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Abstract

In this work, a framework for the combined simulation of anisotropic growth and fiber reorien-
tation in soft biological tissues with application to arterial walls with two families of collagen
fibers is presented and implemented in a nonlinear finite element setting. It is thought to enable
the approximation of residual stresses and fiber orientations in patient-specific arterial wall
simulations based on mechanically founded assumptions on the underlying adaptation processes,
which are assumed to be stress-driven. In accordance with their suitability to carry tensile loads,
the collagen fibers are supposed to be arranged symmetrically with respect to the directions
of the tensile principal stresses. Growth is modeled by a multiplicative decomposition of the
deformation gradient, where the growth tensor itself is decomposed into up to three parts
associated to the directions of the principal stresses. Due to the possibility to combine different
basic forms of growth and different stress-based driving force functions for the three directions,
a large number of hypothetical growth mechanisms is included in the general framework. For
their comparison and evaluation, a method based on a mechano-biologically motivated objective
function and idealized, rotationally symmetric arterial segments is developed. The comparative
study points out that purely radial growth can hardly be justified from a mechanical point of
view and confirms that growth in arterial walls should be assumed to be anisotropic. Apart
from numerical examples on growth and fiber reorientation in idealized arterial segments with
restriction to standard constitutive equations, a patient-specific artery is considered and the
extensibility to enhanced material models is shown by inclusion of the active material response.

Zusammenfassung

In der vorliegenden Arbeit wird ein Modell fiir die kombinierte Simulation anisotropen Wach-
stums und sich umorientierender Fasern in biologischen Weichgeweben vorgestellt, das auf
Arterienwénde mit zwei Kollagenfaserfamilien angewandt wird. Das Modell wird im Rahmen der
nicht-linearen Finite-Elemente-Methode umgesetzt und soll auf Basis mechanisch fundierter An-
nahmen iiber die zugrundeliegenden, als spannungsgesteuert vorausgesetzten Adaptionsvorgénge
die Approximierung von Eigenspannungen und Faserorientierungen in numerischen Simulationen
patientenspezifischer Arterien ermdoglichen. Dazu wird angenommen, dass sich Kollagenfasern
entsprechend ihrer Féahigkeit, Zugspannungen aufzunehmen, bevorzugt symmetrisch beziiglich
der Hauptzugspannungsrichtungen anordnen. Wachstum wird anhand einer multiplikativen
Zerlegung des Deformationsgradienten beschrieben, wobei der Wachstumstensor selbst in bis zu
drei Anteile zerlegt wird, die den Hauptspannungsrichtungen zugeordnet sind. Aufgrund der
Méglichkeit, unterschiedliche Grundformen des Wachstums und verschiedene, das Wachstum
steuernde Spannungsmafse zu kombinieren, ist eine Vielzahl hypothetischer Wachstumsmechanis-
men im allgemeinen Modell enthalten. Fiir deren Vergleich und Bewertung wird eine Methode
entwickelt, die auf einer mechanisch-biologisch motivierten Zielfunktion und der Nutzung wenig
rechenintensiver, rotationssymmetrischer Arteriensegmente basiert. Es wird deutlich, dass reines
Radialwachstum aus mechanischer Sicht kaum gerechtfertigt werden kann und dass Wachstum
in Arterien als anisotrop angesehen werden sollte. Neben numerischen Beispielen zu Wachstum
und sich umorientierenden Fasern in idealisierten Arterien mit einem iiblichen Materialmodell
wird eine patientenspezifische Arterie untersucht und am Beispiel des aktiven Beitrags glatter
Muskelzellen die Erweiterbarkeit des Modells auf komplexere Materialmodelle gezeigt.
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1 Introduction

Nowadays, use of computational simulation techniques in the medical context can no longer
be dismissed as unrealizable wishful thinking. Increasing computing power and a focus of
biomechanical research on problems with clinical relevance pave the way towards a virtual
patient, based on which treatment and therapeutic options can be evaluated and optimized before
they are put into practice on the real patient. By such patient-specific numerical simulations, the
probability of complications as for example defective implantation can be reduced in advance.
Due to the complexity of the human body and its functioning, reliable predictions continue
to be a great challenge, but simulations can also help to improve fundamental understanding.
This work deals with computational simulation of soft biological tissues with a focus on arterial
walls. In the context of cardiovascular diseases, such simulations might help one day to predict
the probability of rupture in atherosclerotic arteries or aneurysms, to optimize treatment
methods like stenting or balloon angioplasty or even to examine the effectiveness of drugs. As a
prerequisite, the complex material behavior of arterial tissues in health and disease, with all its
biological, chemical, mechanical and possible further aspects, has to be understood and to be
implemented in numerical models. This work should be considered as an attempt to contribute
to this understanding from a mechanical point of view.

An important aspect of the mechanical behavior of arterial walls is the existence of residual
stresses, which significantly affect the distribution of load-induced stresses and can therefore not
be neglected in numerical simulations. Residual stresses are self-equilibrating stresses which are
present in the absence of any external load. Reducing stress peaks and gradients in the arterial
wall under in vivo loading conditions, they have a beneficial effect on the load-bearing behavior.
Many approaches for the incorporation of residual stresses in numerical simulations make use of
this observation by estimating the unknown stresses based on the assumption of uniform strain or
stress distributions over the wall thickness in the physiological state, which can be traced back to
the uniform circumferential strain hypothesis by TAKAMIZAWA & HAYASHI (1987). For example,
to name a few of the publications of the last decade, POLZER, BURSA, et al. (2013) proposed to
simulate the emergence of residual stresses by applying a linearly distributed, isotropic growth
deformation with a volume increase at the inner and a volume decrease at the outer surface of
the vessel. This induces compressive residual stresses in the inner and tensile residual stresses
in the outer part of the wall. The amount of growth and resorption is determined such that
the gradient of von Mises or hydrostatic stress over the wall thickness is minimized and the
wall thickness remains constant. With this generalization of the uniform stress hypothesis to a
stress which does not contain directional information, an eased application to arbitrary arterial
geometries deviating from idealized tubes is enabled. Actually, the applicability to patient-
specific arteries is being deemed more and more important and emphasized by many researchers.
It is also ensured in the approaches by SCHRODER & BRINKHUES (2014) and SCHRODER &
VON HOEGEN (2016), where the residual stress is computed based on the deviation of a local
stress measure to its sectorial volume average. For that purpose, each separate layer of the
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artery is divided circumferentially and axially into sectors, such that potential irregularities
along the circumference and the vessel length automatically find their way into the height of
the residual stresses. If residual stresses are identified by means of such engineering approaches,
it is in general necessary to perform several iterative steps until the final solution, which indeed
minimizes the considered strain or stress gradient, is found. This is avoided in the approach by
JOLDES, NOBLE, et al. (2018), which as a non-iterative, non-invasive post-processing method
for computed stress distributions focuses on computational inexpensiveness and suitability for
clinical application. On the basis of standard clinical data, i.e. CT angiography and blood
pressure measurements, an estimation for the distribution of the maximum principal stress in
the arterial wall under the influence of residual stresses is obtained in a one step calculation.
Since the numerical values of residual stresses and stress components apart from the maximum
principal stress can not be provided, the method is restricted to applications where the peak
wall stress in a given physiological situation is matter of interest, for example the estimation of
the probability of rupture in abdominal aortic aneurysms.

A second class of approaches incorporates residual stresses by means of the reverse simulation
of residual deformations. The existence of residual stresses in arteries can be visualized by
cutting load-free arterial rings in radial direction. Due to a release of residual stresses, which
ends up in a new self-equilibrated state, the rings spring open. As frequently done, for example
by HOLZAPFEL, GASSER & OGDEN (2000) or BALZANI, SCHRODER & GROSS (2007), the effect
of circumferential residual stresses can be included by defining the opened state of the artery
as stress-free reference configuration, which has to be closed to a tube by an initial bending
deformation before applying the external loads. Whereas HOLZAPFEL, GASSER & OGDEN
consider idealized arterial geometries, for which this initial step can be solved analytically, the
numerical realization of the closing procedure proposed by BALZANI, SCHRODER & GROSS
allows for the investigation of arbitrary arterial geometries. Nonetheless, it is generally accepted
by now that a single opening angle is not enough to characterize the entire residual stress
state of an artery. Apart from depending on various factors like position in the arterial tree,
species, age, gender and state of health, the opening angle is highly layer-specific. Furthermore,
not only the circumferential, but also the axial direction should be taken into account when
analyzing residual deformations: when being excised from the body, arterial segments usually
contract in axial direction. As observed for the opening angle in circumferential direction, also
the deformations of axial strips differ in the three arterial layers (HOLZAPFEL, SOMMER, AUER,
et al., 2007). The residual stress state in arterial walls should thus rather be considered as a fully
three-dimensional property. On the basis of the experimental data gathered by HOLZAPFEL,
SOMMER, AUER, et al. (2007), a mathematical model for the inclusion of three-dimensional,
layer-specific residual stresses in the analysis of arteries which are idealized as circular cylindrical
tubes is provided by HOLZAPFEL & OGDEN (2010). For each layer, an individual bending and
stretching deformation from the configuration assumed as stress-free to a closed cylindrical
tube is formulated mathematically. Restricting their analysis to an incompressible, isotropic
constitutive material model, HOLZAPFEL & OGDEN are able to indicate explicit expressions
for the radial, circumferential and axial stress components. An extension to an advanced
anisotropic material model by HOLZAPFEL, NIESTRAWSKA, et al. (2015) was presented by
SIGAEVA, SOMMER, et al. (2019). For the transition from idealized to patient-specific geometries,
the method proposed by UREVC, BRUMEN, et al. (2015) and UREVC, HALILOVIC, et al. (2016)
could be applied. Using an analogy to thermomechanics, they map residual stresses from an
idealized circular tube to a patient-specific artery by applying appropriate thermal loads to the in
vivo configuration. In their original approach, they quantify the residual stresses in the idealized



arterial segment with the help of a single opening angle which is determined by adopting the
uniform strain hypothesis, but use of experimental data such as those of HOLZAPFEL, SOMMER,
AUER, et al. (2007) would also be possible.

Two other exemplary methods, which enable the analysis of patient-specific geometries but
can not be assigned to the aforementioned groups of models, are proposed by AHAMED,
DORFMANN & OGDEN (2016) and ARES, BLANCO, et al. (2017). AHAMED, DORFMANN &
OGDEN introduced an invariant-based, anisotropic constitutive formulation, where a dependency
of the strain energy function on a residual stress tensor is postulated. Assuming a quadratic
distribution of the radial residual stress and zero axial residual stresses, they obtain an equation
for the circumferential residual stresses, which involves a single parameter defining the stress
magnitude. Being consistent with the residual stresses obtained from a simple opening angle
method, these residual stresses are not able to represent the complexity of real residual stress
states. To achieve this, a more general ansatz for the residual stress tensor would be required.
In the variational formulation by ARES, BLANCO, et al., the residual deformations and the
associated residual stresses in arterial walls are estimated based on medical full displacement
field measurements at known blood pressures. An approximation of the residual stress state is
obtained by minimization of a cost functional, which represents the mechanical imbalance due
to lack of knowledge on the residual stresses.

Taking residual stresses as a given, neither approaches which focus on the (purely technical)
smoothing of strain or stress gradients nor methods based on the reverse simulation of opening
angle or related experiments do say something about their genesis. It is a widely accepted
assumption that the existence of residual stresses in soft biological tissues is causally related to
growth and remodeling processes, which are initialized whenever deviations from the physiological
state persist for more than a few days. By addition or removal of mass (growth) and/or the
adaptation of material properties and structure (remodeling), biological tissues are able to restore
former strain or stress levels. This implies the genesis of residual stresses. As an alternative to
the approaches mentioned above, residual stresses can thus be taken into account in numerical
simulations of arterial walls by considering them as a result of arterial growth and remodeling.
Although the exact mechanisms of both processes are far from understood, it is assumed that
growth and remodeling are substantially controlled by mechanical stimuli. For that reason, a
multitude of publications with biomechanical background gave attention to the topic within the
last decades. For an overview on the scientific progress, the chronological sequence of overview
articles by AMBROSI, ATESHIAN, et al. (2011), MENZEL & KUHL (2012), KuHL (2014), CYRON
& HUMPHREY (2017) and AMBROSI, BEN AMAR, et al. (2019) is recommended. Mainly two
conceptually different methods developed over time for the computational modeling of growth.
The first one relies on a multiplicative decomposition of the deformation gradient, and the
second one makes use of the theory of constrained mixtures introduced by HUMPHREY &
RAJAGOPAL (2002).

By decomposing the deformation gradient into a growth part and an elastic part, RODRIGUEZ,
HoGeRr & McCULLOCH laid the foundations for the first concept in 1994. Essentially, they
introduced a virtual intermediate state at which each material point is assumed to have grown
without constraints imposed by neighboring points. When reassembling all material points as
prescribed by the elastic part of the deformation, residual stresses evolve. The challenge of this
approach is the definition of the growth part of the deformation on the basis of hypotheses
on the source, the amount and the spatial characteristics of growth. Typically, the growth
tensor is formulated as a function of one or more scalar variables associated to the amount of
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growth, which in this work will be denoted as growth factors. In the following, some of the many
publications in this context, amongst others those which were important for the development
of this work, are highlighted. TABER & HUMPHREY (2001) formulated a solution for a thick-
walled, pressurized and axially extended tube, where the growth tensor is chosen such that
specified homeostatic values of the circumferential stress and the flow-induced shear stress are
obtained. Already in 2002, more general forms for the growth tensor were proposed by LUBARDA
& HOGER, who considered isotropic, but also transversely isotropic and orthotropic growth,
and by IMATANI & MAUGIN, whose growth tensor includes a preferred direction which can
adapt to changes of the stress state. LUBARDA & HOGER (2002) introduced equations for the
stress-driven evolution of the growth factors, which are still applied in similar form to date. As
already done by IMATANI & MAUGIN (2002), the evolution of growth is thereby often assumed
to be driven by the Mandel stress instead of the 2°d Piola-Kirchhoff stress used by LUBARDA &
HoOGER. With their algorithmic framework for the treatment of multiplicative growth within
a finite element setting, HIMPEL, KUHL, et al. (2005) and KUHL, MAAS, et al. (2007) took
a step back towards a simplified form of the growth tensor, which describes isotropic growth
by means of a single growth factor. Introducing the latter as internal variable, they solved
the evolution equation at the integration point level by applying an implicit Euler backward
scheme and computed the resulting extra part of the incremental tangent modulus. In order
to simulate strain-driven ventricular dilation and stress-driven wall thickening in the heart,
GOKTEPE, ABILEZ & KUHL (2010) extended this framework to anisotropic growth. Their
growth tensor is motivated micro-mechanically and includes three decoupled growth factors,
which are associated to the in-plane muscle fiber orientation, its in-plane normal vector and the
out-of-plane normal vector of the wall. Similarly, SAEZ, PENA, et al. (2014) focused on wall
thickening in a hypertensive human carotid artery as a result of strain- or stress-driven growth
in radial direction. In such approaches, a local cylindrical coordinate system is required at each
material point for the definition of the anisotropy directions of the growth tensor. Especially in
irregular patient-specific geometries, it might be difficult to identify the radial, circumferential
and axial directions at each point. Apart from that, it seems plausible that the anisotropy of
growth at a certain point rather depends on the local mechanical field quantities than on the
orientation in a notional coordinate system. That idea is the starting point for the generalized
growth tensor proposed in this work and in preceding articles (ZAHN & BALZANI, 2017, 2018a).
Assuming that growth in arterial walls is stress-driven, the anisotropy of the growth tensor is
defined based on the local principal stress state. In the past few years, this thought has also
been adopted by other authors working on anisotropic multiplicative growth. In the approach
by L1U, ZHANG, et al. (2019), a link between the principal directions of the Cauchy stress tensor
and growth in the two directions perpendicular to the considered principal stress is presumed
for the simulation of growth in an idealized two-layered aorta. However, by exclusion of axial
growth and by neglecting the radial stress, this idea is not consistently realized. In a general
local formulation, a special treatment of individual directions should rather be avoided to ensure
the applicability in more general boundary value problems with differing signs and differing
order of the principal stresses. Otherwise, the formulation is again not independent of structural
information. The anisotropic growth model recently developed by SOLEIMANI, MUTHYALA,
et al. (2020) has still not been applied to arteries, but it meets this demand: without single
exceptions, growth is assumed to evolve in the directions of the principal Cauchy stresses as long
as those stresses do not exceed a certain compressive level. The amount of growth in the three
directions is thereby distributed according to the ratio of the principal stresses. In contrast to
all multiplicative growth models mentioned so far, the model by SOLEIMANI, MUTHYALA, et al.



also includes a dependence on the concentration of nutrients, which is introduced as additional
primary variable and described by a diffusion equation. Notwithstanding that growth is assumed
to be driven mechanically to a large extent, the availability of nutrients is an indispensable
basic requirement. Nevertheless, biochemical factors are not taken into account in this work.
Since the focus of this work is on multiplicative growth, the following paragraph is thought to
just give a short overview on history and potential of constrained mixture models for growth and
remodeling in soft biological tissues. For a better insight, a look at the introductions of the cited
articles might be valuable. In constrained mixture models, each volume element is considered
as a mixture of tissue constituents like elastin, collagen and smooth muscle cells, which are
allowed to have different stress-free configurations, deposition times and turnover rates, but
share the same displacement (HUMPHREY & RAJAGOPAL, 2002). These frame conditions provide
numerous opportunities to analyze the effect of single constituents and their evolving properties,
orientations and volume fractions on the overall tissue behavior. This enables the formulation
and verification of diverse hypotheses on growth and remodeling in arterial walls (VALENTIN &
HoLzAPFEL, 2012). For example, ZEINALI-DAVARANI, SHEIDAEI & BAEK (2011) investigated the
effect of different forms of elastin degradation on the formation of an abdominal aortic aneurysm.
In other approaches, not only solid constituents, but also the tissue’s interstitial fluid is taken
into consideration, such that the tissue consists of a constrained mixture of solid constituents
forming a porous, permeable matrix and an unconstrained mixture of fluids flowing through (see
e.g. ATESHIAN & RICKEN, 2010). Due to the requirement of tracking past configurations over
time, (constrained) mixture models are mathematically and computationally complex and their
application has first been limited to membrane models or other simplified cases, which did not
allow for the simulation of three-dimensional volumetric growth. A generalization of the theory
to 3D finite element formulations has for example been proposed by VALENTIN, HUMPHREY &
HoLzAPFEL (2013), but, as reported by BRAEU, SEITZ, et al. (2017), such attempts have been
restricted to isotropic growth. The development of homogenized constrained mixture models,
where a homogenization over time is applied and only a single time-independent reference
configuration is involved, enabled an extension to anisotropic growth by combination of the
concept of mixture theory with a decomposition of the deformation gradient (CYRON, AYDIN &
HUMPHREY, 2016; BRAEU, SEITZ, et al., 2017). Another possibility for the simplification of
a general constrained mixture model with respect to its mathematical treatment has recently
been demonstrated by LATORRE & HUMPHREY (2018). By replacing the evolution equations by
an equivalent set of pre-integrated, time-independent equations, the long-term result of growth
and remodeling in response to a persistent external load can directly be computed.

Whereas remodeling in its general meaning of an adaptation of material properties and com-
position is an inherent part of constrained mixture models, it is not included in models for
volumetric, multiplicative growth following the concept of RODRIGUEZ, HOGER & McCULLOCH
(1994). Here, it depends on the constitutive equations to which extent remodeling can be taken
into account. The highly nonlinear, anisotropic mechanical behavior of arterial tissues is usually
described by material models which at least include the contributions of an isotropic ground
substance and of two embedded families of load-bearing collagen fibers, whose orientation is
indicated by vectors. Within the limits of such a material formulation, remodeling can be
incorporated by means of a reorientation of the fiber vectors in response to the external loads.
It is a well accepted assumption that the arrangement of the fibers is a result of continuous
mechano-biological optimization processes, but as for growth, there is no general consent on
the involved mechanisms. For materials with two or more, in general non-perpendicular fiber
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orientations, it is often assumed that the fibers are arranged symmetrically in between the
directions of (positive) principal strains or stresses. The components of the fiber vectors in the
coordinate system spanned by the principal directions are thereby computed based on the ratio
of the principal values. Strain-driven approaches in this context have for instance been pursued
by DRIESSEN, WILSON, et al. (2004), DRIESSEN, COX, et al. (2008) or CREANE, MAHER,
et al. (2011), whereas HARITON, DEBOTTON, et al. (2007a, 2007b), OLSSON & KLARBRING
(2008) or FAUSTEN, BALZANI & SCHRODER (2016) preferred stresses. Some of the authors
compared strain- to stress-driven fiber remodeling and detected that the results in general are
similar, but, as expected, in detail differ due to the nonlinearity of the stress-strain relationship.
DRIESSEN, WILSON, et al. (2004) analyzed the effects of varying pressure load and axial strain
in axisymmetric two-layered arteries with reorienting fibers. For the update of the fiber vectors,
they defined a simple scalar evolution equation based on the angle between the existing and
the target fiber orientation vectors. DRIESSEN, COX, et al. (2008) extended this approach to a
material law with fibers that are dispersed around a main direction and applied it to an idealized
artery and an aortic valve. With their application of a strain-based fiber reorientation algorithm
to patient-specific carotid bifurcations, CREANE, MAHER, et al. showed that even the fiber
patterns observed in complex geometrical regions can qualitatively be predicted if a dispersion
of the fibers and its variability depending on the ratio of the principal strains are included. In
the stress-based approach by HARITON, DEBOTTON, et al. (2007a), which was applied to the
model of a human carotid bifurcation (HARITON, DEBOTTON, et al., 2007b), the final fiber
distribution is computed iteratively in repeated simulations of the boundary value problem. In
order to increase efficiency and stability of this approach, FAUSTEN, BALZANI & SCHRODER
(2016) proposed an enhanced algorithmic scheme, where the iterative update of the fiber vectors
happens in the loaded state and where the principal stresses are averaged over all Gaufs points
in a finite element. OLSSON & KLARBRING (2008) developed a model for combined growth
and fiber reorientation, which is specialized to rotationally symmetric geometries and aims at a
normalization of the circumferential and axial stresses towards predefined homeostatic values.
With respect to the preferred angle between the fiber vectors and the circumferential direction,
they adopted the hypothesis used by HARITON, DEBOTTON, et al. (2007a) and described the
reorientation by an evolution equation.

The framework for combined growth and fiber reorientation presented in this work has been
developed with the aim to enable the approximation of residual stresses and collagen fiber dis-
tributions in numerical simulations of arterial walls based on mechanically founded assumptions
on the underlying adaptation mechanisms. In Chapter 2, relevant aspects of the mechanical
behavior of arterial walls and experimental observations on the regulation of strain or stress
levels by means of growth and remodeling processes are summarized. It becomes apparent that
growth in arteries should be considered as a complex multiaxial phenomenon, where interde-
pendencies of conflicting regulative processes might be involved. The Chapters 3 and 4 provide
the basis for a continuum mechanical description of growth by multiplicative decomposition of
the deformation gradient and for the implementation of the proposed model in a finite element
framework. Based thereon, a generalized framework for the phenomenological consideration of
anisotropic, stress-driven growth is introduced in Chapter 5. By decomposition of the growth
tensor into up to three parts, which are associated to the directions of the principal stresses
and can adopt different basic forms, a large number of hypothetical growth mechanisms can
be realized. For example, growth perpendicular to tensile principal stresses or growth in the
direction of the compressive principal stress, which both could be motivated on the basis of



mechanical argumentation and/or experimental observations, are included in the general form
of the growth tensor. In order to obtain a general local formulation, which should in principle
not only be applicable to arteries idealized as cylindrical tubes, but also to arbitrarily shaped
geometries, use of any kind of structural information, i.e. a dependence of the growth tensor on
the axes of the cylindrical coordinate system, is avoided.

The redistribution of stresses in numerical simulations of soft biological tissues is strongly
dependent on the arrangement of the reinforcing collagen fibers, which are the main load-
bearing constituent. It is thus essential for the simulation of any stress-driven process to ensure
a sufficiently realistic approximation of the fiber orientations. Apart from depending on the
radial position within the vessel, the main orientation of collagen fibers in arterial walls can
adapt over time if required. A model for the reorientation of the fibers in response to changes of
the local stress state, which is the subject of Chapter 6, can capture these effects. In Chapter 7,
numerical examples on the effects of different forms of growth and fiber reorientation on the
stress state in idealized arterial segments are presented. For the assessment of different growth
mechanisms with respect to their mechano-biological relevance, a method for the comparison of
model variants on the basis of an objective function and optimized parameter sets is developed
and applied. In this context, use of a special finite element for rotationally symmetric problems,
which has only one spatial degree of freedom, significantly increases the efficiency of each
single simulation. After the detailed analysis of the proposed framework on the basis of such
idealized geometries, Chapter 8 gives an outlook to its application in patient-specific arteries and
underlines its combinability with enhanced material models using the example of smooth muscle
activity. In Chapter 9, the work and its main results are summarized and final conclusions are
drawn.






2 Mechanical behavior of arterial walls

The aim of this chapter is to give a general overview on function and structure of arteries and on
the fundamental characteristics of their mechanical behavior. This will provide the background
knowledge required for the comprehension of the subsequent chapters. First, structure and
material composition of arteries will be described from a mechanical point of view. Based thereon,
essential mechanical properties of arterial walls will be explained. Apart from strong nonlinearity,
anisotropy and quasi-incompressibility, the existence of residual stresses is an important point
which has to be considered in enhanced numerical models of soft biological tissues. Residual
stresses are directly connected with the adaptation of arteries to their mechanobiological
environment. For this reason, some relevant aspects of arterial adaptation will finally be
discussed.

