + V̂e−e + V̂e−n + V̂n−n + V̂ext (2.10)
describes the effective Hamiltonian acting on the electrons for fixed nuclei po-
sitions and the classical interaction of the nuclei V̂n−n. Therefore, the electron-
nucleus interaction V̂e−n may be regarded as an external potential acting on
the electrons. The external potential and the electron-nucleus interaction are
summarized to

V̂ext,e−n = V̂ext + V̂e−n. (2.11)
The eigenstates of the effective Hamiltonian ψi({r}; {R}) are defined by

Ĥe,effψi({r}; {R}) = εiψi({r}; {R}) (2.12)

7
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and have to be anti-symmetric due to the Pauli exclusion principle [11]. They
may be used to expand the eigenstates of the coupled system,

Ψs ({r}, {R}) =
∑

i

χsi({R})ψi({r}; {R}). (2.13)

Applying this expression to the Schrödinger equation (Eq. 2.7) results in [5]
(
T̂N + εi

)
χsi({R}) +

∑

j

Aji({R})χsj({R}) = Esχsi({R}), (2.14)

where

Aji({R}) =−
∑

I

~2

2MI

∫
dr1 . . . drNe

[
ψ∗i ({r}; {R})

(
∂2

∂R2
I

ψj({r}; {R})
)

+2ψ∗i ({r}; {R})
(

∂

∂RI

ψj({r}; {R})
)

∂

∂RI

]
.

(2.15)

The off-diagonal elements are neglected in the Born-Oppenheimer approxi-
mation and Eq. 2.14 reduces to

(
T̂n + vi({R})

)
χsi({R}) = Esχsi({R}). (2.16)

This equation may be interpreted as a Schrödinger equation for the nuclei in
an effective potential vi({R}).

2.1.3. Rayleigh-Ritz Variational Principle
The Rayleigh-Ritz variational principle [12, 13] in Dirac bra-ket notation is
given by

E0 ≤
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (2.17)

where E0 is the ground state energy. It states that the possibly degenerate
ground state minimizes 〈Ψ|Ĥ|Ψ〉 under the constraint of normalized wave
functions, 〈Ψ|Ψ〉 = 1. It is readily proved by

〈Ψ|Ĥ|Ψ〉 =
∑

s

〈Ψ|Ĥ|Ψs〉〈Ψs|Ψ〉 =
∑

s

Es〈Ψ|Ψs〉〈Ψs|Ψ〉

≥ E0
∑

s

〈Ψ|Ψs〉〈Ψs|Ψ〉 = E0〈Ψ|Ψ〉,
(2.18)

where Es and |Ψs〉 are the eigenenergies and eigenstates of Ĥ, separately.
The Rayleigh-Ritz variational principle (Eq. 2.17) may be rewritten as

E0 = min
Ψ
E[Ψ], (2.19)

8
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where
E[Ψ] = 〈Ψ|Ĥ|Ψ〉〈Ψ|Ψ〉 (2.20)

is a functional of the wave function Ψ. Therefore, the ground state of Ĥ is
found by minimizing the functional E[Ψ] with respect to Ψ.

2.1.4. Approximate Solutions

The calculation of the ground state of the decoupled Schrödinger equation for
the electrons (Eq. 2.12) depends on 3Ne parameters. The number of param-
eters for a computational energy minimization with the Rayleigh-Ritz varia-
tional principle can be roughly estimated to be p3Ne, where p is the number
of parameters per variable which is needed for a desired numerical accuracy
[14]. Due to the exponential increase of parameters, a computational solution
of this task is only tractable for a few electrons and completely intractable for
typical problems in solid state physics. Approximate solutions can be found
by making assumptions on the functional form of the ground state wave func-
tion.
The Hartree approximation [15] neglects the anti-symmetry of the wave func-
tion and assumes that the eigenstates of Ĥe,eff are given by

ψH({r}) = ψ1(r1)ψ2(r2) . . . ψ
Ne (rNe), (2.21)

where ψi is a one-particle wave function of electron i, which is normalized by
∫

dri ρi(ri) = 1, (2.22)

where
ρi(ri) = ψ∗i (ri)ψi(ri). (2.23)

The application of the Rayleigh-Ritz variational principle leads to single par-
ticle equations,

[
T̂e,i + V̂H,i + V̂ext,e−n,i

]
ψi(ri) = εiψi(ri), (2.24)

where
T̂e,i = p̂2

i

2m (2.25)

and
V̂H,i (ri) = e2∑

j 6=i

∫
drj

ρj(rj)
|ri − rj|

(2.26)

9
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is the Hartree potential and describes the Coulomb repulsion of the electrons.
The potential V̂ext,e−n,i contains the electron-nucleus interaction

V̂e−n,i ({r}) = −
∑

I

Zne
2

|ri −RI |
(2.27)

as well as possibly any other external potential.
The Hartree-Fock approximation [16] considers the anti-symmetry of the wave
function and assumes that the eigenstates of He,eff are given by Slater deter-
minants

ψHF({r}) = 1√
Ne!

∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) . . . ψ1(rNe)
ψ2(r1) ψ2(r2) . . . ψ2(rNe)

... ... ...
ψNe(r1) ψNe(r2) . . . ψNe(rNe)

∣∣∣∣∣∣∣∣∣∣

. (2.28)

Compared to the Hartree approximation, the application of the Rayleigh-
Ritz variational principle leads to an additional term in the single particle
equations, [

T̂e,i + V̂H,i + V̂X,i + V̂ext,e−n,i
]
ψi(ri) = εiψi(ri), (2.29)

which is the exchange potential,

V̂X,i (ri) = e2∑

j 6=i

∫
drj

ρX
j (ri, rj)
|ri − rj|

, (2.30)

where
ρX
j (ri, rj) =

∑

j 6=i

ψ∗i (ri)ψi(rj)ψ∗j (rj)ψj(ri)
ψi(ri)ψ∗i (ri)

(2.31)

is the single particle exchange density.
Both the Hartree and Hartree-Fock equations can be solved iteratively on
a computer. The single particle wave functions have to be expanded in a
basis. Possible basis sets can be found in Sec. 2.2.6. An initial guess for
the atomic wave functions has to be made to calculate the Hartree potential
and in case of the Hartree-Fock approximation also the Fock potential. New
estimates for the single particle wave functions are calculated from the initial
guess. This procedure is repeated until a convergence criteria is reached. The
computational time of such an approach scales with N3

e due to the required
diagonalisation procedure and is therefore only applicable to system sizes
of a few atoms. However, the Hartree-Fock method includes the exchange
potential but neglects the correlation of electrons. A method which has the
same scaling behaviour but takes the correlation of electrons into account is
DFT.
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2.2. Density-Functional Theory

2.2.1. Hohenberg-Kohn Theorems
The two Hohenberg-Kohn theorems [17] highlight the relevance of the electron
density

ρ(r) = Ne

∫
dr2 . . . drNe|ψ (r, r2, . . . , rNe) |2 (2.32)

for electronic structure theory. Hohenberg’s and Kohn’s first theorem shows
that the ground state energy of the effective electron Hamiltonian (Eq. 2.10)
is a unique functional of the electronic ground state density. The second
theorem states that an energy functional E[ρ] exists which is minimal for the
electronic ground state density.
Theorem 1:
The decoupled Schrödinger equation for the electrons (Eq. 2.12) is rewritten
as

εn = 〈ψn|T̂e|ψn〉+ 〈ψn|V̂e−e|ψn〉+ 〈ψn|V̂ext,e−n|ψn〉. (2.33)
The interaction with the external potential and the nuclei is expressed in
terms of the electron density (Eq. 2.32),

〈ψn|V̂ext,e−n|ψn〉 =
∫

dr ρ(r)vext,e−n(r), (2.34)

where vext,e−n = vext + ve−n and

ve−n (r) = −
∑

I

ZIe
2

|r−RI |
(2.35)

is the potential of the nuclei. The proof of the first theorem is conducted by
assuming that a Hamiltonian Ĥe,eff with potential vext,e−n (r) has the ground
state ψ0 and ground state energy E0 and another Hamiltonian Ĥ ′e,eff with
potential v′ext (r) has the ground state ψ′0 and ground state energy E ′0. It is
further assumed that both ground states have the same ground state density
ρ0(r). It follows

E ′0 < E0 +
∫

dr
[
v′ext,e−n (r)− vext,e−n (r)

]
ρ0(r) (2.36)

and
E0 < E ′0 +

∫
dr
[
vext,e−n (r)− v′ext,e−n (r)

]
ρ0(r), (2.37)

leading to the contradiction E + E ′ < E + E ′. It is therefore proven that
the two ground states ψ and ψ′ cannot have the same electronic ground state
density. The electronic ground state density defines (upon a constant) vext,e−n
and thus the Hamiltonian and the ground state.

11
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Theorem 2:
From the first theorem, it is known that the ground state energy is a functional
of the electronic ground state density. Therefore, an energy functional

EHK[ρ(r)] = T [ρ(r)] + Ve−e[ρ(r)] +
∫

dr ρ(r)vext,e−n(r) + Vn−n (2.38)

can be defined which takes the value of the ground state energy E0 if ρ(r) =
ρ0(r). Vn−n is the energy of the nucleus-nucleus interaction. It remains to
show that EHK[ρ(r)] takes its minimum for ρ0(r). Assuming that ρ0(r) is the
electronic ground state density of Ĥe,eff with ground state ψ0, a different elec-
tron density ρ′(r) necessarily corresponds to a different state ψ′ with energy
E ′. The inequality

EHK[ρ0(r)] = E0 = 〈ψ0|Ĥe,eff |ψ0〉 < 〈ψ′|Ĥe,eff |ψ′〉 = E ′ = EHK[ρ′(r)] (2.39)

follows, which proves the second theorem.
The Hohenberg-Kohn theorems show that a functional EHK[ρ(r)] exists which
only depends on the electron density ρ(r). If the functionals T [ρ(r)] and
Ve−e[ρ(r)] were known, a minimization procedure to find the energy and the
electron density of the ground state could be constructed.

2.2.2. Kohn-Sham Equations

Kohn and Sham developed a procedure which iteratively minimizes Eq. 2.38
without knowledge of T [ρ(r)], the functional of the kinetic energy [18]. They
also provided approximations for the unknown part Ve−e[ρ(r)] of the func-
tional, which are discussed in Sec. 2.2.3.
The Hohenberg-Kohn energy functional (Eq. 2.38) is expressed as

EKS[ρ(r)] = T [ρ(r)]+VH[ρ(r)]+Vxc[ρ(r)]+
∫

dr ρ(r)vext,e−n(r)+Vn−n, (2.40)

where
VH[ρ(r)] = 1

2

∫
drdr′

ρ(r)ρ(r′)
|r− r′| (2.41)

defines the Hartree energy and the exchange correlation energy Vxc includes
the energy functional of the electron-electron interaction Ve−e. This repre-
sentation is referred to as Kohn-Sham energy functional. The variation with
respect to the electron density under the condition that the electron number
has to be preserved leads to

δEKS

δρ
= δT

δρ
+ vH(r) + vxc(r) + vext(r) = ε. (2.42)

12
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vH(r) =
∫

dr′
ρ(r′)
|r− r′| (2.43)

is the Hartree potential,
vxc(r) = δVxc[ρ]

δρ
(2.44)

defines the exchange correlation potential and ε is a Lagrange multiplier. The
potentials may be summarized to an effective potential

veff(r) = vH(r) + vxc(r) + vext,e−n(r) (2.45)

and Eq. 2.42 can be written as

δT

δρ
+ veff(r) = ε. (2.46)

Exactly the same equation is obtained for non-interacting electrons moving
in an external potential veff , where the energy functional is given as

Eveff [ρ̃(r)] = T [ρ̃(r)] +
∫

dr ρ̃(r)veff(r). (2.47)

This problem reduces to the solution of the single particle equations
[
T̂e,n + veff(r)

]
ψn(r) = εnψn(r) (2.48)

and it follows that the electronic ground state density of the non-interacting
particles in the external potential is the same as the electronic ground state
density of the original many electron system, ρ̃(r) = ρ(r). The electronic
ground state density is given by∗

ρ(r) =
Ne∑

n=1
|ψn(r)|2 =

∑

n=1
fn|ψn(r)|2, (2.49)

where fn is the occupation number, which is equal to two for occupied states
and equal to zero for unoccupied states. The kinetic energy functional can be
expressed as

T [ρ(r)] =
∑

n

fn

∫
dr ψn(r)T̂e,nψ

∗
n(r). (2.50)

The ground state energy is given by

E =
∑

n

fnεn + Vxc[ρ(r)]−
∫

dr ρ(r)vxc(r)− 1
2

∫
dr ρ(r)vH(r) (2.51)

and reduces to the energy in the Hartree approximation if exchange and cor-
relation effects are neglected. An iterative minimization of the Kohn-Sham
∗This can be verified by substituting the Slater determinant (Eq. 2.28) into Eq. 2.32.
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Initial guess
ρ(r)

Calculate effective potential (Eq. 2.42)
veff(r) = vH(r) + vxc(r) + vext(r)

Solve single particle equations (Eq. 2.48)[
T̂e,i + veff(r)

]
ψi(r) = εiψi(r)

Calculate new electron density (Eq. 2.49)
ρ(r) = ∑Ne

i |ψi(r)|2

Self-consistent?

Output physical quantities

no

ρ(r)

yes

Figure 2.1.: Self-consistent solution of the Kohn-Sham equations.

energy functional is sketched in Fig. 2.1.

2.2.3. Exchange Correlation Functionals
Vxc[ρ(r)] and vxc(r) have to be approximated for an application of the Kohn-
Sham equations as they are unknown. The simplest approximation is the
local density approximation (LDA). In this approximation, it is assumed that

V LDA
xc [ρ(r)] =

∫
dr ρ(r)εLDA

xc (ρ(r)), (2.52)

where εLDA
xc takes the expression from the homogeneous electron gas, even

though the electron density is not constant in space. The exchange part of
the homogeneous electron gas was derived by Dirac [19] and the correlation
part was estimated by Wigner [20] and later more accurately determined by
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Monte Carlo methods [21, 22]. In the LDA, the electrons at position r are
considered as free electrons with an electron density ρ(r). It seems to be
evident that this approximation is only valid for electronic densities which
slowly vary in space and was therefore introduced by Kohn and Sham for
this regime. However, the LDA gave already very predictive results for many
applications and the inclusion of gradients of the electron density provided by
Kohn and Sham, known as gradient expansion approximation (GEA), gave
disappointing and often less accurate results [23]. It was noticed afterwards
that conditions for the exchange hole, a depletion of electron density around
a given electron, can be derived, which are fulfilled in the LDA but not in
the GEA [23]. These conditions are considered in the generalized gradient
approximations (GGA), which can be expressed as

V GGA
xc [ρ(r)] =

∫
dr ρ(r)εGGA

xc (ρ(r),∇ρ(r)). (2.53)

A widely used GGA functional was developed by Perdew and Wang and is
known as PW91 exchange correlation functional [24]. An improved version,
which simplified the description of the exchange correlation was developed
by Perdew, Burke and Ernzerhof and is known as PBE exchange correlation
functional [25, 26].
Further improvements to the GGA functional have been developed. The
class of meta-GGA functionals [27] additionally depends on the kinetic energy
density and hybrid functionals [28] mix the exact exchange potential from
the Hartree–Fock approximation (Eq. 2.30) with the results from the GGA
functional. The development of exchange correlation potentials is still a field
of ongoing research [29].

2.2.4. Crystal Periodicity

An ideal crystal is defined as a system where the atoms form a periodic
arrangement. A lattice vector is given by

R = n1a1 + n2a2 + n3a3, (2.54)

where n1, n2, n3 are integers and a1, a2, a3 are unit cell vectors. The electron-
nucleus potential is periodic with respect to the lattice vectors,

ve−n(r) = ve−n(r + R), (2.55)

and thus also the electron density

ρe−n(r) = ρe−n(r + R). (2.56)
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Bloch’s theorem [30] states that the wave functions therefore fulfil

ψ(r + R) = exp(ikR)ψ(r). (2.57)

For this reason, the solutions of the stationary Schrödinger equation in a
periodic potential can be written as Bloch functions

ψk(r) = exp(ikr)uk(r), (2.58)

where
uk(r) = uk(r + R) (2.59)

is a periodic function. The unit cell vectors in reciprocal space are defined as

b1 = 2π
Vcell

(a2 × a3), b2 = 2π
Vcell

(a3 × a1), b3 = 2π
Vcell

(a1 × a2) (2.60)

with
Vcell = a1 · (a2 × a3) (2.61)

such that lattice vectors in reciprocal space are given by

G = m1b1 +m2b2 +m3b3. (2.62)

Since
ψk(r) = ψk′(r) (2.63)

for k′ = k + G, a solution for k′ is not required if ψk(r) is already known.
For this reason, the first Brillouin zone is introduced, which is defined as
the Wigner-Seitz cell [31] in reciprocal space. The eigenstates ψk have to be
calculated only inside the first Brillouin zone as it contains all information.
The number of k-points is infinite for an infinite large system. However,
for practical calculations, the number of k-points has to be set to a finite
value to sample the first Brillouin zone. Schemes how to sample the k-points
of the first Brillouin zone were developed by Gilat and Raubenheimer [32],
Chadi and Cohen [33] as well as Monkhorst and Pack [34]. After solving
the Schrödinger equation for several k-points, integration methods have to be
applied to obtain e.g. the DOS. Frequently used integration methods were
developed by Methfessel and Paxton [35] as well as Blöchl et al. [36].

2.2.5. Pseudo-Potentials

Bond formation is almost exclusively driven by valence electrons. However,
the core electrons cannot be simply neglected in the solution of the Kohn-
Sham equations (Eqs. 2.45, 2.48, 2.49) as they shield the attractive Coulomb
interaction of the nuclei and repel valence electrons with the same angular mo-
mentum l and the magnetic quantum number m due to the Pauli exclusion
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principle. Moreover, the electronic wave functions oscillate increasingly in the
core region with increasing principal quantum number n as they have to be
orthogonal to the wave functions with lower values for n. This increases the
demands on the computational solution of the Kohn-Sham equations (Eqs.
2.45, 2.48, 2.49) as more basis functions are required to represent these fea-
tures. An explicit treatment of the core electrons is therefore unwanted. A
method to systematically remove the core electrons in electronic structure
calculations are norm-conserving pseudo-potentials [37]. They replace the in-
teraction of the nucleus and the core electrons with the valence electrons by a
pseudopotential. As a consequence, the electronic wave functions oscillate less
in the core region and the computational solution is simplified. An alternative
is the linear augmented-plane-wave (LAPW) method [38]. A generalization
of both methods is the projector augmented-wave (PAW) method [39]. It
is a linear transformation between the pseudo wave functions ψ̃i(r) and the
all-electron wave function ψi(r),

ψi(r) = T̂ ψ̃i(r). (2.64)

The transformation operator is given by

T̂ = 1 +
∑

I

∑

α

(
|φαI 〉−|φ̃αI 〉

)
〈p̃αI |, (2.65)

where I is the atom index and α the orbital index. The functions φαI (r) are the
solutions of the all-electron Kohn-Sham equations (Eqs. 2.45, 2.48, 2.49) for a
single atom (all-electron partial waves) and φ̃αI (r) are the pseudo partial waves,
which agree with the all-electron partial waves outside an augmentation region
ΩI and are a smooth continuation of the all-electron partial waves inside ΩI .
To achieve

φαI = T̂ φ̃αI , (2.66)
the projector functions p̃αI (r) have to fulfil

∑

α

|φ̃αI 〉〈p̃αI | = 1 (2.67)

within ΩI . The radial functions of the 3p orbital of silicon, which were com-
puted with the PBE-GGA functional (Sec. 2.2.3), are shown as an example
in Fig. 2.2. The functions were computed by the program package GPAW
(Sec. 2.2.7) and are accessible in Ref. 40. It can be noted that the all-electron
partial wave function φ3p(r) and the pseudo partial wave φ̃3p(r) agree for dis-
tances larger than the augmentation sphere radius r3p

c and differ inside the
augmentation sphere, where the pseudo partial wave φ̃3p(r) is smooth and the
all-electron partial wave φ3p(r) has to have a node to be orthogonal to the
2p all-electron partial wave. The projector function p̃3p(r) contributes only
inside the augmentation sphere. The PAW method is usually combined with
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the frozen core approximation, i.e. the core states are not modified from their
atomic reference.
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Figure 2.2.: Radial functions of the all-electron partial wave φ3p(r), pseudo par-
tial wave φ̃3p(r) and projector function p̃3p(r) of the 3p orbital of Si
computed with the PBE-GGA functional.

2.2.6. Basis Sets
The wave functions ψi have to be expanded in a basis for a practical calcula-
tion of the Kohn-Sham equations (Eqs. 2.45, 2.48, 2.49). Different basis sets
are summarized in the following.

Plane-Wave Basis

A natural choice for the basis set are plane-waves in periodic systems. The
basis functions have to be lattice periodic to expand the periodic Bloch func-
tion (Eq. 2.58). A complete set of lattice periodic plane-waves is given by
{exp(iGr)} such that

ψk(r) = exp(ikr) 1√
Vcell

∑

G
ck+G exp(iGr). (2.68)

The set of lattice periodic plane-waves has to be truncated for practical imple-
mentations. This is done by defining an energy cut-off Ecut, which limits the
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number of included reciprocal lattice vectors G in the plane-wave expansion
by

~2

2m |k + G|2 ≤ Ecut. (2.69)

The choice of Ecut is a convergence parameter in plane-wave DFT calculations.

Atomic Orbital Basis

A chemistry motivated way to represent the wave functions is the expansion in
a linear combination of atomic orbitals (LCAO). Atomic orbitals are written
as [1]

φIlm(r) = φIl(rI)Ylm(rI), (2.70)
where I labels the atom located at RI , n is the principal quantum number, l
the angular momentum, m the magnetic quantum number and rI = r−RI .
The angular dependence is given by spherical harmonics Ylm(rI) and the radial
dependence by φIl(rI). The radial functions are expanded in a multiple-ζ
basis, i.e.

φIl(rI) =
Nζ∑

z

kIlzRIlz(rI). (2.71)

A multiple-ζ basis consists of a finite set of Nζ radial basis functions and is
therefore incomplete. However, due to their chemistry motivated construction
it is possible that less basis functions are required as compared to e.g. the
plane-wave basis to obtain a desired accuracy [41]. A possible procedure
to construct a multiple-ζ basis is the following [42, 43]: The single-ζ basis
function is constructed by solving the Kohn-Sham equations (Eqs. 2.45, 2.48,
2.49) for an isolated atom. Afterwards, extra basis functions are created
for the same angular momentum with the split-valence technique described
in Ref. 42. The atomic orbitals (Eq. 2.70) can be applied to non-periodic
systems. A basis which fulfils Bloch’s theorem can be constructed by [30]

φkIlm(r) = 1√
N

∑

R
exp(ikR)φIlm(r−RI −R). (2.72)

To neglect the core electrons in the atomic orbital basis, pseudo atomic or-
bitals (PAO) can be constructed according to Eq. 2.66. Moreover, the range of
the orbitals can be constrained by a confinement potential. The onset of the
confinement potential is controlled by the energy shift ∆PAO of the confined
orbital compared to the free electron orbital [43, 44].

Real-Space Grid

A different method is to abandon the usage of an explicit basis, and instead
discretize the simulation cell such that all physical quantities are represented
by numerical values at each grid point [45]. The number of grid points in each
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Cartesian direction Nα determines the grid spacing vectors

hα = aα/Nα. (2.73)

2.2.7. Implementations

An assessment of the reliability of different DFT implementations can be
found in Ref. 46. The authors conclude that most of the implementations
agree very well. In the present work, the GPAW [43, 45, 47] and VASP [48–52]
program packages are used, which give consistent results [46]. Both imple-
mentations are used with the PBE exchange correlation functional and the
PAW method. The GPAW code supports all presented basis sets (plane-waves,
atomic orbitals, real-space grid) and can therefore perform simulations on pe-
riodic and non-periodic systems. The VASP code only supports plane-waves
and therefore only periodic systems can be simulated. The possibility of an
expansion of the wave functions in an atomic orbital basis is essential for
the downfolding procedure (Sec. 2.3.8) and was the criteria to use GPAW for
this purpose. However, the stability and performance of the VASP program
package was essential to perform high-throughput calculations (cf. Secs. 4.4,
5.4.1).

2.3. Tight-Binding

The TB method was developed before DFT and the assumption originally
taken were purely empirical. However, the TB theory can be understood as
an approximation to DFT. This section starts with an expansion of the DFT
energy. Then, the atomic orbitals basis and the two-center approximation are
introduced. Finally, the TB bond model is derived, which approximates the
DFT energy by physical intuitive contributions.

2.3.1. Harris-Foulkes Functional and Expansion of
Kohn-Sham Energy Functional

The Kohn-Sham energy functional (Eq. 2.40) can be expressed in shorthand
notation as

EKS[ρ] = Tρ+ 1
2J

Hρρ+ Vxc[ρ] + V ext,e−nρ+ Vn−n. (2.74)

This is obtained by expanding the eigenstates in a non-orthogonal basis {φi},

ψn(r) =
∑

i

c
(n)
i φi(r), (2.75)
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where covariant and contravariant basis functions [53] are used, which are
related by

φj(r) =
∑

i

(S−1)ijφi(r). (2.76)

In this notation, the electron density is given by

ρ(r) =
∑

ij

ρijφ∗i (r)φj(r), (2.77)

where
ρij =

∑

n

fnc
∗(n)
i c

(n)
j (2.78)

is the electron density matrix. Equivalently, the electron density can also be
written as

ρ(r) =
∑

ij

ρijφ
∗i(r)φj(r), (2.79)

where the indices of the expansion coefficients are raised in the expression for
the density matrix,

ρij =
∑

n

fnc
∗(n)ic(n)j. (2.80)

With these definitions, the kinetic energy functional (Eq. 2.50) is written in
this notation as

Tρ =
∑

n

fn〈ψn|T̂ |ψn〉 =
∑

ij

T ijρ
j
i . (2.81)

Similarly, the Hartree functional (Eq. 2.41) is written as

1
2J

Hρρ =
∑

ijkl

(JH)klijρ
j
l ρ
i
k (2.82)

and the functional of the interaction with the external potential and the nuclei
(Eq. 2.35) as

V ext,e−nρ =
∑

ij

(V ext,e−n)ijρ
j
i . (2.83)

Only the exchange correlation functional is unknown and may formally be
written as a series expansion

Vxc[ρ] = V xcρ+ 1
2J

xcρρ+ 1
6K

xcρρρ+ . . . . (2.84)

Terms of the same order are grouped together and the Kohn-Sham energy
functional can be written as

EKS[ρ] = Vn−n + (T +V ext,e−n)ρ+ (JH +Jxc)ρρ+ 1
6K

xcρρρ+ . . . . (2.85)
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As discussed in Sec. 2.2.2, the Kohn-Sham equations (Eqs. 2.45, 2.48, 2.49) are
solved recursively. Therefore, ρmay be regarded as an output electron density
after one self-consistency cycle and ρ0 is the corresponding input electron
density. They are related by

ρ = ρ0 + δρ. (2.86)

The Hamiltonian of the Kohn-Sham energy functional (Eq. 2.85) of the input
electron density is given by

H0 = ∂EKS

∂ρ
= T + V ext,e−n + (JH + Jxc)ρ0 + 1

2K
xcρ0ρ0 + . . . . (2.87)

With this definition, the energy functional may be rewritten as

EKS[ρ] =Vn−n +H0(ρ0 + δρ) + 1
2(JH + Jxc)(−ρ0ρ0 + δρδρ)+

1
6K

xc(−2ρ0ρ0ρ0 + 3ρ0δρδρ+ δρδρδ) + . . . .
(2.88)

The terms are collected again and the Kohn-Sham energy functional is written
as

EKS[ρ] =Vn−n +H0ρ+ Vxc[ρ0(r)]−
∫

dr ρ0(r)vxc(r)−
1
2

∫
dr ρ0(r)vH(r) +O(δρ2),

(2.89)

where all terms linear in δρ cancel out. This was noticed by Harris [54] and
Foulkes [55] and is therefore named Harris-Foulkes functional

EHF[ρ0] =
∑

n

fnεn+Vxc[ρ0(r)]−
∫

dr ρ0(r)vxc(r)− 1
2

∫
dr ρ0(r)vH(r) (2.90)

with
H0ρ =

∑

n

fnεn, (2.91)

where εn are the eigenvalues of H0.
During the self-consistency cycle, the Kohn-Sham energy functional (Eq. 2.85)
is computed by

EKS[ρ] =Vn−n +H0ρ+ 1
2J
′δρδρ+ 1

6K
′δρδρδρ−

1
2(JH + Jxc)ρ0ρ0 − 1

3K
xcρ0ρ0ρ0 + . . .

(2.92)
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and the Hamiltonian is updated by

H0 = T + V ext,e−n + (JH + Jxc)ρ+ 1
2K

xcρρ

= H0 + J ′δρ+ 1
2K

′δρδρ+ . . . ,
(2.93)

where all terms which are proportional to δρ are collected by J ′ and all terms
which are proportional to δρδρ by K ′.
The input electron density may be chosen as the overlap of spherical atomic-
like electron densities,

ρ0(r) =
∑

I

ρI0(|r−RI |) (2.94)

and the Hartree potential (Eq. 2.43) can therefore be written like the electron-
nucleus potential (Eq. 2.35) as sum of single particle potentials,

v0
H(r) =

∑

I

vIH(r−RI). (2.95)

This is in general not possible for the exchange correlation potential since it
includes higher order terms (Eq. 2.87). Therefore, the total effective potential
(Eq. 2.45) can only be approximated as a sum of single particle potentials,

veff(r) ≈
∑

I

vIeff(r−RI). (2.96)

This approximation is used in Sec. 2.3.3.

2.3.2. Tight-Binding Approximations

Atomic Orbital Basis (Local Minimal Basis)

The atomic orbital basis was already introduced in Sec. 2.2.6 as a possible
basis for the expansion of the DFT wave function. The TB method is based
on the assumption that the electronic wave functions can be expressed as a
linear combination of atomic orbitals (LCAO), where the basis functions are
written according to Eq. 2.70 as

φIlm(r) = φIl(rI)Ylm(r̂I). (2.97)

The principal quantum number n is omitted, since in the TB theory typically
only valence electrons are considered. In the TB method, the radial wave
functions φIl are fixed, whereas they are calculated self-consistently in DFT.
The spherical harmonics Ylm are eigenstates of the angular momentum oper-
ator and they are in general complex. It is convenient to define real atomic
orbitals from the real and imaginary part of the spherical harmonics for ex-
plicit calculations and for visualizations. These orbitals are named according
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to their orientation in a three-dimensional Cartesian coordinate system. They
are given by [56]

s = Y00 pz = Y10, d3z2−r2 = Y20,

px = Y1−1 − Y11√
2

, dzx = Y2−1 − Y21√
2

,

py = Y1−1 + Y11√
2i

, dyz = Y2−1 + Y21√
2i

,

dx2−y2 = Y2−2 + Y22√
2

,

dxy = Y2−2 − Y22√
2i

for the first three values of the angular momentum l and are illustrated in
Fig. 2.3.

