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excellent lectures and seminars, which raised my interest and led me to specialize in
this field.

Looking further backwards, my former math teacher Melanie Reidegeld played a
pivotal role in my decision to study mathematics. I would like to thank her for her
extraordinary support through many years and “Jugend forscht” competitions.

v



Words cannot express my gratitude to my family, especially my one-in-a-million
parents Andrea and Ralf and my beloved sister Natascha, for their unconditional
love and continuous support during my studies (without even knowing exactly what
I am doing). I admire your ability to give me the freedom to grow while always
standing by. Thank you for always believing in me.

Last but not least, I would like to express my deep gratitude to Tim, my dearest and
loving partner-in-crime. Thank you for your undoubtedly invaluable contributions
to my studies. Thank you for being with me all the time. Thank you for making
our journey so precious.

Nina Dörnemann
Bochum, March 2022



Contents

1 Introduction 1

2 Linear spectral statistics 5
2.1 Mathematical foundations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Limiting spectral distribution of the sample covariance matrix . . . . 8

3 A sequential perspective on linear spectral statistics 10
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Detailed applications of our main theorem 15
4.1 How to calculate mean and covariance . . . . . . . . . . . . . . . . . 15
4.2 First applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Logarithmic law of the sequential sample covariance matrix . . . . . 18

5 A statistical application: Monitoring sphericity in large dimension 19
5.1 A change-point test for sphericity . . . . . . . . . . . . . . . . . . . . 19
5.2 Convergence of the test statistic . . . . . . . . . . . . . . . . . . . . . 20

6 Proof of Theorem 3.2.1 26
6.1 Outline of the proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . 26
6.2 Proof of Theorem 3.2.1 using Theorem 6.1.1 . . . . . . . . . . . . . . 28
6.3 Proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.1 Proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . 31
6.3.2 Proof of Theorem 6.3.1 . . . . . . . . . . . . . . . . . . . . . . 31
6.3.3 Proof of Theorem 6.3.2 and continuity of the limiting process . 46
6.3.4 Proof of Theorem 6.3.3 . . . . . . . . . . . . . . . . . . . . . 49

6.4 Details on the arguments in Section 6.2 . . . . . . . . . . . . . . . . . 50

7 More details on the proof of Theorem 6.1.1 54
7.1 Auxiliary results for the proof of Theorem 6.3.1 in Section 6.3.2 . . . 54
7.2 Proof of Lemma 6.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Proof of Lemma 6.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Proof of Theorem 6.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.5 Proof of Theorem 6.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.6 Proof of the statement (6.53) . . . . . . . . . . . . . . . . . . . . . . 72

vii



7.7 Further auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Proof of Theorem 5.2.1 98
8.1 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Auxiliary results for the proof of Theorem 5.2.1 . . . . . . . . . . . . 100

8.2.1 How to calculate mean and covariance in Theorem 3.2.1 . . . 100
8.2.2 Proof of Corollary 4.2.1 . . . . . . . . . . . . . . . . . . . . . 101
8.2.3 Proof of Corollary 4.3.1 . . . . . . . . . . . . . . . . . . . . . 104

9 Gaussian fluctuations for diagonal entries of a large sample preci-
sion matrix 108
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.3 CLT for a single diagonal entry . . . . . . . . . . . . . . . . . . . . . 111
9.4 Joint convergence of diagonal entries . . . . . . . . . . . . . . . . . . 113
9.5 Proofs of results in Section 9.3 . . . . . . . . . . . . . . . . . . . . . 113

9.5.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.6 Proofs of results in Section 9.4 . . . . . . . . . . . . . . . . . . . . . . 124

9.6.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.6.2 Proof of Theorem 9.4.1 . . . . . . . . . . . . . . . . . . . . . 126

9.7 Details on the QR-decomposition of X>n . . . . . . . . . . . . . . . . 129

List of symbols 130

viii



Chapter 1

Introduction

Over the last decades, the availability of high-dimensional data sets across diverse
disciplines such as as biostatistics, wireless communication and finance has trans-
formed statistical practice. Rapid technological developments have led to large
amounts of digital data. For example, computing speed and storage capability have
exponentially grown, which enables users to collect, store and analyze data sets of
very high dimension. While technological advances are helpful for users in innumer-
able aspects, it is an urgent challenge for statisticians to develop mathematically
solid tools for high-dimensional inference. Indeed, traditional multivariate analysis,
as outlined in the text books of Anderson (1984) or Muirhead (1982), is developed
under the paradigm that the dimension is negligible compared to the sample size and
breaks down seriously if this assumption is violated. Such problems have spurred
the development of new analysis tools, that work for dimensions of the same order
as and even larger than the sample size.
Turning closer to the scope of this work, random matrix theory is concerned with
the study of the spectral behavior of various kinds of random matrices under the
assumption that their dimension increases. Classical statistical guarantees derived
in the case of fixed dimension often fail severely when considering the dimension as
a growing parameter. Thus, a new class of limiting results is needed in order to
meet the challenges of big data.
Since the middle of the 20th century, the development of random matrix theory
was pushed by various applications, especially in the field of quantum mechanics.
Simultaneously, mathematicians got attracted to the study of random matrices. In
his pioneering work (Wigner, 1958), Wigner showed that the expected spectral dis-
tribution of a large Gaussian matrix converges to the semicircular law. Bai and Yin
(1988) proved the limiting spectral distribution of a sample covariance matrix to be
the semicircular law when the dimension is asymptotically negligible in comparison
to the sample size. For the high-dimensional case, the work of Marčenko and Pas-
tur (1967) is often considered as a breakthrough, establishing the limiting spectral
distribution for a general class of sample covariance matrices. This work laid the
foundation for a variety of follow-up works, including Bai et al. (1986); Grenan-
der and Silverstein (1977); Wachter (1978, 1980); Yin (1986); Yin and Krishnaiah
(1983); Yin et al. (1983), which assumed weaker conditions on the matrix entries
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2 Chapter 1. Introduction

and showed that other types of random matrices obtain nonrandom limiting spectral
distributions.
The study of random matrices is also vital from a statistical point of view (see the
review of Paul and Aue, 2014). For a statistician, second-order limit theorems such
as a central limit theorem for linear spectral statistics are of particular interest, and
have therefore attracted increasing attention in the last two decades. Indeed, linear
spectral statistics are frequently used to construct tests for various hypotheses. Here,
the spectral properties of the sample covariance matrix are of particular interest.
Given a sample from a high-dimensional data set, an important indicator for the
interaction of the data is the sample covariance matrix. Estimation and inference
for this crucial object are fundamental tasks of statistical analysis with numerous
applications in biostatistics, wireless communications and finance (see, e.g., Fan and
Li (2006), Johnstone (2006) and the references therein). In fact, many test statistics
rely on a linear spectral statistic of the sample covariance matrix. For example,
Mauchly (1940) proposed a likelihood ratio test for the hypothesis of sphericity (of
a normal distribution), which has been extended by Gupta and Xu (2006) to the
non-normal case and by Bai et al. (2009) and Wang and Yao (2013) to the high-
dimensional case, where the dimension p is of the same order as the sample size n,
that is p/n → y ∈ (0, 1) as p, n → ∞ (see also Theorem 9.12 in the monograph of
Yao et al. (2015) for a further extension). Alternative tests based on distances be-
tween the sample covariance matrix and a multiple of the identity matrix have been
considered in Ledoit and Wolf (2002) and Chen et al. (2010) among others. Fisher
et al. (2010) suggested a generalization of John’s test for sphericity, which is based
on a ratio of arithmetic means of the eigenvalues of different powers of the sam-
ple covariance matrix. Among other testing problems such as sphericity, Jiang and
Yang (2013) considered some classical q-sample testing problems under normality in
a high-dimensional setting, which are further generalized in Jiang and Qi (2015); Qi
et al. (2019); Dette and Dörnemann (2020); Guo and Qi (2021); Dörnemann (2022).
Because of its importance in statistics, numerous authors have investigated the
asymptotic properties of linear spectral statistics from a more general perspective.
An early reference is Jonsson (1982), who established a central limit theorem for the
sum of the eigenvalues of a Wishart matrix raised to some power. In their pioneering
paper, Bai and Silverstein (2004) proved a central limit theorem for linear spectral
statistics of the form

p∑
i=1

f(λi(Bn))

of the sample covariance matrices Bn = 1
n

∑n
i=1 T

1/2
n xix

?
iT

1/2
n under rather general

conditions, where x1, . . . ,xn are independent p-dimensional random vectors with in-
dependent real or complex valued (centered) entries xij, Tn is a p× p (non-random)
Hermitian nonnegative definite matrix and λ1(Bn) ≤ . . . ≤ λp(Bn) are the ordered
eigenvalues of the matrix Bn. Here, x?i denotes the conjugate transpose of xi for
1 ≤ i ≤ n. While in the original work (Bai and Silverstein, 2004), the random vari-
ables xij were assumed to be independent and identically distributed, the assumption
of identical distribution was weakened in Bai and Silverstein (2010). Several authors
have followed this line of research and tried to relax the assumptions for such state-
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ments (see Pan and Zhou, 2008; Lytova and Pastur, 2009; Shcherbina, 2011; Pan,
2014; Zheng et al., 2015b; Najim and Yao, 2016; Zou et al., 2021, among others).
Other authors focused on linear spectral statistics of F -matrices (see, for exam-
ple, Zheng, 2012; Zheng et al., 2017; Bodnar et al., 2019), auto-cross covariance (Jin
et al., 2014), information-plus-noise matrices (Banna et al., 2020), large-dimensional
matrices with bivariate dependence measures as entries (Bao et al., 2015a; Li et al.,
2019) or sample correlation matrices (Gao et al., 2017; Parolya et al., 2021; Heiny
and Parolya, 2021). Other recent works include Ji and Lee (2020) on deformed
Wigner matrices, Li et al. (2021) on Kendall’s rank correlation matrices and Wang
and Yao (2021) on block-Wigner-type matrices, among many others. While most
of this work deals with the case that the sample size is asymptotically proportional
to the dimension (p/n → y ∈ (0,∞)), a CLT for linear spectral statistics of a
rescaled version of the sample covariance matrix has been established for the ultra
high-dimension case p/n→∞ (Chen and Pan, 2015; Qiu et al., 2021).
In the main part of this work, we will take a different point of view on linear spectral
statistics and study these objects from a sequential perspective. More precisely, we
consider a sequential version of the empirical covariance estimator

Bn,t =
1

n

bntc∑
i=1

T1/2
n xix

?
iT

1/2
n , 0 ≤ t ≤ 1, (1.1)

and investigate the probabilistic properties of the stochastic process corresponding
to linear spectral statistics of Bn,t, that is,

St =
1

p

p∑
i=1

f(λi(Bn,t)) , 0 ≤ t ≤ 1, (1.2)

where λ1(Bn,t) ≤ . . . ≤ λp(Bn,t) are the ordered eigenvalues of the matrix Bn,t. In
particular, we prove that for any 0 < t0 < 1, an appropriately normalized and cen-
tered version of the process (St)t∈[t0,1] converges weakly to a non-standard Gaussian
process.
Our interest in these processes is partially motivated by the central role of sequen-
tial covariance estimators in the detection of second-order structural breaks (see Aue
et al., 2009; Dette and Gösmann, 2020, among others). In this field, various func-
tionals of the process (Bn,t)0≤t≤1 have been studied in the case of fixed dimension,
and we expect that results on the weak convergence of the process (St)t∈[t0,1] will be
useful in the context of change-point analysis for high-dimensional covariance ma-
trices. In fact, we use the probabilistic results presented in this work to develop a
procedure for monitoring deviations from sphericity, see Chapter 5 for more details.
Surprisingly, sequential processes of the form (1.2) have not found much attention in
the literature. To our best knowledge, we are only aware of the works of D’Aristotile
(2000) and Nagel (2020), who considered sequential aspects of large dimensional
random matrices from a different point of view. More precisely, D’Aristotile (2000)
studied a sequential process generated from the first bntc diagonal elements of a
random matrix chosen according to the Haar measure on the unitary group of n×n
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matrices and showed that this process converges weakly to a standard complex-
valued Brownian motion (see also D’Aristotile et al., 2003, for similar results). Re-
cently, Nagel (2020) proved a functional central limit theorem for the sum of the
first bntc diagonal elements of an n × n matrix f(Z), where Z has an orthogonal
or unitarily invariant distribution such that tr

(
f(Z)

)
satisfies a CLT. Compared

to these results, the contributions of the present work are conceptually different,
because, in contrast to the cited references, the parameter t used in the definition
of the process (1.1) also appears in the eigenvalues λi(Bn,t). This “non-linearity”
results in a substantially more complicated structure of the problem. In particular,
the limiting processes of (St)t∈[t0,1] are non-standard Gaussian processes (except for
the simplest case f(x) = x and Tn = I), and the proofs of our results (in particular
the proof of tightness) require an extended machinery, which has so far not been
considered in the literature on linear spectral statistics. As a consequence, we pro-
vide a substantial generalization of the classical CLT for linear spectral statistics
(see, for example, Bai and Silverstein, 2010), which is obtained from the process
convergence of (St)t∈[t0,1] (appropriately standardized) via continuous mapping.

This thesis is structured as follows. In Chapter 2, we lay the mathematical founda-
tion for the study of linear spectral statistics and recall important results from the
literature. Chapter 3 is dedicated to the main result about linear spectral statistics
of sequential sample covariance matrices, which is applied for some special cases in
Chapter 4. A statistical application to a change-point problem for large covariance
matrices can be found in Chapter 5. The proof of the main result formulated in
Chapter 3 is challenging and deferred to Chapters 6 and 7. A strategy for the proof
can be found in Section 6.1. The applications are proven in Chapter 8. Moreover,
a central limit theorem for the diagonal entries of the inverse sample covariance
matrix and its connection to linear spectral statistics are presented in Chapter 9.

In agreements with the doctoral regulations of the Faculty of Mathematics of the
Ruhr-University Bochum, parts of this thesis are still under review by a journal.
More precisely, the mathematical theory presented in Chapters 3 to 8 is based on
Dörnemann and Dette (2021) and was submitted for publication. Chapter 9 is based
on a manuscript, which has not been submitted so far. Both projects are based on
joint work with my supervisor Holger Dette.



Chapter 2

Linear spectral statistics

In this section, we lay the mathematical foundation for the study of linear spectral
statistics. We introduce the most important objects and present well-known results
on the spectrum of the sample covariance matrix, including the Marčenko–Pastur
regime.

2.1 Mathematical foundations

Spectral norm and diagonal matrix

For any matrix A ∈ Cp×p, the spectral (or operator) norm ‖A‖ is the square root
of the largest eigenvalue of AA?. Moreover, diag(A) denotes the diagonal matrix
which has the same diagonal as A.

Empirical and limiting spectral distribution

For any matrix A ∈ Cp×p with real eigenvalues, we denote its ordered eigenvalues
by

λ1(A) ≥ · · · ≥ λp(A) .

Hence, we have ‖A‖ =
√
λ1(AA?). The empirical spectral distribution of A is

defined by

FA =
1

p

p∑
i=1

δλi(A),

where δa denotes the Dirac mass at some point a ∈ R. Let (FAp)p∈N be a sequence of
empirical spectral distributions for (random) matrices Ap ∈ Cp×p, p ∈ N, with real
eigenvalues. The non-random distribution F is called limiting spectral distribution
of the sequence (Ap)p∈N if (FAp)p∈N converges weakly to F (almost surely).

5



6 Chapter 2. Linear spectral statistics

Linear spectral statistic

Let A ∈ Cp×p be a random matrix with real eigenvalues and f be a function defined
on the support of FA. The statistic

1

p

p∑
i=1

f(λi(A)) =

∫
f(x)dFA(x).

is called linear spectral statistic of the matrix A.

Stieltjes transform

Let µ be a finite measure on the real line. Its Stieltjes transform sµ is defined as

sµ(z) =

∫
1

x− z
µ(dx), z ∈ C+ = {z ∈ C : Im(z) > 0}.

If µ = FA is an empirical spectral distribution, then its Stieltjes transform has the
form

sFA(z) =
1

p
tr
{

(A− zI)−1
}
, z ∈ C+,

where the matrix (A− zI)−1 is called the resolvent.
The Stieltjes transform sF of a distribution F characterizes F uniquely and F being
the limiting spectral distribution of a sequence (Ap)p∈N of random matrices with
real eigenvalues is equivalent to the convergence

lim
p→∞

sFAp (z) = sF (z) almost surely

of the corresponding Stieltjes transforms for all z ∈ C+. By Cauchy’s integral
formula (see, e.g., Ahlfors, 1953), we write∫

f(x)dG(x) =
1

2πi

∫ ∫
C

f(z)

z − x
dzdG(x) = − 1

2πi

∫
C
f(z)sG(z)dz,

where G is an arbitrary cumulative distribution function (c.d.f.) with a compact
support, f is an arbitrary analytic function on an open set, say O, containing the
support of G, C is a positively oriented contour in O enclosing the support of G.
This equation draws an important connection to linear spectral statistics and is
usually used when proving a central limit theorem for linear spectral statistics. We
will also pursue this approach when proving the main result of this thesis. For a
more detailed discussion of this approach, we refer the reader to Section 6.1.

Marčenko–Pastur law

The Marčenko–Pastur distribution F y,σ2
with index y ∈ (0,∞) and scale parameter

σ2 > 0 has the density function

f(x) =

{
1

2πxyσ2

√
(b− x)(x− a), if a ≤ x ≤ b,

0, otherwise,
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with an additional point mass at the origin of value 1− 1/y if y > 1, where

a = σ2(1−√y)2, b = σ2(1 +
√
y)2.

Let y ∈ (0,∞) and H be a non-random distribution. The so-called generalized
Marčenko-Pastur distribution F y,H is characterized through its Stieltjes transform
s = sF y,H , which is the unique solution of the equation

s(z) =

∫
1

λ(1− y − yzs(z))− z
dH(λ), z ∈ C+. (2.1)

The fundamental equation (2.1) is called the Marčenko–Pastur equation for histor-
ical reasons. Defining

s(z) = −1− y
z

+ ys(z), z ∈ C+,

then we can write (2.1) equivalently as

z = − 1

s(z)
+ y

∫
1

1 + s(z)λ
dH(λ),

which is referred to as the Silverstein equation.

(Sequential) sample covariance matrix

Let Tn ∈ Cp×p be a non-negative definite Hermitian matrix with Hermitian square
root T

1/2
n ∈ Cp×p and x1, . . . ,xn ∈ Cp be a sample of (real or complex valued)

random vectors with centered and standardized entries. Then the random matrix

Bn,t =
1

n

bntc∑
i=1

T1/2
n xix

?
iT

1/2
n ∈ Cp×p, t ∈ [0, 1],

is called the sequential sample covariance matrix of T
1/2
n x1, . . . ,T

1/2
n xn. The matrix

Bn,1 is called the sample covariance matrix of T
1/2
n x1, . . . ,T

1/2
n xn. The matrix T =

Tn is referred to as the population covariance matrix. We define for Bn,t the (bntc×
bntc)-dimensional companion matrix through

Bn,t =
1

n
X?
n,tTnXn,t, (2.2)

where the data matrix Xn,t is defined as

Xn,t = (x1, . . . ,xbntc) ∈ Cp×bntc, t ∈ [0, 1].