2.1 Structure of the arterial wall

The arterial system consists of an enormous number of vessels with unique structural and
functional properties. Its general function is the transport of blood away from the heart within
two subsystems: the pulmonic and the systemic subsystem. In the smaller pulmonic subsystem,
oxygen-poor blood is transported in low-pressure vessels from the heart to the lungs. The larger
systemic subsystem, which requires a higher pressure, is responsible for the distribution of
oxygenated, nutrient-rich blood from the heart to the rest of the body. The main vessel of the
systemic subsystem, with a diameter of about 2.5 cm and a mean wall thickness of 2mm in
humans (BURTON, 1954), is the aorta. It forms the trunk of the arterial tree, starting from
which the arterial system branches into smaller and smaller arteries, arterioles and capillaries,
finally arriving at diameters of about 8 um (BURTON, 1954). Along this tree, the microstructure
of the arterial wall varies for reasons inherent to the system, but beyond that it also depends on
age, animal species, local adaptations and diseases. Notwithstanding those differences, arteries
can be categorized into elastic arteries, which have a relatively large diameter and are situated
close to the heart, and muscular arteries located further at the periphery of the arterial system.
By change of the arterial lumen, both types of arteries are involved in the regulation of the
blood flow, but the relevant mechanisms differ. Muscular arteries, which have a higher content
of smooth muscle cells, have the ability to actively adapt their diameter under the influence
of neurohumoral stimulation (LEVY & TEDGUI, 1999, p.8), for example in order to direct the
blood to regions with increased need or to keep it away from regions with vascular injuries
(HuMPHREY, 2002, p. 260). In elastic arteries, distention and contraction arise as a time-delayed,
passive elastic reaction to the contraction of the heart, which causes pressure changes within the
range of systolic and diastolic blood pressure (HUMPHREY, 2002, pp. 259-260). As the active
arterial response will not be taken into consideration in this work, the focus will be set on elastic
arteries.
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Figure 2.1: Arterial walls consist of three specific regions which are separated by elastin lamellae and

can be distinguished by their constituents. The schematic illustration of a typical elastic
artery shown here is adopted from RHODIN (2014).
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Common to all types of arteries is that they are composed of three distinguishable, concentric
cylindrical layers, which are, beginning from the inside of the vessel, denoted as intima, media
and adventitia. A schematic illustration of the wall structure of a healthy elastic artery is shown
in Fig. 2.1. The main constituents and characteristics of the individual layers will be described
in the following paragraphs.

Intima. The innermost layer of the arterial wall is similar in most elastic and muscular
arteries and consists of a single layer of endothelial cells attached to a thin basal lamina. This
collagen-dominated lamina provides some structural support to the wall but primarily serves
as adherent meshwork enabling the growth of the endothelial cells (HUMPHREY, 2002, p. 255),
which themselves are mechanically negligible (BURTON, 1954). Covering all surfaces in contact
with the blood, the endothelium forms a smooth and continuous layer of flat polygonal cells that
are elongated in the direction of the blood flow. It enables the movement of substances, ions and
metabolites from the lumen into the vessel wall. Within two to three years, the endothelium is
completely renewed by replication of the endothelial cells.

In many cases, especially in young and healthy individuals, endothelium and basal lamina are
directly applied to the internal elastic lamina, which marks the begin of the medial layer. At
specific locations, for example in the aorta, an additional subendothelial layer, predominantly
built of smooth muscle cells, elastic and collagen fibers and proteoglycans may exist. Furthermore,
the intima is known to thicken and stiffen with increasing age, a process which is accompanied
by the deposition of atherosclerotic plaque. With such age-induced and pathological changes,
the contribution of the intima might become mechanically significant (HOLZAPFEL, GASSER &
OGDEN, 2000).
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2.1 Structure of the arterial wall

Media. A fenestrated sheet of elastin, the internal elastic lamina, separates the intima from the
media, which is formed by smooth muscle cells embedded in an extracellular matrix composed
of collagen and elastin fibers. The external boundary of the media is likewise marked by the
external elastic lamina. The fenestration in those laminae allows for the radial transport of
metabolites. In elastic arteries, the media consists of multiple well-defined fiber-reinforced layers
bordered by further fenestrated elastic laminae. Each layer including the adjacent lamina is
seen as structural and functional unit of uniform thickness of 12-17 um regardless of artery
and animal species (WOLINSKY & GLAGOV, 1967; CLARK & GLAGOV, 1985; LEVY & TEDGUI,
1999). The number of lamellar units is roughly proportional to the radius of the vessel and
thus decreases towards the periphery with decreasing vessel size. There are 40-60 such units
in a human aorta depending on age, but only eight in a rat aorta (LEVY & TEDGUI, 1999).
Smooth muscles and fibrous extracellular matrix in the medial layers form a complex, organized
network with a helical orientation relative to the vessel axis. The slope of this helix is rather
small, such that the fibrous material is almost oriented in circumferential direction. Due to this
structure, the media is endowed with high strength and resilience and can therefore be seen as
the mechanically most significant layer in healthy arteries (HOLZAPFEL, GASSER & OGDEN,
2000). According to WOLINSKY & GLAGOV (1967), collagen and elastin sum up to about 60 %
of the dry weight of the media in adult mammals, whereby the ratio between both depends on
the specific artery. About 90 % of total arterial collagen is assembled into cylindrical-shaped
fibrils with diameters of 10-500 nm, which can be combined into fibers of 0.1-100 pm thickness
and finally into fiber bundles. Collagen organized in such a manner is one of the central load
bearing components contributing almost the entire passive resistance to circumferential and
axial loading. In contrast to that, elastin fibers are responsible for storing the majority of elastic
energy and provide high flexibility and resilience of the arterial wall at low loads (ROBERTSON
& WATTON, 2013).

Adventitia. The adventitia mainly consists of fibroblasts, i.e. collagen producing cells, in a
collagenous extracellular matrix with admixed elastin. It contains nerves and — if the media
has more than 29 lamellar units — the vasa vasorum, a network of small blood vessels required
for the supply of the wall if the supply from the intimal surface through the arterial layers is
not sufficient (HUMPHREY, 2002). The thickness of the adventitia amounts to about 10 % of
the entire wall thickness in elastic, and 50 % in muscular arteries, but its outer limit is often
difficult to define since it merges with the perivascular connective tissue (LEVY & TEDGUI, 1999;
HUMPHREY, 2002). As in the media, the collagen fibers are arranged in helical structures, but
in the adventitia they tend to be oriented in axial and not in circumferential direction. However,
their orientation varies across the wall thickness and along the vasculature between those two
limits (ROBERTSON & WATTON, 2013). In the unloaded state and at low internal pressure, the
collagen fibers are undulated and do not significantly contribute to the strength of the arterial
wall. The stiffness of the adventitia becomes prominent at higher pressures, when the fibers
reach their straightened length. Then, the adventitia protects the vessel against overdistension
and rupture (HOLZAPFEL, GASSER & OGDEN, 2000; HUMPHREY, 2002).

Apart from cells and extracellular matrix, soft biological tissues contain a high amount of liquids.
According to HUMPHREY (2002, p. 268), a large portion adding up to 70-80 % of the wet weight
of the arterial wall is water. As well as the organized arrangement of the solid constituents, this
aspect of the material composition has a major effect on the mechanical behavior of arterial
walls, which is the subject of the following section.
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2 Mechanical behavior of arterial walls

2.2 Basic mechanical properties

The survey of the structure of the arterial wall in Sec. 2.1 points out that the individual wall
components are not arranged randomly but with specific orientations, which can be assumed to
be structurally and mechanically well-founded. It can be hypothesized from this structure that
the mechanical behavior of arterial walls is relatively complex, and indeed experiments confirm
that media and adventitia, the mechanically relevant layers, behave nonlinearly and different
in axial and circumferential direction (see e.g. MALTZAHN, WARRIYAR & KEITZER, 1984,
SHADWICK, 1999; HOLZAPFEL, SOMMER, GASSER, et al., 2005). This anisotropy, illustrated
exemplarily in Fig.2.2 for the media of human coronary arteries, can be attributed to the
orientation of the collagen fibers, which are the main load-bearing constituent. With fibers
oriented primarily around the circumferential direction, the media shows an increased stiffness
and thus higher stresses in circumferential than in axial direction. The strong nonlinearity of the
material response can be attributed to the fact that collagen fibers have a crimped and wavy
nature in the load-free state (ROBERTSON & WATTON, 2013) and do not become activated till
a certain value of stretch is reached in the depicted uniaxial tension tests.
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Figure 2.2: Soft biological tissues are characterized by large deformations and a highly nonlinear,
anisotropic material behavior. This is attested by the shown graphs, which originate from
HOLZAPFEL, SOMMER, GASSER, et al. (2005, Fig. 3) and illustrate the results of uniaxial
tension tests carried out on media samples of 13 undiseased human coronary arteries in
a) circumferential and b) longitudinal (i.e. axial) direction. The stretch A is computed as
ratio of deformed and initial length.

As adumbrated by the curves in Fig. 2.2, which have different loading and unloading paths,
arterial tissues do not behave fully elastically. HUMPHREY (2002, pp.280ff.) reports that
their passive response is characterized by hysteresis under cyclic loading, relaxation under
constant strain and creeping under constant loads, which suggests use of viscoelastic constitutive
equations. However, after preconditioning in several load cycles, the material response turns out
to be virtually repeatable. Due to their exposure to cyclic hemodynamic loads, the behavior
of arteries in physiological situations can therefore be regarded as pseudoelastic (HUMPHREY,
2002, 2008).

Another reasonable assumption for many loading conditions, including isothermal conditions and
near-physiological loads, is the assumption of incompressibility (HUMPHREY, 2002, pp. 268-269).
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2.2 Basic mechanical properties

Because of the high content of water, arterial walls reveal a nearly volume conserving behavior
as already stated by CAREW, VAISHNAV & PATEL (1968). More recently, the incompressibility
assumption has however been called into question, for example by YOSIBASH, MANOR, et al.
(2014) /Y OSSEF, FARAJIAN, et al. (2017), who detected relative volume changes of 2-6 % in the
physiological pressure range for porcine common carotid, saphenous and femoral arteries. A
revision of the incompressibility assumption is also postulated by NOLAN & MCGARRY (2016),
who report a Poisson’s ratio of 0.44 for the ground matrix of ovine aortic tissues.

The mechanical behavior of arterial walls is substantially controlled by the existence of residual
stresses. Already in 1960, BERGEL had reported that arteries shorten if they are excised from
the body and unroll themselves if they are split open longitudinally, and concluded that even if
unloaded, arteries are not free of stress. Beginning with the work of FUNG et al. and VAISHNAV
et al. since 1983, residual stresses in blood vessels have been examined at a progressive rate,
for example by CHUONG & FUNG (1986), VAISHNAV & VOSSOUGHI (1987), TAKAMIZAWA &
HAvasHI (1987), FuNG & Liu (1989) or FuNG (1991). The observation that arterial rings
bend up after a radial cut implies that compressive circumferential stresses are present in
the inner, and tensile circumferential stresses in the outer part of the wall. The hypothesis of
compressive stresses near the lumen is supported by the observation that the internal elastic
lamina is more wavy in the intact load-free than in the physiological and cut configurations
(HuMPHREY, 2002, p.271). Actually, HUMPHREY suspects that the constituents made of elastin
have a dominating role in this context since collagen fibers are highly undulated in the load-free
state throughout the entire vessel and can thus not contain tensile residual stresses as occurring
in the outer part of the wall. Of course, residual stresses affect the mechanical behavior and the
distribution of the load-induced stresses over the wall thickness. The common assumption that
the reference configuration, which as highlighted in Chapter 3 is essential for the definition of
stress and strain, is stress-free, can thus not be applied to arterial walls. In order to quantify
the amount of residual stresses, the opening angle was introduced. The illustration by FUNG &
L1u (1989) given in Fig.2.3¢) shows that already in the past, the opening angle was known
to depend on many factors: in addition to the longitudinal position within the artery and the
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Figure 2.3: As confirmed by the deformations of a) a circumferential strip and b) an axial strip excised
from a human aorta, both figures formally adapted from HOLZAPFEL, SOMMER, AUER,
et al. (2007, Fig. 7), residual stresses in arteries are three-dimensional. The deformation of
c) radially sliced rings of rat aortas, adapted from FuNG & Liu (1989, Fig. 2), shows that
they additionally depend on the position in the body and on the blood pressure, which has
artificially been increased in a surgery by banding the abdominal aorta with a metal clip.

13



2 Mechanical behavior of arterial walls

trend of the blood pressure, also species, age, gender, smooth muscle activity and other diseases
apart from hypertension, for example diabetes and atherosclerosis, are significant according
to MATSUMOTO & HAYASHI (1996a) and HUMPHREY (2002, p.277). By now, further findings
confirm that the suitability of the opening angle for a quantification of residual stresses is
limited. Though one radial cut, regardless of its position, has been observed by the group of
FUNG to be enough to release most of the residual stress (HUMPHREY, 2002, p.274), later
experiments revealed that this indeed only holds for cuts in radial direction. Since 1993 the
opening angle is known to be layer-specific, which means that an arterial ring without layer-
wise separation, i.e. circumferential cuts, is by no means stress-free (MATSUMOTO & HAYASHI,
1996a; HUMPHREY, 2002). HOLZAPFEL, SOMMER, AUER, et al. (2007) impressively point out
that residual stresses have to be regarded as a fully three-dimensional property of arterial tissues.
Just as circumferential strips, also axial strips deform considerably due to the inherent residual
stresses as exemplarily shown in Fig.2.3a) and b) for non-separated strips from a human aorta.
A separation of the individual layers reveals that those deformations are layer-specific as well.

In the in vivo state, most arteries are significantly stretched in axial direction. For rat, canine
and porcine aortas, values between 20 % and 60 %, strongly varying with the position in the
aortic tree, have been reported according to HUMPHREY (2002, p.287), for example by HAN
& FuUNG (1995). For this reason, a longitudinal contraction of arteries excised from the body
is observed. As suggested by the experiments of HOLZAPFEL, SOMMER, AUER, et al. (2007),
this contraction can only be seen as an average reaction to the excision just as the opening
angle of the non-separated artery can only represent an average measure of residual stresses in
circumferential direction. Considering the axial in vivo stretch together with the large extension
in circumferential direction due to normal systolic and diastolic blood pressures of 120 mmHg and
80 mmHg, the deformations in arteries are clearly large even without consideration of movements
as for example bending of the extremities or pathological conditions like hypertension or during
clinical treatment. It is therefore essential to apply the theory of finite deformations for the
numerical analysis of arterial walls.

Intima:
e mechanically negligible in healthy arteries
e thickens and stiffens with progressing age

and atherosclerosis

Media:
e high strength and resilience due to well-defined
layers reinforced by collagen and elastin fibers

e mechanically most significant layer in healthy arteries

Adventitia:
e increased stiffness at high pressures
when collagen fibers are straightened

e limits acute overdistension

Figure 2.4: Relevance of the arterial layers in healthy, elastic arteries for the passive mechanical
response. The schematic illustration of the arterial wall is extracted from HOLZAPFEL,
GAsSER & OGDEN (2000, Fig.1).
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2.3 Arterial adaptation

In this work, an existing orthotropic material model for soft biological tissues by BALZANT,
NEFF, et al. (2006) will be employed for the fundamental relation between stress and strain.
Building thereon, arterial adaptation processes introduced in the subsequent section will be
examined based on a phenomenological description of growth and fiber reorientation. For a
motivation of the underlying material model, the relevant information regarding the mechanical
relevance of the individual arterial layers is summarized in Fig.2.4. If only physiological or
nearly physiological conditions in healthy arteries are considered, a hyperelastic formulation in
the framework of large strains is a reasonable choice. With restriction to a phenomenological
description of the passive material behavior, the anisotropy can be incorporated by idealizing
the arterial layers as isotropic ground materials with embedded, reinforcing fibers representing
the collagenous constituents. In order to capture the helical arrangement of the fibers, at
least two fiber families with opposite orientation, symmetrically arranged with respect to the
circumferential direction, have to be taken into account. According to SCHRIEFL, ZEINDLINGER,
et al. (2012), it is not even necessary to include more than two fiber families. Nonetheless, the
simplest implementation of this assumption disregards the fact that fibers usually are dispersed
around a main orientation. As for example listed by HOLZAPFEL, NIESTRAWSKA, et al. (2015),
many material models accounting for fiber dispersion have already been proposed, for instance
by use of generalized structural tensors as explained by OGDEN (2017). An extension of the
model by BALZANI, NEFF, et al. (2006) towards a more realistic description is thus conceivable.
Details on this model, amongst others on the satisfaction of the incompressibility condition, are
given in Sec. 7.1. The incorporation of residual stresses, which is indispensable for a qualitatively
realistic simulation of the material behavior of arterial tissues, is directly linked to the main
concern of this work, the modeling of growth and fiber reorientation. Indeed, residual stresses
can be seen as a result of continuous adaptation of the living tissue to its mechanobiological
environment, triggered by the aim of keeping up optimal functionality.

2.3 Arterial adaptation

Beginning with its formation in the embryo over normal development and aging up to disease
and injury, the vasculature is subject to many different changes. During normal maintenance
in mature tissues, referred to as homeostasis, all constituents are slowly replaced in a regular,
balanced manner without changes of overall mass, tissue composition or mechanical properties.
Thereby, the turnover rates of the individual constituents are different: about 0.02 % of endothelial
cells and 0.06 % of smooth muscle cells are replaced per day, collagen has a half-life in the
order of weeks to months and the half-life of elastin is comparable to the lifespan of the
organism (LANGILLE, 1993; HUMPHREY, 2002, p.499), which means that the capacity of
repairing elastin components is limited (ROBERTSON & WATTON, 2013). Persistent deviations
from the homeostatic state can lead to markedly increasing turnover rates and result in a
significant modification of mass, composition and properties of the arterial wall. For example,
collagen can be produced within 10 to 20 minutes in the case of disease or injury and also elastin,
which in general is mainly synthesized around time of birth, may be produced or degraded
much faster in pathological than in physiological situations (HUMPHREY, 2002, pp. 514-515).
The tissue adaptation which takes place in response to altered environmental conditions can
be classified into two different processes: growth and remodeling. In the context of this work,
the term “growth” is used for the addition of new material equal to the material which is
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2 Mechanical behavior of arterial walls

already present, that is to say without changes in composition or density. For sure, growth is
not in general restricted to volumetric, i.e. density preserving increase in mass, but for soft
biological tissues this restriction is often used (e.g. by RODRIGUEZ, HOGER & McCULLOCH,
1994; HimPEL, KUHL, et al., 2005, and in other publications mentioned by them) and is self-
evident if growth is assumed not to change the tissue properties. A decrease in mass at the
same conditions is referred to as negative growth or atrophy. “Remodeling” in contrast is meant
to describe processes that change the internal structure of the tissue by reorganization of the
existing constituents. Such adaptations are thus associated to changes of the material properties.
Within the context of the phenomenological material model by BALZANI, NEFF, et al. (2006),
remodeling is incorporated by allowing the collagen fibers to reorient. A dependency of the
material parameters on the mechanical situation, as proposed by RACHEV, STERGIOPULOS
& MEISTER (1998) for arteries subjected to hypertension, will indeed not be considered. To
establish the connection between adaptation and residual stresses, the notion of incompatible
growth needs to be explained. Briefly, when modeling growth in the framework of continuum
mechanics, each tissue constituent is allowed to grow independently, such that the continuity of
the entire structure would be lost if there were no internal forces restoring compatibility. As
these forces exist independent on external loads, they give rise to residual stresses, which means
that residual stresses can automatically be taken into account if suitable growth processes are
modeled. Details on incompatible growth are given by SKALAK, ZARGARYAN, et al. (1996), and
also HUMPHREY (2002, pp. 507f.) treats this subject in a comprehensible way.

Growth and remodeling are thought to be fundamentally controlled by mechanical stimuli.
They occur whenever functional changes, that is deviations from the homeostatic state, for
example altered blood pressure or flow, persist for more than a few days. Such changes may
occur in phases which require adjustment of the vascular supply, for example during pregnancy,
when muscle tissues adapt to intensified exercise or disuse, or during pathologic disorders
(LANGILLE, 1993). Many studies deal with the question of how stresses or strains are connected
with changes of structure and function of single cells, matrix constituents or entire blood
vessels. In the following paragraphs, some important results, mostly as reported by HUMPHREY
(2002) and MATSUMOTO & HAYASHI (1996a), are summarized. Additional information on the
mechanobiology of cells can be found in the review article published by WANG & THAMPATTY
(2006).

Adaptation of cells and fibers to changes in stress or strain. In vitro studies on
endothelial cells show that the level of shear stresses applied to the cells is linked to the extent
of their elongation in the direction of flow. Moreover, the shear stress affects the production of
molecules by endothelial cells: an increase in shear stress leads to upregulation of vasodilators
and downregulation of vasoconstrictors. This is consistent with the in vivo observation that
arteries dilate if blood flow is increased and constrict if flow is reduced (HUMPHREY, 2002,
pp. 524f.). As examined by LANGILLE (1993) on the basis of denuded rabbit carotid arteries,
an intact endothelium, which gets lost at shear stresses larger than 40 Pa (HUMPHREY, 2002,
p.524), can even be assumed to be the prerequisite for these adaptations. If subjected to 10-20 %
of cyclic uniaxial stretch, endothelial cells increase their rate of replication and elongate in the
direction orthogonal to the direction of stretch (HUMPHREY, 2002, p. 528). Assuming that in
blood vessels with physiological conditions, the circumferential stretch is higher than the axial
stretch, this is in line with the observed orientation of the endothelial cells in the direction of

blood flow.
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2.3 Arterial adaptation

Smooth muscle cells are known to have two phenotypes which usually depend on the age of the
organism. During vascular development, smooth muscle cells synthesize proteins constituting
the extracellular matrix. In mature arteries however, they are contractile and regulate the
blood pressure, but in case of damage or disease, they are able to revert back to the synthetic
phenotype (HUMPHREY, 2002, p.373). If smooth muscle cells are cultured for a few days at
a non-physiological pressure of 10 mmHg, they return to the synthetic phenotype, if cultured
at 80 mmHg they remain contractile (HUMPHREY, 2002, p.538). The experiments performed
by LEUNG, GLAGOV & MATHEWS (1976) on smooth muscle cells, apparently of synthetic
phenotype, suggest a direct relationship between mechanical forces and the production rate
of connective tissue components. The researchers isolated smooth muscle cells from the media
of a rabbit aorta and cultured them on elastin membranes, which were either kept stationary,
subjected to cyclic stretches of 10 % or agitated without stretching. Cyclic stretching led to a
two- to fourfold increase in synthesis of collagen and other matrix components. As indicated by
HUMPHREY (2002), the effect of stress or strain on smooth muscle cells has been shown in many
further studies, but the results are not always consistent, which might partly be due to use of
cells from different vessels in different species of different age, analyzed in different experiments
with nonuniform realization and evaluation. The existence of an anyhow response of cells to
stress or strain however is undeniable and has also been observed for fibroblasts, which are the
primary producers of extracellular matrix in the adventitia of mature arteries (HUMPHREY,
2002, p.537).

The ability to react to mechanical stimuli has also been confirmed for fibers within soft connective
tissues. In different studies, for example by TOWER, NEIDERT & TRANQUILLO (2002) or WANG,
BREWSTER & GLEASON JR. (2013), uncrimping and subsequent reorientation of collagen
fibers are examined. Recently, KRASNY, MORIN, et al. (2017) performed uniaxial tension tests
on circumferential, axial and diagonal strips from rabbit carotid arteries and found out that
regardless of the initial orientation, collagen fibers in the adventitia reorient towards the direction
of the load. This behavior is in contrast to the less distinctive reorientation of adventitial elastin
and medial collagen and elastin fibers, which can virtually be predicted based on the deformed
geometry of the specimens.

Adaptation to changes in blood flow. By now, the hypothesis of a two-step mechanism of
arterial adaptation to changes in blood flow, as elaborated by RODBARD (1975), is commonly
accepted. In a first step, an immediate physiological adjustment of the vascular caliber by
vasodilation or vasoconstriction takes place. A dilation in response to increased flow occurs
within seconds to minutes, whereas the constriction of vessels subjected to reduced blood flow
is much slower and can take several hours as reported by LANGILLE (1993) for sheep carotid
arteries. If the changes in blood flow persist, the arterial wall starts to adjust anatomically,
amongst other by restructuring of the media (LANGILLE, 1993). The experimental findings
suggest that the adaptation mechanisms aim at the restoration of a constant wall shear stress
of about 1.5Pa in large arteries (KAMIYA & TOGAWA, 1980; LANGILLE, 1993; HUMPHREY,
2002, pp. 552-553) and are mediated by the endothelium, which detects flow-induced deviations
from this value. Indeed, acute vascular response is only observed if the endothelium is intact
(LANGILLE, 1993; HUMPHREY, 2002, p. 552) and thus able to send control signals to the smooth
muscle cells. Structural changes due to persistently altered blood flow do not only manifest
themselves by changes in diameter, but also by changes in the vessel length or rather the in
vivo prestretch (HUMPHREY, 2002, pp. 558-559). This emphasizes the multiaxial character of
growth and remodeling and the associated residual stresses.
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2 Mechanical behavior of arterial walls

Adaptation to changes in blood pressure. A detailed review of the mechanical response
of the arterial wall to hypertension, with special reference to the rat thoracic aorta, is presented
by MATSUMOTO & HAYASHI (1996a), and also the textbook by HUMPHREY on cardiovascular
solid mechanics is a valuable reference in which the author provides additional information on
side aspects as for instance different methods for the artificial elevation of blood pressure in
animal experiments (HUMPHREY, 2002, pp.367-373). The most evident arterial reaction to
an elevated blood pressure is an increase of the wall thickness, primarily caused by thickening
of the media. Several studies, for example by WOLINSKY (1970) or MATSUMOTO & HAYASHI
(1996a) showed that the number of lamellar units in the media thereby remains unchanged, see
Fig. 2.5. The longitudinal sections through the aortic wall given in that figure furthermore imply
that the increase in thickness of the medial layers especially occurs near the inner surface of
the wall, where the effect of the elevated pressure on the mechanical fields is more pronounced.
This is in agreement with the assumption that the wall of hypertensive arteries thickens in
order to counteract an increase of the circumferential stress or even to maintain it at a constant
level (MATSUMOTO & HAYASHI, 1996a; HUMPHREY, 2002, p.540). The rat experiments by
MATSUMOTO & HAYASHI suggest that only the outer but not the inner diameter of the vessel
correlates with the in vivo blood pressure, such that the arterial lumen, which is supposed to
correlate with flow rate and shear stress, remains constant in case of pressure changes.
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Figure 2.5: Longitudinal sections through the aortic wall in a) a normotensive rat with a systolic
blood pressure of psys = 145 mmHg, b) a hypertensive rat with psys = 200 mmHg and c) a
severely hypertensive rat with psys = 240 mmHg. The figure is taken from MATSUMOTO &
HavAsHI (1996a, p. 102), who indicate that the enlargement scale is the same in each part
of the figure.! It is perceptible that hypertension is accompanied by increased thickness of
the medial layers, especially towards the intima, which points to the left.