Secular Equation

Expanding the wave function in LCAO Bloch states (Eq. 2.72),

ψk(r) =
∑

Ilmn

ckIlmφkIlm(r), (2.98)

and applying it to the time-independent Schrödinger equation results in the
secular equation†

∑

I′l′m′
(HIlm,I′l′m′(k)− εi(k)SIlm,I′l′m′(k)) ckI′l′m′ = 0, (2.99)

where
HIlm,I′l′m′(k) =

∑

R
HIlm,I′l′m′(R) exp(ikR) (2.100)

with

HIlm,I′l′m′(R) =
∫

dr φ∗Ilm(r−RI)ĤφI′l′m′(r− (RI′ + R)) (2.101)

and
SIlm,I′l′m′(k) =

∑

R
SIlm,I′l′m′(R) exp(ikR) (2.102)

with

SIlm,I′l′m′(R) =
∫

dr φ∗Ilm(r−RI)φI′l′m′(r− (RI′ + R)). (2.103)

†To show that the matrix elements are non-zero only for k = k′, one has to use transla-
tional invariance and

∑
R exp(iR(k− k′)) ∝ δ(k− k′).
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The secular equation has to be solved for each value of k and the k-point
sampling and integration methods which were introduced in Sec. 2.2.4 can be
used.

2.3.3. Matrix Elements

As shown in Sec. 2.3.1, the Hamiltonian acting on the TB wave functions can
be approximated as

Ĥ = T̂e +
∑

I

vIeff(r−RI). (2.104)

The overlap matrix elements (Eq. 2.103) are classified in one-center integrals
and two-center integrals. The orbitals are at the same site (R = 0 and
RI = RI′) in one-center integrals and they are at different sites in two-
center integrals. Similarly, the Hamiltonian matrix elements (Eq. 2.101) may
be classified as one-, two- and three-center integrals. The two orbitals and
the single particle potential vIeff(r − RI) are located at the same site I in
one-center integrals. Two-center integrals are given by either two orbitals at
different sites and a potential contribution from one of the two sites or by
two orbitals at the same site and a potential contribution from a different
site. In three-center integrals, the orbitals and the single particle potential
are all located at different sites. The three-center integrals and the two-center
integrals with both orbitals at the same site depend on the atomic structure.
These integrals are neglected in the two-center approximation.

2.3.4. Two-Center Approximation

The number of two-center integrals is equal to (2l + 1)2 for a pair of atoms
where each atom has 2l+ 1 orbitals. However, Slater and Koster showed that
the number of independent two-center integrals can be significantly reduced
in the two-center approximation by taking into account the symmetry of the
spherical harmonics [57]. In a coordinate system where the interatomic vector
RIJ = RI−RJ is parallel to quantization axis ez (bond orientated coordinate
system), only Hamiltonian and overlap matrix elements are non-zero whose
magnetic quantum numbers m and m′ are equal to each other. This can be
geometrically verified by overlapping the atomic orbitals in Fig. 2.3. These
non-vanishing matrix elements of the Hamiltonian matrix (overlap matrix)
are referred to as bond integrals (overlap integrals). For example, it can be
seen that the overlap of the px and py orbital with the s orbital form positive
and negative contributions, which exactly cancel each other. However, the
overlap of the s and pz orbital is finite. The interatomic vector RIJ may be
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expressed in terms of direction cosines

α = RIJ · ex
|RIJ |

β = RIJ · ey
|RIJ |

γ = RIJ · ez
|RIJ |

.

(2.105)

and each orbital in the global coordinate system may be expanded as a linear
combination of orbitals in the bond coordinate system. Consequently, all
two-center matrix elements of the Hamiltonian matrix (overlap matrix) can
be expanded in bond integrals (overlap integrals). Explicit formulas are given
in Refs. 57, 58. The transformation from the bond coordinate system to
the global coordinate system can also be performed with rotation matrices
[56, 59],

HIJ = R(φIJ , θIJ)H(b)
IJ R(φIJ , θIJ)T , (2.106)

where H(b)
IJ is the pairwise Hamiltonian matrix in the bond orientated coor-

dinate system. The angles φIJ and θIJ measure the orientation of the vector
RIJ with respect to the global coordinate system. The bond and overlap in-
tegrals are named according to the angular momentum quantum number (s,
p, d, . . . ) and the absolute value of the common magnetic quantum number
(σ, π, δ, . . . ) of the contributing orbitals. For example, one s orbital and one
p orbital can only form an spσ bond integral and two p orbitals can form ppσ
and ppπ bond integrals.

2.3.5. Tight-Binding Bond Model

With the expansion of the wave function in terms of atomic orbitals, the
electron density can be written as

ρ(r) =
∑

Ilm,I′l′m′
ρIlmI′l′m′φIlm(r)φI′l′m′(r), (2.107)

where
ρIlmI′l′m′ =

∑

n

fn(c∗(n))Ilm(c(n))I′l′m′ (2.108)

is the electron density matrix, which can be obtained by k-point integration
(Sec. 2.2.4) for periodic systems. The total number of electrons is given by

N =
∑

n

fn〈ψn|ψn〉 =
∑

Ilm

ρIlmIlm, (2.109)
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Figure 2.3.: Real atomic orbitals. Positive values are shown in blue, negative
values in green.
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where
NIlm = ρIlmIlm =

∑

I′l′m′
ρIlmI

′l′m′SI′l′m′Ilm (2.110)

are the Mulliken charges, which may be interpreted as the charge on orbital
Ilm.
In the TB bond model [60], the Kohn-Sham energy functional in representa-
tions of Eq. 2.92 is expanded up to second-order in δρ. Moreover, the change
in the electron density δρ is assumed to be only given by a change in the
Mulliken charges (Eq. 2.110), i.e.

qIlm = δρIlmIlm = NIlm −N0
Ilm. (2.111)

Consequently, the Kohn-Sham energy functional is approximated by

UTB =
∑

IlmI′l′m′

(
H0
)Ilm
I′l′m′

ρI
′l′m′

Ilm + 1
2

∑

IlmI′l′m′
JIlmI′l′m′qIlmqI′l′m′

− 1
2

∑

IlmI′l′m′
JIlmI′l′m′N

0
IlmN

0
I′l′m′

(2.112)

and the Hamiltonian matrix can be written as

HIlmI′l′m′ = H0
IlmI′l′m′ +

∑

I′′l′′m′′
JIlmI′′l′′m′′SIlmI′l′m′qI′′l′′m′′ . (2.113)

This equation reduces to

EIlm = E0
Ilm +

∑

I′′l′′m′′
JIlmI′′l′′m′′qI′′l′′m′′ (2.114)

for the diagonal elements of the Hamiltonian matrix (onsite levels) such that
the change of the Hamiltonian matrix can be rationalized to a change of the
onsite levels,

HIlmI′l′m′ = H0
IlmI′l′m′ + (EIlm − E0

Ilm)SIlmI′l′m′ . (2.115)

During the self-consistency loop, the Mulliken charges may change. This
induces a change of the onsite levels. The self-consistency criteria is met when
the Mulliken charges or the onsite levels change less than a given tolerance.
Alternatively, a different self-consistency procedure can be defined by directly
varying the onsite levels such that

∂UTB

∂EIlm
= 0. (2.116)
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The TB bond model represents the energy expression (Eq. 2.112) as a sum of
physically intuitive energy contributions, which is given by [61–63]

UTB = Ubond + Uprom + Urep + Ues + Uion + Uatoms. (2.117)

The binding (cohesive) energy is obtained by subtracting the energy of the
free atoms Uatoms,

UB = Ubond + Uprom + Urep + Ues + Uion. (2.118)

The bond energy is associated with the formation of bonds between different
orbitals and is given by

Ubond = Uband −
∑

Ilm

E0
IlmNIlm, (2.119)

where
Uband =

∑

IlmI′l′m′

(
H0
)Ilm
I′l′m′

ρI
′l′m′

Ilm =
∑

n

fnεn (2.120)

is the band energy, which is used in the TB band model [64, 65].
The density matrix is also sometimes written as

ρI
′l′m′

Ilm = ΘI′l′m′

Ilm (2.121)

and referred to as bond-order. It may be interpreted as the strength of a
bond [66] as it is proportional to the difference of occupied bonding N+ and
antibonding states N−,

ΘIlmI′l′m′ = 1
2(N+ −N−), (2.122)

where the bonding and antibonding states are given by

|ϕ±〉 = 1√
2

(|ϕIlm〉 ± |ϕI′l′m′〉) . (2.123)

With the definition of the DOS,

n(E) =
∑

n

〈ψn|ψn〉δ(εn − E), (2.124)

and the local DOS [67],

n(E) =
∑

Ilm

∑

n

〈ψn|ϕIlm〉〈ϕIlm|ψn〉δ(εn − E)

=
∑

Ilm

nIlm(E),
(2.125)
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the bond energy may also be written in the onsite representation,

Ubond =
∑

Ilm

∫ EF

−∞
dE (E − E0

Ilm)nIlm(E), (2.126)

where EF is the Fermi energy.
The promotion energy is the energy which is needed for the repopulation of
atomic levels. It is given by

Uprom =
∑

Ilm

E0
Ilm(qIlm −∆qIlm). (2.127)

The charge ∑lm ∆qIlm is the additional charge on atom I due to interatomic
charge transfer. The repulsive energy

Urep = −1
2

I 6=I′∑

IlmI′l′m′
JIlmI′l′m′N

0
IlmN

0
I′l′m′ + Uprep + Un−n (2.128)

summarizes the intraatomic elements of the double-counting second-order
term. The preparation energy

Uprep =
∑

Ilm

(E0
Ilm − Eat

Ilm)N0
Ilm (2.129)

measures the energy change due to a change of the atomic onsite levels from
the free atom value Eat

Ilm to E0
Ilm and the nucleus-nucleus interaction is labelled

Un−n.
In the TB bond model, it is assumed that only the total charge on each atom

qI =
∑

lm

qIlm (2.130)

enters the second-order term, which is split into the electrostatic interaction

Ues = 1
2

I 6=J∑

IJ

JIJqIqJ (2.131)

and the ionic onsite contribution

Uion =
∑

I

ĒIqI +
∑

I

JIIq
2
I , (2.132)

where

ĒI =
∑

lm

E
(0)
Ilm∆qIlm
qI

(2.133)

is the electronegativity and JII is related to the Hubbard parameter [68] U
as it measures the resistance against charge transfer. The energy of the free
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atoms is given by

Uatoms =
∑

Ilm

Eat
IlmN

0
Ilm −

1
2

∑

Ilml′m′
JIlmI′l′m′N

0
IlmN

0
Il′m′ (2.134)

such that the binding energy (Eq. 2.118) is approximated by

UB = UTB − Uatoms

=
∑

IlmI′l′m′

(
H0
)Ilm
I′l′m′

ρI
′l′m′

Ilm −
∑

Ilm

Eat
IlmN

0
Ilm

− 1
2

I 6=I′∑

IlmI′l′m′
JIlmI′l′m′N

0
IlmN

0
I′l′m′ +

1
2
∑

IJ

JIJqIqJ

(2.135)

in the TB bond model.

2.3.6. Orthogonal Tight-Binding
The atomic orbital basis used in TB (Sec. 2.3.2) is by definition non-orthogonal.
However, an orthogonal basis can be constructed with a Löwdin transforma-
tion [69],

S1/2|φIlm〉 = |φorth
Ilm 〉, (2.136)

such that the secular equation (Eq. 2.99) transforms to
∑

I′l′m′

(
Horth
Ilm,I′l′m′(k)− εi(k)

)
corth

kI′l′m′ = 0, (2.137)

where
Horth = S−1/2HS−1/2. (2.138)

The energy expressions in the TB bond model (Sec. 2.3.5) remain unchanged,
except that covariant and contravariant indices do not have to be distinguished
anymore. With the definition

S−1/2 = 1− 1
2S, (2.139)

the Löwdin transformed Hamiltonian matrix may also be expressed as

Horth = H − 1
2 (SH +HS) + 1

4SHS. (2.140)

This formula may be used for an approximate Löwdin transformation [70] by
setting

S ≈ S − 1, (2.141)
which corresponds to a truncated Taylor expansion of S−1/2.
The energy contributions of the TB bond model (Eq. 2.117) are in general
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different in the non-orthogonal and in the Löwdin orthogonalized represen-
tation. However, the band energy is invariant to the orthogonalization. The
difference of the preparation energy in the orthogonal and non-orthogonal
model is referred to as overlap repulsion and is given by

Uoverlap = Uorth
prep − Uprep

= −1
2
∑

Ilm

[ ∑

I′l′m′
(HIlmI′l′m′SI′l′m′Ilm + SIlmI′l′m′HI′l′m′Ilm)

−1
2

∑

I′′l′′m′′
SIlmI′′l′′m′′HI′′l′′m′′I′l′m′SI′l′m′Ilm

]
N0
Ilm.

(2.142)

The overlap repulsion is added to the repulsive energy in the orthogonal TB
model,

Uorth
rep = Urep + Uoverlap. (2.143)

It may be interpreted as an additional repulsive contribution due to the or-
thogonalization of the atomic orbitals, which repel each other when they are
brought together [71]. Due to the non-pairwise behaviour, it may dominate
the repulsive energy contribution in an orthogonal TB model (Sec. 3.3.5).

2.3.7. Forces in the Tight-Binding Bond Model
The forces on atom K can be calculated by the negative gradient of the bind-
ing energy, FK = −∇KUB. Due to the Hellmann-Feynman theorem [72, 73],
the gradient with respect to the band energy can be calculated from gradients
of the Hamiltonian and overlap matrix elements only and is explicitly given
by [6]

∇KUband = ∇K

( ∑

IlmI′l′m′

(
H0
)Ilm
I′l′m′

ρI
′l′m′

Ilm

)

=
∑

n

〈ψn|ρ̂∇KĤ|ψn〉

=
∑

IlmI′l′m′

(
∇KH

0
)Ilm
I′l′m′

ρI
′l′m′

Ilm

−
∑

n

∑

IlmI′l′m′
fn(c∗(n))Ilm(c(n))I′l′m′∇KS

I′l′m′

Ilm ,

(2.144)

where the last term vanishes in orthogonal TB models. If the onsite levels are
self-consistent (Eq. 2.116), the forces in the orthogonal TB model are given
by

∇KUB =
∑

IlmI′l′m′
ρIlmI′l′m′∇KHIlmI′l′m′

+ 1
2

∑

IlmI′l′m′
(∇KJIlmI′l′m′) qIlmqI′l′m′ +∇KUrep.

(2.145)
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The generalization to the non-orthogonal case is straightforward.

2.3.8. Downfolding Procedure
The most important ingredient for the TB bond model is the reference Ha-
miltonian matrix H0, from which the electron density matrix can be calcu-
lated. Downfolding methods for the construction of H0 based on the results of
DFT calculation have been developed [74, 75]. An alternative to downfolding
methods is the reduced TB approximation, which is discussed in Sec. 3.1.2. It
requires, however, much stronger approximations than the downfolding meth-
ods. In the following, the method of Ref. 74 is introduced:
Firstly, a DFT reference state has to be constructed. This can be done by the
solution of the Kohn-Sham equations (Eqs. 2.45, 2.48, 2.49) in the Harris-
Foulkes approximation (Eq. 2.90) for a particular reference system. The eigen-
states may be expanded in a multiple-ζ LCAO basis (Eq. 2.70), where the
number of radial functions per orbital controls the accuracy of the approxi-
mation,

ψn(r) =
∑

Ilmz

c
(n)
IlmzφIlmz(r). (2.146)

However, in the TB approximation only one radial function per orbital is
used (minimal basis). One may therefore formally write each TB minimal
basis function as a linear combination of the multiple-ζ orbitals,

ϕIlm(k) =
∑

z

kIlmzφIlmz(r). (2.147)

The downfolding procedure maximizes the projection of the minimal basis
onto the DFT eigenstates expanded in a multiple-ζ basis. The projection
may be expressed as

P = max
k

1
Ne

∑

n

fn〈ψn|P̂ (k)|ψn〉, (2.148)

where
P̂ (k) =

∑

Ilm

|ϕIlm(k)〉〈ϕIlm(k)| (2.149)

is the projection operator and fn is the occupation of eigenstate ψn. The
occupation number is determined by the Fermi distribution

f(E) = 1
exp((E − µ)/kBT ) + 1 , (2.150)

where the temperature T is a parameter of the downfolding procedure which
controls the relevance of eigenstates which are not occupied at 0 K. The
coefficients kIlmz are obtained by numerical optimization of the non-linear
problem (Eq. 2.148).
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From the optimized minimal basis, the TB overlap and Hamiltonian matrix
can be constructed,

SIlmI′l′m′ = 〈ϕIlm|ϕI′l′m′〉,
HIlmI′l′m′ = 〈ϕIlm|Ĥ|ϕI′l′m′〉.

(2.151)

Extensions to the Downfolding Procedure

The downfolding procedure is able to construct an optimal minimal basis
function for each orbital type considered in the LCAO basis set. However,
the LCAO basis may include more orbital types than usually used in TB
even if some of them are excluded by pseudopotentials or the PAW method
(Sec. 2.2.5). A matrix minimization technique is developed in the present
work to obtain TB models of reduced basis size that reproduce the relevant
eigenvalues of the minimal basis Hamiltonian while keeping the change in the
eigenstates minimal. The optimal minimal basis obtained from the downfold-
ing procedure is divided into basis functions which should be included (TB)
and which should not be included (TB-omit) in the TB model according to
the selected chemical description of the elements,

{|ϕIlm〉} =
{
{|ϕIlm〉TB}, {|ϕIl′m′〉TB-omit}

}
. (2.152)

The normalized eigenstates of the minimal basis system are then written as

|ψn〉(1−ζ) =
∑

Ilm

c
(n),ini
Ilm |ϕIlm〉TB +

∑

I′l′m′
c

(n),ini
I′l′m′ |ϕI

′l′m′〉TB-omit, (2.153)

where summation over co- and contravariant indices is used. An initial guess
for the eigensystem of the TB part of the minimal basis system is constructed
by removing the basis functions which should not be included (TB-omit) in
the TB model and by normalization,

|ψn〉ini =
∑

Ilm

1
||ψini

n ||1/2
c

(n),ini
Ilm |ϕIlm〉TB. (2.154)

In general, the initial guess for the eigensystem is not orthogonal. However, an
initial guess for the TB Hamiltonian matrix with the desired eigenspectrum
is constructed by

HTB,ini
IlmI′l′m′ =

∑

n

1
||ψini

n ||
c

(n),ini
Ilm c

(n),ini
I′l′m′ ε

(n), (2.155)

where ε(n) is the eigenenergy corresponding to the minimal basis eigenstate
|ψn〉(1−ζ). The initial guess for TB Hamiltonian matrix is diagonalized and an
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intermediate TB eigensystem is obtained,

|ψn〉int =
∑

Ilm

c
(n),int
Ilm |ϕIlm〉TB. (2.156)

The eigensystem is now orthogonal. However, a rotation of the eigensystem
does not change the eigenenergies. In order to remove this degree of freedom,
the intermediate eigensystem is rotated,

|ψn〉TB = R̂|ψn〉int, (2.157)

such that it is closest to the minimal basis eigensystem. This is done by a
numerical optimization which minimizes

∑

nn′

(
δnn′ − TB〈ψn|ψn′〉int

)2
. (2.158)

The optimum defines the optimal TB eigenstates

|ψn〉TB = R̂|ψn〉int =
∑

Ilm

c
(n),TB
Ilm |ϕIlm〉TB. (2.159)

Similar to Eq. 2.155, the optimal TB Hamiltonian is constructed by

HTB
IlmI′l′m′ =

∑

n

c
(n),TB
Ilm c

(n),TB
I′l′m′ ε

(n). (2.160)

An orthogonal TB model is created by a Löwdin transformation [69],

HTB,orth = S−1/2HTBS−1/2. (2.161)

2.3.9. Parametrization
The downfolding procedure can be used to parameterize the matrix elements
of the Hamiltionan marix H and the overlap matrix S. For this purpose,
the downfolding procedure may be applied on one or several structures and
a distance-dependent function may be fitted to the individual values of each
matrix element. Applications can be found in Refs. 63, 76–79 . A common
approximation is to use constant values for the onsite matrix elements of the
Hamiltonian matrix EIlm = HIlmIlm in an orthogonal TB model. Moreover,
the repulsive energy is often approximated by a simple pair potential

Urep(RIJ) = 1
2
∑

I

∑

J 6=I
VIJ(RIJ), (2.162)

which is parametrized to reference values from DFT or experiment. Some-
times specific states are neglected in the electronic structure description and
are compensated by explicit functions which depend on the atomic structure
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of the material. Furthermore, the interaction range of different atoms has to
be limited by a finite cut-off value rcut for practical calculations. This can be
achieved by multiplication of the bond integrals, overlap matrix elements and
pair potentials with a cut-off function. The cosine function

fcut(RIJ) =





1 if RIJ ≤ (rcut − dcut)
0 if RIJ > rcut
1
2

(
cos

(
π
[
RIJ−(rcut−dcut)

dcut

])
+ 1

)
else

(2.163)
is a typical choice, which smoothly goes from 1 to 0 between rcut − dcut and
rcut. The parametrization process of analytic BOPs (Sec. 2.4) is analogous
to the parametrization process of TB models and is further developed and
evaluated in Sec. 5 of this work.

2.3.10. Summary of Calculation Steps
A flowchart of a self-consistent TB calculation is shown in Fig. 2.4. The
calculation is initialized with a distance-dependent description of the repul-
sive energy contribution and the intraatomic Hamiltonian and overlap matrix
elements in the bond coordinate system. Initial onsite levels are guessed. Af-
terwards, the intraatomic Hamiltonian and overlap matrix elements in the
global coordinate system are calculated. The matrices are transformed into
reciprocal space and the density matrix is calculated by k-point integration
methods. From the change of the Mulliken charges, new onsite levels are
calculated and the previous steps are repeated until the self-consistency cri-
teria is reached. Finally, the separate energy contributions and the forces are
calculated.

2.4. Analytic Bond-Order Potentials

Analytic BOPs provide a systematic moments expansion of the local DOS of
a TB model and allow for energy and force calculations. The computational
time of the method scales linearly with the system size and therefore enables
calculations for system sizes which are not feasible to calculate with the TB
method, which has a cubic scaling with the system size.
The moments itself are descriptors of the shape of the local DOS and can be
related to the atomic surrounding of an atom via the moments theorem. This
is discussed in the first part of this section and is important for Sec. 4. After-
wards, the moments expansion of the local DOS is conducted and methods
to terminate the expansion are presented. Then, the calculation of energies
and forces as well as the self-consistency procedure are discussed. Finally, the
steps during a BOP calculation are summarized.
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TB model
H

(b)
IJ (RIJ), S(b)

IJ (RIJ), EIlm, Urep(RIJ)

TB Hamilton/overlap matrix in global coordinate system (Eq. 2.106)
HIJ = R(φIJ , θIJ)H(b)

IJ R(φIJ , θIJ)T

Hamilton/overlap matrix in reciprocal space (Eqs. 2.100, 2.102)
HIlm,I′l′m′(k) = ∑

R HIlm,I′l′m′(R) exp(ikR)

Diagonalization of secular equation (Eq. 2.99)∑
I′l′m′ (HIlm,I′l′m′(k)− εi(k)SIlm,I′l′m′(k)) ckI′l′m′ = 0,

Density matrix (Eq. 2.108)
ρIlmI′l′m′ = ∑

n fn(c∗(n))Ilm(c(n))I′l′m′

Self-consistent onsite levels (Eq. 2.114)
EIlm = E0

Ilm +∑
I′′l′′m′′ JIlmI′′l′′m′′qI′′l′′m′′

Self-consistent?

Output binding energy, forces, ... (Eqs. 2.118, 2.119, 2.145, ...)

no

EIlm

yes

Figure 2.4.: Flowchart of a self-consistent TB calculation.
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2.4.1. Moments of the Density of States
Moments are routinely used in statistics as shape parameters of probability
distributions. Equivalently, they may be used to describe the (local) electronic
DOS (Eqs. 2.124, 2.125). The moments of the local electronic DOS are defined
as

µ
(n)
Ilm =

∫
dE EnnIlm(E) (2.164)

and are referred to as local moments. The moments of the electronic DOS
µ(n) are obtained by averaging over all local moments. The first five moments
may be interpreted as:

µ(0): total number of states
µ̂(1) = µ(1)/µ(0): center of gravity
µ̂(2) = µ(2)/µ(0): mean square width
µ̂(3) = µ(3)/µ(0): skewness
µ̂(4) = µ(4)/µ(0): bimodality

The bimodality is rationalized by the dimensionless shape parameter [4]

s = µ̂(4)

(µ̂(2))2 −
(
µ̂(3)

)2

(µ̂(2))3 − 1. (2.165)

The DOS is bimodal for s < 1 and unimodal otherwise.
The fourth moment is bounded below by [80]

µ̂(4)

(µ̂(2))2 ≥
(
µ̂(3)

)2

(µ̂(2))3 + 1 (2.166)

such that µ̂(4) ≥
(
µ̂(2)

)2
.

2.4.2. Moments Theorem
The moments theorem [81] expresses in an orthogonal TB model the moments
of the local DOS as a product of Hamiltonian matrix elements,

µ
(n)
Ilm =

∑

Ilm

〈ϕIlm|Ĥn|ϕIlm〉

=
∑

I′l′m′I′′l′′m′′...

HIlmI′l′m′HI′l′m′I′′l′′m′′HI′′l′′m′′... · · ·H...Ilm.
(2.167)

All neighbouring matrix elements in the product of Eq. 2.167 have always a
common orbital index and the first and last indices in the product are the
same. The sum of the different orbital indices may therefore be interpreted as
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sum of all possible hopping paths of length n starting and ending at orbital
Ilm. The moments theorem therefore relates the electronic structure with
the atomic structure.
As only onsite hops can result in hopping paths of length one, the first local
moment which contains information of the atomic surrounding of an atom
is the second local moment µ(2)

Ilm. It explicitly depends on the interatomic
distances due to the distance dependence of the intersite matrix elements of
the Hamiltonian matrix. The third and fourth local moments are constructed
from all self-returning hopping paths of length three and four and therefore
they depend on the atomic structure of the surrounding atoms, e.g. the crystal
structure. The relationship of the moments of the DOS and to the crystal
structure and to trends in the structural stability is discussed in Sec. 4.1.1.

2.4.3. Recursion Coefficients

The moments of the DOS are used in the method of moments [81, 82] for ap-
proximating the DOS without calculating the eigenvalues. A closely related
procedure is the recursion method [83, 84], which tridiagonalizes the TB Ha-
miltonian matrix with the Lanczos algorithm [85]. A new basis is constructed
by the recursive formula

bn+1|un+1〉 =
(
Ĥ − an

)
|un〉 − bn|un−1〉, (2.168)

where |u0〉 may be chosen arbitrarily, e.g. |u0〉 = |ϕIlm〉. The recursion
coefficients an and bn are chosen such that the recursively generated states
are normalized and orthogonal to all previously generated states such that
an orthonormal basis is generated. Consequently, the matrix elements of the
Hamiltonian in the new basis are given by

〈um|Ĥ|un〉 =





an if m = n

bn if m = n− 1
bn+1 if m = n+ 1
0 otherwise.

(2.169)

The resulting Hamiltonian matrix has the tridiagonal form

H =




a0 b1
b1 a1 b2

b1 a2 b3
b3 a3 b4

b4 a4 b5
. . . . . . . . .

. . . . . .




, (2.170)
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|u0〉 |u1〉 |u2〉 |u3〉 |u4〉 . . .

a0 a1 a2 a3 a4

b1 b2 b3 b4 b5

Figure 2.5.: Illustration of the semi-infinite Lanczos chain.

corresponding to a one-dimensional semi-infinite chain of orbitals which only
interact with their nearest neighbours as illustrated in Fig. 2.5. With the
specific choice |u0〉 = |ϕIlm〉, the n-th moment of the local DOS of orbital
Ilm can be computed from the recursion coefficients by summation over all
self-returning hopping paths of length n in the semi-infinite chain,

µ
(n)
Ilm = 〈ϕIlm|Ĥn|ϕIlm〉 = 〈u0|Ĥn|u0〉

=
∑

i1...in−1

〈u0|Ĥ|ui1〉〈ui1 |Ĥ|ui2〉 · · · 〈uin−1 |Ĥ|u0〉. (2.171)

The first five moments are given by [61]

µ
(0)
Ilm = 1,
µ

(1)
Ilm = a0,

µ
(2)
Ilm = a2

0 + b2
1,

µ
(3)
Ilm = a3

0 + 2a0b
2
1 + a1b

2
1,

µ
(4)
Ilm = a4

0 + 3a2
0b

2
1 + 2a0a1b

2
1 + a2

1b
2
1 + b2

1b
2
1 + b4

1.

(2.172)

Recursive formulas to calculate the recursion coefficients from the moments
are given in Refs. 61, 86.

2.4.4. Continued Fraction Expansion of the Local
Density of States

Haydock developed a continued fraction expansion [84] based on the recursion
coefficients, which allows for an approximate calculation of the local DOS
and scales linearly with the system size. It is used in numerical BOPs and is
relevant for Sec. 2.4.7. It is presented in the following:
The inverse of the one particle Green’s function for the time independent
Schrödinger equation is defined as [3]

Ĝ−1 = E − Ĥ. (2.173)
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With the identity
δ(x) = − 1

π
lim
η→0

Im
(
[x+ iη]−1

)
, (2.174)

the local DOS (Eq. 2.125) may be written as

nIlm(E) = − 1
π

lim
η→0

ImGIlmIlm (x+ iη) . (2.175)

With the choice |u0〉 = |ϕIlm〉, the Green’s function is given by the continued
fraction [84]

GIlmIlm(E) = 1

E − a0 −
b2

1

E − a1 −
b2

2

E − a2 −
b2

3
. . .

. (2.176)

2.4.5. Constant Terminator

The continued fraction has an infinite number of fractions for an infinite
or periodic system. Therefore, it is necessary for practical calculations to
replace the recursion coefficients from a given recursion level nrec onwards by
approximate values. The simplest approximation is the constant terminator,

an = a∞, bn = b∞, for n > nrec. (2.177)

Other terminators are presented in Sec. 2.4.8. With the constant terminator,
the remaining part of the continued fraction may be calculated analytically
[84] and is given by

tIlmIlm(E) = 1

E − a∞ −
b2
∞

E − a∞ −
b2
∞

E − a∞ −
b2
∞
. . .

= 1
b∞



E − a∞

2b∞
− i

√√√√1−
(
E − a∞

2b∞

)2

 .