Note that both matrices (n/bntc)Bn,t and (n/bntc)Bn,t have the same non-vanishing
eigenvalues and consequently their empirical spectral distributions satisfy

bntcF (n/bntc)Bn,t − pF (n/bntc)Bn,t = (bntc − p)I[0,∞). (2.3)
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2.2 Limiting spectral distribution of the sample

covariance matrix

A variety of important test statistics can be written as a function of linear spectral
statistics of the sample covariance matrix (see discussion in Chapter 1). Its limiting
spectral distribution was found by Marčenko and Pastur (1967) and this result has
been generalized by various authors.

Theorem 2.2.1 (Theorem 2.9 in Yao et al. (2015)) Let T = I. Suppose that the en-
tries xij of the data matrix Xn,1 are i.i.d. complex random variables with E[x11] = 0
and E|x11|2 = σ2 and p/n → y ∈ (0,∞) as n → ∞. Then, almost surely, the em-
pirical spectral distribution (FBn,1)n∈N of the sample covariance matrices (Bn,1)n∈N
converges weakly to the Marčenko–Pastur law F y,σ2

.

The following example illustrates the different asymptotic regimes for linear spec-
tral statistics depending on the dimension-to-sample-size ratio.

Example 2.2.2 Let x1, . . . ,xn ∼ Np(0, I) be a independent sample from a p-
dimensional normal distribution with mean vector 0 = (0, . . . , 0)> ∈ Rp and co-
variance matrix I ∈ Rp×p. For T = I, consider the statistic

Tn = log |Bn,1| =
p∑
j=1

log (λj(Bn,1)) ,

known as the generalized variance. If the dimension p is fixed, then we get from
Example 1.1 in Yao et al. (2015) the convergence√

n

p
Tn

D→ N (0, 2), n→∞.

However, if the dimension increases with the sample size at the same rate, that is,
p/n→ y ∈ (0, 1) for n→∞, we observe a completely different asymptotic behavior
of Tn. More precisely, using Theorem 2.2.1 given above and Example 2.11 in Yao
et al. (2015), it is seen that almost surely

Tn
p
→

∞∫
0

log(x)dF y,1(x) =
y − 1

y
log(1− y)− 1 < 0,

and consequently, √
n

p
Tn → −∞ almost surely, n→∞.

This toy example indicates that the asymptotic properties of linear spectral statistics
depend crucially on the order of the dimension p in comparison to the sample size n.
Note that the asymptotic properties of the process (log |Bn,t|)t∈[t0,1] for some t0 > 0
are examined in Corollary 4.3.1 in Section 4.3.
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Theorem 2.2.1 deals with the simplest case T = I. The following result provides
the limiting spectral distribution for more complex-structured population covariance
matrices and is a consequence of Theorem 1.1 in Bai and Zhou (2008).

Theorem 2.2.3 Assume that x1, . . . ,xn ∈ Cp are independent random vectors
with centered and standardized entries with a common finite fourth moment and
p/n→ y ∈ (0,∞). Let Tn ∈ Cp×p be a population covariance matrix such that FTn

converges weakly to some non-random distribution H. Then, almost surely, FBn,1

converges weakly to the generalized Marčenko–Pastur law F y,H for n→∞.

The conditions of the previous theorem are adapted to the setting of this thesis,
where the fourth moment will be assumed to exist. For example, another version
assuming finite variance and i.i.d. data can be found in Yao et al. (2015) (Theorem
2.14). Due to Theorem 2.2.1 and Theorem 2.2.3, the condition p/n→ y ∈ (0,∞) is
also called the Marčenko–Pastur regime.

If t ∈ (0, 1] is fixed, we conclude for the limiting spectral distribution of (Bn,t)n∈N
from Theorem 2.2.3 that

F̃ yt,H(x) := lim
n→∞

FBn,t(x) = F yt,H(x/t) almost surely (2.4)

at all points x ∈ R, where F̃ yt,H is continuous. Here, H denotes the weak limit
of (Hn)n∈N = (FTn)n∈N. In other words, H is the limiting spectral distribution of
(Tn)n∈N.



Chapter 3

A sequential perspective on linear
spectral statistics

Let x1, . . . ,xn be independent p-dimensional random vectors with real or complex
entries and covariance matrix given by the identity matrix I = Ip ∈ Rp×p . We
use the notation xj = (x1j, . . . , xpj)

> for the components of xj and assume that
E[xij] = 0 and E[x2ij] = 1. When considering asymptotics, the dimension p = pn of
the data is allowed to increase with the sample size n→∞ at the same order, that
is, p/n → y ∈ (0,∞) as n → ∞. Recall the notation of the sequential covariance
estimator Bn,t in (1.1) and consider the corresponding linear spectral statistic (as a
function of t)

St =
1

p
tr
(
f(Bn,t)

)
=

1

p

p∑
j=1

f (λi(Bn,t)) , t ∈ [0, 1],

where f is an appropriate function defined on a subset of the complex plane. For
a given t0 ∈ (0, 1], we are interested in the asymptotic properties of the process
(St)t∈[t0,1] and will prove a weak convergence result for an appropriately standardized
version of this process in the space `∞([t0, 1]) of bounded functions defined on the
interval [t0, 1]. Note that the random variable S1 has been studied intensively in the
literature (see the discussion in Chapter 1). Before providing preliminaries for the
main result, we present an example for the simplest case f(x) = x and T = I.

Example 3.0.1 (Trace of the sequential sample covariance matrix) Assume that
the real valued random variables xij are independent with E[xij] = 0, E[x2ij] = 1,
and common fourth moment E[x4ij] = ν4 <∞, where 1 ≤ i ≤ p, 1 ≤ j ≤ n, and set
T = I. Let y = limn→∞ p/n ∈ (0,∞). Consider the linear spectral statistic

Tn(t) =
1

p
tr (Bn,t) =

1

pn

bntc∑
i=1

||xi||22 =
1

pn

bntc∑
i=1

p∑
j=1

x2ij.

For the mean, we calculate

ETn(t) =
1

pn

bntc∑
i=1

p∑
j=1

Ex2ij =
bntc
n

.

10
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Moreover, we may write

√
n
√
p
p(Tn(t)− bntc

n
) =

√
n
√
p

 1

n

bntc∑
i=1

p∑
j=1

(x2ij − 1)


=

1
√
pn

bntc∑
i=1

p∑
j=1

(x2ij − 1).

Note that

cov

 1
√
pn

bntc∑
i=1

p∑
j=1

x2ij,
1
√
pn

bnsc∑
k=1

p∑
l=1

x2ij

 =
(ν4 − 1)(bnsc ∧ bntc)

n
.

By an application of Donsker’s invariance principle for triangular arrays (Theorem
2.12.6, Van Der Vaart and Wellner, 1996), we have for n→∞ the weak convergence(√

n
√
p
p(Tn(t)− bntc

n
)

)
t∈[0,1]

 
√
ν4 − 1(Wt)t∈[0,1]

in the space `∞[0, 1] of bounded functions, where (Ws)s∈[0,1] denotes a standard
Brownian motion. This implies(

p

(
Tn(t)− bntc

n

))
t∈[0,1]

 
√

(ν4 − 1)y(Wt)t∈[0,1] in `∞[0, 1].

Note that the limiting process is centered and admits the following covariance func-
tion for s, t ∈ [0, 1]

cov(
√

(ν4 − 1)yWs,
√

(ν4 − 1)yWt) = (ν4 − 1)y(s ∧ t).

3.1 Preliminaries

For the following discussion, recall the definition of the (bntc × bntc)-dimensional
companion matrix Bn,t given in (2.2) and denote the limiting spectral distribution

(if it exists) of FBn,t and its corresponding Stieltjes transform by

F̃
yt,H

and s̃t(z) = s
F̃
yt,H (z), (3.1)

respectively. A straightforward calculation using (2.1) (for details, see Lemma 7.1.6)
shows that this Stieltjes transform satisfies the equation

z = − 1

s̃t(z)
+ y

∫
λ

1 + λts̃t(z)
dH(λ). (3.2)
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Recalling (2.3), we note that F (n/bntc)Bn,t has the limit F yt,H as ybntc = p/bntc →
yt ∈ (0,∞) if and only if F (n/bntc)Bn,t has a limit F yt,H and in this case

F yt,H − ytF yt,H = (1− yt)I[0,∞).

For z ∈ C+ we therefore obtain a relation between the corresponding Stieltjes trans-
forms

st(z) = −1− yt
z

+ ytst(z). (3.3)

As an empirical version of F yt,H , we further define the distribution F ybntc,Hn through

F ybntc,Hn − ybntcF ybntc,Hn = (1− ybntc)I[0,∞),

and consider its rescaled version

F̃
ybntc,Hn

(x) = F ybntc,Hn
( n

bntc
x
)
, x ∈ R. (3.4)

3.2 Main result

Our main result provides the asymptotic properties of the process (Xn(f, t))t∈[t0,1],
where t0 ∈ (0, 1], f is a given function,

Xn(f, t) =

∫
f(x)dGn,t(x), (3.5)

the process Gn,t is defined by

Gn,t(x) = p
(
FBn,t(x)− F̃ ybntc,Hn(x)

)
, t ∈ [t0, 1],

and

F̃ ybntc,Hn(x) = F ybntc,Hn

(
n

bntc
x

)
, x ∈ R, (3.6)

is a rescaled version of the generalized Marčenko-Pastur distribution defined by
(2.1). In the following theorem, we make use of the notion of weak convergence in
the space `∞ of bounded functions. For a detailed definition of this concept, we
refer the reader to Chapter 1 in Van Der Vaart and Wellner (1996). (Note that in
contrast to this monograph, we sometimes deal with complex-valued functions by
considering real and imaginary part.) The proof of the following result is challenging
and therefore deferred to Chapter 6 and Chapter 7. An overview about the main
steps is given in Section 6.1.

Theorem 3.2.1 Assume that p/bntc → yt = y/t ∈ (0,∞) and that the following
additional conditions are satisfied:

(a) For each n, the random variables xij = x
(n)
ij are independent with Exij = 0,

E|xij|2 = 1, max
i,j,n

E|xij|12 <∞.
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(b) (Tn)n∈N is a sequence of p× p Hermitian non-negative definite matrices with
bounded spectral norm and the sequence of spectral distributions (FTn)n∈N con-
verges to a proper c.d.f. H.

(c) Let t0 ∈ (0, 1] and f1, f2 be functions, which are analytic on an open region
containing the interval[

lim inf
n→∞

λp(Tn)I(0,1)(yt0)t0(1−
√
yt0)

2, lim sup
n→∞

λ1(Tn)(1 +
√
yt0)

2
]
. (3.7)

(1) If the random variables xij are real and E[x4ij] = 3, then the process

(Xn(f1, t), Xn(f2, t))t∈[t0,1]

converges weakly to a Gaussian process (X(f1, t), X(f2, t))t∈[t0,1] in the space

(`∞([t0, 1]))2 with means

E[X(fi, t)] = − 1

2πi

∫
C

fi(z)
ty
∫ s̃3t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)(

1− ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

)2dz , i = 1, 2,

and covariance kernel

cov(X(f1, t1), X(f2, t2)) =
1

2π2

∫
C1

∫
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1,

where C, C1, C2 are arbitrary closed, positively orientated contours in the com-
plex plane enclosing the interval in (3.7), C1, C2 are non overlapping and the
function σ2

t1,t2
(z1, z2) is defined in (6.44).

(2) If the random variables xij are complex with Ex2ij = 0 and E|xij|4 = 2, then
(1) also holds with means E[X(fi, t)] = 0, i = 1, 2, and covariance structure

cov(X(f1, t1), X(f2, t2)) =
1

4π2

∫
C1

∫
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1.

Remark 3.2.2 While linear spectral statistics have been studied intensively for
sample covariance matrices (see, for example, Bai and Silverstein, 2004, 2010), very
little effort has been done in a sequential framework so far. In contrast to these “clas-
sical” CLTs, the sequential version in Theorem 3.2.1 reveals the asymptotic behavior
of the whole process of linear spectral statistics corresponding to the sequential em-
pirical covariance process (1.1) and thus provides a substantial generalization of
its one-dimensional versions. In particular, the limiting process is not a standard
Gaussian process and the proofs require an extended machinery and some additional
assumptions.

(1) While assumptions such as (3.7) and on the spectrum of the population co-
variance matrix Tn are common even for a standard CLT of non-sequential
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linear spectral statistics, we should have a closer look at the moment assump-
tions. Among many other technical challenges, the most delicate part of the
proof of Theorem 3.2.1 lies in controlling the process (Xn(f, t))t of linear spec-
tral statistics in terms of (asymptotic) tightness, which enforces higher-order
moment conditions in order to find sharper bounds for the concentration of
random quadratic forms of the type

x?jAxj − tr(A), (3.8)

where A denotes a random p× p matrix independent of xj, j ∈ {1, . . . , n}. In
particular, the existence of the 12th-moment in Theorem 3.2.1 is exclusively
needed for the proof of asymptotic tightness and is not used for the proof
of convergence of the finite-dimensional distributions (for details, see Section
6.3.3). Strengthening the moment conditions on the underlying random vari-
ables appears to be a convenient tool for investigating linear spectral statistics
of non-standard random matrices. For example, in the work of Banna et al.
(2020), the authors consider linear spectral statistics of random information-
plus-noise matrices and assume the existence of the 16th moment for deriving
a non-sequential CLT for linear spectral statistics corresponding to this type
of random matrices. Consequently, the higher-order moment condition implies
stronger bounds for the moments of random quadratic forms of the type (3.8)
(see their Lemma A.2 for more details).
Moreover, note that our condition on the 12th moment implies the Lindeberg-
type condition (9.7.2) in the work of Bai and Silverstein (2010).

(2) In order to allow for non-centralized data (E[xij] 6= 0), Zheng et al. (2015b)
prove a substitution principle for linear spectral statistics of recentered sam-
ple covariance matrices and, thus, weakening the conditions of Bai and Silver-
stein’s CLT. We expect that it is possible to pursue such a generalization of
Theorem 3.2.1 combining the tools developed in this work with the method-
ology used in the proof of Theorem 3.2.1.

(3) Furthermore, it might be of interest to relax the Gaussian-type 4th moment
condition. When allowing for a general finite 4th moment, additional terms for
the covariance structure and the bias arise, whose convergence is not guaran-
teed under the assumptions of Theorem 3.2.1. In fact, in this case those terms
depend also on the eigenvectors of the population covariance matrix Tn, which
are not controlled under the conditions of Theorem 3.2.1. For instance, in the
non-sequential case, Najim and Yao (2016) show that the Lévy–Prohorov dis-
tance between the linear statistics’ distribution and a normal distribution,
whose mean and variance may diverge, vanishes asymptotically, while Pan
(2014) imposes additional conditions on Tn in order to ensure convergence
of the additional terms for mean and covariance. For the sequential version
considered in this thesis, it seems to be promising to derive the convergence of
such additional terms under similar conditions on Tn as used by Pan (2014)
for a proof of a “classical” CLT.



Chapter 4

Detailed applications of our main
theorem

In general, the calculation of the limiting parameters appearing in Theorem 3.2.1
might be involved, since mean and covariance are given by contour integrals and rely
on the Stieltjes transform s̃t(z), which is defined implicitly by an equation involving
the limiting spectral distribution H (see (3.2)) and has in general no closed form. In
the case Tn = I, these integrals can be interpreted as integrals over the unit circle
(see Proposition 4.1.1 in Section 4.1), and for specific functions f1 and f2 an explicit
calculation of the asymptotic expectation and variance in Theorem 3.2.1 is possible.
We present some examples in Section 4.2 and Section 4.3.

4.1 How to calculate mean and covariance

The following result provides essential formulas for the calculation of the mean and
covariance structure in Theorem 3.2.1 in the case Tn = I and is proven in Section
8.2.1. It generalizes the formulas given in Proposition A.1 in Wang and Yao (2013)
and Proposition 3.6 in Yao et al. (2015).

Proposition 4.1.1 Let ht =
√
yt ∈ (0,∞) and Tn = I and let f1 and f2 be functions

which are analytic on an open region containing the interval in (3.7). For the process(
X(f1, t1), X(f2, t)

)
t∈[t0,1]

given in Theorem 3.2.1, we have the following formulas

E[X(fi, t)] =
1

2πi
lim
r↘1

∮
|ξ|=1

f(t(1 + htrξ + htr
−1ξ−1 + h2t ))

( ξ

ξ2 − r−2
− 1

ξ

)
dξ,

cov(X(f1, t1), X(f2, t2)) =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

f1(t1(1 + ht1r1ξ1 + ht1r
−1
1 ξ−11 + h2t1))

× f2(t2(1 + ht2r2ξ
−1
2 + ht2r

−1
2 ξ2 + h2t2))

g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1

where t, t1, t2 ∈ [t0, 1] with t2 ≤ t1

g1(ξ1, ξ2) =−
(
h1h2r1r2

{
h42r

2
1r

2
2t

2
2ξ

2
1ξ

2
2 + 2h32r

2
1r2t2ξ

2
1ξ2(r

2
2t1 + t2ξ

2
2)

15
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− 2h1h2r1r2t1ξ1ξ2(r
2
2t1(2 + h1r1ξ1) + r1t2ξ1(h1 + 2r1ξ1)ξ

2
2

}
+ h21t1ξ

2
2

{
r22t1(1 + 2h1r1ξ1 + 3r21ξ

2
1 + h21r

2
1ξ

2
1 + 2h1r

3
1ξ

3
1) + r21t2ξ

2
1 (−1 + r21ξ

2
1)ξ22

}
+ h22

{
r42t

2
1 − r22t1t2(1 + 2h1r1ξ1 − 3r21ξ

2
1 + 2h21r

2
1ξ

2
1 + 2h1r

3
1ξ

3
1)ξ22 + r21t

2
2ξ

2
1ξ

4
2

})
,

g2(ξ1, ξ2) =
(
h2r2 − h1r1ξ1ξ2

)2
×
(
h22r1r2t2ξ1ξ2 − h1r2t1(1 + h1r1ξ1 + r21ξ

2
1)ξ2 + h2r1ξ1(r

2
2t1 + t2ξ

2
2)
)2
.

In the complex case, we have E[X(fi, t)] = 0, i = 1, 2, and the covariance structure
is given by 1/2 times the covariance structure for the real case.

4.2 First applications

We apply Theorem 3.2.1 for the special case f1(x) = x, f2(x) = x2,Tn = I, which is
motivated by the statistical test presented in Chapter 5. A proof can be found in
Section 8.2.2.