With respect to the structural changes, HUMPHREY indicates that the observations are diverse
and partly contradictory. Thickening of the arterial wall seems to be primarily caused by
hypertrophy, i. e. increase in size of the smooth muscle cells, but also the absolute amounts of
collagen and elastin increase as e.g. shown by OOSHIMA, FULLER, et al. (1974) and NISSEN,
CARDINALE & UDENFRIEND (1978) for collagen production in hypertensive rat aortas. Whereas

"With comparison to the indicated primary source MATSUMOTO & HavasHI (1996b), which though just contains
smaller cutouts of the figure, this statement should be questioned. There, the thickness ratios of the aortic
walls exposed to hypertension to those with normal blood pressure are less pronounced.
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2.3 Arterial adaptation

some researchers report a more or less constant percentage of wall constituents, others observed
a decreasing fraction of collagen due to a disproportionate increase in smooth muscle content.
Several publications reveal that also the adventitia thickens (HUMPHREY, 2002, p.376). Again
it has to be stated that a comparison of different species, arteries and experimental setups, for
example concerning the duration of the induced hypertension or the age at which it is induced,
make it difficult to compare different findings. Moreover, arterial adaptation to hypertension
is a time-dependent process: wall thickening happens very rapid, but there are also chronic
changes acting on a slower time scale. MATSUMOTO & HAYASHI (1996a) point out that the
elastic modulus, which at hypertension temporarily increases due to the nonlinearity of the
material behavior, is restored to its normotensive value within 16 weeks. As a consequence of the
associated nonuniform growth and remodeling processes, the observed opening angle changes
over time as already documented by FUNG & Liu (1989) and shown in Fig. 2.3 ¢). Changes in
blood pressure can thus be supposed to always have an effect on the residual stress state.

Another fact pointing out that it is far from clear why exactly arteries adapting to non-
physiological conditions behave as it is observed, is the unexpected behavior in response to
hypertension stated for the axial direction. Whereas stresses and strains in circumferential
direction seem to be gradually restored to their physiological values, axial in vivo stress and
strain in hypertensive arteries are significantly lower than in normal conditions (WOLINSKY,
1970; MaTsumMoTO & HAYAsHI, 1996b; HUMPHREY, EBERTH, et al., 2009). According to
MATSUMOTO & HAYASHI (1996a, pp. 101f.), this could have different reasons. On the one
hand, pure radial growth, leading to an increase of the wall thickness without any effect on the
axial direction, might not be realistic as amongst others speculated by LANGILLE (1993). An
enlargement of the medial smooth muscle cells, which are mainly oriented in circumferential
direction, likely involves volume increases in both, the radial and the axial direction, such
that axial stress and strain are reduced by a non-visible elongation of the vessel, which is still
subjected to the same boundary conditions. On the other hand, the reduced in vivo stretch could
imply that restoration of increased stresses or strains has priority over restoration of stresses or
strains which have fallen below the homeostatic level. In particular, a decreased axial in vivo
stretch might be less serious than an increased circumferential stress. Indeed, as summarized in
the following paragraph, there are studies which confirm differences in the reaction to reduced
and increased axial stretches.

Adaptation to changes in axial stretch. If deviations from the physiological axial in vivo
stretch occur, the ability of the tissue to adapt seems to depend on the sign of these deviations.
As shown by JACKSON, GOTLIEB & LANGILLE (2002), an increased axial stretch in rabbit carotid
arteries is regulated within just a few days by compensating tissue growth and remodeling,
whereas a reduced axial stretch does not lead to a normalization. In contrast, those arteries even
became tortuous although 30 % of axial strain were left. The adapting arteries did not exclusively
grow in axial direction, but also showed an increase in wall thickness and circumference, which
can not be justified by reduced blood pressure and flow since both remained unchanged in the
experiments. It can thus be suspected that normalization of elevated axial stretch is favored
over maintenance of the homeostatic wall shear and circumferential stress, provided that those
stresses do not increase. Based on the results by JACKSON, GOTLIEB & LANGILLE (2002) and
also confirmed by the experiments of HAN, Ku & ViTO (2003) and HUMPHREY, EBERTH, et al.
(2009), the compensating growth and remodeling processes in response to elevated axial stretch
can be assumed to be much faster than those provoked by increased blood flow or pressure.
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2 Mechanical behavior of arterial walls

The adaptation is characterized by significant increase of the replication rates of endothelial
and smooth muscle cells and by increased production of elastin and collagen. Since they are
also observed in the absence of an endothelium, JACKSON, GOTLIEB & LANGILLE suppose that
those processes are controlled by the smooth muscle cells.

Adaptation during aging. Apart from adaptations due to disease or injury, normal gradual
changes in mass and structure are known to occur during aging. The formation of new blood
vessels in the embryo and other remodeling processes before maturation are thereby explicitly
excluded and not accounted for in this work because the circumstances at this time of devel-
opment are completely different (LANGILLE, 1993; HUMPHREY, 2002, p. 554). As summarized
by HUMPHREY (2002, pp. 578f.), the intima tends to thicken and become more fibrotic with
age. In the media, which also thickens, an increasing amount of collagen is deposited and
elastin is gradually degraded. For the adventitia, HUMPHREY indicates that the changes are less
specific. Altogether, age-related growth and remodeling result in reduced distensibility, increased
stiffness and a rising thickness to radius ratio. For example, LANGILLE (1993) mentions that
the abdominal aorta of adults gradually increases in diameter by 40-50 %. At the same time,
a significant age-correlated decrease in axial prestretch is observed (HORNY, ADAMEK, et al.,
2012).

In summary, all these observations indicate that unidirectional growth, which might be suited to
normalize single strain or stress components deviating from their homeostatic values, seems not
to be possible in arteries. Instead, growth has to be considered as a multiaxial process involving
the radial, circumferential and axial directions. However, there seem to be connections between
the following functional changes, mechanical quantities and geometric vessel properties: Altered
blood flow mainly affects wall shear stress, which is regulated by an adaptation of the arterial
lumen. Changes in blood pressure are associated to changes in circumferential stress and strain,
which can be normalized by adaptation of the wall thickness. Axial in vivo prestretch, which is
related to the axial stress, can be regulated by an adaptation of the vessel length. Of course,
there are interdependencies which might prevent the restoration of the homeostatic state for
each particular strain or stress. In these cases, restoration of those strains/stresses which exceed
their homeostatic values might be assumed to have priority, even if it happens at the expense of
a reduction of other strains/stresses below their homeostatic values. Adaptation in arteries can
thus really be considered as an optimization problem, the aims of which are still unknown to a
large extent.
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3 Continuum mechanical foundations

The basic concept for the description and analysis of all physical phenomena studied in this
work is the framework of continuum mechanics. Within this framework, it is assumed that
all quantities of interest, such as displacements or stresses, can be described by continuous
functions if the length scale of the body of investigation is considerably larger than the length
scale of its microstructure. This separation of scales allows to average locally heterogeneous
material properties into homogeneous fields, such that no detailed modeling of composition,
behavior and properties of the microstructural components is required in order to still obtain an
adequate approximation of the macroscopic material behavior. With diameters in the order of
micrometers, collagen fibers are considerably smaller than the wall thickness of elastic arteries,
which is in the order of millimeters. For the analysis of stresses within the arterial wall, the
ratio of micro- and macroscopic length scales is thus smaller than 0.01. Below this well-tried
experience value, the continuum approach is applicable (HUMPHREY, 2002, p. 68).

In this chapter, the fundamentals of continuum mechanics are summarized, primarily based
on the relevant parts in the textbooks by WRIGGERS (2008), HUMPHREY (2002), HOLZAPFEL
(2000) and ALTENBACH (2012). For the extension of the basic equations to solids with a growing
mass, the research papers by HIMPEL, KUHL, et al. (2005) and KUHL, MAAS, et al. (2007) have
been used as main reference.

3.1 Kinematics

Basis of all continuum mechanical considerations are the kinematics, a branch of mechanics
which addresses the geometrical description of the motion and deformation of bodies by means
of the variables time and position. After the introduction of basic kinematic equations, their
extensions necessary within the framework of multiplicative growth will be explained.

3.1.1 Basics of kinematics

For the description of the motion and deformation of a continuum, the physical body B ¢ R?
is considered as a set of continuously distributed material points in the Euclidian space R3.
In its reference configuration at ¢ = tg prior to deformation, the position of a material point
within body B is defined by a position vector X, see Fig. 3.1. This configuration is also referred
to as material or Lagrangian configuration. The transformation of the body to its deformed
state at a particular point in time ¢t € R™ is described by a one-to-one, i. e. invertible mapping
p(X,t) : B — S, which maps each material point X € B to its counterpart € S in the
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3 Continuum mechanical foundations

actual configuration S C R?, also denoted as spatial or Eulerian configuration. The location of
material point X at a fixed time ¢ is thus given by

r=p(X,t) = p(X) (3.1)
and the displacement vector associated to that point is
u(X,t)=x—-X (3.2)

as illustrated in Fig. 3.1. Here, the referential or Lagrangian approach is adopted which means
that the continuum mechanical fields are considered as functions of the material points X
in the reference configuration. In contrast, especially useful in fluid mechanics, the spatial
or Fulerian approach formulates mechanical fields as functions of the actual coordinates x.
For many quantities which exist in both configurations, capital Roman letters, e.g. X, V,
will be used for the reference configuration and small Roman letters, e. g. @, v, for the actual
configuration.

Ela e
E;, e3

Figure 3.1: Illustration of a physical body in its undeformed reference configuration B, where the
position of a material point is given by vector X, and in the deformed, actual configuration S
with position vector x. Infinitesimal line, area and volume elements are displayed in gray.
When using orthonormal Cartesian basis vectors E;/e;, the reference and actual coordinate
systems can be chosen to coincide.

The relation between two infinitesimal line elements dx and dX in the actual and reference
configuration can be described as a linear transformation by a second-order tensor F' as

dz = FdX, (3.3)

where x is a function of X. Due to this functional dependence, the chain rule expression

ox

da = X dX (3.4)
must hold and the second-order tensor F' can be identified as
F = oz = Grad[z]| = Grad[p(X,t)], (3.5)
0X
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3.1 Kinematics

or alternatively, by using Eq. 3.2, be expressed as
F = Grad]u + X| = Grad[u] + I. (3.6)

This tensor F', denoted as deformation gradient, is a fundamental measure for the description
of deformations and one of the most important continuum mechanical quantities. It does not
only define the transformation of line elements, but also of the normal vectors dA = IN dA to
area elements and of volume elements dV, whose counterparts da = n da and dv in the actual
configuration are given by

da = cof[F]|dA =det[F]F"TdA  and  dv = det[F]dV, (3.7)

see Fig. 3.1 for an illustration. The compatibility condition V x F = 0, which guarantees that
the deforming body remains continuous, i.e. free of holes or overlaps, is automatically fulfilled
due to the fact that F' is defined as the gradient of a vector field (SLAUGHTER, 2002, pp. 71,
110f.). In order to ensure the invertibility of the mappings in Eq. 3.1 and Eq. 3.3, the existence
of the inverse of the deformation gradient
F!= %;( = grad[X] (3.8)
has to be guaranteed. The determinant of F', also referred to as Jacobian J, has thus to be
non-zero. Moreover, this determinant must be positive in order to avoid negative actual volume
elements dv in Eq. 3.7, i. e.
J :=det[F] > 0. (3.9)

For the introduction of a strain measure, the difference of the squared lengths of an infinitesimal
line element in reference and actual configuration is considered. With de-dx = FdX - FdX =
dX - FTF dX, the relation

dz-dz —dX -dX =dX - (F'F -1I)dX (3.10)
is obtained, which shows that the right Cauchy-Green tensor
C:=F'F (3.11)

is a convenient measure for changes in deformation. The deformation gradient itself includes
rigid body motions in addition to the “real” deformation in the sense of extension, compression
or shear. A unique right polar decomposition F' = RU into an orthogonal rotation tensor R
with R~! = R"T and a positive definite, symmetric stretch tensor U with UT = U allows to
separate both parts. From

C=F"F=(RU)"RU=U"R"RU = U? (3.12)

it becomes obvious that also C' is a symmetric tensor which does not contain any rigid body
motions.

For the formulation of fundamental mechanical laws, time derivatives of the kinematic quantities
have to be considered. Assuming that the time derivative d& of an infinitesimal line element da
in the actual configuration is related to the line element itself through the relation

da = ldz (3.13)
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3 Continuum mechanical foundations

with a second-order tensor I, the identity

oz
= — = L . 14
l D grad[z] (3.14)

is obtained in analogy to Eq. 3.3-3.5. Describing the local changes of the velocity & = dx /0t
at a material point in the spatial configuration, this tensor is referred to as spatial velocity
gradient. Its relation to the time derivative of the deformation gradient is given by

. 0 [ Ox 0 (0x oz ox Ox
F_at(aX>_aX<8t>_aX_aan_lF’ (3.15)

and thus the spatial velocity gradient I can also be expressed as
l=FF L (3.16)

The time derivative of the Jacobian can then be derived as

. Odet[F| Odet[F] OF 1 . T Ty e
J= T = S S = JFTT P = JulF TR = Jull] = Jdivle]  (317)

and using this relation, the time derivatives
da = div[z]da —1Tda  and  do = div[z]dv (3.18)

of the terms given in Eq. 3.7 are obtained. During the derivation of da, the expression FT=
—F~TFTF~T obtained from % (F‘TFT) = 0 has to be inserted.

Since this work aims at describing the deformations of growing continua, the following extension
of the basic kinematic equations is required.

3.1.2 Kinematics of multiplicative growth

Considering the overall deformation as the sequence of a growth deformation and a remaining
elastic deformation, growth can be taken into account by a multiplicative decomposition of
the deformation gradient as initially proposed in this context by RODRIGUEZ, HOGER &
McCULLOCH (1994) and later used by LUBARDA & HOGER (2002) and HiMPEL, KUHL, et al.
(2005) among others. As illustrated in Fig. 3.2, the decomposition

F =F.F, (3.19)

comes along with the introduction of an intermediate configuration B; ¢ R3. This fictive
intermediate state represents a new stress-free state which is related to the stress-free reference
state B through a growth tensor F, describing the growth process. Each material point is allowed
to grow independently of its neighboring points, such that in general, holes or overlaps might
occur in the intermediate configuration. Since the growth tensor Fj is thus not associated to a
continuous displacement field, it does not fulfill the compatibility condition V x Fy = 0. In order
to ensure the continuity of the body in the actual configuration S and the compatibility of the
overall deformation gradient F', an elastic deformation F, = FFg*1 connecting the intermediate
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3.1 Kinematics

Figure 3.2: Multiplicative decomposition of the deformation gradient F in a growth part F, and a
remaining elastic part F,. The configuration B; equals a fictive intermediate state at which
each material point has grown without generation of stresses.

and the actual configuration might be required. As done in Eq. 3.9 for the overall deformation
gradient, the Jacobians

Jg = det[Fy| >0 and Jo :=det[Fi] >0 (3.20)

with J = JgJe are defined. With these definitions, the overall volume change J of a volume
element dV' deforming into dv = JdV/, cf. Eq. 3.7, can clearly be split into a part J, related to
growth and a part J, related to the remaining elastic deformation, i.e.

dV; = J;dV and dv = J. dV;, (3.21)

where dVj is the volume element in the intermediate configuration B;. Since only this latter part
of the deformation is assumed to generate stresses, a corresponding deformation measure

C.=F'F.= (FF,') FF,' = F,"F'FF;' = F,"CF," (3.22)

is defined. Due to its definition in analogy to the right Cauchy-Green tensor given in Eq. 3.11,
C. is also symmetric and does not contain rigid body rotations.

The spatial velocity gradient from Eq. 3.16 can be pulled back to the intermediate configuration
using the operation

Li=F 'IF.=F 'FF'F.=F,'FF, !, (3.23)

where the time derivative of the deformation gradient can be expressed as

O(F.Fy)

F= o= F.F, + F,F,. (3.24)
Inserting this expression in Eq. 3.23, the velocity gradient in the intermediate configuration can
be formulated as

Li=F,F, '+ F,'F.= Ly + L. (3.25)
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3 Continuum mechanical foundations

with two additive parts defined as
Ly:=F,F;' and L.:=F,'F, (3.26)

see HIMPEL, KUHL, et al. (2005). Due to their structure which is similar to the definition of
the spatial velocity gradient I, these tensors are referred to as growth velocity gradient and as
elastic velocity gradient. With the help of these velocity gradients, the derivatives

Jo=JoF; T Fy= J,F, - F; " = J,tr[F,Fy '] = Jytr[Ly), (3.27a)
Jo=JF; V- F, = Jotr[F, ' F.] = Jotr[Ly] (3.27h)

can be formulated in analogy to J = J tr[l] deduced in Eq.3.17.

3.2 Stress vectors and tensors

As a consequence of the definition of different configurations with different sizes of the infinitesi-
mal area elements, some considerations concerning the definition of stresses are required. Finally,
the true stresses within the deformed continuum are matter of interest, which are naturally
defined as force per unit area in the actual configuration. In the cross section of a deformed
body, a stress vector t can be defined as

_4

t —
da’

(3.28)
where d f is the force vector acting on the infinitesimal area element da in the actual configuration,
see Fig. 3.3 for an illustration. This force vector can be disassembled into a normal component
in the direction of unit normal vector n and two perpendicular shear components within the
cutting plane. However, one single stress vector is not sufficient to characterize the full stress
state at a material point, which consists of three normal and six shear stresses. Therefore, the
Cauchy stress tensor o is introduced, in which all stress components at a material point are
enclosed. The stress vector associated to an arbitrary cutting plane can then be computed
from o by means of the Cauchy theorem

t=on, (3.29)

where mn is the unit normal vector of the cutting plane. The components of the Cauchy stress
tensor are the real stresses acting in the body, which means that they are associated to the
real cross section in the actual configuration. Due to the balance of angular momentum, see
Sec. 3.3.3, the Cauchy stress tensor is symmetric, i.e. o1 = 0.

For the definition of a stress tensor relating the forces to the reference configuration, a stress

vector T can be introduced in the same manner as

_df

T=q

(3.30)
as shown in Fig. 3.3. Since the incremental force vector d f is the same in both configurations,

the equation
TdA=tda=onda (3.31)
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3.3 Balance equations and entropy inequality

Figure 3.3: Stress vectors T' = % and t = % in reference and actual configuration.

must be satisfied, where nda = JF~TNdA holds due to Eq.3.7. Inserting this yields
T=JoF "N=PN with P:=JoF T, (3.32)

where P is denoted as 15 Piola-Kirchhoff or nominal stress tensor. The 15¢ Piola-Kirchhoff stress
tensor is unsymmetric, which might sometimes be disadvantageous, and has a mixed basis with
the first basis vector in the actual and the second one in the reference configuration. With

S:=F'P, (3.33)

a tensor with two basis vectors in the reference configuration is obtained. It is denoted as
274 Pipla-Kirchhoff stress tensor and is related to the Cauchy stress through o = 1/; FSFT. In
a geometrical sense, S can be explained with the help of a “pseudo” stress vector consisting
of a pullback of the force vector to the reference configuration, i.e. dfy = F~'df , which is
referred to the area element dA. In contrast to o and P, S can thus not be interpreted as a
stress based on physical argumentation, it has rather to be understood as a helpful mathematic
quantity. Like the Cauchy stress tensor, the 279 Piola-Kirchhoff stress tensor is symmetric due
to the balance of angular momentum.

3.3 Balance equations and entropy inequality

The balance equations constitute a set of fundamental laws of continuum mechanics, which are
natural laws and have thus to be satisfied at every time and whichever material is considered.
They describe the correlation between certain physical quantities characterizing the state of
the continuum body and external effects. The balanced quantities are mass, linear and angular
momentum as well as energy of the body. A growing continuum is an open system where the
amount of mass is not fixed. Changes of those state variables are thus caused by generation or
reduction of mass and by external forces.

Another fundamental law complementing the balance equations is the second law of thermody-
namics, which states that entropy can never decrease.

3.3.1 Balance of mass

The mass of a continuum body which occupies a particular volume is defined by its mass density.
In the reference configuration B, an infinitesimal mass element

dM = pydV (3.34)
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is obtained as the product of the infinitesimal volume element dV and the reference mass
density pg. This density does not need to be constant over the body and thus depends on the
material point X, but it is not time-dependent. In the actual configuration S however, where
mass and volume are allowed to change over time, the actual mass density p, which defines the
infinitesimal mass element

dm = pdv, (3.35)

depends on location and time. The same holds for the mass density p;, which is defined in the
intermediate configuration B;. The infinitesimal mass element dM; in this configuration is given
by

dM; = p; dV; = dm, (3.36)

and since growth is assumed to take place during the transformation from the reference to the
intermediate configuration but not afterwards, it equals the final mass element dm. In order to
track the evolution of the final mass with respect to the reference configuration, an additional

mass density

dm dm dm
o= =g =0 S 3.37
PO =y dv P T leqy T e (3:37)

is defined. With Rg denoting a mass source per time and per unit volume in the reference
configuration, the actual mass element can be expressed as the sum of the reference mass
element dM and the gain within the time interval [ty, t1] according to

t1
dm = dM + /Ro dtdv, (3.38)

to

see HIMPEL, KUHL, et al. (2005). Replacing dm by podV from Eq. 3.37 and dM by podV from
Eq. 3.34, this equation can be reformulated as

t1
po = po + /Ro dt. (339)
to

Differentiation with respect to time yields the local form of balance of mass in the reference
configuration, namely
po = Ro, (3.40)

which has to be fulfilled at each material point for all times. Inserting pp = J p from Eq. 3.37
and using Eq. 3.17, the balance of mass in the actual configuration

. R

p+ptrll] = 70 (3.41)
is obtained. Analogously, Eq. 3.40 can be transformed to the intermediate configuration. With
po = Jg pi from Eq. 3.37 and with Eq. 3.27a, the local form of balance of mass in the intermediate

configuration reads
: Ro
pi+ pitr[Lg] = 7 (3.42)
g
From this result, further information on the mass source Rg can be extracted. If density changes
during growth are excluded, which means that an increase of mass is exclusively caused by
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3.3 Balance equations and entropy inequality

an increase of volume, the mass density in the intermediate configuration equals py and does
therefore not depend on time. Then, with p; = pg = const., Eq. 3.42 turns into

Ro = Jg £0 tr[Lg] = pPo tl"[Lg], (3.43)

from which the mass source can directly be identified if the growth tensor Fy and its time
derivative Fy are known.

3.3.2 Balance of linear momentum

The balance of linear momentum requires that the time derivative L of the total linear momentum
must balance all forces f that act on the body, thus L = f. The linear momentum L is thereby
defined as mass times velocity integrated over all material points and its time derivative is given
by

. 0
L = g /pmdv (3.44)
S
whereas the vector of all acting forces reads

f:/pbdv+/tda+/7§0dcdv. (3.45)

S oS S

Therein, b denotes the volume acceleration and t the traction vector acting on the surface S of
the body. The last term, with Ry/J denoting the mass source per time and unit volume in the
actual configuration, is included to account for the effect of additionally added mass, see e. g.
LUBARDA & HOGER (2002). All integrals are formally evaluated over the actual configuration of
the body, where the external forces act, but they can be replaced by integrals over the reference
configuration using dv = JdV. Since dV does not vary with time, this allows to change the
order of time differentiation and integration in Eq. 3.44, which can then be reformulated as

L:;/pd:JdV:/gt(pd:J)dV:/<p’:i:J—i—p:'éJ—i—pa'cJ>dV
B 5 o (3.46)
=/(/5+ptr[l]):'chV+/p:'1§JdV:/Rozi:dV—l—/pg:édV.
B B B B

In the second line, Eq.3.17 as well as the balance of mass from Eq.3.41 and the density
transformation from Eq.3.37 have been inserted. With Eq.3.29 and making use of Gaufs’
divergence theorem [ onda = [ div]o]dv, the vector of all acting forces can be expressed as

oS S
f:/pbdv+/div[a]dv+/730d:dv
S
/prdV+/d1v[ ]Jdv+/Rode (3.47)

—/ de—i—/Dw[P dV+/Rode
B
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where the equivalence Div[P] = J div[o] has been used (cf. HOLZAPFEL, 2000, p. 146). Setting
L = f, the balance of linear momentum turns out to be

/pg:i'dV = /,00 de+/Div[P] av, (3.48)
B B B

which does not involve additional terms associated to growth. Omitting the integration over B
results in the local form of the balance of linear momentum

po & = po b+ Div[P], (3.49)

which is formulated with respect to the reference configuration.

3.3.3 Balance of angular momentum

In an analogous manner as for linear momentum and forces, the balance of angular momentum
requires that the time derivative J of the total moment of momentum balances the sum of
all moments m acting on the body. Defining the moments with reference to the origin of the
coordinate system, the time derivative of the angular momentum is given by

.f:gt/a:xpd:dv (3.50)
S

and the vector of applied moments is

m:/wprdv+/thda+/wx?d:dv. (3.51)
S 8s S

Again, when evaluating the integrals in the reference configuration, the order of time differentia-
tion and integration can be switched, such that Eq. 3.50 together with Eq.3.17, Eq. 3.41 and
pJ = po from Eq. 3.37 yields

j:/aat(a;xpgbj)dV:/(xxp:tJ+a:xpééJ+azxpzbj>dV
B

b (3.52)
:/(LBXRoa)—f—QZXpo(B)dV
B

The vector m can be simplified with Eq. 3.29 and a modification of the divergence theorem
specified in Eq. A.16 of Appendix A. This leads to

m:/(mxpob—i—a}deiv[a]—i—e:JO'T—i-a:xRO:i:) dv, (3.53)
B

where € denotes the 34 order permutation tensor, see Eq. A.2. Evaluation of the condition
J = m then leads to the identity

/ccxposidV—/(a:xpob+w><Jdiv[0']+e:J0'T) dv, (3.54)
B B
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which, due to J div[e| = Div[P] and the balance of linear momentum in Eq. 3.49, finally appears
as

O:/e:JUTdV. (3.55)
B

This equation can only be fulfilled if the expression Jo! is symmetric. Insertion of o =
1/; FSFT reveals that this is equivalent to symmetry of S, which means that the balance of
angular momentum finally demands the symmetries

o' =0 and st=s8 (3.56)

of the Cauchy and the 2" Piola-Kirchhoff stress tensor.