(2.178)

As E may take all possible values between the band edges, the values a∞ and
4b∞ may be interpreted as the band center and the bandwidth, separately.
The terminator (Eq. 2.178) is referred to as square root terminator because
of the functional form of the imaginary part, which is relevant for the DOS.
The bond energy may be calculated in the onsite representation (Eq. 2.126)
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by
Ubond =

∑

Ilm

∫ EF

−∞
dE (E − E0

Ilm)ñIlm(E), (2.179)

where

ñIlm(E) = − 1
π

Im 1

E − a0 −
b2

1

. . . −
. . .

E − a∞ − b∞tIlmIlm(E)

(2.180)

approximates the local DOS. In numerical BOPs [61, 87–90], the integration
of Eq. 2.179 is carried out numerically.
Pettifor and Oleinik [91–93] carried out the continued fraction expansion up to
nrec = 2 analytically and used the results for the modelling of semiconductors.
They used a∞ = 0 and b∞ = 0 together with a choice of |u0〉, which is related
to the eigenstates of a dimer to take into account that semiconductors have
covalent saturated bonds.

2.4.6. Moments Expansion of the Density of States

An alternative to numerical BOPs and analytic BOPs for semiconductors
are valence-dependent analytic BOPs for transition-metals from Drautz and
Pettifor [62, 74], which allow for an analytic integration of the local DOS but
also a choice of the recursion level nmax to control the approximation to the
TB reference. This approach is used in the present work and is explained in
the following:
The first state in the Lanczos chain is chosen to be an atomic orbital |u0〉 =
|ϕIlm〉 to allow for a fast convergence when treating transition-metals.
The local DOS nIlm(E) is expanded around a reference DOS n0

Ilm(E) which is
chosen to be the result of the continued fraction expansion where all recursion
coefficients take the constant values

an = a∞, bn = b∞ ∀n. (2.181)

It follows from Eqs. 2.175, 2.178 that the reference density may be expressed
as

tIlmIlm(E) = 1
2b∞

n0
Ilm(ε) (2.182)

with
n0
Ilm(ε) = 2

π

√
1− ε2, (2.183)

where
ε = E − a∞

2b∞
(2.184)
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scales the energy to an interval [−1, 1]. The local DOS may be written as the
sum of the reference density and a perturbation δnIlm(ε),

nIlm(ε) = n0
Ilm(ε) + δnIlm(ε). (2.185)

The orthonormality of the Chebyshev polynomials of the second kind [94]

Pn(ε) =
n∑

m=0
pnmε

m (2.186)

with respect to the weight n0
Ilm(ε),

∫ 1

−1
dε Pk(ε)Pl(ε)n0

Ilm(ε) = δkl, (2.187)

is employed to expand the local DOS

nIlm(ε) ≈ nnmax
Ilm (ε) = n0

Ilm(ε)
nmax∑

n=0
σ

(n)
IlmPn(ε), (2.188)

where the reference density n0
Ilm(ε) is absorbed into the sum for k = 0 as

P0(ε) = 1 and the expansion is for practical calculations truncated at an
expansion level nmax = 2nrec. The coefficients σ(n)

Ilm are referred to as expansion
coefficients and are formally given by

σ
(n)
Ilm =

∫ 1

−1
dε Pn(ε)nIlm(ε). (2.189)

Inserting Eq. 2.186 into Eq. 2.189 leads to

σ
(n)
Ilm =

n∑

k=0
pnkµ̂

(k)
Ilm, (2.190)

where
µ̂

(n)
Ilm = 1

2b∞

n∑

k=0

(
n

k

)
(−1)kak∞µ

(n−k)
Ilm (2.191)

are the dimensionless moments.

2.4.7. Termination of Moments Expansion
In contrast to the continued fraction expansion of the local DOS (Eq. 2.180),
where higher recursion coefficients are estimated by a terminator, the expan-
sion of the local DOS in form of Eq. 2.188 is carried out up to an expansion
level nmax and contributions from higher moments are completely neglected.
This drawback has been solved by Seiser et al. [95] and is discussed in the
following.
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The expansion coefficients σ(n)
Ilm may be calculated from the recursion coef-

ficients an, bn. As the continued fraction expansion (Eq. 2.176) allows one
to estimate higher recursion coefficients from terminators, higher expansion
coefficients may consequently also be estimated. The DOS of the analytic
BOPs (Eq. 2.188) is therefore extended to

n
nexp
Ilm (ε) = n0

Ilm(ε)


nmax∑

n=0
σ

(n)
IlmPn(ε) +

nexp∑

n=nmax+1
σ

(n)
IlmPn(ε)


 , (2.192)

where the expansion coefficients for n ∈ [nmax + 1, nexp] are calculated from
the corresponding estimated recursion coefficients.
The recursion coefficients are calculated exactly from the moments up to
nrec = nmax/2 by the procedure described in Refs. 61, 86 (Sec. 2.4.3). Higher
recursion coefficients up to nexp/2 are estimated from the terminators. The
expansion coefficients may be calculated by the recursive formula

ζ
(n+1)
k = 2

(
âkζ

(n)
k + b̂kζ

(n)
k−1 + b̂k+1ζ

(n)
k+1

)
− ζ(n−1)

k (2.193)

with
âk = ak − a∞

2b∞
, (2.194)

b̂k = bk
2b∞

, (2.195)

ζ
(n)
k = 〈uk|Pn(ĥ)|u0〉 (2.196)

and
ĥ = Ĥ − a∞

2b∞
(2.197)

such that σ(n)
Ilm = ζ

(n)
0 . Equation 2.193 may be proven by using the recurrence

relation of the Chebyshev polynomials of the second kind [94]

Pn+1(ε) = 2εPn(ε)− Pn−1(ε) (2.198)

and by the recursive formula (Eq. 2.168). Note that the computation of
Eq. 2.193 requires the evaluation of all recursion coefficients up to an−1 and
bn.
The two different approaches to approximate the local DOS by either Eq. 2.188
or Eq. 2.192 are summarized and compared in Fig. 2.6.

2.4.8. Terminators and Estimates of the Bandwidth

The analytic BOP expansion around a reference DOS (Eq. 2.183) requires esti-
mates for the band edges Etop and Ebottom, which are related to the asymptotic
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Moments by hopping paths (Eq. 2.167)
µ

(n)
Ilm

Dimensionless moments (Eq. 2.191)
µ̂

(n)
Ilm

Expansion coefficients (Eq. 2.190)
σn

Recursion coefficients and terminator
an, bn

Expansion coefficients (Eq. 2.193)
σn

Local density of states
nIlm(ε)

(Eq. 2.188) (Eq. 2.192)

Figure 2.6.: Calculation of the local DOS in analytic BOPs. The left branch of
the diagram illustrates the calculation procedure for Eq. 2.188, the
right branch for the extended Eq. 2.192.

recursion coefficients by

b∞ = Etop − Ebottom

4 (2.199)

and
a∞ = Etop + Ebottom

2 (2.200)

and are responsible for the scaling of the energy by Eq. 2.184. Estimates have
been developed by Beer and Pettifor [96] and by Haydock and Johannes [97].
A similar method to the one of Haydock and Johannes has been introduced
by Ford et al. [98], which estimates the asymptotic recursion coefficients for
the band edges from

a∞ = 1
1 + nnrec

nrec∑

n=0
an (2.201)

and

b∞ =
√√√√ 1
nnrec

nrec∑

n=1
b2
n. (2.202)

An underestimation of the bandwidth can result in undesired oscillations of
the analytic BOP DOS [98]. Therefore, Seiser et al. [95] used Gerschgorin’s
circle theorem [99] and estimated lower and upper boundaries for the lower
and upper band edges, which are given by

Ebottom = min
n

(an − bn − bn+1) (2.203)

45



Theory of Electronic Structure Methods

and
Etop = max

n
(an + bn + bn+1). (2.204)

It was observed by Ford et al. that the constant terminators (Eq. 2.181),
which are computed from the estimates of the band edges, are not necessar-
ily an optimal choice to estimate the expansion coefficients for n > nmax.
A smoother convergence with respect to the number of exactly calculated
recursion coefficients nrec could be obtained by estimating

a∞ =
∑nrec
k=0wka

k

∑nrec
k=0wk

(2.205)

and
b∞ =

∑nrec
k=0wkb

k

∑nrec
k=0wk

, (2.206)

where the weight
wk = 1

α(nrec − k) + 1 (2.207)

depends on a parameter α, which controls the smoothness of the convergence
and takes optimal values for α ≥ 1.
The recursion coefficients oscillate in systems with band gaps and the treat-
ment of these systems therefore requires to estimate the recursion coefficients
for n > nrec by oscillating functions [100]. The period length determines the
number of band gaps, e.g. a period length equal to one is sufficient to model
systems with a single band gap [95].

2.4.9. Strictly Positive Density of States
The expansion of the DOS in Chebyshev polynomials of the second kind
(Eq. 2.188) can be transformed into a Fourier series expansion [95],

nnmax
Ilm (ε) =

nmax∑

n=0
σ

(n)
Ilm sin ((n+ 1)φ) , (2.208)

where
sin ((n+ 1)φ) = n0

Ilm(ε)Pn(ε). (2.209)
Therefore, the analytic BOP expansion is effected by Gibbs ringing, which can
also cause non-physical negative values in the analytic BOP DOS. Similar to
the kernel polynomial method [101] Seiser et al. introduced damping factors
gn for the expansion coefficients to avoid Gibbs ringing [95]. With this, the
BOP expansion (Eq. 2.192) is written as

n
nexp
Ilm (ε) = n0

Ilm(ε)


nmax∑

n=0
gnσ

(n)
IlmPn(ε) +

nexp∑

n=nmax+1
gnσ

(n)
IlmPn(ε)


 . (2.210)
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2.4.10. Bond Energy

The expansion of the local DOS in analytic BOPs is used to calculate the
bond energy analytically. For this purpose, the extended expansion of the
local DOS in Chebyshev polynomials (Eq. 2.210) is inserted into the onsite
representation of the bond energy (Eq. 2.126),

U
Ilm,nexp
bond = 2b∞

∫ εF

0
dε

nexp∑

n=0
n0
Ilm(ε)gnσ(n)

IlmPn(ε)(ε− εIlm). (2.211)

With a change of variables ε = cos(φ), the integration is readily carried out
and the bond energy may be written as

U
Ilm,nexp
bond = 2b∞

nexp∑

n=0
gnσ

(n)
Ilm [χ̂n+2(φF)− 2εIlmχ̂n+1(φF) + χ̂n(φF)] , (2.212)

where

χ̂0(φF) = 0,

χ̂1(φF) = 1− φF

π
+ 1

2π sin (2φF) ,

χ̂n(φF) = 1
π

(
sin ((n+ 1)φF)

n+ 1 − sin ((n− 1)φF)
n− 1

) (2.213)

are the response functions [62, 87]. The response functions χ̂n(φF) with n ≥ 2
are illustrated in Fig. 2.7. They are equal to zero for εF = ±1 such that the
bond energy is, as expected, also equal to zero for these values. In particular,
the third-order response function χ̂3(φF) is positive for less than half full band
and negative for more than half full band. The fourth-order response function
χ̂4(φF) is negative at the band edges and positive at the band center.

2.4.11. Self-Consistency

In analytic BOPs, the eigenspectrum is an approximation to the exact TB
eigenspectrum. Consequently, a self-consistent choice of the charges according
to Eq. 2.114 does not result in a stationary point of the BOP energy. Instead,
the energy has to be minimized with respect to the onsite levels. The resulting
self-consistency criteria may be written as

∂UB

∂EIlm
= Θ̃IlmIlm −NIlm = 0, (2.214)

where the bond-order like term Θ̃ is obtained from the derivative of the BOP
energy expansion with respect to the Hamiltonian matrix elements. The
derivation and the precise form of Θ̃ is given in Ref. 102. The bond-order
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Figure 2.7.: Response functions for n ∈ [2, 6] as a function of the normalized
Fermi energy εF. The number of roots increases with n.

like term converges to the exact bond-order (Eq. 2.121) for nmax → ∞ and
the TB self-consistency criteria (Eq. 2.116) is recovered.

2.4.12. Forces
In analytic BOPs, the forces are equivalent to TB, except that the exact
bond-order has to be replaced by the bond-order like term Θ̃ such that the
gradient of the binding energy is given by

∇KUB =
∑

IlmI′l′m′
Θ̃IlmI′l′m′∇KHIlmI′l′m′

+ 1
2

∑

IlmI′l′m′
(∇KJIlmI′l′m′) qIlmqI′l′m′ +∇KUrep,

(2.215)

which corresponds to Eq. 2.145 for nmax →∞.

2.4.13. Summary of Calculation Steps
A flowchart of a self-consistent analytic BOP calculation is shown in Fig. 2.8.
As in TB calculations (Sec. 2.3.10), the calculation is initialized with a distance-
dependent description of the repulsive energy contribution and the intraatomic
Hamiltonian matrix elements in the bond coordinate system. Initial onsite
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levels are guessed. Afterwards, the intraatomic Hamiltonian and overlap ma-
trix elements in the global coordinate system are calculated. Instead of a
transformation of the matrices into reciprocal space, which is done in TB, the
moments of the local DOS are calculated. They are used to calculate the ex-
act recursion coefficients. Different possibilities can be chosen to estimate the
band edges and the higher recursion coefficients. The expansion coefficients
can be calculated from the exact and the estimated recursion coefficients. By
usage of a kernel, a strictly positive analytic BOP expansion of the DOS is
obtained. The previous steps are repeated until the self-consistency criteria
is reached and afterwards the energy contributions and forces are calculated.

2.4.14. Second and Fourth Moment Approximations

The TB theory can be derived from a second-order approximation to DFT
and the analytic BOPs are a systematic approximation to TB. However, many
models of the interatomic interaction are empirically or semi-empirically de-
rived (cf. Ref. 103 for a database of interatomic potentials). The functional
form of some of them can be derived from approximations to the BOP for-
malism. Ackland et al. [104] proved that the bond energy (Eq. 2.126) can be
written as

Ubond ∝ −
√
µ(2) (2.216)

under the assumption of local charge neutrality and the assumption that only
the width of the DOS changes as a response to structural changes. The atomic
second moments of the DOS of a system with only one orbital type

µ
(2)
I = 1

2l + 1
∑

m

µ
(2)
Ilm (2.217)

are obtained by averaging over the different magnetic quantum numbers and
are rotationally invariant. They can therefore be written as sums of the
squares of the bond integrals

µ
(2)
I =

∑

Jα

βα(RIJ)2, (2.218)

where βα labels the different bond integrals. For a non-self-consistent TB
model where the repulsive energy is parametrized as a pair potential (Eq. 2.162),
the binding energy (Eq. 2.118) can be written for a charge neural system as

UFS = −
∑

I

√∑

J 6=I
ρIJ(RIJ) + 1

2
∑

I

∑

J 6=I
VIJ(RIJ), (2.219)

where
ρI =

∑

J

ρIJ(RIJ) =
∑

Jα

βα(RIJ)2 (2.220)
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Figure 2.8.: Flowchart of a self-consistent analytic BOP calculation.
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may be interpreted as an atomic site density. This functional form of the
interatomic interaction corresponds to the potential of Finnis and Sinclair
[105]. The original derivation of the square root dependence of the atomic
density ρI was derived with a much stronger assumption of a Gaussian DOS
[106, 107].
The class of potentials of the embedded atom method [108, 109] (EAM) and
glue potentials [110] can be considered as a generalization of the Finnis-
Sinclair potential as they parametrize the dependence on the atomic site
density ρI by a general function FI(ρI). They are therefore given by

UEAM =
∑

I

FI


∑

J 6=I
ρIJ(RIJ)


+ 1

2
∑

I

∑

J 6=I
V (RIJ). (2.221)

In case of the EAM and glue potentials, the functions ρIJ , VIJ and FI are
obtained by parameter optimization of flexible functional forms to given sets
of reference data.
The analytic BOP expression (Eq. 2.212) can be approximated to validate
the Finnis-Sinclair model and models which also take contributions of the
fourth moment [111–114] to the energy into account. As derived in Ref. 62,
a symmetric (µ(3)

Ilm = 0) fourth moment approximation to the bond energy is
given by

U I
bond ≈ 10

√
µ

(2)
I


χ̂2(φF) + (χ̂4(φF) + χ̂6(φF))




µ
(4)
I(

µ
(2)
I

)2





 (2.222)

for a d-valent BOPmodel where the asymptotic recursion coefficients (Eq. 2.181)
are chosen as

b∞ = b1 =
√
µ

(2)
Ilm,

a∞ = a1 = µ
(3)
Ilm

µ
(2)
Ilm

= 0
(2.223)

and a0 = 0 is obtained by a shift of all onsite levels to zero. This approxima-
tion does not only provide a band filling dependence of the second moment
term of the Finnis Sinclair potential, it may also be regarded as an alternative
derivation of the fourth moment models [111–114], from which the bond angle
dependence of the Tersoff potential [115–117] can be derived [118].
As explained in Ref. 4, the structural trends of the central d-band transition-
metals are driven by the d-electrons alone and the prediction of the en-
ergy difference between fcc and hcp (Sec. 4.1 for more details) requires at
least 6 moments [4, 62, 119]. Therefore, it is sufficient to describe the s-
electrons by a second-moment potential and to apply the analytic BOP ex-
pansion or the TB formalism only to the d-electrons for an accurate prediction
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of the cohesive energies of these phases. With this argument, an embed-
ding term, which describes only the s-electrons, has been parametrized in
Refs. 63, 74, 76, 98, 120, 121 based on Ref. 122, which takes the form

Uemb,s = −
∑

I

√∑

J 6=I
(aIJemb)2 exp(−bIJembR

2
IJ). (2.224)

2.4.15. Computer Implementation of Analytic
Bond-Order Potential and Tight-Binding
Calculations: BOPfox

The program package BOPfox for analytic BOP and TB calculations has been
developed and a summary of the implementation is available in Ref. 123. The
program requires three input files: A file models.bx contains initial values
for the onsite levels and the parameters for a distance dependant description
of the bond integrals and overlap matrix elements (Sec. 2.3.4) as well as the
parameters of further energy contributions as the repulsive pair potentials
(Eq. 2.162) and energy contributions in form of the embedded atom poten-
tials (Eq. 2.221). The atomic arrangement is defined in a file structure.bx.
Calculation settings as the choice of the type of calculation (TB or analytic
BOP) or calculation type specific settings as the number of k-points in a TB
calculation or the number of exactly evaluated moments nmax are provided in
a file infox.bx. All parameters which specify details of the TB or analytic
BOP calculation are provided in this file and a full list of options can be found
in the BOPfox manual. The BOPfox implementation covers all computational
details which are discussed in Sec. 2.3 and in the present section. BOPfox
reads all settings from the input files and returns the values for the atomic
and total energies and forces after a successful calculation. User specific out-
put requests as e.g. the DOS, the values of the moments (Eq. 2.164) or the
recursion coefficients (Eq. 2.169) are also handled by the infox.bx file.
The BOPfox program is implemented with focus on computational efficiency.
The theoretical linear scaling of the computational time with respect to the
system size has been verified in Ref. 124. By a benchmark of the program,
it was obtained that the computational time scales as n4.5

max with increasing
number of exactly evaluated moments nmax. This is in agreement with the
results of a theoretical complexity analysis [124]. Efficient parallelization con-
cepts, which enable a distribution of the computations on multiple computer
cores, have been developed and implemented in BOPfox [125, 126].

2.4.16. Estimation of Energy Differences
It is possible to estimate energy differences by approximations to the BOP and
TB theory. These approximations are introduced in the following. The struc-
tural energy difference theorem [127] can be used together with the Wolfsberg-
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Helmholtz approximation [4] to estimate energy differences of equilibrium
structures without explicit knowledge of the repulsive energy Urep.
The structural energy difference theorem states that the energy difference
between two structures is given to first-order by

∆U ≈ [∆Ubond]∆Urep=0 , (2.225)

where ∆Urep = 0 indicates that the volumes of the individual structures
are scaled such that their repulsive energy contributions are equal to each
other. One can in many cases [4, 66, 128] assume that repulsive energy Urep
is dominated by the overlap repulsion (Eq. 2.142) for computing ∆U . In
the Wolfsberg-Helmholtz approximation, it is further assumed that the over-
lap matrix elements are proportional to a common radial decay of the bond
integrals such that Urep can be approximated as

Urep ∝ β(R)2 ∝ µ(2), (2.226)

where the second proportionality follows from Eq. 2.218. Instead of scaling
the volumes of the individual structures such that ∆Urep = 0, it is therefore
a good approximation to scale them such that ∆µ(2) = 0.
The assumption (Eq. 2.226) has its limitations and is not always valid. For
example, the χ-phase structure (Sec. 4.1.2) of Mn is stabilized over close-
packed hcp that is taken by the isoelectronic Tc or Re by a softer repulsion
with an exponent that is smaller than 2 as Mn does not have d states in the
core [121]. The same holds for carbon, where graphite is stabilized over the
diamond structure by the same mechanism [4].
For evaluating the difference in the bond energy between two structures, one
needs to take into account that the Fermi level of the two structures will in
general be different. A first-order expansion of the bond energy difference
between two structures with the same number of valence electrons Ne at
identical first and second moment was derived [128, 129],

∆Ubond = 2(2l + 1)b(∞)
nmax∑

n=3
∆σ(n) ˆ̂χ(1)

n
(φF), (2.227)

where ∆σ(n) corresponds to the difference in the expansion coefficients,

ˆ̂χ(1)
n

(φF) = 1
π

[
2 sin(n+ 1)φF

n(n+ 2) − sin(n+ 3)φF

(n+ 2)(n+ 3) −
sin(n− 1)φF

n(n− 1)

]
(2.228)

are first-order response functions and φF depends on the number of valence
electrons Ne.
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2.4.17. Illustration of Analytic Bond-Order Potentials
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Figure 2.9.: Comparison of TB DOS (blue) and BOP DOS (green) for differ-
ent numbers of exactly calculated moments nmax calculated with a
canonical d-valent TB model for bcc, fcc and hcp. The analytic BOP
DOS converges to the TB DOS with increasing values for nmax for
all structures. nexp = 50 is chosen for all calculations.

The analytic BOP approximation can be understood best by a compari-
son of the DOS and energies obtained by a k-space TB calculation and by
analytic BOP approximations for different numbers of exactly calculated mo-
ments nmax. For this purpose, the energy difference theorem (Eq. 2.225) is
used together with the Wolfsberg-Helmholtz approximation (Eq. 2.226) by
scaling the volumes of all considered structures such that the second moment
is equal to one, µ(2) = 1. The analytic BOP calculations were performed
with a constant terminator (Eq. 2.181) and an estimation of the asymptotic
recursion coefficients by Gerschgorin’s circle theorem (Eqs. 2.203, 2.204).
To approximately describe the transition-metals, a canonical d-valent TB
model,

ddσ(R)
ddπ(R)
ddδ(R)





=
−6

4
−1




β(R), (2.229)

is chosen, which has the same radial decay of R−5 for all dd bond integrals,
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Figure 2.10.: Comparison of TB DOS (blue) and BOP DOS (green) for differ-
ent numbers of exactly calculated moments nmax calculated with a
canonical sp-valent TB model for bcc, diamond and sc. The ana-
lytic BOP DOS converges to the TB DOS with increasing values
for nmax for all structures. nexp = 50 is chosen for all calculations.

and is introduced in more detail in Sec. 3.1.3. In Fig. 2.9, the convergence
of the analytic BOP DOS to the TB reference is illustrated for the example
of the bcc, fcc and hcp crystal structures, which are taken by the d-valent
transition-metals. The values rcut and dcut of the cut-off function (Eq. 2.163)
were chosen such that the first and second nearest neighbours are included in
bcc and only the first nearest neighbours are included in fcc and hcp.
It can be seen that the analytic BOP DOS systematically converges to the
TB reference with increasing number of exactly calculated moments nmax and
that the DOS of fcc and hcp look almost identical for nmax = 4. This can be
understood from the similarity between the two structures and the relation
of the moments of the DOS to the crystal structure by the moments theorem
(Eq. 2.167).
An approximate description of the sp-valent elements is given by Cressoni’s
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and Pettifor’s parametrization

ssσ

spσ

ppσ

ppπ





=

−1.00
1.31
2.31
−0.76





β(R) (2.230)

of the bond integrals, which is also introduced in more detail in Sec. 3.1.3.
The difference of the onsite levels of the s and p orbitals is neglected as it
is sufficient for qualitative predictions [66, 130]. Here, the radial decay is
also set to R−5. In Fig. 2.10, the convergence of the total DOS of the s and p
orbitals is shown for bcc, diamond and sc. The cut-off function is again chosen
such that in bcc the first and second nearest neighbours are included, while in
diamond and sc only the first nearest neighbours are considered. The analytic
BOP DOS again systematically converges to the TB reference, however, more
moments are required to capture all features of the DOS compared to the
previous calculations for the close-packed structures.
The differences in the bond energy can be used to estimate the differences
in the total energy because the calculations were performed for normalized
volumes with a scaled second moment. This was done for the results from the
d-valent model in Fig. 2.11 and for the results from the sp-valent model in
Fig. 2.12. As already expected from the DOS, it can be observed that in the
d-valent TB model nmax ≥ 6 is required to reproduce the energy differences
between fcc and hcp [62]. The shape of the DOS of the structures investigated
with the sp-valent TB model are very different and their energy differences
are much higher and can already be approximated with nmax = 4.
In Sec. 4.1, the shape of the DOS and the sequence of stability of the different
structures is related to the first moments of the DOS which are related to the
crystal structure.
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3
Tight-Binding Parametrization

Across the Periodic Table

The tight-binding (TB) method and the TB based analytic BOPs are compu-
tationally much faster than density-functional theory (DFT) and are based on
a chemical intuitive description. They are therefore attractive for materials
discovery and high-throughput calculations. However, the lack of available
parametrizations and in part, the incompatibility of different parametriza-
tions make DFT currently the only possible option. In this section, the first
step to provide TB parametrizations across the periodic table is taken.
In Sec. 3.1, general TB parametrizations are introduced. For the purpose
of the development of TB dimer parametrizations across the periodic table,
the DFT reference is defined in Sec. 3.2.1, which is used in Sec. 3.2.2 by the
downfolding procedure (Sec. 2.3.8) to obtain TB parameters in a consistent
way. The data is parametrized in Sec. 3.2.3. This procedure is applied to
virtually all combinations of elements from periods 1 to 6 and groups 3 to 18
of the periodic table. Thereby in total 1711 TB models are obtained. Selected
models and trends across the periodic table are evaluated in Sec. 3.3.

3.1. Background

3.1.1. Tight-Binding Description of Dimers
A dimer is a molecule of two atoms. It is the only system, for which the
two-center approximation is exact and it is therefore an important reference
system for TB parametrizations. The Hamiltonian matrix of a dimer can be

59



Tight-Binding Parametrization Across the Periodic Table

valence σ π δ

s-s
(
Es

1 ssσ
ssσ Es

2

)

s-sp



Es

1 ssσ spσ
ssσ Es

2 Es,p0
2

spσ Es,p0
2 Ep0

2




(
E
p±1
2
)

s-sd



Es

1 ssσ sdσ

ssσ Es
2 Es,d0

2
sdσ Es,d0

2 Ed0
2




(
E
p±1
2
) (

E
d±2
2

)

sp-sp




Es
1 Es,p0

1 ssσ spσ
Es,p0

1 Ep0
1 psσ ppσ

ssσ psσ Es
2 Es,p0

2
spσ ppσ Es,p0

2 Ep0
2




(
E
p±1
1 ppπ
ppπ E

p±1
2

)

sp-sd




Es
1 Es,p0

1 ssσ sdσ
Es,p0

1 Ep0
1 psσ pdσ

ssσ psσ Es
2 Es,d0

2
sdσ pdσ Es,d0

2 Ed0
2




(
E
p±1
1 pdπ

pdπ E
d±1
2

) (
E
d±2
2

)

sd-sd




Es
1 Es,d0

1 ssσ sdσ

Es,d0
1 Ed0

1 dsσ ddσ

ssσ dsσ Es
2 Es,d0

2
sdσ ddσ Es,d0

2 Ed0
2




(
E
d±1
1 ddπ

ddπ E
d±1
2

) (
E
d±2
1 ddδ

ddδ E
d±2
2

)

Table 3.1.: σ-, π- and δ-block matrices of the dimer Hamiltonian matrix for dif-
ferent valences.

expressed as

H =




σ0 0 0 0 0
0 π−1 0 0 0
0 0 π+1 0 0
0 0 0 δ−2 0
0 0 0 0 δ+2



, (3.1)

where σ0, π±1 and δ±2 are block matrices and are referred to as σ-block,
π-block and δ-block. The index indicates the common magnetic quantum
number of the contributing orbitals. The explicit form of the block matrices
depend on the valence of the contributing elements and are summarized in
Tab. 3.1. The onsite elements are on the diagonal of the block matrices and
the bond integrals are on off-diagonal positions. Furthermore, the σ-blocks
contain intraatomic parameters Es,x1/2

1/2 , which are zero in case of free atoms
and non-zero in the presence of a further atom [131]. The overlap matrix has
an equivalent structure to the Hamiltonian matrix with values of one on the
diagonal of the block matrices.
In Fig. 3.1, the equilibrium bond length Req of all homoatomic dimers is
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Figure 3.1.: Equilibrium distance Req of homoatomic sp-valent dimers (Fig. a)
and sd-valent dimers (Fig. b).

self-consistently calculated with GPAW using a non-spin-polarized grid basis
with h = 0.15 Å (Sec. 2.2.6) in all Cartesian directions, the PBE exchange-
correlation functional (Sec. 2.2.3) and the default PAW datasets (Sec. 2.2.5)
of GPAW.