Corollary 4.2.1 Let t0 > 0. Assume that the random variables xij satisfy condition
(a) from Theorem 3.2.1 for 1 ≤ i ≤ p, 1 ≤ j ≤ n and p/n→ y ∈ (0,∞) as n→∞.

Then it holds:

1. If the variables xij are real and Ex4ij = 3, then the sequence(
(Xn(f1, t))t∈[t0,1], (Xn(f2, t))t∈[t0,1]

)
n∈N

with

Xn(f1, t) = tr (Bn,t)− bntcyn,

Xn(f2, t) = tr
(
B2
n,t

)
− bntcyn

(
bntc
n

+ yn

)
, t ∈ [t0, 1],

converges weakly to a Gaussian process
(
(X(f, t))t∈[t0,1], (X(g, t))t∈[t0,1]

)
in the

space (`∞([t0, 1]))2 with means

E[X(f1, t)] = 0, E[X(f2, t)] = ty,

and covariance function for t1, t2 ∈ [t0, 1]

cov(X(f1, t1), X(f1, t2)) = 2ymin(t1, t2),

cov(X(f2, t1), X(f2, t2)) = 4 min(t1, t2)y
{

2t1t2 + [min(t1, t2) + 2(t1 + t2)] y + 2y2
}
,

cov(X(f1, t1), X(f2, t2)) = 4 min(t1, t2)y(t2 + y).

2. If xij are complex with Ex2ij = 0 and E|xij|4 = 2, then (1) also holds with means
E[X(f, t)] = E[X(g, t)] = 0 and covariance structure given by 1/2 times the
covariance structure given for the real case.
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Remark 4.2.2 (Special cases of Corollary 4.2.1) 1. A straight-forward applica-
tion of Donsker’s Theorem yields the convergence (Xn(f1, t))t∈[0,1]  (X(f1, t))t∈[0,1]
in `∞[0, 1] for the real case. Details are given in Example 3.0.1.

2. Considering the special case t1 = t2 = 1 for the real case, we have the following
convergence by Corollary 4.2.1(

tr (Bn,1)− p
tr
(
B2
n,1

)
− p(1 + yn)

)
D→ N

((
0
y

)
,

(
2y 4y(1 + y)

4y(1 + y) 4y(2 + 5y + 2y2)

))
Using the substitution principle from Zheng et al. (2015b), this implies Propo-
sition 2 in Ledoit and Wolf (2002) for α = 1.

We further apply Theorem 3.2.1 for the special case f1(x) = x2, f2(x) = x4,Tn =
I, which is motivated by a statistical test presented in Chapter 5.

Corollary 4.2.3 Let t0 > 0. Assume that the random variables xij satisfy condition
(a) from Theorem 3.2.1 for 1 ≤ i ≤ p, 1 ≤ j ≤ n and p/n→ y ∈ (0,∞) as n→∞.

Then it holds:

1. If the variables xij are real and Ex4ij = 3, then the sequence(
(Xn(f1, t))t∈[t0,1], (Xn(f2, t))t∈[t0,1]

)
n∈N

with

Xn(f1, t) = tr
(
B2
n,t

)
− bntcyn

(
bntc
n

+ yn

)
, t ∈ [t0, 1],

Xn(f2, t) = tr
(
B4
n,t

)
− bntcyn

{(
bntc
n

)3

+ 6

(
bntc
n

)2

yn + 6
bntc
n

y2n + y3n

}
,

converges weakly to a Gaussian process
(
(X(f1, t))t∈[t0,1], (X(f2, t))t∈[t0,1]

)
in

the space (`∞([t0, 1]))2 with means

E[X(f1, t)] = ty, E[X(f2, t)] = ty(6t2 + 17ty + 6y2),

and covariance function for t1, t2 ∈ [t0, 1]

cov(X(f1, t1), X(f1, t2)) = 4 min(t1, t2)y
{

2t1t2 + [min(t1, t2) + 2(t1 + t2)] y + 2y2
}
,

cov(X(f1, t1), X(f2, t2)) = 8 min(t1, t2)y
{

2t1t
3
2 + t22(3 min(t1, t2) + 2(6t1 + t2))y

+ 4t2(2 min(t1, t2) + 3(t1 + t2))y
2 + (3 min(t1, t2) + 2(t1 + 6t2))y

3 + 2y4
}
,

and for t2 = min(t1, t2)

cov(X(f2, t1), X(f2, t2))

=8t2y
{

4t31t
3
2 + 6t21t

2
2(3t2 + 4(t1 + t2))y + 12t1t2(t

2
2 + 4t2(t1 + t2)
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+ 2(t21 + 6t1t2 + t22))y
2 + (t32 + 12t22(t1 + t2) + 2t2(9t

2
1 + 64t1t2 + 9t22)

+ 4(t31 + 36t21t2 + 36t1t
2
2 + t32))y

3 + 12(t22 + 4t2(t1 + t2)

+ 2(t21 + 6t1t2 + t22))y
4 + 6(3t2 + 4(t1 + t2))y

5 + 4y6
}
.

2. If xij are complex with Ex2ij = 0 and E|xij|4 = 2, then (1) also holds with means
E[X(f, t)] = E[X(g, t)] = 0 and covariance structure given by 1/2 times the
covariance structure given for the real case.

Proof. We omit the proof, since it is very similar to the proof of Corollary 4.2.1.

4.3 Logarithmic law of the sequential sample co-

variance matrix

In the following corollary, we study the sequential process corresponding to the
log-determinant of Bn,t. Note that the log-determinant log |Bn,1| of the sample co-
variance matrix is a well-studied object in random matrix theory (Cai et al., 2015;
Wang et al., 2018) and has many applications in statistics. Other authors such as
Girko (1998), Nguyen and Vu (2014) and Bao et al. (2015b) were interested in the
logarithmic law of a random matrix with independent entries or of the sample corre-
lation matrix (Parolya et al., 2021; Heiny and Parolya, 2021). The first appearance
of the so-called generalized variance log |Bn,1| in literature goes back to Frisch (1929)
and Wilks (1932). A proof of the following result can be found in Section 8.2.3.

Corollary 4.3.1 Let t0 ∈ (0, 1], and assume that condition (a) of Theorem 3.2.1 is
satisfied and that p/n→ y ∈ (0, t0) as n→∞.

1. If the variables xij are real and Ex4ij = 3, then the process

(
Dn(t)

)
t∈[t0,1]

=
(

log |Bn,t|+ p+ bntc log(1− ybntc)− p log
(bntc

n
− yn

))
t∈[t0,1]

,

converges weakly to a Gaussian process (D(t))t∈[t0,1] in the space `∞([t0, 1]) with
mean

E[D(t)] =
1

2
log(1− yt)

and covariance kernel

cov(D(t1),D(t2)) = −2 log(1− yt1 ∧ yt2 ).

2. If xij are complex with Ex2ij = 0 and E|xij|4 = 2, then (1) also holds with mean
E[D(t)] = 0 and cov(D(t1),D(t2)) = − log(1− yt1 ∧ yt2).



Chapter 5

A statistical application:
Monitoring sphericity in large
dimension

5.1 A change-point test for sphericity

In many statistical problems, an important assumption is sphericity, which means,
that the components of a random vector are independent and have common variance.
In the present context, the corresponding test problem can be formulated as

H0 : Tn = σ2Ip for some σ2 > 0, vs. H1 : Tn 6= σ2Ip for all σ2 > 0. (5.1)

In general, it is well-known that the likelihood ratio test statistic for the hy-
potheses in (5.1) is degenerated if p > n (see Anderson, 1984; Muirhead, 2009). A
test statistic which is also applicable in the case p ≥ n has been proposed by John
(1971) and is based on the statistic

1

p
tr
{( Bn,1

1
p

tr Bn,1

− I
)2}

+ 1 =

1
p

tr(B2
n,1)(

1
p

tr Bn,1

)2 .
The asymptotic properties of this statistic in the high-dimensional regime are inves-
tigated by Ledoit and Wolf (2002) and Yao et al. (2015) in the case y ∈ (0,∞) and
by Birke and Dette (2005) in the ultra-high dimensional case y =∞.

In the following discussion, we will use the results of Chapter 3 to develop a
sequential monitoring procedure for the assumption of sphericity.

To be precise, we consider random variables y1, . . . ,yn ∈ Rp with real entries,
where

yi = Σ
1
2
i xi, 1 ≤ i ≤ n,

for symmetric non-negative definite matrices Σ1, . . . ,Σn ∈ Rp×p and random vari-
ables x1, . . . ,xn ∈ Rp with real entries satisfying the assumptions stated in Chapter
3. We are interested in monitoring the sphericity assumption

H0 : Σ1 = . . . = Σn = σ2Ip for some σ2 > 0

19
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vs. H1 : Σ1 = . . . = Σbnt?1c = σ2Ip, Σbnt?1c+1 = . . . = Σn 6= σ2Ip, (5.2)

for some 0 < t?1 < 1. For the construction of a test we consider a sequential version
of the statistic proposed by John (1971), that is,

Un,t =

1
p

tr(Σ̂2
n,t)(

1
p

tr Σ̂n,t

)2 , (5.3)

and investigate the asymptotic behavior of the stochastic process Un = (Un,t)t∈[t0,1]
under both the null hypothesis and the alternative. Here, Σ̂n,t denotes the sequential
sample covariance matrix corresponding to the sample y1, . . . ,ybntc, that is,

Σ̂n,t =
1

n

bntc∑
i=1

yiy
>
i =

1

n

bntc∑
i=1

Σ
1
2
i xix

>
i Σ

1
2
i . (5.4)

Note that in contrast to tests based on the likelihood ratio principle the dimension
may exceed the sample size. Moreover, under the null hypothesis, we have Σi = σ2Ip
(i = 1, . . . , n), and a simple calculation shows that the statistic Un,t is independent
of the concrete proportionality constant σ2.

5.2 Convergence of the test statistic

The following theorem deals with the weak convergence of (Un)n∈N considered as a
sequence in the space `∞([t0, 1]) of bounded functions and its proof is postponed to
Chapter 8. Recall that the symbol  denotes weak convergence of processes and

the symbol
D→ weak convergences of a real-valued random variables.

Theorem 5.2.1 Let y ∈ (0,∞), t0 > 0 and define yt = y/t for t ∈ [t0, 1]. If the
random variables x1, . . . ,xn satisfy the assumptions (a) and (1) of Theorem 3.2.1,
it follows under the null hypothesis (5.2) that

p
(
Un,t − 1− ybntc

)
t∈[t0,1]

 (Ut)t∈[t0,1] in `∞([t0, 1]),

as n→∞, where (Ut)t∈[t0,1] denotes a Gaussian process with mean function E[Ut] =
yt and covariance kernel

cov(Ut1 , Ut2) = 4y2max(t1,t2)
, t1, t2 ∈ [t0, 1].

Remark 5.2.2

(1) To obtain a test for the hypotheses in (5.2) we note that the continuous map-
ping theorem implies under the null hypothesis

sup
t∈[t0,1]

p
(
Un,t − 1− ybntc

) D→ sup
t∈[t0,1]

Ut, n→∞ . (5.5)
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Therefore we propose to reject the null hypothesis in (5.2) whenever

sup
t∈[t0,1]

p
(
Un,t − 1− ybntc

)
> cα, (5.6)

where cα denotes the (1 − α)-quantile of the statistic supt∈[t0,1] Ut. Thus, we
have by (5.5)

lim
n→∞

PH0

(
sup
t∈[t0,1]

p
(
Un,t − 1− ybntc

)
> cα

)
= P

(
sup
t∈[t0,1]

Ut > cα

)
≤ α,

which means, that the test keeps a nominal level α (asymptotically).

(2) In order to investigate the consistency of the test (5.6) assume that the matrices
Σi in (5.2) satisfy

Σi =

{
σ2Ip if 0 ≤ i ≤ bnt?1c,
Σ if bnt?1c < i ≤ n,

where σ2 > 0 and Σ is a p×p nonnegative definite matrix. We also assume that
1
p
trΣ and 1

p
tr(Σ2) converge to g > 0 and h > 0, respectively. Furthermore, for

the matrix H = Σ
1
2 = (Hij)i,j=1,...,p we have(1

p

p∑
j,l=1

H2
jl

)2
=
(1

p
trΣ
)2
→ g2.

A straightforward calculation then shows that for t ∈ (t?1, 1)

1

p
E
[
tr
(
Σ̂n,t

)]
P−→ t?1σ

2 + (t− t?1)g,

1

p
E
[
tr
(
Σ̂2
n,t

)]
P−→ (t?1)

2 σ4 + 2t?1σ
2(t− t?1)g + (t− t?1)2h+ yt?1σ

4 + y(t− t?1)g.

Using a martingale decomposition and the estimate (9.9.3) in Bai and Silver-
stein (2010), one can show that for fixed t ∈ (t?1, 1)

E|s
F Σ̂n,t

(z)− E[s
F Σ̂n,t

(z)]|2 → 0,

if we assume that the spectral norm ||Σ|| is uniformly bounded with respect
to n ∈ N. Using (6.1), this implies

1

p
tr
(
f(Σ̂n,t)

)
− 1

p
E
[
tr
(
f(Σ̂n,t)

)]
P→ 0

for f(x) = x and f(x) = x2. Consequently,

Un,t
P−→(t?1)

2σ4 + 2t?1σ
2(t− t?1)g + (t− t?1)2h+ yt?1σ

4 + y(t− t?1)g2

(t?1)
2σ4 + ((t− t?1)g)2 + 2t?1σ

2(t− t?1)g
=1 + yt + ∆1,t + ∆2,t
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where

∆1,t =
(t− t?1)2(h− g2)

(t?1)
2σ4 + ((t− t?1)g)2 + 2t?1σ

2(t− t?1)g
≥ 0

by construction, and

∆2,t =
yt?1σ

4 + y(t− t?1)g2

(t?1)
2σ4 + ((t− t?1)g)2 + 2t?1σ

2(t− t?1)g
− yt

=
yt?1σ

4 + y(t− t?1)g2 − yt
{

(t?1)
2σ4 +

(
(t− t?1)g

)2
+ 2t?1σ

2(t− t?1)g
}

(t?1)
2σ4 +

(
(t− t?1)g

)2
+ 2t?1σ

2(t− t?1)g

=
ytt

?
1(t− t?1) (σ2 − g)

2

(t?1)
2σ4 +

(
(t− t?1)g

)2
+ 2t?1σ

2(t− t?1)g
≥ 0.

Note that under the alternative in (5.2) two types of structural breaks in the
covariance structure corresponding to the terms ∆1,t and ∆2,t may occur. On
the one hand, the diagonal elements in the matrices Σ1, . . . ,Σn might shift
from σ2 to a different variance while the matrices still remain spherical. This
structural break is captured by the term ∆2,t. On the other hand, the change
in the matrices could violate the sphericity assumption, which corresponds to
the term ∆1,t.
Consequently, whenever there exists a parameter t̃ ∈ (t?1, 1) such that ∆1,t̃ > 0
or ∆2,t̃ > 0, it follows under the additional assumption y − yn = o (p−1) that

sup
t∈[t0,1]

p(Un,t − 1− ybntc) ≥ p(Un,t̃ − 1− ybnt̃c)
P−→ ∞,

and in this case the test (5.6) rejects the null hypothesis with a probability
converging to 1 as p, n→∞, p/n→ y ∈ (0,∞). This is in particular the case
for the alternative considered in (5.2).

Fisher et al. (2010) consider several extensions of the classical test introduced
by John (1971). Motivated by this work, an alternative test for the hypothesis (5.2)
could be based on the test statistic

U
(2)
n,t =

1
p

tr(Σ̂4
n,t)(

1
p

tr Σ̂2
n,t

)2 ,
where the matrix Σ̂n,t is defined in (5.4). For t = 1, the asymptotic properties of an

appropriately centered version of U
(2)
n,1 have been investigated by Fisher et al. (2010)

assuming that all arithmetic means of the eigenvalues of the sample covariance up
to order 16 converge to the corresponding arithmetic means of the eigenvalues of the
population covariance. The following result provides the weak convergence of the
corresponding stochastic process U

(2)
n = (U

(2)
n,t )t∈[t0,1] under the null hypothesis. A

corresponding asymptotic level-α test and a discussion of its power properties can
be obtained by similar arguments as given for the process

(
U

(1)
n,t

)
t∈[t0,1]

in Remark

5.2.2 and the details are omitted for the sake of brevity.
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Theorem 5.2.3 Under the assumptions of Theorem 5.2.1 we have

p
(
U

(2)
n,t −

1 + 6ybntc + 6y2bntc + y3bntc
(1 + ybntc)2

)
t∈[t0,1]

 (U
(2)
t )t∈[t0,1] in `∞([t0, 1]),

where (U
(2)
t )t∈[t0,1] denotes a Gaussian process with mean function

E[U
(2)
t ] =

y(4t2 + 7ty + 4y2)

t(t+ y)2
, t ∈ [t0, 1],

and covariance kernel

cov(U
(2)
t1 , U

(2)
t2 )

=
8y2
{

4t21(2t
2
2 + 3t2y + 2y2) + 6t1y(4t22 + 5t2y + 2y2) + y2(21t22 + 24t2y + 8y2)

}
t21(t1 + y)2(t2 + y)2

for t0 ≤ t2 ≤ t1 ≤ 1.

Proof. Using Corollary 4.2.3 combined with the functional delta method, the proof
of Theorem 5.2.3 is very similar to the proof of Theorem 5.2.1 in Chapter 8 and
therefore omitted.

Example 5.2.4 We conclude this section with a small simulation study illustrating
the finite-sample properties of the test (5.6). For this purpose, we generated centered
p-dimensional normally distributed data with various covariance structures. To be
precise, we consider the the alternatives

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = Ip + diag(0, . . . , 0︸ ︷︷ ︸
p/2

, δ, . . . , δ︸ ︷︷ ︸
p/2

), (5.7)

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = Ip + diag(0, . . . , 0︸ ︷︷ ︸
p/2

, δ, . . . , δ︸ ︷︷ ︸
p/2

) + S̃(δ),

(5.8)

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = (1 + ε)Ip, (5.9)

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = (1 + ε)Ip + S(ε), (5.10)

where δ, ε ≥ 0 determine the “deviation” from the null hypothesis (note that the
choice δ = 0 and ε = 0 correspond to the null hypothesis (5.2)). Here, the entries
of the p× p matrix S(ε) in (5.10) are given by Sj,j−1(ε) = Sj−1,j(ε) = ε, 1 ≤ j ≤ p,
and all other entries are 0. Similarly, the p× p matrix S̃(δ) in (5.8) has the entries
S̃j,j−1(δ) = S̃j−1,j(δ) = δ, p/2 < j ≤ p, and all other entries are 0.