3.3.4 Balance of energy (first law of thermodynamics)

The balance of energy claims that the change of internal and kinetic energy must equal the rate
of work done on the continuum body in terms of mechanical and thermal external loads and by
addition of mass. Expressed by a formula, the balance of energy reads as € + K =P + Q+ G,
where the individual terms are specified as follows. The internal energy &£ is given by the
integral

5—/pedv = /poedV (3.57)
S B

over the specific internal energy e, which is a thermodynamic state variable defined per unit
reference mass. Integrating over the reference configuration, the order of time differentiation
and integration can be inverted, such that £ can be computed with Eq. 3.40 to be

E= [ (Roe+poe) dV. (3.58)
/

The kinetic energy K is defined as

/C:/;pab-:tduz/;ﬁoab-ﬁcdv, (3.59)
S B
where time differentiation yields
IC:/gt(%ﬁods-a’:)dV:/(éRodrdz—i—ﬁo:ﬁ-a’:)dV (3.60)
B B

with the same argumentation as for £. Volume and surface forces are doing external mechanical
work on the body. The time rate of this work, i.e. the external mechanical power, is given by

P:/pb-a'r;dv+/t-dzda, (3.61)
S oS

where Eq.3.29 and use of index notation allow to write the integrand of the second term as

t-@=on-a =o'z n. Replacing the integral over the actual configuration by an integral
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3 Continuum mechanical foundations

over the reference configuration and using pJ = pg from Eq. 3.37 as well as Eq. 3.7 and Eq. 3.32
results in

P:/ﬁob-aich~|—/aTdc-JF_TNdA
B oB
ob-m’dV+/FPT:i:~F‘TNdA (3.62)
oB

:/p
B
:/pob-:th+/Psz~NdA.
B oB

In this form, the surface integral of the second term can be converted to a volume integral with

the aid of GauR’ divergence theorem | a- N dA = [Div[a|dV, i.e.
oB B

/ PTi. NdA = / Div[P"&]dV. (3.63)
oB B

The divergence of PTa& with respect to the reference coordinates X; is computed in index
notation as 5P d 5

ki Lk . Tk . .
a;(i = Drii Tk + Pri =5~ * = Py @k + Pri Fa, (3.64)

which is equivalent to Div[P] & + P : F. The rate of external mechanical work can thus finally
be expressed as

P= [ pob-&dV + [(Div[P] &+ P: F)dV. (3.65)
[=e]

If heat is transferred between the body and its surroundings, thermal work is done. The rate of
this work is given by

Q:/prodv—/q'nda, (3.66)
S oS

where 79 denotes a heat source per time and unit reference mass and q is a inward heat flux

per time entering the body across a unit surface element in the current configuration. Since

the unit normal vector n points in the opposite direction, a negative sign arises. With Eq. 3.7

leading to

g nda=q- JFTNdA=JF 'q-NdA with JF 'q=:q, (3.67)

integration over the reference configuration and the divergence theorem can again be applied to
reformulate the rate of thermal work as

Q- / ForodV — / Div[qo] V. (3.68)
B B

The term denoted by G is added following LUBARDA & HOGER (2002) in order to take the rate
of kinetic and internal energy associated with the additional mass into account. It reads

g_/?(éi.;b%)dvz/no (Aa-x+e)dV. (3.69)
S B
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3.3 Balance equations and entropy inequality

Inserting the balance of linear momentum from Eq. 3.49, E+K=P+ Q + G finally leads to
the local form of the balance of energy

poé = P : F — Div|go] + po ro. (3.70)

Due to the consideration of thermal in addition to mechanical energy, this balance equation equals
a fundamental axiom of thermodynamics, which is also known as first law of thermodynamics.
For later reference, the alternative representation

poé =18 :C —Divlgo] + poro (3.71)

is introduced, where the substitution P: F =8 : FTF =8 : sym[FTF] = Lk C has been
performed, which is possible due to the symmetry of S.

3.3.5 Entropy inequality (second law of thermodynamics)

The first law of thermodynamics states that for all processes with exchange of mechanical or
thermal energy, the sum of energy remains constant. It does however not restrict the direction
of energy transfer. Nonetheless, it is observable that heat always flows from warmer to colder
regions or that mechanical energy can generate heat, but not contrariwise unless external energy
is supplied. In order to ensure that a physical process is consistent with this observation, the
second law of thermodynamics has to be satisfied. This law states that the total production
of entropy per time, as a whole denoted as I, is never negative. Formulated in terms of the
Clausius-Duhem inequality, this means that

5}

I'= —-Q> 72
o [omar—0=0 (372)

S

must hold, where 7y is the specific entropy, defined by unit reference mass. According to that,
the time derivative of the inherent entropy of a body does not need to equal the rate of entropy
input Q as in previous balance equations, but their difference is claimed to be non-negative.
The rate of entropy input Q is defined as

o= pgodv—/ q-nda+ / de—l—/pSodv, (3.73)

S oS S

where the first two terms are inner entropy sources and entropy fluxes across the surface, which
are assumed to be related via the absolute temperature 6 > 0 in Kelvin to the heat source rg
and the heat flux q, respectively. The third term is associated to the entropy production by
addition of new material and the fourth one is an additional entropy source, which is included
following HIMPEL, KUHL, et al. (2005) and HIMPEL (2007) to take further non-mechanical,
irreversible processes related to growth and remodeling into account. Reformulation of Eq. 3.72
by integrating over the reference configuration and using Eq. 3.17, Eq. 3.37 and the balance of
mass from Eq. 3.41 as well as Eq. 3.67 and the divergence theorem leads to the local form

Po Mo — % + Div [%} — poSo > 0. (374)
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The divergence term can be evaluated according to

. 1_. 1 1 . 1
Div [%} =3 Div{qo] + qo - Grad [0] =3 Div{qo] — PRLE Grad[6] (3.75)

and the local balance of energy from Eq.3.71 provides an expression for Div[qo]. Inserting both
into Eq. 3.74 yields

L1
ﬁo(ﬂﬁo—é)Jr%S:C—§q0~Grad[9]—6,60$020. (3.76)

Now, the existence of a scalar-valued free Helmholtz energy v := e — 61, defined per unit
reference mass, is postulated. An alternative representation of the local form of the entropy
inequality is then obtained as

- . . 1
D= —po (¢+0770) +35:C~ 5 qo- Gradt] — 60 So > 0 (3.77)

with D denoting the internal dissipation. For isothermal processes with § = 0 and gy = 0, the
entropy inequality reduces to

D:=18:C—poy—0pS>0. (3.78)
Assuming that the free energy 1 is a function of the right Cauchy-Green tensor C, a set of

ng scalar variables a; and a set of ng tensor-valued variables B;, i.e. ¢ = 9(C, a;, B;), its time
derivative is given by

L N N
z/;_w.cju;aaiaﬁ;a&.&. (3.79)

Inserting this derivative into Eq. 3.78 results in

_ oY S o oy .
[25 7o ac] . C — po 9, a; + Ej 7B, B+ 08| >0, (3.80)

where the second bracket term might be zero in particular situations. In order to satisfy the
entropy inequality for any arbitrary process, where aside from that C might be negative, the
standard argument of rational continuum mechanics is to require the first bracket term to be
zero. From this condition, the constraint
_ o

S=2 PO 870 (3.81)
for the construction of constitutive equations for the stresses is obtained. For the formulation
of a free energy function that is able to describe well the desired material behavior and leads
to theoretically proper constitutive equations, further guidance is provided by fundamental
mechanical principles of material modeling and by basic considerations on the treatment of
material symmetries.
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3.4 Confinements for the construction of constitutive equations

3.4 Confinements for the construction of constitutive equations

A material that postulates the existence of a scalar-valued Helmholtz free energy function 1
is denoted as hyperelastic material. Within the theory of finite hyperelasticity, a wide range
of physical phenomena can be described as for instance presented by TRUESDELL & NOLL
(1965/1992) or HOLZAPFEL (2000). In spite of the constraint in Eq.3.81, which simplifies the
determination of the stress tensor and holds for all hyperelastic materials, the development of
constitutive equations remains a challenging task. Further restrictions can be deduced from
fundamental principles of material modeling and from material symmetries. In the following,
only principles that are immediately relevant for the constitutive equations used in this work
are mentioned. More principles and details are amongst others given by TRUESDELL & NOLL
(1965/1992) or ALTENBACH (2012, pp.218-221).

Principle of physical consistency. Constitutive equations are not allowed to contradict the
balance equations and, in order to be also thermodynamically consistent, have to fulfill the
entropy inequality.

Principle of causality. Following the principle of cause and effect, motion and temperature
are usually chosen as independent variables in thermomechanical continua. Other state variables
like stresses, heat fluxes, energy and entropy can be identified from those primary variables and
are therefore denoted as dependent variables. In this work, isothermal conditions are presumed
and thus only motion remains as independent variable.

Principle of determinism. The actual values of the thermomechanical state variables at one
material point of the continuum are determined by the actual load and by the history of the
independent state variables at all material points, but do not depend on future values.

Principle of local action. The dependency of the state variables of one material point on
all material points can be concretized by the principle of local action, which states that long-
distance effects can be neglected and only material points in the direct neighborhood have
to be taken into account. In consequence, there is no need of including higher-order spatial
derivatives and it is thus sufficient to include the deformation gradient and, if thermal effects
are considered, the temperature as well as its gradient.

Principle of material frame indifference. The behavior of a material is required to be
independent on the observer and is therefore not allowed to be affected by rigid body rotations
applied to the actual configuration. With @ € SO(3) denoting an orthogonal tensor from the
special orthogonal group SO(3) of all rotations, i.e. Q7! = QT and det[Q] = 1, a rotated
position vector & is related to the position vector & = F X through 7 = Qx = QF X. For
the rotation of a second-order tensor A, the relation AT = QAQT can be shown if AT is
represented as the dyadic product of two rotated vectors.

Assuming that both observers viewing the actual position vector as  and =™ refer to the same
reference configuration, the identity X+ = X holds and the deformation gradient relating X+
to 1 can be identified as F* = QF # QF Q™. Thus, the deformation gradient is not a frame-
indifferent tensor and a formulation of constitutive relations based on a free energy function ) (F)
would involve further action in order to assure the frame indifference of the stress tensor. In
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3 Continuum mechanical foundations

contrast to F', the Cauchy-Green tensor with CT = FTTFt = FTQTQF = FTF = C proves
to be even entirely independent on the observer.

With reference to Fig. 3.4 it can be stated that the same holds for the tensor Cs. If the free
energy function is thus formulated as a function of C' or C,, material frame indifference is
automatically ensured. Since growth is not assumed to generate stresses, which means that the
intermediate configuration B; is per definition stress-free, the elastic part of the deformation
has to be considered as input variable. For this reason, the functional dependence ¥ = 9(Cy) is
presumed.

Figure 3.4: Application of a rigid body rotation to the actual configuration shows that neither F' nor
F, with their counterparts F* = QF and F;" = QF, are frame-indifferent tensors. The
deformation tensors C and C, however do not at all depend on the frame of reference.

Modeling of material symmetries in the framework of invariant formulation. Further
restrictions on the dependence of the free energy function v on the deformation tensor C,
are imposed by special symmetries of the material behavior, which are characterized by the
symmetry group G of the considered material. The symmetry group contains all rotations @ of
the reference configuration that do not affect the material response. If for example an isotropic
material behavior is postulated, not any rigid body rotation @ € SO(3) applied to the reference
configuration is allowed to have an effect on the constitutive response and thus the symmetry
group of such a material is G'° = SO(3).

In the framework of multiplicative growth, only the elastic part F, of the deformation is
assumed to generate stresses, which means that the rotation has to be applied to both stress-
free configurations I3 and B; in order to investigate its effect on the material response. This issue
is illustrated in Fig. 3.5, where the reference and the intermediate configuration are rotated by
the same orthogonal tensor @ such that the rotated position vectors are given by X* = QX
and X" = QXj. To identify the deformation gradient F'* and its elastic part F, the position
vector X in @ = F'X has to be replaced by alternative expressions involving X* and X;*. With
X =QTX*and X! =QX, = QF, X solved for X, the wanted tensors can be found from

x=FX =FQ'X"=F*X"* = F*=FQ"T, (3.82)
v=FX=FF,'Q"X{ =F.Q"X; =F;X; = F=F.Q" (3.83)
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3.4 Confinements for the construction of constitutive equations

Figure 3.5: Application of a rigid body rotation to the stress-free configurations leads to the deformation
gradients F* = FQT and F} = F,Q"T and thus to the deformation tensors C* = QCQ™
and C! = QC.Q™T. The material response must not be affected if Q € G. For isotropic
materials with G%¢ = SO(3), this is ensured if the constitutive equations are formulated in
terms of coordinate-invariant measures of C or C.

The associated deformation tensors are obtained as C* = F*TF* = QCQ™ and C! = QC.Q"
and are therefore given by conventional rotation of C' and C,. Consequently, measures of the
deformation tensors which are invariant with respect to all rotations @Q € G have to be chosen

in order to guarantee the material symmetries asked for by the symmetry group G, which means
to fulfill

P(Ce) =(QCQT) ¥V Qeg (3.84)

for energy functions formulated in terms of C,. For isotropic materials with G = SO(3),
only arguments which are completely independent on the coordinate system are thus accept-
able. According to the representation theorem for invariants, which is for example proved
by TRUESDELL & NOLL (1965/1992), isotropic materials can hence be described by a free
energy function ¢)(C.) = 1 (I1, I2, I3) formulated in terms of the principal invariants

I :==tr[C], I := L (I} — t[C2]) = tr[cof C4), I3 := det[C,] (3.85)
of the deformation tensor C,. These three invariants constitute an integrity basis of C, with
respect to the symmetry group G°, which means that they are sufficient to express any
further invariant of C, subjected to rotations Q € G**°, see e.g. BETTEN & HELISCH (1992).
Alternatively, the invariants

Jy = tr[Ce], Jo = tr[C?], Js := tr[C?] (3.86)

could be used, which are related to the previous ones by

Jy =14, Jo =1 — 215, Js=1I} -3 I, + 3 I3. (3.87)
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Considering as an example the invariants

Jf=ulC=QC.QT: 1=Q'Q:C.=Ji, (3.88)
Ji =tr[C? = QC.QTQC.QT : T =QC*QT : 1 =Q"'Q : C? = Js, (3.89)
Jr=tr[C"=QC"QT : T=Q"Q:C" = J,, (3.90)

it can be stated that they are indeed independent on each rotation of the stress-free configuration.
For the construction of constitutive equations for soft biological tissues, another type of symmetry
is of crucial importance, namely the one of a material with embedded fibers. If an isotropic
material is reinforced with fibers uniformly aligned in one specific direction, its stiffness in that
direction will increase. Since the behavior in the transverse plane of the preferred direction will
remain isotropic, such a material is said to behave transversely isotropically. The symmetry
group G4 = {Q € SO(3) | QA = + A} of a transversely isotropic material thus consists of all
rotations about a preferred direction, which is defined in the reference configuration by a unit
vector A with |A| = 1. Due to growth, the constitute equation has to be formulated based on
the intermediate configuration and therefore the preferred direction in this configuration, i.e.

kA
L FA

with |4 =1 (3.91)

has to be considered. However, only information on the orientation but not the sign of those
vectors is relevant for the constitutive equation. For this reason, a sign-independent, quadratic
form of the preferred direction is defined as

M;:= A ® A = (—A) ®(—A;) with tr[M;] = |Ai|2 =1 (3.92)

and referred to as structural tensor since it contains the relevant information on the material’s
structure. The structural tensors defined in the intermediate and in the reference configuration
are related through

 F;MF,  F,MF/
= =
[FLAJ? (FgM) : Fy

with M := A® A. (3.93)

The free energy function ¢ of a growing transversely isotropic material is now supposed to be
a function of C, and M;, which is claimed to be independent on a rotation @ € G% of the
intermediate configuration. With Af = QA; and M = QA;QQA; = QA RAQT = QM;Q”,
the requirement imposed by material symmetry gets

U(Ce, M) = P(QC.QT,QM;QT) vV Q egh, (3.94)

and, by comparison with Eq. 3.84 and the subsequent explanations, it can be stated that this
requirement is even met for all rotations @ € SO(3) if coordinate-invariant measures of Ce
and M, are used. To obtain an integrity basis for these two symmetric second-order tensors,
further invariants have to be included in addition to those given in Eq. 3.85 or Eq. 3.86, see for
example SPENCER & RIVLIN (1958) or TRUESDELL & NOLL (1965/1992). On the one hand,
three independent invariants of M are formally required. Practically, they are obsolete because
they are equal to 1 or 0 due to the property | A;j| = 1. On the other hand, the mixed invariants

Jy =tr[CeM),  Js=tr[C?M;),  Jg=tr[C.M?], J7 = tr[C2 M7 (3.95)
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of Ce and M; have to be added. Again due to |A;j| = 1, the identities Js = Jy and J; = J;5
hold, such that the Helmholtz energy for a transversely isotropic material can be formulated
in terms of ¢(Ce, M;) = (I1, I3, I3, J4, J5). Since the structural tensor M; is defined in the
intermediate configuration and thus not affected by a change of the observer, the principle of
material frame difference is still satisfied.

Based on the principles and considerations above, the functional form of the free energy
function v can be specified. In order to fulfill the principle of material frame indifference a priori,
it is formulated in terms of the elastic part C, of the Cauchy-Green tensor. Assuming that the
orthotropic behavior of arterial tissues can be idealized by the superposition of one isotropic
and several transversely isotropic contributions, which might be related to an isotropic ground
matrix and a number ns of embedded fiber families, the free energy function additionally has
to depend on a set of structural tensors Mi(a) with a € [1,...,ng]. If the interaction between
the fiber families is assumed to be negligible, no mixed invariants of their structural tensors
have to be included and the restrictions imposed by the material symmetries can be satisfied
by formulating ¢ as a function of the isotropic invariants I1, Is and I3 and the transversely
isotropic invariants Jzia) and Jéa) for each fiber family. Since the Helmholtz free energy 1 first
introduced in Eq. 3.77 is defined per unit reference mass, it is furthermore assumed to depend
on the density pg as proposed by HIMPEL, KUHL, et al. (2005). Finally, the free energy function
is thus supposed to have the structure

W = (po, Co, M) = P(po, I, In, I3, IV XY for  a€[l,... ng (3.96)

with the principal invariants I7, I2 and I3 given in Eq. 3.85 and the mixed invariants Jia) and

Jéa) given in Eq. 3.95.

3.5 Evaluation of the entropy inequality

Following the demands imposed by the material behavior of arterial tissues and the principles of
material modeling, the free Helmholtz energy v is assumed to be a function of the deformation

tensor Ce,, a set of ng structural tensors Mi(a) and the density pg relating the grown mass, which
equals the actual mass, to the reference volume. With

b = 3(po, Ce, M™) = (o, C, Fo, M), (3.97)

see Eq. 3.22 and Eq. 3.93, the Clausius-Duhem inequality from Eq.3.80 can be specified with
the balance of mass from Eq. 3.40 as

o . . (@) o
[S poac] C - [  Fy + ZaM@L' 80R0+050 (3.98)

which, as already stated, leads to the equation S = 2 g 91 /OC for the stresses. Since stresses
are assumed to result only from the elastic part of the deformation, a functional dependency
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on C, is rather desired than on C. This can be achieved by reformulating the derivative of 1)
with respect to C' according to

9y 9 9C. 9
aC ~ 9C. aC ~ oC.

(Fy"RET) = Flad’

oo (3.99)

where the elastic part of the deformation defined in Eq. 3.22 has been expressed as C, =
Fg_TCFg_1 = (Fg_T X Fg_T) : C with the help of the calculation rule mentioned in Eq. A.5 of
Appendix A. Defining the 274 Piola-Kirchhoff stress in the intermediate configuration as

o

Se:=2p
0o aC.

(3.100)

in analogy to Eq. 3.81, the pullback operation S = Fgfl.S’ng*T can be recognized from Eq. 3.99.
Moreover, it can be concluded, that a strain energy function ¢ = pg 1 defined per unit reference
volume can be used for the computation of the stresses, which is due to the isothermal conditions
(HUMPHREY, 2002, p.92). Then, the equations

oY 5 OV
hold true. From Eq. 3.98, the reduced dissipation inequality
n (M
Dred = E M@ — —0 > 102
d = Pan = Po 0 970 Ro—0poSo >0 (3.102)

is obtained. Using the symmetry of C. stated in Sec.3.1.2, which also implies symmetry of
0 /0C,, and the derivatives provided in Eq. A.21 and Eq. A.19, the derivative

ov _0p 9C. _ov O(FCF) . 90 L

OF,  9C. 0F, 0C. oF, ac. b (3.103)

can be derived in index notation. Inserting this in Eq. 3.102 and using the relation (CeSng_T) :
F, = (CeSng*T) : (LgFy) = (CeSe) : Lg, the inequality reads

@ 5 9V

red == (C S ,00 Z — PO aiRo — 9/)0 S() > 0. (3.104)

In order to replace the Helmholtz free energy function 1) defined per unit reference mass by the
strain energy function ¥ = pg ¢ defined per unit reference volume, the remaining derivatives
of ¢ are computed as follows. For d¢/0M (@), the expression

b _9(pw) 1 oY
oM@ — M@ o M@

opy.  OF, 1 9y Y o OF

: ——F, "
T OF, aM(a> 1) OM (@) po © OM (@)

(3.105)

is obtained, where Bﬁgl/aFg has been computed with pg = Jg pi from Eq.3.37 and 0.J,/0F, =
Jg Fg_T according to

oy oJ; !
O 1% 1 O 1 por_ lpo (3.106)
8Fg Pi 8Fg Pi Jg2 6Fg Pi Jg & 00
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3.5 Evaluation of the entropy inequality

Furthermore,
o (gt
i:M:—% (3.107)
dpo dpo 1%
holds and the mass source Ro = po tr[Lg] is given by Eq.3.43 for the assumption of pure mass
growth with a constant density p; = pg. Inserting all these terms in Eq.3.104, the final form of
the entropy inequality is

e B OF, oY
Dred = (CeSe) : Lg+ Y (1/’ F: azv.r(ga) - OM®©@
a=1

) : MY 4p tr[Lg] —6 po So > 0, (3.108)

which can be solved for the additional entropy source Sp.
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4 Finite element method

With the balance equations specified in the previous chapter, a set of equations is available
which in principle permits to compute the deformed state of a body charged by external
loads. The balance of mass defines the relation between the mass densities or volumes in the
reference and in the deformed state. From the balance of angular momentum, the precondition
of symmetric stress tensors can be derived and the balance of energy leads, together with the
entropy inequality, to a constraint for the constitutive equations which relate strains and stresses.
The balance of linear momentum, py & = pg b + Div[P] as formula, brings everything together
as it implicitly constitutes the connection between actual position x and stress. However,
this equation represents a complex system of nonlinear partial differential equations due to
the vectorial quantities, the twofold time derivative of @ and the expression Div[P], which
involves a twofold derivative with respect to & and nonlinearity in «. It has to be satisfied
at each material point with its particular boundary conditions. The solution of this complex
problem can in general not be achieved analytically. A standard numerical and thus approximate
method for the solution of systems of differential equations is the finite element method. It
subdivides the whole domain in individual subdomains, the elements, and thereby reduces the
continuous problem to a finite number of discrete problems. The finite element method evolved
simultaneously with the appearance of digital computers, which enabled the solution of high
numbers of discrete problems and whose increasing power makes rise the complexity of methods
and solved problems up to the present. In this chapter, the concepts of classical finite element
method relevant for the numerical investigations of this work are summarized. Within those
limits, only a small part of the whole powerful method, which has numerous enhancements, is
covered. For information beyond that, extensive treatises on finite element method are available,
for example by ZIENKIEWICZ & TAYLOR (2000a and 2000b) and WRIGGERS (2008).

4.1 Basic principles of finite element method

Three basic steps are required to solve the balance of linear momentum by means of the finite
element method. First, the original equation is replaced by a weak formulation, which transforms
the vectorial into a scalar equation. Since this equation is still nonlinear in the solution variable
and can in general not be solved analytically, numerical treatment involving linearization is
pursued. In a final step, the linearized equation, which has to hold at each material point of the
body, is discretized in order to reduce the infinite number of unknowns in the continuous problem
to a finite number of unknowns at predefined nodal points, between which an interpolation is
presumed. In this work, the standard displacement formulation is considered, where the nodal
displacements are introduced as only unknowns. If not noted otherwise, the three-dimensional
case with three degrees of freedom per node is described. Common vectors as X and u then
have three components according to the three spatial dimensions. This will no longer apply in
Sec. 4.2, where special finite elements for axisymmetric problems are discussed.
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4 Finite element method

4.1.1 Weak form of the balance of linear momentum

As stated in Eq. 3.49, the local form of the balance of linear momentum requires that the set of

differential equations
Div[P] + po (b — &) = 0 (4.1)

with P = F'S and S = 20¢/0C is fulfilled at each material point of the considered body.
Together with the boundary conditions

u=u on 0B, and T=PN=T on 0B, (4.2)

for the displacements u and the stress vectors T', prescribed on the respective surface areas
0B, and 0B, of the body, this problem is referred to as strong form of the balance of linear
momentum. In general, no closed analytical solution for the displacements wu is available, such
that approximating numerical methods like the finite element method have to be used. The finite
element method rests upon a weak formulation of the above problem, which seeks to satisfy
the momentum balance on average over the whole domain. To this end, Eq. 4.1 is multiplied
by a weighting or test function du = {du|du = 0 on 9B, } and integrated over the entire body,
which leads to the scalar-valued equation

/ (Div[P] + po (b — &) - budV =0, (4.3)
B

The test function du is arbitrary. For this reason, it can also be interpreted as the difference
between a displacement field w characterizing a virtual configuration in the direct neighborhood
of the current configuration and the real displacement field u, i.e. du = @ — u (cf. HOLZAPFEL,
2000, pp. 372f.). Denoting thus an arbitrary and infinitesimal, virtual change of u, du is then
also referred to as variation of w or as virtual displacement field, which is independent on the
real displacement w. With Div[PTéu] = Div[P] - du + P : Grad[du] and use of the divergence

theorem [ Div[PTéu]dV = [ PTéu- N dA, the condition from Eq.4.3 can be written as
B 0B

/ T dudA— /P : Grad[du|dV + /ﬁo (b—a&) - dudV =0, (4.4)
0Bos B B

where the boundary condition T' = T on 9B, has been taken into account. The second term
can be reformulated by replacing Grad[du]| by 6 F', which are equivalent due to the property
0(Grad[u]) = Grad[du], that is 0F = §(Grad[u] + I) = Grad[du]. Since the unit tensor does
not depend on a virtual change of u, it holds 6 = 0. The expression P : 6F = FS : 0 F can
then be written as S : FT6F, which is equal to S : sym[FT6F] = S : 1o (FY6F + 6FTF) due
to the symmetry of S. The expression in brackets can be identified as §C = §(FTF), such that
the alternative representation

G:=G"_-G>**=0  with (4.5a)

Gt = /S 1 36CdV and Gt = / T -dudA + /po (b—&) - dudV (4.5b)
B 0Bs B

is obtained for the weak form of the balance of linear momentum. Therein, GI"* and G** denote
the internal and external virtual work done as a consequence of the virtual displacement du.
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4.1 Basic principles of finite element method

Principle of stationary potential energy. In conservative mechanical systems, the result
in Eq. 4.5 can alternatively be obtained from the principle of stationary potential energy. For
such systems, the existence of a potential II = Ileyt + 1Lt can be presumed, from which the
internal and external mechanical power can be derived as

aHint o .0
5 and Poxt = % P. (4.6)

This potential II is equivalent to the total potential energy of the system and is the sum of the
total strain energy

_ aHext 3.62

Pint =

= [w(©)av (47)
B
and the potential energy of the external loading
Hext:—/pob-udV—/T-udA (4.8)
B 0Bs

in terms of deformation-independent body forces b per reference mass and stress vectors T'
acting on the surface dBs,. The unknown deformed configuration is an equilibrium state, at
which the total potential energy of the system has to be stationary. This state can therefore be
found by requiring the first variation of II with respect to w to vanish, i.e.