3.1.2. Reduced Tight-Binding

In the reduced TB approximation [91, 92], the number of independent Hamil-
tonian matrix elements is reduced by making approximations on the relation
of the matrix elements. In case of a homoatomic sp- or sd-valent dimer, a
reduction of the number of independent Hamiltonian matrix elements in an
orthogonal TB model allows one to compute the matrix elements directly
from a reference eigenspectrum.
The reduced TB approximation is discussed for a homoatomic sp-valent dimer.
The LCAO secular equation (Eq. 2.99) for the π-block is given by

det
(
π − Eπ

±11
)

= 0, (3.2)

where π is defined in Tab. 3.1. The solutions of this equation are

Ep = Eπ
+ + Eπ

−
2 (3.3)
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and
ppπ = Eπ

+ − Eπ
−

2 . (3.4)

Neglecting the intraatomic parameters Es,p
1/2 and making use of the cylindrical

symmetry and the symmetry with respect to inversion, the secular equation
for the σ-block can be split into

det
(
Hg − Eg

+,−1
)

= 0 (3.5)

and
det

(
Hu − Eu

+,−1
)

= 0, (3.6)
where

Hg =
(
Es + ssσ −spσ
−spσ Ep − ppσ

)
(3.7)

and
Hu =

(
Es − ssσ spσ
spσ Ep + ppσ

)
. (3.8)

From the two equations, the individual TB matrix elements can be expressed
as

Es = 1
2
(
Eg
− + Eg

+ + Eu
− + Eu

+

)
− Ep, (3.9)

ssσ = 1
2 (Ep − Es)

(
Eg
−E

g
+ − Eu

−E
u
+ − Es

(
Eg
− + Eg

+ − Eu
− − Eu

+

))
, (3.10)

ppσ = 1
2 (Ep − Es)

(
Eg
−E

g
+ − Eu

−E
u
+ − Ep

(
Eg
− + Eg

+ − Eu
− − Eu

+

))
, (3.11)

(spσ)2 = EsEp − ssσ · ppσ −
1
2
(
Eg
−E

g
+ + Eu

−E
u
+

)
. (3.12)

Using the approximation [132]

(spσ)2 = −ssσ · ppσ (3.13)

only four independent matrix elements remain, which can be calculated from
the four eigenenergies. From Eqs. 3.9, 3.12,

Ep =1
4
(
Eg
− + Eg

+ − Eu
− − Eu

+

)

±
√

1
16 (Eg

− + Eg
+ − Eu

− − Eu
+)− 1

2 (Eg
−E

g
+ + Eu

−E
u
+)

(3.14)

is obtained, which can be used to calculate the remaining matrix elements with
Eqs. 3.9, 3.10, 3.11. Similar equations can be derived for a homoatomic sd-
valent dimer. A generalized reduced TB approximation has been introduced
in Ref. 133.
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3.1.3. Canonical Tight-Binding

Two related TB parametrizations have been developed by Andersen et al.
and Harrison et al., which provide general expressions for all bond integrals
of s, p and d orbitals for all elements. They are constructed by only a very
limited number of reference data and are successful in providing qualitative
predictions.
Andersen considered the muffin-tin approximation [38], where only the effec-
tive potential of the single particle Schrödinger equation is retained inside
atom-centred spheres. The potential in the interstitial region vint of these
spheres is assumed to be constant such that the potential energy surface of
a two-dimensional layer of atoms has the shape of a muffin-tin. He used the
Korringa–Kohn–Rostoker [134, 135] (KRR) formalism, where the wave func-
tions are expanded with partial waves similar to the PAW method introduced
in Sec. 2.2.5. He further applied the atomic-sphere approximation [136, 137]
(ASA), where the potential is spherically symmetric inside spheres around the
atom. Assuming E− vint = 0 and neglecting two-center effects, he derived an
orthogonal canonical TB model in which the radial dependence of the bond
integrals depends only on the values of the angular quantum numbers of the
orbitals and the amplitude on the common magnetic quantum numbers and
the bandwidth [136]. The bond integrals are given by

ssσ = −2(rs/R)∆s,

spσ = −2
√

3(rs/R)2
√

∆s∆p,

pp{σ, π} = {2,−1} × 6(rs/R)3∆p,

sdσ = −2
√

5(rs/R)3
√

∆s∆d,

pd{σ, π} = {−
√

3, 1} × 6
√

5(rs/R)4
√

∆p∆d,

dd{σ, π, δ} = {−6, 4,−1} × 10(rs/R)5∆d,

(3.15)

where R is the interatomic distance, ∆s,p,d is a bandwidth parameter of the
s, p, d band and

rs = 3

√
3

4πρ (3.16)

is the Wigner-Seitz radius, where ρ is the atomic density.
Another complete set of universal TB parametrizations for qualitative pre-
dictions has been summarized by Harrison in his solid state table of elements
[138]. He parametrized distance-dependent functions [138, 139] for the ssσ,
spσ and pp{σ, π} bond integrals. They reproduce TB parameters for the el-
ements C, Si and Ge [140] which were obtained by fitting to ab-initio results
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[141]. The bond integrals are explicitly given by

ssσ = −1.40 ~2/(mr2
NN),

spσ = 1.84 ~2/(mr2
NN),

pp{σ, π} = {3.24,−0.81} × ~2/(mr2
NN),

(3.17)

where rNN is the nearest neighbour distance of the atoms in the solid and
m is the mass of the electrons. He further used values for the onsite levels
from Ref. 142. The same radial dependence of the bond integrals, but differ-
ent structure-dependent pre factors were obtained by matching the TB band
structure to the band structure obtained for free electrons [143].
Cressoni and Pettifor observed that it is necessary to increase the amplitude
of ppπ by a factor of 1.3 in order to stabilize the close-packed structures with
respect to the dimer for an sp-band filling equal to one [130]. Their parame-
trization has a ratio of

ssσ : spσ : ppσ : ppπ = −1 : 1.31 : 2.31 : −0.76. (3.18)

for the bond integrals. Harrison and Froyen obtained the same radial depen-
dence and canonical TB ratios as Andersen for the dd{σ, π, δ} bond integrals
by applying the pseudopotential formalism to the muffin-tin potential. Their
parametrization is explicitly given by[144]

dd{σ, π, δ} = {−67.5
π
, 47.5

π
,−17.5

π
} × ~2r3

d

md5 , (3.19)

where rd is the element specific d-state radius. The pre factors are modified to
{−16.2, 8.75, 0} to fit calculated energy bands and can be found in Harrisons
solid state table of elements [138].
The combination of the s and p orbitals obtained from the free-electrons
approach and d orbitals from the pseudopotential approach lead Harrison
and Froyen to a parametrization of the hybrid bond integrals given by

sdσ = −3.23~
2r

3/2
d

md7/2 ,

pdσ = −5.02~
2r

3/2
d

md7/2 ,

pdπ = 2.90~
2r

3/2
d

md7/2 .

(3.20)

The pre factors are again modified in Harrisons solid state table of elements
to −3.16, −2.95 and 1.36 in order to match calculated energy bands [138].
A further optimization of all pre factors of Harrisons solid state table is given
in Ref. 145.
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3.1.4. Rectangular d-Band Model

In the TB models presented in Sec. 3.1.3, the radial decay of the bond integrals
depends only on the angular moment quantum numbers of the contributing
orbitals and is therefore the same for all elements of a specific period. Pettifor
parametrized the bond integrals of the 4d transition-metal series to reference
data for the d-bandwidth, the equilibrium distance and the bulk modulus

B = −V dP
dV

= V
d

dV

(
dUB

dV

)
, (3.21)

where P is the pressure. He used the approximation of a rectangular density
of states (DOS) of the d-electrons [4, 146, 147]. His results indicate that,
opposite to the canonical TB model, the decay of the bond integrals depends
on the number of valence electrons.
The DOS of the d-electrons is approximated by a rectangle of width W and
height 10/W ,

nd(E) =




10/W if E ∈ [Ed − W
2 ;Ed + W

2 ]
0 else,

(3.22)

where Ed is the band center. The bond energy contribution of the d-electrons
(Eq. 2.126) is obtained by integration,

Ud
bond =

∫ EF
(E − Ed)nd(E)dE

= −W2 Nd(10−Nd).
(3.23)

The second moment of the rectangular DOS is given by

µ(2) = 10
W

∫ W/2

−W/2
E2dE = 10

12W
2. (3.24)

It can also be expressed in terms of the bond integrals by

µ(2) = 10Zβ2, (3.25)

where
β2 = 1

5
(
ddσ2 + ddπ2 + ddδ2

)
(3.26)

and Z is the number of nearest neighbours.
This allows one to relate the bandwidth to the bond integrals,

W =
√

12Zβ(R). (3.27)

65



Tight-Binding Parametrization Across the Periodic Table

The bond integrals are parametrized by

β(R) = bNd exp (−λR) (3.28)

and the pair repulsion is approximated within the Wolfsberg-Helmholtz ap-
proximation (Eq. 2.226) by

Urep,IJ(R) = aN2
d exp (−2λR) . (3.29)

The linear dependence of the bond integrals on Nd is motivated by their
dependence on the electron density. According to the TB bond model, the
binding energy (Eq. 2.118) is approximated by

UB(R) = Ubond(R) + Urep(R). (3.30)

The equilibrium distance is obtained by setting the first derivative of UB to
zero and is given by

R0 = 1
λ

ln
(

10a
√
Z√

3b(10−Nd)

)
. (3.31)

With this result, the bandwidth

W (R0) = 3b2

5a Nd(10−Nd) (3.32)

and the binding energy

UB(R0) = 1
2Zβ(R0) = 3b2

200a (Nd(10−Nd))2 (3.33)

can be calculated at the equilibrium distance. The bulk modulus at the
equilibrium distance is obtained by estimating the atomic equilibrium volume
at V0 = R3

0/
√

2, which is exact for fcc and hcp and a good approximation for
bcc. It is given by

B(R0) = 2
√

2λ2

9R0
UB(R0). (3.34)

The derived equations enable a calculation of the model parameters a, b and λ
from reference data for the bandwidthW ref , the equilibrium nearest neighbour
distance Rref

0 and the bulk modulus Bref .
Equation 3.32 can be rewritten as

b2

a
= 5W

3Nd(10−Nd)
, (3.35)
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which allows for a calculation of the binding energy (Eq. 3.33). An equation
for λ is obtained from the product of the bulk modulus and the equilibrium
distance,

λ2 = 9BrefRref
0

2
√

2UB
. (3.36)

The ratio a/b is extracted from Eq. 3.31 and is used together with Eq. 3.35
to calculate a and b.
Pettifor obtained the values a = 216 eV and b = 12 eV from reference data
for molybdenum and found that the other elements of the 4d row can be well
described by a the linear interpolation∗

λ = (0.966 + 0.142Nd)/Å (3.37)

of the decay parameter of the bond integrals and constant values for a and b.

3.1.5. Explicit Tight-Binding Parametrizations for
Groups of Elements

In order to obtain more accurate TB parametrizations than the canonical TB
models with its modifications (Sec. 3.1.3) and the rectangular d-band model
(Sec. 3.1.4), a single system is considered and a TB model is parametrized
such that it reproduces system specific reference data. However, attempts to
follow one approach consistently for groups of elements are rare.
A distance-dependent parametrization of the bond integrals for all homoatomic
systems of the d-block [148] as well as a parametrization of ground state struc-
tures across the periodic table [149] has been obtained by Papaconstantopou-
los and co-workers within the NRL-TB formalism [150], in which the repulsive
energy (Eq. 2.162) is replaced by a shift of the one-electron eigenvalues. These
parametrizations have been obtained by direct fitting of the Hamiltonian ma-
trix elements to DFT reference data, which may include total energies and
band structures [151].
In density-functional tight-binding (DFTB) [152, 153], pseudoatomic wave
functions are defined via a confinement potential. The Hamiltonian matrix
elements are computed in the two-center approximation from pseudoatomic
wave functions, which essentially corresponds to calculating the TB matrix
elements by application of the pseudoatomic wave functions to the Hamilto-
nian of a dimer. The parameters of the confinement potential are optimized to
construct those Hamiltonian matrix elements which best reproduce selected
reference data. A DFTB parametrization across the periodic table has been
obtained in Ref. 154 by fitting the model parameters to unary bulk struc-
tures. The performance of the model parameters was tested to a few binary

∗The units of the parameters are transformed to Å and the number of d-electrons Nd of
Mo is changed from five to four compared to the original reference.
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systems. A similar work was performed by Grimme et al. to parametrise the
GFN-xTB Hamiltonian across the periodic table [155].

3.2. Tight-Binding Parametrizations from the
Downfolding Procedure

The canonical TB models with its modifications (Sec. 3.1.3) and the rectan-
gular d-band model (Sec. 3.1.4) indicate that the shape of the bond integrals
vary across the periodic table. However, these parametrizations only pro-
vide qualitative predictions. On the other hand, the approaches of Sec. 3.1.5
are able to accurately reproduce the given reference data and are robust and
general enough to be applied to different systems, but trends of the model
parameters as existing in the rectangular d-band model (Sec. 3.1.4) have not
been published. This means that the strategies of creating TB parametriza-
tions for many systems can be divided into two extremes. On one hand the
canonical TB models with its modifications and the rectangular d-band model
parametrize the bond integrals as by assuming of specific trends across the
periodic table. On the other hand accurate parametrizations with respect to
reference data exist for large sets of elements in the periodic table, but their
model parameters do not necessarily show trends.
It is therefore of interest to develop TB parametrizations from reference data
without implying any trends of the parameters and to extract trends from
the model parameters afterwards. This would enable an evaluation of exist-
ing TB parametrizations and would also provide a starting point for refined
TB parametrizations. An alternative way to arrive at TB parameters are
downfolding procedures which are presented in Sec. 2.3.8. This direct pa-
rametrization of the TB matrix elements is particularly attractive for high-
throughput parametrization across the periodic table. The application of this
method to virtually all combinations of elements from periods 1 to 6 and
groups 3 to 18 is discussed in this section.
The reduced TB approximation (Sec. 3.1.2) can also be applied across the
periodic table instead of the downfolding procedure. However, the approxi-
mations of this method could not be tested without comparing the results to
more accurate methods and the findings in Sec. 3.3.6 indicate that the approx-
imations are not generally valid. Moreover, with this method only orthogonal
TB parametrizations can be obtained.

3.2.1. Density-Functional Theory Reference
TB calculations are usually carried out in the two-center approximation, in
which all three-center integrals, i.e. the contributions to the interatomic ma-
trix elements HIlm,I′l′m′ from the effective potential of atoms at a third site
vKeff (r −RK) with K 6= I, J are neglected (Sec. 2.3.4). This approximation
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is exact for a dimer (cf. Sec. 3.1.1). In the downfolding procedure, the pro-
jection of a minimal basis onto the DFT reference eigenstates is optimized
(Eq. 2.148) and by this three-center effects would be attributed to the TB
Hamiltonian in the two-center approximation. This needs to be avoided as it
would bias the TB matrix elements in the two-center approximation towards
an incorrect compensation of the system-dependent three-center effects.
Furthermore, the second-order TB approximation to the Kohn-Sham energy
functional (Eq. 2.112) is based on the Hamiltonian Ĥ0 constructed from the
input electron density (Eq. 2.87). Therefore, the eigenstates obtained from
the Harris-Foulkes approximation (Eq. 2.90) should be taken as the reference
eigenstates in the downfolding procedure. Otherwise effects which are ob-
tained from the self-consistent solution of the Kohn-Sham equations would
be mixed into the initial TB Hamiltonian. However, these effects should be
taken into account by the self-consistent variation of the TB Hamiltonian
(Eq. 2.115). Taking the self-consistently determined DFT eigenstates as ref-
erence would again bias the TB matrix elements towards a particular system
with a given self-consistently determined charge density. The best DFT refer-
ence for an application of the downfolding procedure across the periodic table
is therefore the set of eigenstates of a dimer obtained in the Harris-Foulkes
approximation (Eq. 2.90).
Harris-Foulkes-DFT reference states are created for interatomic distances
from min

(
3/4Req, 3Å

)
to 8 Å in steps of 0.05 Å and the downfolding proce-

dure is applied to them individually. The equilibrium bond length Req of all
homoatomic dimers is taken from Fig. 3.1. The bond length Req is estimated
by averaging the values of Req of the homoatomic dimers for the heteroatomic
dimers.

3.2.2. Application of Downfolding Procedure
The calculation of the Harris-Foulkes-DFT reference states is carried out by
GPAW with a non-spin-polarized 3-ζ basis (Sec. 2.2.6) and the PBE exchange-
correlation functional (Sec. 2.2.3). The use of a 3-ζ basis is based on previous
applications of the downfolding procedure [74], which indicate that the re-
sults obtained with three radial functions per orbital are already converged
accurately enough with respect to the basis set size. The 3-ζ basis is gener-
ated with a value of the energy shift ∆EPAO, which ensures that the onset
of the confinement potential is larger than all considered interatomic dimer
distances. The default PAW datasets (Sec. 2.2.5) of GPAW are used. The tem-
perature parameter T of the downfolding procedure (Eq. 2.150) was adjusted
to kBT = 1 to obtain smooth results. By the application of the downfolding
procedure, a minimal basis is constructed which includes all orbitals which
were not excluded by the PAW method. These are, however, still more than
usually considered in a TB description. An extension to the downfolding pro-
cedure to remove these orbitals was introduced in Sec. 2.3.8.
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In this work, all elements from groups 3 to 18 and periods 1 to 6 are consid-
ered except for Po, At, Tc and Lu for which no PAW datasets are available in
GPAW. These are in total 1711 inequivalent dimers. The elements in groups 3
to 11 are treated as sp-valent and the elements in groups 12 to 18 as sd-valent.
Exceptions are Hydrogen and Helium, which are considered as s-valent.

3.2.3. Parametrization
Similar to the three-center effects, the two-center intraatomic parameters
E
s,p/d
1/2 are determined by the local surrounding of the atom. In fact, they

are typically neglected in TB and therefore also not parametrized in this
work.
From an analysis of all bond integrals of all considered combinations of ele-
ments, it was found that the asymptotic behaviour can be well described by
an exponential decay. However, the bond integrals differ from their asymp-
totic trend for shorter interatomic distances and may even change the sign of
their slope. Therefore, a function which can parametrize all bond integrals
has to be flexible enough to capture this behaviour. It should furthermore be
systematically extendable to allow for the inclusion of additional values for
shorter interatomic distances in the fit, which may result in a more complex
radial dependence. This requires a flexible function with a variable number
of fitting parameters.
Based on these requirements, the choice for a distance-dependent parametri-
zation of the bond integrals is

β(R) =
imax∑

i=0
ci exp (−λiRni) =

imax∑

i=0
fi(R) (3.38)

with n0 = 1. The onsite matrix elements are parametrized by the same
functional form,

E(R) =
imax∑

i=0
ci exp (−λiRni) =

imax∑

i=0
fi(R) (3.39)

with λ0 = 0, which sets the first term to a constant value. The parametriza-
tion procedure is the following:

• Define a threshold ∆ which is equal to the largest allowed quadratic
difference between the fit and the raw data.

• Find the smallest interatomic distance to which f0(R) can describe the
raw data without exceeding the threshold ∆.

• Subtract f0(R) from the raw data and fit the remaining data with f1(R)
up to the smallest interatomic distance for which the threshold ∆ is not
exceeded.
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• Continue by increasing i to imax until the fit ∑i fi(R) can accurately
describe all data points up to min

(
3/4Req, 3Å

)
.

This parametrization scheme leads to terms which are responsible for par-
ticular interatomic distances such that the number of required parameters
depends on the range of relevant interatomic distances.
The presented parametrization strategy is illustrated in Fig. 3.2 for the ssσ
matrix element of the Löwdin orthogonalized Hamiltonian matrix of the Si-Si
dimer. In Fig. 3.2a, a pure exponential decay is fitted to the data points
obtained from the downfolding procedure, which can describe the radial de-
cay accurately enough for interatomic distances larger than approximately
3 Å. This is confirmed by the logarithmic plot in Fig. 3.2b, which shows a
linear behaviour for interatomic distances below 3 Å that is well reproduced
by the exponential fit. The difference of the data points obtained from the
downfolding procedure and the exponential fit is calculated in Fig. 3.2c. It is
parametrized by a generalized exponential decay of the form c1 exp(−λ1R

n1).
The sum of the exponential decay (i = 0) and the generalized exponential
decay (i = 1) can already describe all data points accurately enough as veri-
fied in Figs. 3.2a, 3.2b and Fig. 3.2d, the latter showing the difference of the
total fit and the raw data. The difference between the raw data and the fit
is smaller than 1 meV for all considered interatomic distances. This value is
much smaller than the accuracy in the eigenspectrum obtained by the down-
folding procedure. It may be required to add further generalized exponential
decay functions to parametrize all considered interatomic distances accurately
enough for other matrix elements and other systems.
The parametrization procedure is applied to the orthogonal TB Hamiltonian
matrix, the non-orthogonal TB Hamiltonian matrix and the overlap matrix
of the 1711 inequivalent dimers. This requires the parametrization of 8476
interatomic matrix elements for each TB matrix and additionally 11310 on-
site matrix elements for both, the orthogonal and non-orthogonal TB Hamil-
tonian matrix. Therefore, in total 48048 inequivalent matrix elements are
parametrized. This shows that the functional form of the matrix elements
(Eqs. 3.38, 3.39) is flexible enough to capture all possible features of the ma-
trix elements. Moreover, this flexibility of the functional form is crucial for
Sec. 5, in which the matrix elements are optimized to sets of DFT reference
data by a numerical optimization method initialized by the parametrizations
obtained for the dimers. The results are discussed in Secs. 3.3.1, 3.3.2 for the
example of the homoatomic Si-Si and Mo-Mo dimers. All 1711 parametriza-
tions are available as supplemental material on the attached CD.
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Figure 3.2.: Illustration of the distance-dependent parametrization procedure of
the TB Hamiltonian matrix elements for the example of the ssσ ma-
trix element of the Löwdin orthogonalized Hamiltonian matrix of the
Si-Si dimer.
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−10

−8

−6

−4

−2

0

2

E
/e

V

DFT (HF)
TB

s
d

p

(b) Mo-Mo dimer.

Figure 3.3.: Comparison of the eigenspectra of TB and the Harris-Foulkes (HF)
approximation to DFT for the Si-Si and Mo-Mo dimer. The labels
on the right y-axis indicate the character of the eigenvalues.

3.3. Evaluation of Results from the
Downfolding Procedure

3.3.1. Si as Example for sp-valent Elements
The eigenspectrum of the homoatomic sp-valent Si-Si dimer as a representa-
tive sp-valent system is shown in Fig. 3.3a. The two s-states are lower in
energy than the six p-states for all investigated interatomic distances. The
states of the π-blocks are two-fold degenerated and therefore four different
p-eigenenergies exist. The TB eigenenergies, obtained from the parametrized
TB Hamiltonian matrix, and the Harris-Foulkes-DFT eigenenergies agree well
for large interatomic distances, where the atomic orbitals are similar to those
of free atoms. The agreement remains good for the states with a high occu-
pation number fn, which is defined by the Fermi distribution in Eq. 2.150.
The agreement is worse for the states with a small occupation number for
shorter interatomic distances. In general, the optimized minimal basis can-
not reproduce all states exactly. The Fermi distributions causes that the
states which are occupied at 0 K are well reproduced while a compromised
description of the unoccupied states is tolerated. An exact agreement of the
TB and Harris-Foulkes-DFT eigenenergies could be obtained by using the
Harris-Foulkes-DFT eigenenergies in Eqs. 2.155, 2.160 of the extensions to
the downfolding procedure. This would, however, not necessarily result in a
more accurate TB basis, which is modified in the extensions to the downfold-
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ing procedure. Therefore, this approach is not taken in this work.
The matrix elements of the TB Hamiltonian matrix, the overlap matrix and
the Löwdin orthogonalized TB Hamiltonian matrix are shown in Fig. 3.4a.
The individual data points show a monotonic trend with respect to the inter-
atomic distance R. They have been parametrized with the functional forms
of Eqs. 3.38, 3.39. Due to the monotonic behaviour of the matrix elements of
the Si-Si dimer, all matrix elements can be parametrized by using only three
functions fi(R) (i.e. imax ≤ 0, 1, 2).

3.3.2. Mo as Example for d-valent Elements
The Mo-Mo dimer is chosen as a representative sd-valent system. The com-
parison of the Harris-Foulkes-DFT and the TB eigenspectrum is compiled in
Fig. 3.3b and the distance-dependent TB matrix elements are shown in Fig.
3.4b. The spectrum has more features than in the case of the Si-Si dimer
due to the four additional two-fold degenerated δ-states in the TB spectrum.
The two s-states are lower in energy than the d-states for large interatomic
distances, however, the energy difference of the two valence states is much
smaller compared to the Si-Si dimer. For smaller interatomic distances, the
s- and d-eigenenergies even cross. It can be observed that the TB spectrum
reproduces all relevant features of the Harris-Foulkes-DFT spectrum.
As already expected from the eigenspectrum, the matrix elements have in
general more features in the region of short interatomic distances compared
to the Si-Si dimer. This explains that the parametrization procedure requires
more terms in Eqs. 3.38, 3.39 to reproduce the matrix elements for all consid-
ered interatomic distances. The distance dependence of sdσ (= dsσ) of the
TB Hamiltonian of the non-orthogonal model requires six terms and more
parametrization steps than all other bond integrals. This might be already
expected as this bond integral even changes its sign with distance.
The variation of the matrix elements of the orthogonal TB model with respect
to the interatomic distance is smaller compared to the non-orthogonal model
for the Si-Si dimer and the Mo-Mo dimer. Opposite to the Si-Si dimer, the
ssσ bond integral of Mo is longer ranged than the other bond integrals. The
presented parametrizations are longer ranged than existing parametrizations
for Si [152] and Mo [148]. This can be understood as a screening effect of
the surrounding atoms in a cluster or bulk material and is discussed in more
detail in the following Sec. 3.3.3.

3.3.3. Homoatomic Dimers
In order to analyse chemical trends of the TB parametrizations, the ssσ ma-
trix element of the orthogonalized Hamiltonian is plotted for all homoatomic
dimers from periods 2p and 4d, which include Si and Mo. The results are
summarized in Fig. 3.5. As shown in Fig. 3.5a, the bond integrals from
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Figure 3.4.: TB matrix elements of the Si-Si (Fig. a) and the Mo-Mo (Fig. b)
dimer. Crosses are the data points obtained by the downfolding pro-
cedure and the solid lines are the distance-dependent parametriza-
tions in form of Eqs. 3.38, 3.39.
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period 2p decrease in amplitude and in decay length with increasing electron
count. This decrease in amplitude is very pronounced and larger than one
order of magnitude between Al and Ar. The overall behaviour is similar for
the homoatomic dimers from period 4d. However, the effect is much less pro-
nounced and the bond integrals even cross.
It is also notable that the 4d-ssσ bond integrals are overall longer ranged than
the 2p-ssσ bond integrals. A measure of the range of the bond integrals is
directly given by the coefficient λ0 of the parametrization function (Eq. 3.38),
which is an inverse decay length [146]. The trend of λ0 across the different pe-
riods is visualized for the ssσ bond integral of the orthogonalized Hamiltonian
in Fig. 3.6. The trend of λ0 is compiled in Sec. A of the appendix for the other
bond integrals of the sp-valent (Fig. A.1) and sd-valent (Fig. A.2) dimers. A
linear dependency of λ0 of the homoatomic bond integrals across the different
periods is clearly visible. It is well described by a linear relationship,

λ̃0 = b0 +m0Np/d, (3.40)

where Np/d is the average number of p/d electrons of the free atoms. Cr
and Cu (3d period) and Zr and Pd (4d period) are excluded from the linear
regression because they are clear outliers. Their irregular behaviour is related
to the asymptotic behaviour of the employed GPAW datasets as it occurs not
only for the homoatomic dimer but for all combinations with other elements
as shown in Fig. 3.7, which is discussed later. This irregular behaviour of
Cr, Cu, Zr and Pt is observable across all TB matrix elements. The values
of the linear regression of λ0 (Eq. 3.40) for all bond integrals of Horth are
summarized in Tab. 3.2. The slope parameter m0 of ssσ is at least five times
higher for the sp-elements than for the sd-elements, indicating that the ssσ
bond integrals of sp-valent dimers decay faster. Also the pp bond integrals
decay faster than the dd bond integrals. The pp bond integrals of sp-valent
dimers are longest ranged, whereas the ssσ bond integrals of sd-valent dimers
are longest ranged.
Table 3.2 also shows that the parameters b0 and m0 are very similar for all
dd bond integrals of one period. This validates the assumption of a common
value for b0 and m0 for ddσ, ddπ and ddδ, which is taken in the rectangular
d-band model (Sec. 3.1.4). In the rectangular d-band model, the values of the
linear relationship of the decay parameter are given by

m0,d-band = 0.142/Å,
b0,d-band = 0.966/Å.

(3.41)

They are slightly higher than the values obtained from the downfolding proce-
dure for the 4d-period. Besides the strong approximations of the rectangular
d-band model, this may be already expected as the two-center bond integrals
are screened in the bulk crystal by the neighbouring atoms [71, 77, 156, 157].
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Figure 3.5.: Matrix element ssσ ofHorth of (a) periods 2p and (b) 4d. Comparison
shows a more pronounced shrinking of the bond integrals for the sp
dimers than for the 4d dimers with increasing group number.
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Figure 3.6.: Trend of the decay parameter λ0 of the ssσ matrix element of Horth

across different periods of the sp- and sd-valent homoatomic dimers.
The linear trend and the outliers are discussed in Sec. 3.3.3.
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m0/(1/Å) b0/(1/Å)
period ssσ sdσ ddσ ddπ ddδ ssσ sdσ ddσ ddπ ddδ

3d 0.033 0.057 0.112 0.107 0.123 0.985 0.927 0.882 1.094 1.257
4d 0.017 0.041 0.101 0.099 0.105 0.942 0.854 0.684 0.877 1.044
5d 0.019 0.049 0.087 0.090 0.092 1.115 0.961 0.823 0.997 1.176

ssσ spσ ppσ ppπ ssσ spσ ppσ ppπ

1p 0.334 0.261 0.207 0.222 1.299 0.859 0.843 1.032
2p 0.259 0.221 0.179 0.191 1.164 0.697 0.700 0.864
3p 0.198 0.196 0.163 0.170 1.363 0.740 0.696 0.868
4p 0.170 0.146 0.145 0.148 1.313 0.801 0.689 0.866
5p 0.168 0.136 0.138 0.139 1.433 0.781 0.668 0.847

Table 3.2.: Slope parameterm0 and intercept b0 of the linear regressions of the de-
cay parameter λ0 of the bond integrals of Horth according to Eq. 3.40.

3.3.4. Heteroatomic Dimers
In the previous subsection, the decay parameter λ0 was used to analyse the
range of the homoatomic bond integrals. In Fig. 3.7, the value of λ0 of the
ssσ bond integral of Horth is plotted across all considered heteroatomic dimers
from periods 2 to 6. As already predicted from the results of the previous
Sec. 3.3.3, a clear gap between the values for the sp- and sd-valent dimers
is visible. The ssσ bond integrals of the heterovalent sp-sd dimers are also
relatively short ranged and take values for λ0, which are slightly larger than
those of the sd-sd dimers. The value of λ0 is determined by both the period
and the number of the valence electrons of both atoms. The number of valence
electrons of each atom is of the same importance for the sp-sp and the sd-sd
bond integrals, whereas for the sp-sd bond integrals the value of the decay
parameter is dominated by the number of valence electrons of the sd-element.
As already mentioned above, the values for the dimers which include either
Cr, Cu, Zr or Pd appear as clear outliers. The values of λ0 of the other bond
integrals of Horth are compiled in Sec. B of the appendix for the sp-valent
(Figs. B.1-B.4), sd-valent (Figs. B.5-B.9) and heterovalent dimers (Figs. B.10-
B.14). The trends are more pronounced for the sp-valent elements than for the
sd-valent elements. This is in agreement with the results for the homoatomic
dimers (Sec. 3.3.3).

