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1 Introduction

In this thesis we are investigating a time-evolved version of the sym-
metric mean-field Potts model. It is our goal to understand the critical
parameters (both temperature and time) for which the model shows
the sequential Gibbs property. This type of research has its origins in
the discovery of non-Gibbs measures which arise from Gibbs measures
under natural transformations. At that time, the Gibbs property of
measures was merely taken for granted. In a founding paper van Enter,
Fernández, and Sokal [56] considered these natural transformations and
proved rigorously that in several cases the resulting measures are not
Gibbs measures. A key concept in the understanding of these pathologies
is the notion of a hidden phase transition which will be discussed later
on.

The Potts model is a model from statistical physics that is a general-
ization of the famous Ising model. Despite its name “Ising model”, the
physicist Wilhelm Lenz invented it in 1920 [44] and asked his student
Ernst Ising to study it in his PhD thesis [27]. Historically, the Ising
model was considered a model for ferromagnetism. Today, it is one
of the most-studied models in statistical physics and has also raised
interesting problems in the mathematical theory of probability. This
is most probably due to its simplicity and interesting behavior. At the
time of Lenz and Ising, a magnet was imagined to be a collection of
small magnetic moments that sit on some spatial structure like a lattice.
Below a threshold temperature (the critical temperature) the magnetic
moments in a ferromagnet have the tendency to align themselves with
each other, even in the absence of an external magnetic field. In statisti-
cal physics this is known as a phase transition. The Ising model tries
to mimic this phenomenon by modelling these magnetic moments as
particles that can have the two states 1 and −1. These particles are then
arranged on a spatial structure like a d-dimensional lattice, for example,
and neighboring particles are said to interact in such a way that their
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1 Introduction

preference is to align themselves with their neighbors. In fact, in the
first version of the Ising model (as it was considered by Ernst Ising)
the lattice was even one-dimensional. Unfortunately, Ising was mislead
by results from the one-dimensional model which does not show the
expected phase transition, and falsely conjectured that also the models
on the higher dimensional lattices would not show any phase transitions.
Rudolph Peierls [48] later found this conjecture not to be true and in-
stead proved that the Ising model does show a phase transition in two or
more dimensions which led to the immense success of this model. Eight
years after Peierls proof, in 1944, Lars Onsager [47] provided an exact
solution of the Ising model. The Potts model, which was first considered
by Renfrey Potts in 1951, generalizes the Ising model so that it allows
the particles to have q different states (sometimes referred to as colors)
where q ≥ 3 is an integer. Like the Ising model, the Potts model favors
configurations where neighboring particles have the same state.
Even before the Ising model, another model by Pierre-Ernest Weiss

was a candidate for the modelling of ferromagnetism. Today, this model
is known as the Curie–Weiss model or mean-field Ising model in the
statistical physics and probability literature. In a mean-field model,
the lattice is replaced by the complete graph, that is, every particle
interacts with every other particle and favors the same state. Although
this might seem to yield completely different models, mean-field models
often show similar behavior to their lattice counterparts, at least in
higher dimension. The one-dimensional Ising model, for example, does
not show a phase transition but the Curie–Weiss model does. Already
the two-dimensional Ising model, however, shows the same behavior as
the Curie–Weiss model. There are even quantitative results concerning
the critical temperatures of the two models [12]. To determine whether
a mean-field model shows a phase transition, one can transform this into
an optimization problem of a certain potential function, sometimes called
free energy. This potential function depends on the parameters of the
model and the model shows a phase transition if the global minimum of
the function is degenerate, that is, if multiple global minimizers exist.
Since it is usually hard to find sharp results for the critical parameters
on the lattice, mean-field models are often considered solvable by this
optimization approach. Our investigations of the mean field-Potts model,
however, show that the task to understand the critical parameters at
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which the minimizers of the potential change can be quite extensive.
There are two different methods to obtain the potential function. One

is based on the theory of large deviations, the other is based on the
so-called Hubbard-Stratonovič transformation. Essentially, the idea of
the two approaches is very similar: They quantify on an exponential scale
the concentration of probability mass on the different events. Whereas
large deviation principles provide upper and lower bounds on this con-
centration in terms of a so-called rate function, the second approach
uses the Hubbard-Stratonovič transformation to rewrite the probability
distribution in such a way that Laplace’s method [42] can be used. This
means roughly the following: The main contribution to integrals of the
form ∫

e−nf(x) dx

for large n come from the neighborhoods of the global minimizers of
f . The probability to observe a certain magnetization for a system
with a large number n of particles therefore concentrates around the
global minimizers of f . If the potential has multiple global minimizers,
the physical interpretation is that different phases of the system (with
different values for the magnetization) can coexist.
The potential function typically depends on a number of parameters.

In the case of the mean-field Potts with three states these are: the inverse
temperature β and a two-dimensional external field (u, v). The inverse
temperature acts as a homogeneous coupling strength of the interaction
of the particles and the external fields (u, v) model the bias of the system
in favor of one or more states. Low temperature (high β) means that the
particle interaction is very strong and they are likely in the same state,
high temperature (low β) means that the particle interaction is weak. In
order to understand the effect of the parameters u and v, it is instructive
to refer to Figure 1.1. The bias introduced by the external fields (u, v)
can be represented by a point in the unit simplex. Without any bias,
we have (u, v) = (0, 0) and we are in the center of the unit simplex. If
the external fields are represented by a point near vertex 1, for example,
it means that a-priori the system favors configurations which have a
lot of particles in state 1. On the other hand, if we choose one of the
midpoints of the simplex’ edges, the system favors the two states of the
adjacent vertices equally. Note that we can represent both the external

3



1 Introduction
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Figure 1.1: The unit simplex can be used as a representation for the bias that the
external fields introduce for a Potts model with three states. For example,
an external field represented by one of the simplex’ vertices means that
the system favors the respective state. If a midpoint of the simplex edges
is considered, this means that the system favors the two states belonging
to the adjacent vertices equally. In this way, we can describe the bias
using the two coordinates u and v.

fields as well as the magnetization (the vector of the relative frequencies
of the states 1, 2, 3 in a configuration of particles) by a point in the unit
simplex. In terms of singularity theory we are dealing with a function
with a three-dimensional control space (the parameters β, u, v) and a
two-dimensional state space (the magnetization (x, y)).

Singularity theory is concerned with the local change of a parameter-
dependent smooth function of one or more variables near its critical
points, that is, points of vanishing first derivative. This change is induced
by a change of the parameters of the function. One important result
of this theory is that the nature of these changes can be classified
and that, surprisingly, the list of possible changes for r-dimensional
parameters with r ≤ 4 is finite and is known as Thom’s Seven Elementary
Catastrophes. The precise formulation of this classification is the content
of Thom’s theorem. This theorem will be discussed in more detail in
the following chapter but let us mention that the equivalence relation
imposed on the set of potential functions is based on parameter-dependent
local diffeomorphisms acting on the domain and parameter-dependent
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translations in the target space. This leads to a list of parameter-
independent germs of functions which show a specific behavior when they
are perturbed by parameter-dependent terms. These perturbations are
referred to as unfoldings in singularity theory and the germs represent
types of singularities which have figurative names like the cusp, the
butterfly or the elliptic umbilic. For example, the polynomial prototype
of the cusp singularity is given by x4 +ax2 + bx. Depending on the value
of the parameters a and b this polynomial has either two minimizers
or one minimizer. The case b = 0 is particularly easy to understand:
Since x4 + ax2 →∞ as |x| → ∞ and the number of inflection points is
bounded by two, the number of minimizers is determined by the local
behaviour around x = 0. This is where the parameter a comes into play.
For a < 0 the function has a local maximum at x = 0 and thus two
minimizers, for a ≥ 0 the function has a minimum at x = 0 and because
of the bound on the number of inflection points this minimum is unique.

For the investigation of phase transitions of mean-field models, which
are connected to optimization problems of parameter-dependent potential
functions, the results of this theory provide a useful tool. It is our interest
to understand the change of the global minimizers of the potential as a
function of the parameters. Combining the local analysis of singularity
theory to understand how the minimizers change under a change of the
parameters with a global analysis of all minimizers, we can identify the
critical parameters for which the potential function has a degenerate
global minimum.

There are various types of Gibbs properties of which we will mention
two. The first type is known as the DLR-formalism named after Do-
brushin, Lanford and Ruelle which is suited for a description of models
that have spatial dependence structures like a lattice, for example [23].
The key idea is that a measure in infinite volume is a Gibbs measure if it
can be reconstructed from its conditional probabilities of the particles in
finite volume given the state of all particles on the outside of this volume.
The second type is known as sequential Gibbs property and is applicable
to mean-field models like the mean-field Potts model. This notion of
Gibbsianness is much younger and was introduced by Häggström and
Külske [25] because the DLR-formalism does not yield much information
for mean-field models where there is no spatial structure as the particles
sit on a complete graph. Infinite-volume limits of mean-field models
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1 Introduction

either lead to product measures (which are Gibbsian in the DLR-sense)
or mixtures of product measures (which are non-Gibbsian in the DLR-
sense). The sequential Gibbs property imitates a property of DLR-Gibbs
measures called quasilocality. This property can be interpreted as a
continuity property of the dependence of the conditional probabilities on
the state of the system on the outside of the respective finite volume.

We will now describe the mathematical formalism associated with the
concepts above and use them to define the symmetric mean-field Potts
model. A system of n ∈ N particles in statistical physics is described
by a probability distribution on the set of possible configurations Ωn.
The set of configurations for the system is an n-fold Cartesian product
of the set E of states in which an individual particle can be in, that is,
Ωn = En. For the symmetric mean-field Potts model with three states
this set is Ωn = {1, 2, 3}n and the probability distribution on Ωn is given
by the Boltzmann weights

Pn[(ω1, . . . , ωn)] = e−βHn(ω1,...,ωn)

Zn(β)

where ωi ∈ {1, 2, 3} and i ∈ {1, . . . , n}. The partition function Zn(β) is
the normalizing factor that makes the probabilities sum up to one, that
is,

Zn(β) =
∑

(ω1,...,ωn)∈Ωn

e−βHn(ω1,...,ωn).

The function Hn : Ωn → R is called the Hamiltonian of the model. It can
be interpreted as the interaction energy of the particles which leads to
high probability for a configuration whose interaction energy is low and
vice versa. We can now also understand how the inverse temperature β
controls the interaction strength. Low values of β mean that the effects
of the interaction energy is weakened, for example β = 0 would yield
the uniform distribution on Ωn, that is, all the particles are independent
and all configurations are equally likely. In the case of the symmetric
Potts model the Hamiltonian is defined as follows:

Hn(ω1, . . . , ωn) = − 1
2n

n∑
i,j=1

1σi=σj
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This function clearly produces low values (and hence high Boltzmann
weights) for configurations (σ1, . . . σn) where a lot of the particles have
the same state.
A phase transition refers to an abrupt change of a physical quantity

when external conditions are modified. For example, water shows a
drastic change in volume when its temperature passes the boiling point.
In statistical physics we want to explain the macroscopic properties of
matter using microscopic models. The microscopic model is given in
terms of a random variable that captures the full microscopic state of
the system. An example for such a random variable in the case of the
Curie–Weiss model is the random vector (ω1, . . . , ωn) ∈ {−1, 1}n. This
vector captures the magnetic moments of all n particles that the system
consists of and thus captures the full microscopic state. The macroscopic
property magnetization can be studied by analysing the limiting behavior
of the observable 1

n

∑n
i=1 ωi as n→∞. The fact that the Curie–Weiss

model shows a phase transition is reflected in the breakdown of the law
of large numbers for β > 1,

1
n

n∑
i=1

ωi →
1
2(δ−m(β) + δm(β)),

where m(β) is some real number in the interval (0, 1). If we approach
the critical temperature of the Curie–Weiss model from below, that is,
β ↘ 1, we find that m(β)→ 0 [19, Chapter 2]. This means that for a
temperature above 1, the system shows no magnetization whereas below
this temperature we find that it is magnetized. One should also note that
for β = 1, that is, at the critical point, the law of large numbers applies
but with an unusual type of central limit theorem [13]. This shows why
the Curie–Weiss model is also interesting from other perspectives of
probability theory.
A mean-field model is said to have the sequential Gibbs property if

certain conditional probabilities have a well-defined limit as the number
of particles tends to infinity. In the language of statistical physics this
limit is called the thermodynamic limit. To be more precise, we consider
the finite-volume conditional probability Pn[σ1|σ2, . . . , σn] of the first
particle σ1 given a fixed configuration (σ2, . . . , σn) of the remaining
particles. For the sequential Gibbs property we demand the existence of
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1 Introduction

γ(σ1|α) := limn→∞ Pn[σ1|σn,2, . . . , σn,n] where (σ1, σn,2, . . . , σn,n) ∈ Ωn

is a sequence of configurations for an increasing number of particles such
that the empirical measures

1
n− 1

n∑
k=2

δσn,k

have the limit α for as n→∞. If the limit γ(σ1|α) exists, we call α good.
The mean-field model is called sequentially Gibbs if every probability
measure on E is good.
The symmetric mean-field Potts model is sequentially Gibbs in this

sense and in view of the results of van Enter, Fernández, and Sokal
[56] a natural question to ask is whether this property is preserved for
our time-evolved version of the mean-field Potts model. A key concept
in this investigation is the notion of a hidden phase transition. The
reason for the loss of the continuity of the conditional probabilities in
the infinite-volume limit lies in a discontinuity in another system of
particles. This system captures the state of the particles at time zero
but conditioned to end in a certain configuration at a later point t > 0
in time. It is known as the constrained first-layer model.

This thesis is split in three parts. The first part explains the methods
that we use in the other two parts of this thesis. The methods derive from
two different fields of mathematics: probability theory and singularity
theory. From probability theory we use the theory of large deviations
and another method to establish limit laws sometimes referred to as
Hubbard-Stratonovič approach. Singularity theory allows us to study the
parameter-dependent functions that appear in the probabilistic methods.
Two important concepts of singularity theory are the catastrophe map
and the bifurcation set. By means of the catastrophe map we are able
to analyse the bifurcation set which in turn helps us to understand the
critical transition lines (Maxwell sets) of the static and time-evolved
Potts model. This part is found in Chapter 2.
The second part is a detailed analysis of the mean-field Potts model

in vector-valued external field contained in Chapter 3 which is also
useful for the analysis of the time-evolved model. We are analysing
the free energy which is a parameter-dependent real-valued function
on the set of probability measures on {1, 2, 3}, that is, on the two-
dimensional unit simplex ∆2 without boundary. This function plays a
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role in the large deviation principle that is satisfied by the mean-field
Potts distributions. If this function has a degenerate global minimum,
that is, if it has multiple global minimizers, the model is said to undergo
a phase transition because the probability mass concentrates around
multiple points in ∆2. These points are interpreted as the possible
phases of the system. The mean-field Potts model can at most have a
coexistence of four phases, three ordered phases and one disordered phase
corresponding to the global minimizers of the free energy. Depending on
the external field, which is equivalently described by an a-priori measure
α on {1, 2, 3}, the number of global minimizers varies between one and
four. This behavior is analysed via a discussion of the possible two-
dimensional sections of the Maxwell set for fixed inverse temperatures β.
The Maxwell set is a subset of the three-dimensional parameter space
(0,∞) ×∆2, consisting of inverse temperature β and external field α,
which contains those parameters (β, α) such that the free energy has at
least two global minimizers. Moreover, with our method we also gain
insight into the metastable, that is, local minima of the free energy. This
results in a decomposition of the parameter space into regions where the
number of local and global minima is constant.

In the last part in Chapter 4 we study a natural time-evolution of the
symmetric mean-field Potts model. This time-evolution is a symmetric
spin-flip dynamics that is independent over the different particles. This
means that the future state of a particle at time t > 0 given a configura-
tion of the system at time t = 0 depends only on the state of the same
particle in the past. In other words, each particle evolves independently
of the other particles. The physical interpretation is that the particles are
heated in a bath of infinite temperature which is a special case of Glauber
dynamics. We are then interested in the sequential Gibbs property of
the time-evolved measures. Using the two-layer approach we are able to
reduce this question to the study of phase transitions of the first-layer
model constrained to have empirical distribution α at time t. In the
analysis of the parameter-dependent potential function that arises in the
Hubbard-Stratonovič approach we are able to use the knowledge of the
static model. We show that in a mid-range temperature regime (β < 3)
the transitions of the static model re-appear where α plays the role of
the external fields and the time parameter t allows for a perturbation of
the bifurcation set slices we observe in the static case. However, unlike
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1 Introduction

the static case where the external fields are constrained to the interior of
the unit simplex, in the time-evolved model we find various exit scenarios
of the bifurcation set slices. More precisely, some parts of the bifurcation
set leaves the unit simplex and therefore the corresponding bad measures
α are not visible. Complementing the analysis with a combination of
exact symbolic computation and numerics, we are able to provide a
full analysis of this mid-range temperature regime. In particular, we
describe the time-evolution of the bad measures for different subregions
in the regime β < 3. The behavior of this model shows a number of
interesting properties, first and foremost the recovery of the sequential
Gibbs property. Additionally, unlike the Curie–Weiss model, the non-
Gibbs temperature, which is defined to be the temperature above which
no transitions between Gibbs and non-Gibbs occur, does not coincide
with the critical temperature of the static model. Furthermore, we are
able to fully analyse the trajectories of bad empirical measures and we
find essentially five β-regimes with different sequences of bad measures
appearing in the time-evolution. For every β < 3 the bad empirical
measures first appear (if they appear at all) as the midpoints of the
simplex edges and form three straight lines moving towards the center
of the simplex. With increasing β the time-evolution of the set of bad
measures becomes more involved. The three lines branch off on one end
to two curves of fully asymmetric bad measures. Later these Y-shaped
sets become connected and depending on the β-regime the partially
symmetric part of these sets either leaves the simplex before the sets
connect or after they have connected. For a full overview see Figure 4.3.
In the regime β ≥ 3 the analogy with the static model breaks down and
new types of transitions appear which is left to future research.
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2 Gibbs–non-Gibbs transitions and
singularity theory

In this chapter we are establishing the connection between the sequential
Gibbs property of our time-evolved symmetric mean-field Potts model
and the ideas and terms from singularity theory. In the first part we will
describe the constrained first-layer model that emerges in the two-layer
approach and present two methods for the analysis of the concentration
behavior. In the second part we give the definitions for the basic objects
in singularity theory. We also cover one major result of the theory:
Thom’s classification theorem.

2.1 From probability theory to singularity theory
The mean-field Potts model describes a system of a finite number n of
particles that can have q different colors. Therefore the configuration
space Ωn is the set of all tuples (ω1, . . . , ωn) with ωi ∈ {1, . . . , q}. Note
that because these spaces are finite, we can describe the probability
measures on Ωn by a probability vector. In the Chapter 3 of this thesis,
we are studying the mean-field Potts model with q = 3 states in a vector-
valued external field. This external field is represented by a point α in
the (interior of the) unit simplex

∆q−1 =
{

(α1, . . . , αq)
∣∣∣∣ q∑
b=1

αb = 1,∀b ∈ {1, . . . , q} : αb > 0
}
.

Definition 1. The mean-field Potts model at inverse temperature β > 0
and external field α ∈ ∆2 is the sequence (µn,β,α)n∈N where µn,β,α is the
probability measure on Ωn given by

µn,β,α(ω1, . . . , ωn) = e
β

2n
∑n

i,j=1 1ωi=ωj

Zn(β, α)

n∏
i=1

αωi (2.1)

11



2 Gibbs–non-Gibbs transitions and singularity theory

where the partition function is defined as

Zn(β, α) =
∑

(ω1,...,ωn)∈Ωn

e
β

2n
∑n

i,j=1 1ωi=ωj
n∏
i=1

αωi . (2.2)

The static mean-field Potts model in external field is a first step
for the understanding of the time-evolved version of the model as we
will see in Chapter 4. Although our analysis in this chapter is for the
case q = 3, we will define the dynamics for an arbitrary integer q ≥ 2.
The time-evolution will be given in terms of a Markov chain that is
constructed out of independent Markov chains which govern the time-
evolution of the individual particles. Therefore, we are given transition
probabilities pt(a, b) that describe the probability that a particle in state
a ∈ {1, . . . , q} is in state b ∈ {1, . . . , q} at time t > 0. The particles
undergo a symmetric spin-flip dynamics, that is, they change their color
to i at a rate ri = 1 for all i ∈ {1, . . . , q}. This leads to the transition
probabilities

pt(a, b) = egt1a=b

egt + q − 1
where gt := log

(
1 + 2e−3t) − log

(
1− e−3t). We will now define the

time-evolved measures µn,β,t.
Definition 2. The time-evolved mean-field Potts model at time t > 0
with initial inverse temperature β is given by the sequence (µn,β,t)n∈N of
probability measures on Ωn given by

µn,β,t(η1, . . . , ηn) =
∑

(ω1,...,ωn)∈Ωn

e
β

2n
∑n

i,j=1 1ωi=ωj

qnZn(β, α0)

n∏
i=1

pt(ωi, ηi) (2.3)

where α0 equals the uniform distribution on {1, . . . , q}.
These measures represent a time-evolution of the symmetric mean-field

Potts model since we are using the uniform distribution α0 as an a-priori
measure which equivalently describes the absence of an external field.
This means that initially there is no bias towards any particular color.

We are then interested in the parameters (β, t) for which the above
time-evolved mean-field Potts model shows the sequential Gibbs property.
This definition essentially requires that we can define an infinite-volume
limit of the conditional probabilities in finite volume.
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2.1 From probability theory to singularity theory

Definition 3. We say that α ∈ ∆q−1 is a good point for the time-evolved
mean-field Potts model (µn,β,t)n∈N if and only if the limit

γβ,t(η1|α) := lim
n→∞

µn,β,t(η1|ηn,2, . . . , ηn,n) (2.4)

exists for every family ηn,k ∈ {1, . . . , q} with n ≥ 2 and k ∈ {2, . . . n}
such that

lim
n→∞

1
n− 1

n∑
k=2

ηn,k = α. (2.5)

Otherwise, we call α a bad point. We say that the time-evolved mean-field
Potts model (µn,β,t)n∈N is sequentially Gibbs if all α in the unit simplex
∆q−1 are good points.