In Figure 5.1 and Figure 5.2, we display the empirical rejection of the test (5.6)
for the different alternatives and different values of n and p, where the change point
is given by t? = 0.6. For the parameter t0, we always use t0 = 0.2, and all results
are based on 2, 000 simulation runs. The vertical gray line in each figure defines the
nominal level α = 5%.
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Figure 5.1: Simulated rejection probabilities of the test (5.6) under the null hypoth-
esis (δ = 0) and the different alternatives in (5.7) (left) and (5.8) (right) for δ > 0 .
The circle indicates n = 200, p = 300, the triangle n = 200, p = 120 and the square
n = 150, p = 300.

Figure 5.2: Simulated rejection probabilities of the test (5.6) under the null hypoth-
esis (ε = 0) and the different alternatives in (5.9) (left) and (5.10) (right) for ε > 0.
The circle indicates n = 200, p = 300, the triangle n = 200, p = 120 and the square
n = 150, p = 300.

Note that the choices δ = 0 and ε = 0 correspond to the null hypothesis in
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(5.7), (5.8), (5.9) and (5.10), respectively. We observe a good approximation of
the nominal level in all cases under consideration. Moreover, the test has power
under all considered alternatives, even if the dimension p is substantially larger
than the sample size. Note that the test performs better for alternatives of the
form (5.8) compared to the alternatives in (5.7). This reflects the intuition that the
alternative in (5.7) is somehow closer to sphericity than the alternative (5.8). A
similar observation can be made for the alternatives (5.9) and (5.10).



Chapter 6

Proof of Theorem 3.2.1

6.1 Outline of the proof of Theorem 3.2.1

A frequently used powerful tool in random matrix theory is the Stieltjes transform.
This is partially explained by the formula∫

f(x)dG(x) =
1

2πi

∫ ∫
C

f(z)

z − x
dzdG(x) = − 1

2πi

∫
C
f(z)sG(z)dz, (6.1)

where G is an arbitrary cumulative distribution function (c.d.f.) with a compact
support, f is an arbitrary analytic function on an open set, say O, containing the
support of G, C is a positively oriented contour in O enclosing the support of G and

sG(z) =

∫
1

x− z
dG(x)

denotes the Stieltjes transform of G. Note that (6.1) follows from Cauchy’s integral
formula (see, e.g., Ahlfors, 1953) and Fubini’s theorem. Thus invoking the contin-
uous mapping theorem, it may suffice to prove weak convergence for the sequence
(Mn)n∈N, where

Mn(z, t) = p
(
sFBn,t (z)− s

F̃
ybntc,Hn (z)

)
, z ∈ C. (6.2)

Here, s
F̃
ybntc,Hn denotes the Stieltjes transform of F̃ ybntc,Hn given in (3.6) character-

ized through the equation

s
F̃
ybntc,Hn (z) =

∫
1

λ bntc
n

(
1− ybntc − ybntczsF̃ ybntc,Hn (z)

)
− z

dHn(λ), (6.3)

and the contour C in (6.2) has to be constructed in such a way that it encloses the
support of F̃ ybntc,Hn and FBn,t with probability 1 for sufficiently large n ∈ N, t ∈
[t0, 1]. This idea is formalized in the proof of Theorem 3.2.1 in Section 6.2.
In order to prove the weak convergence of (6.2), define a contour C as follows. Let
xr be any number greater than the right endpoint of the interval (3.7) and v0 > 0

26
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be arbitrary. Let xl be any negative number if the left endpoint of the interval (3.7)
is zero. Otherwise, choose

xl ∈
(

0, lim inf
n→∞

λp(Tn)I(0,1)(yt0)t0(1−
√
yt0)

2
)
.

Let Cu = {x+ iv0 : x ∈ [xl, xr]} ,
C+ = {xl + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]},

and define C = C+ ∪ C+, where C+ contains all elements of C+ complex conjugated.
Next, consider a sequence (εn)n∈N converging to zero such that for some α ∈ (0, 1)

εn ≥ n−α,

define

Cl = {xl + iv : v ∈ [n−1εn, v0]}
Cr = {xr + iv : v ∈ [n−1εn, v0]},

and consider the set Cn = Cl∪Cu∪Cr. We define an approximation M̂n of the process
Mn for z = x+ iv ∈ C+, t ∈ [t0, 1] by

M̂n(z, t) =


Mn(z, t) if z ∈ Cn,
Mn(xr + in−1εn, t) if x = xr, v ∈ [0, n−1εn],

Mn(xl + in−1εn, t) if x = xl, v ∈ [0, n−1εn].

(6.4)

In Lemma 6.4.3 in Section 6.4, it is shown that (M̂n)n∈N approximates (Mn)n∈N
appropriately in the sense that the corresponding linear spectral statistics

− 1

2πi

∫
C
f(z)Mn(z, t)dz and − 1

2πi

∫
C
f(z)M̂n(z, t)dz

in (6.1) coincide asymptotically. As a consequence, the weak convergence of the
process (6.2) follows from that of M̂n, which is established in the following theorem.
The proof is given in Section 6.3.

Theorem 6.1.1 (Weak convergence for the process of Stieltjes transforms) Under
the assumptions of Theorem 3.2.1, the sequence (M̂n)n∈N defined in (6.4) converges
weakly to a Gaussian process (M(z, t))z∈C+,t∈[t0,1] in the space `∞(C+ × [t0, 1]).

The mean of the limiting process M is given by

EM(z, t) =


ty
∫ s̃3t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)(

1−ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

)2 for the real case,

0 for the complex case,

(6.5)

where z ∈ C+, t ∈ [t0, 1]. In the complex case, the covariance kernel of the limiting
process M is given by

cov(M(z1, t1),M(z2, t2)) = E
[
(M(z1, t1)− E[M(z1, t1)]) (M(z2, t2)− E[M(z2, t2)])

]
= σ2

t1,t2
(z1, z2), t1, t2 ∈ [t0, 1], z1, z2 ∈ C+,

where σ2
t1,t2

(z1, z2) is defined in (6.44). In the real case, we have

cov(M(z1, t1),M(z2, t2)) = 2σ2
t1,t2

(z1, z2). (6.6)
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6.2 Proof of Theorem 3.2.1 using Theorem 6.1.1

From (6.1) we obtain

− 1

2πi

∫
C

f(z)EsG(z)dz = − 1

2πi
E
∫
C

f(z)sG(z)dz = E
∫
f(x)dG(x). (6.7)

We choose v0, xr, xl so that f1 and f2 given in Theorem 3.2.1 are analytic on and
inside the resulting contour C and define

Sn,t =
1

n
Xn,tX

?
n,t.

The almost sure convergence

lim
n→∞

λp(Sn,t) = t(1−√yt)2I(0,1)(yt) = (
√
t−√y)2I(0,1)(yt),

lim
n→∞

λ1(Sn,t) = t(1 +
√
yt)

2 = (
√
t+
√
y)2

of the extreme eigenvalues (see, e.g., Theorem 1.1 in Bai and Zhou, 2008) and the
inequalities

λ1(AB) ≤ λ1(A)λ1(B), λp(AB) ≥ λp(A)λp(B)

(valid for quadratic Hermitian nonnegative definite matrices A and B) imply

lim sup
n→∞

λ1(Bn,t) ≤ lim sup
n→∞

λ1(Tn) · lim sup
n→∞

λ1(Sn,t) = lim sup
n→∞

λ1(Tn)t (1 +
√
yt)

2

≤ lim sup
n→∞

λ1(Tn)
(
1 +
√
yt0
)2
< xr

for each t ∈ [t0, 1] with probability 1. Similar calculations for xl show that it holds
for all t ∈ [t0, 1] with probability 1

lim inf
n→∞

min
(
xr − λ1(Bn,t), λp(Bn,t)− xl

)
> 0, (6.8)

which implies that for sufficiently large n the contour C encloses the support of
FBn,t , t ∈ [t0, 1], with probability 1 (note that the null set depends on n and t).
For every n, there exist only finitely many t1, t2 ∈ [t0, 1] such that bnt1c 6= bnt2c.
Since the countable union of null sets is again a null set, we may choose the above
nullset in such a way that C encloses the support of FBn,t for sufficiently large n
with probability 1 (this null set is independent of n and t ∈ [t0, 1]). From Lemma
6.4.1 in Section 6.4, it follows that the support of F̃ ybntc,Hn , t ∈ [t0, 1], is contained
in the interval[bnt0c

n
λp(Tn)I(0,1)(ybnt0c)(1−

√
ybnt0c)

2, λ1(Tn)(1 +
√
ybnt0c)

2
]
,

which is enclosed by the contour C for sufficiently large n. Therefore, using (6.1)
and (6.7), we have almost surely((

− 1

2πi

∫
C
fj(z)Mn(z, t)dz

)
j=1,2

)
t∈[t0,1]

=
(
(Xn(fj, t))j=1,2

)
t∈[t0,1]
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for sufficiently large n. Moreover, we have with probability 1 (see Lemma 6.4.3 in
Section 6.4) ∣∣∣ ∫

C

fj(z)(Mn(z, t)− M̂n(z, t))dz
∣∣∣ = o(1), j = 1, 2,

uniformly with respect to t ∈ [t0, 1]. Let C(C × [t0, 1]) and C([t0, 1]) denote the
spaces of continuous functions defined on C × [t0, 1] and [t0, 1], respectively, then the
mapping

C(C × [t0, 1])→ (C([t0, 1]))2 , h 7→ (If1(h), If2(h))

is continuous, where

Ifj(h)(·) = − 1

2πi

∫
C
fj(z)h(z, ·)dz ∈ C([t0, 1]), j = 1, 2.

By Corollary 6.3.5 stated in Section 6.3.3 below and (6.5), the limiting process M
in Theorem 6.1.1 satisfies M ∈ C(C+ × [t0, 1]). Invoking the continuous mapping
theorem (see Theorem 1.3.6 in Van Der Vaart and Wellner, 1996) and noting that
Mn(z, t) = Mn(z, t), we have

(
If1(M̂n), If2(M̂n)

)
 (If1(M), If2(M)) =

((
− 1

2πi

∫
C
fj(z)M(z, t)dz

)
j=1,2

)
t∈[t0,1]

.

The fact that this random variable is a Gaussian process follows from the observation
that the Riemann sums corresponding to these integrals are multivariate Gaussian
and therefore the integral must be Gaussian as well. The limiting expression for the
mean and the covariance follow immediately from Theorem 6.1.1. For example, we
have for the real case observing (6.6)

cov
(
− 1

2πi

∫
C
f1(z)M(z, t1)dz,−

1

2πi

∫
C
f2(z)M(z, t2)dz

)
=

1

4π2

∫
C1

∫
C2
f1(z1)f2(z2) cov (M(z1, t1),M(z2, t2)) dz2dz1

=
1

2π2

∫
C1

∫
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1.

6.3 Proof of Theorem 6.1.1

We begin with the usual “truncation” and replace the entries of the matrix Xn =
(xij)i=1,...,p,j=1,...,n by truncated variables [see Section 9.7.1, Bai and Silverstein (2010)].
More precisely, without loss of generality we assume that

|xij| < ηn
√
n, E[xij] = 0, E|xij|2 = 1, E|xij|4 <∞.
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Additionally, for the real case (part (1) of Theorem 3.2.1) we may assume that

E|xij|4 = 3 + o(1)

uniformly in i ∈ {1, . . . , p}, j ∈ {1, . . . , n}, and for the complex case (part (2) of
Theorem 3.2.1)

Ex2ij = o
( 1

n

)
, E|xij|4 = 2 + o(1)

uniformly in i ∈ {1, . . . , p}, j ∈ {1, . . . , n}. Here, (ηn)n∈N denotes a sequence con-
verging to zero with the property

ηnn
1/5 →∞.

We now give a brief outline for the proof of Theorem 6.1.1 describing the im-
portant steps, which are carried out in the following sections and chapters. We
consider the stochastic processes (Mn)n∈N and (M̂n)n∈N (which is defined in (6.4))
as sequences in the space `∞(C+ × [t0, 1]) and use the decomposition

Mn = M1
n +M2

n , (6.9)

where the random part M1
n and the deterministic part M2

n are given by

M1
n(z, t) =p (sFBn,t (z)− E [sFBn,t (z)]) , (6.10)

M2
n(z, t) =p

(
E [sFBn,t (z)]− s

F̃
ybntc,Hn (z)

)
, (6.11)

the Stieltjes transform s
F̃
ybntc,Hn is defined in (6.3) and sFBn,t denotes the Stieltjes

transform of the empirical spectral distribution FBn,t .
Our first result provides the convergence of the finite-dimensional distributions of
(M1

n)n∈N. Its proof relies on a central limit theorem for martingale difference schemes
and is carried out in Section 6.3.2.

Theorem 6.3.1 Under the assumption (1) for the real case or assumption (2) for
the complex case from Theorem 3.2.1, it holds for all k ∈ N, t1, t2 ∈ [0, 1], z1, ..., zk ∈
C, Im(zi) 6= 0

(M1
n(z1, t1),M

1
n(z1, t2), ...,M

1
n(zk, t1),M

1
n(zk, t2))

>

D→ (M1(z1, t1),M
1(z1, t2), ...,M

1(zk, t1),M
1(zk, t2))

> , (6.12)

where M1(z, t) = M(z, t)−E[M(z, t)] is the centered version of the Gaussian process
defined in Theorem 6.1.1.

Next, we define the process M̂1
n in the same way as M̂n in (6.4) replacing Mn

by M1
n and show the following tightness result. The main argument in its proof

consists of establishing delicate moment inequalities for the increments of the process
(M̂1

n)n∈N, see Lemma 6.3.4 and its proof in Section 7.2.
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Theorem 6.3.2 Under the assumptions of Theorem 3.2.1, the sequence (M̂1
n)n∈N is

asymptotically tight in the space `∞(C+ × [t0, 1]).

The third step is an investigation of the deterministic part. In particular, we
show that the bias (M2

n)n∈N converges in the space `∞(C+× [t0, 1]) to the limit given
in (6.5). Note that the space of bounded function is equipped with the sup-norm,
which demands a uniform convergence of the Stieltjes transform E[sFBn,t (z)] with
respect to the arguments t ∈ [t0, 1], z ∈ C+. The latter result is provided in Theorem
6.3.7 in Section 6.3.4.

Theorem 6.3.3 Under the assumptions of Theorem 3.2.1, it holds

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

∣∣M2
n(z, t)− E[M(z, t)]

∣∣ = 0.

The proofs of Theorem 6.3.1, 6.3.2 and 6.3.3 are postponed to Section 6.3.2,
6.3.3 and 6.3.4, respectively. Using these results, we are now in the position to
prove Theorem 6.1.1.

6.3.1 Proof of Theorem 6.1.1

Theorem 6.3.1 yields the convergence of the finite-dimensional distributions ofM1
n(z, t)

for t ∈ [t0, 1] and z ∈ C with Im(z) 6= 0 towards the corresponding finite-dimensional
distributions of the centered process M1(z, t) = M(z, t) − E[M(z, t)]. By the def-
inition in equation (6.4), this implies the convergence of the finite-dimensional
distributions of M̂1

n(z, t) for t ∈ [t0, 1] and z ∈ C with Im(z) 6= 0 towards the
corresponding finite-dimensional distributions of M1. Since the limiting process
(M1(z, t))z∈C+,t∈[t0,1] is continuous as proven later in this chapter (see Corollary 6.3.5
in Section 6.3.3) and (C+ \ {xl, xr})× [t0, 1] is a dense subset of C+ × [t0, 1], this is
sufficient in order to ensure uniqueness of the limiting process. As Theorem 6.3.2 es-
tablishes asymptotic tightness, Theorem 6.1.1 follows from the decomposition (6.9),
Theorem 1.5.6 in Van Der Vaart and Wellner (1996) and Theorem 6.3.3.

6.3.2 Proof of Theorem 6.3.1

The proof is divided in several steps and demands some auxiliary results, which
can be found in Section 7.1. We start by performing some preparations and by
introducing notations which will remain crucial for the rest of this work.

Step 0: Preliminaries and notations
The convergence in (6.12) is implied by the weak convergence

k∑
i=1

(
αi,1M

1
n(zi, t1) + αi,2(M

1
n(zi, t2)

) D→ k∑
i=1

(
αi,1M

1(zi, t1) + αi,2(M
1(zi, t2)

)
(6.13)

for all α1,1, . . . , αk,1, α1,2, . . . , αk,2 ∈ C. We want to show that the limiting random
variable on the right-hand side of the display above follows a Gaussian distribution
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under the assumption (1) or (2) of Theorem 3.2.1.
Recalling assumption (b) in Theorem 3.2.1, we may assume ||Tn|| ≤ 1 for conve-
nience (n ∈ N). Define for k, j = 1, .., bntc, k 6= j, t ∈ (0, 1], z ∈ C with Im(z) 6= 0

rj =
1√
n

T
1
2
nxj

Bn,t =

bntc∑
j=1

rjr
?
j ,

Dt(z) = Bn,t − zI,
Dj,t(z) = Dt(z)− rjr

?
j ,

Dk,j,t(z) = Dj,t(z)− rkr
?
k = Dt(z)− rkr

?
k − rjr

?
j ,

αj,t(z) = r?jD
−2
j,t (z)rj − n−1 tr(D−2j,t (z)Tn),

γj,t(z) = r?jD
−1
j,t (z)rj − n−1E tr(D−1j,t (z)Tn),

γk,j,t(z) = r?kD
−1
k,j,t(z)rk − n−1E

[
tr
(
TnD

−1
k,j,t(z)

)]
γ̂j,t(z) = r?jD

−1
j,t (z)rj − n−1 tr(D−1j,t (z)Tn),

βj,t(z) =
1

1 + r?jD
−1
j,t (z)rj

,

βk,j,t(z) =
1

1 + r?kD
−1
k,j,t(z)rk

,

βj,t(z) =
1

1 + n−1 tr(TnD
−1
j,t (z))

,

bj,t(z) =
1

1 + n−1E tr(TnD
−1
j,t (z))

,

bt(z) =
1

1 + n−1E tr(TnD
−1
t (z))

.