3.3.5. Energy Contributions
The TB bond model divides the binding energy UB into intuitive contribu-
tions (cf. Sec. 2.3.5). The energy contributions differ in a non-orthogonal
TB model and a Löwdin transformed orthogonal TB model. In Fig. 3.8, the
energy contributions are summarized for an orthogonal and a non-orthogonal
TB model for the Si-Si and the Mo-Mo dimer. The binding energy is calcu-
lated self-consistently with DFT as described in Sec. 3.1.1. The bond energy
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Figure 3.7.: Values of the parameter λ0 describing the inverse decay length of the
bond integrals for ssσ of Horth across all dimers.

Ubond (Eq. 2.119) and promotion energy Uprom (Eq. 2.127) are calculated from
the TB matrix elements obtained in Sec. 3.2.2. The repulsive energy Urep is
obtained by subtracting these contributions from the binding energy. In the
orthogonal TB models, the repulsive energy is positive and the bond energy
is negative. The promotion energy is positive for both dimers at large inter-
atomic distances. However, in case of the Mo-Mo dimer, it changes its sign
at shorter interatomic distances. In the non-orthogonal models, the repulsive
energy partially takes negative values and the bond energy is not monotonic
in case of the Si-Si dimer. The difference in the energies of the orthogonal and
non-orthogonal TB model is given by the overlap repulsion (Eq. 2.142), which
defines the difference of the preparation energies (Eq. 2.129) of the orthogonal
and non-orthogonal model and may be interpreted as an additional repulsion
due to the orthogonalization of the orbitals. Adding it to the repulsive energy
of the non-orthogonal TB model results in the repulsive energy of the orthog-
onal TB model. The different repulsive energy contributions and the overlap
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repulsion are illustrated in Fig. 3.9 for the Si-Si and the Mo-Mo dimer. It
shows that the overlap repulsion has a significant contribution to the repul-
sive energy in the orthogonal TB model and in case of the Si-Si dimer, it even
dominates.

3.3.6. Comparison to Other Methods

Reduced Tight-Binding

The assumption of the reduced TB approximation (cf. Sec. 3.1.2), spσ =√
|ssσ| · ppσ, is compared to the results obtained from the downfolding proce-

dure for the homoatomic sp-valent dimers in Fig. 3.10. As shown in Fig. 3.10a
for the example of the homoatomic Si-Si dimer, the quality of the approxima-
tion depends on the interatomic distance. However, for a fixed interatomic dis-
tance of R = 2.5 Å, it can be seen in Fig. 3.10b that the ratio spσ/

√
|ssσ| · ppσ

is almost constant such that the approximation spσ ≈ 1.5
√
|ssσ| · ppσ is more

accurate. Only the elements from period 1p do not show a constant ratio. This
is related to the fact that those bond integrals have the shortest range (cf.
Fig. 3.6a).

Canonical Tight-Binding

The ratios of the canonical TB parametrizations are compared to those which
are obtained by the downfolding procedure. As shown in Sec. 3.3.3, the
radial decay differs across the different periods and has a dependence on the
number of valence electrons. However, the ratios of the bond integrals can
be calculated for a particular interatomic distance, which is selected to be
4 Å. Derivations from the pure exponential decay do not usually occur at
this distance and the interatomic matrix elements are significantly different
from zero. The TB model of Cressoni and Pettifor (Eq. 3.18) is chosen for
a comparison as it was proven to describe the structural trends across the
sp-valent materials qualitatively correct and has the same radial decay for all
sp bond integrals. The ratios for the dd bond integrals are compared with
the corresponding values of the original canonical TB model (Eq. 3.15). The
results are summarized in Fig. 3.11.
In Fig. 3.11a, the value of the ppσ matrix element of Horth is fixed to match
the value of 2.31 of Cressoni and Pettifor and the resulting ratios of the
other matrix elements are calculated. A substantial effect of the number of
valence electrons on the ratios is visible. The effect of the period number is
much less pronounced and less systematic. The agreement of the ratios with
the reference decreases for ssσ and ppπ with increasing number of valence
electrons but increases in case of spσ.
The ratios for the dd matrix elements of Horth are compared to those of the
canonical TB model in Fig. 3.11b by fixing the value of the ddσ bond integral
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−10

−5

0

5

10

E
/
eV

UB

Ubond

Uprom

Urep

(a) Si-Si dimer, orthogonal TB.

2 3 4 5 6 7 8
R/Å
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(b) Mo-Mo dimer, orthogonal TB.
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(c) Si-Si dimer, non-orthogonal TB.
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−15

−10

−5

0

5

10

15

E
/
eV

UB

Ubond

Uprom

Urep

(d) Mo-Mo dimer, non-orthogonal TB.

Figure 3.8.: TB energy contributions to the binding energy of the homoatomic
Si-Si and Mo-Mo dimers in case of an orthogonal (Figs. a, b) and a
non-orthogonal (Figs. c, d) TB model.
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Figure 3.9.: Repulsive energy and overlap repulsion of the homoatomic Si-Si and
Mo-Mo dimers.
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Figure 3.10.: Comparison of the spσ bond integral obtained from the downfolding
procedure with the reduced TB approximation spσ =

√
|ssσ| · ppσ

for the orthogonalized TB Hamiltonian matrix. In Fig. a, the com-
parison is performed for the homoatomic Si-Si dimer and in Fig. b
across the homoatomic sp-valent dimers at a fixed interatomic dis-
tance of R = 2.5 Å.
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Figure 3.11.: Comparison of the ratios of the interatomic matrix elements ofHorth

of the homoatomic dimers at an interatomic distance of 4 Å obtained
from the downfolding procedure to those of the TB model of Cres-
soni and Pettifor (Eq. 3.18) in Fig. a and to the canonical TB model
(Eq. 3.15) in Fig. b.

to 6. The effect of the numbers of valence electrons on the ratios is much less
pronounced than for the sp-valent dimers and the effect of the period number
is again lower. The ratios of the canonical TB model are astonishingly well
reproduced, which is in agreement to the findings in Ref. 74 in case of Fe.
It also explains that the canonical TB model is able to reproduce the DFT
energy differences of the topologically close-packed phases for different band
fillings [128].

DFTB and NRL-TB

The example of the Si-Si dimer (Sec. 3.3.1) is well suited for a comparison to
the DFTB and NRL-TB method, which are applied to a large set of the peri-
odic table (Sec. 3.1.5). In case of DFTB, different parametrizations for Si are
available [158]. The latest parametrization [159, 160] is used for comparison
because it was reoptimized to experimental values for the band structure of
bulk Si. The NRL-TB parameters for Si [161] are chosen to reproduce both
the band structure and the total energy of different crystal structures.
A comparison of the parametrizations of the two methods to the results of the
downfolding procedure applied to the Si-Si dimer is visualized in Fig. 3.12.
The matrix elements used in DFTB and NRL-TB drop off faster with increas-
ing interatomic distance R than those of the downfolding procedure. This may
be understood as an effect of neighbouring atoms taken into account in the
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other methods, which may lead to a contraction of the atomic orbitals. Es-
pecially in DFTB, the matrix elements are determined by an optimization
of the parameters of a confinement potential, which should lead to a better
representation of the orbitals in a solid. The results of the three methods
agree well at interatomic distances between 2 Å and 3 Å for the Hamiltonian
matrix elements. However, the overlap matrix elements in NRL-TB differ
qualitatively in their radial behaviour from those of the other methods but
also among themselves.
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Figure 3.12.: Comparison of TB matrix elements obtained from downfolding pro-
cedure (Sec. 3.2.2) to DFTB [158–160] and NRL-TB [161]. The
signs of the spσ matrix elements of the DFTB method are changed
for a better comparison to the results of the other methods.
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4
Electronic Structure Based Map
of Local Atomic Environments

A quantitative descriptor of local atomic environments is often required for
the analysis of atomistic data. Descriptors of the local atomic environment
ideally provide physically and chemically intuitive insight. This requires de-
scriptors that are low-dimensional representations of the interplay between
atomic geometry and electronic bond formation. The moments of the local
density of states (DOS) relate the atomic structure to the electronic structure
and bond chemistry. The lowest moments, calculated from the closest atomic
neighbourhood, carry the largest contributions to the local bond energy. This
makes it possible to construct electronic structure based descriptors of the
local atomic environment that have an immediate relation to the binding en-
ergy.
In Sec. 4.1, the relation between the moments of the DOS and structural
stability is discussed. Different atomic environments are introduced and de-
scriptors of atomic environments are presented. Descriptors based on the
moments of the local DOS are constructed in Sec. 4.2 and used in Sec. 4.3 to
project the space of local atomic environments onto a 2-D map. The sepa-
ration of various atomic environments and their connections in the map are
discussed in detail. The immediate relation of the map to the binding energy
is discussed and illustrated in Sec. 4.4. The distances in the map are related
to energy differences between local atomic environments as shown by analytic
considerations based on analytic bond-order potentials (BOP) and by numer-
ical assessment using TB and density-functional theory (DFT) calculations.
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4.1. Background

4.1.1. Moments Theorem and Structural Stability
In Sec. 2.4.17, the convergence of the analytic BOPs towards the tight-binding
(TB) reference was discussed and in Figs. 2.11, 2.12 the energy differences
of different crystal structures were calculated in the TB and analytic BOP
approximation. This section explains the energetic order and why some en-
ergy differences can be reproduced with four exactly calculated moments
(nmax = 4), while other crystal structures require at least six exactly cal-
culated moments (nmax = 6). Therefore, the moments of the local DOS are
related to the crystal structure by the moments theorem (Eq. 2.167), which
states that the moments of the DOS can be calculated by summation over
self-returning hopping paths. In Fig. 4.1, the investigated crystal structures
are illustrated together with selected self-returning hopping paths of length
three and four, which contribute to the third and fourth moment, separately.
In Tab. 4.1, the moments and the dimensionless shape parameter s (Eq. 2.165)
are given for the densities of states which are illustrated in Figs. 2.9, 2.10.
In Fig. 2.11, it is shown that for low d-band fillings the energy of the bcc
structure is higher than the energy of the fcc and hcp structure. This can
already be reproduced with nmax = 4. The reason is that fcc and hcp have a
lower negative third moment than bcc (Tab. 4.1). As explained in Sec. 2.4.1,
this corresponds to a more skewed DOS of fcc and hcp. Thus, for fcc and
hcp more states of low energy are available than for bcc. This is related to
the crystal structure by the moments theorem (Eq. 2.167). The fcc and hcp
crystal structures are built by sequences of two-dimensional hexagonal close-
packed layers, which consist of equilateral triangles as illustrated by the green
self-returning hopping paths in Figs. 4.1b - 4.1d. The self-returning hopping
paths of length three of the bcc structure (Fig. 4.1a) consist of nearest and
next nearest neighbours and lead to a lower third moment.
The bcc structure has a lower energy than fcc and hcp for d-band fillings be-
tween approximately three and six. This is related to a more bimodal DOS,
i.e. a smaller shape parameter s (Eq. 2.165), due to different self-returning
hopping paths of length four, which form planar rings [4, 162]. The value
of the fourth moment varies with the bond angle θ and is larger for fcc and
hcp, where θ = 90◦, and smaller for bcc, where θ = 70.5◦, 109.5◦. Within the
fourth moment approximation fcc and hcp are again lower in energy compared
to bcc for large band fillings. This can also be understood from the shape
parameter s, indicating that their DOS is more unimodal (less bimodal) than
the bcc DOS.
Energy differences between fcc and hcp are mainly given by energy contribu-
tions from the sixth moment or higher. The moments of the two structures
are identical up to the third moment and the fourth moments differ only by a
tiny difference. This difference is given by the hopping paths of length four,
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d-valent model
structure µ(3) µ(4) µ(5) µ(6) s

bcc -0.231 1.678 -0.807 3.796 0.625
fcc -0.24 1.827 -1.142 4.451 0.769
hcp -0.24 1.822 -1.142 4.332 0.765

sp-valent model
structure µ(3) µ(4) µ(5) µ(6) s

bcc -0.938 2.476 -3.883 8.094 0.597
diamond 0.0 1.201 0.0 1.637 0.201

sc 0.0 1.751 0.0 3.698 0.751

Table 4.1.: Moments and dimensionless shape parameter (Eq. 2.165) of the DOS
evaluated in Figs. 2.9, 2.10.

which are related to the three-atom fourth moment contributions illustrated
in red in Figs. 4.1c, 4.1d. This path starts in fcc e.g. at an atom of the A
layer, reaches the C layer and finally the B layer and returns in the oppo-
site direction. The hcp structure has an ABA stacking sequence instead of
the ABC stacking sequence in fcc. Therefore, the corresponding path in hcp
starts at layer A, continues to layer B and reaches again an A layer before
it returns in the opposite direction. The difference in bond angles of these
paths lead to a tiny difference in the fourth moment contribution from the d
orbitals. The fifth moments of fcc and hcp are again identical (Tab. 4.1).
The energy differences of the bcc, diamond and sc structures are mainly given
by the third and fourth moment of the sp-valent TB model. The diamond and
sc structure do not have self-returning hopping paths of length three in the
employed model. Therefore, their third moments are equal to zero, whereas
the third moment of bcc takes a finite negative value. Thus, bcc is lowest in
energy for small values of band filling. The energy of the diamond structure
is lowest for intermediate band fillings between approximately three and five.
This is in agreement with a much smaller value of the shape parameter s,
indicating a much more bimodal DOS of the diamond structure. This can be
explained by the bond angles of the three-atom fourth moment contribution
in the diamond structure illustrated in red in Fig. 4.1f. In Ref. 130, it is eval-
uated for the employed model that the bond angle in the diamond structure
(θ = 109.5◦) is close to the position of the minimum of the fourth moment
with respect to θ. The sc structure has a less bimodal DOS, which is also
reflected by a larger value for the shape parameter s. It is therefore lowest in
energy for high band fillings.
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(a) bcc. (b) fcc.

A

C

B

A

(c) fcc, z-axis in the [111] direction
of Fig. b.

A

B

A

(d) hcp.

(e) sc. (f) diamond.

Figure 4.1.: bcc, fcc, hcp, sc and diamond crystal structure. Green and red ar-
rows form selected hopping paths of length three and four, which are
discussed in Sec. 4.1.1. In Fig. b, fcc is represented by a cubic unit
cell, whereas it is represented by a hexagonal unit cell in Fig. c to al-
low for a comparison of the stacking sequence of the two-dimensional
close-packed planes with hcp.
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α

(a) α = 1
9π.

α

(b) α = 1
3π.

α

(c) α = 5
12π.

α

(d) α = 1
2π.

Figure 4.2.: Transformation path connecting the linear chain with the square
lattice passing the hexagonal lattice. The shortest bond length is
marked in red.

4.1.2. Atomic Environments

In Sec. 4.2, the moments of the DOS are used to construct descriptors of
atomic environments. These descriptors are used in Sec. 4.3 to construct a
map of local atomic environments. In this section, different atomic environ-
ments are introduced, which are used in the following to assess the moments
descriptors and the map of local atomic environments.

Transformation Paths

Transformation paths are continuous deformations of one crystal structure
into another. All transformation paths presented in this work are described
by one parameter p changing one structure continuously into the other. Here,
transformation paths that are commonly used to test interatomic potentials
(tetragonal, orthorhombic, trigonal, hexagonal) [163–166] as well as transfor-
mation paths (lin.-hex.-sq., lin.-sq., sq.-sc) that were found to correspond to
envelops of the map of local atomic environments, are selected. The tetragonal
transformation path, also called the Bain path [167], connects bcc with fcc.
On further continuation it connects fcc with a special body centred tetragonal
(bct) structure which is also reached by other transformation paths. This is
done by elongating the bcc cell in the [001] direction and compressing it in
the [100] and [010] directions to keep the volume fixed.
The primitive cell along the path is given by

a1 =a(4p)−1/3
(
−1, 1, p

)T
,

a2 =a(4p)−1/3
(
1, −1, p

)T
,

a3 =a(4p)−1/3
(
1, 1, −p

)T
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and the atom is located at

P1 =
(
0, 0, 0

)

for all values of p. bcc is taken for p = 1, fcc for p =
√

2 and bct for p = 23/4.
The orthorhombic transformation path connects bcc with the same special bct
structure which is reached by the Bain path [168]. Further continuation of the
orthorhombic transformation path leads back to bcc. This is also achieved by
an elongation in the [001] direction, however, simultaneously a compression
in the [110] direction is applied. The primitive cell vectors are therefore

a1 =4−1/3a
(
−1, 1, p1/2

)T
,

a2 =4−1/3a
(
1, −1, p1/2

)T
,

a3 =4−1/3a
(
p−1/2, p−1/2, −p1/2

)T

and the atom is located at

P1 =
(
0, 0, 0

)

for all values of p. bcc is taken for p = 1, the special bct structure for p =
√

2
and bcc for p = 2.
The trigonal transformation path connects bcc over sc with fcc. Further
continuation of the trigonal transformation path connects fcc with the two-
dimensional hexagonal lattice if a finite cut-off value is chosen and the nearest
neighbour distance is scaled. This is obtained by an elongation in the [111]
direction and a compression in perpendicular directions. The primitive cell is
given by

a1 =f
(
p− 3, p+ 2, p+ 2

)T
,

a2 =f
(
p+ 2, p− 3, p+ 2

)T
,

a3 =f
(
p+ 2, p+ 2, p− 3

)T

with f = a(25(3p+ 1))−1/3. The atom remains at

P1 =
(
0, 0, 0

)
.

The bcc structure is taken for p = 1, sc for p = 2, fcc for p = 4 and the
two-dimensional hexagonal lattice for p→∞.
The bcc to hcp transformation cannot be obtained by a simple deformation
of the cell, however, the atoms also have to change their relative positions
[165, 169]. The hexagonal transformation path deforms bcc simultaneously in
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the [1̄10], [110] and [001] directions. The cell vectors are explicitly given by

a1 =2−1/3af1
(
−1, 1, 0

)T
,

a2 =2−1/3af2
(
0, 0, 1

)T
,

a3 =2−1/3a (f1f2)−1
(
1, 1, 0

)T

with

f1 = 1 + α1(1− p),
f2 = 1 + α2(1− p)

and

α1 =
(
1− 21/6√1.5

)
/
(√

2− 1
)
,

α2 =
(
1− 21/6

)
/
(√

2− 1
)
.

Together with this deformation alternate (110) planes have to be shuffled in
the ±[1̄10] direction. The choice of Ref. 165 is taken and

s = 2−1/6(p− 1)
4
√

6(
√

2− 1)f1

is chosen as the shuffling factor. The atomic positions in the direct coordinate
system are given by

P1 =
(
s, 0, 0

)
,

P2 =
(
1/2 + s, 1/2, 0

)
,

P3 =
(
−s, 1/2, 1/2

)
,

P4 =
(
1/2− s, 0, 1/2

)
.

bcc is taken for p = 1 and hcp for p =
√

2.
With a finite cut-off value and a scaling of the nearest neighbour distance, the
linear chain can be connected with the square lattice passing the hexagonal
lattice as illustrated in Fig. 4.2. (lin.-hex.-sq.) The cell vectors of the two-
dimensional cell are given by

a1 =a cos(p)−1/2
(
1, 0

)T
,

a2 =a cos(p)−1/2
(
cos(p), sin(p)

)T
.
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The atom remains at position

P1 =
(
0, 0

)

for all values of p. The square lattice is taken for p = π/2, the two-dimensional
hexagonal lattice for p = π/3 and the linear chain for p→ 0.
With a finite cut-off value and a scaling of the nearest neighbour distance, the
linear chain can also be directly connected with the two-dimensional square
lattice by bringing linear chains from infinite separations together until the
linear chains are separated by a distance equal to the nearest neighbour dis-
tance of the linear chain. (lin.-sq.)
Similarly, the two-dimensional square lattice can be connected with the simple-
cubic structure by approaching square lattices from infinite separations until
the square lattices are separated by a distance equal to the nearest neighbour
distance of the square lattice. (sq.-sc)

Topologically Close-Packed Phases

Topologically close-packed (TCP) phases consist of coordination polyhedra
which have only triangular faces [170]. The atoms in the TCP phases have
coordination numbers 12, 14, 15 or 16. The number of atoms with inequivalent
Wyckoff positions are listed in Tab. 4.2 for a selection of common TCP phases.
As in previous works [128, 171], the χ phase is included in the comparison,
although it is not a regular TCP phase in the crystallographic sense due to
atoms with coordination number 13.

CN12 CN13 CN14 CN15 CN16 〈CN〉
χ 12 12 - - 1,4 13.10

C14 2, 6 - - - 4 13.33
C15 4 - - - 2 13.33
C36 4, 6, 6 - - - 4, 4 13.33
µ 1,6 - 2 2 2 13.38
M 4, 4, 4, 8, 8 - 4, 4 4, 4 4, 4 13.38
R 1, 2, 6, 6, 6, 6 - 6, 6 6 2, 6 13.40
δ 4, 4, 4, 4, 4, 4 - 4, 4, 4, 4, 4 4, 4 4 13.43
P 4, 4, 4, 4, 8 - 4, 4, 4, 8 4, 4 4 13.43
Z 3 - 2 2 - 13.43
σ 2, 8 - 8, 8 4 - 13.47

A15 2 - 6 - - 13.50

Table 4.2.: Selection of common TCP phases and χ phase ordered by increasing
average coordination number (CN). A list with the number of inequiv-
alent Wyckoff sites is provided for each CN.
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Random Structures

Structures that are generated by randomly choosing a primitive cell and
atomic positions in the primitive cell are referred to as random structures
in this work. The primitive cell is described by the lattice vectors a = aea,
b = beb, c = cec. The angle between b and c is named α, the angle between
a and c is named β and the angle between a and b is named γ.
The structure generation is done as follows and was developed in collaboration
with Aparna P. A. Subramanyam (AMS, ICAMS, RUB) [172]:

1. Randomly generate three values a ≤ b ≤ c, with b/a ≤ 3 and c/a ≤ 3.

2. Randomly generate angles α, β, γ in a range between 0 and π under
the condition that the volume is larger than zero [173].

3. Place the first atom at the origin and place further atoms randomly in
the primitive cell.

4. Even though the generated primitive cells have a finite volume, they
may be effectively two-dimensional due to the finite number of bonds,
which are obtained due to the choice of a cut-off distance rcut of the
interatomic Hamiltonian matrix elements. Exclude those structures.

As discussed in Sec. 4.3 and visualized with the map of local atomic environ-
ments in Fig. 4.4b, it is very unlikely to generate structures that are similar
to highly symmetric structures with this method. However, it ensures that
the random structures are not biased towards any reference structure.

4.1.3. Descriptors of Atomic Environments
The discussion of the relation of structural stability of the moments of the
DOS and their relation to the atomic structure in Sec. 4.1 indicates that the
moments of the DOS may be used to construct descriptors of the atomic en-
vironment. These descriptors may than be used to measure the similarity of
different atomic environments and to identify relevant reference data for the
parametrization of interatomic potentials, e.g. TB models (Sec. 2.3), analytic
BOP models (Sec. 2.4) or empirical models (Sec. 2.4.14). They may also be
used to analyse the transferability of interatomic potentials. A map of local
atomic environments is developed in Sec. 4.3 for these purposes.
However, possible applications of descriptors of the atomic environment also
include structure identification, e.g. during molecular dynamics simulations or
machine learning applications in which physical quantities are predicted from
the atomic structure. Steinhardt-parameters [174] and the related averaged lo-
cal bond order parameters [175] are used for structure identification. Machine
learned interatomic potentials utilize the bispectrum [176], smooth overlaps of
atomic positions [177] or atom-centred symmetry functions [178–180]. Direct
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machine learning of the atomic structure for the prediction of molecular prop-
erties is based on the Coulomb matrix [181], Fourier series of atomic radial
distribution functions [182] and the bag of bonds method [183]. Materials
properties are evaluated from combinations of atomic quantities [184–186],
partial radial distribution functions [187] or structural and electronic finger-
prints [188]. Descriptors are further constructed to classify structural proper-
ties in structure maps [184, 189] and property maps [185, 186, 188]. Some of
the above descriptors are based on an expansion of the atomic density [174–
177], whereas others are defined ad-hoc [178–183, 187], however, none of the
descriptors provide a link between the atomic structure and the electronic
structure similar to the moments of the DOS.

4.2. Moments as Descriptors

In a TB or DFT calculation, the electronic DOS is obtained by diagonalizing
the Hamiltonian Ĥ. The Hamiltonian thereby contains the complete infor-
mation required for characterizing the electronic structure of a material and
depends in particular on the positions of the atoms as well as their chemistry.
Therefore, the moments of the DOS incorporate information on the atomic
structure as well as the chemistry of a material. The moments of the DOS are
explicitly linked to the crystal structure and chemistry through the moments
theorem (Eq. 2.167). Therefore, the moments do not have to be obtained
from the eigenspectrum of the TB problem after a computationally expensive
diagonalization, but they can be easily computed with the BOPfox program
(Sec. 2.4.15) via hopping paths along the crystal structure.
The moments µIlm are not rotationally invariant. However, rotational invari-
ance is required for a straightforward descriptor. This can be achieved by
averaging the moments as

µ
(N)
Il = 1

2l + 1

+l∑

m=−l
µ

(N)
Ilm. (4.1)

The resulting atomic moments are by construction also invariant with respect
to reflection, translation of the atomic structure and to permutation of atoms
of the same species. Therefore, they fulfil the basic requirements for an atomic
scale descriptor [177, 178].
As the DOS is strictly positive, the zeroth moment may be normalized to 1,
µ

(0)
Il = 1. The first moment corresponds to the center of gravity of the DOS

(Sec. 2.4.1),
µ

(1)
Il = EIl. (4.2)

By an appropriate shift E → E−EIl of the energy scale, µ(1)
Il = 0 is achieved.

The second moment, the root mean square width of the local DOS, is the
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lowest moment that depends on the atomic environment,

µ
(2)
Il = 1

2l + 1
∑

mI′l′m′
〈Ilm|Ĥ|I ′l′m′〉×

〈I ′l′m′|Ĥ|Ilm〉 .
(4.3)

Through the dependence of the second moment on the Hamiltonian matrix,
the second moment depends explicitly on the interatomic distances. As the
focus is a characterization of local atomic environments without an explicit
scaling length or density dependence, the distance dependence needs to be
removed from the second moment. This is achieved by scaling interatomic
distances such that

µ
(2)
Il = 1 . (4.4)

With the above scalings, the third and fourth moments µ(3)
Il and µ

(4)
Il (that

contribute information on the skewness and bimodality of the local DOS) are
the two lowest moments that depend explicitly on the local atomic structure.
The moments are rewritten in the form of recursion coefficients (Eq. 2.169)
to suppress the implicit dependence between the third and fourth moments,
which follows from Eq. 2.166 and is given by

µ
(4)
Il ≥

(
µ

(3)
Il

)2
+ 1. (4.5)

With the normalization µ(0)
Il = 1, µ(1)

Il = 0 and µ(2)
Il = 1, they are given by

a(1) = µ
(3)
Il , (4.6)

b(2) =
√
µ

(4)
Il −

(
µ

(3)
Il

)2 − 1. (4.7)

The recursion coefficients a(1) and b(2) are the two descriptors that are used to
span the map of local atomic environments in Sec. 4.3. With this normaliza-
tion, the recursion coefficient a(1) measures the skewness of the local DOS and
the recursion coefficient b(2) corresponds to a dimensionless shape parameter
(Eq. 2.165), which is smaller than one for a bimodal local DOS and larger
than one for a unimodal DOS.
The electronic structure is approximately described by the dd bond integrals
of the canonical TB model (Eq. 3.15) for d-valent systems and by the ratios of
Cressoni’s and Pettifor’s TB model for sp-valent systems (Eq. 3.18) together
with the same radial decay of the dd bond integrals of R−5.
The pure d-model [62, 74–76, 128, 171, 190] is often sufficient to describe the
elements of the d-block and captures structural trends across the 4d and 5d
transition-metal series [62, 128, 171, 190]. In agreement with Ref. 66, the
sp-model disregards the splitting of the onsite elements.
The bond integrals are smoothly forced to zero at R = rcut by the cut-off
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function (Eq. 2.163). Constant values of rcut and dcut are chosen. With a
normalized second moment (Eq. 4.4), they include second nearest neighbours
within the cut-off sphere for the bcc structure, where the second nearest neigh-
bour distance is close to the first nearest neighbour distance, and just exclude
second nearest neighbours for the simple cubic structure. This is achieved
by choosing rcut ≈ 1.25rnn,fcc and dcut ≈ 0.13rnn,fcc, where rnn,fcc is the near-
est neighbour distance of fcc with a normalized second moment according to
Eq. 4.4. The exclusion of second nearest neighbours results in a zero third
moment for the simple cubic structure but not for the fcc and hcp structure.

4.3. Map of Local Atomic Environments
In this section, it is shown that the moments-descriptor space can be low-
dimensional as the lowest moments, calculated from the closest atomic neigh-
bourhood, carry the largest contributions to the local bond energy. This
allows one to construct a map of local atomic environments that is spanned
by the two descriptors a(1) and b(2), which is shown in Fig. 4.3. This is dif-
ferent to two-dimensional representations, which are obtained from a higher-
dimensional descriptors space by dimension-reduction algorithms applied to
datasets of high dimensional features [191, 192]. These low dimensional rep-
resentations depend on the considered set of atomic environments unlike the
map of local atomic environments of this work. In this section, the position of
several groups of atomic environments in the map is discussed, which include
simple crystal structures, crystal structures with multiple inequivalent lattice
sites and random structures. An electronic structure interpretation of the
map of local atomic environments follows in Sec. 4.4.