One should note that the original definition of the sequential Gibbs
property involved an additional condition [25]. This condition asked
that the function α 7→ γβ,t(η1|α), which is defined in the limit process, is
continuous. However, this requirement is already implied by the existence
of the limit itself [26].
We will now explain the two-layer approach, which was used, for

example, by van Enter, Fernández, and Sokal [56] to prove the non-
Gibbsianness of a measure resulting from a block-spin transformation of a
Gibbsian measure. However, they considered lattice models and the DLR-
Gibbs property. Nevertheless, we can use the same idea: We consider a
two-layer system where the first layer consists of the configuration of the
model at time zero and the second layer consists of the configuration
at time t > 0. The loss of the sequential Gibbs property at time t > 0
is due to a discontinuity in an internal system. This internal system is
the constrained first-layer model and it is hidden beneath the second
layer. This is why we refer to a phase transition in the constrained first-
layer model as a hidden phase transition. We will now be more precise
and define the constrained first layer model. Then we will describe the
relation of this model to the conditional probabilities in finite volume.

Definition 4. The constrained first-layer model of the time-evolved
mean-field Potts model is a sequence (µ̄n)n∈N of mappings from Ω[2,n] to

13



2 Gibbs–non-Gibbs transitions and singularity theory

the space of probability measures on Ω[2,n] given by

µ̄n[η2, . . . , ηn](ω2, . . . , ωn) =
e

β
2n

n∑
i,j=2

1ωi=ωj n∏
i=2

pt(ωi, ηi)

∑
(ω̃2,...,ω̃n)∈Ω[2,n]

e

β
2n

n∑
i,j=2

1ω̃i=ω̃j n∏
i=2

pt(ω̃i, ηi)

(2.6)
where Ω[2,n] = {(ω2, . . . , ωn) | ∀i ∈ {2, . . . , n} : ωi ∈ {1, . . . , q}}.

The goal of this section is to connect the probabilistic notion of
sequentially Gibbs to a parameter-dependent optimization problem that
we can analyse using methods from singularity theory presented in the
following section. This is done in two steps. In the first step we represent
the finite-volume conditional probabilities which appear in Formula (2.4)
in terms of an expected value with respect to the constrained first-layer
model. In the second step we analyse the possible phase transitions of the
constrained first-layer model, which is a model with a four-dimensional
parameter. Because of the identity

µn,β,t(η1|η2, . . . , ηn) =

∑
η̃1

µn,β,t(η̃1, . . . , ηn)
µn,β,t(η1, . . . , ηn)


−1

,

it is convenient to study the quotients of the finite-volume time-evolved
measures.

Lemma 5. The quotients of the time-evolved measures have the repre-
sentation

µn,β,t(η̃1, . . . , ηn)
µn,β,t(η1, . . . , ηn) =

∫
f η̃1
n dµ̄n[η2, . . . , ηn]∫
fη1
n dµ̄n[η2, . . . , ηn] (2.7)

where the observable fη1
n is given by

fη1
n (ω2, . . . , ωn) =

∑
a

exp
(
β

n

n∑
i=2

1ωi=a
)
pt(a, η1). (2.8)

14



2.1 From probability theory to singularity theory

Proof. The proof is done by separating the terms containing η1 from the
terms containing η2, . . . , ηn. First observe that

n∑
i,j=1

1ω̃i=ω̃j =
n∑

i,j=2
1ω̃i=ω̃j + 2

n∑
i=2

1ω̃i=ω̃1 + 1. (2.9)

Then we find

µn(η̃1 . . . , ηn)
µn(η1 . . . , ηn) =

∑
ω̃2,...,ω̃n f

η̃1
n exp

(
β
2n
∑n
i,j=2 1ω̃i=ω̃j

)∏n
i=2 pt(ω̃i, ηi)∑

ω̃2,...,ω̃n f
η1
n exp

(
β
2n
∑n
i,j=2 1ω̃i=ω̃j

)∏n
i=2 pt(ω̃i, ηi)

(2.10)
If we introduce the normalizing factor

∑
ω̃2,...,ω̃n

exp

 β

2n

n∑
i,j=2

1ω̃i=ω̃j

 n∏
i=2

pt(ω̃i, ηi) (2.11)

into the numerator and denominator, we arrive at the representation (2.7).

Note that we can write fη1
n (ω2, . . . , ωn) = f̃η1

n

(
1

n−1
∑n
i=2 δωi

)
where

f̃η1
n (ν) =

∑
a

eβ
n−1
n
νapt(a, η1)

for ν ∈ ∆q−1 and that f̃η1
n converges uniformly as n → ∞. There-

fore, it suffices to study the weak convergence of the random variable
1

n−1
∑n
i=2 δωi where ω2, . . . , ωn have joint law µn[ηn,2, . . . , ηn,n] and where

ηn,k fulfills (2.5). We can analyse this convergence with the help of two
different methods: Large deviation principles or the Hubbard-Stratonovič
(HS) approach. We will discuss the necessary steps for the large devia-
tions approach here and why we are not using it for the time-evolved
mean-field Potts model. In Chapter 4 we will use the HS approach
instead.

A large deviations principle consists of an upper and a lower bound for
a sequence of probability measures. These bounds play an important role
in the analysis of rare events, that is, exponentially small probabilities.
Consider a sequence of probability spaces (Ω,B,Pn) where Ω is a Polish
space and B is the Borel σ-field.
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2 Gibbs–non-Gibbs transitions and singularity theory

Definition 6. The sequence (Pn)n∈N is said to fulfill a large deviations
principle (LDP) with rate function I : Ω→ [0,∞] if all of the following
conditions are fulfilled:

(1) I has compact sub-level sets and I(x) <∞ for some x ∈ Ω.

(2) For all closed sets C ∈ B we have

lim sup
n→∞

1
n

logPn(C) ≤ − inf
x∈C

I(x).

(3) For all open sets O ∈ B we have

lim inf
n→∞

1
n

logPn(O) ≥ − inf
x∈O

I(x).

One should note that some authors replace the assumption that I
has compact sub-level sets by the assumption that the sub-level sets are
relatively closed in Ω and call the rate function a good rate function if the
compactness-assumption also applies. Let us make a short remark about
the connection between an LDP and the weak law of large numbers.
For every global minimizer x0 of I we have I(x0) = 0: With C = Ω it
follows from point 2 that infx∈Ω I(x) ≤ 0. Because I(x) ≥ 0 for x ∈ Ω it
follows that I(x0) = 0. Note that there is always at least one such x0
because the sub-level sets of I are compact (point 1 in the definition).
Suppose that x0 is unique, then the Portemanteau Theorem implies
that Pn converges weakly to the Dirac measure δx0 . Therefore if the
constrained first-layer models fulfills an LDP for a rate function with a
unique global minimizer, it follows that it fulfills the weak law of large
numbers. In other words, because of the representation (??) of the
finite-volume conditional probabilities the α under consideration is a
good point. This is why we are interested in the global minimizers of
the rate function.
In order to derive a large deviations principle for the constrained

first-layer model, we will use two basic theorems: Sanov’s theorem and
Varadhan’s lemma/Tilted LDP. This allows us to compute the rate
function for the LDP. As we will see, however, due to the structure of the
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2.1 From probability theory to singularity theory

measure, this rate function will live on a q(q−1)-dimensional state space.
So even in the case q = 3 a useful visualization of the rate function is not
immediate. The Hubbard-Stratonovich approach described in Chapter 4
yields an optimization problem for a potential function on Rq.

Theorem 7 (Varadhan’s lemma). Let (µn)n∈N be a sequence of proba-
bility measures that satisfies the LDP with rate function I : Ω→ [0,∞]
and let φ : Ω→ R be any continuous function. If

lim
M→∞

lim sup
n→∞

1
n

log
∫
φ≥M

enφ(x)µn(dx) = −∞, (2.12)

then
lim
n→∞

1
n

log
∫
enφ(x)µn(dx) = sup

x∈Ω
(φ(x)− I(x)) (2.13)

As a consequence of Varadhan’s lemma, we can prove the Tilted LDP.
This theorem states a large deviations principle for a family of measures
that is given in terms of exponential densities with respect to another
family fulfilling a large deviations principle. This is exactly the structure
of the constrained first-layer model.

Theorem 8 (Tilted LDP). Let (µn)n∈N be a sequence of probability
measures that satisfies the LDP with rate function I : Ω → [0,∞] and
let φ : Ω→ R be any continuous function which fulfills (2.12). Then the
sequence of probability measures µ̃n defined via∫

f dµ̃n :=
∫
fenφ(x)µn(dx)∫
enφ(x)µn(dx)

(2.14)

for any f ∈ Cb(Ω) fulfills the LDP with the rate function J given by

J(x) = sup
y∈Ω

(φ(y)− I(y))− (φ(x)− I(x)) (2.15)

for any x ∈ Ω.

For the proofs of the above theorems we refer to [9] and [33]. Using
the Tilted LDP theorem, we can prove the an LDP for the constrained
first-layer model. Define the vector Ln = (Lnb )qb=1 ∈ (∆q−1)q of empirical
measures on the b-like sites via

Lnb = 1
|Λn(b)|

∑
i∈Λn(b)

δωi (2.16)
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2 Gibbs–non-Gibbs transitions and singularity theory

where Λn(b) = {i ∈ {2, . . . , n} | ηn,i = b} are the so-called b-like sites.
Note that the constrained first-layer model has a density like in Theorem 8
with respect to the measures ωi 7→

∏n
i=2 pt(ωi, ηn,i). In a first step, we

prove a Sanov-like theorem for the vector Ln with respect to these
measures. Because of the product structure, the components of the
vector Ln are independent. Therefore we can use Sanov’s theorem [9,
Theorem 2.1.10] on each component because ηn,i = b for every ωi with
i ∈ Λn(b) and therefore the ωi are independent and identically distributed.
This extends to an LDP of the product space. In the second step, we
can use the Tilted LDP to prove the following LDP for the constrained
first-layer model.
Theorem 9. Suppose the family ηn,k ∈ {1, . . . , q} with n ≥ 2 and 2 ≤
k ≤ n fulfills (2.5). Then the sequence of image measures µ̄n[ηn,2, . . . , ηn,n]◦
L−1
n fulfills the LDP with rate function Φα,β,t − inf Φα,β,t where

Φα,β,t(ν) = −1
2β
∑
a

(∑
b

αbνb,a

)2
− gt

∑
b

αbνb,b +
∑
a,b

αbνb,a log νb,a

(2.17)
for ν ∈ (∆q−1)q.
So in order to analyse the global minimizers of the large deviations

rate function Φα,β,t, let us compute the derivative. Let (ρb,a)qb,a=1 be any
element of the tangent space of (∆q−1)q. Then we find

Φ′α,β,t(ν)ρ = d
dt

∣∣∣∣
t=0

Φ(ν + tρ)

=
∑
b,a

αbρb,a
(

log νb,a − β
∑
c

αcνc,a − gt1b=a
)
.

(2.18)

Since ∑a ρb,a = 0 for every b ∈ {1, . . . q}, the equation Φ′α,β,t(ν) = 0 is
equivalent to

log νb,a − β
∑
c

αcνc,a − gt1a=b = Cb (2.19)

for some constant vector (Cb)qb=1. Furthermore, we are able to determine
this constant because of the constraint ∑a νb,a = 1. Define the map
Γ: Rq × (0,∞)→ Mat(q,R) via its components

Γb,a(M, t) = eMa+gt1b=a∑
c e
Mc+gt1b=c

(2.20)
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2.1 From probability theory to singularity theory

for b, a ∈ {1, . . . , q}. Then we can rewrite (2.19) as νb,a = Γb,a(βm, t)
where m is given via its components

ma =
q∑

a=1
αbνb,a.

Multiplying both sides of νb,a = Γb,a(βm, t) by αb, summing oven b ∈
{1, . . . , q}, we arrive at the so-called mean-field equation m = αΓ(βm, t),
which determines the critical points of Φα,β,t. Note that αΓ(βm, t) has
to be interpreted as a row–matrix product. Because this equation is a
fixed-point equation, we can use the contraction principle to understand
at least some part of the Gibbs region

G = {(β, t) | µn,β,t is sequentially Gibbs},

that is, we obtain a lower bound on the Gibbs region in the following
sense.

Theorem 10. For every β > 0 there is a t∗(β) > 0 such that the set of
(β, t) with t < t∗(β) is contained in the Gibbs region G.

An explicit formula for t∗(β) is also available. For the proof of the
theorem we use the contraction principle for the map m 7→ αΓ(βm, t).

Proof. Suppose m is a solution of the mean-field equation. Then m is a
probability vector. Therefore to conclude that Φα,β,t has a unique global
minimizers, we can use the contraction principle for the restriction of the
map m 7→ αΓ(βm, t) to the unit simplex ∆q−1 of probability measures.
This set forms a complete metric space with the metric induced by the
1-norm on Rq and m 7→ αΓ(βm, t) is a contraction on this metric space
if L(q, β, t) < 1 as given in the next lemma. For fixed β this inequality
can be solved for t and thus defines a t∗(β).

Lemma 11. Consider the (q − 1)-dimensional unit simplex ∆q−1 in Rq
with the metric induced by the 1-norm. For all probability measures α
the map m 7→ αΓ(βm, t) on ∆q−1 is Lipschitz-continuous with Lipschitz
constant

L(q, β, t) = β
(eβ + q − 2)2 + 2egt(eβ + q − 2)

(egt + eβ + q − 2)2 (2.21)
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2 Gibbs–non-Gibbs transitions and singularity theory

Proof. Let m,m′ be in ∆q−1. Since α is a probability measure, we obtain

‖αΓ(βm, t)− αΓ(βm′, t)‖ ≤ ‖Γ(βm, t)− Γ(βm′, t)‖

where we use the associated operator norm for α considered as a linear
map from Mat(q,Rq) to Rq. By the mean value theorem it follows that
a Lipschitz constant is given by β supm ‖D1Γ(βm, t)‖. Calculating the
norm of the derivative yields that

‖D1Γ(βm, t)‖ = sup
b

∑
a

sup
c

∣∣∣∣∂Γb,a
∂Mc

∣∣∣∣
= sup

b

∑
a

sup
c

∣∣∣δa,c − Γb,c(βm, t)
∣∣∣Γb,a(βm, t)

= sup
b

∑
a

(1− Γb,a(βm, t))Γb,a(βm, t)

= sup
b

(
1−

∑
a

Γ2
b,a(βm, t)

)
(2.22)

because supc |δa,c − Γb,c(βm, t)| = 1− Γb,a(βm, t). Using the estimate∑
a

(1− Γb,a)Γb,a = (1− Γb,b)Γb,b +
∑
a6=b

(1− Γb,a)Γb,a

≤ (1− Γb,b)Γb,b + (1− Γb,b)
= 1− Γ2

b,b

(2.23)

we can give an upper bound for the supremum of the norm of the
derivative:

sup
m
‖D1Γ(βm, t)‖ ≤ 1− (inf

m,b
Γb,b(βm, t))2 (2.24)

Furthermore, because ν 7→∑
c 6=b e

βνc is strictly convex and thus assumes
its maximum only in the extremal points of the simplex, we have the
following lower bound on

Γb,b(βm, t) = eβmb+gt

eβmb+gt +∑
c 6=b e

βmc
= egt

egt +∑
c6=b e

β(mc−mb)

≥ egt

egt +∑
c 6=b e

βmc
≥ egt

egt + eβ + q − 2

(2.25)
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2.2 Ideas from singularity theory

Finally, we arrive at

β sup
m
‖D1Γ(βm, t)‖ ≤ β

(
1− e2gt

(egt + eβ + q − 2)2

)

= β
(eβ + q − 2)2 + 2egt(eβ + q − 2)

(egt + eβ + q − 2)2

(2.26)

This lower bound on the Gibbs region G shows that our model is
sequentially Gibbsian in a neighborhood of t = 0, and this property is
sometimes called short-time Gibbsianness.

2.2 Ideas from singularity theory

Singularity theory is concerned with the study and classification of
degenerate critical points, that is, points where the first derivative of a
potential function vanishes and the Hessian matrix is degenerate. Let us
start with the simplest example of a singularity: The fold.
Consider the family of functions (Va)a∈R with Va(x) = x3 + ax for

x ∈ R. We want to study how the set of critical points changes if we vary
a ∈ R. The set of critical points of the potential function Va is given by

{x ∈ R | 3x2 + a = 0}.

Now because it is a simple example, we see immediately that at a = 0 the
structure of critical points changes: As long as a is positive, the quadratic
equation has no real solutions so that the set of critical points is empty.
For a = 0 we have a single critical point at the origin and for a < 0
we have two critical points. Using the second derivative V ′′a (x) = 6x,
we see that Va has local minimum at x =

√
−a

3 and a local maximum

x = −
√
−a

3 . For a = 0 the potential function Va has a single critical
point at x = 0 that is a saddle point.

We will now analyse this example with concepts from singularity theory.
More generally, for a family (Va)a∈Rm of potential functions Va : Rn → R
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2 Gibbs–non-Gibbs transitions and singularity theory

0

a0 0

M

x

a

Figure 2.1: The catastrophe manifold M of the fold. The change in the number of
critical points is clearly visible. For a < 0 there are two critical points
whereas for a > 0 there are no critical points. At a = 0 the tangent vector
along the curve M is vertical which characterizes a change in the set of
critical points.

we call the space Rm the control space and the space Rn the state space.
The catastrophe manifold for this family is defined as

M = {(a, x) ∈ Rm+n | ∇Va(x) = 0}.

In contrast to the set of critical points we considered above, in the catas-
trophe manifold the parameter a is not fixed. Instead, the catastrophe
manifold consists of pairs (a, x) such that x is a critical point of Va. Since
Va is a smooth function, this set is indeed a smooth manifold. In order to
understand the boundary of the parameter regions in which the number
of critical points is constant, we can also use the following geometric
description. Figure 2.1 shows the catastrophe manifold of the fold as a
subset of the Cartesian product Rm×Rn of the parameter space Rm and
the state space Rn. In this case, n = m = 1 and we can clearly see that
the line a = 0 separates R2 into two half-spaces. In the left half-space,
we find two intersections of the line a = a0 with the catastrophe manifold
for each a0 < 0. However, in the right half-space there are no such
intersections. If we look at the catastrophe manifold in Figure 2.1, we
see that, at the origin, it “folds under itself”. We can characterize this
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2.2 Ideas from singularity theory

behavior as follows: The projection Rm×Rn → Rm, (a, x) 7→ a restricted
to the catastrophe manifold M , which is known as the catastrophe map
χ, has a vertical tangent vector at (0, 0). This leads us to the definition
of the bifurcation set. This set is a subset of the control space Rm and is
defined as follows:

B = {a ∈ Rm | ∃x ∈ Rn : dχ(a, x) = 0}

Here, dχ is the differential of the catastrophe map χ : M → Rm with
χ(a, x) = a. Using x 7→ (−3x2, x) as a chart for the catastrophe manifold
M we consider χ in local coordinates: x 7→ −3x2. So the derivative dχ

dx
of the catastrophe map in local coordinates is given by −6x = V ′′a (x).
This leads us to the following characterization of the bifurcation set:

B = {a ∈ R | ∃x ∈ R : V ′a(x) = 0, V ′′a (x) = 0}

This is the characterization that we actually use in the following two
chapters. Since the parameter space and the state space in these chapters
is multi-dimensional, the condition V ′′a (x) = 0 has to be replaced by
detV ′′a (x) = 0 where V ′′a (x) denotes the Hessian matrix at x.

Although the terms catastrophe map and bifurcation set are useful to
structure our analysis of the potential function, there is a surprising result
from singularity theory which helps us even more: Thom’s classification
theorem. It provides a local classification of all possible scenarios that
can occur for potential functions with an r-dimensional parameter where
r ≤ 4. This means that we can identify the type of singularities occurring
at the critical parameters which we are finding in our analysis of the
bifurcation set with one of the so-called elementary catastrophes from
Thom’s list. Together with our global understanding of the bifurcation
set we can then determine the precise number of global minimizers. In
order to give the precise mathematical formulation of this classification
theorem, we have to introduce some more notions and we follow the
presentation in [45, Chapter 3].
Suppose we are given two continuous functions f, g : Rn → R both

defined in a neighborhood of the origin. We say that these two functions
determine the same germ if they coincide on some (possibly smaller)
neighborhood of the origin. This defines an equivalence relation on the
set of continuous functions defined on a neighborhood of the origin and
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2 Gibbs–non-Gibbs transitions and singularity theory

we write f̃ for the equivalence class of the function f . We say that a
germ f̃ is smooth if it is represented by a function that is smooth in a
neighborhood of the origin. For simplicity of notation, we have defined
our germs to capture the infinitesimal behavior of the representatives
near the origin. However, we can also speak of a germ at an arbitrary
point x ∈ Rn by translating the representatives to the origin. For similar
reasons, we restrict the set of germs under consideration in our exposition
to the set m(n) = {f̃ | f(0) = 0, f smooth}. Since we are concerned with
a classification of germs at local minimizers, we also introduce the set
m(n)2 = {f̃ ∈ m(n) | f ′(0) = 0} of germs of functions with vanishing
first derivative at the origin. In the following we will not distinguish
the germ f̃ and the representative f of the germ anymore. Using germs
instead of the functions themselves we can neglect the behavior of a
function far from the local minimum under consideration. However, we
also want our classification to be independent of the choice of coordinates.
Therefore, we say that two germs are equivalent and write f ∼ g if there
exists a smooth local diffeomorphism ϕ on Rn with ϕ(0) = 0 such that
f = g◦ϕ. We can now formulate an important property which is required
for Thom’s theorem:
Definition 12. Let f ∈ m(n) and k ∈ N. We say that f is k-determined
if for every germ g ∈ m(n) we find f ∼ g whenever the k-th order Taylor
polynomials of f and g near the origin coincide. If f is k-determined
for some integer k, we say that f is finitely determined.
Now let us come back to the example from above. The potential

function x 7→ x3 clearly is a member of the family Va(x) = x3 +ax, a ∈ R,
namely for a = 0. Considered as a germ around the origin x3 is a
member of m(n) and also m(n)2. As a germ f : R→ R it is also finitely-
determined, in fact, it is 3-determined: Consider any other germ g ∈ m(n)
with third-order Taylor polynomial x3 at 0. In other words, using the
Fundamental Theorem of Calculus we can write g(x) = x3r(x) in a
neighborhood of 0 where

r(x) =
∫ 1

0

∫ 1

0

∫ 1

0
g′′′(stux) t2u dtduds.