ST = 0. (4.9)

A stable equilibrium is characterized by a miminum of the potential energy, which is given if
§2I1 > 0. The variations of the strain energy Ili; and the external potential energy Iley are
computed as
int 8¢ ext — 2
oIt = 95 :0CdV and I = — [ pob-oudV — [ T-dudA, (4.10)
B B OB

see HOLZAPFEL (2000, pp.386-389) for details. With 9¢/0C = 14 S from Eq.3.101, the
stationarity of the potential energy then leads to

/;S:de—/pob-&udV—/T-éudA:o, (4.11)
B B 0B

which has also been obtained in Eq.4.5 as weak form of the balance of linear momentum
for & = 0. However, the principle of stationary potential energy is restricted to conservative
systems. In many problems, for example if energy is dissipated or if external loads depend on
the deformation, the mechanical power can not be derived from a potential.

Because of the nonlinearity of the Cauchy-Green tensor, Eq. 4.5 (or its equivalent in Eq.4.11)
is intrinsically nonlinear in the displacements u. Besides this geometrical nonlinearity, an
additional nonlinearity arises from the stress-deformation relation, which needs to be nonlinear
for being able to capture the behavior of soft biological tissues. Those nonlinearities prevent
an analytical solution and ask for a linearization of Eq. 4.5 in order to solve it numerically, for
example by applying the Newton-Raphson method. An overview of algorithms for the solution
of nonlinear equations is given by WRIGGERS (2008, pp. 152-171).
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4 Finite element method

4.1.2 Linearization

The Newton-Raphson method requires a first order Taylor series expansion of Eq.4.5 at a state
with known solution for w in order to progress iteratively towards the new equilibrium state by
adding incremental updates Aw until G = 0 is fulfilled with sufficient accuracy. The linearized
weak form of the balance of linear momentum is thus given by

LinG = G + & Au =0 with da Au =: AG, (4.12)
du du

where AG is the increment of virtual work done for an increment Aw of the displacement. If
the volume forces pg b and stress vectors T' at the boundary are supposed to be independent of
the displacements, hence assuming conservative loads, and if inertia terms are neglected, i.e.
& = 0, only the internal virtual work depends on u and AG can be computed using the product
rule as

AG = AG™ :/AS : ;5Cdv+/s : 2 ASC AV. (4.13)
B B

The increments AS and AJC' are thereby defined in analogy to AG in Eq.4.12, which means
that the symbol A denotes differentiation with respect to w and multiplication with Aw. For
the increment of the 2°d Piola-Kirchhoff stress, the alternative expression

ds ds

_ 4o _ 1. : _ o 4o '
AS—dC.AC sC:AC with C 2dC (4.14)
can be inserted, where AC' is given by
AC = A(FTF) = AFTF + FTAF (4.15)

and C is referred to as tangent modulus. For strain energy functions that are at least cubic in C,
a nonlinear stress-deformation relation is obtained, see Eq. 3.101, and C depends inherently
on w. In contrast to 0 F, §C depends on u and its increment has to be computed according to

6C =6(FTF)=6FTF + FT6F (4.16)
ASC = A(OF'F + F'6F) = 6FTAF + AFTSF. (4.17)

With Eq.4.5 and Eq. 4.13-4.14 inserted in Eq. 4.12; the linearized form LinG = G + AG = 0 of
G = G — Gt = 0 finally is

LinG = /S : ;&chGext+/;5c :C: ;ACdV+/S 13 ASCAV =0.  (4.18)
B B B

For the solution of this equation with respect to the increments Awu of the displacements, a

finite element discretization is performed in order to represent the infinite number of material

points with unknown displacements by a reduced number of discrete points between which the
displacements are interpolated.
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4.1 Basic principles of finite element method

4.1.3 Discretization

The main idea of the finite element method is to subdivide the body under consideration into
a mesh consisting of a finite number of elements that are defined by nodal points. Between
those nodal points at which the primary variables — here the displacements — are computed,
interpolating ansatz functions are used for the approximation of the real distributions. As
illustrated in Fig. 4.2 for the two-dimensional case, the geometry of the reference configuration B
of the body is hence replaced by an approximation B composed of n¢e non-overlapping finite

elements B¢ with
Nele

B~B"=| B (4.19)
e=1

The superscript h, denoting approximated quantities, insinuates that the goodness of these
approximations depends on the characteristic length of the elements, which is likewise denoted
as h. An improvement of the approximations can be obtained by hA-refinement, i.e. a refinement
of the mesh, or by p-refinement, increasing the polynomial degree p of the ansatz functions.
Each of the elements is defined by a number n of nodes, which depends on the number of spatial
dimensions and the polynomial order of the ansatz functions used for the interpolation. Based
on the displacements d; = &7 — X at the nodes, the displacements within each finite element
are then approximated as

n
uru =Y Nrdi, (4.20)
=1

where N; denotes an ansatz function associated to node I, evaluated at the position within the
element at which w has to be computed. In order to obtain the known nodal displacement d;
at node I, the ansatz functions are claimed to fulfill

1 atnodel
Np={ ARece . (4.21)
0 at all other nodes

In Fig. 4.1, quadratic ansatz functions for a three-noded 1D line element and the interpolation
of the displacement vector u are exemplarily illustrated. The geometry of the element and the
ansatz functions are defined in a parameter space By with coordinates & = (f n C)T. This
reference element is then mapped to the reference configuration B¢ for each single element.

N3
Ny | Ny

) / \

I I I

| | 1

I I
By
1= 3 XO 2
£=-1 0

Figure 4.1: Tllustration of a one-dimensional finite element with quadratic ansatz functions and the
approximation of displacement u = & — X by a weighted sum of the nodal displacements d;.
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4 Finite element method

o position Xp,

X or x of a

material point

Figure 4.2: Based on a reference element defined in parameter space By, the reference geometry B
of the body is discretized into finite elements. An approximation S" of the deformed
geometry S is then found by computing the displacements at the nodes and interpolating
in between. Using the isoparametric concept, displacements and geometry are interpolated
by the same ansatz functions.

Making use of the isoparametric concept, the geometry within a finite element is approximated
by the same ansatz functions as the displacements. The ansatz functions N are therefore also
referred to as shape functions and the approximations for the position vectors X in the reference
and x in the actual configuration are

X~X"=) Ni(§X; and xma"=) Nz (4.22)
I=1 =1

The relations between the coordinates X in the reference element, defined in parameter
space By, and the coordinates X and « in the reference and actual configurations B and S
of the body are depicted in Fig.4.2. In analogy to the deformation gradient, see Eq. 3.5, the
Jacobians J and j are defined by

09X . O

T= 2

(4.23)

where £ = (5 n )T are the coordinates in the parameter space By. The gradient of the shape
functions N; with respect to the coordinates X can then be expressed as

ONi _ON; 96 _ONi .y, _xONi

CradINIl = 5% = B¢ ax ~ o¢ o€

(4.24)

Due to the fact that the nodal displacements are fixed for each position X within an element,
the index notation of Grad|u] yields the expression

ONy

e (4.25)

n n
Uj i A Z (Ny d]j),i = ZNLi d[j with Np;=
I=1 I=1

where only the shape functions have to be differentiated with respect to X.
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4.1 Basic principles of finite element method

In order to discretize Eq.4.18, the virtual and incremental displacements du and Awu are
discretized in the same manner as the real displacements, i.e.

Sumdu" =Y Nyiéd; and  AumAut =) NiAd. (4.26)
I=1 I=1

The components of §C = (Grad[éu])T F + F* Grad[éu] can then be expressed in index notation
as

n
% 6Ci = % (5uj,i ij + Fji 5uj7k) ~ Z % (N[,i ij + Fji Nl,k) 5d]j, (4.27)
I=1

where the components ddy; of the virtual nodal displacements can be factored out. At this
point, it is helpful to introduce the Voigt notation, in which symmetric tensors of second order
are represented as vectors with six components. This permits a matrix notation of equations
involving tensors of higher order as for example the constitutive equation AS = C : % AC, for
which the Voigt notation is deduced in Appendix A.3. If the virtual deformation tensor 6C is

written in Voigt notation according to

5Cu T
0Co
| 6C3s3
5C= | icn | (4.28)
20CH93

126C"3

where the underline is used to differentiate between standard and Voigt representation, Eq. 4.27
can be expressed by

n
36C~> B idy (4.29)
=1
with
[ Fi1 Npa F51 Npq F31 Npq i
Fia Ny Foy Nppo F35 Ny o
B, = Fi3Nyg3 Fo3 Ny 3 F33 Ny 3 (4.30)

= FiiuNpo+ FiaNrg For Nrg+ Foo Npy F31 Npo+ F39 Npg
FioNy3s+ FiaNra FoaNrz+ Fos Nio F3a Nps+ Fz3 Npo
| F11 Nrg+ Fig Niy Foy Nyg+ Fog Np1 F31 Npg+ F33 Npg ]

denoting the B-matrix associated to node I. In an analogous manner, the expression

n
JAC~> B;Ad; (4.31)
I=1
can be found for the increments of C, whose Voigt notation is conform to Eq.4.28. Assembling

the virtual and incremental displacements of all nodes belonging to one element into vectors 6d°®
and Ad¢ and the B-matrices into one elemental B-matrix B¢ according to

od,y Ad,
dds Ady

sdé=| |, Ad°=| . and B°=[B, B, ... B,], (4.32)
éd, Ad,,
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4 Finite element method

the sum can be omitted and

36C~> B;éd;=B°6d®  and AC ~ Y B;Ad; = B° Ad° (4.33)
I=1 I=1

N[ —

are obtained. The same can be done for the virtual and incremental displacements in Eq. 4.26,
if the shape functions are gathered in an element shape function matrix IN® given by

Nr 0 0
N°‘=[N, N, ... N, with  N;,={0 N; 0]. (4.34)
0 0 N;
This leads to the expressions
n n
Sum > Npod;=N°6d° and  Aum) NyAd;=N°Ad (4.35)

I=1 I=1

in matrix notation. In each of the discretized quantities in Eq. 4.33 and Eq. 4.35, the dependence
on the position of the material point is realized solely by the shape functions and their derivatives,
which are both evaluated at the respective position within the element. The nodal displacements
are discrete values, which are unknown but constant for all evaluations at different positions
within the element.

In the following, the discretization of the individual summands of Eq.4.18 is carried out. The
integral over the whole domain B is approximated by a sum of integrals over single elements B¢,
such that only the parts of one element are considered in the first instance. Inserting Eq. 4.33,
the internal virtual work G done in one element is replaced with

Gemt — / S:lscdv ~ / S-B¢§d°dV = 5d°" / BeT'sdv, (4.36)
Be Be Be

where the Voigt notation of the 2" Piola-Kirchhoff stress tensor is given by
T
S=[S11 Sxn S Si2 S Siz] . (4.37)

Since the virtual displacement vector does not depend on the position within the element, it
can be moved outside the integral. In the course of the linearization, inertia terms have been
neglected. Thus, the elemental fraction G¢®' of the external virtual work, see Eq.4.5b, is
discretized with Eq. 4.35 as

GOt = /T-éudA—i—/pob‘éudV

oBe Be
~ /T-NeédedA—{—/pob'Ne(SdedV (4.38)
oBe Be
= 0d°T / N'T dA + 6d°T / N pobdV.
oBe Be
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4.1 Basic principles of finite element method

For the next term in Eq. 4.18, the discretizations in Eq. 4.33 lead to the expression

/;50 :C: gACde/(Be 6d¢) - (C B Ad°) dV:édeT/BeTCBe dV Ad¢  (4.39)
Be Be Be

on the element level. The last term of Eq.4.18 can not directly be evaluated in matrix notation.
Inserting 6 F' = Grad[du] and AF = Grad[Awu]| in Eq.4.17 and using Eq. 4.26 with Eq. 4.25, the
expression

n n

% A(SCU = % (5uk’z Au;w- + Aukﬂ- 5k,j) ~ Z Z (5d]k NI,i N]J' Ad]k (4.40)
I=1J=1

is obtained in index notation after some manipulations. This leads to

/ S:3ACAV =Y N ddp / N1 Ny;SijdV Adyy, = 6d°" / GedV Ad°,  (4.41)
Be 121 le Be Be

where the element displacement vectors and a matrix

G, G, ... Gy,
|G Ga . Gy, . Grg 00
. . . . 0 0 GIJ
in Qn2 cee an
and with the individual components
Grj = Np;Ny;Sij (4.43)

can be used to substitute the sigma signs.

Summarizing all terms from Eq. 4.36, Eq.4.38, Eq.4.39 and Eq. 4.41 according to Eq. 4.18, the
linearized virtual work done in one element can be abbreviated by

Lin G¢ ~ §d°T r° + 6d°T K° Ad° (4.44)
with the element residual vector
ré = / BtSdvV — / NITdA - / NTpbdv (4.45)
Be oBe. Be

and the element stiffness matrix

KE :Ke’mat +Ke,geo — /BeTCBe dv + /GedV, (4.46)
Be Be

which is composed by a material and a geometric part. For the sum of all element contributions,

the requirement
Nele

LinG =) LinG®=0 (4.47)

e=1
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4 Finite element method

is necessary to satisfy Eq. 4.18. However, the original aim defined in Eq. 4.5a was to fulfill G = 0,

which is equivalent to
Nele

G=> 6dTre =0 (4.48)
e=1

Gathering all the nodal displacements into global vectors

Nele Nele
sd=|Jod® and Ad=[]Ad (4.49)
e=1 e=1

and assembling the element residual vectors and stiffness matrices into global counterparts

Tele

Nele
r=Ar ad K=AK" (4.50)
e=1

e=1

Eq. 4.47 can be reformulated in terms of the global equation dd' (r + K Ad) = 0. Since the
virtual nodal displacements dd are arbitrary, this leads to the global system of linearized
equations

KAd=-r (4.51)

for the increments of the nodal displacements Ad and to the condition » = 0 coming from
Eq.4.48. The global vector d of the nodal displacements has to be updated iteratively by the
increments Ad until » = 0 is fulfilled with sufficient accuracy.

The integrals which have to be evaluated to obtain the element residual vectors and stiffness
matrices given in Eq.4.45 and Eq.4.46 can in general not be computed analytically and are
therefore replaced by weighted sums over a finite number l;,; of integration points. Those points
are defined in the parameter space By, such that the integral of a quantity (e) over the reference
configuration B¢ of the element is given by

ling
/ (o)dV = / (o) det[7] Vo = Y (o), e (] (4.52)

Be BO l:].

Therein, w; denotes the weighting factor associated to integration point [ and det[J] has to be
included due to the volume difference between the configurations By and B¢, see Fig. 4.2 and
Eq. 3.7, which holds analogously here. During summation, det[J] and the quantity (e) itself have
to be evaluated at the particular integration point /. The numerical integration scheme actually
applied in this work is the Gaufs point integration. Weighting factors and coordinates of the
Gauf points for different values of l;; as well as further information on numerical integration
are for instance given by ZIENKIEWICZ & TAYLOR (2000a, pp. 217 ff.)

4.2 Finite elements for rotationally symmetric problems

For special boundary value problems, a fully three-dimensional discretization as introduced above
is not necessary. If geometry, material behavior and external loads are subject to symmetries,
the same restrictions are imposed on the unknown displacements and stresses. In order to avoid
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4.2 Finite elements for rotationally symmetric problems

redundancies and thus computing effort in such symmetric problems, it is thus reasonable to use
finite elements with a reduced number of degrees of freedom. For basic investigations of blood
vessels or related parameter studies, an idealized cylindrical geometry as depicted in Fig. 4.3
might be taken into account. If the results are expected to be independent on the position ¢
along the circumference, a representative one radian sector can be considered instead of the
whole cylinder. In spite of the three-dimensionality of such a sector, an a priori reduction of the
general finite element formulation to two dimensions is possible due to the independence of the
displacements on the circumferential coordinate.

A T3

C 1 3

dp = 1rad

N ™

) t_/v
T2 T
T 2]

Figure 4.3: With a special finite element formulation, the simulation of a three-dimensional, rotationally
symmetric boundary value problem can be reduced to two spatial dimensions without loss
of information.

Supposed that the resulting stress and strain fields are even homogeneous along the axial
direction, a further reduction to only one dimension is realizable. Assuming quadratic Lagrangian
shape functions for the interpolation of the nodal displacements and other field quantities, such
an element has only three degrees of freedom, compared to 9 -2 = 18 in the two-dimensional
or 27 - 3 = 81 in the three-dimensional element. Especially for applications where the same
boundary value problem has to be evaluated many times, for example in the context of parameter
optimization, the advantages achieved by such a reduction of redundant unknowns is essential.

In the following sections, a two- and a one-dimensional finite element for rotationally symmetric
problems are developed based on the general three-dimensional case described in Sec.4.1.3. The
two-dimensional element is in line with the implementation of the axisymmetric element in
the finite element software FEAP by TAYLOR (2008). Since the boundary value problem of an
idealized artery, which is considered in Sec. 7.5 for the computationally intensive, optimization-
based comparison of different growth models, allows a reduction to exclusively the radial
direction, a suitable axisymmetric 1D element for pressurized tubular structures is proposed,
which still enables the application of axial strains.

So far, neither shape functions nor the application of loads have been discussed in detail. These
subjects will be covered using the example of the one-dimensional element, including hints on
generalization to the two- and three-dimensional case.

4.2.1 Two-dimensional axisymmetric element

Instead of using Cartesian coordinates, a description in cylindrical coordinates is advantageous
for rotationally symmetric structures. In this context, the coordinates X = [Xl X5 Xg]T
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are meant to refer to the radial, axial and circumferential direction, i.e.

X1 r
X=X =|2]|. (4.53)
X3 @

In equations, the notation with numbers is however maintained in order to be consistent with
the previous notation. Since an independence on the circumferential coordinate ¢ is supposed
to hold true, the three-dimensional geometry can be replaced by a one-radian sector, which is
represented by a two-dimensional shape located in the r-z-plane, see Fig. 4.3. For the radial and
axial directions, the deformation gradient is given by the 2D equivalent of Eq. 3.6 with u being
now a vector with the components u; = u, and us = u,. The deformation in circumferential
direction is dictated by the radial displacement. If the radius at a material point increases
from X; to X1 + u1, the circumference is forced to increase from 27 X1dg to 27w (X + uy) de.
Therefore, the component Fj3 of the deformation gradient is given by Fz3 =14 u3/X; and the
deformation gradient for the two-dimensional axisymmetric formulation reads

14w Ul 2 0
F = Uu2,1 1+ U292 0 . (454)
0 0 1+ *ul/Xl

Omitting the term marked by an asterisk, a plane strain formulation would be obtained, where
no deformation perpendicular to the considered plane is allowed. The non-zero components of
the virtual Cauchy-Green tensor and the 2" Piola-Kirchhoff stress tensor are given in Voigt
notation by

% 0C11 S11
=0C. S.

1 — | 29V22 _ 22

50C T 50 and S a3 (4.55)
(5012 512

To arrive at a discretization of the virtual deformations in analogy to Eq.4.29, the part 120Cs53
has to be considered separately since it is not covered by the general equations applying here
only for 14C;; with i,5 € {1,2}. Evaluating Eq.4.16 for i = j = 3 and the deformation
gradient given in Eq.4.54 yields

n

duy Ny
1
50033 = F330F33 = I —%E F33 —4d 4.56
2 33 33 33 33 )(—1 i 33 Xl 11, ( )

where the approximation of the virtual displacement duq follows Eq.4.26. For the explanation
of 0F33 = 6(1 + u1/X1) = duy /Xy it might be remarked again that the variation stands for
the difference between a configuration (1 + 41/X7) in the direct neighborhood of Fs3 and Fs3
itself, thus 6 F33 = (1 4+ u1/X1) — (1 +u1/X1) = du1/X1. Reducing the B-matrix from Eq. 4.30
appropriately and complementing the third row for the special case of axisymmetry, the nodal
B-matrix follows as

F11 N],l F21 Nl,l
. F12 NLQ F22 NI,Q
El - *F33 N[/Xl 0 (457)

Fi1Npo+ Fia Nr1 Foy Npg+ Fao Ny
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4.2 Finite elements for rotationally symmetric problems

Besides these adaptations, all further equations except for the matrix G; can be taken from
Sec.4.1.3 after having been reduced to the two-dimensional case where required. For the
discretization of the last term in Eq. 4.18, leading to the geometrical part of the stiffness matrix,
a separate inspection is again necessary for the component 1 AdCs3. According to Eq.4.17
and Eq. 4.54, the expression

Aul 5u1 - N[ NJ
LA = AF330F33 = — — =~ — A 4.
5 A0C53 33 0F33 X, X IE 1 J§ 15d11 dj1 (4.58)

is obtained with Eq.4.26, whereas Eq. 4.40 only holds for components with 4, j € {1,2}. This
leads to the discretization

/ S:1ACAV ~ 6d" / G°dV Ad°, (4.59)

where the submatrices in matrix G¢, see Eq.4.42, are given by

_[Gry+*Gry 0 . 5 Nt Ny
Gy = [ 0 G]J] with Gy = X X S33 (4.60)

and with Gj; as defined in Eq.4.43. Here again and also in Eq.4.57, leaving out the terms
marked by the asterisk would lead to the inherent plane strain formulation.

In order to reflect the three-dimensionality of the discretized structure, the infinitesimal volume
elements computed at each Gaufs point within the scope of numerical integration have to
be multiplied with the thickness in circumferential direction, which is defined by the arc
length X; dp = X;. The integral over an axisymmetric element B¢ is thus computed by

mt

/ )dV ~ Z |, wi Xu det[J]| . (4.61)

Be

where X7; denotes the Xj-coordinate of Gaufs point [ in the reference configuration.

4.2.2 One-dimensional axisymmetric element

In special cases, the two-dimensional axisymmetric element can be replaced by a one-dimensional
one which has only one degree of freedom per node, namely the displacement w; in radial
direction X7 = r. Just for the record, a possibility of how to construct shape functions is at first
exemplified on the basis of this element. Then, the deformation gradient and the matrices B;
and G ; will be derived. Finally, the application of non-conservative surface loads is discussed.

Shape functions. In Fig.4.4, the illustration of a one-dimensional finite element and its
shape functions is given for a discretization with three and four nodes. At each of the n nodes,

a constraint for each shape function is defined by Eq.4.21. The shape function can thus be
assumed to be a polynomial of degree (n — 1) with n unknown coefficients a;, i.e.

n—1
Ni = Zai ¢ (4.62)
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Bo
I=1 3 2
a) £=-1 0 1 b)

Figure 4.4: Illustration of node positions and shape functions for a one-dimensional finite element with
a) quadratic or b) cubic interpolation of the nodal values.

For the 3-noded element, the quadratic shape functions

N1:§(5—1), J\@:%

5 (E+1), N3 =1-—¢2 (4.63)

with their derivatives
1 1
Nig=&—5,  Npg=&+5,  Nyg=-2¢ (4.64)

can be determined from those conditions. If a cubic interpolation is desired, four nodes have to
be included and the shape functions and their derivatives in the parameter space are

1 1

Ni= 2 (-968 4967 +6-1), Nig= 16 (=278 +18¢+1), (4.65a)
N2=1i6(+9g3+952—g—1), N2,§:%6(+27£2+185—1)7 (4.65D)
Ny= o (<38 -8 436+1),  Nog=oo (98 -26+3), (4.65¢)
N4=%( 369 -2 -3¢+1), N4,5=1%(+9£2—2£—3)~ (4.65d)

For the one-dimensional element, the derivative of a shape function with respect to the coordi-
nate X, as defined in Eq. 4.24 for the three-dimensional case, is then simply given by

ON;r 1 0X

— ==-N with J=—

ax — J 't €
Shape functions for two- and three-dimensional elements can be obtained as products of the
polynomials listed above in two and three coordinates, respectively. This type of shape functions
is referred to as Lagrangian polynomials. Apart from that, other types of multidimensional
shape functions with a reduced number of degrees of freedom or other advantages are known. A
useful reference in this context has been published by ZIENKIEWICZ & TAYLOR (2000a, ch. 8).

(4.66)

Adaptations for axisymmetry. In the one-dimensional finite element for rotationally sym-
metric geometries, only the radial displacement wu; is assumed to be unknown and any depen-
dencies on the circumferential and axial coordinates X3 and X5 are excluded. The general
equations are therefore only valid for the first spatial direction and the deformation gradient
can be simplified starting from Eq.4.54 to

14w 0 0
F = 0 1+ foeo 0 , (4.67)
0 0 1+ *ul/Xl
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4.2 Finite elements for rotationally symmetric problems

where the asterisk again marks terms which occur for axisymmetry, but not for the related
case of plane strain in Xs-direction. The variable €5 denotes a prescribed axial strain acting
uniformly at each radial position, which is applied as specified by the load factor fs. With no
shear components remaining, the relevant deformations and stresses in Voigt notation are

$6C1 S11
%5Q = %5022 and § = 822 . (468)
56C33 S33

Evaluation of Eq.4.16 for the deformation gradient defined in Eq.4.67 and insertion of the
approximation for duy, see Eq.4.26, leads to

- N
%(5022 = FQQ (SFQQ =0 and %(5033 = F33 5F33 ~ E F33 fi (5d11. (4.69)
I=1

The nodal B-matrix relating the virtual deformations to the nodal displacements as provided
by Eq.4.29 then has to read
Fi1 Npy
B; = 0 . (4.70)
“F33 Nr/ X1
Besides that, only the geometrical part of the stiffness matrix is affected by the incorporation
of axisymmetry. According to Eq.4.17 and Eq. 4.67, the equations

n

- N; N
%A(SCQQ = AFQQ 5F22 =0 and %A5033 = AF33 5F33 ~ Z Z (Sd[l fi ?j Ad]l (4.71)
I=1J=1

are now valid, such that the submatrices G ; of the matrix G defined in Eq.4.42 have to be
Nr Ny

X, X, 038
in order to fulfill the outcome of Eq.4.41. With respect to the Gauls point integration, Eq. 4.61

identically holds for the one-dimensional axisymmetric element because the height of the
undeformed volume element is equal to one.