4.3.1. Simple Crystal Structures
Atomic environments in different crystal structures are marked by specific
symbols in the map of local atomic environments (Fig. 4.3). The red filled
circles correspond to crystal structures with only one atomic environment.
Other symbols indicate the different atomic environments in more complex
crystal structures. Furthermore, existence regions for structures with one,
two or more inequivalent atoms are marked while transformation paths be-
tween different structures are shown as lines. The envelopes of the existence
regions are estimated from the positions of a large set of random structures
(Sec. 4.3.3).
First, the map of local atomic environments provides a clear separation of
simple crystal structures with only one atomic environment (filled red cir-
cles). No self returning hopping paths of length three are available for the
linear chain, the two-dimensional square lattice (square 2-D), the simple cu-
bic (sc) structure, graphene and diamond. They are therefore placed on the
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Figure 4.3.: Map of local atomic environments for a d-valent Hamiltonian includ-
ing different crystal structures, transformation paths and estimated
envelopes of the existence regions of crystal structures with one, two
or more inequivalent atoms. Red filled circles correspond to simple
crystal structures with only one atomic environment. Further sym-
bols indicate the position of differently coordinated atoms of TCP
phases. The common names of the phases are given next to the sym-
bols. A square pattern shows the existence region of structures with
one atom in the primitive cell. The region of 2-D 1-atom structures
is further marked by diagonal lines. The existence region of crystal
structures that contain a maximum of two atoms in the primitive cell
is indicated by vertical lines. Transformation paths between different
crystal structures are shown using coloured lines. The region around
the close-packed phases (bcc, fcc, hcp) is magnified.
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line a(1) = 0 on the right of the map of local atomic environments. The lin-
ear chain (linear), the two-dimensional square lattice and the simple cubic
structure are ordered according to their dimensionality. They are followed by
the dimer, graphene and diamond. The dimer, graphene and diamond have
characteristically lower values of b(2), which leads to a stabilization for specific
values for the band filling, as discussed in Sec. 4.1 and further analysed in
Sec. 4.4.2.
Towards the left of the map of local atomic environments, the close-packed
structures face-centred-cubic (fcc), hexagonal-close-packed (hcp) and body-
centred-cubic (bcc) can be found. The map of local atomic environments
places fcc and hcp almost on top of each other, the values of the descriptors
differ only due to their small fourth moment contributions (Sec. 4.1). As ex-
pected, the map of local atomic environments places the two structures that
are closely related with respect to atomic environment and typically have a
very similar cohesive energy very close to each other.∗
Among the simple structures, the map places the bcc structure next to fcc and
hcp. This is intuitive as the three structures are realized in transition-metal
elements. The special body-centred-tetragonal (bct) structure is close to the
close-packed structures. Between the close-packed structures and the open
structures with a(1) = 0 are the simple hexagonal and body-centred tetrag-
onal structure as well as the two-dimensional close-packed hexagonal lattice
(2-D hexagonal). The positions in the map may be related to the local DOS of
the different crystal structures: the linear chain, the two-dimensional square
lattice, the simple cubic structure, the dimer, graphene and diamond all have
a symmetric DOS (µ(3) = 0) as can be partially seen in Fig. 2.10. The dimer,
which has a perfect bimodal DOS (b(2) = 0) for s orbitals, shows a finite value
of b(2) for d orbitals, and the DOS of graphene and diamond are even more
bimodal. The two-dimensional hexagonal lattice has the most skewed DOS
among the two-dimensional structures with one atom in the primitive cell.
The bcc structure is more bimodal and less skewed than fcc and hcp.
Some of these simple crystal structures are related by structural transforma-
tion paths that can readily be included in the map of local atomic environ-
ments (cf. Fig. 4.3). All transformation paths starting from the close-packed
structures initially go to the right in the map of local atomic environments.
The two transformation paths lin.-sq. and lin.-hex.-sq. form a closed area.
This area is in agreement with the estimated envelope of the two-dimensional
structures with one atom in the primitive cell. The trigonal transformation
path connects bcc with the simple cubic structures. The tetragonal transfor-

∗A map of local atomic environments that is able to differentiate between fcc and hcp
can easily be set up by using higher recursion coefficients for the axes, such as a(2) and
b(3). However, such a map then lacks explicit information about the lowest moment
contributions that a(1) and b(2) that are most important for a general structural dif-
ferentiation such that higher dimensions are required [171], which hampers the visual
clarity of a two-dimensional map.
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mation path from bcc to fcc is almost on top of the hexagonal transformation
from bcc to hcp indicating that the intermediate structures along both paths
are similar to each other. After approaching fcc, the tetragonal transformation
path abruptly changes its direction towards the special bct structure. This
structure is also reached by the orthorhombic transformation. As the trans-
formation is continued, the orthorhombic path returns from bct to bcc along
the same path as from bcc to bct. The trigonal path, the tetragonal path
and the lin.-hex. path also form parts of the envelope for three-dimensional
structures with one atom in the primitive cell.

4.3.2. Crystal Structures with Multiple Inequivalent
Lattice Sites

A symbol is displayed in the map for each atomic environment for structures
with several inequivalent atomic environments. As an example, the different
atomic environments of TCP phases are shown. The moments of the DOS
have been applied successfully to measure the similarity of different TCP
phases and to identify trends of the local moments with coordination num-
ber [128, 171, 190]. The 12-fold coordinated atoms are close to the fcc and
hcp structures in the map. The absolute values of a(1) and b(2) increase for
atoms with higher coordination. The sublattices of the χ phase also follow
this trend, the 13-fold coordinated site is close to the hcp structure.
A clear trend of coordination can be observed in the map of local atomic envi-
ronments (cf. Fig. 4.3): Atoms with similar coordination polyhedra are close
to each other, but they still can be distinguished in the map of local atomic
environments. Atoms with high coordination leave the region of simple struc-
tures, indicating that these atomic environments only occur in combination
with lattice sites of lower coordination.
In addition, randomly generated structures are used to evaluate domains in
the map of local atomic environments that may be covered by structures with
1, 2 or 3 atoms in the unit cell. The domain of structures with 1-atom cells
is surprisingly small. It covers the region from the linear chain and the sim-
ple cubic lattice at a(1) = 0 to the close-packed bcc, fcc and hcp phases. A
significant area of the domain corresponds to 2-D structures. The 1-atom
domain is expanded significantly to lower values of b(2) for two atoms in the
unit cell and comprises the dimer, graphene and diamond structures. Crystal
structures with three atoms in the cell can in principle reach any point in the
map. Figure 4.3 also shows that the continuous transformation paths between
simple structures provide envelopes of two-dimensional and three-dimensional
structures with one atom in the unit cell.
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Figure 4.4.: Random structures with one or two atoms in the primitive cell in
a d-valent map of local atomic environments. The left figure shows
the average packing fraction of the 3-D random structures with one
atom in the primitive cell. The right figure shows the probability
distribution of the 3-D random structures with two atoms in the
primitive cell. Lines correspond to transformation paths introduced
in Fig. 4.3.
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4.3.3. Random Structures

In order to fill the phase space in the map of local atomic environments in
between the simple structures of Sec. 4.3.1, large sets of random structures
with one or two atoms in the unit cell are constructed. This construction is
based on random choices of lattice vectors and atomic positions as described
in detail in Sec. 4.1.2. A set of 50000 1-atom random structures and a set
of 90000 2-atom random structures is constructed and used to estimate the
envelopes in the map of local atomic environments in Fig. 4.3.
The filled region in Fig. 4.4a contains approximately 50000 random struc-
tures with one atom in the unit cell and is characterized in terms of the
packing fraction, which is locally averaged in the map. It has a smooth trend
across the map of local atomic environments. The boundaries of the set of 1-
atom random structures are in agreement with the corresponding envelope in
Fig. 4.3. The packing fraction is lowest for those (three-dimensional) struc-
tures that are close to the linear chain in the map. The averaged packing
fraction increases towards the bottom and the left of the map of local atomic
environments and takes its maximum value close to fcc and hcp, which have
the highest possible value [193].
In order to assess the procedure for generating random structures, the prob-
ability to generate a structure with given values of a(1) and b(2) is estimated.
Using the set of 2-atom random structures a smooth variation of the locally
averaged probability with a(1) and b(2) is obtained in the d-valent map of local
atomic environments as shown in Fig. 4.4b with maximum values for a(1) = 0
and minimum values towards the close-packed structures bcc, fcc and hcp.

4.4. Electronic Structure Interpretation of
Map of Local Atomic Environments

4.4.1. Relation of Descriptors to Binding Energy

The structural stability across the map of local atomic environments is ra-
tionalized by a TB model (Eq. 2.117) that does not take into account charge
transfer between atoms or between different orbitals within an atom (i.e. the
promotion energy) or magnetism. With these approximations, the binding
energy (Eq. 2.118) is written as

UB = Ubond + Urep . (4.8)

With the structural energy difference theorem (Eq. 2.225) and the Wolfsberg-
Helmholtz approximation (Eq. 2.226), it is possible to estimate the energy
difference between two structures without explicit parametrization of the re-
pulsive contribution. By requiring that all structures have identical second
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moments (Eq. 4.4), the map of local atomic environments therefore enables
estimating the energy difference between two structures from the bond energy
difference ∆Ubond.
Due to the restriction to only the four lowest moments of the DOS, the map
of local atomic environments is not invertible, which would be required for
an exact calculation of observables from the descriptors [182]. Nevertheless,
it provides access to an intuitive understanding of the trends of structural
stability that is discussed in the following.
To discuss trends in crystal structure stability, the simplest possible fourth
moment expansion with nmax = 4, a(∞) = a(0) = 0 and b(∞) = b(1) = 1 is taken
for making contact with the map of local atomic environments. The expansion
of the bond energy (Eq. 2.212) may be applied to discuss trends in crystal
structure stability. With the used approximations, the contribution of the
response functions to the n-th expansion level is given by χ̂n(φF) + χ̂n+2(φF)
and the expansion coefficients reduce to σ(1) = σ(2) = 0, σ(3) = a(1) and
σ(4) = (a(1))2 + (b(2))2 − 1. When an expansion coefficient σ(n) is negative, a
large positive value of the response functions will lower the energy and vice
versa. At less than half full band the simple metals take the close-packed
structures bcc, hcp and fcc. These are stabilized over competing structures
by large negative values of a(1) and small values of b(2). The details of the
ordering from bcc Na over hcp Mg and fcc Al cannot be resolved within the
map of local atomic environments as one cannot expect the simple, nearly-free
electron metals to be described well within a simple TB approximation. At
half full band the response function χ̂3 is zero while χ̂4 is at its maximum
(Fig. 2.7) and therefore a small value of b(2) is favourable and helps to stabi-
lize the diamond structure. The subtle competition between graphite and the
diamond lattice in carbon is not covered by this arguments the comparison of
the two structures at identical second moment is not adequate (Sec. 2.4.16).
Still, graphene is close in the d- and sp-map. The dimer, which is stabilized
for hydrogen with its half full s orbitals, takes the minimum of b(2) = 0 in an
s-valent map.
The transition-metals all take close-packed structures due to the attraction
provided by the s-electrons, while the d-electrons determine the details of the
crystal structure. In a map that only takes into account the d-valence, it may
therefore not be expected to find the transition-metal structures at extreme
boundaries of the map. Still, the map places them at large absolute values of
a(1) and small values of b(2). As expected, the bcc structure, which is stabi-
lized by the response function χ̂4 at the center of the d-band, has a smaller
value of b(2) than fcc or hcp, while hcp and fcc show a slightly more negative
values for a(1).
The discussion of the stability of the TCP phases is more involved and it
has been discussed in detail in Refs. 128, 189. The TCP phases are stabi-
lized by a combination of average band filling and atomic size mismatch. The
two factors have a different relevance in the different TCP phases. As the
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atoms in the different coordination polyhedra have different second moments,
a direct discussion of the stability of the TCP phases based on the map of
local atomic environments alone is not possible. It can be noted that the
TCP phases show small values of b(2) for the 12-fold coordinated sites, some
of them even smaller than bcc, while the sites with higher coordination show
large negative values of a(1).
The difference in energy between two structures can be approximated from
Eq. 2.227 as

∆Ubond = 2(2l + 1)
[

ˆ̂χ3(φF)∆a(1) + ˆ̂χ4(φF)
(
∆(b(2))2 + ∆(a(1))2

) ]
(4.9)

for nmax = 4, where b(∞) = b(1) = 1 and a(∞) = a(1) = 0 are estimated as
before. The difference between two structures in the map of local atomic en-
vironments is approximated by a contribution ∆a(1) that corresponds to the
distance between the structures projected onto the x-axis and a second contri-
bution that corresponds to the square of the distance between two structures
in the map of local atomic environments. The relevance of the two con-
tributions for the energy difference is determined by the number of valence
electrons through the first-order response functions (Eq. 2.228). Independent
of the number of valence electrons, this implies in general that it may be ex-
pected that the energy difference between pairs of structures increases with
the distance of the structures in the map.

4.4.2. Trends of Structural Stability from
Tight-Binding

The bond energy within the TB approximation is evaluated for the set of ran-
dom structures in Fig. 4.4b. The canonical d-valent TB model (Eq. 2.229) is
chosen with a band filling of 4, which is close to the maximum bcc stability (cf.
Fig. 2.11). The locally averaged bond energy is shown in Fig. 4.5a. The bond
energy has a smooth trend and is largest at the linear chain and decreases
towards bcc, which has the smallest bond energy among all structures. The
trend verifies the result of Sec. 4.4.1 that energy differences are to first-order
proportional to smooth functions of the differences of the coordinates of the
map of local atomic environments. The standard error of the bond energy
of different random structures at given location in the map of local atomic
environments is displayed in Fig. 4.5b. It is much lower than the range of
energy values in the map of local atomic environments. This indicates that
the descriptors of the map of local atomic environments are good predictors
for structural stability. This direct consequence of the relation between geo-
metric environment and electronic structure given by the moments theorem
(Eq. 2.167) rules indeed the moments descriptors distinct from purely geo-
metrical descriptors. The standard error is in correlation with the probability
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Figure 4.5.: Analysis of bond energy (Eq. 2.119) of two atom random structures
from canonical d-valent TB model evaluated for a bandfilling of Ne =
4. The left figure shows the averaged bond energy and the right figure
the related standard error that is calculated from different random
structures at the same position of the map. Lines correspond to
transformation paths introduced in Fig. 4.3.
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function of the randomly generated structures (cf. Fig. 4.4b). This means
that those regions where more structures are mapped to have a broader range
of possible energy values.
The average bond energy for sp-valent TB model (Eq. 2.230) with different
band fillings is shown in Fig. 4.6. The values of the atomic recursion coeffi-
cients differ from those obtained for the d-valent TB model, however, many
features of the d-valent map of local atomic environment are still present in
the sp-valent map. As the dimer configuration may be a stable configuration
for sp-elements [130], it is an important feature of the sp-valent map that it
positions the dimer apart from the other crystal structures. A smooth energy
surfaces is obtained for all band fillings. As expected, at half full band the
diamond structure has the lowest bond energy and for low band fillings the
stability is shifted towards the close-packed phases (cf. Fig. 2.12).

4.4.3. Trends of Structural Stability from
Density-Functional Theory

The bandfilling of Ne = 4 in the TB calculations of Sec. 4.4.2 corresponds to
the transition-metals Mo (4d) and W (5d). This can be seen, e.g., in DFT-
TB-BOP comparisons of structural trends in 4d and 5d d-valent transition-
metals [128] and was employed in BOP parametrizations for Mo and W [163].
An evaluation of the approximately 90000 structures that are evaluated for
TB is computationally too demanding.
It is expected that the atomic volume Vnorm of each atom with normalized
second moment to µ(2) = 1 correlates with the atomic equilibrium volume
V0 as the normalized volume may be interpreted as a measure for the ho-
mogeneity of its atomic surrounding. A small normalized volume indicates a
homogeneous atomic surrounding with equidistant bond lengths. Therefore,
also a positive correlation of the normalized volume Vnorm and the equilib-
rium energy E0 is expected. In Ref. 194, a random set of structures which
samples the map of local atomic environments uniformly was taken and DFT
calculations of these structures were performed with VASP (Sec. 2.2.7). The
projector augmented-wave method (PAW) method (Sec. 2.2.5) was used with
fourteen valence electrons (Mo_sv) for Mo and the generalized gradient ap-
proximations (GGA) (Sec. 2.2.3) to the PBE exchange correlation potential
was employed. High accuracy of the calculations was obtained by a plane-
wave cut-off energy of 500 eV and Monkhorst-Pack (Sec. 2.2.4) k-point meshes
with linear density not more than 0.1Å−1. The equilibrium energy E0, vol-
ume V0 and bulk modulus B0 were obtained by fitting energy-volume curves
with volume scalings of ±10% to the Birch-Murnaghan equation of stateMur-
naghan244, PhysRev.71.809. The correlation of the normalized volume Vnorm
and the DFT equilibrium volume V0 and energy E0 is illustrated in Fig. 4.7.
The smallest normalized volume Vnorm corresponds to the smallest value V0
and E0.

107



Electronic Structure Based Map of Local Atomic Environments

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
a(1)

0.4

0.6

0.8

1.0

1.2

1.4

b(2
)

bcc

fcc

sc

hcphcp

linear chain

hexagonal (2-D)

sh

diamonddiamond

bctbctbctbct

graphenegraphene

square (2-D)

dimerdimer

Ebcc 0.9Ebcc Esc Ediamond

Ubond (increasing → )

(a) Ne = 2.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
a(1)

0.4

0.6

0.8

1.0

1.2

1.4

b(2
)

bcc

fcc

sc

hcphcp

linear chain

hexagonal (2-D)

sh

diamonddiamond

bctbctbctbct

graphenegraphene

square (2-D)

dimerdimer

Ediamond Esc 1.1Ebcc Ebcc

Ubond (increasing → )

(b) Ne = 4.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
a(1)

0.4

0.6

0.8

1.0

1.2

1.4

b(2
)

bcc

fcc

sc

hcphcp

linear chain

hexagonal (2-D)

sh

diamonddiamond

bctbctbctbct

graphenegraphene

square (2-D)

dimerdimer

Esc Ediamond 1.1Esc Ebcc

Ubond (increasing → )

(c) Ne = 6.

Figure 4.6.: Bond energy (Eq. 2.119) in the sp-valent map of local atomic en-
vironments as obtained from the canonical sp-valent TB model for
different band fillings. Lines correspond to transformation paths in-
troduced in Fig. 4.3.
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Figure 4.7.: Correlation of the atomic volume Vnorm after normalizing the second
moment to the atomic equilibrium volume V0 (Fig. a) and the atomic
equilibrium energy E0 (Fig. b) calculated with DFT. Structures are
randomly chosen and cover the region of 2-atom cells in the map of
local atomic environment uniformly (cf. Fig. 4.3).

To approximate to the lowest-energy and smallest-volume surface in the map
of local atomic environments, 521 two atom random structures with smallest
normalized volumes that homogeneously cover the map are selected.
The results for the equilibrium energy per atom, the equilibrium volume per
atom and the bulk modulus were calculated with the same DFT settings as
above in Ref. 194 and are shown in Figs. 4.8.
The overall trend of the DFT equilibrium energy for Mo (Fig. 4.8a) is quali-
tatively captured by the bond energy of the corresponding TB calculations at
Ne = 4 (Fig. 4.5a). The energy is lowest for bcc and increases with distance in
the map of local atomic environment. The bcc structure also takes the small-
est equilibrium volume. The bulk modulus is smooth across the map of local
atomic environment and largest for bcc. The uncertainty of the results near
the envelops of the map is caused by a smaller number of random structures
(cf. Fig. 4.4b).
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Figure 4.8.: DFT calculations of equilibrium energy (Fig. a), volume (Fig. b) and
bulk modulus (Fig. c) for a set of random structures with two atomic
sites, both occupied by Mo atoms. Lines correspond to transforma-
tion paths introduced in Fig. 4.3. The set was chosen to cover the
area of 2-atom random structures homogeneously and to exhibit the
smallest normalized volume among all randomly generated structures
within one grid box of the map of local atomic environments. The
trend of equilibrium energy for Mo obtained by DFT (left) is cap-
tured by the bond energy of the corresponding TB calculations at
Ne = 4 (Fig. 4.5a).
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5
Automated Parametrization

Strategy

Density-functional theory (DFT) calculations can be applied to systems with
elements across the periodic table. However, the computational effort of DFT
calculations, which increases cubically with the system size, limits the applica-
bility of the method to typically a few hundred atoms. Interatomic potentials
like analytic bond-order potentials (BOPs), which have a linear scaling of the
computational time with the system size, can be applied to much larger sys-
tems. However, they require a pairwise parametrization of the interaction of
atoms of different species. An automated parametrization strategy is needed
to enable accurate calculations with interatomic potentials of arbitrary sys-
tems. In this work, this is divided into three challenges: Firstly, a framework
has to be implemented which automatically performs simulations for different
model parameter sets, measures the accuracy with respect to reference data
and interacts with an optimization algorithm which tunes the accuracy by
changing the model parameters. Secondly, a general and robust protocol has
to be defined, which determines the optimization steps towards an optimal
set of model parameters. Thirdly, an understanding of the transferability of
the model has to be obtained.
Existing optimization frameworks and strategies are discussed in Sec. 5.1. A
new parametrization protocol for analytic BOPs, which is initialized by the
tight-binding (TB) parametrization across the periodic table (Sec. 3), is in-
troduced in Sec. 5.2. It optimizes the model parameters to DFT reference
data. The map of local atomic environments (Sec. 4) is applied in Sec. 5.3
to systematically analyse and improve the transferability. In Sec. 5.4, the pa-
rametrization protocol is used to parametrize an analytic BOP for the element
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Re in collaboration with Aparna P. A. Subramanyam (AMS, ICAMS, RUB),
who defined the requirements on the potential for a successful application
and who provided all DFT reference data, if not stated otherwise. The refer-
ence data and the applications of the potential are covered in more detail in
Ref. 172. For a given model complexity, a Pareto front for the analytic BOP
model for Re is mapped out by a systematic variation of a weight parameter.
The optimal Re model for the given model complexity is selected from the
Pareto front by a sequence of tests. Further applications of the developed
parametrization strategy are given in the outlook.

5.1. Background

5.1.1. Model Parameter Optimization
In order to optimize an interatomic potential to reference data, a cost function
needs to be defined which measures the discrepancy between the predictions of
the potential and the reference data. A natural choice is the root-mean-square
(RMS) cost function given by

c(θ) =

√√√√
∑Nref
n w2

ne
2
n

Nref
, (5.1)

where
en = (Epred,n(sn;θ)− Eref,n(sn)) . (5.2)

Here, Nref is the number of reference data points, θ is a vector of model param-
eters, Epred,n(sn;θ) is the model prediction for structure sn for given model
parameters, Eref,n is the corresponding reference and wn is a factor which may
scale the summands to a common unit or may further weight them. Multiple
predictions and reference data points may exist for a given structure sn, e.g.
energies and atomic forces. The approach to include atomic forces in the set
of reference data is referred to as force-matching method [195].
Optimization methods are used to minimize the cost function c(θ) by auto-
matically varying θ and approaching the vector of parameters

θopt = argmin{θ} (c(θ)) , (5.3)

which minimizes the cost function. While global minimization procedures
are designed to find the global minimum, local minimization procedures con-
verge to a local minimum, which is not necessarily the global minimum. A
local minimization procedure, which is used in the automated parametriza-
tion protocol (Sec. 5.2), is the Levenberg-Marquardt algorithm [196, 197] in
its specific form described in Ref. 198. In order to find a local minimum of
Eq. 5.1, it has to be initialized by a vector of parameters θ0. The parameters
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are updated in iteration step i+ 1 by

θi+1 = θi −
(
JTi Ji + λiDT

i Di

)
JTi ei, (5.4)

where Ji is the Jacobian of the cost function (Eq. 5.1) and λi and the diagonal
matrix Di are adaptively computed to adjust and scale the steps. This adap-
tive choice makes the Levenberg-Marquardt algorithm fast and robust and
is therefore preferred to the Gauss-Newton algorithm and gradient descent
algorithm.
Parametrization interfaces like Potfit [199], GARFfield [200], MEAMfit [201],
aenet [202], the MEAM parameter calibration tool [203], Atomicrex [204] and
also an automated parametrization interface for DFTB using particle swarm
optimization [205] have been developed. These interfaces read in reference
data, automatically perform simulations for a given vector of model parame-
ters θ and optimize it according to an optimization method. In order to use
such methods with analytic BOPs, the BOPcat (BOP construction, assessment
and testing) program has been developed [206]. It interacts with BOPfox and
allows for an optimization of the cost function for TB models and analytic
BOPs. It gives complete freedom to the user to define a parametrization
protocol. The parametrization of analytic BOPs is not solved with the devel-
opment of parametrization interfaces, but a strategy to ensure physical model
parameters, accurate reproduction of reference data and reasonable transfer-
ability needs to be developed. BOPcat allows the user to define optimization
steps for all possible combinations of parameters and allows one to link in-
dividual optimization steps and is therefore perfectly suited to implement a
parametrization protocol.

5.1.2. Parametrization Strategies
While most of the mentioned parametrization interfaces allow for an optimiza-
tion to a set of given reference data, only a few of them provide a guideline
for a protocol to parametrize interatomic potentials.

Artificial Neural Network Potentials

In case of the aenet code [202], which can parametrize artificial neural network
potentials [207], an initial set of reference structures is used and the model
parameters are fitted to the corresponding reference data. Afterwards, new
structures are generated by molecular dynamics simulations. Reference values
are calculated for testing the potential for the newly generated structures. If
the potential predictions agree with the reference, the parametrization pro-
cedure ends. Otherwise the set of reference data is increased and the model
parameters are optimized again. This procedure is required as artificial neu-
ral network potentials are not derived from physical considerations and have
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a very large number of parameters. Therefore, many reference structures
are needed such that the potential is optimized to interpolate between the
reference values.

MEAM Potentials

The MEAM parameter calibration tool [203] for the parametrization of mod-
ified embedded atom method (MEAM) potentials provides recommended se-
quences of optimization steps in which additional data is added to the refer-
ence data and specific parameters are optimized in each step [208].

NRL-TB Potentials

In Refs. 151, 209, a similar parametrization strategy to that of the MEAM
potentials is used to parametrize NRL-TB models (Sec. 3.1.5). Based on the
assumption that it is likely to converge to a non-physical local minimum in a
high dimensional parameter space, a subset of the data is initially taken and
the model parameters are optimized. The reference data set is increased in a
stepwise procedure and the Levenberg-Marquardt algorithm (Eq. 5.4) is used
to reoptimize the parameters to a local minimum. This procedure ensures
that a local minimum with physically meaningful parameters is obtained.

TB Bond Model Based Potentials

Stepwise and local optimization procedures have been employed for the pa-
rametrization of interatomic potentials which are based on an orthogonal TB
bond model (Eq. 2.117). All parametrization strategies are customized. How-
ever, two approaches may be identified, which differ in their sets of reference
data and parametrizations of the binding energy (Eq. 2.118).
In Refs. 163, 166, 210, the elastic properties, the equilibrium energy and vol-
ume of the ground state are fitted for a selection of sd-valent systems. In
the parametrization process, the TB Hamiltonian matrix elements are not
modified. Since the parametrization of a simple pair potential (Eq. 2.162)
is not sufficient to reproduce the desired elastic properties an environment-
dependent repulsion Uenv is added. In Refs. 163, 210, the bond integrals are
obtained from linear muffin-tin orbitals (Sec. 3.1.3) and the environmental
term is parametrized in the form of Ref. 211,

Uenv = 1
2
∑

I,J 6=I

B

RIJ

exp
(
−(λI + λJ)RIJ − 2Rcore

2

)
, (5.5)

where

λI = λ0 +

∑

K 6=J
C exp (−νRIK)




1/m

. (5.6)
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In Ref. 166, the bond integrals are obtained by a downfolding procedure
(Sec. 2.3.8) and a modified version of the environment-dependent repulsion
of Ref. 212 is used, which is given by

Uenv = 1
2
∑

I,J 6=I
B exp (−µRIJ) exp (−(λI + λJ)(RIJ − 2Rcore)) , (5.7)

where λI is defined by Eq. 5.6 with λ0 = 0 and m = 1. In this approach,
the s-electrons are neglected and their contribution to the bond energy is at-
tributed to a decrease of the pair repulsion.
Complementary to this approach, the parametrizations of sd-valent systems
in Refs. 74, 76, 121 explicitly describe the energy contribution from the s-
electrons by an embedding term in form of Eq. 2.224. The bond integrals are
obtained by a downfolding procedure and are not modified. The parameters
of the pair repulsion and the embedding contribution are optimized to re-
produce DFT energy-volume curves of different phases. However, the elastic
properties are either not at all (Refs. 74, 121) or only qualitatively (Ref. 76)
considered in the parametrization process.
While the first approach leads to models which reproduce elastic properties
well, the second approach leads to a better transferability across different
phases. A compromise of the two regimes is made in Ref. 78, where an or-
thogonal sp-valent TB model for Si is parametrized. The repulsive energy
is parametrized by a pair potential only and a modification of the embed-
ding term (Eq. 2.224) is used to describe energy contributions from higher
neighbour shells as both, the s- and p-electrons, are explicitly considered
for short interatomic distances only. DFT energies of elastic deformations
of the ground state phase and energy-volume curves of different phases are
considered in the parametrization process by also optimizing the interatomic
Hamiltonian matrix elements.

5.2. Parametrization of Analytic Bond-Order
Potentials for Transition-Metals

5.2.1. Computational Details
All DFT calculations which are used in this section are performed non-spin-
polarized with VASP (Sec. 2.2.7). The projector augmented-wave method
(PAW) method is used (Sec. 2.2.5) with thirteen electrons (Re_pv) for rhe-
nium and the generalized gradient approximations (GGA) (Sec. 2.2.3) to the
PBE exchange correlation potential is employed. High accuracy of the calcula-
tions is obtained by a plane-wave cut-off energy of 400 eV and Monkhorst-Pack
(Sec. 2.2.4) k-point meshes with linear density not more than 0.125Å−1.
If not mentioned otherwise, all analytic BOP calculations are performed with
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Database of TB dimer parametrizations (Sec. 3.2.3)

Parametrized orthogonal sd-valent TB matrix elements (Eqs. 3.38, 3.39)
H ini
IJ (RIJ) = ∑imax

i=0 ci exp (−λiRni
IJ)

Parametrise pair repulsion (Eq. 5.8)
U ini

rep(RIJ) = c exp(−λRn
IJ)

Remove s orbitals and compensate energy contribution (Eq. 2.224)
U ini

emb,s = −∑I

√∑
J 6=I(aIJemb)2 exp(−bIJembR

2
IJ)

Initial model
H ini
IJ , U ini

rep, U ini
emb,s

Optimize model parameters
HIJ , Urep, Uemb,s

Orthogonal d-valent analytic bond-order potential

Figure 5.1.: Parametrization protocol of analytic BOPs for sd-valent systems.

nmax = 9 exactly calculated moments, which has been found to be a good com-
promise between efficiency and accuracy [163, 166, 210]. Higher moments are
estimated up to nexp = 100 with a constant terminator (Eq. 2.181) and damp-
ing factors gn ensure a strictly positive density of states (DOS) (Sec. 2.4.9). A
value of JII = 10 eV is used to describe the resistance against charge transfer
(Eq. 2.132), which was found to allow for a qualitative correct treatment of
the investigated stacking faults of Sec. 5.4.