If we define ϕ(x) = x
(
r(x)

) 1
3 , then we find g = f ◦ ϕ, that is, f ∼ g if ϕ

is a local diffeomorphism with ϕ(0) = 0. First note that ϕ(0) = 0 ·1 1
3 = 0
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since r(0) = 1 and because r is continuous there is a neighborhood of 0
for which r(x) > 0. Furthermore, ϕ′(0) =

(
r(0)

) 1
3 = 1 6= 0. Therefore we

conclude that ϕ is a local diffeomorphism in a neighborhood of the origin.
However, note that x3 is not finitely determined as a germ R2 → R since
for any N such that 2N > k we can define a germ g(x, y) = x3−y2N that
has the same k-th order Taylor polynomial as (x, y) 7→ x3 but clearly is
not equivalent to it.
An unfolding of a germ f is a germ F ∈ m(n + r) with some r ∈ N

and F |Rn×{0} = f , that is, F (x, 0) = f(x) for x ∈ Rn. The number
r is sometimes called the codimension of the unfolding and we write
(F, r) to state that F has codimension r. We can think of unfoldings as
parameter-dependent potential functions, that is, families of potential
functions. For example, in the case of the fold, the one-parameter family
of potentials (Va)a∈R is an unfolding of the germ x3 at x = 0. Similar
to equivalence of germs, we can also define an equivalence relation for
unfoldings. But before let us discuss an example. In addition to the
unfolding Va(x) = x3 + ax of the germ x3 we can also consider another
unfolding Ga,b(x) = x3 + ax+ bx. We can think of these unfoldings as
perturbations of the germ x3 and intuitively we might think that these
two unfoldings lead to the same perturbations. We say that these two
unfoldings are associated.

Definition 13. Let (F, r) and (G, s) be two unfoldings of the same germ
f ∈ m(n).

(1) F and G are associated if there exist a smooth map Φ from Rn+s

to Rn+r, a smooth map ψ from Rs to Rr and a smooth real-valued
function α on Rs such that

a) Φ(x, 0) = (x, 0) for every x ∈ Rn,

b) πr ◦Φ = ψ ◦πs where πr : Rn+r → Rr and πs : Rn+s → Rs are
the canonical projections, and

c) G(x, u) = F
(
Φ(x, u)

)
+ α(u).

(2) The two unfoldings F and G are said to be equivalent if r = s and
the maps Φ and ψ are local diffeomorphisms.
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Rn+s Rn+r R

Rs Rr

G

Φ

πs

F

πr

ψ

α

Figure 2.2: This diagram summarizes the maps involved in Definition 13. For two
associated unfoldings G and F we have G = F ◦ Φ + α.

The second part of the definition actually corresponds to the definition
of equivalent families of potential functions in [49, Section 6.1]. The
map Φ contains the parameter-dependent local diffeomorphism ys of the
state space and the map ψ plays the role of the local diffeomorphism e.
Figure 2.2 summarizes the maps occurring in Definition 13.
Coming back to the example above, we can say that V and G are

associated. Define the maps in the definition above as Φ(x, (a, b)) =
(x, a+ b), ψ(a, b) = a+ b and α(a, b) ≡ 0. Then we have

V
(
Φ
(
x, (a, b)

)
, ψ(a, b)

)
+ α(a, b) = x3 + (a+ b)x = G(x, (a, b)).

So in some sense we can say that all the perturbations of G are already
contained within V . This motivates the following definition. We say
that an unfolding F is stable if any other unfolding G is associated to
F . This means, intuitively, that no new bifurcation scenarios appear by
adding new parameters to F .
In the second point of Definition ??, the two unfoldings which are

compared are merely reparametrizations of each other which do not
change the dimension of the parameters. This will be the basis of the
classification in Thom’s theorem. However, we will use an even finer
definition. This will be useful to recognize lower-dimensional catastrophes
in higher dimensional unfoldings.
Definition 14. Let g ∈ m(n) and f ∈ m(n+ q). Suppose (G, r) is an
unfolding of g and (F, r+ s) is an unfolding of f . We say that F reduces
to G if (F, r + s) is equivalent to the unfolding (Ĝ, n+ q + r + s) with

Ĝ(x, y, u, v) = G(x, u) + y2
1 + · · ·+ y2

q (2.27)
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2.2 Ideas from singularity theory

for x ∈ Rn, y ∈ Rq, u ∈ Rr and v ∈ Rs.
If q + s is positive, we say that F reduces properly to G and call G a

proper reduction of F . If an unfolding F has no proper reduction, it is
called irreducible.

If we think about the scenarios for the local minima of a family of
potential functions, we might come to the conclusion that there are
essentially two different ones. The first is a scenario like x2 + ax where
we really have no catastrophes at all. The local minimum at x = 0 for
a = 0 is merely shifted around under the variation of the parameter
a. This leads to the following definition: We say that an unfolding
(F, r) of f ∈ m(n) has a simple minimum at 0 if f is equivalent to
x2

1 + · · ·+ x2
n ∈ m(n). In the other scenario, it might be that there is no

local minimum at x = 0 at all like for the fold x3 + ax. Here for a = 0
there is no local minimum, however if we perturb a a local minimum
appears. This leads to the following definition:

Definition 15. Let (F, r) be an unfolding of f ∈ m(n). We say that
F has local minima near the origin if for every neighborhood W of the
origin in Rn+r there exists a point (x, u) ∈W such that the restriction
F |(Rn×{u})∩W has a local minimum at (x, u).

We are now prepared to state Thom’s classification theorem which
consists of a list of all possible scenarios for four-parameter families. For
a sketch of the proof of this theorem we refer to Appendix II in [45].

Theorem 16 (Thom’s classification theorem). Let f ∈ m(n)2 be finitely
determined, (F, r) a stable unfolding of f that has local minima near the
origin and r ≤ 4. Then either F has a simple minimum at the origin
or F reduces to one of the irreducible unfoldings Gi of germs gi from
Table 2.1.

We can use this theorem to get a qualitative insight into the local
behavior of the potential function under investigation. Suppose that we
want to understand the bifurcation set of a family of intricate potential
functions Va. If we recognize catastrophes of the Seven Elementary
Catastrophes in our complicated bifurcation set, we know the local
behavior of our family near those parts. This is done in Chapter 3 for
the static Potts model and Chapter 4 for the time-evolved Potts model
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2 Gibbs–non-Gibbs transitions and singularity theory

Name Germ gi Unfolding Gi Codim.

fold x3 x3 + ux 1
cusp x4 x4 + ux2 + vx 2
swallowtail x5 x5 + ux3 + vx2 + wx 3
butterfly x6 x6 + ux4 + vx3 + wx2 + tx 4
hyperbolic umbilic x3 + y3 x3 + y3 + uxy + vx+ wy 3
elliptic umbilic x3 − xy2 x3 − xy2 + u(x2 + y2) + vx+ wy 3
parabolic umbilic x2y + y4 x2y + y4 + ux2 + vy2 + wx+ ty 4

Table 2.1: The Seven Elementary Catastrophes

where an incomplete (due to symmetry) butterfly unfolding and the full
unfolding of the elliptic umbilic appears.
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3 Stable and metastable phases for
the Curie–Weiss Potts model in
vector-valued fields via singularity
theory

This chapter contains joint work with Prof. Dr. Christof Külske at
Ruhr-Universität Bochum and is published in the Journal of Statistical
Physics [38].

3.1 Introduction

3.1.1 Research context

The Potts model [59], and in particular its Curie-Weiss version, is next to
the Curie-Weiss Ising model, one of the most studied models in statistical
mechanics. While basic aspects of Curie-Weiss models can be discovered
by ad-hoc computations, they provide ongoing challenges for refined
problems involving dynamics, metastability, complex parameters, fine
asymptotics [see for example 7, 8, 11, 18, 24, 41, 51]. In particular,
motivated by metastability one aims at a full understanding of the free
energy landscape [5, 46]. The phase-diagram for the stable states of the
Curie-Weiss Potts model, that is the behaviour of global minimizers, is
known and described by the Ellis-Wang theorem [14] in zero external
field. Wang [58] provides some results in non-zero external field relating
to global minimizers.

For themetastable states, that is, the local minima and their transitions
a complete exposition of the global analysis in the whole parameter space,
revealing the full structure of their transitions is lacking in the literature.
See [20–22] for a partial analysis based on polynomial equivalence given
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3 Stable and metastable phases for the Curie–Weiss Potts model

for some regions in parameter space.
One is not just interested in the static behaviour of the model, but also

in the behaviour under stochastic dynamics, in and out of equilibrium,
where we see next to metastability also the phenomenon of dynamical
Gibbs–non-Gibbs transitions [see 30, 32, 53, 55, 57]. Employing the
probabilistic notion of sequential Gibbs property, such dynamical Gibbs–
non-Gibbs transitions have been shown to occur and analyzed for a
number of exchangeable models in [31, 34, 35]. A way to understand
these transitions for independent dynamics is to examine the structure
of stationary points of a conditional rate function which generalizes the
equilibrium rate function but contains more information. This conditional
rate function depends on all model parameters of the static model, but
has an additional time-parameter, and a measure-valued parameter with
the meaning of an empirical distribution. We are planning to investigate
the time-evolved Curie-Weiss Potts model in the spirit of [10, 18, 35].
For this the analysis of the static problem for general parameter values
(which means for general vector-valued fields) is a necessary first step.

As a guiding principle for such analysis, singularity theory is very
useful to understand the organization of stationary points for varying
parameters. It allows to understand and discover the types of local
bifurcations which are present in the applied problem as (by Thom’s
theorem) they must be related via local diffeomorphisms to (partial)
unfoldings of elementary singularities (so-called catastrophes). These
catastrophes form prototypical types which in themselves can be most
easily understood in polynomial models. Clear expositions describing
their geometries are found in textbooks [1, 45, 49]. The simplest ex-
ample is the rate function of the Curie-Weiss Ising model. It is even
globally (for all values of inverse temperature and magnetic field, and
all magnetizations) identical to one cusp singularity. As we will see,
for the Potts model in a general field various triple points (where three
local minima have merged) occur, and singularity theory becomes very
useful if we want to understand the global picture of all the transitions
the metastable minima undergo for general values of inverse temperature
and fields which allow to lift all degeneracies.

The paper is organized as follows. As our main result we describe the
geometry of the bifurcation set in the parameter space of inverse temper-
ature and vector-valued fields (see Section 3.2). This decomposition of
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3.1 Introduction

parameter space given by the bifurcation set provides a phase diagram
describing also the metastable minima. We will show how some of the
so-called elementary singularities (threefold symmetric butterflies and
an elliptic umbilic surrounded by three folds) and their partial unfold-
ings beautifully interact and are glued together. We also describe the
accompanying geometry of the free energy landscape for each connected
component of the complement of the bifurcation set. Finally we com-
plement the study with the description of the coexistence sets of lowest
minima (Maxwell-sets) at which two, three, or four minima coexist (see
Section 3.3).

3.1.2 Model
We consider the mean-field Potts model with three states and are inter-
ested in both the stable and metastable phases. Note that we sometimes
use the term local minima to include both the global and local minima
depending on the context. The space of configurations in finite-volume
n ≥ 2 is defined as Ωn = {1, 2, 3}n. We define

∆2 = {ν ∈ R3 | νi ≥ 0,
3∑
i=1

νi = 1} (3.1)

and often refer to it as the unit simplex. The Hamiltonian of this model
is given by

Hn(σ) = − 1
2n

n∑
i,j=1

δσi,σj (3.2)

where σ lies in Ωn. The vector-valued fields are equivalently described
by the a-priori measure α in the unit simplex ∆2. The finite-volume
Gibbs distributions are therefore given by

µn,β,α(σ) = 1
Zn(β, α)e

−βHn(σ)
n∏
i=1

α(σi) (3.3)

where the partition function is defined as

Zn(β, α) =
∑
σ∈Ωn

e−βHn(σ)
n∏
i=1

α(σi). (3.4)
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3 Stable and metastable phases for the Curie–Weiss Potts model

So the associated free energy in terms of the empirical spin distribution ν
is given by

fβ,α(ν) = −1
2β〈ν, ν〉+

3∑
i=1

νi log νi
αi
. (3.5)

This is a real-valued function on the unit simplex ∆2 with two parameters:
the inverse temperature β and the external fields modeled by the a-priori
measure α. Thus, the parameter space is the product (0,∞)×∆2. By a
phase (stable or metastable) we mean a (global or local) minimizer of
the free energy fβ,α.
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3.1 Introduction

Figure 3.1: This plot shows the bifurcation set which is the basis for the metastable
phase diagram. The surface shows pinches and self-intersections. Inside of
the connected components of the complement the structure of metastable
phases does not change. The unit simplex of a-priori measures α is
embedded in the horizontal plane using the (p, q)-coordinates defined in
(3.46).
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3 Stable and metastable phases for the Curie–Weiss Potts model

3.2 The metastable phase diagram

In contrast to the usual question of phase-coexistence which is answered
by the stable phase diagram (see Section 3.3), the metastable phase
diagram contains information about the metastable phases of the system
but not of their relative depth. Mathematically speaking, the metastable
phase diagram is a partition of the parameter space whose cells contain
parameter values (β, α) such that fβ,α has the same number of local
minima. Using singularity theory we find that the metastable phase
diagram is given by the connected complements of the surface shown in
Figure 3.1. The structure of this union is particularly interesting because
it shows features of two well-known catastrophes [49]: the butterfly
catastrophe and the elliptic umbilic. The elliptic umbilic permits the
change from minimum to maximum at the centre and is inherently
associated to the Potts model because of its symmetry. The appearance
of the butterfly is connected to triple points of Ising-like subsystems of
the three-state Potts model. If we disfavor one of the three states, the
remaining two act similarly to an Ising model in a random field. There is
an interesting global interdependence of these two different catastrophes.
We summarize the geometry of the extended phase diagram in the
following theorem.

Theorem 17. For each positive β define the so-called catastrophe map
χβ from ∆2 to ∆2 which associates to each empirical spin distribution a
β-dependent a-priori measure α modelling the external fields:

χβ(ν) =
(

νie
−βνi∑3

k=1 νke
−βνk

)3

i=1
(3.6)

Define also curves γβ via

γβ(x) = 1
2

(
1− x−

√
(1− x)2 − 4(1− 2βx(1− x))

β(2− 3βx)

)
(3.7)
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3.2 The metastable phase diagram

for x ∈ Dβ where the domain Dβ is a union of intervals given by

Dβ =



(
0, 1− 2

β

]
∪
(

1
2 −

1
2

√
1− 2

β ,
1
2 + 1

2

√
1− 2

β

)
if 2 < β ≤ 8

3 ,(
0, 1

2 −
1
2

√
1− 2

β

)
∪
(
1− 2

β ,
1
2 −

1
2

√
1− 8

3β

)
∪
(

1
2 + 1

2

√
1− 8

3β ,
1
2 + 1

2

√
1− 2

β

)
if 8

3 ≤ β < 3,(
0, 1

2 −
1
2

√
1− 2

β

)
∪
(

1
2 −

1
2

√
1− 8

3β , 1−
2
β ,
)

∪
(

1
2 + 1

2

√
1− 8

3β ,
1
2 + 1

2

√
1− 2

β

)
if 3 ≤ β.

(3.8)
Then consider the curve Γβ in ∆2 given by Γβ(x) = χβ(x, γβ(x), 1− x−
γβ(x)) with x ∈ Dβ. By S3Γβ(Dβ) we denote the orbit of the curve Γβ
under the action of the permutation group S3 acting on ∆2.

(1) The constant-temperature slices of the bifurcation set from Fig-
ure 3.1 are given by S3Γβ(Dβ).

(2) Table 3.1 shows an overview of the number of connected components
of S3Γβ(Dβ) together with the possible number of local minima.
The exact number of local minima in the respective components can
be seen in Figure 3.2.

3.2.1 Main transitions
Increasing the inverse temperature from zero we see the following tran-
sitions for slices of the bifurcation set at fixed inverse temperature, as
plots of curves in two-dimensional magnetic field space (see Figure 3.2).
In connected complements the structure of stationary points does not
change. We will keep track of the number of minimizers, which takes all
values between one and four. The Maxwell sets where non-uniqueness
of global minimizers occurs are described in Section 3.3. They have the
meaning of special magnetic fields where (in general) the minimizer can
be made to jump by infinitesimal perturbation. This is analogous to the
notion of bad empirical measures in the dynamical model, in the sense
of sequential Gibbsianness [35].

• 2 < β < 18
7 . First three symmetric cusps appear at a positive dis-

tance to the origin in magnetic field space (three “rockets” pointing
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Figure 3.2: Representative slices through the bifurcation set at constant temperatures
as indicated by the plot titles. The numbers of the cells show the number
of local minima that the rate function fβ,α has inside of the respective
cell. The slices are given in (p, q)-coordinates (3.46) as in Figure 3.1.
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3.2 The metastable phase diagram

cells of (S3Γβ(Dβ)){ number of local minima
β ≤ 2 1 1

2 < β ≤ 18
7 4 1, 2

18
7 < β < 8

3 13 1, 2, 3
β = 8

3 16 1, 2, 3
8
3 < β < βcross 13 1, 2, 3

β = βcross 12 1, 2, 3
βcross < β < βtouch 13 1, 2, 3, 4

β = βtouch 10 1, 2, 3, 4
βtouch < β < 3 8 1, 2, 3

β = 3 7 1, 2, 3
3 < β 8 1, 2, 3

Table 3.1: Overview of the different β-regimes for the constant-temperature slices of
the bifurcation set. The critical inverse temperatures βcross and βtouch are
defined in Subsections 3.2.4 and 3.2.4.

towards the origin). For magnetic fields inside the cusps we see
precisely two minima, outside there is one minimum. For each such
inverse temperature, the effect of the two-dimensional magnetic
field for values in the interior of this region to this effective orthog-
onal Ising model translates into an effective inverse temperature
times effective magnetic field.

• β = 18
7 (butterfly). The three cusps each individually develop a

butterfly singularity. The unfolding of the pentagram-shaped curve
is studied via a Taylor expansion in Subsection 3.2.4.

• 18
7 < β < 8

3 . The butterfly (partially) unfolds, keeping the reflection
symmetry. This phenomenon is also known to occur in the Curie-
Weiss random field Ising model with bimodal disorder [compare
35]. The potential has two minima in the outer horns of the
pentagram, and three minima in the inner horn, as known from
the one-dimensional polynomial model. For zero magnetic field
there is still one minimum in the centre of the simplex.

• β = 8
3 . The outer horns (or beaks) of the pentagrams grow until
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3 Stable and metastable phases for the Curie–Weiss Potts model

they meet symmetrically in a beak-to-beak singularity. This occurs
in three pairs. A one-pair beak-to-beak singularity is also known
to occur in the parabolic umbilic [see 6]. This touching creates a
finite connected component at the origin in magnetic field space,
still with one minimum.

• 8
3 < β < βcross ≈ 2.7456. Each two of the beaks (outer horns
corresponding to different butterflies) have now become connected.
Each such pair now forms a joint connected component with two
minima. Their three outer boundary curves now form a triangle
in the centre. Each two of the former unbounded curves of the
butterfly catastrophe have merged into one doubly infinite curve
at which a fold occurs (fold lines). In the connected component at
the origin there is still one minimum.

• β = βcross. The triangle stays, the three symmetric fold lines move
towards the origin. They pass the origin at βcross, when the “tops
of the rockets” meet at the origin, and the connected component
containing the origin with one minimum vanishes. βcross is the
parameter value for the appearance of symmetric minima near the
corners in zero magnetic field. Hence it is simply found by looking
at the potential in zero field, along the axis of symmetry (see 3.2.4).

• βcross < β < βtouch ≈ 2.8024. The three rockets move on beyond
the origin, they intersect, with the appearance of a middle hexagon.
In this middle hexagon containing the origin there are all four
minima present. In zero field the middle minimum is the lowest
first but moving beyond the Ellis-Wang critical inverse temperature
4 log 2, eventually the outer minima become lower. In the adjacent
six triangles there are three minima.

• β ≥ βtouch. Three components with three minima vanish, three
components remain, as the corners of the shrinking triangle touch
the fold lines.

• β = 3 (elliptic umbilic). The triangle at the centre has shrunk to
a point, the minimum at zero in zero field has become a monkey
saddle.
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3.2 The metastable phase diagram

• β > 3. The inner triangle reappears and grows again. For zero
field there is a maximum at the uniform distribution, and three
symmetric minimizers near the corners.

The series of transitions upon increasing inverse temperature fits to
the basic knowledge of the model without fields [14]: We know that
in zero field a) at very low inverse temperature there is only one local
minimum (and this is also a global minimum) at the uniform distribution,
b) at intermediate inverse temperature there is a local minimum at the
uniform distribution and three symmetric minima near the corners c) at
large β there are only three symmetric minima near the corners.
The change from minimum to maximum of the uniform distribution

under increase of β is explained by an elliptic umbilic. Additionally,
for each of the minima at the corners there is an additional fold line.
There must be a transition from the situation of three non-intersecting
rockets β ≈ 2.2 to an umbilic plus three fold lines seen at the Ellis-
Wang inverse temperature 4 log 2. This is done with the help of the
three-symmetric-butterflies – beak-to-beak mechanism.