Note that the terms βj,t(z), βk,j,t(z), βj,t(z), bj,t(z) and bt(z) are bounded in absolute
value by |z|/v, where v = Im(z) is assumed to be positive (see (6.2.5) in Bai and
Silverstein, 2010). We will denote constants appearing in the following inequalities
by K > 0 (K may depend on t and z) and K may take on different values from line
to line. By the Sherman–Morrison formula we obtain the representation

D−1t (z)−D−1j,t (z) = −D−1j,t (z)rjr
?
jD
−1
j,t (z)βj,t(z). (6.14)

Step 1: CLT for martingale difference schemes
In order to prove asymptotic normality of the random variable appearing in (6.13),
we show that it can be represented as a suitable martingale difference scheme plus
some negligible remainder, which allows us to apply a central limit theorem.
For j = 1 . . . , n, let Ej denote the conditional expectation with respect to the
filtration Fnj = σ({r1, ..., rj}) (by E0 we denote the common expectation). Recalling
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the definition (6.10) and using the martingale decomposition, we have

M1
n(z, t) = tr(D−1t (z)− ED−1t (z))

=

bntc∑
j=1

(
trEjD−1t (z)− trEj−1D−1t (z)

)
=

bntc∑
j=1

(
trEj

[
D−1t (z)−D−1t,j (z)

]
− trEj−1

[
D−1t (z)−D−1j,t (z)

])
= −

bntc∑
j=1

(Ej − Ej−1)βj,t(z)r?jD
−2
j,t (z)rj. (6.15)

Using the identity

βj,t(z) = βj,t(z)− β2

j,t(z)γ̂j,t(z) + β
2

j,t(z)βj,t(z)γ̂2j,t(z),

we write

(Ej − Ej−1)βj,t(z)r?jD
−2
j,t (z)rj

= Ej
(
βj,t(z)αj,t(z)− β2

j,t(z)γ̂j,t(z)
1

n
tr(TnD

−2
j,t (z))

)
− (Ej − Ej−1)β

2

j,t(z)
(
γ̂j,t(z)αj,t(z)− βj,t(z)r?jD

−2
j,t (z)rj γ̂

2
j,t(z)

)
.

By considering the second moment, one can further show that

−
bntc∑
j=1

(Ej − Ej−1)β
2

j,t(z)
(
γ̂j,t(z)αj,t(z)− βj,t(z)r?jD

−2
j,t (z)rj γ̂

2
j,t(z)

) P→ 0.

Thus, it is sufficient to prove asymptotic normality for the quantity

max(bnt1c,bnt2c)∑
j=1

Zt1,t2
nj ,

where

Zt1,t2
nj =

k∑
i=1

(αi,1Yj,t1(zi) + αi,2Yj,t2(zi)) , (6.16)

Yj,t(z) = −Ej
[
βj,t(z)αj,t(z)− β2

j,t(z)γ̂j,t(z)
1

n
tr(TnD

−2
j,t (z))

]
= −Ej

d

dz
βj,t(z)γ̂j,t(z)

(6.17)

if j ≤ bntc and Yj,t(z) = 0 if j > bntc.
For this purpose we verify conditions (5.29) - (5.31) of the central limit theorem

for complex-valued martingale difference schemes given in Lemma 5.6 of Najim and
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Yao (2016).

Lemma 7.1.1 in Section 7.1 shows that Zt1,t2
nj forms a martingale difference scheme

with respect to the filtration Fnj = σ({r1, ..., rj}) and a proof of (5.31) in this
reference is given in Lemma 7.1.2 by deriving bounds for the 4th moment of Yj,t(z).
For a proof of condition (5.30), we note that

max(bnt1c,bnt2c)∑
j=1

Ej−1
[(
Zt1,t2
nj

)2]
=

k∑
i,l=1

( bnt1c∑
j=1

αi,1αl,1Ej−1[Yj,t1(zi)Yj,t1(zl)]

+

min(bnt1c,bnt2c)∑
j=1

αi,1αl,2Ej−1[Yj,t1(zi)Yj,t2(zl)]

+

min(bnt1c,bnt2c)∑
j=1

αi,2αl,1Ej−1[Yj,t2(zi)Yj,t1(zl)]

+

bnt2c∑
j=1

αi,2αl,2Ej−1[Yj,t2(zi)Yj,t2(zl)]
)
.

As all terms have the same form, it is sufficient to show that for all z1, z2 ∈ C with
Im(z1), Im(z2) 6= 0 and t1, t2 ∈ (0, 1]

Vn(z1, z2, t1, t2) =

min(bnt1c,bnt2c)∑
j=1

Ej−1 [Yj,t1(z1)Yj,t2(z2)]
P→ σ2

t1,t2
(z1, z2) (6.18)

for an appropriate function σ2
t1,t2

(z1, z2) (see equation (6.44) below for a precise
definition). Note that this convergence implies condition (5.29), since

min(bnt1c,bnt2c)∑
j=1

Ej−1
[
Yj,t1(z1)Yj,t2(z2)

]
=

min(bnt1c,bnt2c)∑
j=1

Ej−1 [Yj,t1(z1)Yj,t2(z2)]
P→ σ2

t1,t2
(z1, z2),

where the equality follows from the fact that the matrices Tn,Bn,t, rjr
?
j are Her-

mitian and (D−1j,t (z))T = D−1j,t (z). Consequently, Lemma 5.6 in Najim and Yao
(2016) combined with the Cramer–Wold device yields the weak convergence of the
finite-dimensional distributions to a multivariate normal distribution with covari-
ance σ2

t1,t2
(z1, z2) = cov(M1(z1, t1),M

1(z2, t2)).

Step 2: Calculation of the covariance structure
The rest of this proof is devoted to the calculation of σ2

t1,t2
(z1, z2), which gives us

the covariance structure of our process (M1(z, t))z∈C+,t∈[t0,1]. We will first express
our random variable of interest in (6.18) through the derivative of another random
variable and find a more handy representation for this new random variable. We
finally determine its limit in two further sub-steps.
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Consider the sum

V (0)
n (z1, z2, t1, t2) =

min(bnt1c,bnt2c)∑
j=1

Ej−1
[
Ej
(
βj,t1(z1)γ̂j,t1(z1)

)
Ej
(
βj,t2(z2)γ̂j,t2(z2)

)]
.

(6.19)

We use the dominated convergence theorem in combination with (6.17) to get

∂2

∂z1∂z2
V (0)
n (z1, z2, t1, t2) = Vn(z1, z2, t1, t2). (6.20)

In the monograph of Bai and Silverstein (2010), it is shown that it suffices to show

that V
(0)
n (z1, z2, t1, t2) given in (6.19) converges in probability to a constant and in

this case, the mixed partial derivative of its limit will give the limit of Vn(z1, z2, t1, t2).
It holds

E|βj,t(z)− bj,t(z)|2 ≤ Kn−1,

which implies together with (7.3) that

E
∣∣∣Ej−1 [Ej (βj,t1(z1)γ̂j,t1(z1))Ej (βj,t2(z2)γ̂j,t2(z2))]
− Ej−1 [Ej (bj,t1(z1)γ̂j,t1(z1))Ej (bj,t2(z2)γ̂j,t2(z2))]

∣∣∣
=E
∣∣∣Ej−1 [Ej ((βj,t1(z1)− bj,t1(z1)) γ̂j,t1(z1))Ej (βj,t2(z2)γ̂j,t2(z2))]

+ Ej−1
[
Ej (bj,t1(z1)γ̂j,t1(z1))Ej

((
βj,t2(z2)− bj,t2(z2)

)
γ̂j,t2(z2)

)] ∣∣∣
≤KE

1
2

∣∣βj,t1(z1)− bj,t1(z1)∣∣2 E 1
4 |γ̂j,t1(z1)|

4 E
1
4 |γ̂j,t2(z2)|

4

+KE
1
4 |γ̂j,t1(z1)|

4 E
1
2

∣∣βj,t2(z2)− bj,t2(z2)∣∣2 E 1
4 |γ̂j,t2(z2)|

4

=o
(
n−1
)
.

Since bj,t(z) is nonrandom, we obtain

min(bnt1c,bnt2c)∑
j=1

Ej−1
[
Ej
[
βj,t1(z1)γ̂j,t1(z1)

]
Ej
[
βj,t2(z2)γ̂j,t2(z2)

]]
−

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2)Ej−1 [Ej [γ̂j,t1(z1)]Ej [γ̂j,t2(z2)]]

P→ 0.

Consequently, we have

V (0)
n (z1, z2, t1, t2) = V (1)

n (z1, z2, t1, t2) + oP(1),

where

V (1)
n (z1, z2, t1, t2) =

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2)Ej−1 [Ej [γ̂j,t1(z1)]Ej [γ̂j,t2(z2)]] .
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Observing (6.20), the mixed partial derivative of V
(1)
n (z1, z2, t1, t2) is asymptotically

equivalent to Vn(z1, z2, t1, t2).
For the complex case, we have Ex2ij = o(1/n), E|xij|4 = 2 + o(1) and it follows that

V (1)
n (z1, z2, t1, t2)

=

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2)Ej−1

[
2∏

k=1

(
Ej
(
r?jD

−1
j,tk

(zk)rj − n−1 tr
(
D−1j,tk(zk)Tn

)))]

=

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2)Ej−1
[ 2∏
k=1

(
n−1x?jT

1
2
nEj

(
D−1j,tk(zk)

)
T

1
2
nxj

− n−2 trEj
(
D−1j,tk(zk)Tn

) )]
=

1

n2

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2)
(

tr
(
T

1
2
nEj

[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
T

1
2
n

)
+ o(1)An

)
,

(6.21)

where

An = O(n).

Hence, it suffices to study the limit of

V (2)
n (z1, z2, t1, t2) =

1

n2

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2) tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

)
.

(6.22)

For (6.21), we used the following identity

Ej−1

[
2∏

k=1

(
x?jEj

[
B(k)

]
xj − tr

(
Ej
[
B(k)

]))]
=

p∑
i=1

(
E|xij|4 −

(
Ex2ij

)2 − 2
)
b
(1)
ii b

(2)
ii

+ tr(B(1)
x (B(2)

x )T ) + tr(B(1)B(2)),
(6.23)

where

B(k) =
(
b
(k)
il

)
il

= T
1
2
nEj

[
D−1j,tk(zk)

]
T

1
2
n ,

B(k)
x =

(
b
(k)
il Ex

2
ij

)
il
.

One can observe that under the assumptions for the complex case, only the last term
on the right remains in (6.23) whereas those for the real case leave the last two. That

is, in the real case, we have to consider two times the limit of V
(2)
n (z1, z2, t1, t2) in

(6.22). (For instance, we have for the real case E[x2ij] = 1 and E[x4ij] = 3 + o(1)
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uniformly in i ∈ {1, . . . , n}, j ∈ {1, . . . , p} (due to the truncation steps). Thus, in
the real case, the first term

1

n2

min(bnt1c,bnt2c)∑
j=1

p∑
i=1

(
E|xij|4 −

(
Ex2ij

)2 − 2
)
b
(1)
ii b

(2)
ii

is asymptotically negligible, and we have B
(k)
x = B(k) for k = 1, 2. The complex case

can be handled similarly.)

Step 2.1: Decomposition of D−1j,t (z)

As suggested by the structure of the random variable V
(2)
n (z1, z2, t1, t1) given in

(6.22), we need to study the random matrices D−1j,t (z) further. For this aim, we will

introduce a decomposition of D−1j,t (z).
We recall the definitions

Di,j,t(z) = Dt(z)− rir
?
i − rjr

?
j ,

βi,j,t(z) =
1

1 + r?iD
−1
i,j,t(z)ri

,

bi,j,t(z) =
1

1 + n−1E tr TnD
−1
i,j,t(z)

,

and note that

Dj,t(z) + zI− bntc − 1

n
bj,t(z)Tn =

∑
i 6=j,1≤i≤bntc

rir
?
i −
bntc − 1

n
bj,t(z)Tn.

Multiplying by (zI− bntc−1
n

bj,t(z)Tn)−1 on the left, D−1j,t (z) on the right, and using

r?iD
−1
j,t (z) = βi,j,t(z)r?iD

−1
i,j,t(z)

(this is a consequence of the Sherman-Morrison-Woodbury formula; see also formula
(6.1.11) in Bai and Silverstein (2010)), we have

D−1j,t (z) =−
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
(6.24)

+
∑

i 6=j,1≤i≤bntc

βi,j,t(z)

(
zI− bntc − 1

n
bj,t(z)Tn

)−1
rir

?
iD
−1
i,j,t(z)

− bntc − 1

n
bj,t(z1)

(
zI− bntc − 1

n
bj,t(z)Tn

)−1
TnD

−1
j,t (z)

=−
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
+ bj,t(z)At(z) + Bt(z) + Ct(z), (6.25)
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where for fixed j

At(z) =

bntc∑
i=1
i 6=j

(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z), (6.26)

Bt(z) =

bntc∑
i=1
i 6=j

(βi,j,t(z)− bj,t(z))

(
zI− bntc − 1

n
bj,t(z)Tn

)−1
rir

?
iD
−1
i,j,t(z), (6.27)

Ct(z) = bj,t(z)

(
zI− bntc − 1

n
bj,t(z)Tn

)−1
Tnn

−1
bntc∑
i=1
i 6=j

(
D−1i,j,t(z)−D−1j,t (z)

)
.

(6.28)

(Here, we do not reflect the dependence on index j in our notation.) Considering the
term At(z) more carefully, we see that ri is independent of r1, ..., rj and of Di,j,t(z)
for i > j, which implies

Ej

[(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z)

]

=

(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
E [rir

?
i ]− n−1Tn

)
Ej
[
D−1i,j,t(z)

]
= 0.

This means, that in the definition of At we only have to consider summands with
i < j.
From formula (9.9.13) in Bai and Silverstein (2010), we conclude that∣∣∣∣∣

∣∣∣∣∣
(
zI− bntc − 1

n
bj,t(z)Tn

)−1∣∣∣∣∣
∣∣∣∣∣ ≤ K. (6.29)

Let M be a p× p (random) matrix and let ||M|| denote a nonrandom bound on the
spectral norm of M for all parameters governing M and all realizations of M.
From formula (9.9.5) in Bai and Silverstein (2010), we get

|bi,j,t(z)− bj,t(z)| ≤ Kn−1, (6.30)

E|βi,j,t(z)− bj,t(z)|2 ≤ Kn−1. (6.31)

From formula (9.9.6) in Bai and Silverstein (2010), (6.29), Hölder’s inequality and
the bound (7.2) on E||D−1i,j,t(z)||2, we conclude

E| tr(Bt(z)M)|

≤
bntc∑
i=1
i 6=j

E
1
2 |βi,j,t(z)− bj,t(z)|2 E

1
2

∣∣∣∣∣r?iD−1i,j,t(z)M

(
zI− bntc − 1

n
bj,t(z)Tn

)−1
ri

∣∣∣∣∣
2

≤K||M||n
1
2 . (6.32)
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Using formula (9.9.6) of Bai and Silverstein (2010), (6.29) and the bounds on bj,t(z)
and ||Tn|| yields

|tr(Ct(z)M)| ≤ K||M||. (6.33)

Moreover, we have for nonrandom M and any j by using (9.9.6) in Bai and
Silverstein (2010), (7.2), and (6.29)

E |tr At(z)M| ≤ K||M||. (6.34)

Step 2.2: Application of Step 2.1 to V
(2)
n

In this final step, we use the decomposition for D−1j,t (z) derived in Step 2.1 to deter-

mine the limit of the random variable V
(2)
n given in (6.22). We remind the reader

that the main part of (6.22) is

tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

)
.

Thus, we need to apply the decomposition twice, namely for D−1j,t1(z1) and D−1j,t2(z2).
Observing (6.20), we finally obtain the covariance σ2

t1,t2
(z1, z2) by differentiating the

limit of (6.22).
Using (6.14), we decompose

tr
(
Ej[At1(z1)]TnD

−1
j,t2

(z2)Tn

)
= A1(z1, z2) + A2(z1, z2) + A3(z1, z2),

where

A1(z1, z2) =− tr

( ∑
i<j,1≤i≤bnt1c

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
rir

?
iEj[D−1i,j,t1(z1)]

×Tnβi,j,t2(z2)D
−1
i,j,t2

(z2)rir
?
iD
−1
i,j,t2

(z2)Tn

)
=−

∑
i<j,1≤i≤bnt1c

βi,j,t2(z2)r
?
iEj

[
D−1i,j,t1(z1)

]
TnD

−1
i,j,t2

(z2)rir
?
iD
−1
i,j,t2

(z2)Tn

×
(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
ri,

A2(z1, z2) =− tr

( ∑
i<j,1≤i≤bnt1c

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
n−1TnEj[D−1i,j,t1(z1)]Tn

×
(
D−1j,t2(z2)−D−1i,j,t2(z2)

)
Tn

)
,

A3(z1, z2) = tr

( ∑
i<j,1≤i≤bnt1c

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1 (
rir

?
i − n−1Tn

)
× Ej[D−1i,j,t1(z1)]TnD

−1
i,j,t2

(z2)Tn

)
.
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As in Bai and Silverstein (2010), it can be shown that

|A2(z1, z2)| ≤ K, (6.35)

E|A3(z1, z2)| ≤ Kn
1
2 , (6.36)

and it remains to investigate the term A1(z1, z2). For this purpose, we define

E = Ej
[
D−1i,j,t1(z1)

]
TnD

−1
i,j,t2

(z2),

F = D−1i,j,t2(z2)Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
and note that for q ≥ 1

E
1
q | tr(ETn)|q ≤ Kqn, E

1
q | tr(FTn)|q ≤ Kqn.

This gives together with formula (9.9.6) in Bai and Silverstein (2010)

E
∣∣∣βi,j,t2(z2)r?iErir

?
iFri − bj,t2(z2)n−2 tr (ETn) tr(FTn)

∣∣∣
≤n−2E

∣∣∣βi,j,t2(z2)x?iT 1
2
nET

1
2
nxi

(
x?iT

1
2
nFT

1
2
nxi − tr(FTn)

) ∣∣∣
+ n−2E

∣∣∣ (βi,j,t2(z2)− bj,t2(z2)) tr(ETn) tr(FTn)
∣∣∣

+ n−2E
∣∣∣βi,j,t2(z2)(x?iT 1

2
nET

1
2
nxi − tr(ETn)

)
tr(FTn)

∣∣∣
≤Kn−

1
2 (6.37)

Moreover, letting

G = Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn,

we have by using (9.9.5)∣∣∣ tr (ETn) tr (FTn)− tr
(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
tr
(
D−1j,t2(z2)G

) ∣∣∣
=
∣∣∣ tr (Ej [D−1i,j,t1(z1)]TnD

−1
i,j,t2

(z2)Tn

)
tr
(
D−1i,j,t2(z2)G

)
− tr

(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
tr
(
D−1j,t2(z2)G

) ∣∣∣
≤
∣∣∣ tr (Ej [D−1i,j,t1(z1)−D−1j,t1(z1)

]
TnD

−1
i,j,t2

(z2)Tn

)
tr
(
D−1i,j,t2(z2)G

) ∣∣∣
+
∣∣∣ tr (Ej [D−1j,t1(z1)]Tn

(
D−1i,j,t2(z2)−D−1j,t2(z2)

)
Tn

)
tr
(
D−1i,j,t2(z2)G

) ∣∣∣
+
∣∣∣ tr (Ej [D−1j,t1(z1)]TnD

−1
j,t2

(z2)Tn

)
tr
((

D−1i,j,t2(z2)−D−1j,t2(z2)
)

G
) ∣∣∣

≤Kn. (6.38)

The considerations in (6.37) and (6.38) imply

E

∣∣∣∣∣A1(z1, z2) +
j − 1

n2
bj,t2(z2) tr

(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
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× tr

(
D−1j,t2(z2)Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
≤ Kn

1
2 .