Gy = [Grr+*G1J] with  Gry = (4.72)

Application of surface loads in radial direction. During linearization of the weak form of
balance of momentum, conservative loads which do not depend on the actual displacements have
been assumed in Sec.4.1.2. As a consequence, the external virtual work is independent of the
actual displacements w”*! and no further terms than specified in Eq.4.46 occur in the element
stiffness matrix. However, the application of a hydrostatic internal pressure, keeping its value
for different states of deformation or growth of the simulated artery, violates this assumption.
In order to maintain a constant pressure in an expanding and axially extending tube, the force
applied to the associated node has to increase depending on the radial displacement of that node
as well as on the axial strain, see Fig. 4.5, and hence indeed depends on u"*!. A hydrostatic
pressure can though be applied within the given framework if the converged displacement u” of
the previous load step is used to approximate the actual cross section in step (n + 1). In the
context of growth, the load will anyway be held constant until a growth equilibrium state with
unchanging shape is attained. The change of a cross section from one to the following step is
thus vanishing over time and the exactness of the applied pressure increases.
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4 Finite element method

_fext Pext
2

fint Pint 1

dp=1

AN
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];1+f282

Figure 4.5: The one-dimensional axisymmetric element represents a one-radian radial cutout of a
cylinder. In the actual configuration, the areas of front and back surface depend on the
radial displacement of nodes 1 and 2, which determine the circumferential length, and on
the actual height of the segment dictated by the axial strain.

For a n-noded 1D finite element, the part p® = faBg NTT dA in the element residual vector
from Eq. 4.45 consists of n components representing the external forces acting on the nodes in
radial direction. These forces can directly be computed from the prescribed pressures fint pint at
node 1 and fext Pext at node 2 multiplied with the correlated surface areas; numerical integration
is not required since each surface consists of a single node I at which Ny = 1. Approximating
the actual radii at the internal and external surface of the element by

rine = 2TH(1) & X (1) + (1) and 7y = 27TH(2) & X1(2) + Ul (2), (4.73)

where the numbers in brackets denote the correspondent nodes, the element vector of external
nodal forces is obtained as

fint Dint Tint (1 + foe2)

e fext DPext Text (1 + f2 52)
p° = 0 . (4.74)

As suggested by the dots, the contributions of all possibly added further nodes located inside
the element are zero. If a pressurized cylindrical geometry is discretized into more than one
element, the variables pyy and pext have to be set zero at all unloaded, internal nodes. This
means that the attributes of the elements located at the inner and outer surfaces differ from
those of the elements in between. A more general way of applying pressure surface loads is to
define a separate layer of surface elements to compute the nodal forces and additional terms of
the stiffness matrix, see WRIGGERS (2008, pp. 142 ff.) or ZIENKIEWICZ, TAYLOR & FOX (2014,
pp. 173-175) and the references cited therein, for instance the application to the axisymmetric
case by SIMO, TAYLOR & WRIGGERS (1991). For 3D and 2D problems; including axisymmetry,
this method is part of the finite element program FEAP (TAYLOR, 2008) used in this work. A
detailed explanation is therefore skipped with reference to the literature mentioned above.
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5 Framework for anisotropic stress-driven
growth

The observations on arterial residual stresses and adaptation in arteries summarized in Chapter 2
lead to the conclusion that growth and remodeling should be considered as anisotropic, multiaxial
processes which are likely to be substantially regulated by mechanical stimuli. However, there is
still no final agreement on the question if strain or stress is the decisive mechanical quantity.
It seems to be more common by now to assume that growth and remodeling in soft biological
tissues are stress-driven (COMELLAS, CARRIERO, et al., 2018). This hypothesis is supported by
experimental findings as those mentioned in Sec. 2.3 or recapitulated by CYRON & HUMPHREY
(2017), which indicate that adaptation processes often are governed by the aim of restoring
homeostatic stress, not strain levels. Several researchers came to the same estimation when they
compared the outcome of their models for strain- and stress-driven adaptation. For example,
TABER & HUMPHREY (2001) concluded by comparison with experimental data that strain,
which is a kinematically dictated quantity, provides less flexibility for the growing tissue than
stress. Unlike strain, stress is not restricted to vary monotonically across the wall and shows
higher local variation. A stress-driven growth mechanism can thus be supposed to be more
precise and sensitive than its strain-driven equivalent. Similarly, but regarding the mechanical
stimulus for fiber remodeling, KUHL & HOLZAPFEL (2007) are of the opinion that stress should
be preferred to strain since it results in a larger spectrum of fiber orientation angles due to the
nonlinear stress-strain relation. Motivated by these considerations, it seems to be appropriate
to choose stress as a driving force for growth and remodeling processes.

In this chapter, a generalized framework for anisotropic, stress-driven growth will be presented.
After consideration of basic forms of growth, a generalized model for various forms of growth
related to a set of three preferred directions is introduced and explained in detail with regard to
its algorithmic treatment. In order to demonstrate how different hypotheses on the mechanism of
growth in arterial walls can be realized within the generalized formulation, three specific model
variants are deduced. Although growth and remodeling are likely to cohere, both phenomena
are treated separately. Remodeling, which is incorporated by stress-driven reorientation of the
collagen fibers, will be discussed in Chaper 6.

5.1 General framework

The framework for anisotropic growth presented in this section has been developed based on the
theory of multiplicative growth introduced in Sec. 3.1.2 and has essentially been inspired by the
work of HIMPEL, KUHL, et al. (2005) and KUHL, MAAS, et al. (2007). Preliminary steps towards
the current formulation are documented in several publications (ZAHN & BALzANI, 2016, 2017,
2018a). One of the main intentions is the provision of a general local formulation for anisotropic
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5 Framework for anisotropic stress-driven growth

growth, which operates without manual definition of growth directions requiring structural or
geometric information. For example, if an artery subjected to hypertension was assumed to
grow in radial direction, it would be necessary to identify this direction at each material point
from the geometry in order to allow for this type of growth. However, drawing a deduction
from the information gathered in Chapter 2, the arrangement of tissue components is clearly
motivated rather mechanically than geometrically. If growth is supposed to be stress-driven,
the information available on the stress state should thus indeed be sufficient to identify its
multiaxial characteristics. Moreover, a local formulation involves the advantage of in principle
being applicable to any boundary value problem, for instance to patient-specific arteries with
irregular geometry.

The theory of multiplicative growth relies on the decomposition F' = F.F, introduced in Eq. 3.19.
As explained there, the growth tensor F, represents the growth part of the deformation and the
remaining part Fe accounts for the effect of external loads and ensures the compatibility of the
overall deformation by reassembling the individually grown material points to a continuous body.
In addition to the undeformed reference configuration B and the actual configuration S, the
stress-free intermediate configuration B; is involved. This fictive intermediate state corresponds
to a situation at which growth prescribed by the growth tensor F, has been able to evolve
without any hindrance. The information on intensity and anisotropy of the growth process is
thereby contained in the tensorial form of Fj.

5.1.1 Basic forms of the growth tensor

The form of the growth tensor has to be postulated. Among many specific proposals available
in the literature, as for example reviewed by KUHL (2014), three basic forms can be identified.
These basic forms are defined by

FgD =9I for isotropic growth, (5.1a)
FgH =I+(W-1)A;® A, for growth in the direction of Ay and (5.1b)
FgL =0I+(1-9)A, ® A, for growth perpendicular to A,. (5.1c)

In these equations, the scalar ¢, which from now on will be denoted as growth factor, is related to
the amount of growth, and the unit vector A, with |A,| = 1 causes different types of anisotropy
and marks a direction which behaves different from the others. The vector A, will therefore be
referred to as growth orientation vector.

Illustrative example. For better understanding of the basic types of growth defined in Eq. 5.1,
the growth deformation of a unit cube, represented by the vector v = e; + es + e3, shall be
considered. The cube is supposed to have a preferred direction A, = ey parallel to the xp-axis
which behaves stiffer than the other two directions. Subjected to a load in zs-direction, a
stress g9o might exist, which, by a relation that still has to be defined, is assumed to cause
growth characterized by growth factor . If the cube grows isotropically, its intermediate

configuration is defined by the vector UiD computed as
9 0 0Of [1 Y
v =Fv= [0 ¢ 0 [1| = |9]. (5.2)
0 0 9| (1 Ul
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5.1 General framework

a) \ T3 b) T3 C) T3
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Figure 5.1: Illustration of the basic growth tensor forms a) FgD for isotropic growth, b) Fg” for growth
in the direction of Ay = e, and c) FgJ- for growth perpendicular to the direction of A, = es
by means of a grown cube whose reference configuration (gray unit cube) is spanned by
the vector v = e1 + e + es.

As depicted in Fig.5.1a), the cube keeps its original shape, but each of its edges is lengthened
by factor 1. For the other two basic types of growth, the structural tensor

000
Ag®Ag:€2®62: 010 (5.3)
0 00

induces anisotropy. The grown cubes are then defined by the vectors

10 0]1 1 9 0 0] 1 9
ol =Flv=10 9 0| 1| =|9] and v =Flv=|0 1 0| [1] =[1|, (54)
00 1] [1 1 00 9| |1 9

see Fig.5.1b) and ¢). In both cases, the shape of the grown cube differs from the original one:
either it is elongated exclusively in the preferred direction or perpendicular to it. The volume
increase of the three cubes is obviously not the same. As mentioned in Eq. 3.21 and confirmed
by this example, the ratio dV;/dV of grown to reference volume is defined by det[F| and equal
to 93, ¥ and 92 in the cases a), b) and c) as denoted in Fig.5.1, respectively.

To conclude the example, a few remarks on the effect of growth on the stress 099 shall be added.
It essentially depends on the type of loading if a reduction of the stress can be achieved or not.
Supposed that the stress arises from a constant force applied to the cube, an increase of the
cross sectional area in the z1-z3-plane as occurring in cases a) and c) leads to a reduction of
099, but growth in the direction of the load has no effect. The opposite is the case if the stress is
caused by a prescribed displacement in xo-direction. Then, mainly the xo-component of growth
contributes to a drastic reduction of the stress since it compensates the imposed deformation.
Compared to this, the reduction by increase of the cross section in case ¢) is negligible. Both
loading scenarios at the same time are thus best covered by isotropic growth, but this is at the
expense of an unnecessarily high volume increase which is accompanied by potentially avoidable
energetic costs.

As clarified in the example above, the structural tensor Ay ® A, filters out contributions in the
direction of a preferred direction Ag. Whereas this can easily be understood for special cases in
which the preferred direction is parallel to a coordinate axis (for example for Az = es), it is less
clear for an arbitrary preferred direction with a more complex structural tensor. It can be shown
by a coordinate transformation, which rotates an arbitrary vector Ay via QAg; = A = e3 to
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5 Framework for anisotropic stress-driven growth

the considered axis, that the observed behavior is valid in general. The growth tensor FgL in
the rotated coordinate system is given by

F* =QF; Q"
—9QIQT+(1-0)Q (A, ® A) QT  with QT =Q*

=9I+ (1-19) (QA,) ® (QA,)
=9I+ (1-9)A;® A}

(5.5)

and has thus the same structure as in the original coordinate system, see Eq.5.1c. Analogously,
the rotated counterpart of Fg|| from Eq.5.1b can be computed as

* T * *
Fl*=QF)Q"=I+(®W-1)A;® A;. (5.6)

These transformations confirm that the growth tensors FgL and FgH describe growth perpendicular
to or in the direction of A, for any preferred direction Ag.

The multiaxial character of growth in soft biological tissues suggests that one single preferred
direction cannot be sufficient to model the observed growth phenomena. For this reason, a
generalized formulation for anisotropic growth is proposed, which takes up to three preferred
directions into account.

5.1.2 Generalized formulation for anisotropic growth

In order to enable the incorporation of up to three preferred directions, which might be
able to reflect the complex growth processes in arteries, the growth tensor Fy is decomposed
multiplicatively into three parts according to

F,=FPF2FY. (5.7)

Each of these multiplicative parts Fg(a) with a € [1,2, 3] is allowed to adopt one of the basic
forms defined in Eq.5.1 or to be equal to the unit tensor I provided that only a reduced
number of directions is intended to be included. Each part might thus involve an individual
growth factor 9(® and an individual growth orientation vector Aéa). This structure offers a
high flexibility as it enables the consideration and comparison of a multitude of different growth
mechanisms ranging from isotropic growth to orthotropic growth in three directions. Only the
small example on p. 60 already makes clear that stress reduction induced by growth is a very
complex process with many influencing factors. First, it is not clear to which extent relevant
loads in arteries are of stress-, force-, strain- or displacement-driven type. This however affects
the effectiveness of a particular growth mechanism. Apart from that, the amount of newly grown
material might differ drastically between different forms of growth. Since growth-induced volume
changes are associated to energetic costs, an effective growth mechanism is likely to aim at
keeping them as low as possible. In the modeling context, isotropic growth is the simplest way to
account for different loading scenarios, but it comes along with large volume changes and is not
realistic since growth in arteries is obviously anisotropic. Growth in the direction of a relevant
load has the advantage of effectively reducing stresses in strain-driven loading situations with
comparatively very low volume changes, but it has no effect if the load consists of a constant
force. By an increase of the cross sectional area, growth perpendicular to the preferred direction
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5.1 General framework

can reduce stresses in both loading scenarios, but it is less effective. The general form of the
growth tensor introduced in Eq. 5.7 enables the analysis of various approaches and might thus
lead to a conclusion with respect to the real, unknown mechanism.

From a technical point of view, it is necessary to demand commutativity of the right hand side
of Eq.5.7. Only then, the growth mechanisms associated to different directions are independent
of each other and the overall growth tensor does not depend on the chronological order in which
those directions have been defined. With reference to the basic forms predefined in Eq. 5.1, the
only terms in each possible product Fg(a)Fg(b) with a # b, which are not a priori commutative,
are the terms involving products of the form (Aéa) ® Aéa)) (Ag)) ® Ag))). The commutativity of

Eq. 5.7 is thus ensured if the growth orientation (unit) vectors fulfill the condition Aéa) ‘Ag)) =0
for a # b, which means that they must constitute a set of orthogonal directions with the
property

AW AD =5, (5.8)

The overall growth tensor can then be expanded to a sum of terms given by scalar multiples of
the unit tensor I and of the structural tensors Af(;a) ® Agl) with a € [1,2,3]. Its general form

can thus be expressed by
3

Fy=ogI+) a, ALY @ AW, (5.9)
a=1

where the coefficients a, are functions of the growth factors ¥(® and depend on the choice of

the basic form for the individual parts Fg(a) from Eq.5.1. Due to the symmetry of its individual

summands, the growth tensor turns out to be symmetric, i.e. FgT = F,. Another important

outcome of the orthogonality of the growth orientation vectors is the property that they are

eigenvectors of the growth tensor per definition. As obvious from

FAY = ag AP + ay AY) = (ag + ap) AL, (5.10)

which follows from Eq. 5.9 due to Eq. 5.8, only the length but not the orientation of the growth
orientation vectors is changed during the transformation from the reference to the intermediate
configuration.

Together with the choice of stress as growth driving quantity, the requirement of orthogonality
and the interpretation of the growth orientation vectors as eigenvectors suggest to define the
latter as principal directions of a suitable stress tensor. This ensures the local character of the
formulation and enables the simulation of growth processes which are directly (and exclusively)
governed by local mechanical state variables. Following HIMPEL, KUHL, et al. (2005), the Mandel
stress in the intermediate configuration, which is defined by

S, := CoSe, (5.11)

is chosen as growth and remodeling driving quantity. HIMPEL, KUHL, et al. motivated that
choice by the observation that 3. is energetically conjugated to the growth velocity gradient in
Eq. 3.108. The growth velocity gradient L, in turn, introduced in Eq. 3.26, is directly linked to
the temporal evolution of the growth tensor through Fg = LyF,. In spite of being a product
of two symmetric tensors, 3. is in general non-symmetric and its eigenvectors do not form an
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5 Framework for anisotropic stress-driven growth

orthogonal system. In order to ensure the orthogonality requirement, the growth orientation

(a)

vectors Ag ' are defined as principal directions of the symmetric part

3. = sym[Se] = 1 (C.S. + S.C.) (5.12)

of the Mandel stress tensor X.. The antimetric part is assumed to be neglectable, such that
the principal stress state of X is well represented by .. This assumption is even thoroughly
correct as long as only rotationally symmetric arteries are considered, where the antimetric part
of ¥, disappears completely. In that case, the principal directions of C, and S, coincide and
are aligned in circumferential, axial and radial direction.

At this point, only the values of the growth factors ¥(®), which determine the amount of growth,
remain unknown for completeness of the growth tensor Fy. It proved convenient to prescribe
the evolution of the growth factors by a set of equations of the form

9@ = D @) () with  aell,2,3)], (5.13)

as initially proposed by LUBARDA & HOGER (2002). According to this evolution equation,
the actual value of growth factor 9@ depends on the growth-driving Mandel stress tensor
through a function qb(a)(Ee) and is subjected to some limiting restrictions imposed by a growth

function kl(ga) (9(4)). The latter function, defined by

192;) — 9@) ")
K (a) [ R ] for  ¢(*)(Ze) > 0
k! (9)) = [0 g, e (5.14)
9,(a) 1,719(*) for  ¢((Ee) <0
0 for qﬁ(a)(Ee) =0,

is adopted from LUBARDA & HOGER and Visualized in Fig. 5.2 for a positive value of ¢(® and
different values of its parameters ¥}, and m} 9. . The effect of the growth function is twofold.
On the one hand, it restricts the aémls&ble range of each growth factor to

19+

" (5.15)

9@ ¢ [19—

o } with 97, <1 and oF

(@) (@ > 1

as it approaches zero when these limiting values are reached. On the other hand, it scales the
growth velocity by a factor k é ) The parameters m 9. */ ) determine the degree of the growth
function in its nonzero range, and might for example lead to the linear and cubic graphs shown

in Fig.5.2.

The function ¢(*)(X,) accounts for the mechanical stimulus provoking growth related to the
direction a and will for this reason be denoted as driving force from now on. Different proposals
for its explicit functional form will be presented and motivated in Sec.5.1.4. Prior to this, the
algorithmic treatment of the generalized growth model will be explained. For these considerations,
it is enough to note that the function gb(a)(Ee) depends on F, through Eq.5.11 as obvious from
Eq.3.22 and Eq.3.101, and is thus a function of all growth factors 9, 92 and 9. This
implies that Eq.5.13 constitutes a coupled set of nonlinear differential equations, which has to
be solved for the actual values of the growth factors 9(@).
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mgzlo
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Figure 5.2: Graphs of the growth function ky(¢) for ¢(X.) > 0 in the range of positive growth with
¥ > 1 for different values of the parameters 9+ and mg. The index (a), denoting the
direction to which the function and its parameters are assigned, is omitted here in favor of
clarity.

5.1.3 Algorithmic treatment of the generalized formulation

For the solution of Eq.5.13, time integration has to be applied. Given that all variables are

known at time ¢,,, the values 79521 of the growth factors at actual time ¢,,41 can be computed
from

tnt1 tn+1
/ 9@ dt = 99, — 9 = / K (90)) (@) (2,) dt (5.16)
tn tn

if the integral on the right hand side is evaluated between ¢, and ¢,41. Since a closed analytical
solution is not available for this integral, an approximation is introduced as illustrated in Fig. 5.3.
The integral is replaced by an approximation of the area below the curve, which can be obtained
in different ways, either based on known values belonging to time step n, on unknown values
belonging to time step n + 1 or using both of them. The approximation

9L — 9@ ~ (FU 0+ (1 - k) 19,@) At (5.17)
ﬁ(a)(ﬂ(a),gc) A At
19(0,) H—HF
n+1 4+
9T :
9 At (explicit Euler)
90— 9l & {0 At (implicit Euler)
5 (195:21 + 195{1)) At (midpoint rule)

»
T T >

tn togt t

Figure 5.3: For numerical time integration of the function 9(®) (9(®) %), the gray area below the
curve between t¢,, and ¢,,41 can be approximated in different ways. Using the explicit Euler
forward scheme, the function which has to be integrated has only to be evaluated at time
step t,, where its value is known. Implicit Euler backward scheme and midpoint rule
involve function evaluations at the actual time step t,,+1, which necessitates an iteration.
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5 Framework for anisotropic stress-driven growth

with At = t,,11 —t,, captures those three cases by means of the variable k € [0, 1/2,1]. For K =0
and k = 1, the explicit and implicit Euler integration schemes are obtained, respectively. Choice
of kK = 1/ leads to the midpoint rule, which approximates the area by a trapezoid instead of a
rectangle. Using the approximation in Eq. 5.17, the system of equations from Eq.5.13 turns into
a set of equations defined by the residuals

+(1— k) K p@

tn+1

R@ = —9\) 4 9@ 4 (n k(Y ¢(@) t ) At =0 (5.18)
with a € [1,2,3]. With the exception of the case k = 0, this system of equations is coupled
and nonlinear. By linearization of the residuals associated to time step n 4 1, the system of
equations

ORW 9RM oRW
g e (M (2) @) _
R }ﬁl(va) + 8'19(1) ﬂ;ﬂa)AﬁkJrl 879(2) 19}(6 A?yk+1 819(3) ﬁ(a)AﬁkJrl 0
OR2) OR® OR®
(2) o (1) ) @
R }191(:) + a,ﬂ(l) 19;;1) A,ﬂk-l,-]_ 819(2) 19(“) Aﬂk)-‘rl 819(3) 19}(;) A’ﬂk_H — O (519)
OR®) OR®) OR®
(3) o (1) ) OR® @
e+ o g g | S gt |0 S =

is obtained. It has to be solved repeatedly in a local Newton iteration, with iteration steps
denoted by index k, for the incremental updates AY® of the growth factors. The growth
factors are updated by those increments until a suitable convergence criterion, for example
A9(@) < 1078 for each direction a, signalizes that the iteration can be aborted. The derivatives
of the residuals R® from Eq.5.18 with respect to the growth factors 9U) for 4,j € [1,2,3],
which are needed in Eq. 5.19, are given by

IR B, 9@

o =1+ (aﬁ(a $@ 4 ki a:;(a) kAt for  a€ll,2,3)], (5.20a)
(i) (i)

oR™ _ 30 ) 06 KAt for i,7 €[1,2,3] with i#j. (5.20b)

990 — Y 990G

This involves the derivatives of the growth function, which are computed as

( m7T
B 00) for 6)(8) >0
oY) ] -~
@ (@ (@) 9(a) (a) o
0 S@ g ke () for ¢1¥(e) <O
O
0 for ¢ (%) =0,

and the derivatives 9¢(®) (2,)/09) of the driving force, which will be specified separately in
Sec. 5.1.4. Considering briefly the special case k = 0, that is assuming explicit time integration,
OR@ /90 = —1 and OR® /991 = 0 follow from Eq.5.20. The latter means that all coupling
terms disappear from the system of equations in Eq.5.19 and that the incremental updates
of all growth factors can directly be identified. Since x = 0 means that the original system of

equations in Eq. 5.18 is no longer nonlinear in 19,(121, one single iteration step is enough to obtain

66



5.1 General framework

the values of the growth factors at time t¢,11, which are explicitly given in terms of known
quantities. This clarifies that explicit time integration comes along with reduced numerical and
implementation effort. It is however afflicted with the disadvantage that numerical stability is
only ensured for a sufficiently small time step size At. This restriction can be avoided by using
the implicit Euler backward integration scheme, which is unconditionally stable. An even better
approximation combined with numerical stability can be obtained by means of the midpoint
rule, but it must be pointed out that this scheme — just as Euler forward scheme — requires
entrainment of additional history variables compared to Euler backward scheme. For each
direction, the value of the driving force at time step ¢,, has to be stored for evaluation of Eq. 5.18.
In summary, numerical effort increases from explicit over implicit Euler method to the midpoint
rule, and numerical stability is only guaranteed for the latter two. As confirmed by several
publications of the work group around KuHL (HIMPEL, KUHL, et al., 2005; KUHL, MAAS, et al.,
2007; GOKTEPE, ABILEZ & KUHL, 2010; SAEZ, PENA, et al., 2014), Euler backward scheme is
a reliable choice for the solution of evolution equations of the type of Eq. 5.13. Since no major
amelioration of the performance due to use of the midpoint rule could be stated, the examples
presented in this work likewise make use of Euler backward scheme, i.e. k = 1.

In the algorithm described above, the growth orientation vectors as well as the fiber vectors
are considered as fixed during the local iteration. Actually, the growth orientation vectors,
computed as principal directions of the symmetric part 3. of the Mandel stress tensor, depend
implicitly on the current value of the growth tensor. The same holds for the fiber vectors,
provided that fiber reorientation driven by 3. is assumed. Because of the complexity of the
mutual dependencies between growth factors 9(%) growth orientation vectors Aéa) (both with
a € [1,2,3]) and fiber orientation vectors A (with a € [1,...,ny), the latter two are taken
over from the previous time step. After completion of the local Newton iteration, which ends
up in the actual value of the growth tensor and the Mandel stress, the new growth and fiber
orientation vectors are computed and saved for use in the next time step. If the new principal
directions of X, differ from the old growth orientation vectors, the new growth orientation
vectors are defined such that the nearest principal directions are assigned. This prevents greater
jumps of the vectors in case the order of the principal stresses changes. Exemplified with the aid
of a pressurized cylindrical tube, where the axial stress is lower than the circumferential stress,
this might for example happen if an increasing axial load leads to an axial stress which exceeds
the circumferential one. In this situation, growth associated to the two directions, represented
by the multiplicative parts of the growth tensor, should not be interchanged even though the
order of the principal stresses switches. This can be realized by always assigning the nearest
new directions.

Handling of the fiber orientation vectors is described in Chapter 6, where reorientation of the
fibers is discussed. In principle, the two adaptation processes, i.e. growth and fiber reorientation,
are treated in a two step mechanism, which does not take direct coupling effects within one
time step into account.

Knowledge of the growth tensor now allows to compute the 2" Piola-Kirchhoff stress tensor S =
Fg_ISng_T and also the real stress o = 1/; FSFT, see Sec. 3.2 and Sec. 3.5 for recapitulation.
For a complete explanation of the algorithmic treatment, the derivation of the tangent modulus C,
which is needed for the element stiffness matrix in Eq. 4.46, is still missing. The tangent modulus
can be computed analytically, but this involves various potentially difficult derivatives, which
have to be recomputed whenever the model is adapted or extended, for example when a new
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5 Framework for anisotropic stress-driven growth

driving force is included. Since deduction and implementation of the analytical tangent modulus
are time-consuming and prone to errors, a numerical method might be a valuable alternative
or at least a replenishment to crosscheck the analytical formulation. The implementation of
the numerical tangent modulus is straightforward and, if once elaborated successfully, works
regardless of model adaptations. The burden for this advantage is a significant increase of
the computing time in comparison to the analytical formulation. In the following paragraphs,
analytical and numerical computation of the tangent modulus are described.