3.2.2 Elements from singularity theory

In order to derive and explain our results, concepts from singularity
theory will be useful. The two most basic terms are catastrophe manifold
and bifurcation set of which the second term is important since it is the
basis for the metastable phase diagram. But first let us define the two:
The catastrophe manifold is the set of (β, α, ν) such that ν is a stationary
point of fβ,α. The bifurcation set is the set of (β, α) such that there
exists a degenerate stationary point ν for fβ,α, that is, a stationary point
at which the Hessian has a zero eigenvalue. The catastrophe map χβ
maps empirical spin distributions ν to a-priori measures α such that the
free energy fβ,α has a stationary point at ν. We obtain the expression
for the catastrophe map by considering the zeros of the differential of
fβ,α. For every tangent vector v of the unit simplex we have

3∑
i=1

v(νi)(−βνi − logαi + log νi) = 0. (3.9)
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3 Stable and metastable phases for the Curie–Weiss Potts model

We conclude that the second factor in the sum is a constant since the
v(νi) sum up to zero. Since α is an element of the unit simplex, we have
Equation (3.6).
The key idea from catastrophe theory is that at parameter values

belonging to the bifurcation set the stationary points of the function
change. The most generic change is the fold where a minimum and
a maximum collide. But the more parameters the potential has the
more complex behaviour is possible. The famous theorem of Thom [see
Section 5 of Chapter 3 in 45] lists these possibilities for all potentials
with at most four parameters. We see two of these so-called catastrophes
or singularities in the Potts model: the butterfly catastrophe and the
elliptic umbilic.

3.2.3 Constant-temperature slices of the bifurcation set

The constant-temperature slices of the bifurcation set are one-dimensional
sets in the sense that we have a parametric representation of the slices
with one parameter but the curves show pinches and self-intersections.
During the computation of these curves we can already see some critical
behaviour corresponding to the beak-to-beak scenario and the elliptic
umbilic point.
It is convenient to study the degenerate stationary points for fixed

temperature first. From these points we can obtain the respective slice
of the bifurcation set via the catastrophe map χβ.

Theorem 18. The set of degenerate stationary points for any positive
β is given by the symmetrized graph of the smooth function γβ on Dβ

defined in Equations (3.7) and (3.8).

By the symmetrized graph of γβ we mean the orbit S3γβ(Dβ) under the
permutation group S3. Observe the critical behaviour that Dβ = (0, 1)
for β = 8

3 (beak-to-beak) and that the two roots 1− 2
β and 1

2 −
1
2

√
1− 8

3β
coincide for β = 3 (Elliptic umbilic). We will now provide a series of
lemmata in preparation of the proof of this theorem.

The set of degenerate stationary points is determined by the so-called
degeneracy condition. This condition states that the determinant of the
Hessian matrix at a stationary point vanishes.
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3.2 The metastable phase diagram

Lemma 19. The Hessian form of fβ,α at the stationary point ν is
degenerate if and only if

3ν1ν2ν3β
2 − 2(ν1ν2 + ν2ν3 + ν3ν1)β + 1 = 0. (3.10)

Proof. Let ν be a stationary point. Choose (ν1, ν2) as local coordinates
for ν. The Hessian form at ν is represented with respect to the coordinate
basis by the matrix( 1

ν1
+ 1

ν3
− 2β 1

ν3
− β

1
ν3
− β 1

ν2
+ 1

ν3
− 2β

)
.

Calculating the determinant yields

3β2 − 2β
( 1
ν1

+ 1
ν2

+ 1
ν3

)
+ 1
ν1ν2

+ 1
ν1ν3

+ 1
ν2ν3

.

If we rewrite the left-hand side of the degeneracy condition (3.10) in
(ν1, ν2)-coordinates, it is a quadratic function of ν2 for fixed β and ν1:

β(2− 3βν1)ν2
2 − β(2− 3βν1)(1− ν1)ν2 + 1− 2βν1(1− ν1) = 0 (3.11)

This equation has at most two solutions and one of them is given by

ν2 = γβ(ν1). (3.12)

The possible other solution is obtained by applying the respective sym-
metry operation (exchanging the second and third component of ν). The
domain of γβ is determined by the sign of the discriminant and the
additional condition that makes sure that the result of γβ is a point in
the unit simplex. Let us investigate the latter condition first (Lemma 20)
and come to the condition imposed by nonnegativity of the discriminant
(Lemma 21) afterwards.

First note that the solution formula (3.7) is not defined for x = 2
3β

but converges to ±∞ because

1− 2βx(1− x) = 1
3

( 8
3β − 1

)
> 0 β < 8

3
= 0 β = 8

3
< 0 β > 8

3

(3.13)
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3 Stable and metastable phases for the Curie–Weiss Potts model

except if β = 8
3 where the limit is 1

4 . Furthermore, the domain of γβ
must be such that (x, γβ(x), 1− x− γβ(x)) lies in the unit simplex, that
is, we have to analyse the following system of inequalities:

0 < x < 1
0 < γβ(x) < 1− x

(3.14)

Lemma 20. Provided that γβ(x) is a real number, we find:

(1) For β < 8
3 the system (3.14) is equivalent to

x ∈
(

0, 2
3β

)
∪
(

1
2 −

1
2

√
1− 2

β
,
1
2 + 1

2

√
1− 2

β

)
(3.15)

(2) For 8
3 ≤ β the system (3.14) is equivalent to

x ∈
(

0, 1
2 −

1
2

√
1− 2

β

)
∪
(

2
3β ,

1
2 + 1

2

√
1− 2

β

)
(3.16)

Proof.

0 < γβ(x) < 1− x (3.17)

⇐⇒ −(1− x) <
√

(1− x)2 − 4(1− 2βx(1− x))
β(2− 3βx) < 1− x (3.18)

The first inequality is trivially true because the square root is non-
negative and 1 − x > 0. Therefore we must only check the second
inequality:

√
(1− x)2 − 4(1− 2βx(1− x))

β(2− 3βx) < 1− x (3.19)

⇐⇒ 0 < 1− 2βx(1− x)
2− 3βx (3.20)

(3.21)
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Suppose first 2− 3βx > 0. Then the inequality is equivalent to

1− 2βx(1− x) > 0 (3.22)

⇐⇒ 2β
(
x− 1

2

)2
+ 1− β

2 > 0 (3.23)

As 2β > 0, this is an upfacing parabola whose minimal functional value
is 1− β

2 which is negative since β > 2. The roots of this parabola are:

2β(x− 1
2)2 + 1− β

2 = 0 (3.24)

⇐⇒ x = 1
2 ±

1
2

√
1− 2

β
(3.25)

The solution is therefore the union of the two intervals 0 < x < 1
2 −

1
2

√
1− 2

β and 1
2 + 1

2

√
1− 2

β < x < 1.
Now, if 2 − 3βx < 0, we are looking for such x that the values of

1− 2βx(1− x) are negative. This is the case if

1
2 −

1
2

√
1− 2

β
< x <

1
2 + 1

2

√
1− 2

β
. (3.26)

To arrive at the claim in the lemma, we must investigate the order of
2

3β and 1
2 ±

1
2

√
1− 2

β . We therefore analyse the inequality

1
2 −

1
2

√
1− 2

β
>

2
3β . (3.27)

Squaring both sides of the inequality reveals that it is equivalent to
β < 8

3 which proves the claim.

Let us continue with the analysis of the discriminant of the quadratic
equation (3.11). It is given by

β2(2− 3βν1)2(1− ν1)2 − 4β(2− 3βν1)(1− 2βν1(1− ν1))
= β(3βν1 − 2)(2− β(1− ν1))(2− 3βν1(1− ν1)).

(3.28)

We see that it has at most four possible roots depending on the value of
β. More precisely we find:
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Lemma 21. Consider the function

x 7→ (3βx− 2)(2− β(1− x))(2− 3βx(1− x)) (3.29)

for real x.

(1) For β < 8
3 this function has the two roots 1 − 2

β <
2

3β and takes
positive values only on (−∞, 1− 2

β ) ∪ ( 2
3β ,∞).

(2) For 8
3 ≤ β < 3 this function has the roots 2

3β ≤ 1 − 2
β < 1

2 −
1
2

√
1− 8

3β ≤
1
2 + 1

2

√
1− 8

3β and takes positive values only on

(
−∞, 2

3β

)
∪
(

1− 2
β
,
1
2 −

1
2

√
1− 8

3β

)
∪
(

1
2 + 1

2

√
1− 8

3β ,∞
)
.

The equality of the roots is achieved for β = 8
3 .

(3) For β ≥ 3 this function has the roots 2
3β <

1
2−

1
2

√
1− 8

3β ≤ 1− 2
β <

1
2 + 1

2

√
1− 8

3β and takes positive values only on

(
−∞, 2

3β

)
∪
(

1
2 −

1
2

√
1− 8

3β , 1−
2
β

)
∪
(

1
2 + 1

2

√
1− 8

3β ,∞
)

The equality of the roots is achieved for β = 3.

Proof. The expression for the roots follow from the product form of
the function. Since we know all roots, the set where the function takes
positive values is determined by the sign change at the roots. First, let us
consider β < 8

3 . This implies the order of the roots since 1− 2
β <

1
4 <

2
3β .

The value of the derivative at the roots tells us how the sign changes.
Denote the above function (3.29) by g. Then we find:

g′
( 2

3β

)
= 4

(8
3 − β

)
g′
(

1− 2
β

)
= 12

(
β − 8

3

)
(3− β)

This proves the case β < 8
3 .
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Secondly, consider the case 8
3 ≤ β < 3 but first assume β > 8

3 . The
order of the of the roots 2

3β and 1− 2
β now reverses and β < 3 implies

1− 2
β <

1
3 <

1
2 −

1
2

√
1− 8

3β . Let us now analyse how the sign changes at
the two largest roots. Let x0 be any of the two roots of 2− 3βx(1− x).
We find

g′(x0) = (3βx0 − 2)(2− β(1− x0)) · 3β(2x0 − 1). (3.30)

Since 3βx− 2 and 2− β(1− x) are increasing and x0 is larger than their
roots, the sign of g′(x0) is determined by the sign of 2x0 − 1 which is
negative for x0 = 1

2 −
1
2

√
1− 8

3β and positive for x0 = 1
2 + 1

2

√
1− 8

3β . In
the case β = 8

3 the roots 2
3β and 1− 2

β as well as the two largest roots
coincide and for both the sign does not change.
Let us now consider the last case 3 ≤ β focusing on 3 < β first. Let

us check the order of the roots. Using the inequality
√

1 + x < 1 + 1
2x

for x < 0, we find that 2
3β <

1
2 −

1
2

√
1− 8

3β . Similarly to the previous
case the reversed inequality β > 3 now implies the reversed inequality
1
2 −

1
2

√
1− 8

3β <
1
3 < 1− 2

β . The last inequality for the roots is in fact
equivalent to 3 < β:

1− 2
β
<

1
2

(
1 +

√
1− 8

3β

)
(3.31)

⇐⇒ 1 + 16
β2 −

8
β
< 1− 8

3β (3.32)

⇐⇒ 3 < β (3.33)

Let us analyse how the sign changes at the two roots of 2− 3βx(1−x).
This can be done using formula (3.30). The first factor is positive for
both roots since 2

3β is the smallest root of the discriminant. However,
since 1− 2

β lies in between the two roots of 2− 3βx(1− x), the sign of g′

is positive at both roots 1
2 ±

1
2

√
1− 8

3β . For β = 3 the roots 1− 2
β and

1
2 −

1
2

√
1− 8

3β coincide and form a local maximum.

Proof of Theorem 18. The expression for γβ(x) (formula (3.7)) is ob-
tained by solving the quadratic equation (3.11) for ν2. In order to
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3 Stable and metastable phases for the Curie–Weiss Potts model

determine the domain Dβ we have to intersect the sets from Lemma 20,
which ensures that (x, γβ(x), 1− x− γβ(x)) lies in the unit simplex, and
Lemma 21 ensuring the nonnegativity of the discriminant.

3.2.4 Computation of the critical temperatures
We discuss the various critical temperatures in increasing order.

The butterfly temperature

Looking at the constant-temperature slices of the bifurcation set in the
regime 2 < β < 8

3 , we find a qualitative change of the curve (compare
Figure 3.2): A pentagram-like shape unfolds. The butterfly temperature
is defined by the β at which this happens which is for β = 18

7 . This can
be seen by a Taylor expansion of the curve which describes the constant-
temperature slices as the coefficients undergo sign changes. Because of
symmetry, it does not matter which of the three rockets we consider.
Let us consider the degenerate stationary points with ν3 ≤ min{ν1, ν2}.
More precisely, consider the degeneracy equation (3.10) in the following
coordinates:

x =
√

3
2 (ν1 − ν2)

y = 1
2(3ν3 − 1)

(3.34)

In these coordinates the unit simplex ∆2 is an equilateral triangle with
center at the origin. The equation then reads

1
9
(
6β
(
x2 + y2 − 1

)
+ β2(2y + 1)

(
(y − 1)2 − 3x2

)
+ 9

)
= 0. (3.35)

For x = 0, this equation reads

2β2y3 + 3β(2− β)y2 + (β − 3)2 = 0. (3.36)

which has a single, negative root y0. Using the Implicit Function Theorem
the set of degenerate stationary points locally around (0, y0) is the graph
of a function y = gβ(x) which solves (3.35). It is of course also possible
to obtain the values of g(n)

β (0) using Implicit Differentiation which allows
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3.2 The metastable phase diagram

us to write down a Taylor expansion for gβ. If we plug this into the
catastrophe map χβ we arrive at an expansion for the respective slice of
the bifurcation set:

χβ(x, gβ(x))− χβ(0, y0) =

−
(

1
1

)(
27
2

(
β − 18

7

)
+O

((
β − 18

7

)2
))

x2+(
−1
1

)(
36
7
√

3
(
β − 18

7

)
+O

((
β − 18

7

)2
))

x3+(
1
1

)(
39366
2401 −

48519
343

(
β − 18

7

)
+O

((
β − 18

7

)2
))

x4 +O
(
x5
)

(3.37)

This has been achieved using exact computations in Mathematica. Here
we have slightly abused notation by writing χβ for the coordinate repre-
sentation of χβ using (x, y)-coordinates in the source and the following
coordinates in the target space:

u = log α1
α3

v = log α2
α3

(3.38)

So the coordinate representation of the catastrophe map χβ is given by

(x, y) 7→

log 1−y−
√

3x
1+2y + β

(
y + x√

3

)
log 1−y+

√
3x

1+2y + β
(
y − x√

3

) . (3.39)

The crossing temperature

Lemma 22. The inverse crossing temperature is given by

βcross = 3
(1 + 2s)(1− s) ≈ 2.74564 (3.40)

where s is the unique root in (0, 1) of

3x
(1 + 2x)(1− x) − log 1 + 2x

1− x . (3.41)
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3 Stable and metastable phases for the Curie–Weiss Potts model

Proof. Let γ(s) = 1
3(1 + 2s, 1− s, 1− s) for 0 ≤ s < 1 and let α be the

uniform distribution. The inverse crossing temperature βcross equals the
β such that the two outer local extrema of fβ,α ◦ γ annihilate. This
is characterized by the two equations (first and second derivatives of
fβ,α ◦ γ)

βs− log 1 + 2s
1− s = 0 (3.42)

β − 3
(1 + 2s)(1− s) = 0. (3.43)

Plugging (3.43) into (3.42) motivates the following definition: Let g
be given on (0, 1) by

g(x) = 3x
(1 + 2x)(1− x) − log 1 + 2x

1− x . (3.44)

The first derivative of this function vanishes in the open interval (0, 1)
exactly at x = 1

4 , it is decreasing on
(
0, 1

4

)
, increasing on

(
1
4 , 1
)
and

limx→0 g(x) = 0. Therefore g has a unique root in (0, 1).

The triangle-touch temperature

The triangle-touch temperature is defined as the temperature 1/βtouch
such that in the respective constant-temperature slice the vertices of the
central triangle touch the fold lines. By definition, 8

3 < βtouch < 3.

Lemma 23. The inverse triangle-touch temperature βtouch is the unique
zero in [8

3 , 3] of

2 artanh
√

1− 8
3x + 3x

4

(
1−

√
1− 8

3x

)
− log

(
x− 2

2

)
− 3. (3.45)

Proof. First, observe that the function is strictly increasing, positive for
x = 8

3 and negative for x = 3. The function values are 1 − log 3 and
3
2 − log 4 respectively. Therefore this function has a unique zero in the
specified interval.
It suffices to show that one vertex of the central triangle and one of

the fold lines meet because of symmetry. Since the vertex lies on an
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3.2 The metastable phase diagram

axis of symmetry of the simplex for all 8
3 < β < 3, we know that the

intersection point with the fold line must also lie on the axis of symmetry
(the centre of the fold line). For the space of a-priori measures α we use
the following coordinates:

p =
√

3 log α1
α2

q = log α1α2
α2

3

(3.46)

The vertex of the triangle fulfills p =
√

3(log(β − 2) + 3 − β) and the
centre of the fold line has

p =
√

3
(

log 2− 1
4β −

3β
4

√
1− 8

3β + 2 artanh
√

1− 8
3β

)
.

Equating the two formulas proves the claim. The values of the u-
coordinate can be calculated from the respective degenerate stationary
points (see Figure 3.3). The ν1 values are the lower bounds of the
domains and ν2 = 1

2(1− ν1).

The elliptic umbilic temperature

We know from singularity theory that the elliptic umbilic is a doubly
degenerate point, that is, a point where the Hessian has two zero eigen-
values. There is only one such point for this potential and it is given
by β = 3: The vanishing mixed second-order partial derivatives of the
potential implies β = 1

ν3
. Plugging this into

∂2fβ,α
∂ν2

i

= 2β − 1
νi
− 1
ν3

= 0

yields 1
νi

= β. These partial derivatives vanish therefore only for β = 3
and ν = 1

3(1, 1, 1) in zero magnetic field. Furthermore, the third-order
Taylor expansion of the potential fβ,α for β = 3 and zero magnetic field
in the (x, y)-coordinates (3.34) is given by −1

3y
3 + x2y + const. This is

exactly the germ of the elliptic umbilic from Thom’s seven elementary
catastrophes.
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Figure 3.3: The figure shows the two degenerate stationary points in ν-space that are
mapped to a touching point of the inner triangle with of a fold line in
α-space under the catastrophe map χβ .

3.2.5 A parametric representation of the bifurcation set
As we have learned in the previous subsections, the extended phase
diagram is constructed via the bifurcation set. In this subsection we
present the parametric representation which was used to create Figure 3.1
and how it is obtained.

Theorem 24. The bifurcation set is given by the union F+(∆2)∪F−(∆2)
of the images of the two maps F± from ∆2 to the parameter space
(0,∞)×∆2 with components

F±1 (ν) = 1
3

3∑
i=1

1
νi
±

√√√√√1
9

( 3∑
i=1

1
νi

)2

− 1
3
∑
i<j

1
νiνj

(3.47)

F±2 (ν) = χF±1 (ν)(ν) =
(

νie
−F±1 (ν)νi∑q

k=1 νke
−F±1 (ν)νk

)3

i=1

(3.48)

Proof. First, let us check that F+ and F− map ∆2 into (0,∞) × ∆2.
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3.3 The stable phase diagram

Clearly, F±2 (ν) is an element of ∆2. Furthermore, F+
1 (ν) is obviously

positive. Since every νi is positive, we have√√√√√1
9

( 3∑
i=1

1
νi

)2

− 1
3
∑
i<j

1
νiνj

<
1
3

3∑
i=1

1
νi

(3.49)

which implies that F−1 (ν) is also positive. A point (β, α) belongs to the
bifurcation set if and only there exists a degenerate stationary point
ν in the unit simplex such that α = χβ(ν). Lemma 19 shows us that
the degeneracy condition (3.10) is a quadratic equation but this time
considered as a function of β. Note also that it is independent of α. The
discriminant is given by

4(ν1ν2 + ν2ν3 + ν3ν1)2 − 12ν1ν2ν3 (3.50)
= 4((ν1ν2 + ν2ν3 + ν3ν1)2 − 3ν1ν2ν3) (3.51)
= 4((ν1ν2)2 + (ν2ν3)2 − ν1ν2ν3 + (ν3ν1)2). (3.52)

On the boundary of the simplex, the discriminant is positive except at
the vertices. We see by calculus that it achieves its minimal value at
the centre of the simplex where it takes the value zero. Therefore the
quadratic equation for β has the two solutions F±1 (ν) for every ν.
Now that we know the two possible β-values that make ν fulfill the

degeneracy condition we can use the catastrophe map χβ to obtain the
respective a-priori measures α to make them degenerate stationary points.
This proves the claim.

3.3 The stable phase diagram
The classical phase diagram is a partition of the parameter space. How-
ever, in contrast to the metastable phase diagram, the cells of this
partition contain (β, α) such that the number of global minimizers stays
constant inside the cell. This type of phase diagram does not see the fine
bifurcation behaviour of the rate function and is therefore much simpler
to describe. We can think of the classical phase diagram as given by
a “surface” in the parameter space: the coexistence surface. On this
surface we have a coexistence of at least two phases. It is therefore clear
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3 Stable and metastable phases for the Curie–Weiss Potts model

that the coexistence surface lies in those cells of the metastable phase
diagram in which the rate function has at least two minimizers. The
complement of the coexistence surface defines a region of the parameter
space in which the rate function has a unique global minimum.

The surface is best understood by moving in the direction of increasing
β (see Figures 3.4 to 3.7). Leaving the high temperature regime (β ≤ 2),
it consists of three lines on the axis of symmetry. These lines have
progeny, namely two lines emerging at a positive angle. This results in
three Y-shaped sets composed of curved and straight lines. Furthermore,
each of the offspring lines of the Y-shaped curves meet during the beak-
to-beak scenario we have already seen in the extended phase diagram
and form a triangle. Finally, the triangle shrinks to a point and we see a
star-shaped set consisting of three straight lines (the axes of symmetry).
On the coexistence surface the rate function has at least two and at most
four global minimizers. The point of coexistence of four phases is the
well-known Ellis-Wang point [14]. For 2 < β ≤ 18

7 it is only possible to
have a coexistence of two phases. However, starting with β larger than
18
7 we find so-called triple points (coexistence of three phases). These
will be important for our numerical computation of the Maxwell set
(coexistence surface). Let us summarize our result:

Theorem 25. Let us use the (x, y)-coordinates (3.34) for the α-simplex.

(1) For β ≤ 2 the rate function has a unique global minimum for any
α.

(2) For 2 < β ≤ 18
7 the rate function has precisely two global minimizers

if α lies in the segment {0} ×
(
−1

2 ,−
1−(β−2)e3−β

2+(β−2)e3−β

)
or its images

under the permutation group. For any other α the rate function
has a unique global minimum (see Figure 3.4).