Recall that we aim to derive a representation for

tr
(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
.

For this purpose, we use the formula for D−1j,t1(z1) given in (6.25), we have (using
also (6.32), (6.33), (6.35), (6.36))

tr
(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

) [
1 +

j − 1

n2
bj,t1(z1)bj,t2(z2)

tr

(
D−1j,t2(z2)Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)]
= tr

(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
− bj,t1(z1)A1(z1, z2) + A4(z1, z2)

=− tr

((
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
TnD

−1
j,t2

(z2)Tn

)
+ tr

(
Ej[bj,t1(z1)At1(z1) + Bt1(z1) + Ct1(z1)]TnD

−1
j,t2

(z2)
)

− bj,t1(z1)A1(z1, z2) + A4(z1, z2)

=− tr

((
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
TnD

−1
j,t2

(z2)Tn

)
+ bj,t1(z1) (A2(z1, z2) + A3(z1, z2)) + A4(z1, z2)

=− tr

((
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
TnD

−1
j,t2

(z2)Tn

)
+ A4(z1, z2),

where we have used the representation in (6.25), the estimates (6.32), (6.33), (6.36)
and the term A4(z1, z2) may change from line to line with the universal property

E|A4(z1, z2)| ≤ Kn
1
2 .

Now using again the representation for D−1j,t2(z2) in (6.25) yields

tr
(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
×

[
1− j − 1

n2
bj,t1(z1)bj,t2(z2) tr

({(
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
− bj,t2(z2)At2(z2)−Bt2(z2)−Ct2(z2)

}
Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)]

= tr

({(
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
− bj,t2(z2)At2(z2)−Bt2(z2)−Ct2(z2)

}
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×Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)
+ A4(z1, z2),

Invoking (6.32), (6.33) and (6.34), we conclude

tr
(
Ej
[
D−1j,t1(z1)

]
TnD

−1
j,t2

(z2)Tn

)
×

[
1− j − 1

n2
bj,t1(z1)bj,t2(z2) tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

×
(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)]

= tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)
+ A5(z1, z2),

where the remainder A5 satisfies

E|A5(z1, z2)| ≤ Kn
1
2 .

This implies for the conditional expectation Ej with respect to r1, . . . , rj

tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

)
×

[
1− j − 1

n2
bj,t1(z1)bj,t2(z2) tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

×
(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)]

= tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn ×

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)
+ Ã5(z1, z2),

where Ã5(z1, z2) = Ej[A5(z1, z2)]. Hence,

E|Ã5(z1, z2)| ≤ E [Ej|A5(z1, z2)|] ≤ Kn
1
2 .

Let s̃n,t be the Stieltjes transform of FBn,t , where Bn,t is the companion matrix of

Bn,t defined in (2.2) and let s̃0n,t be the Stieltjes transform of F̃
ybntc,Hn

, that is

s̃n,t = sFBn,t ,

s̃0n,t = s
F̃
ybntc,Hn .

By Lemma 7.1.3, we get

1

bntc

bntc∑
j=1

E [βj,t(z)] = −zE
[
s̃n,t(z)

]
.
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We use Theorem 6.3.8 given in Section 6.3.4 and conclude

|Es̃n,t(z)− s̃0n,t(z)| ≤ Kn−1.

Combining this with the following bounds

|bj,t(z)− bt(z)| ≤ Kn−1,

|bj,t(z)− Eβj,t(z)| ≤ Kn−
1
2 ,

we have for all j ∈ {1, . . . , bntc}∣∣∣bj,t(z) + zs̃0n,t(z)
∣∣∣

≤
∣∣∣bj,t(z)− bt(z)

∣∣∣+
∣∣∣bt(z)− 1

bntc

bntc∑
j=1

E[βj,t(z)]
∣∣∣+
∣∣∣zs̃0n,t(z)− zE

[
s̃n,t(z)

] ∣∣∣
≤Kn−1 +

1

bntc

bntc∑
j=1

(∣∣∣bt(z)− bj,t(z)
∣∣∣+
∣∣∣bj,t(z)− Eβj,t(z)

∣∣∣)
≤Kn−

1
2 . (6.39)

This yields

max
j
|bj,t(z) + zs̃0n,t(z)| ≤ Kn−

1
2 , (6.40)

and implies

tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

)
×

{
1− j − 1

n2
s̃0n,t1(z1)s̃

0
n,t2

(z2) tr

((
I +
bnt2c
n

s̃0n,t2(z2)Tn

)−1
(6.41)

×Tn

(
I +
bnt1c
n

s0n,t1(z1)Tn

)−1
Tn

)}

=
1

z1z2
tr

((
I +
bnt2c
n

s̃0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s̃0n,t1(z1)Tn

)−1
Tn

)
+ A6(z1, z2),

(6.42)

where the remainder A6 may change from line to line and satisfies

E|A6(z1, z2)| ≤ Kn
1
2

(the details for this estimate are given in Lemma 7.1.4 and 7.1.5). Recalling that
Hn = FTn is the empirical spectral distribution of Tn, we have

tr

((
I +
bnt2c
n

s̃0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s̃0n,t1(z1)Tn

)−1
Tn

)
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=p

∫
λ2(

1 + λ bnt1c
n
s̃0n,t1(z1)

)(
1 + bnt2c

n
λs̃0n,t2(z2)

)dHn(λ),

and consequently, we can rewrite equation (6.42) as

tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

){
1− j − 1

n
an(z1, z2, t1, t2)

}
=

n

z1z2s̃
0
n,t1

(z1)s̃
0
n,t2

(z2)
an(z1, z2, t1, t2) + A6(z1, z2),

where

an(z1, z2, t1, t2) = yns̃
0
n,t1

(z1)s̃
0
n,t2

(z2)

∫
λ2(

1 + λ bnt1c
n
s̃0n,t1(z1)

)(
1 + λ bnt2c

n
s̃0n,t2(z2)

)dHn(λ).

(6.43)

Applying Lemma 7.1.7, we have

tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

)
=

n

z1z2s̃
0
n,t1

(z1)s̃
0
n,t2

(z2)
an(z1, z2, t1, t2)

1

1− j−1
n
an(z1, z2, t1, t2)

+ A6(z1, z2)
1

1− j−1
n
an(z1, z2, t1, t2)

≤ n

z1z2s̃
0
n,t1

(z1)s̃
0
n,t2

(z2)
an(z1, z2, t1, t2)

1

1− j−1
n
an(z1, z2, t1, t2)

+ A6(z1, z2).

Consequently, the random variable V
(2)
n in (6.22) can be written as

V (2)
n (z1, z2, t1, t2)

=
1

n
an(z1, z2, t1, t2)

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2)

z1s0n,t1(z1)z2s
0
n,t2(z2)

1

1− j−1
n
an(z1, z2, t1, t2)

+ A7(z1, z2)

=
an(z1, z2, t1, t2)

n

min(bnt1c,bnt2c)∑
j=1

1

1− j−1
n
an(z1, z2, t1, t2)

+ A7(z1, z2),

where the remainder A7(z1, z2) may change from line to line and satisfies

E|A7(z1, z2)| ≤ Kn−
1
2 .

Then, V
(2)
n (z1, z2, t1, t2) in (6.22) converges in probability to

a(z1, z2, t1, t2)

min(t1,t2)∫
0

1

1− λa(z1, z2, t1, t2)
dλ,
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where

a(z1, z2, t1, t2)

=ys̃t1(z1)s̃t2(z2)

∫
λ2(

1 + λt1s̃t1(z1)
) (

1 + λt2s̃t2(z2)
)dH(λ)

=
s̃t1(z1)s̃t2(z2)

t2s̃t2(z2)− t1s̃t1(z1)

(
y

∫
λ

1 + λt1s̃t1(z1)
dH(λ)− y

∫
λ

1 + λt2s̃t2(z2)
dH(λ)

)
=

s̃t1(z1)s̃t2(z2)

t2s̃t2(z2)− t1s̃t1(z1)

(
1

s̃t1(z1)
+ z1 −

1

s̃t2(z2)
− z2

)
=

1

t2s̃t2(z2)− t1s̃t1(z1)
(
s̃t2(z2) + (z1 − z2)s̃t1(z1)s̃t2(z2)− s̃t1(z1)

)
=
s̃t2(z2)− s̃t1(z1) + (z1 − z2)s̃t1(z1)s̃t2(z2)

t2s̃t2(z2)− t1s̃t1(z1)
,

and we have used Lemma 7.1.6, which says

y

∫
λ

1 + λts̃t(z)
dH(λ) =

1

s̃t(z)
+ z.

Finally, the limit of (6.18) is given by

σ2
z1,z2,t1,t2

=
∂2

∂z1∂z2

min(t1,t2)a(z1,z2,t1,t2)∫
0

1

1− λ
dλ =

∂

∂z2

(
min(t1, t2)

∂
∂z1
a(z1, z2, t1, t2)

1−min(t1, t2)a(z1, z2, t1, t2)

)

=
numerator

denominator
, (6.44)

where

numerator = min(t1, t2)
{
− t2(t2 −min(t1, t2))s̃

2
t2

(z2)s̃
′
t1

(z1)
[
t2s̃

2
t2

(z2) + (t1 − t2)s̃′t2(z2)
]}

− t21s̃4t1(z1)
{

min(t1, t2)s̃
2
t2

(z2) + (t1 −min(t1, t2)s̃
′
t2

(z2))
}

+ 2t1t2s̃
3
t1

(z1)s̃t2(z2)
{

min(t1, t2)s̃
2
t2

(z2) + (t1 −min(t1, t2))s̃
′
t2

(z2)
}

+ 2t1t2(t2 −min(t1, t2))s̃t1(z1)s̃
2
t2

(z2)s̃
′
t1

(z1)
{
s̃t2(z2) + (−z1 + z2)s̃

′
t2

(z2)
}

+ s̃2t1(z1)
{
− t22 min(t1, t2)s̃

4
t2

(z2) + t1(t1 − t2)(t1 −min(t1, t2))s̃
′
t1

(z1)s̃
′
t2

(z2)

+ 2t1t2(t1 −min(t1, t2))(z1 − z2)s̃t2(z2)s̃
′
t1

(z1)s̃
′
t2

(z2)

+ s̃2t2(z2)
[
t22(−t1 + min(t1, t2))s̃

′
t2

(z2)

+ t1s̃
′
t1

(z1)
(
t1(−t2 + min(t1, t2)) + t2 min(t1, t2)(z1 − z2)2s̃′t2(z2)

)]}
denominator =

(
t1s̃t1(z1)− t2st2(z2)

)2 {
(−t2 + min(t1, t2))s̃t2(z2)

+ s̃t1(z1)(t1 −min(t1, t2) + min(t1, t2)(z1 − z2)s̃t2(z2))
}2

.

Note that for the special case t1 = t2 = 1, this covariance structure coincides with
the one given in formula (9.8.4) in Bai and Silverstein (2010).
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6.3.3 Proof of Theorem 6.3.2 and continuity of the limiting
process

Proof of Theorem 6.3.2. We will show that the assumptions of Corollary A.4 in
Dette and Tomecki (2019) are satisfied, where we identify the curve C+ with the
compact interval [0, 1]. For this purpose, we define the increments for the first and
second coordinate of M̂1

n by

m1(z, t, z′, z′′) = min{|M̂1
n(z, t)− M̂1

n(z′, t)|, |M̂1
n(z, t)− M̂1

n(z′′, t)|}, (6.45)

m2(z, t, t′, t′′) = min{|M̂1
n(z, t)− M̂1

n(z, t′)|, |M̂1
n(z, t)− M̂1

n(z, t′′)|}, (6.46)

where t, t′, t′′ ∈ [t0, 1] and z, z′, z′′ ∈ C+. In order to find estimates for the tails of
(6.45) and (6.46), we establish in the following lemma estimates on the moments of
the increments of M̂1

n(z, t), which are proved in Section 7.2. For this purpose, note
that it follows from (6.15) that

M̂1
n(z, t1)− M̂1

n(z, t2) = Ẑ1
n(z, t1, t2) + Ẑ2

n(z, t1, t2), z ∈ C+, t1, t2 ∈ [t0, 1], t1 ≤ t2,

where Ẑ1
n and Ẑ2

n are the processes obtained from

Z1
n(z, t1, t2) =

bnt1c∑
j=1

(Ej − Ej−1)
(
βj,t2(z)r?jD

−2
j,t2

(z)rj − βj,t1(z)r?jD
−2
j,t1

(z)rj
)
, (6.47)

Z2
n(z, t1, t2) =

bnt2c∑
j=bnt1c+1

(Ej − Ej−1)βj,t2(z)r?jD
−2
j,t2

(z)rj (6.48)

using the definition (6.4).

Lemma 6.3.4 For t ∈ [t0, 1], z1, z2 ∈ C+, it holds for sufficiently large n ∈ N under
the assumptions of Theorem 6.3.2

E|M̂1
n(z1, t)− M̂1

n(z2, t)|2+δ ≤ K|z1 − z2|2+δ, (6.49)

where K > 0 is some universal constant independent of n, t, z1, z2. We also have for
t1, t2 ∈ [t0, 1], z ∈ C+

E|Ẑ1
n(z, t1, t2)|4 ≤ K

(bnt2c − bnt1c
n

)4
, (6.50)

E|Ẑ2
n(z, t1, t2)|4+δ ≤ K

(bnt2c − bnt1c
n

)2+δ/2
. (6.51)

In order to simplify notation, we write a . b for a ≤ Kb, where a, b ≥ 0 and
K > 0 denote some universal constant independent of n, t, t1, t2, z, z1, z2. We con-
tinue with the proof of Theorem 6.3.2 by using results from Lemma 6.3.4.

We observe that for t′ ≤ t ≤ t′′ and λ > 0

P
(
m2(z, t, t′, t′′) > λ

)
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≤P
(
|M̂1

n(z, t)− M̂1
n(z, t′)||M̂1

n(z, t)− M̂1
n(z, t′′)| > λ2

)
=P
(
|Ẑ1

n(z, t′, t) + Ẑ2
n(z, t′, t)||Ẑ1

n(z, t, t′′) + Ẑ2
n(z, t, t′′)| > λ2

)
≤P
(
|Ẑ1

n(z, t′, t) + Ẑ2
n(z, t′, t)| > λ

)
+ P

(
|Ẑ1

n(z, t, t′′) + Ẑ2
n(z, t, t′′)| > λ

)
≤

2∑
k=1

{
P
(
|Ẑk

n(z, t′, t)| > λ/2
)

+ P
(
|Ẑk

n(z, t, t′′)| > λ/2
)}

≤
(2

λ

)4
E|Ẑ1

n(z, t′, t)|4 +
(2

λ

)4+δ
E|Ẑ2

n(z, t′, t)|4+δ +
(2

λ

)4
E|Ẑ1

n(z, t, t′′)|4

+
(2

λ

)4+δ
E|Ẑ2

n(z, t, t′′)|4+δ.

In the case t′′ − t′ ≥ 1/n, we use Lemma 6.3.4 and obtain

E|Ẑ1
n(z, t′, t)|4 .

(bntc − bnt′c
n

)4
.
(
t− t′ + 1

n

)4
≤
(
t′′ − t′ + 1

n

)4
≤ 24(t′′ − t′)4

.(t′′ − t′)4,

E|Ẑ2
n(z, t, t′′)|4+δ .

(bnt′′c − bntc
n

)2+δ/2
.
(
t′′ − t+

1

n

)2+δ/2
≤
(
t′′ − t′ + 1

n

)2+δ/2
≤22+δ/2(t′′ − t′)2+δ/2 . (t′′ − t′)2+δ/2.

The remaining terms can be treated similarly in this case, which gives

P
(
m2(z, t, t′, t′′) > λ

)
. max(λ−4, λ−(4+δ))(t′′ − t′)2+δ/2

for t′′−t′ ≥ 1/n. In the other case t′′−t′ < 1/n, we have bntc = bnt′′c or bntc = bnt′c
and consequently,

M̂1
n(z, t)− M̂1

n(z, t′) = 0 or M̂1
n(z, t′′)− M̂1

n(z, t) = 0.

Therefore we obtain for t′ ≤ t ≤ t′′ ≤ 1

P
(
m2(z, t, t′, t′′) > λ

)
. max(λ−4, λ−(4+δ))(t′′ − t′)2+δ/2.

For the following analysis, we identify C+ with [0, 1]. In order to derive a similar
estimate for the term m1, we note that it follows for z, z′, z′′ ∈ [0, 1] such that
z′ ≤ z ≤ z′′

P
(
m1(z, t, z′, z′′) > λ

)
≤P
(
|M̂1

n(z, t)− M̂1
n(z′, t)||M̂1

n(z, t)− M̂1
n(z′′, t)| > λ2

)
≤λ−(2+δ)E[|M̂1

n(z, t)− M̂1
n(z′, t)||M̂1

n(z, t)− M̂1
n(z′′, t)|]1+δ/2

≤λ−(2+δ)
(
E|M̂1

n(z, t)− M̂1
n(z′, t)|2+δE|M̂1

n(z, t)− M̂1
n(z′′, t)|2+δ

)1/2
.λ−(2+δ)

(
|z − z′|2+δ|z − z′′|2+δ

)1/2 ≤ λ−(2+δ)|z′ − z′′|2+δ,

where we used Lemma 6.3.4 in the last line. Moreover, we have

P
(
|M̂1

n(z1, t1)− M̂1
n(z2, t2)| > λ

)
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≤P
(
|M̂1

n(z1, t1)− M̂1
n(z2, t1)| >

λ

2

)
+ P

(
|M̂1

n(z2, t1)− M̂1
n(z2, t2)| >

λ

2

)
≤P
(
|M̂1

n(z1, t1)− M̂1
n(z2, t1)| >

λ

2

)
+

2∑
k=1

P
(
|Ẑk

n(z2, t1, t2)| >
λ

4

)
≤
(2

λ

)2+δ
E|M̂1

n(z1, t1)− M̂1
n(z2, t1)|2+δ +

(4

λ

)4
E|Ẑ1

n(z2, t1, t2)|4 +
(4

λ

)4+δ
E|Ẑ2

n(z2, t1, t2)|4+δ

.
(2

λ

)2+δ
|z1 − z2|2+δ +

(4

λ

)4(bnt2c − bnt1c
n

)4
+
(4

λ

)4+δ(bnt2c − bnt1c
n

)2+δ/2
.C1,λ

[∣∣∣bnt2c − bnt1c
n

∣∣∣2+δ/2 + |z1 − z2|2+δ
]

≤C1,λ

[(
|t2 − t1|+

1

n

)2+δ/2
+ |z1 − z2|2+δ

]
≤C1,λ

(∥∥∥ (z1, t1)
> − (z2, t2)

>
∥∥∥
∞

+
1

n

)2+δ/2
,

where

C1,λ = max(λ−4, λ−(2+δ), λ−(4+δ)).