5.2.2. Parametrization Protocol

The comprehensive set of TB parametrizations for dimers across the periodic
table obtained in Sec. 3 is used in this section to construct a robust param-
etrization protocol for analytic BOPs for d-valent transition-metal systems.
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The choice of reference data and the optimization of the transferability of the
potentials is discussed in Sec. 5.3.
Local optimization procedures are used in the parameter optimization of in-
teratomic potentials to facilitate the convergence to a physically meaningful
minimum of the cost function (Eq. 5.1). This requires, however, an initializa-
tion of the model parameters in the vicinity of the desired minimum. For this
purpose, the comprehensive set of TB parameters across the periodic table of
Sec. 3 is particularly attractive as it provides TB parameters of the Hamilto-
nian matrix for 1711 different combinations of elements obtained by a consis-
tent methodology. This is supported by the results of Refs. 74, 76, 121, 132,
which indicate that interatomic Hamiltonian matrix elements have a good
transferability to other phases. Therefore, the set of TB parameters across
the periodic table should be a good initialization for a further local opti-
mization. It was found in previous parametrization strategies that the s-
electrons of central d-band transition-metals do not have to be explicitly de-
scribed in the TB formalism, which is in agreement with the investigations in
Refs. 62, 128, 171, 190.
Since the corresponding interatomic matrix elements are particularly long
ranged (Sec. 3.3.3), and therefore require the evaluation of many hopping
paths (Eq. 2.167) in the analytic BOP formalism, it is from a computational
point of view attractive to replace their energy contribution by a simple em-
bedding term (Eq. 2.224). With an explicit treatment of the s-electrons, it
is expected that the pair repulsion can be described by a simple functional
from. For this purpose, the first term of the flexible functional form used to
parametrize the TB Hamiltonian matrix elements (Eqs. 3.38, 3.39) is taken
and the pair repulsion is parametrized by

Urep(RIJ) = c exp(−λRn
IJ). (5.8)

While an initial parametrization of the Löwdin orthogonalized Hamiltonian
matrix H ini

IJ (RIJ) is obtained from the set of TB dimer parametrizations
(Sec. 3.2.3), initial parameters for the pair repulsion and the embedding term
still have to be found. This is done in two initial optimization steps. All
model parameters are optimized in a final optimization step.

• Firstly, the orthogonal sd-valent TB Hamiltonian matrix elements are
used and an initial parametrization of the repulsive energy U ini

rep is ob-
tained by an optimization of the cost function (Eq. 5.1) with respect
to the three parameters of the pair repulsion (Eq. 5.8) for a (sub)set of
binding energy reference data.

• Secondly, the s orbitals are removed from the model, the number of va-
lence electrons is adjusted and the missing energy contribution is com-
pensated as far as possible by another optimization step. An initial
parametrization of the embedding term U ini

emb is obtained by an opti-
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mization of the cost function with respect to the two parameters of the
embedding term. The same (sub)set of binding energy reference data is
used.

• Finally, all parameters of H ini
IJ , U ini

rep, U ini
emb are optimized to the complete

fit set and an orthogonal d-valent analytic BOP is obtained.

The optimization steps are illustrated in Fig. 5.1 and performed with the
BOPcat program [206] and the Levenberg-Marquardt algorithm (Eq. 5.4). The
parametrization procedure is illustrated in Fig. 5.2 and explained in the fol-
lowing for a small set of DFT binding energy reference data for Re. The
reference data consists of energy-volume curves for hcp with an optimised
c/a-ratio as well as for fcc and bcc. The equilibrium volume is estimated with
a fifth-order polynomial fit to the equation of state and volume scalings of
±20% are used. In Fig. 5.2a, the DFT energy reference data is illustrated by
squares and the energy contribution from the initial Löwdin orthogonalized
Hamiltonian matrix elements H ini,sd

IJ , which is given by the bond energy, is
illustrated by solid lines. The interatomic matrix elements are described by
the distance-dependent parametrization obtained in Sec. 3.2.3 and the onsite
matrix elements are taken from the values of the free atom, which are taken
from the dimer parametrizations for large interatomic distances (cf. Fig. 3.4).
The range of the bond integrals is limited by a cut-off function (Eq. 2.163)
with values of rcut = 6 Å and dcut = 0.5 Å. The number of s-electrons is
estimated by numerical integration of the projected DOS from DFT to 0.77
and the number of d-electrons to 5.3. The number of d-electrons is empiri-
cally adjusted to 5.7 to obtain better accuracy. Therefore, the total number
of valence electrons is equal to Ne = 6.47.
In Fig. 5.2b, the electronic description is not modified, however, the pair
repulsion (Eq. 5.8) is added to the model. It can be seen that the three differ-
ent phases are already correctly ordered and that the variation of the energies
with the volume are in a correct range. The energy differences are, however,
not correctly described. By the exclusion of the s-electrons, the reduction of
the cut-off sphere of the bond integrals to rcut = 4.45 Å and dcut = 1.35 Å, the
adjustment of the number of valence electrons to Ne = 5.7 and the introduc-
tion of the embedding term U ini

emb, the quality of the model does not change as
shown in Fig. 5.2c. However, a good agreement of the model with the DFT
reference data is obtained by the optimization of all parameters of Urep and
Uemb and c0 and c1 of the parametrization of the bond integrals (Eq. 3.38)
ddσ, ddπ and ddδ as shown in Fig. 5.2d. The change of the bond integrals
and the repulsive energy during the last optimization step with respect to
their initial values is illustrated in Fig. 5.3. The bond integrals change their
values only slightly and for ddσ the change is not even visible. The decrease
of the range of the bond integrals corresponds to the screening effect which is
discussed in Sec. 3.3.3. The initial pairwise repulsion is also close to the opti-
mized parametrization. The tiny modifications of the parametrization leads
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Figure 5.2.: Parametrization procedure of the orthogonal d-valent analytic BOP
for Re with DFT energy-volume curves as reference data. The model
predictions for the binding energy are compared to the DFT reference
in each parametrization step. In Fig. 5.2a, the model is given only
by H ini,sd

IJ , the orthogonal TB parametrization of the Hamiltonian
matrix obtained for dimers in Sec. 3.2.3. A pairwise repulsion U ini

rep
is added in Fig. 5.2b and in Fig. 5.2c the energy contribution of the
s-electrons is replaced by an embedding term U ini

emb. Fig. 5.2d shows
the model with optimized parameters which define Hd

IJ , Urep and
Uemb.
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Figure 5.3.: Comparison of initial and optimized bond integrals of Re. The pa-
rametrization procedure of Fig. 5.2 was used with energy-volume
DFT reference data for hcp with an optimised c/a-ratio, fcc and
bcc.

to a significant improvement of the accuracy of the model, which indicates
the relevance of an optimization of the model parameters and underlines the
good quality of the initialization.

5.3. Transferability Assessment and
Improvement

In Sec. 5.2, a parametrization protocol for d-valent orthogonal analytic BOPs
was established. While it is able to parametrize a model which reproduces the
provided reference data accurately it is unclear how transferable the obtained
model is, i.e. how accurate its predictions are for structures which were not
included in the parametrization process. A common approach is to split the
reference data into a fit set and a test set. The model is optimized to the
fit set and afterwards tested to the test set. This gives an impression for the
transferability, which depends on the construction of the test set. In Fig. 5.4,
this approach is conducted for a test set of 300 1-atom random structures
(Sec. 4.1.2), which homogeneously covers the corresponding part of the map
of local atomic environments (cf. Fig. 4.3) and therefore represents a large
variety of atomic environments. The DFT calculations were performed by
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Thomas Hammerschmidt (AMS, ICAMS, RUB) with the settings introduced
in the beginning of Sec. 5. The equilibrium volume is estimated with a fifth-
order polynomial fit to the equation of state and volume scalings of ±10%
are used. While in the figure different structures share the same color, a
correspondence of the model to the DFT reference can be clearly observed.
The qualitative trend of the DFT reference is well reproduced by the model
over a large range of volumes and energies. However, a detailed understanding
of the transferability of the potential requires further analysis. More insight is
obtained by a comparison of the predictions of the model for the equilibrium
volumes and energies for the different phases in Figs. 5.5a, 5.5b. The figure
shows that structures with small values for the equilibrium energy E0 and
volume V0 are best reproduced among the structures.
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Figure 5.4.: Performance on 1-atom random structures of analytic BOP for Re
optimized to hcp with an optimised c/a-ratio, fcc and bcc.

This is related to the choice of the fit set in this regime (indicated with black
points in the figures). An approach to increase the transferability is to dis-
tribute the fit set over the range of possible DFT values for the equilibrium
volume or energy. This approach has, however, the disadvantage that these
values have to be calculated by computationally expensive DFT calculations
a priori. Furthermore, this approach selects structures according to a value
related to the total structure and not to the individual local atomic environ-
ments, which have to be correctly described by the model.
An alternative approach to increase the transferability, which became pos-
sible by the analysis of Sec. 4, is to select the reference structures for the
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Figure 5.5.: Transferability analysis on 1-atom random structures of analytic
BOP for Re optimized to hcp with an optimised c/a-ratio, fcc and
bcc. The model predictions for the equilibrium energy and volume
are compared to the DFT reference (Figs. a, b). A more detailed
understanding for the transferability is obtained by a comparison of
the equilibrium energy calculated with DFT and with the analytic
BOP in the map of local atomic environments. The good agreement
shows the intrinsic transferability of the analytic BOP (Figs. c, d).
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parametrization process by their position in the map of local atomic envi-
ronments. The map of local atomic environments allows for an intuitive, ex-
tensive and homogeneous sampling of reference structures according to their
local atomic environments and thereby reduced the number of required DFT
calculations significantly. In Figs. 5.5c, 5.5d, the values for the equilibrium
energy obtained from DFT and from the model, which is obtained by the
parametrization procedure of Fig. 5.2, are plotted in the map of local atomic
environments. Even though the fit set is located at the border of the filled
region of 1-atom random structures, the model reproduces the trend of the
DFT results across the map, which indicates that the model has an intrinsic
transferability. The intrinsic transferability of the analytic BOP is attributed
to the physical coarse graining procedure, from which it is derived (Sec. 2.4)
and the initial model parameters which are derived from DFT (Sec. 5.2). Such
an intrinsic transferability can hardly be expected for interatomic potentials
which are not derived from physical considerations, e.g. artificial neural net-
work potentials. In Fig. 5.6a, the corresponding RMS error is evaluated in the
map of local atomic environments. In general, the transferability decreases
with increasing distance to the fit set. This results from the fact that the map
of local atomic environments places larger differences in energy and atomic
structure further apart (Sec. 4.4).
In Figs. 5.6b, 5.6c, the fit set is increased to a homogeneous distribution of 20
and 40 structures across the region of 1-atom structures and the related values
of the RMS error are evaluated across the map. By this, the transferability is
significantly increased. Figure 5.6d shows a learning curve of the RMS error
in the energies of the fit set and the total set of structures with respect to the
number of structures included the fit. The fit set represents a homogeneous
distribution of structures in the map of local atomic environments. It shows
that 40 structures in the fit set are already enough to have a good representa-
tion of all atomic environments because the error in the energies of the fit set
and the total set of structures are almost converged. The unusual behaviour
of a crossing of the two curves and a higher RMS error in the fit set than
in the total set of structures can be explained as an artefact of the special
choice of the fit set. The fit set is increased by adding those structures which
have the largest distance to all other structures in the fit set, i.e. always the
most difficult fit set is constructed. The learning curve converges to an RMS
error of 65 meV which corresponds to 1.8% of the range of the equilibrium
energies of the investigated structures. This indicates a good transferability
of the model in the considered range of atomic environments.
This example indicates that it is possible to use an iterative transferability
optimization procedure, which is illustrated in Fig. 5.7. It is initialized with
an initial model, which is obtained by the parametrization protocol of Fig. 5.1
and a (weighted) fit set. A weighting of the reference data by weighting factors
wn in Eq. 5.2 may be used to further balance the transferability in different
regimes and is used in Sec. 5.4. The model parameters are optimized to the
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Figure 5.6.: Transferability improvement of analytic BOP for Re on 1-atom ran-
dom structures. The RMS error of the analytic BOP optimized to
hcp with an optimised c/a-ratio, fcc and bcc is evaluated in the map
of local atomic environments (Fig. a). The transferability can be
improved by using 20 and 40 structures in the fit set which are ho-
mogeneously distributed in the map of local atomic environments
(Figs. b, c). A learning curve of the RMS error in the energies of the
total set of structures and of the fit set is evaluated for different sizes
of the fit set (Fig. d).
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Set of weighted fit structuresInitial model

Parameter optimization

Transferable?

Transferable model
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modify
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Figure 5.7.: Iterative approach to improve the transferability. Starting from an
initial model and a set of weighted fit structures the model parameters
are optimized. The map of local atomic environments can by used
to analyse the transferability and the fit set may be modified until a
transferable model is obtained.

fit set and the transferability is analysed and estimated with the map of lo-
cal atomic environments. If the transferability is unsatisfactory, the fit set is
modified and the parameter optimization is performed again. This is done
iteratively until a transferable model is found.

5.4. Parameterization of an Analytic
Bond-Order Potential for Re

The parametrization protocol (Fig. 5.1) and the transferability optimization
procedure (Fig. 5.6) are used to parametrize an analytic BOP for Re. Its
predictions are compared with a variety of reference data to verify its accuracy
and transferability.

5.4.1. Reference Data
The reference data was selected by Aparna P. A. Subramanyam (AMS, ICAMS,
RUB) based on knowledge of materials properties defining key quantities. It
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includes different crystallographic phases, point defects, stacking faults (SFs),
elastic properties and phonons. The corresponding reference structures are
illustrated in Figs. 5.8, 5.9 in the map of local atomic environments. Figure
5.8 covers the same range of the moments-descriptors a(1) and b(1) as the map
of local atomic environments in Fig. 4.3 and includes the envelopes of the
1-atom-cells and 2-atom cells, the crystal structures hcp, fcc and bcc, a selec-
tion of DFT relaxed topologically close-packed (TCP) phases, the tetragonal,
trigonal, hexagonal and orthorhombic transformation paths, two vacancy dif-
fusion paths, and DFT relaxed cells with point defects which include a vacancy
and several self-interstitials. The map marks the region around hcp, fcc and
bcc with a black solid line. This part of the map is magnified in Fig. 5.9a. The
individual atoms of the point defects are not shown in this figure for a better
visual interpretation. In this part of the map, a small region around hcp and
fcc is again marked with a black solid line, which is magnified in Fig. 5.9b.
The hcp structure with the c/a-ratio of Re predicted by DFT and the relaxed
dhcp structure are added to this part of the map. Its elastic deformations
and the individual atomic environments of the DFT relaxed basal intrinsic
and basal extrinsic stacking faults are also visible. Moreover, the local atomic
environments which are used to calculate the phonon spectrum are added to
the map. The reference data is described in the following and split into a fit
and a test set in Sec. 5.4.2.

Different Phases

It was shown in Sec. 5.3 that a homogeneous sampling of atomic environments
by random structures in the existence regions of 1-atom cells or 2-atom cells
is useful to analyse the transferability of an interatomic potential. The region
of 1-atom cells has fcc at its left border and does not reach hcp, the ground
state structure of Re, which is at the left border of the existence regions of
the 2-atom cells.
Different transformation paths are presented in Sec. 4.1.2. The hexagonal
transformation path deforms hcp into bcc. The tetragonal and trigonal trans-
formation paths deform fcc, which is close to hcp in the map of local atomic
environments, into bcc. The orthorhombic transformation path connects bcc
with a special bct structure (Sec. 4.1.2) and is used to analyse the transfer-
ability to this part of the map of local atomic environments.
In Ni-base superalloys, Re is often used as a solid solution strengthener [213].
However, for a set of Re compounds TCP phases (Sec. 4.1.2) are found to be
stable [214], which precipitate at high temperatures and stresses in Ni-base
superalloys. This leads to a decrease of the strengthening effect and may
cause fracture [213]. Therefore, an accurate description of the TCP phases is
important if the potential is later extended to multi-component systems. The
χ, C14, C15, C35, A15 and σ structure are selected as representative TCP
phases to evaluate the accuracy of the description of TCP phases. The DFT
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Figure 5.8.: Map of local atomic environments for d-valent Hamiltonian contain-
ing the reference data used for the parametrization of the analytic
BOP for Re. The map shows the estimated envelopes for the exis-
tence regions of 3-D cells with one and two atoms in the primitive
cell and the tetragonal, trigonal, hexagonal and orthorhombic trans-
formation paths (cf. Fig. 4.3). The crystal structures hcp, fcc and
bcc are marked by red filled circles and the further symbols indicate
the different coordination polyhedra of the DFT relaxed TCP phases
with the common name given next to the symbol. Vacancy diffusion
paths calculated in DFT with the cNEB method are shown by solid
lines and filled circles which represent the individual images. The
DFT relaxed self-interstitial atom (SIA) structures from Fig. 5.10
are also shown by filled circles. The SIAs are highlighted by circles
with a larger radius. The BC SIA structure relaxes to the BO struc-
ture and is therefore not explicitly shown. The marked region around
the close-packed phases (bcc, fcc, hcp) is magnified in Fig. 5.9a.
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(b) Magnified region around hcp and
fcc.

Figure 5.9.: Magnified regions of the map of local atomic environments of Fig. 5.8.
The individual atomic environments of the structures with the point
defects are not shown. Figure a shows the region around hcp, fcc
and bcc. The marked region around hcp and fcc is further magnified
in Fig. b. Additional red filled circles show the hcp structure with
the DFT relaxed c/a-ratio and the relaxed dhcp structure. Dashed
lines show the elastic deformations applied for the calculation of the
elastic constants (Tab. C.1). The individual atomic environments of
the DFT relaxed basal intrinsic and basal extrinsic SFs (Fig. 5.11)
and the atomic environments which are used to calculate the phonon
spectrum are shown by filled circles.
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BC
BTBO

C
O

T
BS

S

Figure 5.10.: Point defects in an hcp cell. SIAs are shown in red. They summarize
crowdion (C), octahedral (O), split dumbbell (S), tetrahedral (T),
basal crowdion (BC), basal octahedral (BO), basal split dumbbell
(BS) and basal tetrahedral (BT) SIAs. A vacancy is marked by
a red circle and the nearest neighbour diffusion in the basal plane
and between two planes are illustrated by red arrows. Adapted from
Ref. 215.

relaxed atomic environments of these structures are also added to the map.
As for the prototype structures, which are used in Fig. 4.3, the distance of
the hcp structure to the relaxed 12-, 13- and 14-fold coordination polyhedra
is small in the map of local atomic environments and larger to the higher 15-,
and 16-fold coordination polyhedra. This indicates that the higher coordina-
tion polyhedra are very different to the local atomic environment of hcp.
Due to the large distances of the ground state structure hcp to the different
phases in the map of local atomic environments, a transferability to them is
referred to as global transferability in the following.

Point Defects

The concentration of vacancies and SIAs in a material depends on the tem-
perature. Moreover, they are formed by plastic deformations and high-energy
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particle irradiation [216]. For example, in magnetic-confinement fusion de-
vices, tungsten is an attractive candidate as a plasma-facing material and
under neutron irradiation, it may transmute to Re and a cascade produces
different point defects (cf. Ref. 215, and references therein). Therefore, an
accurate description of point defects by the interatomic potential is of rele-
vance. The considered point defects include a vacancy and several SIAs. The
different SIAs are illustrated and described in Fig. 5.10. The crowdion SIA
is missing in the following analysis because of technical difficulties during the
relaxation in DFT. The DFT relaxed structures with SIAs which do not relax
to another configuration are added to the map of local atomic environments
in Fig. 5.8. All atoms of a cell with a SIA share the same color and the SIAs
are highlighted by circles with a larger radius. The SIAs have special envi-
ronments and are located far from the hcp structure.
Vacancy diffusion between nearest neighbours in the basal plane and between
two nearest neighbours in different planes is considered at the level of the
climbing nudged elastic band (cNEB) method with an improved tangent def-
inition [217, 218]. The diffusion paths are also added to Fig. 5.10.

Stacking Faults

In hcp crystals, SFs can have an important effect on the plasticity of crys-
tals [216] and their energies are related to the preferred slip direction [219].
Therefore, it is important for an interatomic potential for Re to describe SFs
correctly. The considered basal intrinsic and basal extrinsic SFs are shown in
Fig. 5.11. The considered basal intrinsic SF has the lowest SF energy [219]
and is constructed by a partial change of the stacking sequence ABAB to
ACAC. The basal extrinsic SF is created by inserting an extra C plane in an
hcp crystal with an ABAB stacking sequence. The individual local atomic
environments of the DFT relaxed SF structures are shown in the map of local
atomic environments in Fig. 5.9b. Each structure is constructed by 40 layers
of atoms with two SFs in the cell. Due to the atomic relaxation, almost a
continuous set of atomic environments in the region of hcp and fcc is formed
and opposite to the unrelaxed case, none of the atomic environments of the
intrinsic SF coincides with the position of the DFT relaxed dhcp structure.

Elastic Properties

The elastic properties of a material influence its thermodynamic properties,
equation of state, phonon spectrum and structural stability. Therefore, it
is important that an interatomic potential describes the behaviour of the
material under elastic deformations accurately. The calculation of the elastic
constants with DFT and with interatomic potentials for the hexagonal crystal
structure is summarized in Sec. C of the appendix. The elastic deformations
used in this work, the corresponding physical strain tensor and second deriva-
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tive of the total energy are summarized in Tab. C.1. The physical strain ε
is varied around ±2% and a polynomial of order two is fitted to the total
energies to compute the elastic constants.
The related deformation paths of the DFT relaxed hcp structure of Re are vi-
sualized in the map of local atomic environments in Fig. 5.9b. The structures
with the employed values of η are in the vicinity of the reference structure.
A local transferability of the potential is therefore related to accurate elastic
constants. The map of local atomic environments places the deformations
(0, 0, 1, 0, 0, 0) and (1, 1, 0, 0, 0, 0) on top of each other because they differ
only by a scaling of the volume, which is removed by the applied normaliza-
tion of the second moment (Eq. 4.4). The deformations (1, 0, 0, 0, 0, 0) and
(1, 0, 1, 0, 0, 0) are close to each other while the shear deformation (0, 0, 0, 1, 0, 0)
differs significantly from the other deformations.
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(a) Intrinsic SF.
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B
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(b) Extrinsic SF.

Figure 5.11.: Visualization of the change in the stacking sequence for the basal
intrinsic and basal extrinsic SF.

Phonons

In a harmonic approximation, the phonons are calculated by solving the eigen-
value problem of the dynamical matrix, which is computed from the second-
order force constant matrix. This can be calculated by DFT or interatomic

131



Automated Parametrization Strategy

potentials with the finite displacement method. An implementation is pro-
vided in the program code phonopy (Ref. 222). The lattice vibrations have an
important contribution to the free energy and thus play an important role for
phase transitions and for thermal properties like the heat capacity. Moreover,
imaginary phonon frequencies indicate dynamical instability of the system.
The accuracy in the description of lattice vibrations of the potential can be
estimated by the comparison of the phonon spectrum and the phonon DOS
to the DFT reference.
A 4 × 4 × 3 supercell of the primitive hcp cell is used for the calculation of
the force constant matrix with an atomic displacement of one atom of 0.01 Å
in [1, 0, 1] direction. The individual local atomic environments are added to
the map of local atomic environments in Fig. 5.9b.

5.4.2. Construction of Fit Set
The reference data has to be divided into a fit set and a test set. The fit
set should include the most relevant data as the accuracy of the potential is
optimized to it. However, as the optimization process requires many iterations
over the model parameters it should include only data which can be computed
efficiently and should not include redundant information. In this work, only
total energies per atom obtained from DFT are used as reference data. As
discussed in Sec. 5.4.1, both the transferability to different phases and also
the elastic properties of the ground state structure are important for the
interatomic Re potential. The phases hcp, fcc, bcc, A15, C15 and σ phase
are considered in the fit by total energies for 20 volume scalings of ±20%
around their equilibrium volume estimated from a fifth-order polynomial fit
to the equation of state. These structures have a moderate size and they
include 12-, 14-, 15- and 16-fold coordination polyhedra such that a variety
of different local atomic environments is considered. The elastic properties of
the material are considered by taking into account the energies of the elastic
deformations which are summarized in Tab. C.1 by 14 structures for each
deformation with strain rates η up to ±2%.
The cost function (Eq. 5.1) which is minimized by an optimization method
summarizes all individual errors. The model parameters which minimize the
error en of a quantity n will not in general minimize the error em of another
quantity m. For example, the model parameters which minimize the RMS
error in the energy-volume curve of one crystal structure will not minimize it
for another crystal structure. Similarly, the model parameters which minimize
the RMS error in the energies of the elastic deformations of the ground state
will not correspond to those which minimize the RMS error in the energy-
volume curves of the different crystal structures. In order to control the
accuracy of the individual target properties, the errors en of the different
target properties are weighted by weights wn.
The relevance of the individual phases (hcp, fcc, A15, C15 and the σ phase)
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depends on the energy difference to the ground state. This is considered by
weighting the structures according to their equilibrium energy E(0)

struc by the
function

wstruc = exp

−(E(0)

struc − E(0)
hcp)

0.1eV


 , (5.9)

where the energies are normalized per atom and the value of 0.1 eV is em-
pirically adjusted. This value corresponds to a temperature of 1160 K. By
this choice, the hcp structure has a weight of 1 and the fcc structure, which
is also low in energy, has a weight of approximately 0.55. The bcc structure,
which is higher in energy than all other phases in the fit set, has a weight of
approximately 0.04. The weights are adjusted such that a good transferabil-
ity to the structures which are low in energy and a robust description of the
structures which are higher in energy is expected.
While the energy-volume curves cover energy changes of around 1 eV/atom,
the change in energy for the elastic deformations is not more than about
40 meV/atom. With equal weighting of the structures, the relative impor-
tance of the energy-volume curves would be higher than of the elastic defor-
mations in the optimization process. In order to balance the two regimes, the
error in energies of the elastic deformations is weighted against those of the
energy-volume curves. This is done by a weighting factor for the RMS error
in the energies of the elastic deformations

wela = aela
∆Estruc

∆Eela , (5.10)

where ∆Estruc is the largest energy difference of the energy-volume curves in
the fit set and ∆Eela is the largest energy difference of the elastic deformations
in the fit set. With the definitions of wstruc and wela, the choice of the different
weights reduces to an adjustment of the parameter aela, which controls the
balance between the local transferability to the elastic deformations of the
hcp structure and the global transferability to the individual bulk structures.

5.4.3. Transferability Adjustment
It is not known a priori how aela should be chosen to obtain a desired ac-
curacy in the two regimes. In order to measure the accuracy in the elastic
deformations, the RMS error of the energies of each elastic deformation

cela(θ) =

√√√√
∑Nela
n (Epred,n(sn;θ)− Eref,n(sn))2

Nela
(5.11)

is averaged to define a cost function for the elastic deformations. Here, Nela is
the number of generated structures for each elastic deformation. Equivalently,
a cost function which measures the accuracy in the description of the different

133



Automated Parametrization Strategy

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025
av

e.
R

M
S

er
ro

rs
/e

V
(e

la
st

ic
de

fo
rm

at
io

ns
)

0.0
0.0001
0.001
0.01
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
1
2
5
10
100
only ela.

a
el

a

Figure 5.12.: Cost function of energies of the elastic deformations versus the cost
function of the energies of the bulk structures obtained from opti-
mized models initialized by random variations of the initial model
and by varying the weight parameter aela of Eq. 5.10. The lower
boundary of the points forms a Pareto front.

phases is defined by averaging the RMS error of the energy-volume curves

cstruc(θ) =

√√√√
∑Nstruc
n w2

struc(Epred,n(sn;θ)− Eref,n(sn))2

Nstruc
, (5.12)

where the different phases are weighed by wstruc according to Eq. 5.9. With
the definition of a cost function for the elastic deformations and a cost func-
tion for the accuracy in the description of the different phases, the parameter
aela is adjusted by an analysis based on Pareto fronts. Model parameters
belong to the Pareto front if it is impossible to minimize one cost function
without increasing another cost function [223]. Depending on the required
accuracy in all cost functions, the best model for a specific application can be
selected from the Pareto front.
A systematic sampling of the Pareto front is obtained by varying aela (Eq. 5.10)
between 0 and 100 and optimizing the model only to the energies of the elastic
deformations. The parametrizations are initialized by the parameters of the
initial model (H ini

IJ , U ini
rep, U ini

emb,s) obtained from the parametrization protocol
of Fig. 5.1. Thirty further initializations are generated for each value of aela
by randomly changing the initial model parameters within a Gaussian dis-
tribution with a width of 5% of the reference value. The cost function for
the energies of the elastic deformations (Eq. 5.10) versus the cost function for
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the energies of the bulk structures (Eq. 5.9) is plotted in Fig. 5.12. A lower
boundary is estimated from the data and plotted as a solid line. This curve
is an estimate of the Pareto front. High values of aela lead to low errors in
the energies of the elastic deformations but to high errors in the energies of
the bulk structures. By decreasing aela, the errors in the energies of the bulk
structures decreases in general but the errors in the energies of the elastic
deformations increases.
It can be seen that the two cost functions do not become very high even when
they are not considered in the optimization. This is in agreement with the
results of Fig. 5.5 and is attributed to the physical coarse graining proce-
dure, which is used to derive the analytic BOPs from DFT and to the initial
model parameters, which are derived from DFT by the downfolding procedure
(Sec. 3.2.3). The moderate errors in Fig. 5.12 show that the analytic BOPs
have an intrinsic transferability.
In Fig. 5.13, several tests are evaluated for the different models and plotted
with respect to the RMS errors in the energies of the elastic deformations and
bulk structures. The tests summarize

• the error in the energy differences of hcp and dhcp at their equilibrium
volume ∆hcp−dhcp,

• the error in the vacancy formation energy EF,vac,

• the average absolute error in the energy barriers Ebarrier of the two con-
sidered vacancy diffusion paths,

• the average absolute error in the elastic constants Cij,

• the average absolute error in the energies of the considered bulk struc-
tures Ebulk at their equilibrium volume excluding the dhcp structure,

• the error in the c/a-ratio of the hcp structure,

• the average absolute error in the two considered SF formation energies
ESF and

• the average absolute error in the considered self-interstitial formation
energies ESIA. To simplify these calculations, the atomic relaxation is
initialized by the results from the DFT reference.

The energy differences of hcp and dhcp at their equilibrium volume is posi-
tive for a large fraction of models especially for those with a high weight on
the RMS error in the energies of the elastic deformations. This qualitatively
wrong behaviour of the models is related to the small DFT energy differ-
ence of the two structures which is equal to 1.76 meV. By using high weights
for the RMS error in the energies of the elastic deformations of the ground
state, other phases are not sufficiently considered by the cost function such
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that the ordering of the phases may not be correctly described by the model
(Fig. 5.13a).
The vacancy formation energy does not show much variation across the dif-
ferent models except for a set of similar models which overestimate the energy
significantly (Fig. 5.13b).
Even though no atomic environments of the bulk phases are similar to those
of the vacancy diffusion paths (see Fig. 5.8), the vacancy diffusion is better
described by higher weights on the RMS error in the energies of the bulk
phases (Fig. 5.13c).
As expected, the average absolute error in the energies of the elastic constants
is lowest for those models which are optimized with a high weight on the RMS

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

−0.01 0.00 0.01 0.02 0.03 0.04 0.05
∆BOP

hcp−dhcp − ∆DFT
hcp−dhcp/eV

(a) hcp-dhcp energy difference.

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025
av

e.
R

M
S

er
ro

rs
/e

V
(e

la
st

ic
de

fo
rm

at
io

ns
)

−0.4 0.0 0.4 0.8 1.2 1.6 2.0
EBOP

F,vac − EDFT
F,vac/eV

(b) Vacancy formation energy.

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
ave(|EBOP

barrier − EDFT
barrier|)/eV

(c) Vacancy diffusion barrier.