(3) For 18
7 < β < 4 log 2 the rate function has precisely two global

minimizers if α lies in the segment {0} × (−1
2 , ytriple(β)) or if α

lies on the curve that is a solution to the initial value problem
(3.60) or its images on the permutation group. Here, ytriple(β) is
the y-coordinate of the triple point. If α is a triple point, the rate
function has three global minimizers. For any other α it has a
unique global minimum. (see Figures 3.5 and 3.6).
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(4) For β ≥ 4 log 2 the rate function has two global minimizers for any
α on the segment (−1

2 , 0)×{0} or its images under the permutation
group. It has four global minimizers if β = 4 log 2 and three global
minimizers if β > 4 log 2 for α = (1

3 ,
1
3 ,

1
3). For any other α it has

a unique global minimum (see Figure 3.7).

Now it is clear from the previous section that for β ≤ 2 we do not see
multiple global minimizers because points in the bifurcation set have
β > 2 and in a high temperature regime we have a unique global minimum.
The other three regimes are interesting and it is useful to keep the
bifurcation set in mind when analysing these. However, before we discuss
the other regimes in detail let us state another observation which clarifies
the word “surface” of the term coexistence surface: Locally (except at
the triple points), this set is indeed a two-dimensional submanifold.
Suppose (β, α) is such that the rate function fβ,α has two distinct

non-degenerate stationary points νβ,α and µβ,α. Since the rate function
depends smoothly on its parameters, the Implicit Function Theorem
tells us that we find two smooth maps (β, α) 7→ νβ,α and (β, α) 7→ µβ,α
that map a neighbourhood U of (β, α) to ∆2 such that νβ,α and µβ,α are
stationary points of fβ,α for every (β, α) in the neighbourhood.

Lemma 26. The set of (β, α) such that fβ,α(νβ,α) = fβ,α(µβ,α) is a
two-dimensional embedded submanifold of (0,∞)×∆2.

Proof. Let us define the smooth map F from U to R via

F (β, α) = fβ,α(νβ,α)− fβ,α(µβ,α). (3.53)

We now want to apply the Constant-Rank Level Set Theorem [43] for
F to conclude the proof. The differential of F in terms of the (β, u, v)
coordinates is given via the row vector

(
−1

2(‖νβ,α‖2 − ‖µβ,α‖2), (µβ,α)1 − (νβ,α)1, (µβ,α)2 − (νβ,α)2
)
(3.54)

which is the zero map if and only if νβ,α = µβ,α. Thus, the differential
has constant rank one.
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3.3.1 Coexistence in the regime of the rockets
In the regime of the rockets (2 < β ≤ 18

7 ) the only cell that yields two
local minimizers is given by the region enclosed by the rockets. The
Maxwell set of this region is given by the intersection with the axes of
symmetry. This is due to the fact that the two local minimizers lie in
different fundamental cells of the simplex and that an asymmetry in the
fields α leads to the same asymmetry in the global minimizer. This is
explained by the following lemma which is inspired by Lemma 1 of [58].

Lemma 27 (Tilting Lemma). Let ν be a global minimum of fβ,α. If
αi > αj, then νi > νj.

Proof. Let ν ′j = νi, ν ′i = νj and ν ′k = νk for k not in {i, j}. Since

fβ,α(ν ′)− fβ,α(ν) = (νi − νj)(logαi − logαj) ≥ 0 (3.55)

and logαi − logαj > 0, we conclude νi ≥ νj . Assume νi = νj and
consider the push-forward of the tangent vector v = ∂

∂νj
− ∂

∂νi
:

dfβ,α(v) = logαi − logαj > 0. (3.56)

Thus ν is not a stationary point which contradicts the fact that ν is a
minimizer. Therefore νi > νj .

The cusp point of the rockets is given by the end point of the curve
χβ ◦ γβ(ν1) which in this regime is ν1 = 1− 2

β (see Theorem 18). Thus
the Maxwell set in (x, y)-coordinates is the segment

{0} ×
(
−1

2 ,−
1− (β − 2)e3−β

2 + (β − 2)e3−β

)
. (3.57)

3.3.2 Coexistence in the regime of disconnected pentagrams
In the regime 18

7 < β < 8
3 three pentagrams have already unfolded but

are still disconnected. As we have already discussed there are (modulo
symmetry) three cells with two local minimizers and one cell with three
local minimizers. The Maxwell set in cell I (see Figure 3.5) is the easiest.
Here we have again two minimizers in different fundamental cells and
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Figure 3.4: The left plot shows the Maxwell set (dashed lines) inside of the rockets.
The right plot shows the contours of a typical point on the Maxwell set as
indicated by the red dot in the left plot. The minimizers are equally deep
and are mapped onto each other under reflection at the vertical axis.

therefore the Maxwell set is the intersection with the respective axis of
symmetry. In the cells III and IV we also have two local minimizers
but they lie in the same fundamental cell. Therefore the Tilting Lemma
(Lemma 27) does not apply and the Maxwell set is a curved line deviating
from the axis of symmetry. Cell II is special because we have three
different local minimizers two of which lie in different fundamental
cells. Since the classical phase diagram describes the degeneracy of
the global minimum, we know that the Maxwell set continues on the
axis of symmetry for as long as the two local minima from the different
fundamental cells are lower than the third minimum. There exists
however a point on the axis of symmetry at which this behaviour changes:
the triple point. This is a point at which all minimizers are global
minimizers. Since two of the local minimizers lie in different fundamental
cells, the triple point must lie on the “star” (Lemma 27), that is, at least
two components are equal. This is also the point where the Maxwell
set leaves the axis of symmetry because the minimizers involved do not
lie in different fundamental cells anymore. It suffices to compute the
Maxwell set in either cell III or IV because of symmetry. The problem
of computing the Maxwell set can be transformed into a solution of an
initial value problem where the initial value is given by the triple point.

Proposition 28. For each positive β there exists exactly one point α

55



3 Stable and metastable phases for the Curie–Weiss Potts model

−0.005 0.000 0.005

−0.0250

−0.0225

−0.0200

−0.0175

−0.0150

I

II

IIIIV

−0.5 0.0 0.5

−0.5

0.0

0.5

1.0

Figure 3.5: The left plot shows a magnification of one of the three pentagrams with
its containing Maxwell set (dashed lines). The red dot marks the triple
point at which all three minimizers are global minimizers. This can be
seen in the right plot which shows a contour plot of the potential at the
triple point.

with α1 ≤ α2 ≤ α3 such that fβ,α has precisely three global minimizers.

Proof. It is clear that the triple point α lies on the axis of symmetry.
Therefore, let the curve u 7→ α(u) be the axis of symmetry intersected
with cell II. Then we have two local minimizers µ(u) and ν(u) of fβ,α(u)
such that µ1(u) > ν1(u). The difference

g(u) := fβ,α(u)(ν(u))− fβ,α(u)(µ(u)) (3.58)

is a monotonically increasing function of u:

g′(u) =
∂fβ,α(u)
∂u

= µ1(u)− ν1(u) > 0. (3.59)

Proposition 29. The set of all α such that the two local minimizers
inside of the fundamental cell ν1 < ν2 < ν3 have the same depth is given
in (u, v)-coordinates by the graph of u 7→ v(u) which is the solution of
the initial value problem

dv

du
= −ν1(u, v)− µ1(u, v)

ν2(u, v)− µ2(u, v)
v(u0) = v0

(3.60)
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where α = (u0, v0) is the triple point, ν(u, v) and µ(u, v) are the two
local minimizers of fβ,α in the same cell for α = (u, v(u)).

Proof. The curve fulfills

fβ,α(u)(ν(u, v)) = fβ,α(u)(µ(u, v)). (3.61)

Note that
d

du
fβ,α(u)(ν(u, v)) = ν1(u, v)− ν2(u, v)dv

du
(3.62)

since ν(u, v) is a stationary point. This proves the proposition.

However, numerically computing the Maxwell set using this charac-
terization is difficult because the mapping u 7→ (ν(u, v), µ(u, v)) is not
explicit. Therefore we consider the system of equations

fβ,α(µ) = fβ,α(ν)
χβ(µ) = χβ(ν)

instead. Because the free energy at a stationary point is given by

fβ,α(ν) =
3∑
i=1

1
2βν

2
i + νi log

3∑
j=1

νje
−βνj

 (3.63)

this system does not depend on α and can be solved numerically for
fixed values of β and µ1. For better stability of the numerics we start
with the triple point where the minimizers are well separated and then
iteratively use the results as initial values for the next numerical step.
In this way, the Figures 3.4 to 3.7 were obtained.

3.3.3 From beak-to-beak to Ellis-Wang
The qualitative nature of the Maxwell sets does not change with increasing
β after the beak-to-beak scenario until we reach the Ellis-Wang point.
The cells with two minima which resulted from the merging of the horns of
the pentagrams contain two minimizers which lie in the same fundamental
cell as discussed in the previous subsection. Therefore the Maxwell set
is again given by the solution to the initial value problem (3.60). This
continues even after the crossing temperature where the central cell now
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Figure 3.6: The upper left plot shows a magnification of the center of the simplex
showing the bifurcation set together with the Maxwell set (dashed lines)
for a β between beak-to-beak and Ellis-Wang. Following the red dots on
the Maxwell set from left to right we see how the potential changes in the
upper right, lower left and lower right plots.

contains four minima. Before the Ellis-Wang temperature the central
fourth minimum is a local but not global minimum. The two outer
minima each lie in the same fundamental cell so that the initial value
problem applies. However, this changes after the Ellis-Wang point.

3.3.4 Beyond Ellis-Wang
At β = 4 log 2 the outer minima and the central local minimum are
equally deep. After the Ellis-Wang point (β > 4 log 2), the outer minima
are lower than the central minimum. They are equally deep in zero
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Figure 3.7: The left plot shows the Maxwell set (dashed lines) beyond Ellis-Wang
together with the bifurcation set at the Ellis-Wang β = 4 log 2. The
Maxwell set looks the same at lower temperatures. The potential shows
four equally deep minima for α at the red dot. Further decreasing the
temperature, the central minimum will raise and eventually become a
maximum.

magnetic field and it is still possible using the Tilting Lemma to break the
symmetry of the fields partially and achieve two equally deep minimizers.
This can be done in the regime where the rate function has a local
minimum in the centre (β < 3) as well as in the regime where the local
minimum has become a local maximum (β > 3).
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4 Dynamical Gibbs–non-Gibbs
transitions in the Curie–Weiss
Potts model in the regime β < 3

This chapter contains joint work with Prof. Dr. Christof Külske at
Ruhr-Universität Bochum [37].

4.1 Introduction

4.1.1 Research context

The past years have seen progress from various directions in the un-
derstanding of Gibbs–non-Gibbs transitions for trajectories of measures
under time-evolution, and also more general transforms of measures.
The Gibbs property of a measure describing the state of a large system
in statistical mechanics is related to the continuity of single-site con-
ditional probabilities, considered as a function of the configuration in
the conditioning. If a measure becomes non-Gibbsian, there are internal
mechanisms which are responsible for the creation of such discontinuous
dependence. This leads to the study of hidden phase transitions, which
was started in the particular context of renormalization group pathologies
in van Enter, Fernández, and Sokal [56].
Such studies have been made for a variety of systems in different

geometries, for different types of local degrees of freedom, and under
different transformations. Let us mention here time-evolved discrete
lattice spins [32, 53], continuous lattice spins [39, 57], time-evolved
models of point particles in Euclidean space [30], and models on trees
[55]. For a discussion of non-Gibbsian behavior of time-evolved lattice
measures in regard to the approach to a (possibly non-unique) invariant
state under dynamics, see [29], for relevance of non-Gibbsianness to
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the infinite-volume Gibbs variational principle (and its possible failure)
see [36, 40]. For recent developments for one-dimensional long-range
systems, and the relation between continuity of one-sided (vs. two-sided)
conditional probabilities see [2–4, 54].

In the present paper we are aiming to contribute to the understanding
of Gibbs–non-Gibbs transformations for mean-field models, in the sense
of the sequential Gibbs property [10, 15–17, 26, 28, 31, 35]. Usually there
is a somewhat incomplete picture for lattice models, due to the difficulty
to find sharp critical parameters. Mean-field models on the other hand
are often “solvable” in terms of variational principles which arise from
the large deviation formalism, while the remaining model-dependent
task to characterize the minimizers and understand the corresponding
various bifurcations can be quite substantial. We choose to work for
our problem in the so-called two-layer approach, in which one needs to
understand the parameter dependence of the large-deviation functional
of a conditional first-layer system. In this functional the conditioning
provides an additional parameter given by an empirical measure on
the second layer. This is more direct than working in the Lagrangian
formalism on trajectory space, which would provide additional insights
on the nature of competing histories that explain the current state of
the system at a discontinuity point [15, 34, 50, 52].
Compared to the Curie–Weiss Ising model, the Fuzzy Potts model

and the Widom-Rowlinson models, we find in the present analysis of
the time-evolved Curie–Weiss Potts model significantly more complex
transition phenomena, see Theorem 31 and Figure 4.2. This has to be
expected as already the behavior of the fully non-symmetric static model
is subtle [38]. It forces us to make use of the computer for exact symbolic
computations, in the derivation of the transition curves (BU, ACE and
TPE in Figure 4.2, discussed in Sects. 4.4.4, 4.4.5 and 4.4.6), along with
some numerics for our bifurcation analysis. We believe that these tools
(see page 107) may also be useful elsewhere.

Now, our approach rests on singularity theory [1, 6, 20, 21, 49] for
the appropriate conditional rate functional of the dynamical model.
This provides us with a four-parameter family of potentials, for a two-
dimensional state-variable taking values in a simplex. It turns out that
the understanding of the parameter dependence of the dynamical model is
necessarily based on the good understanding of the bifurcation geometry
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of the free energy landscape of the static case for general vector-valued
fields [38]. In that paper, which generalizes the results of Ellis and Wang
[14] and Wang [58], we lay out the basic methodology. Therein we also
explain the phenomenology of transitions (umbilics, butterflies, beak-to-
beak) from which we need to build here for the dynamical problem.
As a result of the present paper we show that the unfoldings of the

static model indeed reappear in the dynamical setup, and acquire new
relevance as hidden phase transitions. It is important to note that,
in order for this to be true, we have to restrict to mid-range inverse
temperatures β < 3. More work has still to be done to treat the full
range of inverse temperatures for the dynamical model, where more
general transitions seem to appear for very low temperatures. For the
scope of the present paper, it is this close connection between the static
model [38] in fully non-symmetric external fields, and the symmetrically
time-evolved symmetric model in intermediate β range, which is really
crucial to unravel the types of trajectories of bad empirical measures of
Theorem 31. It would be challenging to exploit whether an analogous
non-trivial connection, that we observe for our particular model, holds
for more general classes of models. This clearly asks for more research.

4.1.2 Overview and organization of the paper

In the present paper we study the simplest model which is, together
with its time-evolution, invariant under the permutation group with
three elements: We consider the 3-state Curie–Weiss Potts model in
zero external field, under an independent symmetric stochastic spin-flip
dynamics. Based on previous examples [35], one may expect loss without
recovery of the Gibbs property for all initial temperatures lower than
a critical one (which then may or may not coincide with the critical
temperature of the initial model), and Gibbsian behavior for all times
above the same critical temperature. We show that this is not the
case for our model, and the behavior is much more complicated: The
trajectories of the model show a much greater variety, depending on
the initial temperature. We find a regime of Gibbs forever (I), a regime
of loss with recovery (II) and a regime of loss without recovery (III).
Figure 4.1 shows the non-Gibbs region in the two-dimensional space of
initial temperature and time. The boundary of this non-Gibbs region
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Figure 4.1: This figure shows the non-Gibbs region for the mid-range temperature
regime we consider. The boundary of this region consists of three different
curves which correspond to exit scenarios of bad empirical measures.

consists of three different curves which correspond to exit scenarios of
different types of bad empirical measures. Bad empirical measures are
points of discontinuity of the limiting conditional probabilities as defined
in Definition 30. Under the time evolution t ↑ ∞ (or equivalently gt ↓ 0
given by (4.4)) the system moves along vertical lines of fixed β towards
the temperature axis. Intersections with a finite number of lines occur
along this way, which are responsible for the transitions described in our
main theorem, Theorem 31. These additional relevant lines are shown in
Figure 4.2. Theorem 31 rests on the understanding of the structure of
stationary points of the time-dependent conditional rate function given
in Formula (4.9) via singularity theory.
It turns out that the bifurcations we encounter for general values of

the four-dimensional parameter (α, β, t) ∈ ∆2 × (0,∞) × (0,∞) (see
(4.6)) are of the same types as for the static model depending on a
three-dimensional parameter. However, this holds only if we restrict
to mid-range inverse temperatures β < 3 and to endconditionings α
taking values in the unit simplex (and not in the full hyperplane spanned
by the simplex). Nevertheless, in order to understand the relevant
singularities, the analysis is best done by first relaxing the probability
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measure constraint on the parameter α and allow it to take values in the
hyperplane. The analysis proceeds with a description of the bifurcation
set, where the structure of stationary points of the conditional rate
function changes, and the Maxwell set, where multiple global minimizers
appear. To pick from these transitions the ones which are relevant to
the problem of sequential Gibbsianness and visible on the level of bad
empirical measures, we have to take the probability measure constraint for
α into account. This step is neither necessary in the static Potts nor in the
dynamical symmetric Ising model. The lines Symmetric cusp exit (SCE),
Asymmetric cusp exit (ACE), Triple point exit (TPE) and Maxwell
triangle exit (MTE) depicted in the full phase diagram in Figure 4.2 are
examples of such exit scenarios. For those lines there is an exit of a
certain particular critical value of α from the unit simplex (observation
window). The detailed dynamical phase diagram in Figure 4.2 shows more
information about the transitions during time evolution. Preliminary
investigations show that the structural similarity with the static case
may no longer be valid in the regime β > 3. Therefore we leave the
region of very low temperatures for future research.
We describe the model we are considering together with its time-

evolution in Sect. 4.1.3 where we also define what we mean by Gibb-
sianness (or the sequential Gibbs property). In Sect. 4.2 we present our
main theorem and describe the transitions of the sets of bad empirical
measures as a function of the parameters β and t. We will establish the
connection between the analysis of the potential function Gα,β,t and the
Gibbs property of the time-evolved model in Sect. 4.3. The analysis of
the potential function using the methods of singularity theory is then
carried out in the Sects. 4.4 and 4.5.

4.1.3 The model and sequential Gibbsianness

We consider the mean-field Potts model with three states in vanishing
external field under an independent symmetric spin-flip dynamics. The
space of configurations in finite-volume n ≥ 2 is defined as Ωn = {1, 2, 3}n
and the Hamiltonian of the initial model is

Hn(σ) = − 1
2n

n∑
i,j=1

δσi,σj . (4.1)
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So at time t = 0 the distribution of the model is given by

µn,β(σ) = e−βHn(σ)∑
σ̃∈Ωn e

−βHn(σ̃) . (4.2)

We consider a rate-one symmetric spin-flip time-evolution in terms of
independent Markov chains on the sites with transition probabilities

pt(a, b) = egt1b=a

egt + 2 (4.3)

from state a to b where

gt = log 1 + 2e−3t

1− e−3t . (4.4)

We are interested in the Gibbsian behavior of the time-evolved measure

µn,β,t(η) =
∑
σ∈Ωn

µn,β(σ)
n∏
i=1

pt(σi, ηi). (4.5)

The unit simplex

∆2 = {ν ∈ R3 | νi ≥ 0,
3∑
i=1

νi = 1} (4.6)

contains the empirical distributions of spins. By Gibbsian behavior we
mean the existence of limiting conditional probabilities in the following
sense.

Definition 30. The point α in ∆2 is called a good point if and only if
the limit

γβ,t(·|α) := lim
n→∞

µn,β,t(·|ηn,2, . . . , ηn,n) (4.7)

exists for every family ηn,k ∈ {1, 2, 3} with n ≥ 2 and 2 ≤ k ≤ n such
that

lim
n→∞

1
n− 1

n∑
k=2

ηn,k = α. (4.8)

We call α bad, if it is not good. The model µβ,t is called sequentially
Gibbs if all α in the unit simplex ∆2 are good points.
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4.2 Dynamical Gibbs–non-Gibbs transitions: main
result

Our main result on the dynamical Gibbs–non-Gibbs transitions in the
high-to-intermediate temperature regime for the initial inverse temper-
ature β < 3 is as follows. This temperature regime ranges from high
temperature, covering the phase transition temperature (Ellis-Wang
inverse temperature β = 4 log 2), up to the elliptic umbilic point β = 3
(where the central stationary point of the time-zero rate function in zero
external field changes from minimum to maximum).

Essential parts of the structure of the trajectories of dynamical transi-
tions as a function of time t in the regime β < 3 remain unchanged over
the three inverse-temperature intervals I, II and III, which were already
visualized in Figure 4.1. The type of transitions can be understood as
deformations of the sequences of transitions found in the static Potts
model in general vector-valued fields analyzed in [38], where in that
case only the one-dimensional parameter β was varied. Observe that
however, the dynamical transitions we describe here, do not necessarily
occur in a monotonic order with respect to what is seen in the static
model under temperature variation. This is for instance (but not only)
apparent in the phenomenon of recovery of Gibbsianness. At very low
temperatures (β > 3) different bifurcations seem to occur which will be
left for future research. While reading the following theorem it is useful
to have Figure 4.2 in mind as the inverse temperatures and transition
times are related to the lines depicted in the dynamical phase diagram.

Theorem 31. Consider the time-evolved Curie–Weiss Potts model given
by (4.1 – 4.2) in zero external field, for initial inverse temperature β > 0
and at time t > 0 under the symmetric spin-flip dynamics (4.3 – 4.5).
Then the following holds.

(I) For β < βNG ≈ 2.52885 the time-evolved model is sequentially
Gibbs for all t > 0.

(II) For βNG < β < 4 log 2 the time-evolved model loses and then recov-
ers the Gibbs property at sharp transition times. More precisely,
there exist βBE < β∗ in this interval such that the following types
of trajectories of sets of bad empirical measures occur:
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Figure 4.2: This figure shows the dynamical phase diagram which displays all lines
in the two-dimensional space of 1

β
and gt

β
at which the structure of the

bifurcation set slice or the Maxwell set slices changes. We have also marked
the six important temperatures in the magnified plot on the right.