Let m ∈ N and define for j = (j1, j2) ∈ {1, . . . ,m}2 the set

Kj =
[j1 − 1

m
,
j1
m

]
×
[j2 − 1

m
∧ t0,

j2
m
∧ t0

]
.

Combining the three inequalities above, we are able to apply Corollary A.4 in Dette
and Tomecki (2019) with the parameters ε = 1/m, δ′ = 2 + δ/2 and get

P
(

sup
(z1,t1),(z2,t2)∈Kj

|M̂1
n(z1, t1)− M̂2

n(z2, t2)| > λ
)
. C2,λ

( 1

m

)2+δ/2
+ C1,λ

( 1

m
+

1

n

)2+δ/2
,

where C2,λ = max(λ−4, λ−(4+δ), λ−(2+δ)). This implies

lim sup
n→∞

P
(

sup
j∈{1,...,m}2

sup
(z1,t1),(z2,t2)∈Kj

|M̂1
n(z1, t1)− M̂2

n(z2, t2)| > λ
)

≤ lim sup
n→∞

∑
j∈{1,...,m}2

P
(

sup
(z1,t1),(z2,t2)∈Kj

|M̂1
n(z1, t1)− M̂2

n(z2, t2)| > λ
)

. lim sup
n→∞

m2
[
C2,λ

( 1

m

)2+δ/2
+ C1,λ

( 1

m
+

1

n

)2+δ/2]
.m2 1

m2+δ/2
→ 0, as m→∞.

Theorem 1.5.7 in Van Der Vaart and Wellner (1996) finally implies the asymptotic
tightness of the sequence (M̂1

n)n∈N, which completes the proof of Theorem 6.3.2.

Corollary 6.3.5 There exists a version of the process (M1(z, t))z∈C+,t∈[t0,1] with con-
tinuous sample paths.

Proof. By Addendum 1.5.8 in Van Der Vaart and Wellner (1996), almost all paths
(z, t, ω) ∈ (C+ \ {xl, xr}) × [t0, 1] × Ω 7→ M̂1(z, t)(ω) are continuous. Since (C+ \
{xl, xr}) × [t0, 1] ⊂ C+ × [t0, 1] is a dense set, we conclude that almost all paths
(z, t, ω) ∈ C+ × [t0, 1]× Ω 7→ M̂1(z, t)(ω) are continuous.
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6.3.4 Proof of Theorem 6.3.3

Recall that

s̃n,t(z) = sFBn,t (z) = −
1− ybntc

z
+ ybntcs̃n,t(z)

and

s̃0n,t(z) = s
F̃
ybntc,Hn (z)

= −
1− ybntc

z
+ ybntcs̃

0
n,t(z),

where FBn,t denotes the empirical spectral distribution of the matrix Bn,t defined

in (2.2) and the distribution F̃
ybntc,Hn

is defined in (3.4).
Recalling the definition (6.11) we have

M2
n(z, t) = p

(
E[s̃n,t(z)]− s̃0n,t(z)

)
= bntc

(
E
[
s̃n,t(z)

]
− s̃0n,t(z)

)
. (6.52)

We begin with a lemma, which is used to derive an alternative representation
of M2

n(z, t). Note that this Lemma corrects an error in formula (9.11.1) in Bai and
Silverstein (2010) and is proved in Section 7.3.

Lemma 6.3.6 It holds

(
E[s̃n,t(z)]− s̃0n,t(z)

)1−
yn
bntc
n

∫ λ2s̃0n,t(z)dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)


=
bntc
n

Rn,t(z)E[s̃n,t(z)]s̃0n,t(z),

where

Rn,t(z) = ybntcbntc−1
bntc∑
j=1

E[βj,t(z)dj,t(z)]
(
E[s̃n,t(z)]

)−1
= ybntcn

−1
bntc∑
j=1

E[βj,t(z)dj,t(z)]
(bntc

n
E[s̃n,t(z)]

)−1
,

dj,t(z) = −q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

+
1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
t (z)

]
,

qj =
1
√
p
xj.

The next main step is the following result, which is proved in Section 7.4.

Theorem 6.3.7 Under the assumptions of Theorem 3.2.1, we have

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| = 0,

where s̃t is defined in (3.1).
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The third step in the proof of Theorem 6.3.3 is the following result, which is
proved in Section 7.5.

Theorem 6.3.8 Under the assumptions of Theorem 3.2.1, we have

sup
n∈N,
z∈Cn,
t∈[t0,1]

|M2
n(z, t)| ≤ K , lim

n→∞
sup
z∈Cn,
t∈[t0,1]

|s̃0n,t(z)− s̃t(z)| = 0.

Using Lemma 6.3.6 and Theorem 6.3.7, we show in Section 7.6 that

bntcRn,t(z)E[s̃n,t(z)]→


y
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)

1−ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

for the real case,

0 for the complex case,

(6.53)

uniformly with respect to z ∈ Cn, t ∈ [t0, 1]. Combining this result with Theorem
6.3.7 and Lemma 7.7.6 yields

lim
n→∞

sup
z∈Cn
t∈[t0,1]

|Rn,t(z)| = 0 (6.54)

This result and Lemma 7.7.6, Theorem 6.3.7, Theorem 6.3.8, Lemma 7.7.2 and the
equation (3.2) show that

yn
bntc
n

∫ λ2s̃0n,t(z)dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

→ ty

∫
λ2s̃2t (z)dH(λ)

(1 + λts̃t(z))2
.

Observing the representation in (6.52), Lemma 6.3.6 and Theorem 6.3.8, this implies

M2
n(z, t)→


ty
∫ s̃3t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)(

1−ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

)2 for the real case,

0 for the complex case.

uniformly with respect z ∈ Cn, t ∈ [t0, 1], which completes the proof of Theorem
6.3.3.

6.4 Details on the arguments in Section 6.2

Lemma 6.4.1 Let ΓF denote the support of a c.d.f. F . Then it holds

Γ
F̃
ybntc,Hn ⊂

[bnt0c
n

λp(Tn)I(0,1)(ybnt0c)(1−
√
ybnt0c)

2, λ1(Tn)(1 +
√
ybnt0c)

2
]
,

where F̃ ybntc,Hn is defined in (3.6).
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Proof of Lemma 6.4.1. By definition, we have

F̃ ybntc,Hn(·) = F ybntc,Hn

(
n

bntc
·
)
,

and thus,

Γ
F̃
ybntc,Hn =

bntc
n

Γ
F
ybntc,Hn .

Since

F ybntc,Hn − ybntcF ybntc,Hn = (1− ybntc)I[0,∞),

it is sufficient to investigate the support of F ybntc,Hn in order to study the support
of F ybntc,Hn . Define for all α /∈ ΓHn

ψybntc,Hn(α) = ψ(α) = α + ybntcα

∫
λ

α− λ
dHn(λ) = α + α

ybntc
p

p∑
i=1

λi(Tn)

α− λi(Tn)
.

We need the following result [see, e.g., Lemma 6.1, Bai and Silverstein (2010) or
Proposition 2.17, Yao et al. (2015)].

Proposition 6.4.2 If λ /∈ Γ
F
ybntc,Hn , then sn,t(λ) 6= 0 and α = −1/sn,t(λ) satisfies

1. α /∈ ΓHn and α 6= 0,

2. ψ′(α) > 0.

Conversely, if α satisfies 1-2, then λ = ψ(α) /∈ Γ
F
ybntc,Hn .

That is, we can determine a superset of the support of F ybntc,Hn by considering
the complement of intervals where ψ is monotonously increasing. The derivative of
ψ is given by

ψ′(α) = 1−
ybntc
p

p∑
i=1

(λi(Tn))2

(α− λi(Tn))2
.

First, consider the case α < λp(Tn), which implies α /∈ ΓHn . Noting that fα(x) =
f(x) = x2/(x − α)2 is a monotone decreasing function for x > α > 0, we have to
solve the following inequality for 0 < α < λp(Tn)

p
(λp(Tn))2

(α− λp(Tn))2
<

p

ybntc
,

which is in this case a sufficient condition for ψ′(α) > 0 . This gives for ybntc ∈ (0, 1)

0 < α < λp(Tn)(1−√ybntc).
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If α < 0 < λp(Tn), we conclude

ψ′(α) > 1− ybntc,

which is non-negative if and only if ybntc ≥ 1. In this case, we conclude ψ(α) ≤ 0.
Now we calculate for ybntc ∈ (0, 1)

ψ(α) ≤ψ
(
λp(Tn)

(
1−√ybntc

))
≤ λp(Tn)

(
1−√ybntc

)
+ ybntcλp(Tn)

(
1−√ybntc

) λp(Tn)

−√ybntcλp(Tn)

= λp(Tn)
(
1−√ybntc

)2
.

Using Proposition 6.4.2, this gives

Γ
F
ybntc,Hn ⊂

[
λp(Tn)I(0,1)(ybnt0c)(1−

√
ybnt0c)

2,∞
)
.

Next, we specify the right endpoint of this interval. Let α > λ1(Tn) which implies
α /∈ ΓHn . Note that the function f is monotone increasing for 0 < x < α. Solving
the inequality

p
(λ1(Tn))2

(α− λ1(Tn))2
<

p

ybntc
,

which is in this case a sufficient condition for ψ′(α) > 0, gives

α > λ1(Tn)
(
1 +
√
ybntc

)
.

Similar consideration as in the other case yield

ψ
(
λ1(Tn)

(
1 +
√
ybntc

))
≥ λ1(Tn)

(
1 +
√
ybntc

)2
.

This finishes the proof of Lemma 6.4.1.

The following lemma ensures that the process (M̂n(z, t))z∈C+,t∈[t0,1] defined in
(6.4) provides an appropriate approximation for the process (Mn(z, t))z∈C+,t∈[t0,1].

Lemma 6.4.3 Let i ∈ {1, 2}. It holds with probability 1 (uniformly in t ∈ [t0, 1])∣∣∣ ∫
C

fi(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣ = o(1), as n→∞, i = 1, 2.

Proof of Lemma 6.4.3. For convenience, we write fi = f. Since C = C+ ∪ C+ and
Mn(z, t) = Mn(z, t) for all z = x+ iv ∈ C+, we have (using also the definition of M̂n

in (6.4))∣∣∣ ∫
C

f(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣ ≤ K

∫
[0,n−1εn]

{
|Mn(xr + iv, t)−Mn(xr + in−1εn, t)|



6.4. Details on the arguments in Section 6.2 53

+ |Mn(xl + iv, t)−Mn(xl + in−1εn, t)|
}
dv.

Let ΓF denote the support of a c.d.f. F , then it follows by Proposition 2.4 in Yao
et al. (2015) that

|sF (z)| ≤ 1

dist(z,ΓF )
, (6.55)

where z ∈ C \ ΓF and sF is the Stieltjes transform of F . Using (6.8) and Lemma
6.4.1, we have for v ∈ [0, n−1εn] and sufficiently large n

dist (xr + iv,ΓFBn,t ) ≥
∣∣xr − λ1(Bn,t)

∣∣
≥
∣∣xr −max

(
λ1(Bn,t), λ1(Tn)(1 +

√
ybntc)

2
)∣∣,

dist
(
xl + iv,ΓF̃ ybntc ,Hn

)
≥
∣∣xl − bnt0c

n
λp(Tn)I(0,1)(ybntc)(1−

√
ybntc)

2
∣∣

≥
∣∣xl −min

(
λp(Bn,t),

bnt0c
n

λp(Tn)I(0,1)(ybntc)(1−
√
ybntc)

2
)∣∣.

Similarly, one can show that for sufficiently large n

dist
(
xr + iv,ΓF̃ ybntc ,Hn

)
≥
∣∣xr −max

(
λ1(Bn,t), λ1(Tn)(1 +

√
ybntc)

2
)∣∣ ,

dist (xl + iv,ΓFBn,t ) ≥
∣∣xl −min

(
λp(Bn,t),

bnt0c
n

λp(Tn)I(0,1)(ybntc)(1−
√
ybntc)

2
)∣∣.

Recall the definition of Mn, then (6.55) implies∣∣∣ ∫
C

f(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣

≤4Kεn

{ ∣∣xr −max
(
λ1(Bn,t), λ1(Tn)(1 +

√
ybntc)

2
)∣∣−1

+
∣∣xl −min

(
λp(Bn,t), λp(Tn)I(0,1)(ybntc)

bnt0c
n

(1−√ybntc)2
)∣∣−1}.

Due to (6.8), for every t ∈ [t0, 1], the denominators are bounded away from 0 for
sufficiently large n with probability 1 (nullset may depend on t). Note that for every
n ∈ N, there are only finitely many t1, t2 ∈ [t0, 1] such that bnt1c 6= bnt2c. That is,
since the countable union of nullsets is again a nullset, we find that with probability
1 (uniformly in t)

lim sup
n→∞

∣∣∣ ∫
C

f(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣

≤ 4K lim
n→∞

εn

{(
xr − lim sup

n→∞
max

(
λ1(Bn,t), λ1(Tn)(1 +

√
ybntc)

2
) )−1

+
(

lim inf
n→∞

min
(
λp(Bn,t), λp(Tn)I(0,1)(ybntc)

bnt0c
n

(1−√ybntc)2
)
− xl

)−1}
≤ 4K lim

n→∞
εn

{(
xr − lim sup

n→∞
λ1(Tn)(1 +

√
ybnt0c)

2
)−1

+
(

lim inf
n→∞

λp(Tn)I(0,1)(ybnt0c)
bnt0c
n

(1−√ybnt0c)2 − xl
)−1}

= 0.



Chapter 7

More details on the proof of
Theorem 6.1.1

In this chapter, we provide the remaining arguments in the proof of Theorem 6.1.1
in Section 6.3. Several further very technical results are given in Section 7.7.

7.1 Auxiliary results for the proof of Theorem

6.3.1 in Section 6.3.2

Lemma 7.1.1 Zt1,t2
nj defined in (6.16) forms a martingale difference scheme with

respect to the filtration Fnj = σ({r1, ..., rj}) (1 ≤ j ≤ max(bnt1c, bnt2c)).

Proof of Lemma 7.1.1. Obviously, Zt1,t2
nj is σ(r1, ..., rj)-measurable by the definition

of Ej. It remains to show that

Ej−1[Zt1,t2
nj ] = 0.

By the tower property of the expected value, it suffices to prove

Ej−1
(
βj,t(z)αj,t(z)− β2

j,t(z)γ̂j,t(z)
1

n
tr(TnD

−2
j,t (z))

)
= 0. (7.1)

Considering the first summand, we have

Ej−1

[
1

1 + n−1 tr(TnD
−1
j,t (z))

(
r?jD

−2
j,t (z)rj − n−1 tr(D−2j,t (z)Tn)

)]

= Ej−1

[
1

1 + n−1 tr(TnD
−1
j,t (z))

(
n−1 tr(D−2j,t (z)Tn)− n−1 tr(D−2j,t (z)Tn)

)]
= 0,

where we have used the fact that xj is independent of r1, ..., rj−1, Dj,t and E[xjx
?
j ] =

I. The assertion for the second summand follows in a similar fashion, which yields
the desired MDS property.
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Lemma 7.1.2 The scheme Zt1,t2
nj satisfies condition (5.31) given in Lemma 5.6 of

Najim and Yao (2016), that is,

lim
n→∞

max(bnt1c,bnt2c)∑
j=1

E
(∣∣Zt1,t2

nj

∣∣2 I (∣∣Zt1,t2
nj

∣∣ > ε
))

= 0.

Proof of Lemma 7.1.2. Note that we have for any q > 0 and any z ∈ C with Im(z) 6=
0

max
(∣∣∣∣D−1t (z)

∣∣∣∣q , ∣∣∣∣D−1j,t (z)
∣∣∣∣q , ∣∣∣∣D−1i,j,t(z)

∣∣∣∣q) ≤ Kq,z. (7.2)

where Kq,z > 0 is allowed to depend on q and z. Later on, we will strengthen this
result and find a bound for the moments of these random variables uniformly in
z ∈ Cn and t ∈ [t0, 1] (see Lemma 7.7.3). It holds

E|Yj,t(z)|4 ≤ K
(
E|αj,t(z)|4 + E|γ̂j,t(z)|4

)
= o(n−1).

where we used (9.9.6) in Bai and Silverstein (2010) in the following way (exemplarily
for the second term):

E|γ̂j,t(z)|4 = E
∣∣r?jD−1j,t (z)rj − n−1 tr(D−1j,t (z)Tn)

∣∣4
= E(−j)

[
E(j)

∣∣r?jD−1j,t (z)rj − n−1 tr(D−1j,t (z)Tn)
∣∣4]

≤ Kn−1η4nE(−j) [||D−1j,t (z)||4
]

= Kn−1η4nE
[
||D−1j,t (z)||4

]
= o(n−1). (7.3)

Here, E(−j) denotes the expected value with respect to {r1, ..., rn} \ {rj} and E(j)

the expected value with respect to rj and we used the independence of r1, ..., rn.
The fourth absolute moment of αj,t(z) can be controlled similarly. This implies the
Lindeberg-type condition

max(bnt1c,bnt2c)∑
j=1

E
(∣∣Zt1,t2

nj

∣∣2 I (∣∣Zt1,t2
nj

∣∣ > ε
))
≤ 1

ε2

max(bnt1c,bnt2c)∑
j=1

E
∣∣Zt1,t2

nj

∣∣4
=

1

ε2

max(bnt1c,bnt2c)∑
j=1

E

∣∣∣∣∣
k∑
i=1

αi,1Yj,t1(zi) + αi,2Yj,t2(zi)

∣∣∣∣∣
4

→ 0,

as n→∞.

Lemma 7.1.3 It holds for t ∈ [0, 1] , z ∈ C such that Im(z) > 0

s̃n,t(z) = − 1

zbntc

bntc∑
j=1

βj,t(z).

Proof (similar to formula (6.2.4) in Bai and Silverstein (2010)). Note that

Dt(z) + zI =

bntc∑
j=1

rjr
?
j .
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Multiplying by D−1t (z) and using the identity (6.1.11) from Bai and Silverstein
(2010)

r?j(C + rjr
?
j)
−1 =

1

1 + r?jC
−1rj

r?jC
−1 (7.4)

for any p× p matrix C such that C + r?jrj is invertible, we conclude that

I + zD−1t (z) =

bntc∑
j=1

rjr
?
jD
−1
t (z) =

bntc∑
j=1

rjr
?
j

(
Dj,t(z) + rjr

?
j

)−1
=

bntc∑
j=1

1

1 + r?jD
−1
j,t (z)rj

rjr
?
jD
−1
j,t (z).

Applying the trace on both sides, dividing by bntc and noting that

s̃n,t(z) =
1

p
tr(D−1t (z)),

we get

ybntc + zybntcs̃n,t(z) =

bntc∑
j=1

1

bntc
r?jD

−1
j,t (z)rj

1 + r?jD
−1
j,t (z)rj

= 1− 1

bntc

bntc∑
j=1

1

1 + r?jD
−1
j,t (z)rj

= 1− 1

bntc

bntc∑
j=1

βj,t(z).