Analytical tangent modulus. In Eq.4.14, the tangent modulus has been introduced as
C =2dS/dC, which means that computation of the total derivative of S with respect to C' is
required. The tangent modulus is therefore obtained from

3
ds oS 2s 99
C=23c=29c " L osw © e (5.22)
S~~~ a=1
Ce R

where C¢ is the standard elastic part and C& contains the additional effect of growth. Starting
from the elastic part of the tangent modulus in the intermediate configuration, which is defined
by

0Se 02
Ce:=2 =4 5.23
' 0C, 9C.0C,’ ( )
the elastic part C® can be computed performing the pullback operation
e - — e -T -T
Co=(F,'RF"):C: (F, "RF; ") (5.24)

from the intermediate to the reference configuration.! The inverse of the growth tensor from
Eq.5.7 can be expressed explicitly due to the special form of the multiplicative parts Féa) as

Fol = (FO) () (FP) (5.25)

with the individual inverses

ﬁ for Fg(a) from Eq.5.1a
_ EIC)
(FN™ =31+ 119&?) A @AY for F{*) from Eq. 5.1b (5.26)
(a) _
19(1@ I+ v 5@ 1 Agl) ® Aéa) for Fg(a) from Eq.5.1c

following from the Sherman-Morrison formula as specified in Appendix A.2.4. Showing the
same structure as the original tensor, also the inverse of the growth tensor is commutative
and symmetric provided that Eq.5.8 is fulfilled. The distinction between Fg_1 and Fg_T is
nevertheless retained for formal reasons in order to enclose the general case in relations like
Eq. 5.24. This particular equation analogously holds for the transformation between the actual
and the reference configuration, but then involves the non-symmetric deformation gradient F'
instead of F.

!The universal rules for the transformation of a tensor of second order between two configurations, caused by
a deformation gradient F', can be retraced with the help of Eq. A.4 by considering the original tensor C =
a®b®c®d and its transformation A = Fa® Fb@ Fc® Fd= (FXF):C: (FTRF").
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5.1 General framework

For the growth part C® of the tangent modulus, the derivative of S with respect to growth
factor 9@ is required. It is obtained from the chain rule expression

89S _ dS OF, OF"

= : : 2
0@~ dF,  gp o9 (5:27)

where the 2" Piola-Kirchhoff stress tensor S = Fg_l,S'ng_T = (Fg_1 X Fg_l) : S, depends
explicitly and implicitly on Fj, such that the total derivative has to be computed according
to

dS 98 98 9S. 9C.

dF, 0F, S, 0C. OF,
Using the derivatives provided in Eq. A.19 and Eq. A.21 as well as the symmetry of S and Cs,
the derivatives 05 /0F, and 0C./0F, can be computed in index notation. Converting them to
symbolic notation, the set of expressions

(5.28)

(‘?T?S =-F,'XS-SOF; ", (5.29)
g

gg =F,'}XF; " (5.30)
e

Zie =-F,"0C.— C.RF; " (5.31)
g

is obtained. In the same manner, the derivatives of the overall growth tensor with respect to its
multiplicative parts can be evaluated and expressed as

OF,

= (FPF?P)R T, (5.32a)
8Fg(l) ( g g )
OF, T

=FO R (FWY)", (5.32b)
8Fg(2) g ( g )
OF, T

=IX (FPFD)". (5.32¢)
aFg(?’) ( g g )

The last unknown term in Eq.5.27 requires differentiation of the multiplicative part Fg(a) of the
growth tensor with respect to the growth factor 9(®. This derivative depends on the specific

form of Fg(a) and can be summarized by

I for Fg(a) from Eq.5.1a
= Méa) for Fg(a) from Eq.5.1b for a€(l,2,3], (5.33)
I— Mg(a) for Fg(a) from Eq.5.1c

OF™
(@)

where Mg(a) represents the structural tensor

M@ =AW @A for  ac(1,2,3 (5.34)

built by the growth orientation vector Aéa) associated to direction a. Combining Eq. 5.32 with

Eq.5.33, the derivatives of the overall growth tensor F, with respect to the individual growth
factors ¥(%) are obtained. A summary of these derivatives is given in Tab. 5.1.
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5 Framework for anisotropic stress-driven growth

Table 5.1: Derivatives 9F,/99(*) of the growth tensor F, = Fg(?’)Féz)Fg(l) with respect to
the growth factors 9(® for different forms of the multiplicative parts Fg(a).

form of Fg(a) OFy /09 fora=1 0OF,/09 fora=2  0F,/09 for a =3

Eq.5.1a FOFP FOFY FAFY
Eq.5.1b YR MY FYMP R M FPFY
Eq.5.1c FOFRY (1-m{") FY (1-MP)F" (1- M) FPRY

Using all those intermediate results and the definition 9S./0C, = 12 Cf{ from Eq.5.23, the
derivative in Eq. 5.27 can be expressed as

oS U §
S = (B RE)  [F RS+ S OF !+ .

o (e _ OF,
L 3C: (F;"TOC+C.RF )] : aﬂ(j)

with 8Fg/819(a) from Tab.5.1. In order to factor out 15;3;_1 X Fg_1 on the left, the commutativity
of the product Fy (GFg / 019(“)) has been used. This commutativity is assured since the growth
tensor itself and also its derivatives with respect to the growth factors can be represented in
the general form mentioned in Eq.5.9, where the individual growth orientation vectors are
perpendicular to each other according to Eq. 5.8. Disregarding this last transformation step,
which demands certain presuppositions on the form of Fg, the result is confirmed by SAEZ,
PENA, et al. (2014).

Recalling Eq. 5.22, the derivatives of each growth factor with respect to the Cauchy-Green
tensor C' are still required. As defined in Eq. 5.17, the growth factors at actual time t¢,41 are
approximated by

9 = 9@ 4 (n O+ (1 - k) 19550) At for  a€ll,2,3], (5.36)

where the time derivative of each growth factor depends on all growth factors through the driving
force ¢(*)(3) as obvious from Eq. 5.13. The derivatives of the individual growth factors 9(®)
with respect to C' at time step n + 1 are therefore given by

9L 99 59D oM 5@ 592 51 §9B3) A .
= t )
aC oC T a9 oCc T av® ac T av® ac |4 (5.372)
992 9@ 9@ 591 592 592 532 §B3)
oCc ( ocC +819(1) oC +@19(2> oC +819(3) oC kAL, (5.37D)
993 993 993 g9 993 gD 9Y3) 9y®) At < 37
oc —\ac Tavm ac Tav® ac T av@® ac )" (5.37)
Reformulating the derivatives from Eq. 5.20 with the help of the abbreviations
- (@)
AU _ O (5.38)

9 990’
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5.1 General framework

this system of equations can be transformed to

(1,1) o) (1.2) e (1,3) o3 W 3¢(1)
A e T e T e TR et
@1) o) 2.2) o9 (2,3) o3 @ 3¢(2)
A e T e T e TR et
3.1) o) (3.2) o9 (3.3) o3 B a¢(3)
A e AT e T e TR et

At, (5.39a)

At, (5.39D)

At. (5.39¢)

In this form, the system of equations can be solved for the wanted terms 99(® /OC'. The
derivatives of the driving forces @ with respect to C needed on the right hand side cannot be
provided unless the explicit functions ¢(®) are specified. Both will be done in Sec. 5.1.4.

Considering the special case of explicit time integration of the evolution equation for the growth
factors, it can be stated that due to x = 0 and Ag’] ) = 8ij the result 99(® /OC = 0 is obtained
from Eq.5.39, which finally leads to C®& = 0. The tangent modulus given in Eq. 5.22 is thus not
affected by growth since the growth factors do only depend on variables from the previous time
step. Here again, it becomes apparent that explicit time integration is conceptually more simple
than methods involving variables of the actual time step.

Numerical tangent modulus. The tangent modulus C = 2d.S/dC is nothing else than a
derivative and can thus be computed based on classical methods of numerical differentiation,
for example the finite difference scheme. Applying a truncated Taylor series expansion to a
function f(z) to find its value at = + h, i.e. f(z + h) =~ f(x) + "/ f'(z), the approximation

F(ay~ 12T h})b — /@) (5.40)

is obtained for the derivative f’(x). In principle, the quality of the approximation improves if the
parameter h approaches zero. But from the computational point of view, an increasing rounding
error in the term x + h occurs with decreasing value of A due to the limited number of available
digits. In order to find the optimal value of the parameter h leading to the lowest overall
error, approximation errors have to be weighed up against rounding errors. To make things
even worse, the optimal value of A depends on z and is thus changing in the course of a finite
element simulation. These drawbacks of the finite difference scheme can be prevented by using
an alternative method for numerical differentiation: the complex step derivative approximation
developed by LYNESs & MOLER (1967) and LyNEss (1968) for scalar functions. By writing
the perturbation h to the imaginary part of the variable z, i.e. f(x + ih) =~ f(z) + i*/11 f'(x),
the rounding error can completely be eliminated. Extracting the imaginary part leads to the
approximation

oy Qe i8]
where h can be chosen arbitrarily small without generation of rounding errors. The concept of
complex step derivative approximation has been transferred to the derivation of tangent moduli
from stresses at finite strains by TANAKA, FUJIKAWA, et al. (2014). The directional derivative of

a tensor-valued tensor field S(C') of second order in the direction of D is thereby approximated
by

(5.41)

ds D~ 3[S(C +ihD)]
ac 77 h ’

(5.42)
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5 Framework for anisotropic stress-driven growth

where D is an arbitrary tensor of second order. If the perturbation tensor D is chosen appropri-
ately, the tangent modulus C = 2dS/dC can be computed from this equation. Replacing D
by

*
Cuyn =3 (Ewy @ Egy + Eqy © Ey) (5.43)

where the indices k and [ are written in brackets in order to clarify that they are no summation
indices but just denoting the basis vectors, the left hand side of the equation can be written as
12Cyj)) Ei ® E;j when taking notice of the right subsymmetry of C mentioned in Eq. A.31.
For fixed k£ and [, this expression represents 9 of the 81 coefficients of C, and inserting all
combinations of k,[ € [1,2, 3], all components of C are covered. Writing both sides of Eq. 5.42
with D replaced by Eq. 5.43 in index notation, the expression

315:(C +ih C oy )]

is obtained, which means that the coefficients of C can formally be computed in nine steps from
the imaginary part of the stress resulting from an appropriately perturbed Cauchy-Green tensor,
multiplied by /5. Due to the right subsymmetry C;;(xy) = Cyj)x) and the Voigt representation
of C given in Eq. A.32, six perturbation steps each for six coefficients in one column of C are
sufficient in practice. In order to fulfill the right subsymmetry of the tangent modulus, the
indices of the perturbation tensor have to be transposable without altering the result. For this
reason, the perturbation tensor has to be symmetric as defined in Eq. 5.43 and a single pair of
basis vectors is not enough.

Instead of applying the perturbation to the Cauchy-Green tensor C, it might be advantageous
to apply it to the deformation gradient F', from where it is passed on to all subordinated fields.
As described by TANAKA, SASAGAWA, et al. (2015), the required perturbation tensor can be
found starting from

This equation is valid in analogy to Eq.5.42 and can be transformed such that an expression
for dS/dC is obtained. Using the derivative dC/dF = (IEF' + FT K I), which can be
computed in index notation, the left hand side of Eq.5.45 can be reformulated according to

ds = ds dC
aF Fwo =g g Fwo
dS T T *
:E:(IDF +F'RI): Fy (5.46)

*

) T T 4
=3C: (F<k><Z)F+F F(k)(l))-

If now F' (1)) is chosen such that

1 *T T * *
3 (F woF +FF <k><1>) = Cwr) (5.47)
is fulfilled, the identity
dS * *
a7 Fwo =C:Cumo =Ciyma Ei ® E; (5.48)
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5.1 General framework

is valid and index notation of Eq. 5.45 leads to

S8, (F + ih F )]

This expression is suited for computing the columns of the tangent modulus C as described
above for perturbation of C. The condition from Eq. 5.47 is satisfied if the perturbation tensor

is set to
*

_ T A _1(p-T -T
Fuoa) = F~"Cro) = § (Figd Bi ® By + Fi B By) (5.50)
In the given context, both possibilities for the numerical evaluation of the tangent modulus,
that is use of Eq.5.44 with Eq. 5.43 for perturbation of the Cauchy-Green tensor C' or use of

Eq. 5.49 with Eq. 5.50 for perturbation of the deformation gradient F', are applicable.

5.1.4 Driving forces for growth

General considerations at the beginning of this chapter led to the assumption that adaptations
in arterial tissues are likely to be stress-driven. Afterwards, the Mandel stress tensor X, = C, S,
in the intermediate configuration has been chosen explicitly, motivated by technical reasons
imposed by the general framework of multiplicative growth. Finally, the chosen stimulus for
growth finds its way into the model via the functions ¢(‘1)(Ee) in Eq. 5.13, which describes
the evolution of the internal variables ¥(® reflecting the amount of growth associated to the
three directions Agl). Since growth in arterial tissues is known to be multiaxial, the generalized
formulation for stress-driven growth presented in this work enables the combination of up
to three different growth mechanisms for those three directions: isotropic growth, growth in
the direction of Agl) and growth perpendicular to the direction of Aéa). Depending on this
choice, different functional forms of qb(“)(Ee) seem to be reasonable. Three suggestions will
be considered in the following paragraphs. Besides a motivation of the different driving force
functions, their derivatives with respect to the growth factors 9(® and to the Cauchy-Green
tensor C, needed in Eq.5.20 and Eq. 5.39, respectively, will be provided. At the end of the
section, a simple modification of the driving force function, which allows to deactivate growth if
the considered stress falls below a critical level, will be proposed.

Trace of the Mandel stress tensor. In the context of isotropic growth, the trace of the
Mandel stress tensor is frequently used as an isotropic measure for the stress acting on the
tissue, for example by HIMPEL, KUHL, et al. (2005), GOKTEPE, ABILEZ & KUHL (2010) or
SAEZ, PENA, et al. (2014). Although pure isotropic growth is unrealistic for arterial walls, the
isotropic driving force

PV(T) =% : T =tr[%] for aell,23 (5.51)

is included into the framework in order to enable a comparison of anisotropic mechanisms to
the isotropic reference model. Furthermore, even an anisotropic growth mechanism might be
driven by an isotropic stress quantity representing the average stress state. The derivative of
this driving force function with respect to growth factor 9U) results in

99 9C. ~0C,

_ e | .1 e
o) — 99U) e+ Ce: 5 G v

with 4, € [1,2,3], (5.52)
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5 Framework for anisotropic stress-driven growth

where the definition of the tangent modulus in Eq.5.23 has been used. The part 0C,/ 99 can
be computed according to

oC, dC. OF,
900 — 0F, 000

. aFg
" 990)

=—(F;,"E0C.+C.XF; ")

(5.53)

with the help of Eq.5.31 and the derivatives of the growth tensor with respect to the growth
factors summarized in Tab. 5.1. Differentiating Eq. 5.51 with respect to C' yields

99\ 9@ 0C,

3G ~ a0, g0 = St CeisCh): (B TRET) (5.54)
with a € [1, 2, 3], where the derivative
ii?zzf%ifﬁFéT (5.55)

has been obtained with the reformulation Cy = (Fg_T X Fg_T) : C of Eq.3.22 with Eq. A.5.

Principal stress associated to the growth orientation vector. In all cases of anisotropic
growth related to a particular direction a characterized by the growth orientation vector A(ga),
a directional scalar measure of the Mandel stress tensor ¥, might be more appropriate than
an isotropic one. If for example growth perpendicular to a particular direction is assumed
to occur in order to reduce the stress in that direction by an increase of the cross sectional
area, it suggests itself to choose exactly this stress as growth-inducing stimulus. A projection
of the stress X, to the direction of the growth orientation vector can be realized by the
double contraction X, : Mg(a), where the structural tensor Méa) = Agl) ® Aéa) first defined in
Eq. 5.34 filters out the intended contributions. Due to the fact that the unit growth orientation
vectors Agl) are defined as principal directions of the symmetric part X, of the Mandel stress
tensor X, the special relations
S AW ZSOAG . e B MO =S, MO = (5,AP) ALY =50 (5.56)
with i.(ga) denoting the respective eigenvalues of X are valid for a € [1,2,3].2 The driving force
function
P (8e) =B MW =5 for  aell,23 (5.57)

can thus be adopted if growth is assumed to be driven by the stresses acting in the directions
of the growth orientation vectors, which are equivalent to the eigenvalues of 3. It should
be remarked that for formal reasons, the unit growth orientation vectors in the intermediate
configuration, i. e. FgAéa) / |FgAga)\, would technically have to be used for the definition of the
structural tensor in Eq. 5.57 because the driving force is defined in the intermediate configuration.
However, as shown in Eq. 5.10, the growth orientation vectors also are eigenvectors of the growth
tensor, which means that their unit vectors are equal in both configurations. This property is
important for the required derivatives of Eq.5.57, which would comprise additional terms if

QIP any double contraction of X, with a symmetric tensor, 3¢ can be replaced by its symmetric part sym[X.] =

3. without change of the result. Since this applies to all driving force functions used in this section, there is
no need to differentiate between the Mandel stress tensor and its symmetric part in the given context.
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the structural tensor was depending on the growth factors and on the deformation tensor. The
derivative of Eq. 5.57 with respect to growth factor 9\9) is

99 [ 9C,
ov@) — \ o)

. 0C. ; .
Se + Ce (;Ci : 619(3')>) MY for d,j€[1,2,3], (5.58)

where 0C, /99U can be taken from Eq.5.53 in combination with Tab. 5.1. Using the chain rule
and 0C,/0C from Eq.5.55, the derivative

(@)
oC

= (M{Sc+ (CM) 4 CE) : (FTRET) for ae[1,23]  (559)

1

of the driving force with respect to the Cauchy-Green tensor can be computed.

Tensile principal stress associated to the growth orientation vector. As argued in
Chapter 2, the in vivo state of arteries is significantly dominated by tensile stresses in the
circumferential-axial plane of the wall. Compared to the high tensile stresses born by the
collagen fibers, the compressive stress in radial direction is quite small and possibly negligible.
Moreover, the radial stress in tubular structures is mainly dictated by the internal and external
pressure and can thus be supposed to be not controllable by adaptation of the geometry. Paying
attention to these facts, the driving force function

P (o) = (B : M) = (8(")  for  a€1,2,3 (5.60)

is proposed, which reflects the hypothesis that only tensile stresses acting in the direction of the
growth orientation vectors trigger a growth process. Due to the special relations mentioned in
Eq. 5.56, those stresses equal the tensile, positive principal stresses @g“)}. Negative values are
excluded by means of the Macaulay bracket, which is defined by

(o) =73(e+]e]). (5.61)

The required derivatives of Eq.5.60 are given by

as (59 1 ac, e 0C\Y
590 = 50 <6W) S.+C. (2@ : aw))) . M (5.62)

with 4,5 € [1,2,3] and 0C./09Y) from Eq. 5.53 in combination with Tab. 5.1 and by

o (2L
oC iga)

(M5 + (€M) s 4 €5) s (T REST) (5.63)

with a € [1,2, 3]. Both derivatives do only differ from their equivalents in Eq. 5.58 and Eq. 5.59
by a coefficient of value one or zero in case of tensile or compressive values of the driving force
function.

Regardless of the explicit form of the driving force function, it seems likely that a certain
threshold of the considered stress quantity has to be exceeded before a counteracting growth
process is initiated in order to restore the homeostatic stress level. This could be taken into

75



5 Framework for anisotropic stress-driven growth

account in a general, simplified manner by replacing the driving force function ¢(“)(Ee) with a
modified function

0 it |6 ()| < o,
H V() = ¢ (o) — g% if O () > gl for  a€l1,2,3], (5.64)
O () + 6% it () < —pl)

(a) ¢(a)

which is zero if the original function is within the range [~ , @i ). Of course, more complex
adaptations are imaginable, for example the definition of a driving force which is zero in an
asymmetric range [¢n — A¢_ ., ¢n + A¢l.] around a homeostatic value ¢, negative below
that range, and positive above. However, such specific approaches would involve more unknown
material parameters and case distinctions and are not pursued in this work.

5.2 Selected model variants

In order to illustrate the potential of the generalized formulation for growth in soft biological
tissues, three exemplary growth models obtained as deductions from the general framework will
be specified. Beginning with the simplest of all growth mechanisms realizable within the model,
the general equations will be simplified towards isotropic growth. Since this standard form
of multiplicative growth has been considered in a large number of publications, for example
by LUBARDA & HOGER (2002), HiMPEL, KUHL, et al. (2005), KUHL, MAAS, et al. (2007),
GOKTEPE, ABILEZ & KUHL (2010) or LEE, GENET, et al. (2015), its detailed deduction from
the generalized formulation primarily serves as a verification. Moreover, a recapitulation of
isotropic growth is reasonable because it will be used as a standard for the evaluation of other
growth mechanisms regarding their effectiveness and ability to reduce stresses. The observations
in the context of arterial adaptation summarized in Sec.2.3 however imply that growth in
arterial walls is not at all isotropic, but rather governed by a complex system of stress restoring
mechanisms leading to an anisotropic total result. The generalized formulation for multiplicative
growth makes it possible to analyze different hypotheses concerning those mechanisms of stress
reduction by decoupling the overall amount of growth into three portions assigned to the three
principal stresses and their directions. To give two examples of such hypothetical models, growth
in the direction of the third, generally compressive principal stress, and growth perpendicular
to the directions of the first and second, mostly tensile principal stresses, will be specified in
detail in addition to isotropic growth. The explicit equations are thereby only indicated for
the purpose of illustration. Since the model can be implemented in its generalized form, it is
not necessary to derive explicit expressions for the tangent moduli or other derivatives. The
character of this section is thus purely informative.

5.2.1 Isotropic growth

For the description of isotropic growth, the multiplicative decomposition of the deformation
gradient indicated in Eq.5.7 is obsolete as no information about different directions is required.
By setting

FP=F®=1 and F,=F"Y=9Y1 (5.65)
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an isotropic growth tensor in the form of Eq.5.1a incorporating a single growth factor 9 is
obtained from the general equation. Provided that all directional effects are to be excluded, the
isotropic driving force defined in Eq.5.51 is the only admissible choice among the proposed
functions governing the evolution of this growth factor. Since only terms related to a = 1 have
to be taken into account in all subsequent equations, the system of equations for the incremental
updates of the growth factors in Eq. 5.19 can be reduced to the single equation

A(lvl)

RO )~ 4y A9t =0, (5.66)
k

k+1 —

(a
o\

)

where the abbreviation Ag’l defined in Eq.5.38 has been inserted. This equation can directly

be solved for

RM
Ao = ] (5.67)
A1(9’ ) 1921)

For the evaluation of Ag’l), the derivative of the driving force function gb(l)(Ee) with respect to

the growth factor (1), given in Eq. 5.52 with Eq. 5.53, has to be computed. With aFg/&S‘(l) =1
from Tab.5.1 as well as the symmetry of C, and with the inverses

1

1 _ T _
Fg _Fg T

I (5.68)

from Eq. 5.26, the expression from Eq.5.53 simplifies to

200 —F, C.e—C.F, = o) C.. (5.69)
Inserting this into Eq. 5.52 leads to

o) 1 .

59@ = 50 (2Ce:Se+C.:Ci:C,), (5.70)

which equals the expressions obtained by HIMPEL, KUHL, et al. (2005) and GOKTEPE, ABILEZ
& KUHL (2010) for their isotropic growth models. For the growth part of the tangent modulus,
819(1)/30 has to be computed from the reduced form of Eq. 5.39a, which is given by

A(l’l) o9 B k:(l) a¢(1)

= At. 71
R Tol M To M (5.71)
With 8¢(1)/ 0C from Eq.5.54, the expression
v KD g kD kAt .
el AU 06 KAt = W (Se+Ce:5CF): (F, RF; ) (5.72)

is obtained. Inserting 8Fg/619(1) = I from Tab.5.1 into Eq. 5.35, using the symmetry of S, and
C. and combining the result with Eq.5.72 as prescribed by Eq.5.22, the growth part of the
tangent modulus can finally be formulated as

4 kél)ﬁ At

CE = ) (F 'WEF ") (Se+3C):Ce)®(Se+ Ce: 3C5) : (F, TREF, 7). (5.73)
1

g
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5 Framework for anisotropic stress-driven growth

For formal reasons, the inverses Fg_1 and Fg_T have not yet been replaced by the explicit

expression 1/19(1) I from Eq.5.68. Comparing Eq.5.73 in the given form with Eq.5.24, the
growth part of the tangent modulus in the intermediate configuration, i.e.

4 kél)n At
9 ALY

g _
L=

(Se+ 3C{:Ce) ® (Se+ Ce : 5CF) (5.74)
can be identified. Together with the elastic part C¢ = 4 9% /9C?2, the complete tangent modulus
in the intermediate configuration is known. The tangent modulus C in the reference configuration,
which is finally required for the evaluation of the element stiffness matrix K° in Eq. 4.46, can in
general be computed by the pullback operation

C=(F,"®WF;"): (C{+C§): (F, ")F; ). (5.75)
In the special case of isotropic growth described here, the simplified relation
C = (9~ (s + CB) (5.76)

is valid. In this form and with x = 1, the tangent modulus is equal to the expression previously
found by GOKTEPE, ABILEZ & KUHL (2010), but slightly deviates from the results of HIMPEL,
KUHL, et al. (2005) and KUHL, MAAS, et al. (2007), where the derivative of the 2" Piola-
Kirchhoff stress tensor with respect to the growth factor seems to be incomplete.

5.2.2 Growth in the direction of the third principal stress

According to the experimental observations mentioned in Sec.2.3, an increase of the blood
pressure in arteries seems to be primarily related to an increase of the wall thickness, which
effectively normalizes the circumferential stress towards its homeostatic level. Although it can
be concluded from those studies that pure radial growth in hypertensive arteries is implausible,
its numerical analysis might help to reveal hints on the real mechanism. In several publications
dealing with multiplicative growth, models for growth in radial direction have been presented, for
example by GOKTEPE, ABILEZ & KUHL (2010) and SAEZ, PENA, et al. (2014) with application
to the heart and to the carotid artery, respectively. In those models, the direction of growth is
identified based on structural characteristics of the geometries under investigation and is thus
not directly linked to the principal stress state. Establishing that link, it shows up that growth in
hypertensive arteries seems to occur favorably in the direction of the third, compressive principal
stress. A motivation for this behavior could be the fact that this direction is perpendicular to the
plane of the other two, usually tensile principal stresses, which is formed by the fiber-reinforced
arterial layers. Increasing the cross sectional area with respect to these stresses, growth in the
direction of the third principal stress can therefore be supposed to effectively reduce the tensile
stresses which occur within the axial-circumferential plane of the arterial wall. To describe
growth in the direction of the third principal stress, the growth tensor defined in Eq.5.7 is
specified by setting

with Mg(?’) = Ag)) ® Ag’) from Eq.5.34. The third multiplicative part of the growth tensor is

thus set according to Eq.5.1b in order to model growth in the direction of Ag’), which is initially
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defined as the third principal direction of X.. The third principal stress can in general be
assumed to coincide with the compressive radial stress, which is dictated by the blood pressure
and will therefore remain unaffected by growth. For this reason, that stress does not come into
consideration as driving force for positive growth in the associated direction, such that only the
isotropic driving force function from Eq.5.51, which includes the other two principal stresses, is
reasonable in the given context. With only one growth factor, the system of equations from
Eq. 5.19 reduces to a single equation, which can directly be solved for the incremental update

R®)
A9 = (5.78)
k+1 A1(93’3) e

of the growth factor 9. For the evaluation of the term A1(93’3), the derivative of the driving force

function ¢®)(X,) with respect to the growth factor 93 is required, see Eq.5.38 and Eq. 5.20a.
It can be computed from Eq.5.52 in combination with Eq. 5.53. With 8Fg/819(3) = g(s) from
Tab. 5.1 and the inverses

_ _ 1—96)
Fo'=FT=TI+ G MP (5.79)
from Eq. 5.26, Eq.5.53 can be simplified to
S =~ (MPCe+ CMP). (5.80)

Thereby, the symmetries of Mg(g) and C, as well as the property Ag’) . AS) = 1 have been used.