(i) For β < βBE the bad empirical measures are given by three
symmetric straight lines which are first growing with time from
the midpoints of the simplex edges towards the center, then
shrinking with time again.

(ii) For βBE < β < 8
3 the bad empirical measures are given by

three symmetric straight lines in a first time interval tNG(β) <
t < tBU(β). For a second time interval tBU(β) < t < tTPE(β),
the set of bad empirical measures consists of three symmetric
Y-shaped sets not touching. For tTPE(β) < t < tACE(β) the
set of bad empirical measures consists of six disconnected arcs.
For t > tACE(β) the system is Gibbsian again.

(iii) For 8
3 < β < β∗ and tNG(β) < t < tBU(β) the bad empiri-

cal measures consist of three symmetric straight lines. For
tBU(β) < t < tTPE(β), the set of bad empirical measures
consists of three Y-shaped sets not touching. For tTPE(β) <
t < tB2B(β) the set of bad empirical measures consists of six
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disconnected arcs. For tB2B(β) < t < tMTE(β) the set of bad
empirical measures consists of three disconnected arcs. For
t > tMTE(β) the system is Gibbsian again. The inverse tem-
perature β∗ is given by the intersection point of the two lines
B2B and TPE in Figure 4.2.

(iv) For β∗ < β < 4 log 2 and tNG(β) < t < tBU(β) the bad
empirical measures consist of three symmetric straight lines.
For tBU(β) < t < tB2B(β), the set of bad empirical measures
consists of three Y-shaped sets not touching. For tB2B(β) <
t < tTPE(β) the set of bad empirical measures consists of a
triangle with curved edges and three symmetric straight lines
attached. For tTPE(β) < t < tMTE(β) the set of bad empirical
measures consists of three disconnected arcs. For t > tMTE(β)
the system is Gibbsian again.

(III) For 4 log 2 < β < 3 the time-evolved model loses the Gibbs property
without recovery at a sharp transition time and the set of bad
empirical measures has the following structure: For t ≤ tNG(β)
the time-evolved model is Gibbsian. For tNG(β) < t < tBU(β)
the bad empirical measures are given by three symmetric straight
lines which are growing with time and become Y-shaped sets for
tBU(β) < t < tB2B(β). For tB2B(β) < t < tEW(β) the sets then
touch and form one connected component consisting of a central
triangle with three straight lines attached to the vertices. The central
triangle then shrinks to a point at t = tEW(β) and the bad empirical
measures are given by three symmetric straight lines which meet in
the simplex center for all t > tEW(β).

The meaning and computation of these lines are discussed in Sects. 4.4
and 4.5. While only the three lines SCE, ACE and MTE appear as part
of the boundary line of the non-Gibbs region, the other lines are relevant
for structural changes of the set of bad empirical measures. There are
lines which are explicit in the sense that they are given in terms of zeros of
one-dimensional non-linear functions, for example, the entry time tNG(β)
(formula (4.60)) or the butterfly unfolding time tBU(β) (Formula (4.72)).
The least explicit lines are the MTE and TPE lines which involve a
Maxwell set computation, the most explicit line is SCE which is given
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in parametric form s 7→ (β(s), gt(s)) as described in Proposition 37.
Figure 4.3 gives a graphical overview of the possible types of sequences of
bad empirical measures with increasing time for the different temperature
regimes. There is an even more detailed graphic that illustrates all the
transitions involved in the bifurcation set as well as in the Maxwell set.
You can find this graphic in the electronic supplemental material (ESM)
under the filename detailed_overview.pdf.
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time

(i) βNG < β < βBE

(ii) βBE < β < 8
3

(iii) 8
3 < β < β∗

(iv) β∗ < β < 4 log 2

4 log 2 < β < 3

II Recovery

III Loss without recovery

Figure 4.3: These are the typical sequences of bad empirical measures α for the inverse
temperature regimes described in Theorem 31. With increasing time, you
can observe the structural change of the set of bad empirical measures as
it passes the various transition times. For example in (II.ii) straight lines
enter the simplex, become non-touching Y-shaped sets at the butterfly
transition time tBU(β) and move out of the simplex. The midpoints of the
Y-shaped sets exit at tTPE(β) and the set leaves the simplex completely
at tACE(β). In (II.iii) the midpoints of the Y-shaped sets leave the unit
simplex at tTPE(β) and the two respective arcs connect at the beak-to-
beak transition time tB2B(β). The remaining three arcs move towards the
corners and leave the unit simplex at tMTE(β). The exit of the midpoints
of the Y-shaped sets and the connection of the six arcs occurs in reversed
order in the next row (II.iv). In (III) the central triangle shrinks to a
point and forms the star-like set that remains in the simplex forever.
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4.3 Infinite-volume limit of conditional probabilities
The existence of the infinite-volume limit of the conditional probabilities,
that is, the question of sequential Gibbsianness, can be transformed
into an optimization problem of a certain potential function. As the
parameters (β, t) are fixed throughout this section let us write µn for
the measure µn,β,t.

Theorem 32. Suppose the function Gα,β,t : R3 → R (known as Hubbard-
Stratonovič (HS) transform) given by

Gα,β,t(m) = 1
2β〈m,m〉 −

3∑
b=1

αb log
3∑

a=1
eβma+gt1a=b (4.9)

has a unique global minimizer, then α is a good point, that is, the infinite-
volume limit of the conditional probabilities µn(·|αn) with αn → α exists
independently of the choice of (αn).

The idea of the proof goes as follows: We can rewrite the conditional
probabilities µn(·|αn) in terms of an expected value with respect to
a disordered mean-field Potts model µ̄n (see Lemma 33). Thus, we
have to study the weak convergence of Ln, where Ln is the empirical
distribution of the spins σ2, . . . , σn. Note that this is equivalent to the
weak convergence of W√

β(n−1)
+ Ln with some independent standard

normal variable W . Because of the representation of the distribution
of W√

β(n−1)
+ Ln in terms of the function Gαn,β,t (Lemma 34), we can

prove the theorem by an asymptotic analysis of integrals of the form∫
R3
f(m)e−(n−1)Gαn,β,t(m) dm (4.10)

as was done by Ellis and Wang [14]. So it suffices to prove the Lemmata 33
and 34. A point is good if the respective random field model shows no
phase transition, that is, the law of large numbers holds. To be precise,
we have the following representation:

Lemma 33. The finite-volume conditional probabilities are given by

µn(η1|η2, . . . , ηn) =

∑
η̃1

∫
f η̃1
n dµ̄n[η2, . . . , ηn]∫
fη1
n dµ̄n[η2, . . . , ηn]


−1

(4.11)
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where the observable fη1
n is defined via

fη1
n (σ2, . . . , σn) =

∑
a

exp
(
β

n

n∑
i=2

1σi=a
)
pt(a, η1) (4.12)

and the constrained first-layer model µ̄n is given by

µ̄n[η2, . . . , ηn](σ2, . . . , σn) =
e

β
2n

n∑
i,j=2

1σi=σj n∏
i=2

pt(σi, ηi)

∑
σ̃2,...,σ̃n

e

β
2n

n∑
i,j=2

1σ̃i=σ̃j n∏
i=2

pt(σ̃i, ηi)

. (4.13)

This is a corrected version of [37, Lemma 4] which has been submitted
for publication in the Journal of Statistical Physics.

Proof. The proof is given on page 14 and essentially follows from explicit
computations with conditional probabilities.

This representation of the conditional probabilities transforms the
problem of understanding bad points to the analysis of disordered mean-
field models and their phase transitions. This analysis is done using the
so-called Hubbard-Stratonovič transformation which is successfully used
for many models [13, 14, 35].
Lemma 34. Write

Ln = 1
n− 1

n∑
i=2

δσi (4.14)

for the empirical measure of n − 1 spins with law µ̄n[η2, . . . , ηn] ◦ L−1
n .

Furthermore, let W be a standard normal random vector independent of
Ln. The distribution of W/

√
β(n− 1) + Ln has a density proportional

to e−(n−1)Gαn,β,t with respect to Lebesgue measure.
Proof. Denote by σ2, . . . , σn independent {1, 2, 3}-valued random vari-
ables each distributed according to pt(dσi , ηi) with a fixed boundary
configuration η2, . . . , ηn with empirical measure αn. We denote the expec-
tation with respect to this distribution by E. Then in order to calculate
the distribution of

W√
β(n− 1)

+ Ln = W√
β(n− 1)

+ 1
n− 1

n∑
i=2

δσi (4.15)
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we calculate for every bounded continuous function f the expectation

(2π)− 3
2

Zn
E
[∫

f

(
w/
√
β(n− 1) + Ln

)
e−
‖w‖2

2 +β
2 (n−1)‖Ln‖2 dw

]
(4.16)

Now we apply the transformation m = w/
√
β(n− 1) + Ln and obtain

(2π)− 3
2

Zn
E
[∫

f(m) exp
(
−(n− 1)β2 ‖m‖

2 + (n− 1)β〈m,Ln〉
)

dm
]

(4.17)
In order to complete the proof, we have to calculate the expectation

E[exp((n− 1)β〈m,Ln〉)] =
n∏
i=2

E[exp(βmσi)]

=
n∏
i=2

3∑
a=1

eβma+gt1ηi=a

egt + 2

= 1
(egt + 2)n−1

n∏
i=2

3∑
a=1

eβma+gt1ηi=a

(4.18)

Now we take the logarithm to raise the expression back into the exponent
again. So the expected value (4.16) of the bounded continuous function f
is equal to the following up to a normalizing constant:

∫
f(m) exp

(
−(n− 1)β2 ‖m‖

2 +
n∑
i=2

log
∑
a

eβma+g1ηi=a

)
dm (4.19)

We can now identify Gαn,β,t in the exponent using that

n∑
i=2

log
3∑

a=1
eβma+gt1ηi=a = (n− 1)

3∑
b=1

1
n− 1

n∑
i=2

1ηi=b log
3∑

a=1
eβma+gt1b=a

= (n− 1)
3∑
b=1

αn(b) log
3∑

a=1
eβma+gt1b=a .

(4.20)
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4.4 Recovery of the Gibbs property

The regime β < 8
3 is split into three parts given by the intervals (0, βNG],

(βNG, βBE] and (βBE,
8
3). In the first part we find that the model is

sequentially Gibbs for all times t > 0 whereas in the other two parts
the system recovers from a state of non-Gibbsian behavior. The driving
mechanism in this “recovery regime” is due to the butterfly singularity
which is already found in the static model [see 38, Sect. 2.4.1]. However,
in contrast to the static model the bifurcation set might leave the unit
simplex so that in order to answer the Gibbs–non-Gibbs question the
location of this set (and the contained Maxwell set) with respect to the
unit simplex is also important.

4.4.1 Elements from singularity theory

In order to investigate the Gibbs–non-Gibbs transitions we have to study
the global minimizers of the potential Gα,β,t (Theorem 32). We will use
concepts from singularity theory to derive and explain our results.

Singularity theory allows us to understand how the stationary points
of the potential change with varying parameters. This can be achieved
by looking at the geometry of the so-called catastrophe manifold, which
contains the information about the stationary points of the potential
for every possible choice of parameter values. More precisely, it consists
of the tuples (m,α, β, t) in R3 ×∆2 × (0,∞)× (0,∞) such that m is a
stationary point of Gα,β,t given by (4.9). The bifurcation set consists
of those parameter values (α, β, t) in ∆2 × (0,∞) × (0,∞) such that
there exists a degenerate stationary point m in R3, that is, a point
at which the Hessian has a zero eigenvalue. The parameter values
of the bifurcation set give rise to a partition of the parameter space
whose cells contain parameters at which the number and nature of
stationary points do not change. Although we are only interested in
α that are bad empirical measures, hence probability measures, it is
convenient to loosen this constraint and consider α in the hyperplane
H = {m ∈ R3|m1 + m2 + m3 = 1} into which the unit simplex is
embedded. The following proposition is the basis for the analysis of the
bifurcation set.
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4 Dynamical Gibbs–non-Gibbs transitions in the Curie–Weiss Potts model

Proposition 35. Let Γ denote the map from R3 × (0,∞) to the space
of 3× 3 matrices with real entries Mat(3,R) given by its components

Γb,a(M, t) = eMa+gt1b=a

3∑
c=1

eMc+gt1b=c
. (4.21)

Then we have the following:

(a) Let ρ be any permutation of {1, 2, 3}. Then

ρ−1Γ(M, t)ρ = Γ(ρM, t) (4.22)

where we interpret the permutation ρ as a 3× 3-matrix and M as
a column vector. For example, if M2 = M3, we find Γ3,3(M, t) =
Γ2,2(M, t) and also Γ1,2(M, t) = Γ1,3(M, t).

(b) Γ maps R3× (0,∞) into the general linear group GL(3,R) and the
inverse matrix of Γ(M, t) is given by the formulas

Γ−1
a,a(M, t) = (egt + 1)e−Ma

e2gt + egt − 2

3∑
c=1

eMc+gt1c=a (4.23)

Γ−1
b,a(M, t) = − e−Mb

e2gt + egt − 2

3∑
c=1

eMc+gt1c=a (4.24)

for two distinct elements a, b of {1, 2, 3}.

(c) The catastrophe manifold of the HS transform Gα,β,t is the graph
of the map (m,β, t) 7→ α = χ(m,β, t) given by

χ(m,β, t) =
(∑

a

maΓ−1
a,b(βm, t)

)3

b=1
(4.25)

from H × (0,∞) × (0,∞) to H. For χ(m,β, t) to lie in the unit
simplex ∆2 it is necessary (but generally not sufficient) that m lies
in ∆2.
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(d) Consider the coordinates (x, y, z) = ϕβ(m) where

ϕβ(m) = β

6


√

3(m3 −m2)
2m1 −m2 −m3

2m1 + 2m2 + 2m3 − 2

 (4.26)

for m ∈ R3. In these coordinates, the β-scaled simplex β∆2 is an
equilateral triangle in the (x, y)-plane centered at the origin. The
Hessian matrix G′′α,β,t(m) in these coordinates is in block diagonal
form: 

∂2Gα,β,t
∂x2

∂2Gα,β,t
∂x∂y 0

∂2Gα,β,t
∂x∂y

∂2Gα,β,t
∂y2 0

0 0 3
β

 (4.27)

The set of degenerate stationary points is given by the solutions
(m,β, t) of the following equation:

∂2Gχ(m,β,t),β,t
∂x2

∂2Gχ(m,β,t),β,t
∂y2 −

(
∂2Gχ(m,β,t),β,t

∂x∂y

)2

= 0 (4.28)

Before we present the proof, let us stress the importance of this propo-
sition. The matrix Γ naturally appears in the derivatives of Gα,β,t and
has the two important properties: Firstly, the rows of Γ are probability
vectors and secondly the map M 7→ Γ(M, t) is compatible with the sym-
metry of the model. The fact that the catastrophe manifold is given as a
graph allows us to write the bifurcation set as the set of (χ(m,β, t), β, t)
such that

detG′′χ(m,β,t),β,t(m) = 0 (4.29)

with (m,β, t) ∈ H × (0,∞) × (0,∞). We can therefore take the same
point of view as in the static case [cf. 38, Lemma 3]: We study the
zeros of the Hessian determinant as a function of m with β and t fixed.
This is a two-dimensional problem since we only have to consider points
in the unit simplex ∆2. Additionally, ∆2 is bounded so that we can
simply compute the zeros of the Hessian determinant numerically on a
discretization of ∆2 as accurately as we want to. In this way we can get
insight into the global shape of the bifurcation set. It is convenient to
look at this set as composed of the bifurcation set slices B(β, t), that
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4 Dynamical Gibbs–non-Gibbs transitions in the Curie–Weiss Potts model

is, the subsets for which the parameter (β, t) is fixed. Figure 4.4 shows
an example of the zeros of the Hessian determinant together with the
respective image under the map χ(·, β, t) for a fixed pair (β, t). We now
continue with the proof of the above proposition.

Proof of Proposition 35. Let us prove the claims in increasing order. Fix
arbitrary M ∈ R3 and positive t. The following equation proves (4.22).

Γb,a(ρM, t) = eMρ(a)+gt1b=a

3∑
c=1

eMc+gt1b=c
= eMρ(a)+gt1ρ(b)=ρ(a)

3∑
c=1

eMc+gt1ρ(b)=c

= Γρ(b),ρ(a)(M, t)

(4.30)
We proceed with the second point. Note that the matrix Γ(M, t) can

be written as the product DE of the diagonal matrix D = (Da,b) with
entries

1a=b∑3
c=1 e

Mc+gt1c=b
(4.31)

for a, b ∈ {1, 2, 3} and the matrix

E =

eM1+gt eM2 eM3

eM1 eM2+gt eM3

eM1 eM2 eM3+gt

 . (4.32)

Since det Γ(M, t) = det(D) · det(E) and the determinant of D is clearly
positive, we have to check that det(E) is positive to see that Γ(M, t) is
in the general linear group. We find that the determinant of E is given
by

det(E) = eM1+M2+M3(e3gt − 3egt + 2) (4.33)

which is clearly positive for all positive gt.
To prove the formula for the inverse, let a, b and d be pairwise different

elements of {1, 2, 3}. Substituting the right-hand sides of (4.23–4.24), we
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χ(·, β, t)

χ(·, β, t)

Figure 4.4: The left column shows the solutions to the degeneracy condition (4.28)
for β = 2.755, gt = 0.5 (above) and gt = 0.45 (below) computed using a
uniform triangular grid. The right column shows the image of the solutions
under the catastrophe map χ(·, β, t) restricted to a square. The branches
of the degenerate points on the left and their corresponding images under
χ(·, β, t) on the right are marked with the same color. Note that despite
the fact that the degenerate stationary points in the left plot lie inside
of ∆2 in the right plot we see that parts of the bifurcation set slice lie
outside of the simplex. This is a major difference to the static case.
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have the following

Γb,aΓ−1
a,a = egt + 1

e2gt + egt − 2

∑
c e
Mc+gt1c=a∑

c e
Mc+gt1c=b

Γb,bΓ−1
b,a = −egt

e2gt + egt − 2

∑
c e
Mc+gt1c=a∑

c e
Mc+gt1c=b

Γb,dΓ−1
d,a = −1

e2gt + egt − 2

∑
c e
Mc+gt1c=a∑

c e
Mc+gt1c=b

Γa,aΓ−1
a,a = (egt + 1)egt

e2gt + egt − 2
2Γa,dΓ−1

d,a = −2
e2gt + egt − 2

Adding the right-hand sides of the first three equations yields zero and
adding those of the last two gives one. This proves the formula for the
inverse.

We now prove that the catastrophe manifold is the graph of χ. First,
let us check that the range of χ is indeed the hyperplane H. Take an
arbitrary point (m,β, t) in H × (0,∞)× (0,∞) and let α = χ(m,β, t).

3∑
b=1

αb =
3∑
b=1

3∑
a=1

maΓ−1
a,b(βm, t) (4.34)

Since (1, 1, 1)T is an eigenvector of Γ(βm, t) for the eigenvalue 1, it is
also an eigenvector of Γ−1(βm, t) for the same eigenvalue. Therefore, we
find

3∑
b=1

αb =
3∑

a=1
ma = 1, (4.35)

so α is an element of H. Next, we show that the catastrophe manifold is
the graph of χ. The differential of Gα,β,t is given by

G′α,β,t(m) = β

(
ma −

3∑
b=1

αbΓb,a(βm, t)
)3

a=1

(4.36)

Since Γ(βm, t) is invertible, the equation G′α,β,t(m) = 0 can be solved
for α and we find α = χ(m,β, t). Assume α is in ∆2, then G′α,β,t(m) = 0
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implies that m also lies in ∆2 since 0 < Γb,a(βm, t) < 1 for all b, a in
{1, 2, 3}.

To show (4.27) and (4.28) observe that the second derivative of Gα,β,t
is given by the matrix

G′′α,β,t(m) = β

(
1a=b − β

3∑
c=1

αc
∂Γc,a
∂Mb

)3

b,a=1

= β

(
1a=b − β

3∑
c=1

αcΓc,a
(
1a=b − Γc,b

))3

b,a=1

(4.37)

where Γ = Γ(βm, t). The partial derivatives of Γc,a are elements of the
tangent space of ∆2 for every c in {1, 2, 3}, that is, summing over a
yields zero. Therefore:

〈
h,G′′α,β,t(m) ∂

∂z

〉
= β

3∑
b,a=1

1a=bhb

(
∂

∂z

)
a

=
∑
a

ha (4.38)

Since the coordinate basis of the (x, y, z)-chart is an orthogonal basis, we
find 〈 ∂∂x , G′′α,β,t(m) ∂∂z 〉 = 〈 ∂∂y , G′′α,β,t(m) ∂∂z 〉 = 0 and 〈 ∂∂z , G′′α,β,t(m) ∂∂z 〉 =
3
β . Since β > 0 and α = χ(m,β, t), the condition for degenerate station-
ary points detG′′α,β,t(m) = 0 is equivalent to equation (4.28).