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

20 30 40 50 60 70 80 90
ave(|CBOP

ij − CDFT
ij |)/GPa

(d) Elastic constants.

136



Parameterization of an Analytic Bond-Order Potential for Re

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

0.04 0.08 0.12 0.16 0.20
ave(|EBOP

bulk − EDFT
bulk |)/eV

(e) Bulk structures.

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

0.01 0.02 0.03
((c/a)BOP − (c/a)DFT)

(f) c/a-ratio.

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

100 200 300 400 500
ave(|EBOP

SF − EDFT
SF |)/(mJ/m2)

(g) SF formation energy.

0.005 0.010 0.015 0.020 0.025
ave. RMS errors/eV (bulk structures)

0.0005

0.0010

0.0015

0.0020

0.0025

av
e.

R
M

S
er

ro
rs

/e
V

(e
la

st
ic

de
fo

rm
at

io
ns

)

1 2 3 4 5 6
ave(|EBOP

SIA − EDFT
SIA |)/eV

(h) SIA formation energy.

Figure 5.13.: A series of quantitative tests (Figs. a-h) is executed for the op-
timized models. The cost function of the energies of the elastic
deformations is plotted versus the cost function of the energies of
the bulk structures and the color indicates the difference of the pre-
diction of the model to the DFT reference. A detailed description
of the qualitative tests is provided in the text.

error in the energies of the elastic deformations (Fig. 5.13d).
Similarly, the average absolute error in the energies of the considered bulk
structures at their equilibrium volume decreases with increasing weight on
the RMS error in the energies of the bulk structures (Fig. 5.13e).
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The c/a-ratio of hcp is better described by high weights on the elastic deforma-
tions as it is related to the energies of the elastic deformation (0, 0, 1, 0, 0, 0),
which are considered in the fit set (Fig. 5.13f).
Similar to the error in the energies of the vacancy diffusion barriers, the aver-
age absolute errors in the considered SF and SIA formation energies decreases
with increasing weight on the RMS error in the energies of the bulk structures
(Figs. 5.13f, 5.13g). A negative formation energy for the dhcp structure may
also cause a negative formation energy for the intrinsic SF because it includes
local atomic environments which correspond to dhcp. A set of models with
high weights on the RMS error in the energies of the elastic deformations does
not follow the general trend and shows small errors in the SIA formation en-
ergies. The trends of the errors are often complex and in different directions
with respect to the two RMS errors which define the Pareto front. Therefore,
qualitative tests for the models are defined in order to exclude models if they
do not reproduce test quantities accurately enough. In Figs. 5.14a-5.14h, the
models which passed the test are shown in green and which did not pass the
test in red in plots of the cost function of the energies of the elastic deforma-
tions versus the cost function of the energies of the bulk structures. A few
points are marked in blue, which correspond to calculations which exceeded
a maximal runtime. The qualitative tests are summarized in the following:

• The hcp structure at its equilibrium volume is lower in energy than the
dhcp structure at its equilibrium volume (Fig. 5.14a).

• The error in the vacancy formation energy is lower than 0.8 eV (Fig. 5.14b).

• The errors in the considered vacancy diffusion barriers are both lower
than 0.5 eV (Fig. 5.14c).

• The error in all elastic constants are lower than 90 GPa (Fig. 5.14d).

• The errors in the energies of the considered bulk structures at their
equilibrium volume are lower than 0.05 eV or their energy difference to
hcp are within a tolerance of ±40% (Fig. 5.14e).

• The error in the c/a-ratio of hcp is lower than 0.01.

• The SF energies are larger than 20 mJ/m2 (Fig. 5.14f).

• The error in the SIA formation energies is lower than 2.2 eV (Fig. 5.14g).

The tests for dhcp, the vacancy diffusion barriers, the bulk phases and the
SIAs (Figs. 5.14a, 5.14c, 5.14e, 5.14h) are mainly passed by models which are
obtained with a high weight on the RMS error in the energies of the bulk
structures. Contrary, the test for the c/a-ratio (Fig. 5.14f) is passed mainly
by models which are obtained with high weight on the RMS error in the
energies of the elastic deformations and the test for the SFs (Fig. 5.14g) is
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(a) hcp-dhcp energy difference.
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(b) Vacancy formation energy.
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(c) Vacancy diffusion barrier.
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(d) Elastic constants.
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(g) SF formation energy.
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(h) SIA formation energy.
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Figure 5.14.: A series of qualitative tests (Figs. a-h) is executed for the optimized
models. Models which passed the test are shown in green and mod-
els which did not pass it are shown in red in a plot of the cost
function of the energies of the elastic deformations versus the cost
function of the energies of the bulk structures. Only two models
passed all tests as shown in Fig. i. A detailed description of the
quantitative tests is provided in the text.
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Bond integrals c0 λ0 n0 c1 λ1 n1
ddσ -25.6844 1.2112 0.9128 -0.0545 0.0022 5.8615
ddπ 45.9185 1.5209 1.0781 1.3012 0.1368 2.8634
ddδ -11.8617 1.5604 0.9133 -9.7242 1.2671 1.7076

Pair repulsion c0 λ0 n0
Urep 65538.0909 4.7264 0.8625

Embedding term aemb bemb
Uemb,s 2.4338 0.1382

Table 5.1.: Parameters of Pareto-optimal analytic BOP for Re.

passed for intermediate weights. In Fig. 5.14i, it can be seen that only two
models passed all tests which differ marginally. From the two models, the
model with the smaller cost function of the energies of the bulk structures
has been selected as the final Pareto-optimal analytic BOP model for Re.

5.4.4. Pareto-Optimal Analytic BOP Model for Re

Model Parameters

The parameters of the bond integrals, the embedding term for the s-electrons
and the pairwise repulsive energy are summarized in Tab. 5.1. The bond
integrals and the pairwise repulsive energy are visualized and compared to the
initial model in Fig. 5.15. After the optimization the bond integrals are still
close to the initialization and the pairwise repulsion did not change visually.
This indicates again that the TB parametrizations across the periodic table
which are obtained in Sec. 3 are a robust initialization.

Description of Bulk Structures

The prediction for the energy-volume curves of the considered bulk phases in
the fit set and the test set are compared to their DFT reference in Fig. 5.16.
It can be seen that in the fit set the energies of the hcp, fcc, A15 and σ
phases are well reproduced. The bcc and C15 phase which have higher equi-
librium energies were optimized with a very low weight according to Eq. 5.9.
Therefore, their description is not good. As shown in Fig. 5.2, a much better
description of the bcc phase is possible. However, such an accurate descrip-
tion is not possible with the given model complexity if a robust description of
the elastic properties and good transferability to the TCP phases with a low
energy has to be preserved. The χ phase which has an equilibrium energy
which is close to the one of the fcc phase is well reproduced. The energies
of the other phases in the fit set are slightly overestimated, but their energy
differences are also well reproduced.
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Figure 5.15.: Comparison of the bond integrals and the pairwise repulsive energy
of the initial model and the Pareto-optimal model.

Description of Random Structures and Transformation Paths

The transferability to the 1-atom random structures is analysed in Fig. 5.17.
In Fig. 5.17a, the RMS error is plotted in the map of local atomic environ-
ments, which also shows the tetragonal, trigonal, hexagonal and orthorhom-
bic transformation paths. The region around hcp, fcc and bcc is magnified
in Fig. 5.17b. The RMS error has a smooth behaviour in the map of local
atomic environments and shows a clear minimum towards the hcp structure.
The transferability is worse at the right of the filled region of the map where
open atomic environments are located. However, the model still captures the
qualitative trend of the equilibrium energy from the left to the right of the
filled region in the map, as can be seen by a comparison of the model’s pre-
diction in Fig. 5.17c to the DFT reference in Fig. 5.5c.
The predictions of the model for the energies of the tetragonal, trigonal,
hexagonal and orthorhombic transformation paths are compared to the DFT
reference in Fig. 5.18. The predictions of the model qualitatively agree with
the DFT reference for the tetragonal transformation path (Fig. 5.18a). A de-
crease of the transferability of the model during the deformation of fcc to bcc
is already expected from Fig. 5.16 and is in agreement with the decrease of
transferability of the random structures which lie close to this transformation
in the map of local atomic environments (cf. Fig. 5.17b). The transferability
is better for the other direction of the tetragonal transformation path, where
fcc is transformed to the special bct structure. The difference of the predic-
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Figure 5.16.: Performance of Pareto-optimal analytic BOP on the bulk structures
in the fit set and the test set.

tion of the model to the DFT reference remains almost constant for a broad
range of total energies. Again this is in agreement with the behaviour of the
random structures which are located close to this part of the transformation
path in the map of local atomic environments (cf. Fig. 5.17a). Similarly,
the energies of the trigonal transformation path are qualitatively reproduced
(Fig. 5.18b) and a significant overestimation of the total energy for the sc
phase can be observed. Consistently, the RMS errors in the energies of the
random structures which are close to the sc phase in the map of local atomic
environments are also high. The energies for a continuation of the trigonal
transformation path from the fcc phase are well reproduced by the model. As
shown by the map, similar structures are created for the tetragonal deforma-
tion of fcc to bcc and the hexagonal deformation of hcp to fcc. Therefore, the
energies of these deformations are also similar (Fig. 5.18c). The energies for
the deformation of hcp in the other direction of the path agree well with the
DFT reference. This is similar to the results for trigonal transformation path.
The qualitative form of the energy profile of the orthorhombic transformation
path is not reproduced by the model (cf. Fig. 5.18d) but also not relevant for
the hcp-structure of Re. As also shown by the magnified part of the map of
local atomic environments, the agreement of the energies of structures which
are located close to bct is better than for structures which are located close
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Figure 5.17.: Performance of the Pareto-optimal analytic BOP on the energies of
a homogeneous sampling of 1-atom random structures in the map
of local atomic environments.
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Figure 5.18.: Performance of the Pareto-optimal analytic BOP on the energies of
the tetragonal, trigonal, hexagonal and orthorhombic transforma-
tion paths.

Description of Defects, Elastic Constants and Phonons

In Tab. 5.2, the predictions of the elastic constants, the energies for the SFs,
properties of the ground state phase hcp and the formation energies of point
defects are compared to the DFT reference.
The formation energies of the point defects are all overestimated, but the
ordering of the energies is well reproduced except for a different ordering for
the basal split dumbbell and basal tetrahedral SIAs, which both have a high
formation energy.
The formation energies of the intrinsic and extrinsic SF are underestimated
by the model but are still of the correct order. The basal intrinsic SF energy
is related to the energy difference of hcp and dhcp. Still, the model predicts
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Figure 5.19.: Comparison of the predictions of the Pareto-optimal analytic BOP
for the phonon band structure and phonon DOS to the DFT refer-
ence.

a value of -4.80 meV which is however higher than the DFT reference of -1.76
meV.
The values of the elastic constants C11, C13, C44 and C66 are well reproduced,
however, the values of C12 and C33 are not accurate. This is again related
to the limited model complexity and the requirement of a robust description
of the other phases. It can be seen in Fig. 5.13d that much better elastic
constants can be obtained with higher values of aela. As the c/a-ratio is
related to the elastic deformation C33, the model does not predict it correctly.
The phonon spectra and the phonon DOS from the model and the DFT
reference are compared in Fig. 5.19. The predictions of the model are in good
agreement with the DFT reference for low frequencies as the slope of the
acoustical phonon branches are similar close to the Γ-point. The agreement
is much worse for higher frequencies. The optical phonon branches are not
well reproduced and the phonon DOS is shifted to higher frequencies. Not
much variation in the quality of the description of the phonons can be observed
across all investigated models of Fig. 5.12. Therefore, a better description can
probably only be obtained by less approximations to the analytic BOP. For
example, an environment-dependent parametrization of the bond integrals or
the repulsive energy contribution (Sec. 5.1.2) may improve the description of
the phonons. It may also be possible that the s-electrons have to be explicitly
described by the analytic BOP formalism.
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Elastic constants (GPa) DFT Model
C11 625 627
C12 232 303
C13 213 240
C33 677 592
C44 170 142
C66 196 162

Stacking faults (mJ/m2) DFT Model
intrinsic 55 21
extrinsic 349 278

Ground state phase DFT Model
c/a-ratio 1.617 1.608

E
(0)
hcp − E(0)

dhcp (meV) -1.76 -4.80
Point defects (eV) DFT Model

vacancy 3.22 3.91
vacancy diffusion barrier (basal plane) 2.02 2.02
vacancy diffusion barrier (layer A to B) 1.71 2.17

octahedral interstitial 8.16 9.46
split dumbbell interstitial 6.78 8.96
tetrahedral interstitial 6.76 8.93

basal crowdion interstitial BT BT
basal split dumbbell 9.41 10.97
basal tetrahedral 10.17 10.44

Table 5.2.: Comparison of the predictions of the Pareto-optimal analytic BOP for
the elastic constants, SF energies, c/a-ratio, hcp-dhcp energy differ-
ence and energies of point defects to the DFT reference. The basal
crowdion SIA relaxes to the basal tetrahedral (BT) SIA.

5.5. Correlation of Model Predictions

In Sec. 5.4.3, the analytic BOP potential for Re is selected from the Parato
front by a series of tests which the model has to pass. Figure 5.13 shows that
the test quantities often have trends with respect to the RMS errors in the
energies of the elastic deformations and of the bulk structures. This indicates
that the different test quantities are correlated for the employed fit set and
functional form of the model. In Fig. 5.20, the Spearman’s rank correlation
coefficients ρS of the absolute values of all test quantities are evaluated for the
different analytic BOPs with nmax = 9. A statistically significant correlation
exists for the majority of pairs of test quantities. Test quantities which have
a positive correlation coefficient can be improved at the same time. How-
ever, a negative correlation coefficient shows that an improvement of one test
quantity corresponds to a compromise of the other test quantity. This shows
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that the selected analytic BOP potential for Re cannot be optimal in all test
quantities at the same time. The test quantities with the largest and smallest
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Figure 5.20.: Spearman’s rank correlation coefficient ρS of the absolute values of
the considered test quantities of the analytic BOPs of Fig. 5.12.

Spearman’s rank correlation coefficient for their absolute values are plotted
in Fig. 5.21. The points are coloured according to the value for aela. The
Spearman’s rank correlation coefficient is largest for the average error in the
SF formation energies and the absolute value of the error in the energy dif-
ference of the hcp and dhcp structures at their equilibrium volume. This is
in agreement with the fact that the ideal basal intrinsic SF has a local dhcp
environment. The smallest negative Spearman’s rank correlation coefficient
is obtained for the average error in the elastic constants and the average error
in the two considered energy barriers for the vacancy diffusion. The atomic
environments of the elastic deformations are not related to the local atomic
environments along the diffusion channel. Therefore, a large fraction of this
correlation is caused by the change of the model parameters due to the dif-
ferent value of aela. It may be a surprise that the average absolute errors in
the elastic constants and the bulk structures do not have a large value for the
Spearman’s rank correlation coefficient, even though these two quantities are
related to the two cost functions for which the Pareto front was estimated.
This is resolved by Figs. 5.13d, 5.13f, which show that the error in the elastic
constants remains moderate in a regime with high errors in the energies of
the elastic deformations and the c/a-ratio.

149



Automated Parametrization Strategy

−0.02 0.00 0.02 0.04 0.06
∆BOP

hcp−dhcp − ∆DFT
hcp−dhcp/eV

0

100

200

300

400

500

600
av

e(
|E

B
O

P
SF

−
E

D
F

T
SF

|)/
(m

J/
m

2 )
0 only ela.

aela

(a) Average absolute error in SF for-
mation energies versus error in
the hcp-dhcp energy difference at
equilibrium volume.

0 20 40 60 80 100
ave(|CBOP

ij − CDFT
ij |)/GPa

0.0

0.2

0.4

0.6

0.8

1.0

1.2

av
e(

|E
B

O
P

ba
rr

ie
r

−
E

D
F

T
ba

rr
ie

r|)
/
eV

0 only ela.
aela

(b) Average absolute error in va-
cancy diffusion barriers versus
average absolute error in elastic
constants.

Figure 5.21.: Individual errors in the two different test quantities with the largest
positive and smallest negative value of ρS in Fig. 5.20.

5.6. Influence of Model Complexity

The results of Secs. 5.4, 5.5 show that the analytic BOPs with the used model
complexity of nine exactly calculated moments with a very simple description
of the pair repulsion (Eq. 5.8) and the approximation of an environment-
independent atomic interaction can describe many quantities accurately but
often compromises have to be made in order to describe different regimes at
the same time. As discussed in Sec. 5.2.1, nine exactly calculated moments
(nmax = 9) have been found to be a good compromise between efficiency and
accuracy. Therefore, this value was used to parametrize the Pareto-optimal
analytic BOP for Re. It is straightforward to increase the model complex-
ity by increasing the number of moments and depending on the application,
the computational effort for a higher number of moments may be possible.
A smaller number of moments may be attractive for computationally expen-
sive calculations. Therefore, further initial models are parametrized with the
parametrization protocol of Fig. 5.1 to investigate how accurate a param-
etrization with a smaller number of moments is and if it is worthwhile to
increase the number of exactly calculated moments. Following the procedure
of Sec. 5.4.3, systematic samplings of aela are obtained for nmax = 6 and
nmax = 12 in Fig. 5.22.
The estimated Pareto front with nmax = 6 is clearly at larger values of the
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RMS error than that of nmax = 9. Especially, the RMS error in the energies
of the bulk structures is much higher. Therefore, none of the models with
nmax = 6 pass all tests of Fig. 5.14.
The estimated Pareto front for nmax = 12 is close to that of nmax = 9. How-
ever, the corresponding points of the RMS errors are all above the estimated
Pareto front obtained for nmax = 9. It may come as a surprise that a more
complex form for the analytic BOPs does not necessarily lead to an increase
in accuracy. However, many physical quantities do not converge at nmax = 12
but still oscillate with respect to the number of exactly calculated moments
[98, 121]. It is therefore possible that also the Pareto front oscillates with re-
spect to nmax. None of the models with nmax = 12 pass all tests of Fig. 5.14,
which shows that it is not beneficial to increase this part of the model com-
plexity by using twelve exactly calculated moments.
The results indicate that a more transferable analytic BOP for Re cannot
simply be obtained by increasing the number of exactly calculated moments
to nmax = 12 . Significant improvement may be obtained by an environment-
dependent description of the interatomic interaction or by an explicit treat-
ment of the s-electrons, which have been replaced by the computationally
effective embedding term (Eq. 2.224). It may also be possible that these ap-
proaches have to be conduced at the same time and that a higher number of
exactly calculated moments may lead to a further improvement if the model
complexity has been increased in an alternative way.
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Figure 5.22.: Comparison of the estimated Pareto front obtained in Fig. 5.12 for
an analytic BOP with nine exactly calculated moments (nmax = 9)
to those for six and twelve exactly calculated moments.
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Conclusion

A computationally more effective description of the interatomic interaction
than density-functional theory (DFT) is needed for simulations of large com-
position ranges and of representations of a material of more than a few hun-
dred atoms. This is provided by analytic bond-order potentials (BOPs), which
are obtained by a moments expansion from the tight-binding (TB) theory,
which can be derived from DFT by a second-order approximation. However,
analytic BOPs require a pairwise parametrization of the interatomic interac-
tion, which has been found to be very time-consuming and which was con-
ducted only for a few combinations of elements. This parametrization process
is facilitated in this work to allow for a fast parametrization of accurate and
transferable analytic BOPs. For this purpose, TB parametrizations across the
periodic table and a map of local atomic environments are developed, which
are both used in an automated parametrization strategy.
Non-orthogonal and orthogonal TB parametrizations for almost all combi-
nations of elements from periods 1 to 6 and groups 3 to 18 of the periodic
table are obtained by optimizing the projection of the DFT wave function
for dimers in the Harris-Foulkes approximation onto a TB minimal basis. All
48048 inequivalent matrix elements are parametrized by a flexible functional
form. The number of required parameters depends on the considered range
of interatomic distances. The flexible functional form facilitates a further
optimization of the TB matrix elements to reference data and shows system-
atic trends of the parameters across the periodic table. This validates the
robustness of the parametrizations and allows for insight into the chemical
diversity of interatomic interactions. The parametrizations are used to test
TB parametrizations which assume specific trends across the periodic table
and are compared to TB parametrizations obtained by other methods.
Moments-descriptors based on the local electronic density of states (DOS) are
introduced, which describe the local atomic environment and determine the
bond chemistry. The two lowest structure-dependent moments of the elec-
tronic DOS as obtained from canonical sp- and d-valent TB models are used
to span a 2-D map of local atomic environments. The map of local atomic
environments is used for the discussion of crystal structures. It is shown that
structures with one or two atoms in the primitive cell are bound to specific
regions of the map. By making use of the analytic BOP expansion, it is ar-
gued that the lowest energy structure for a specific material should be found
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close to the boundaries of these regions. It is further shown that the energy
difference between two structures depends on the distance between the struc-
tures in the map. This is numerically validated by extensive TB and DFT
calculations. The intuitive insight into the space of local atomic environments
and the bond chemistry is particularly useful to assess and optimize the trans-
ferability of local atomic environments.
This is employed in an optimization of analytic BOPs to DFT reference data,
which is initialized by the TB parametrizations across the periodic table. In
an automated parametrization strategy for sd-valent systems, the accuracy of
analytic BOPs with respect to DFT reference data is optimized by minimiz-
ing a cost function with a local optimization algorithm. The TB parameters
from the parametrizations across the periodic table are extended by a simple
pair repulsion and the computational efficiency is increased by replacing the
long ranged s orbitals by an embedding term. It is shown that the transfer-
ability of analytic BOPs can be systematically optimized by using reference
data from a homogeneous sampling in the map of local atomic environments.
Furthermore, a new analytic BOP for Re is parametrized, which requires
the exact calculation of the first nine moments. The relevant reference data
is rationalized with the map of local atomic environments. The automated
parametrization strategy for sd-valent systems is applied to optimize the an-
alytic BOP with respect to DFT reference data. The trade-off between the
accuracy in the description of the elastic deformations of the ground state
phases hcp and the transferability to other phases is controlled by a weight
parameter. The variation of this parameter allows one to map out a Pareto.
A Pareto-optimal analytic BOP for Re is selected by a combination of several
tests for the transferability of the potential. It is further shown that a smaller
number of exactly calculated moments is not sufficient to achieve the desired
accuracy and a larger number of moments does not improve the accuracy
further.
The results suggest that the automated parametrization strategy can be ap-
plied to parametrize analytic BOPs or TB models for all sd-valent systems.
The TB parametrizations across the periodic table may be used together with
the map of local atomic environments based on the canonical sp-valent TB
model for the parametrization of sp-valent systems. Only small modifica-
tions of the automated parametrization protocol are necessary as an explicit
treatment of the s-electrons may be required.
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The proposed automated parametrization strategy can be used to parametrize
further analytic bond-order potential (BOP) models and parametrizations
based on the proposed initialization will be published by other authors for
the Ni-W-Re system to simulate Ni-base superalloys and for the W-Re-Os
system to simulate plasma-facing materials for fusion applications (Ref. 172)
as well as for the Ti-Ta system to simulate shape memory alloys (Ref. 224).
An important continuation of this work is a high-throughput parametriza-
tion framework of analytic BOPs for all combinations of transition metals.
Moreover, the developed parametrization strategy for sd-valent elements may
be adapted to parametrize sp-valent elements and systems which consist of
both sp- and sd-valent elements such that a high-throughput parametriza-
tions across the periodic would become possible.
Another option to make use of the tight-binding (TB) parametrizations across
the periodic table is to interpolate the trends of the model parameters with
respect to the period number and group number to develop a qualitative
multi-component TB model. This model could be further improved by ex-
tracting systematic scaling behaviours of the optimized TB matrix elements
to reference data for bulk structures.
An alternative strategy to predict physical quantities from reference data is
to replace a physical model like the analytic BOPs by statistical machine-
learning methods. However, for an efficient use of these methods, descriptors
have to be generated which encode the most important quantities of the un-
derlying system. For this, the TB parametrizations across the periodic table
and the map of local atomic environments can be applied. The obtained inter-
atomic TB parameters provide a description of the chemical bonds, which may
be used to derive chemistry informed descriptors for the interatomic interac-
tion. The moments-descriptors used in the map of local atomic environments
have been shown to capture a large fraction of the cohesive energy of the model
and to provide a measure for the similarity of atomic environments. Therefore,
the map of local atomic environments has been used in Ref. 194 to predict
the cohesive energy by a supervised machine-learning method. In Ref. 225,
the map was used to cluster the atomic environments in potential transpar-
ent conductors by an unsupervised machine-learning method and then the
moments-descriptors have been used among others to construct features for
a supervised prediction of the formation energy and band gap.
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Outlook

Moreover, the map may also be used to classify the individual atoms in atom-
istic simulations like, e.g., molecular-dynamics simulations, where typically
a very large number of atom hinders manual analysis and requires tools for
automated identification of processes like nucleation, phase transformation or
dislocation movement.
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Trends of Homoatomic Dimers
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Å

)

1p
2p
3p

4p
5p

(d) ppπ.

Figure A.1.: Trend of the decay parameter λ0 of the interatomic matrix elements
of Horth across different periods of the sp-valent homoatomic dimers.
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Figure A.2.: Trend of the decay parameter λ0 of the interatomic matrix elements
of Horth across different periods of the sd-valent homoatomic dimers.

159



B
Trends of Heteroatomic Dimers
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Figure B.1.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ssσ of Horth of the heteroatomic sp-valent dimers.

160



B C N O F N
e

A
l

Si P S Cl A
r

G
a

G
e

A
s

Se Br K
r

In Sn Sb Te I X
e

Tl Pb Bi R
n

Rn
Bi
Pb
Tl
Xe

I
Te
Sb
Sn
In
Kr
Br
Se
As
Ge
Ga
Ar
Cl
S
P
Si
Al
Ne
F
O
N
C
B

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
λ

0 /(1
/Å

)

Figure B.2.: Trend of the decay parameter λ0 of the interatomic matrix elements
of spσ of Horth of the heteroatomic sp-valent dimers. First element
(contributing the s-orbital) is specified by the row, second element
(contributing the d-orbital) by the column.
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Trends of Heteroatomic Dimers
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Figure B.3.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ppσ of Horth of the heteroatomic sp-valent dimers.
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Figure B.4.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ppπ of Horth of the heteroatomic sp-valent dimers.
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Trends of Heteroatomic Dimers
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Figure B.5.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ssσ of Horth of the heteroatomic sd-valent dimers.
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Figure B.6.: Trend of the decay parameter λ0 of the interatomic matrix elements
of sdσ of Horth of the heteroatomic sd-valent dimers. First element
(contributing the s-orbital) is specified by the row, second element
(contributing the d-orbital) by the column.
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Trends of Heteroatomic Dimers
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Figure B.7.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ddσ of Horth of the heteroatomic dd-valent dimers.
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Figure B.8.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ddπ of Horth of the heteroatomic dd-valent dimers.
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Trends of Heteroatomic Dimers
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Figure B.9.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ddδ of Horth of the heteroatomic dd-valent dimers.
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Figure B.10.: Trend of the decay parameter λ0 of the interatomic matrix elements
of ssσ of Horth of the heteroatomic dimers consisting of one sp-
valent atom (row) and one sd-valent atom (column).
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Trends of Heteroatomic Dimers
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Figure B.11.: Trend of the decay parameter λ0 of the interatomic matrix elements
of sdσ of Horth of the heteroatomic dimers consisting of one sp-
valent atom (row) and one sd-valent atom (column).
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Figure B.12.: Trend of the decay parameter λ0 of the interatomic matrix elements
of psσ of Horth of the heteroatomic dimers consisting of one sp-
valent atom (row) and one sd-valent atom (column).
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Trends of Heteroatomic Dimers
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Figure B.13.: Trend of the decay parameter λ0 of the interatomic matrix elements
of pdσ of Horth of the heteroatomic dimers consisting of one sp-
valent atom (row) and one sd-valent atom (column).
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Figure B.14.: Trend of the decay parameter λ0 of the interatomic matrix elements
of pdπ of Horth of the heteroatomic dimers consisting of one sp-
valent atom (row) and one sd-valent atom (column).
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C
Calculation of Elastic Constants

for the Hexagonal Crystal
Structure

The Lagrangian theory of elasticity of an anisotropic material is discussed
e.g. in Refs. 220, 221. The elastic behaviour is determined by the stiffness
tensor C, which defines the relation between the Lagrangian stress τ and the
Lagrangian strain η by the generalized Hooke’s law

τij =
3∑

k,l=1
Cijklηkl, (C.1)

where i , j, k and l are Cartesian indices. The elements of the stiffness tensor
are referred to as elastic constants. The Lagrangian strain and the physical
strain ε, which define the deformation of the unit cell, are related by

η = ε+ 1
2ε

2. (C.2)

Equivalent pairs of Cartesian indices ij are enumerated in Voigt notation by
the index α, according to

ij 11 22 33 23, 32 13, 31 12, 21
α 1 2 3 4 5 6.
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Calculation of Elastic Constants for the Hexagonal Crystal Structure

A power series expansion of the total energy with respect to η is written in
Voigt notation as

E(η) = E(0) + V (0)∑

α

τ (0)
α ηα + V (0)

2
∑

α,β

Cαβηαηβ + . . . , (C.3)

where E(0), V (0) and τ (0) are the total energy, volume and stress of the refer-
ence structure.
The elastic constants are computed from energy calculations performed with
DFT or with interatomic potentials by selecting the number of elastic de-
formations according to the number of independent elastic constants Cαβ for
the crystal structure under consideration. The cell is deformed with different
strain values η for each elastic deformation. The corresponding total ener-
gies are computed and curves Efit(η) are fitted to the data. From the second
derivatives of these curves, the elastic constants are computed by the solution
of a system of linear equations. This method is implemented in the program
code ElaStic, which is introduced in Ref. 221. The program code has been
adapted to calculate elastic constants with VASP and BOPfox and was further
modified in the choice of elastic deformations (see Tab. C.1).
The stiffness tensor of hexagonal crystal structures is given by

Chex. =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 (C11 − C12)/2




(C.4)

and has five independent elastic constants. Therefore, five different elastic
deformations are required to compute them from the total energy.
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Voigt notation Lagrangian strain E(2)(η = 0)

(1, 0, 0, 0, 0, 0)



η 0 0
0 0 0
0 0 0


 V 0

2 C11

(0, 0, 1, 0, 0, 0)




0 0 0
0 0 0
0 0 η


 V 0

2 C33

(1, 1, 0, 0, 0, 0)



η 0 0
0 η 0
0 0 0


 V 0 (C11 + C12)

(1, 0, 1, 0, 0, 0)



η 0 0
0 0 0
0 0 η


 V 0

2 (C11 + C33 + 2C13)

(0, 0, 0, 1, 0, 0)




0 0 0
0 0 η/2
0 η/2 0


 V 0

2 C44

Table C.1.: Elastic deformations and their corresponding second derivative of the
total energy used to calculate the elastic constants of the hcp crystal
structure.
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