Inserting this result into Eq. 5.52 leads to
9 1 © ® Lce . (MO Q
o =~ |(MPCet CMP) S+ G h T (MPIC + CeMP )| (5.81)
With 8¢(3)/80 from Eq.5.54, the reduced form of Eq.5.39¢c can directly be solved for the
derivative
0®  EPk At

ocC Afg3’3)

which has to be provided for the growth part of the tangent modulus. Furthermore, the general
form of derivative of the 2" Piola-Kirchhoff stress tensor with respect to the growth factor
given in Eq. 5.35 can be specified by insertion of 0F,/ 99B) = Mg(S), which yields
o8 -1 -1 1 3 3) . 1 3 3
=~ (FRE) o [Mé )Se + S.MP + 1t <Mg( )C, + C. M >>} . (5.83)
Focusing on the growth part C¥ of the tangent modulus in the intermediate configuration, the
explicit expression

(Se+Ce:3CY): (F,"REF,T), (5.82)

(3)
2ky kAt
Cf = -2 T IMOS, + SMP + 1G5 (MPICo+ CoMP) | @ (S, + Co: 1 C5).

93) ALY
is finally obtained by combination of Eq. 5.83 and Eq. 5.82. Performing a pullback to the reference
configuration, the entire tangent modulus as defined in Eq. 5.22 can be computed according
to

C=(F,"®/F;,"): (C{+Cf): (F, ")RF; 1), (5.84)

where the elastic part C¢ = 4 §%¢)/0C? is defined by the constitutive material model.
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5 Framework for anisotropic stress-driven growth

5.2.3 Growth perpendicular to the directions of the first and second
principal stress

As brought up several times, the principal stress state in pressurized arteries can be idealized
by the idea of two tensile principal stresses in the plane of the vessel wall, which are largely
absorbed by the collagen fibers arranged in that plane, and of one compressive principal stress
in radial direction, which is directly linked to the blood pressure and is thus not susceptible to
adaptations of the tissue volume or properties. Based on this idea, an anisotropic growth model
focusing on the aim of reducing high tensile stresses in the arterial wall can be developed (ZAHN
& BALZANI, 2017). To this end, the directions of the first and second principal stresses . and
Y are taken into account for the definition of the growth tensor. Pursuing a reduction of the
associated principal stresses by an increase of the cross sectional area, growth perpendicular
to those directions, governed by the stresses themselves, is assumed. The three parts of the
generalized growth tensor from Eq. 5.7 are therefore set according to

F® = 9@ 4 (1 - 19@) M® for ac[1,2) and F® =1 (5.85)

with the structural tensors Mg(a) = Aéa) ® Aéa). The first and second part are adopting the
basic form of growth perpendicular to the direction Agl) as introduced in Eq. 5.1¢, which is
supposed to be controlled by the anisotropic driving force function from Eq.5.57. During the
local Newton iteration, the incremental updates of the growth factors are obtained from the
system of equations given in Eq.5.19 for the general case, which can now be reduced to two

equations with the solutions

A1(92’2)R(1) _ A1(9172)R(2)

(2) A(;’l)R(Q) - A(9271)R(1)
1,1 2,2 1,2 2,1

(1 _ =
AY k+1 = A1(91,1)A1(92,2) B A1(9172)A1(9271)

k+1 —

, (5.86)
94

195;0’
which have to be evaluated based on the values 19,(;) and 1953) of the previous iteration step.
This involves the abbreviations defined in Eq.5.38, which require knowledge of the deriva-
tives 9 / 99U) . For their specification, the expression from Eq.5.58 together with dC, / 99U
from Eq.5.53 has to be considered. Inserting the explicit form

R BT gt (1 ()M (7))o

of the inverse of the growth tensor from Eq. 5.25 with Eq. 5.26 and the derivatives

8Fg 2 1 2 2 1 2 2
S = Y (1= M) =91 -9 M + (1-92) M (5.88a)
OF; _ @) p() — g M) a0 — g pg@
s = (1= MP) FY =01+ (1-90) M -9 (5.88b)
from Tab. 5.1 into Eq. 5.53 and expanding all terms finally leads to the compact result
oc, 1 . |
e _ _ (4) (4)
o = 5 (F2C+ MY C+ CM) (5.89)

for both growth factors with j € [1,2]. This expression now allows the evaluation of Eq. 5.58 for
i,7 € [1,2]. For the growth part of the tangent modulus, the derivatives of the stress tensor S
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with respect to the growth factors from Eq. 5.35 and the derivatives of the growth factors with
respect to the Cauchy-Green tensor C' from Eq. 5.39 have to be specified. With the result from
Eq. 5.88, Eq. 5.35 can be simplified towards

oS
ov(@)

1

~(F'RE ) 5

28, — M{®S. — S.M{") + 590,

5 (20 - MO~ CM?) |,

which is valid for both a € [1,2]. Solving the reduced form of the system of equations from
Eq. 5.39 for the wanted terms, the results

319(1) r At ( (2,2) 8¢ (1,2),.(2) 8¢(2)>

= A0 — Ak (5.91a)
1,1) 4(2,2 1,2) (2.1 VA 9 Ny )

oC 41(9 )41(9 ) _ 41(9 )41(9 ) oC oC

(2) W
99 K At ( A0V Bqﬁ _ 420099 ) (5.91b)

ocC Afgl’l)A@’m—A1(91’2)A(2’1) 9 v HC

[ ¥

with 9¢p(®) /OC from Eq.5.59 are obtained. Using these expressions, an explicit representation of
the growth part of the tangent modulus defined in Eq. 5.22 can be found, if the abbreviations

S =28, - M{S, - S.M{") + 1T (2C, - M{IC, ~ CM) for ac 1,2,
oL} = APk (MPs, + (CeMD) : § ) = ATPES (MPS. + (CoMP) : §T5).
e = Ag’l)kff) (MPS. + (CMP) : 5C5) = AFVRY (MOS, + (CMY) : 1)

are introduced. Then, the growth part of the tangent modulus in the intermediate configuration

is given by
2

2Kk At 1
= S s eel (5.92)
i 1,1) (2,2 1,2) 4(2,1 Ce
A1(9 )A1(9 )7A1(9 )A1(9 )azlﬁ()
and the entire tangent modulus in the reference configuration is again obtained by applying the
pullback operation

C=(F,"RF;"): (C{+CP): (F, "RF; ). (5.93)

By comparison of Eq.5.92 to its equivalents on p.78 and p.79 for isotropic growth and for
growth in the direction of the compressive principal stress, it can be observed that the complexity
clearly increases with taking into account one or even more anisotropy directions. By advantage
of the generalized formulation, it is however not necessary to specify each imaginable model
variant in detail as exemplified here, since all of them are covered by the general equations.
With a suitable implementation of the generalized framework, various combinations of different
forms of the growth tensor with different driving force functions can thus be analyzed without
additional implementation effort.
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6 Stress-driven fiber reorientation

Besides tissue growth, remodeling in terms of a change of the internal structure of the tissue is
a relevant adaptation process in arterial walls. In the context of the phenomenological material
model for fiber-reinforced soft biological tissues by BALZANI, NEFF, et al. (2006), which considers
the tissue as an isotropic matrix with two embedded families of collagen fibers, remodeling
can be realized by a load-dependent reorientation of the collagen fibers. In default of a general
agreement on the mechanical stimulus, reorientation of the fibers just as growth is supposed to
be stress-driven based on the general motivation at the beginning of Chapter 5. As described in
Sec. 2.1 and confirmed by the studies of SCHRIEFL, ZEINDLINGER, et al. (2012), collagen fibers
in healthy arteries are primarily found in the plane of the vessel wall, where they are arranged
in two distinguishable helices around the vessel axis. Assuming an ideal tubular geometry, this
is the plane, where the highest tensile stresses occur, and the arrangement of the fibers is
thus well in agreement with their nature of being especially suited for carrying tensile loads.
In such an idealized situation, which is illustrated on the right hand side of Fig. 6.1, the two
fiber families can be represented by the vectors A®) and A whose orientation within the
axial-circumferential plane is defined by the angles Bf(l) and ﬁf(2) = —ﬁf(l) between the fibers
and the circumferential direction. But even in healthy arteries, those fiber angles have been
observed in experimental investigations to vary nonlinearly over the wall thickness, as for
example documented by SCHRIEFL, ZEINDLINGER, et al. (2012) or SCHRIEFL, WOLINSKI, et al.
(2013). Moreover, the definition of the fiber orientation vectors gets much more complex in
patient-specific arteries. On the one hand, the irregular geometry of such arteries can no longer
be idealized as thick-walled tube, which complicates the geometry-based identification of the
plane representing the vessel wall. On the other hand, a lot of patient-specific arteries might
show structural aberrations due to diseases like atherosclerosis, that locally affect the material
properties, the mechanical behavior and hence also the arrangement of the fibers. As shown
by AKYILDIZ, CHAIL et al. (2017) for atherosclerotic carotid plaques or by NIESTRAWSKA,
VIERTLER, et al. (2016) for aneurysmatic compared to healthy abdominal aortas, the collagen
fibers may significantly disperse out of the axial-circumferential plane in such cases, which means
that a single fiber angle ¢ is then not sufficient for the definition of a fiber orientation vector.
The aim behind a reorientation algorithm is thus twofold: First, it is expected to allow for an
automated identification of realistic fiber orientation vectors at each material point based on a
mechanically motivated hypothesis for an optimized fiber arrangement, which does not require
measurements or information about the orientation of the material points within the radial-
circumferential-axial coordinate system. Starting with an initial guess, the fiber arrangement
might be tuned prior to adjacent investigations by application of representative average loads.
As a second aspect however, the factual reorientation of the fibers in terms of a ‘“real time”
adaptation to changing mechanical conditions is enabled as well.

The most important prerequisite for the development of a fiber reorientation algorithm is
the definition of the target fiber orientations. Focusing on the assumption of a stress-driven
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6 Stress-driven fiber reorientation

reorientation, this can be accomplished by a hypothesis on an explicit correlation between stress
state and fiber arrangement. Once the favored fiber arrangement is identified, an algorithmic
concept for the replacement of the initially chosen by the desired fiber vectors has to be
determined. Apart from not being feasible for computational reasons, a sudden replacement is
not in line with experimental observations on arterial adaptation. From that point of view, an
approach for the continuous reorientation over time should be pursued.

6.1 Target fiber orientation

In order to arrive at a mechanically motivated prediction of the fiber arrangement in arterial
walls, it should be recalled that the main function of the embedded collagen fibers is to bear
tensile stresses. It can thus be presumed that the fibers are arranged in such a way that they can
most effectively perform this task. The local stress state at each material point is characterized
by three principal stresses, which are ordered by descending size, and the associated principal
directions. The existence of fibers is justifiable if at least one of these principal stresses is
positive. In that case, it is obvious that both fiber families should be aligned with the first
principal direction. The existence of two distiguishable fiber families gets relevant as soon
as two of the principal stresses are positive. Then, not only a single direction but a whole
plane is dominated by tensile stresses. For an optimized arrangement of the two fiber families
within that plane, HARITON, DEBOTTON, et al. (2007a) postulated the hypothesis that the
load-bearing behavior in arterial walls is promoted if the fibers are arranged symmetrically
with respect to the two maximum tensile principal stresses. Their angle with respect to the
direction of the first principal stress is thereby dictated by the ratio of the second to the first
principal stress. Considering the principal stresses as force vectors as illustrated in Fig. 6.1, this
means that the fibers are preferably aligned with the resultants of the tensile principal stresses.
HARITON, DEBOTTON, et al. (2007a) focused on the Cauchy stress tensor o to define their
target fiber orientations. This is indeed reasonable because it establishes a relation between the
fiber arrangement and the true stresses acting in the tissue. In the reorientation model presented

A
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targ,i /\

A
B, - SIE, \ / o
_ 2
S En p— <\ e
A®)

} , ~_

A(z)

targ,i

Figure 6.1: Following HARITON et al. (2007), the target fiber orientation vectors Agilgi and Aézzgi
are defined such that they point into the direction of the resultants of the tensile principzﬂ
stresses. The collagen fiber network adumbrated in the background of the draft is extracted
from a polarized light micrograph showing the media of a human thoracic aorta published

by SCHRIEFL, ZEINDLINGER, et al. (2012).
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6.1 Target fiber orientation

here, consistency with the stress-driven growth model treated in Chapter 5 shall be maintained.
For this reason, the symmetric part X, = 1/ (CeSe + S.C.) of the Mandel stress tensor in the
intermediate configuration, first introduced in Eq.5.12, is used for the definition of the target
fiber orientation vectors. Solving the eigenvalue problem det[3 — X.I] = 0 of this stress tensor,
the eigenvalues f% > 22 > igl and the corresponding unit eigenvectors FEy, Err and Eqyp are
obtained. Based on these quantities and the hypothesis for an optimized arrangement of the
fibers described above, the target fiber orientation vectors shown in Fig. 6.1 can be defined by
AW

targ,i

— (SN E+(ENE;r  and AP

targ,i

= (S4) Er— (&) En (6.1)
provided that at least ig is positive. The index “i” points out that these vectors are defined in
the intermediate configuration and the Macaulay bracket defined in Eq. 5.61 secures that only
tensile values of the principal stresses are taken into account. If only the largest principal stress
is tensile, both target vectors are aligned with the direction of that stress and both fiber families
will consequently seek to reorient towards this direction. In case that all principal stresses are
compressive, the fibers cannot contribute to a redistribution of the loads and the existing target
vectors from preceding simulation steps should be kept unchanged.

The reorientation of the fiber vectors A1) and A(?) will be regarded in the reference configuration.
To this end, the pullback operation and normalization

o FAY
Al = B R for ae 1,2 (6.2)
‘nglAtng,i‘

has to be applied to the target fiber orientation vectors. Prior to starting the reorientation, a
reasonable assignment of the target vectors to the existing fiber orientation vectors has to be
carried out. Fiber family 1 might in general not necessarily reorient towards the first, but rather
to the second target vector if this vector is closer to the original one. In order to minimize
the reorientation angles, the target vectors are therefore exchanged and/or rotated by 180°

if required, such that finally the vectors A&)rg and Agzg,

now without a bar, are obtained as
target vectors of the fiber families A®) and A®)| respectively. In view of a nonlinear finite
element implementation, it is almost sure that a simple replacement of the existing by the target
fiber orientation vectors at full level of the external loads is not applicable. Abrupt changes in
the fiber arrangement can be expected to provoke significant changes in the stress and strain
distributions, which are likely to endanger the convergence of the Newton iteration required
to obtain the new nodal displacements for the updated fiber arrangement. A nearby way out,
such pursued by HARITON, DEBOTTON, et al. (2007a), is a recomputation of the boundary
value problem with the new fiber orientations, beginning from the very first load step. Once the
full load level is attained again, a repeated computation of the target fiber orientations will
probably reveal that they have changed due to the update of the boundary value problem. In
order to arrive at a final fiber arrangement being in accordance with the favored one, several
iterative steps each including the entire load step procedure, might be required.

Another possibility to avoid large changes in the fiber arrangement during the global Newton
iteration is to perform a stepwise rotation of the pre-existing fiber orientation vectors towards
their target orientation at retained level of the external loads. Such an approach promises to be
computationally more efficient.
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6.2 Algorithms for the fiber reorientation

On the basis of a stepwise reorientation, FAUSTEN, BALZANI & SCHRODER (2016) proposed
an enhanced algorithmic scheme for the update of the fiber orientation vectors, which indeed
improves the computational efficiency of the original approach by HARITON, DEBOTTON, et al.
(2007a). The main advantage of their algorithm is that a recomputation of the entire boundary
value problem including load stepping can be prevented, which results in a reduced total number
of global Newton iterations. Apart from their approach, an alternative proposal for an iterative
reorientation (ZAHN & BALZANI, 2018a) will be the subject of this section. Considering the
reorientation as a time-delayed process by prescribing a scalar evolution equation for the angle
between the existing and the target fiber orientation vector, this algorithm also ensures that
no abrupt changes of the fiber arrangement occur. Especially in combination with the growth
model from Chapter 5 or other models which anyway call for the maintenance of a constant load
level until a steady state is reached, this method is straightforward. Furthermore, it harmonizes
well with the idea of a “real time” adaptation to changing mechanical conditions in contrast to
the approach by FAUSTEN, BALZANI & SCHRODER (2016), which considers the reorientation
as a purely technical problem. A comparison of both algorithms will be provided in Sec. 7.3.2
based on a simple numerical example.

6.2.1 Algorithm 1: Incremental reorientation (FAUSTEN et al., 2016)

(a) (a)

Given an existing fiber orientation vector A, and its target orientation Ag,., the target
difference vector @ @ @
AAj?targ = Agog — Aj(il for  a€ll,2] (6.3)

can be defined. This vector would formally have to be added to the existing fiber vector Ag-a_)l

for rotating it towards its target position. As explained above, this can not be done in a single
step without endangering the convergence of the subsequent Newton iteration needed to recover
equilibrium. In order to prevent this, FAUSTEN, BALZANI & SCHRODER (2016) perform an
incremental remodeling loop, where the index j denotes the incremental reorientation steps.
Two such steps are visualized in Fig. 6.2. Instead of the whole difference vector, only a fraction
AAY =b; AAY) (6.4)

j,targ

(@),

of this vector is added to the fiber orientation vector Aﬁ)l to obtain the updated vector Aj

The coefficient b; is thereby computed such that the rotation angle
[3((1) = arccos (Ag-a) AW ) with B(al) < Brmax (6.5)

I‘7j ]_ 1 g —

does not exceed a user-defined maximal rotation angle 3; max. Beginning with the initial fiber
vector defined by j = 0, a series of incrementally updated fiber orientation vectors

A" Al
(0 = g‘)l o with  je[1,2,...] (6.6)
A%+ A4

(a)

is computed until the target orientation Ag,;, is reached. After each reorientation step, a
standard Newton iteration is performed to re-establish equilibrium. The fiber as well as the
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Figure 6.2: Illustration of the stepwise reorientation of an existing fiber orientation vector towards its
target orientation by means of the incremental reorientation steps 7 = 1 and j = 2. After
each step, equilibrium is established in a global Newton iteration. The figure is based on
Fig.2 by FAUSTEN, BALZANI & SCHRODER (2016).

target fiber orientation vectors thereby have to be saved as history variables in order to be
available in the next reorientation step.

Once the target fiber arrangement is attained at all Gaufl points, the target fiber orientation
vectors can be computed again based on the new stress state. If they deviate from the existing
fiber vectors at any Gauft point, another incremental reorientation loop has to be started. This
procedure with an outer loop providing the new target orientations and an inner loop, which
incrementally rotates the fiber vectors towards those target orientations, is repeated until the
norm of the target difference vector defined in Eq. 6.3 is lower than a predefined tolerance near
zero for both fiber families at all Gauft points of the boundary value problem.

6.2.2 Algorithm 2: Continuous reorientation

The original reorientation algorithm by HARITON, DEBOTTON, et al. (2007a) and its enhance-
ment by FAUSTEN, BALZANI & SCHRODER (2016) both try to arrive at the favored fiber
arrangement as fast as possible and do not include the temporal component of the reorientation
process. Even if mainly the final arrangement of the fibers is matter of interest, modeling
its continuous development over time is a simple way to avoid abrupt changes and, provided
that a simulation over time is anyhow required by the material model, additional Newton
iterations. Furthermore, such an approach can be handled exclusively within the material
subroutine without any interventions to the standard workflow outside. The proposed algorithm
for continuous reorientation of the fibers (ZAHN & BALZANI, 2018a) is based on the definition
of the two angles

n\® = arccos (A(“) : Agggg) for a € [1,2] (6.7)
between the existing fiber vectors A(® and their target orientations Aézzg. These angles are
scalar measures for the deviation between the existing and the favored fiber arrangement and are
intended to evolve continuously towards zero over time. This can be realized by the definition
of two scalar evolution equations

7 = kn(!n(“)l) <0 for a€l,2] (6.8)
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for the time derivatives of the angles n(®, where the remodeling function k; has to be negative
for all non-zero values of n(® and zero for vanishing angles 7(® = 0. Transferring the illustration
from Fig. 5.3 to the given situation, the approximation 77521 — n,(La) R~ ﬁT(La)At is obtained when
applying explicit Euler time integration to Eq.6.8. The wanted values of the angles at time

step n 4+ 1 are thus given by
177(;21 ~ DAL + 7@ with At =tpi1 —ty (6.9)

and can directly be computed without iteration since they do only depend on known values from
the previous time step n. Due to use of explicit time integration, numerical stability can only
be ensured for sufficiently small time step sizes At. Considering remodeling in parallel with the
growth model from Chapter 5 however leads to the conclusion that the time step sizes required
for convergence of the local Newton iteration mentioned in Sec.5.1.3 are small enough for a
stable reorientation of the fibers. An implicit time integration scheme, being unconditionally
stable but associated to increased computational effort, can therefore be estimated as dispensable
in the given context. In consequence of explicit time integration, the remodeling part C* of the
tangent modulus C = C® 4 C8 + C", which would formally have to be defined as

2
- o8 _ on@
Cr=2 ;:1 5@ © 3G (6.10)

in analogy to Eq. 5.22, is zero due to 8777(521 /OCp+1 = 0. As obvious from Eq. 6.9, the angles n(@
between the existing and the target fiber orientation vectors decrease over time provided that the
derivatives 7'7551) from Eq. 6.8 are negative. This is fulfilled for a remodeling function &, < 0. Two
suggestions for the remodeling function, and the computation of the updated fiber orientation
vectors from Eq. 6.9 are the subject of the following paragraphs. There is no distinction of the
remodeling functions and their parameters with respect to both fiber families. For that reason,

the index a at variable n(®), denoting the fiber family, is skipped in favor of better legibility.

Remodeling functions. In order to enable the definition of a maximal remodeling veloc-
ity |n| = kf{ , which decelerates with a horizontal tangent towards zero for decreasing angles 7,
the broken rational remodeling function

+ 2
kyn

— ; ; + +

kn(n) = . with ninrad, ky >0 and m, >0 (6.11)
is designed. As visualized in Fig. 6.3, the asymptotical convergence of this function towards —k:f{
for large angles n can be regulated by the second parameter mf{ . For m:)“ — 0, the constant

function k, = —k‘f{ , which is however undefined for n = 0°, is approached.

An angular point at n = 0°, leading to a reduction of the reorientation velocity in the final
phase, might be a realistic scenario, but is not essential if mainly the result and not the temporal
progress of the reorientation process is the matter of interest. For such cases, the logarithmic
remodeling function

kn(n) = =k In(m; n| + 1) with ninrad, kF >0 and m} >0, (6.12)

shown in Fig. 6.4, is proposed. Both parameters m;'; and /{:f{ affect the reorientation velocity.
For m:]“ — 0, the whole function approaches zero, whereas the parameter k::]r is a pure scaling
factor. In contrast to the broken rational remodeling function, the logarithmic one is not bounded

by an asymptote giving a limit for the maximal reorientation velocity.
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Figure 6.3: Effect of the parameters kj,’ and m;’ on the graph of the broken rational remodeling
function from Eq.6.11 (previously published in Fig. 3, ZAHN & BALZANI, 2018a).
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Figure 6.4: Effect of the parameters k:;;‘ and m;‘ on the graph of the logarithmic remodeling function

from Eq.6.12 (previously published in Fig.4, ZAHN & BALZANI, 2018a).

Computation of the updated fiber orientation vectors. After evaluation of the evolution
equation for the angle between the existing and the target fiber orientation vector, the actual
value 777(:21 of this angle but not yet the fiber vector Afﬂl belonging to it is known. The
illustration in Fig. 6.5 shows, that it can be computed from the target vector minus a certain

multiple of the unit difference vector

AA )
AAY) = —EE with AAL), = A A, (6.13)
[AA G|

Using the angular sum of 180° and the relation a/sin(«) = b/ sin(f) valid in a general triangle,
the angle

~(@) = 180° — 77521 — arccos (AEZI)«g,nH : AAEZgg) (6.14)
and the vector @
(@ _ 4@ Sin (Me1) \ 4 (0)
An+1 - Atarg,n+1 - W Af4targ (6'15)

are obtained. The normalized fiber orientation vector at time step n + 1 is finally given by

Al@)

(@) _ n+1
A = Ao (6.16)

n+1
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n+1 (a)

Figure 6.5: Illustration of the rotation of a fiber orientation vector ALY towards its new position at
time step n + 1 (previously published in Fig. 2, ZAHN & BALzZANI, 2018a).

Compared with algorithm 1, the algorithmic treatment of the continuous fiber reorientation is
straightforward. In each iteration step within the global Newton iteration associated to time
step n + 1, the fiber orientation vectors computed in the previous time step n are used to
determine the actual stress state. Based thereon, the target fiber orientation vectors A,Egzgm 11
are computed. Presuming that those vectors converge towards stationary values over time, the

existing angles 777(51) can be approximated by

n\@ ~ arccos (A(“) AW

n targ,n+1) ’ (6'17)

even though the target fiber orientation vectors of the previous time step would formally have to
be inserted. With the updated angles 777(:21 from Eq. 6.9, the future fiber orientation vectors Aglall
can be provided. Those vectors will actually not be needed until the next time step is reached,

and have thus to be saved as history variables.
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7 Growth and fiber reorientation in idealized
arterial segments

The purpose of this chapter is the illustration and evaluation of the combined framework for
stress-driven growth and fiber reorientation by means of numerical examples on idealized arterial
segments. In two preliminary sections, the constitutive material model used in all simulations
and the boundary value problem as well as general information, which applies to all examples,
are introduced. After the investigation of some numerical aspects, ba