4.4.2 Universality hypothesis connecting the mid-range
dynamical model with the static model

In our work we are guided by the following universality hypothesis, which
provides a useful organizing principle to understand the transitions which
appear. It is suggested by the universality seen in local bifurcation theory,
and verified for our model in the full set of mid-range temperatures β < 3,
by means of our analytical treatment in the sequel of the paper, aided
in some parts by computer algebra and numerics.
There exists a map from the two parameters temperature and time

of the dynamical model to one effective temperature parameter of the
static model of the form

(β, t) 7→ βst(β, t) (4.39)
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4 Dynamical Gibbs–non-Gibbs transitions in the Curie–Weiss Potts model

which for our model is defined on the whole subset {(β, t) |0 < β < 3, t >
0} of the positive quadrant (and not only locally) and this map has the
following property.
At fixed (β, t) the bifurcation set slice B(β, t) ⊂ ∆2, in the space of

endconditionings α for the dynamical model, is diffeomorphic to a subset
of the corresponding bifurcation set slice Bst(βst) ⊂ ∆2 of the static
model under a smooth (β, t)-dependent map

∆2 3 α 7→ αst(α, β, t). (4.40)

See [38, Figure 2, page 973] for nine prototypical examples of such
slices for the static model. Moreover the corresponding Maxwell sets
of the dynamical and the static model get mapped onto each other by
the same diffeomorphism. For corresponding values of (α, β, t) for the
dynamical model and (βst, αst) the structure of stationary points of the
rate functionals of the dynamical and the static model is identical. The
image of ∆2 under αst(·, β, t), which we call the effective observation
window, always contains the uniform distribution. However, it may be
much smaller than ∆2 for some parameter values. In fact, this will
happen as t ↑ ∞, as we will see. The map βst(β, t) from dynamical to
static parameters is (only) uniquely defined on the critical lines EW,
B2B and BU of the dynamical model (see Figure 4.2) which get mapped
to the corresponding static values βst = 4 log 2, βst = 8

3 , and βst = 18
7

[see 38, Table 1].
The following conjecture underlies this hypothesis, as it expresses the

structural similarity of dynamical and static rate functional, by means
of a parameter-dependent map acting on the state space ∆2, compare
with the definition of equivalent potentials in [49, Chapter 6, Section 1].

Conjecture 36. There exists a set U which contains the unit simplex
∆2 and is open in the hyperplane H such that

(a) there exists a smooth map ψ1 from the subset

D = {(α, β, t) | β < 3, t > 0, α ∈ U} (4.41)

of the parameter space of the time-evolved model to the parameter
space (0,∞)×∆2 of the static model such that the map (α, β) 7→
ψ1(α, β, t0) is a diffeomorphism from D ∩ {(α, β, t) : t = t0} to the
respective image of this intersection for every t0 > 0.
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(b) there exists a smooth map ψ2 from D ×∆2 to the state space ∆2

of the static model such that the map m 7→ ψ2(α, β, t,m) defined
on the interior of ∆2 is a diffeomorphism onto its image for every
(α, β, t) in D.

(c) For every (α, β, t) in D and every m in ∆2 the following identity
holds:

Gα,β,t(m) = fψ1(α,β,t) ◦ ψ2(α, β, t,m) (4.42)

where fβ,α denotes the potential (5) of the static model [see 38,
Sect. 1.2].

(d) There exists a function (β, t) 7→ βst(β, t) on (0, 3) × (0,∞) such
that

pr1 ◦ ψ1(α, β, t) = βst(β, t) (4.43)

where pr1 denotes the projection (0,∞)×∆2 → (0,∞). In other
words, the effective static inverse temperature βst does not depend
on the dynamical α.

A comparison of Figure 4.9 with [38, Figure 5] gives evidence for the
existence of the map ψ1 as the bifurcation set slice of the static model
looks structurally similar to the bifurcation set slice in a neighbourhood
of the unit simplex of the dynamical model. The contour plots in the
rightmost plots of the two figures support the existence of the map ψ2 as
the contour plot of the dynamical potential Gα,β,t looks structurally sim-
ilar to a subset of the contour plot of the static potential fβst(β,t),αst(α,β,t).
Note, however, that we are not going to construct the maps ψ1 and ψ2 in
the following sections of the paper and we do not need to do it. Instead,
we explicitly compute the critical lines from the dynamical potential
following the ideas of singularity theory. This means that the lines can
be found independently of the construction of the maps ψ1 and ψ2. The
behavior of the model in the vicinity of these lines follows from Thom’s
classification theorem [see 45, Section 5 of Chapter 3] and our global
analysis is supported by the global numerical analysis of the relevant
parts of the dynamical bifurcation set. In the following sections we now
proceed with the discussion of the critical lines.
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4.4.3 The symmetric cusp exit (SCE) line and the non-Gibbs
temperature

The non-Gibbs inverse temperature βNG is defined as the supremum of
all β such that µn,β,t is sequentially Gibbsian for all positive t. It turns
out to be a maximum. As the type of transitions of the dynamical model
for mid-range temperatures can be understood in terms of the static case,
let us remark that in the static Potts model the first type of bad magnetic
fields that show up with increasing β are due to three symmetric cusp
singularities, the “rockets” [see 38, Figures 2 and 4] and that there are
no bad magnetic fields for β ≤ 2. Therefore, in the dynamical model, we
look for symmetric cusp points that have just passed the simplex edges
in their midpoint and moved outside, which leads us to the symmetric
cusp exit line in the dynamical phase diagram. Without loss of generality
by symmetry we consider the simplex edge where α1 = 0.

Proposition 37. Fix any positive β and t, let m be a point in H with
(x, y, z)-coordinates (0, y, 0).

(a) The point α = χ(m,β, t) in H is a symmetric cusp point on the
simplex edge if and only if

6
β
y + egt + 1− 2e3y

egt + 1 + e3y = 0 (4.44)

6
β

+ 3(egt − 1)2

(egt + 1 + e3y)2 −
3(egt + 1)
egt + 1 + e3y = 0. (4.45)

(b) The solutions of the system (4.44–4.45) can be explicitly parametrized
in the form

β = 2s(2es + F (s))
4es − F (s) (4.46)

gt = log
(1

2F (s)− 1
)

(4.47)

where

F (s) = −(s−1)es−4s+
√

((s− 1)es + 4s)2 + 8(2s+ e2s). (4.48)

for s < 0.
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(c) The non-Gibbs temperature is given via

βNG = 2s0(2es0 + F (s0))
4es0 − F (s0) ≈ 2.52885 (4.49)

where s0 is the unique zero in (−∞, 0) of

64 s3 + 64 s2 + s(s2 + s+ 6)e3 s + 4 s(5 s+ 6)e2 s − 8 s(2 s− 3)es√
((s− 1)es + 4s)2 + 8(2s+ e2s)

−16 s2 − s(s+ 2)e2 s + 4 s(s− 2)es − 8 s.
(4.50)

Proof. Let us first prove item 1. A symmetric cusp point α is the image
of a symmetric degenerate stationary point m under the map χ(·, β, t)
at which the tangent vector of the curve of degenerate stationary points
(given by vanishing Hessian determinant) is parallel to the direction of
degeneracy. The partial derivatives of Gα,β,t with respect to x and z
vanish at m because of symmetry, so it is sufficient for a stationary point
m to have a vanishing partial derivative with respect to the y-coordinate
of m. Now, for the gradient we note that

∂Gα,β,t
∂y

= 2m1 −m2 −m3 −
3∑
b=1

αb(2Γb,1 − Γb,2 − Γb,3)

= 6
β
y −

3∑
b=1

αb(3Γb,1 − 1)

= 6
β
y + 1− 3e3y

e3y + egt + 1

(4.51)

where we have abbreviated Γb,a = Γb,a(βm, t) and used the fact that α
lies on the simplex edge α = (0, 1

2 ,
1
2). This yields Equation (4.44).

We will now derive equation (4.45). Note that the mixed partial
derivative, which appears in the degeneracy condition (4.28), vanishes
at partially symmetric points:

∂2Gα,β,t
∂x∂y

= −3
3∑
b=1

αb
∂Γb,1
∂x

= 3
√

3
3∑
b=1

αbΓb,1(Γb,3 − Γb,2) (4.52)
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Plugging in α = (0, 1
2 ,

1
2), the right-hand side of the last equality in (4.52)

vanishes because Γ3,3 − Γ3,2 = Γ2,2 − Γ2,3 for points m which have the
partial symmetry m2 = m3. Therefore the degeneracy condition (4.28)
is in product form. We calculate the remaining partial derivatives:

∂2Gα,β,t
∂y2 = 6

β
− 9(Γ2,1 − Γ2

2,1) = 9
(

Γ2,1 −
1
2

)2
− 9

4 + 6
β

(4.53)

∂2Gα,β,t
∂x2 = 6

β
− 3

(
Γ2,2 + Γ2,3 − (Γ2,3 − Γ2,2)2

)
(4.54)

The partial derivative (4.53) is always positive for β < 8
3 . This means

we only have to consider the zeros of (4.54). This yields equation (4.45).
We will now explain the parametrization of the set of solutions given in

2. First note that the variable β can be eliminated from Equation (4.45)
using Equation (4.44) for all y 6= 0. When we set w = egt + 1 we find
that the resulting equation is a quotient of quadratic polynomials in w:

−w
2 + ((3y − 1)e3y + 12y)w − 2(6y + e6y)

y(w + e3y)2 = 0 (4.55)

Since w > 2, it suffices to consider the numerator of the left-hand side.
The discriminant of this quadratic polynomial is given by

D = ((3y − 1)e3y + 12y)2 + 8(6y + e6y). (4.56)

It is positive for all real y. Therefore, this polynomial has two real roots.
Because w > 2, we choose the larger of the two solutions

w = 1
2
(
−(3y − 1)e3y − 12y +

√
D
)

= 1
2F (s) (4.57)

where we have defined s = 3y and used the definition of F (s) in Equa-
tion (4.48). Furthermore, F (s) > 4 for s 6= 0 such that Equation (4.47)
yields positive values for gt.

Finally, the non-Gibbs inverse temperature is the minimal value of β
along the curve given by the parametrization (4.46–4.47). Therefore we
calculate the derivative of (4.46) which gives

dβ
ds = −2 · 2(3s− 1)esF (s)− 6sesF ′(s) + F 2(s)− 8e2s

(4es − F (s))2 . (4.58)
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Since 4es − F (s) is never zero for any s in (−∞, 0), we only have to
consider the numerator of the fraction. We calculate the derivative of F

F ′(s) = −ses − 4 + ((s− 1)es + 4s)(4 + ses) + 8(1 + e2s)√
((s− 1)es + 4s)2 + 8(2s+ e2s)

. (4.59)

Plugging everything together, dβ/ds = 0 is exactly fulfilled for the zero
of the function defined in (4.50).

Lemma 38. Suppose β lies in the interval (βNG, 3). The entry time
tNG(β) into the non-Gibbs region is given by

tNG(β) = 1
3 log 2(β − 3y)e3y + β + 6y

2((β − 3y)e3y − β − 6y) (4.60)

where y is the largest root in (−β
6 , 0) of

y 7→2β2 + 24βy + 72 y2 −
(
β2 + 3βy − 18 y2 − 9β

)
e6 y

− 4
(
β2 + 3βy − 18 y2

)
e3 y.

(4.61)

Proof. The entry time tNG is given by the first entry of rockets into the
unit simplex while increasing the time t and keeping β fixed. This is
because, if the pentagrams unfold at all under increase of time, they
unfold after the rockets have entered the unit simplex ∆2. This will be
clear in the next subsection where we compute the butterfly line. So
let us consider the system (4.44–4.45) and fix any positive β < 3. Since
the relation (4.4) between gt and t is strictly monotonically decreasing,
we have to look for the maximal gt such that (β, gt, y) with negative
y is a solution to the system (4.44–4.45), which defines the symmetric
cusp exit line. Here, y is a magnetization-type variable. We can solve
Equation (4.44) for w = egt + 1 to obtain

w = 2(β − 3y)e3y

β + 6y . (4.62)

Plugging this into the left-hand side of the degeneracy condition (4.45),
we arrive at

2e−6y

3β2

(
2β2 + 24βy + 72y2 − (β2 + 3βy − 18y2 − 9β)e6y

− 4(β2 + 3βy − 18y2)e3y
)

= 0.
(4.63)
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Figure 4.5: The thick blue line, which ends at the non-Gibbs temperature 1
βNG

, marks
the entry time in the dynamical phase diagram. Time is a monotonically
decreasing function of gt so the first time we hit the symmetric cusp exit
line when moving on a vertical line of fixed temperature corresponds to
the entry time.

This yields the expression of (4.61). Since the right-hand side of (4.62)
is increasing with y, we have to pick the largest root of (4.61).

4.4.4 The butterfly unfolding (BU) line and butterfly exit
temperature

The unfolding of the pentagrams is a very important mechanism since it
changes the set of bad empirical measures from straight lines to Y-shaped,
branching curves. This mechanism is already present in the static case,
however, in contrast to the static case we have to deal with the fact
that in some parameter regions the pentagrams do not fully lie inside
of the unit simplex. This leads us to the definition of a butterfly exit
inverse temperature βBE for which at some point in time t > 0 there is
a cusp point on an edge of the simplex that is about to unfold into a
pentagram. By definition, βBE lies between βNG and 8

3 . The value 8
3 is

the first inverse temperature for which a beak-to-beak scenario inside of
the unit simplex appears as we will see in Section 4.4.7.

Proposition 39. Let v(m,β, t) = (ϕβ)2 ◦χ(m,β, t) be the parallel coor-
dinate of χ(m,β, t) and let β(s) and t(s) be given by (4.46–4.47). The
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Figure 4.6: This figure shows a plot of the function (4.65) which is involved in the
expression for the butterfly exit (BE) temperature in Proposition 39.

butterfly exit βBE is given by

βBE = 2s0(2es0 + F (s0))
4es0 − F (s0) ≈ 2.59590 (4.64)

where s0 < 0 is the largest zero of

s 7→ ∂2v

∂x2

(
m(s), β(s), t(s)

)
+ ∂v

∂y

(
m(s), β(s), t(s)

)
γ̈s(0) (4.65)

and γs is the implicit function y = γs(x) defined in a neighbourhood of
(x, y) = (0, s3) by the degeneracy condition (4.28).

Note that equation (4.65) is explicitly computed by a computer pro-
gram because its expression is very complicated. Nevertheless it is
possible to plot the function (see Figure 4.6).

Proof. Let us first fix β between βNG and 8
3 and a positive t. Consider

a point α on the midpoint of one of the edges of ∆2 such that (α, β, t)
belongs to the bifurcation set. Furthermore, without loss of generality
by symmetry let us assume that α2 = α3. To this point corresponds a
degenerate stationary point m that has the same symmetry m2 = m3.
We can solve the degeneracy condition (4.28) in a neighbourhood of
m in the form y = γβ,t(x) such that γβ,t(0) is the y-coordinate of m.
In α-space in a neighbourhood of α = χ(m,β, t) we can now write the
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bifurcation set as χ(ϕ−1
β (x, γβ,t(x), 0), β, t). We know that the parallel

component v of α fulfills

d2

dx2 v(γs0(x), β∗, t∗) = 0 (4.66)

when we follow the curve γs through the bifurcation set. This is because
it has a minimum before the pentagram unfolds and it has a maximum
after the pentagram has unfolded. The curve γ of degenerate stationary
points is obtained by solving equation (4.28) in the form y = γ(x) around
(0, y∗) where y∗ is the parallel component of m∗. Let us now compute
the second derivative of the v-component of the curve:

d2v

dx2

∣∣∣∣
x=0

= d
dx

(
∂v

∂x
+ ∂v

∂y
γ̇(x)

)
= ∂2v

∂x2

∣∣∣∣
x=0

+ ∂v

∂y

∣∣∣∣
x=0

γ̈(0)
(4.67)

The other mixed partial derivatives of v vanish since γ̇(0) = 0 because
of symmetry.

Furthermore, we compute γ̈(0) via implicit differentiation: Let us
write f(x, y) for the left-hand side of (4.28) viewed as a function in the
unit simplex in (x, y)-coordinates. By implicit differentiation we then
find:

γ̇(x) = −∂f
∂x

/
∂f

∂y
(4.68)

And therefore:

γ̈(0) = −
∂2f
∂x2

∂f
∂y

+
∂f
∂x

∂2f
∂x∂y(
∂f
∂y

)2 = −
∂2f
∂x2

∂f
∂y

− γ̇(0)
∂2f
∂x∂y
∂f
∂y

= −∂
2f

∂x2

/
∂f

∂y
.

(4.69)

Using the symbolic calculus tools (see page 107) we can obtain an
expression for (4.65).
Using a similar approach it is possible to compute the line in the

dynamical phase diagram for which we find butterfly points no matter
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Figure 4.7: This figure shows the bifurcation set sliced at two points on the symmetric
cusp exit line. The left plot shows a slice before the butterfly exit point
is passed (lower point in the phase diagram), the right plot shows a slice
after the butterfly exit point (intersection point of yellow and blue line)
on the symmetric cusp exit line.

where these points are with respect to the unit simplex. The key idea
that the parallel component of the curve in α-space has a vanishing
second derivative with respect to the curve parameter stays the same.
But since we do not restrict the point in α-space to lie on the unit
simplex we lose one equation and we end up with a one-dimensional set
of solutions.

Proposition 40. For β in (βBE,
8
3) the butterfly unfolding happens at

the unique butterfly transition time tBU(β) which is obtained as follows:
Define a function H via

H(β, s) = H1(β, s) +
√
H2(β, s) (4.70)

where

H1(β, s) = βe2s − se2s + 4βes − 4ses + β + 2s− 3e2s − 3es

H2(β, s) =
(
β2 − 2 (β − 3)s+ s2 − 6β + 9

)
e4 s

+ 2
(
4β2 − (8β − 9)s+ 4 s2 − 9β − 9

)
e3 s

+ 3
(
6β2 − 2 (5β − 6)s+ 4 s2 − 18β + 3

)
e2 s

+ 2
(
4β2 + 2 (2β − 15)s− 8 s2 − 15β

)
es

+ β2 + 4βs+ 4 s2
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and a function
t(β, s) = 1

3 log H(β, s) + 6es
H(β, s)− 12es . (4.71)

Then the butterfly transition time tBU(β) is given by

tBU(β) = t(β, s∗(β)) = 1
3 log H(β, s∗(β)) + 6es∗(β)

H(β, s∗(β))− 12es∗(β) (4.72)

and s∗(β) < 0 is the largest zero of

s 7→ ∂2v

∂x2

(
ϕβ
(
0, s3 , 0

)
, β, t(β, s)

)
+ ∂v

∂y

(
ϕβ
(
0, s3 , 0

)
, β, t(β, s)

)
γ̈β,t(β,s)(0).

(4.73)

Proof. Using the same reasoning as in the proof of Proposition 39, we
find that the point m maps under χ(·, β, t) to a point α that is about to
unfold into a pentagram if

d2

dx2

∣∣∣∣∣
x=0

v(ϕ−1
β (x, γβ,t(x), 0), β, t) = 0 (4.74)

where γβ,t is obtained by solving the degeneracy condition (4.28) in the
form y = γβ,t(x) in a neighbourhood of the point m. This equation is
now dependent on m,β and t, that is, we have one equation and three
variables (m is one-dimensional because m2 = m3). Additionally, since
we know that the direction of degeneracy is the x-direction, we have the
equation

∂2Gα,β,t
∂x2

∣∣∣∣∣
x=0

= 0. (4.75)

This equation can be solved for w = egt +1 which yields (4.70). Plugging
this into (4.74), we are left to find the zeros of (4.73) for some fixed β
in the interval (βBE,

8
3).

4.4.5 Reentry into Gibbs: the asymmetric cusp exit (ACE)
line

In the β-regime (βNG, βBE), three pentagrams unfold inside of the simplex
at an intermediate time and leave the simplex as t increases further.
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Figure 4.8: This figure shows two bifurcation set slices that illustrate the exit of the
asymmetric cusp points. The central plot shows the bifurcation set slice
for a time at which the exit has not yet happened (upper point in the
phase diagram). The rightmost plot shows the bifurcation set slice exactly
on the purple line ACE, that is, when the exit is just happening.

Since we are interested in phase-coexistence of the first layer model µ̄n
(Lemma 33) and the phase-coexistence lines of the pentagram end in
the asymmetric cusp points of the pentagrams, we must compute the
exit time tG(β) of these points for β in the above regime. Like in the
previous subsection, this is done using a combination of symbolic and
numerical computation (see page 107). First, let us state the problem
that we need to solve.

Proposition 41. Fix a positive β and positive t and consider the set of
solutions m to the degeneracy condition (4.28) with α = χ(m,β, t).

(a) There is exactly one branch of solution with m2 = m3 and it is
given by the graph of a map x 7→ y = γβ,t(x).

(b) Furthermore, define the map (x, y) 7→ v(x, y) via

v(x, y) = (ϕβ)1 ◦ χ(ϕ−1
β (x, y, 0), β, t). (4.76)

Then the asymmetric cusps of the pentagrams are on the simplex
edges if and only if

v(x, γβ,t(x)) = −1
6β

(4.77)
∂v

∂x
(ϕβ(x, γβ,t(x), 0)) + ∂v

∂y
(ϕβ(x, γβ,t(x), 0))γ̇β,t(x) = 0. (4.78)
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Proof. The location of the asymmetric cusps of the pentagrams on the
curve x 7→ χ(ϕ−1

β (x, γβ,t, 0), β, t) are given by the local maxima of the
parallel component v(x) as a function of the curve parameter x (see
Figure 4.8). This yields (4.78). Equation (4.77) comes from the constraint
that the cusp point lies on the simplex edge because for points on the
edge the parallel component equals −1

6β in the chart (4.26).

Now, similarly to the case for the butterfly line, the computation of
γ̇β,t(x) by hand is impractical. Therefore we compute the expression
symbolically with the help of the computer. This allows us to numerically
determine the course of the line in the dynamical phase diagram. Now,
because it is impossible to solve the degeneracy equation (4.28) in the
form y = γβ,t(x) explicitly, we proceed as follows. Note that it is possible
to solve (4.77) for β and plug it into equation (4.78). We then fix some
value of gt, and numerically solve the system consisting of the degeneracy
condition (4.28), where β is substituted from (4.77), and equation (4.78),
where γβ,t is substituted by y and

γ̇β,t(x) = −∂f
∂x

/
∂f

∂y
(4.79)

where f denotes the left-hand side of (4.28) considered as a function of
(x, y). This yields two equations in the two variables x and y.

4.4.6 The triple point exit (TPE) line
To each of the three pentagrams there belongs a special point, the triple
point [see 38, Sects. 3.2]. This point is characterized by the coexistence
of three global minima, that is, the functional values of all the three
minimizers are equal. First, we discuss the existence of these points and
then we determine for each fixed positive β the exit time ttriple(β). This
is the last time for which there are bad empirical measures with partial
symmetry that lie inside the unit simplex.

Proposition 42. For each pair (β, t) in

{(β, t) | βBE < β < 4 log 2, t > tBU(β)} (4.80)

there exists exactly one α in the hyperplane H with α1 ≤ α2 ≤ α3 such
that Gα,β,t has precisely three global minimizers.
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Proof. By symmetry, the triple point α has the partial symmetry α2 = α3.
Therefore consider the curve v 7→ α(v) = ϕ−1

β (0, v, 0) which crosses the
α-region for which the potential Gα,β,t has three minimizers two of
which lie inside the same fundamental cell m1 ≤ m2 ≤ m3. There is
always such a region because the pentagrams have already unfolded
(t > tbut). This gives rise to the two maps v 7→ m(v) and v 7→ m′(v)
which map v to one of the two minimizers m(v) or m′(v) inside this cell.
Assume that ϕβ(m(v)) = (x(v), y(v), 0) and ϕβ(m′(v)) = (0, y′(v), 0)
with y′(v) > y(v) and x(v) > 0. Now, we can define the difference

g(v) := Gα(v),β,t(m(v))−Gα(v),β,t(m′(v)) (4.81)

for all v such that α(v) lies in the former regime. Therefore

g′(v) =
∂Gα(v),β,t

∂v
−
∂Gα(v),β,t

∂v

= log (egt+2x + e3y+x + 1)(egt+3y′ + 2)2(egt + e2x + e3y+x)
(egt+x+3y + e2x + 1)2(egt + e3y′ + 1)2

(4.82)

since m(v) and m′(v) are stationary points.

Since the pentagrams in the bifurcation slices leave the simplex (ob-
servation window), it is necessary for a discussion of the bad empirical
measures that we find the time when the triple points leave the unit
simplex. The problem that we have to solve is stated in the following
proposition.

Proposition 43. Fix any positive β in the interval (βBE, 4 log 2) and let
α be the midpoint of the edge of the simplex with α2 = α3. First, define
the function

t(β, y) = 1
3 log

(
2(β − 3y)e3y + β + 6y
2((β − 3y)e3y − β − 6y

)
(4.83)

The exit time tTPE(β) is then given by tTPE(β) = t(β, y′(β)) where
ϕβ(0, y′(β)) and ϕβ(x(β), y(β)) lie in the fundamental cell m1 ≤ m2 ≤
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Figure 4.9: The four-dimensional parameter (α, β, t) is represented by the two red
dots in the two plots on the left. The first of these plots displays a
region of the dynamical phase diagram and the second plot the respective
bifurcation set slice clipped to a rectangle near the lower simplex edge
which is represented by the dashed horizontal line. The rightmost plot
shows contour lines of the potential Gα,β,t for the respective parameter.
As expected for a triple point, the contour lines show three equally deep
minimizers of the potential.

m3 and the triple (y′(β), x(β), y(β)) is a solution to the following system
of equations.

Gα,β,t(β,y′) ◦ ϕβ(0, y′, 0) = Gα,β,t(β,y′) ◦ ϕβ(x, y, 0) (4.84)
(ϕβ)1 ◦ χ((ϕβ)−1(0, y′, 0), β, t(β, y′)) = (ϕβ)1 ◦ χ((ϕβ)−1(x, y, 0), β, t(β, y′))

(4.85)
(ϕβ)2 ◦ χ((ϕβ)−1(0, y′, 0), β, t(β, y′)) = (ϕβ)2 ◦ χ((ϕβ)−1(x, y, 0), β, t(β, y′))

(4.86)

Note that the expressions of the equations (4.84 – 4.86) are computed
symbolically by the computer (see page 107 for more information). They
are not displayed here because of their length. Figure 4.9 shows a contour
plot of the HS transform Gα,β,t with α = (0, 1

2 ,
1
2) and (β, t) on the line

TPE.

Proof. The system of equations mainly comes from two ingredients:
equal depth of two minimizers and same end-conditioning α for these
two minimizers. The triple point is characterized by a coexistence
of three global minimizers and since a triple point α must fulfill the
symmetry relation α2 = α3, we find that it is sufficient to compare
the two minimizers in the fundamental cell m1 ≤ m2 ≤ m3. Because
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Figure 4.10: The beak-to-beak mechanism is characterized by the merging of two
horns of two different pentagrams. This merging joins two connected
components of the complement of the bifurcation set slice when crossing
the red line from right to left. As can be seen in the two rightmost
plots, this merging happens on the axis of symmetry. The red dots in
the dynamical phase diagram on the left mark the time – temperature
pairs that correspond to the bifurcation set slices from left to right. The
dots in the central plot correspond to the points of the same color in
Figure 4.11.

α2 = α3, we always have one symmetric stationary point so that the
two minimizers have the coordinates (0, y′, 0) and (x, y, 0). Since we now
that either minimizer is a stationary point, we can use the vanishing of
the first partial derivative of Gα,β,t with respect to the y-coordinate to
eliminate the time variable t from the equations. This yields the function
in equation (4.83). Using this function we can eliminate the variable t
from the equal depth condition and the other two equations that require
that the minimizers belong to the same end-conditioning α.

4.4.7 The beak-to-beak (B2B) line
The beak-to-beak point in the static model is characterized as a cusp
point that lies in a segment from the center of the simplex to one vertex,
that is, for example it has y > 0. The following proposition describes
the line of beak-to-beak points and a parametric representation in terms
of roots of a cubic polynomial. Note that, despite the fact that the line
continues to exist for β > 3, the structural behavior of the bifurcation
set around the beak-to-beak point might change in the regime β > 3.

Proposition 44. Fix any positive β and t, let m be a point in H with
coordinates (0, y, 0).
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(a) The point α = χ(m,β, t) is a beak-to-beak point if and only if

−(β + 6y − 2)(egt + 1)e−3y − (β − 3y − 1)egt+3y + egt(egt + 1) = 0
(4.87)

(β + 6y − 4)(egt + 1)e−3y − (β − 3y − 2)egt+3y = 0 (4.88)

(b) The solutions to this system can be parametrized in terms of s = 3y
in the form

β = 2(s− 2)w∗(s) + (s+ 2)(w∗(s)− 1)e2s

(w∗(s)− 1)e2s − w∗(s)
(4.89)

gt = log(w∗(s)− 1) (4.90)

where s > s∗ ≈ 0.66656 and w∗(s) is the unique root in the interval
(2,∞) of the cubic polynomial

(e3s − es)w3 − (6se2s + e4s + 2e3s − 3e2s − es − 2)w2+
(6se2s + 2e4s + 3e3s − 3e2s − 2es)w − e4s − 2e3s.

(4.91)

The positive real number s∗ is the unique root in (0,∞) of the
function

s 7→ −12se2s − e4s + 4e3s + 6e2s − 8es + 8. (4.92)

(c) The beak-to-beak point enters the simplex for s = 2/3 > s∗ at which
β = 8

3 and gt ≈ 0.026481.

Proof. From the analysis of the static model [see 38, Figure 2, rightmost
plot of the first row and neighbouring plots for smaller or larger β]
we know that the beak-to-beak point (α∗, β∗, t∗) is such that if we fix
α = α∗ but change the parameters β or t we either find that α = α∗ is
contained in a cell with two minimizers or in a cell with one minimizer.
Since α∗ lies on the axis of symmetry, we know α∗ = χ(m∗, β∗, t∗) where
m∗ lies on the axis of symmetry as well, and we find in coordinates
ϕβ(α∗) = (0, v(m∗, β∗, t∗), 0), so it suffices to study

v(m,β, t) = (ϕβ)2 ◦ χ(m,β, t) =
(β + 6y)we−3y − (β − 3y)(w − 1)e3y + 3(w2 − w + 2)y − β

3(w2 − w − 2)
(4.93)
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as a function of the y-coordinate of m. As before substitute w = egt + 1.
In Figure 4.11 you see a minimum and a maximum collide and form a
saddle point. This is exactly the beak-to-beak behavior. The point (β, t)
for which this collision has just happened is given by the vanishing of the
first and second derivatives of v(m,β, t) with respect to the y-coordinate
of m. Now, the derivatives are given by:

dv
dy (m,β, t) = −(β + 6y − 2)we−3y − (β − 3y − 1)(w − 1)e3y + w2 − w + 2

w2 − w − 2

(4.94)
d2v

dy2 (m,β, t) = 3(β + 6y − 4)we−3y − 3(β − 3y − 2)(w − 1)e3y

w2 − w − 2 (4.95)

Since w > 2, it suffices to consider the numerators of the above expres-
sions. This yields equations (4.87) and (4.88).

Let us now prove the parametric form of the solutions. Equation (4.88)
is linear in β as long as egt + 1− egt+6y 6= 0 and can then be solved for β
to yield (4.89) after substituting w = egt + 1 and s = 3y. Suppose now
egt + 1− egt+6y = 0 which is equivalent to egt = 1

e6y−1 . Equation (4.88)
would in this case read

(9y − 2)e3y

e6y − 1 = 0 (4.96)

which is only fulfilled for y = 2
9 . However, this leads to the contradiction

egt = 1
e

4
3−1

< 1 but gt > 0. Therefore, we can assume that we can solve
(4.88) for β. Plugging this into equation (4.87) we arrive at the following
fraction of polynomials in w.

(e3s − es)w3 − (6se2s + e4s + 2e3s − 3e2s − es − 2)w2

+ (6se2s + 2e4s + 3e3s − 3e2s − 2es)w − e4s − 2e3s

es
(
(w − 1)e2s − w

) = 0.

(4.97)
The denominator is not zero because we are able to solve for β. Thus, it
suffices to consider the numerator which yields Formula (4.91).
We will now discuss the roots larger than 2 of this cubic polynomial.

It is convenient to change variables θ = w − 2, so that we are interested
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Figure 4.11: This figure shows how v(m,β, t) behaves as a function of the y-coordinate
of m for gt ≈ 0.07012. In the left plot (β ≈ 2.6685) you see that there is a
region for v(m,β, t) such that there exist three solutions to the equation
v(m,β, t) = v0. In the right plot (β ≈ 2.7267) this region is gone. For
any v0 in this region, we find three zeros of the partial derivative of the
potential with respect to the y-coordinate of m corresponding to two
local minimizers and a saddle point. The red and blue dots correspond
to the same dots in the central plot of figure 4.10

in the positive roots of the following polynomial:

θ3(e3s − es)− (6se2s + e4s − 4e3s − 3e2s + 5es − 2)θ2

− (18se2s + 2e4s − 7e3s − 9e2s + 10es − 8)θ
− 12se2s − e4s + 4e3s + 6e2s − 8es + 8

(4.98)

Using Descartes’ rule of signs, we know that the number of positive
roots is equal to the number of sign changes among consecutive, nonzero
coefficients of the polynomial or it less than it by an even number. Note
that the coefficients in increasing order for s = 0 are given by (9, 12, 3, 0).
Therefore we do not find any positive roots for very low positive values
of s. The first sign changes appears for the coefficient of order zero which
yields equation (4.92). All of the coefficients except the highest order
coefficient eventually become negative. However, with increasing s this
happens with increasing order of the coefficient so that we have only one
sign change between consecutive coefficients for each s larger than s∗.
Thus, for all s > s∗ there exists only one root w∗(s) larger than 2.
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4.4 Recovery of the Gibbs property

4.4.8 Reentry into Gibbs: the Maxwell triangle exit (MTE)
line

For β in the interval (8
3 , 4 log 2) the model displays recovery as well but

due to a different mechanism. After the horns of two pentagrams have
touched, the Maxwell set which consisted of three connected components
now has become one connected component. It consists of three straight
lines on the axes of symmetry and a triangle with curved edges. The
model recovers from the non-Gibbsianness when this triangle completely
leaves the unit simplex which happens on another line in the dynamical
phase diagram we call Maxwell triangle exit (MTE).

Proposition 45. For any β in the interval (8
3 , 4 log 2) define the function

w(β, y) = 1 + (β + 6y)e−3y

β − 3y . (4.99)

The Maxwell triangle leaves the simplex at t = tMTE(β) = 1
3 log w(β,y)+1

w(β,y)−2
where y in (−β

6 ,
β
3 ) is such that there exists a y′ in (−β

6 ,
β
3 ) and (y, y′)

is a solution of the system

(β + 6y)(β − 3y′)e−3y − (β + 6y′)(β − 3y)e−3y′ = 0

(4.100)

−2y − y′ − 3
β

(
(y′)2 − y2

)
+ log β3

(
−2 (β − 3 y)e3 y − (β + 6 y)e3 y′

)
= 0

(4.101)

Before we come to the proof, let us remark the following: Of course,
it is impractical to solve this system by hand. However, for fixed β we
can show the zeros of the left-hand sides of both equations. Figure 4.12
shows them in the relevant rectangle (−β

6 ,
β
3 ) × (−β

6 ,
β
3 ). The line as

depicted in the dynamical phase diagram is obtained via a numerical
solution of this system of equations.

Proof. Let m = ϕ−1
β (0, y, 0) be any point on the axis of symmetry with

m2 = m3. This point is mapped to α = (1, 0, 0) by the catastrophe map
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Figure 4.12: The zeros of the left-hand sides of the two equations (4.100) and (4.101)
for β = 2.8. The red curve corresponds to the solutions of (4.100) and
the blue curve to the solutions of (4.101). The intersection of the red
curve with diagonal is of course a trivial solution and not the one we are
looking for.

χ(·, β, t) if and only if

6y
β

+ 1− 3(w − 1)e3y

(w − 1)e3y + 2 = 0 (4.102)

which is the equation ∂Gα,β,t
∂y = 0 where α = (1, 0, 0) and we have

substituted w = egt +1. Solving this equation for w we find two solutions
one of which is positive. This yields (4.99).
Let m′ = ϕ−1

β (0, y′, 0) be any point on the same axis of symmetry.
The value of Gα,β,t at these two points m and m′ are equal if and only
if Gα,β,t − Gα,β,t = 0. Plugging in t = 1

3 log w(β,y)+1
w(β,y)−2 and α = (1, 0, 0)

yields (4.101). Equation (4.100) comes from the fact that m and m′

are stationary points that belong to the same time variable t, that is,
w(β, y)−w(β, y′) = 0. If we multiply this equation by (β − 3y)(β − 3y′)
we arrive at (4.100).

4.5 Loss of the Gibbs property without recovery
If β lies in the interval (4 log 2, 3), the model displays the loss of the
Gibbs property without recovery. This is due to the uniform distribution
which becomes bad after a sharp transition time and stays bad forever.
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4.5 Loss of the Gibbs property without recovery

This behavior is analogous to the behavior in the static model described
by the Ellis-Wang theorem [14].

4.5.1 The Ellis-Wang (EW) line

The static model has a phase-coexistence of four states at inverse temper-
ature 4 log 2 in zero field [14]. The first layer model as discussed in this
paper has a whole line of such points which we refer to as Ellis-Wang
points.

Proposition 46. Suppose α = (1
3 ,

1
3 ,

1
3), that is, it represents the uniform

distribution.

(a) The HS transform Gα,β,t has a point of phase-coexistence with four
global minimizers if and only if there exists a solution (s, β, t) to
the following system of equations.

3y
β

+ 1
e3y+gt + 2 −

e3y

e3y + egt + 1 = 0 (4.103)

3y
(

1 + 3y
β

)
+ log (egt + 2)3

(egt + 1 + e3y)2(e3y+gt + 2) = 0 (4.104)

(b) The solutions to the above systems can be parametrized in terms
of s = 3y given via

β =
s
(
es(w∗(s)− 1) + 2

)
(es + w∗(s))

(es − 1)(w∗(s)es + w∗(s)− es)
, (4.105)

gt = log(w∗(s)− 1) (4.106)

where s > 2 log 2 and w∗(s) is the unique zero in (2,∞) of

w 7→ s

(
1 + (es − 1)(wes − es + w)

(w + es)(wes − es + 2)

)
+log (w + 1)3

(w + es)2(wes − es + 2) .

(4.107)

Proof. First, let us derive the system of equations (4.103–4.104). Since
α has the full symmetry, that is, it is invariant under any permutation
of S3, it suffices to consider the equal-depth of the central minimum m0
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with one of the three outer ones denoted by m. In the following, we
assume m2 = m3. The relative difference between the values is given by

Gα,β,t(m)−Gα,β,t(m0) = y + 3y2

β
− 1

3 log
(
egt+3y + 2

)
− 2

3 log
(
egt + e3y + 1

)
+ log(egt + 2).

(4.108)

By collecting the logarithmic terms and multiplying the equation by
3 we find (4.104). Equation (4.103) comes from the fact that m is a
stationary point. So we calculate the relevant partial derivative

∂Gα,β,t
∂y

= 6y
β

+ 1− Γ1,1 − 2Γ2,1 (4.109)

where Γb,a = Γb,a(βm, t). The partial derivative with respect to the
x-coordinate of m vanishes because of symmetry. Plugging in the ex-
pressions for Γ1,1 and Γ2,1 yields (4.103).
Now, let us come to the parametrization. Equation (4.105) follows

by substituting w = egt + 1 and s = 3y in equation (4.103) and solving
for β which is possible since s 6= 0. Plugging this into equation (4.104)
and making the same substitutions we find (4.107). Note that w∗(s) is
increasing with s and that the solution of w∗(s) = 2 is s = 2 log 2. For
lower values of s (4.107) has no zeros larger than two.

4.5.2 The elliptic umbilics (EU) line
In the static model there is a special point called elliptic umbilic. This
catastrophe at the center of the unit simplex is responsible for the fact
that the central minimum changes to a maximum. In the dynamical
model – due to the additional parameter gt –we have a whole line of these
points. This line we call the line of elliptic umbilics (EU).

Proposition 47. For each β ≥ 3 define the function

w(β) = β − 1 +
√
β(β − 3). (4.110)

Fix some β ≥ 3 and let α = (1
3 ,

1
3 ,

1
3) and t = 1

3 log w(β)+1
w(β)−2 . Then:
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4.5 Loss of the Gibbs property without recovery

(a) The Hessian G′′α,β,t(m) at m = (1
3 ,

1
3 ,

1
3) has a double zero eigen-

value.

(b) The Taylor expansion of Gα,β,t at m = (1
3 ,

1
3 ,

1
3) for β = 3 (and

therefore gt = 0) up to the third order is given by

x2y − 1
3y

3 + 1
2z

2 − log 3− 1
2 . (4.111)

Proof. First, we check that the Hessian has a double zero eigenvalue.
Let α equal (1

3 ,
1
3 ,

1
3) and consider the Hessian of Gα,β,t at m = (1

3 ,
1
3 ,

1
3).

With the same arguments as in the proof of Proposition 37, we find
that the Hessian is diagonal. Furthermore, since α and m have the full
symmetry, the two second order partial derivatives ∂2Gα,β,t

∂y2 and ∂2Gα,β,t
∂x2

are equal. Let us consider the partial derivative with respect to y.

∂2Gα,β,t
∂y2 = 6

β
− 3

(
Γ1,1 − Γ2

1,1 + 2(Γ2,1 − Γ2
2,1)
)

= 6
β
− 3

(
egt

egt + 2 −
e2gt

(egt + 2)2 + 2
egt + 2 −

2
(egt + 2)2

)

= 6
β
− 3

(
1− (w − 1)2 + 2

(w + 1)2

)

= 6w
2 + 2(1− β)w + 1 + β

β(w + 1)2

(4.112)

where Γb,a = Γb,a(βm, t) and we have substituted w = egt + 1. Setting
this equal to zero and solving for w yields (4.110) since the other root of
the quadratic polynomial in the numerator is always less than two.

Now we come to (b). Plugging β = 3 and gt = 0 into the HS transform
and writing it in the (x, y, z)-coordinates we arrive at

Gα,β,t(m) = 3
2〈m,m〉 − log

3∑
a=1

e3ma = x2 + y2 + 1
2z

2 +
√

3x

+y − 1
2 − log

(
1 + e2

√
3x + e

√
3x+3y

)
.

(4.113)
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Using the Taylor expansion of the logarithm and the exponential function,
(4.111) follows by an elementary computation. Note that (4.113) is
actually the HS transform of the static Potts model.

Using symbolic computation with the help of a computer, it is also
possible to obtain a Taylor expansion for every pair (β, gt) on the Elliptic
umbilic line. Because of symmetry, the β-dependent coefficients of x2y
and y3 differ only by a factor of −1

3 . This means that for any (β, gt)
on the Elliptic umbilic line the potential Gα,β,t with α representing the
uniform distribution has the following Taylor expansion up to order three
around the simplex center.

A1(β)
A2(β)

(
x2y − 1

3y
3
)

+ 3
2β z

2 − 1
6β − log

(
β +

√
β(β − 3)

)
(4.114)

The functions A1(β), A2(β) are given as follows:

A1(β) = 7077888β10 − 107937792β9 + 700710912β8 − 2523156480β7

+ 5502422016β6 − 7445737728β5 + 6152433408β4

− 2930719968β3 + 712130940β2 − 67493007β + 1062882

+ 27B(β)
√
β(β − 3)

(4.115)

B(β) = 262144β9 − 3604480β8 + 20840448β7 − 65802240β6

+ 123282432β5 − 139366656β4 + 92378880β3 − 33102432β2

+ 5380020β − 255879
(4.116)

A2(β) = 1048576β12 − 16515072β11 + 111476736β10 − 421134336β9

+ 975421440β8 − 1426553856β7 + 1307674368β6

− 720555264β5 + 218245104β4 − 30311820β3

+ 1240029β2 + C(β)
√
β(β − 3)

(4.117)
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4.5 Loss of the Gibbs property without recovery

C(β) = 1048576β11 − 14942208β10 + 90243072β9 − 300810240β8

+ 603832320β7 − 747242496β6 + 560431872β5 − 240185088β4

+ 51963120β3 − 4330260β2 + 59049β
(4.118)

Source code for symbolical computation As we have already men-
tioned, since the expressions showing up in the characterizations of the
transition lines are long, we use the SageMath package for our symbolic
computation. In fact the expressions are so long that evaluating those
expressions using the Sage interpreter is very time-consuming. Therefore,
we use the code generation facilities of the sympy library to generate C
code so that we can do the numerical computation in C. We have included
the file potts-numerics-1.0.tar.gz in the Electronic Supplemental
Material (ESM) which contains the code and further information on how
to use it. With this package you can, for example, create high-resolution
plots of the functions involved in the computation of the lines BU, TPE
and ACE, or generate bifurcation set slices and Maxwell set slices.
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