Recalling (2.3), we see that

s̃n,t(z) =
1

zybntc
− 1

z
+

1

ybntc
s̃n,t(z),

which finally implies

s̃n,t(z) = − 1

bntcz

bntc∑
j=1

βj,t(z).

Lemma 7.1.4∣∣∣∣∣ 1

z1z2
tr

((
I +
bnt2c
n

s0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s0n,t1(z1)Tn

)−1
Tn

)

− tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
≤Kn

1
2 .
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Proof. We use (6.40) to get∣∣∣∣bntc − 1

n
bj,t(z) + z

bntc
n

s0n,t(z)

∣∣∣∣ ≤ ∣∣∣∣ 1nbj,t(z)

∣∣∣∣+
∣∣bj,t(z) + zs0n,t(z)

∣∣ ≤ Kn−
1
2 .

and make the following consideration for invertible p× p matrices A and B:

||A−1 −B−1|| = ||B−1(B−A)A−1|| ≤ ||B−1|| ||A−1|| ||B−A||.

Combining these two results yields∣∣∣∣∣tr
{(

zI− bntc − 1

n
bj,t(z)Tn

)−1
−
(
zI + z

bntc
n

s0n,t(z)Tn

)−1}∣∣∣∣∣ ≤ Kn
1
2 .

Hence,∣∣∣∣∣ 1

z1z2
tr

((
I +
bnt2c
n

s0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s0n,t1(z1)Tn

)−1
Tn

)

− tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
≤

∣∣∣∣∣ tr
({(

z2I−
bnt2c − 1

n
bj,t2(z2)Tn

)−1
−
(
z2I + z2

bnt2c
n

s0n,t2(z2)Tn

)−1}

×Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
+

∣∣∣∣∣ tr
(

1

z2

(
I +
bnt2c
n

s0n,t2(z2)Tn

)−1
Tn

×

{(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
−
(
z1I + z1

bnt1c
n

s0n,t1(z1)Tn

)−1}
Tn

)∣∣∣∣∣
≤Kn

1
2 .

Lemma 7.1.5

E

∣∣∣∣∣ tr (Ej [D−1j,t1(z1)]TnEj
[
D−1j,t2(z2)

]
Tn

)
{
j − 1

n2
bj,t1(z1)bj,t2(z2) tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

(
z1I−

bnt1c − 1

bnt1c
bj,t1(z1)Tn

)−1
Tn

)

− j − 1

n2
s0n,t1(z1)s

0
n,t2

(z2) tr
((

I + s0n,t2(z2)Tn

)−1
Tn

(
I + s0n,t1(z1)Tn

)−1
Tn

)}∣∣∣∣∣
≤ Kn

1
2
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Proof. By (7.2), we have

E
∣∣tr (Ej [D−1j,t1(z1)]TnEj

[
D−1j,t2(z2)

]
Tn

)∣∣ ≤ Kn.

Thus, it is left to show that∣∣∣∣∣bj,t1(z1)bj,t2(z2) tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)

− s0n,t1(z1)s
0
n,t2

(z2) tr

((
I +
bnt2c
n

s0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s0n,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
(7.5)

≤Kn
1
2 .

Invoking Lemma 7.1.4 and (6.40), we see that

(7.5)

≤

∣∣∣∣∣bj,t1(z1)bj,t2(z2) tr

((
z2I−

bnt2c − 1

n
bj,t2(z2)Tn

)−1
Tn

(
z1I−

bnt1c − 1

n
bj,t1(z1)Tn

)−1
Tn

)

− bj,t1(z1)bj,t2(z2)
1

z1z2
tr

((
I +
bnt2c
n

s0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s0n,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
+

∣∣∣∣∣
(
bj,t1(z1)bj,t2(z2)

1

z1z2
− s0n,t1(z1)s

0
n,t2

(z2)

)

× tr

((
I +
bnt2c
n

s0n,t2(z2)Tn

)−1
Tn

(
I +
bnt1c
n

s0n,t1(z1)Tn

)−1
Tn

)∣∣∣∣∣
≤Kn

1
2 .

Lemma 7.1.6 We have for z ∈ C+ and t ∈ (0, 1]

z = − 1

s̃t(z)
+ y

∫
λ

1 + λts̃t(z)
dH(λ).

and

z = − 1

s̃0n,t(z)
+ yn

∫
λ

1 + λ bntc
n
s̃0n,t(z)

dHn(λ).

Proof. We begin by proving the first assertion. Similarly to (3.3), we have

s̃t(z) = −1− yt
z

+ yts̃t(z), (7.6)

which is equivalent to

s̃t(z) =
1

yt
s̃t(z) +

1

zyt
− 1

z
.
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Using

st

(z
t

)
= ts̃t(z)

and substituting this in (2.1) gives

s̃t(z) =

∫
1

λt (1− yt − ytzs̃t(z))− z
dH(λ).

We apply (7.6) to get

s̃t(z) =
yt − 1

z
− yt
z

∫
1

λts̃t(z) + 1
dH(λ)

and solving this equation in z yields

z =
yt − 1

s̃t(z)
− yt
s̃t(z)

∫
1

1 + λts̃t(z)
dH(λ)

=
yt − 1

s̃t(z)
+

yt
s̃t(z)

∫
λts̃t(z)

1 + λts̃t(z)
dH(λ)− yt

s̃t(z)

=− 1

s̃t(z)
+ y

∫
λ

1 + λts̃t(z)
dH(λ).

Next, we will prove the second assertion. By using

s̃0n,t(z) =
1

ybntc
s̃0n,t(z) +

1

zybntc
− 1

z

in equation (6.3), we get

s̃0n,t(z) = −
ybntc
z

∫
1

1 + λ bntc
n
s̃0n,t(z)

dHn(λ) +
ybntc
z
− 1

z
.

Solving this equation in z,

z = −
ybntc

s̃0n,t(z)

∫
1

1 + λ bntc
n
s̃0n,t(z)

dHn(λ) +
ybntc

s̃0n,t(z)
− 1

s̃0n,t(z)

= yn

∫
λ

1 + λ bntc
n
s̃0n,t(z)

dHn(λ)− 1

s̃0n,t(z)
.

Lemma 7.1.7 It holds∣∣∣∣min(bnt1c, bnt2c)
n

an(z1, z2, t1, t2)

∣∣∣∣ < 1,

where an(z1, z2, t1, t2) is defined in (6.43).
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Proof. For the sake of simplicity, we write an(z1, z2) = an(z1, z2, t1, t2). Assume
w.l.o.g. that t2 ≤ t1. As a consequence of Lemma 7.1.6, we see

s̃0n,t(z) = − 1

z + yn
∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

, (7.7)

and conclude that

∣∣∣∣bnt2cn an(z1, z2)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
bnt2c
n

yn
∫ λ2dHn(λ)

(1+λ
bnt1c
n

s̃0n,t1
(z1))(1+

bnt2c
n

λs̃0n,t2
(z2))(

−z1 + yn
∫ λdHn(λ)

1+λ
bnt1c
n

s̃0n,t1
(z1)

)(
−z2 + yn

∫ λdHn(λ)

1+λ
bnt2c
n

s̃0n,t2
(z2)

)
∣∣∣∣∣∣∣∣

≤


yn
bnt2c
n

∫ λ2dHn(λ)

|1+λ bnt1c
n

s̃0n,t1
(z1)|2∣∣∣∣−z1 + yn

∫ λdHn(λ)

1+λ
bnt1c
n

s̃0n,t1
(z1)

∣∣∣∣2


1
2


yn
bnt2c
n

∫ λ2dHn(λ)

|1+λ bnt2c
n

s̃0n,t2
(z2)|2∣∣∣∣−z2 + yn

∫ λdHn(λ)

1+λ
bnt2c
n

s̃0n,t2
(z2)

∣∣∣∣2


1
2

≤


yn
bnt1c
n

∫ λ2dHn(λ)

|1+λ bnt1c
n

s̃0n,t1
(z1)|2∣∣∣∣−z1 + yn

∫ λdHn(λ)

1+λ
bnt1c
n

s̃0n,t1
(z1)

∣∣∣∣2


1
2


yn
bnt2c
n

∫ λ2dHn(λ)

|1+λ bnt2c
n

s̃0n,t2
(z2)|2∣∣∣∣−z2 + yn

∫ λdHn(λ)

1+λ
bnt2c
n

s̃0n,t2
(z2)

∣∣∣∣2


1
2

=

 bnt1c
n

Im(s̃0n,t1(z))yn
∫ λ2dHn(λ)

|1+λ bnt1c
n

s̃0n,t1
(z)|2

Im(z) + bnt1c
n

Im(s̃0n,t1(z))yn
∫ λ2dHn(λ)

|1+λ bnt1c
n

s̃0n,t1
(z)|2


1
2

×

 bnt2c
n

Im(s̃0n,t2(z))yn
∫ λ2dHn(λ)

|1+λ bnt2c
n

s̃0n,t2
(z)|2

Im(z) + bnt2c
n

Im(s̃0n,t2(z))yn
∫ λ2dHn(λ)

|1+λ bnt2c
n

s̃0n,t2
(z)|2

.


1
2

< 1.

The second equality follows from Lemma 7.7.1. Moreover,

Im(z)
bnt1c
n

Im s0n,t1(z)ybnt1c
∫ λ2dHn(λ)

|1+λ bnt1c
n

s̃0n,t1
(z)|2

is bounded away from zero, since by Lemma 6.10 (a) in Bai and Silverstein (2010),
we have

bnt1c
n

Im s̃0n,t1(z)yn

∫
λ2dHn(λ)

|1 + λ bnt1c
n
s̃0n,t1(z)|2

=

∣∣∣∣∣yn Im

(∫
λdHn(λ)

1 + λ bnt1c
n
s̃0n,t1(z)

)∣∣∣∣∣
≤ yn

∣∣∣∣∣
∣∣∣∣∣Tn

(
I +
bnt1c
n

s̃0n,t1(z)Tn

)−1∣∣∣∣∣
∣∣∣∣∣ ≤ 4yn

Im(z)
.
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Here, we used

Im

(
1

z

)
=
−Im(z)

|z|2

for the first equality. This finishes the proof.

7.2 Proof of Lemma 6.3.4

To be precise, recall the definition of Z1
n and Z2

n in (6.47) and (6.48) and define Ẑ1
n

and Ẑ2
n by Z1

n and Z2
n, respectively, in the same way as M̂1

n is defined by M1
n in

equation (6.4). The bounds for the increments of Mn(z, t), z ∈ Cn, t ∈ [t0, 1] are
given in the following lemma, which will be proven later in Section 7.7.

Lemma 7.2.1 For t ∈ [t0, 1], z1, z2 ∈ Cn, it holds for sufficiently large n ∈ N under
the assumptions of Theorem 6.3.2

E|M1
n(z1, t)−M1

n(z2, t)|2+δ . |z1 − z2|2+δ. (7.8)

We also have for t1, t2 ∈ [t0, 1], z ∈ Cn

E|Z1
n(z, t1, t2)|4 .

(bnt2c − bnt1c
n

)4
, (7.9)

E|Z2
n(z, t1, t2)|4+δ .

(bnt2c − bnt1c
n

)2+δ/2
, (7.10)

where
M1

n(z, t1)−M1
n(z, t2) = Z1

n(z, t1, t2) + Z2
n(z, t1, t2), (7.11)

and Z1
n and Z2

n are defined in (6.47) and (6.48), respectively.

The bounds (6.50) and (6.51) for the moments of Ẑ1
n and Ẑ2

n follow directly from
corresponding bounds (7.9) and (7.10) in Lemma 7.2.1.

We continue by proving the first assertion (6.49). If z1 and z2 are both contained
in Cn, the assertion directly follows from (7.8). Otherwise, we assume that N ∈ N
is sufficiently large so that for all n ≥ N

v0 > εnn
−1.

Let z1 ∈ Cn and z2 /∈ Cn, that is, 0 ≤ Im(z2) ≤ εnn
−1 ≤ Im(z1). With the notation

Re(z2) = x ∈ {xl, xr} we have from (7.8)

E|M̂1
n(z1, t)− M̂1

n(z2, t)|2+δ =E|M1
n(z1, t)−M1

n(x+ iεnn
−1, t)|2+δ . |z1 − (x+ iεnn

−1)|2+δ

≤
[
(Re(z1)− x)2 + (Im(z1)− εnn−1)2

](2+δ)/2
≤
[
(Re(z1)− x)2 + (Im(z1)− Im(z2))

2
](2+δ)/2

=|z1 − z2|2+δ.

Finally, if both z1, z2 ∈ C+ \ Cn, it follows from (7.8) that

E|M̂1
n(z1, t)− M̂1

n(z2, t)|2+δ =E|M1
n(Re(z1) + iεnn

−1)−M1
n(Re(z2) + iεnn

−1)|2+δ

.|Re(z1)− Re(z2)|2+δ ≤ |z1 − z2|2+δ,

which completes the proof of Lemma 6.3.4.
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7.3 Proof of Lemma 6.3.6

As a preparation, we need the following auxiliary result.

Lemma 7.3.1 It holds for all n ∈ N, z ∈ C+, t ∈ (0, 1]

yn

∫
dHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

+ zynE[s̃n,t(z)]

=
1

n

bntc∑
j=1

E

{
βj,t(z)

[
r?jD

−1
j,t (z)

(
bntc
n

E[s̃n,t(z)]Tn − I

)−1
rj

− 1

n
tr

(
bntc
n

E[s̃n,t(z)]Tn − I

)−1
TnE[D−1t (z)]

]}
.

Proof of Lemma 7.3.1. This proof is inspired by (5.2) in Bai and Silverstein (1998).
We write

Dt(z)−
(
−z bntc

n
E[s̃n,t(z)]Tn − zI

)
=

bntc∑
j=1

rjr
?
j −

(
−z bntc

n
E[s̃n,t(z)]

)
Tn.

Next, we use (see (7.4))

r?jD
−1
t (z) = βj,t(z)r?jD

−1
j,t (z)

and from Lemma 7.1.3

−zE[s̃n,t(z)] =
1

bntc

bntc∑
j=1

E[βj,t(z)]

to conclude(
−z bntc

n
E[s̃n,t(z)]Tn − zI

)−1
− E[D−1t (z)]

=

(
−z bntc

n
E[s̃n,t(z)]Tn − zI

)−1
E

bntc∑
j=1

rjr
?
j −

(
−z bntc

n
E[s̃n,t(z)]Tn

)D−1t (z)


=− z−1

bntc∑
j=1

E

{
βj,t(z)

[(
bntc
n

Es̃n,t(z)Tn − I

)−1
rjr

?
jD
−1
j,t (z)

− 1

n

(
bntc
n

E[s̃n,t(z)Tn − I

)−1
TnE[D−1t (z)]

]}
.

Taking traces on both sides and multiplying by −z/n, we get

yn

∫
dHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

+ zynE[s̃n,t(z)] =
1

n

bntc∑
j=1

E

{
βj,t(z)

[
r?jD

−1
j,t (z)

(
bntc
n

E[s̃n,t(z)]Tn − I

)−1
rj
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− 1

n
tr

(
bntc
n

E[s̃n,t(z)]Tn − I

)−1
TnE[D−1t (z)]

]}

Proof of Lemma 6.3.6 . We begin by deriving an alternative form for Rn,t(z). By

E[s̃n,t(z)] =
1

ybntc
E[s̃n,t(z)] +

1

zybntc
− 1

z

and Lemma 7.3.1, we have

−bntc
n

Es̃n,t(z)
(
− z− 1

E[s̃n,t(z)]
+ yn

∫
λdHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

)
=yn

∫
dHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

+ zynE[s̃n,t(z)]

=− n−1
bntc∑
j=1

E
[
βj,t(z)

(
r?jD

−1
j,t (z)(

bntc
n

Es̃n,t(z)Tn + I)−1rj

− 1

n
E[tr(

bntc
n

Es̃n,t(z)Tn + I)−1TnD
−1
t (z)]

)]
=− ynn−1

bntc∑
j=1

E
[
βj,t(z)

(
q?jT

1
2
nD−1j,t (z)(

bntc
n

Es̃n,t(z)Tn + I)−1T
1
2
nqj

− 1

p
E[tr(

bntc
n

Es̃n,t(z)Tn + I)−1TnD
−1
t (z)]

)]
=− ynn−1

bntc∑
j=1

E [βj,t(z)dj,t(z)] = −bntc
n

ybntcn
−1
bntc∑
j=1

E [βj,t(z)dj,t(z)] .

This implies

bntc
n

Rn,t(z) = −z − 1

E[s̃n,t(z)]
+ yn

∫
λdHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

,

and we can conclude

E[s̃n,t(z)]− s̃0n,t(z)

=
1

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

− 1

−z + yn
∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

=
yn

( ∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

−
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]

)
+ bntc

n
Rn,t(z)(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)
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=
yn
bntc
n

(
E[s̃n,t(z)]− s̃0n,t(z)

) ∫ λ2dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

+ bntc
n
Rn,t(z)(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)
(7.12)

=
yn
bntc
n

(
E[s̃n,t(z)]− s̃0n,t(z)

) ∫ λ2s̃0n,t(z)dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

+
bntc
n

Rn,t(z)E[s̃n,t(z)]s̃0n,t(z).

7.4 Proof of Theorem 6.3.7

In this section, D[0, 1]2 denotes the Skorokhod space on [0, 1]2 (see Bickel and
Wichura, 1971; Neuhaus, 1971, for a formal definition). We will identify the set
C+ × [0, 1] with the square [0, 1]2 and proceed in several steps. First, we will
show a uniqueness condition, second we prove the existence of a Skorokhod-limit
of (E[s̃n,·(·)])n∈N. We conclude by proving that the Skorokhod-limit is in fact a
uniform limit.

Lemma 7.4.1 Let (E[s̃k(n),t(z)])n∈N and (E[s̃l(n),t(z)])n∈N be two subsequences of
(E[s̃n,t(z)])n∈N and m1 and m2 be functions on C+ × [t0, 1]. If for z ∈ C+, t ∈ [t0, 1],

lim
n→∞

E[s̃k(n),t(z)] = m1(z, t) and lim
n→∞

E[s̃j(n),t(z)] = m2(z, t),

then we have for z ∈ C+, t ∈ [t0, 1]

m1(z, t) = m2(z, t) = s̃t(z),

where s̃t denotes the Stieltjes transform of F̃ yt,H given in (2.4)

Proof of Lemma 7.4.1. We show that a potential limit of the sequence (E[s̃n,·(·)])n∈N
satisfies an equation which admits a unique solution. For this purpose, we will adapt
ideas from Bai and Zhou (2008) and also correct some arguments in step 2 in the
proof of their Theorem 1.1. To be precise, define for z ∈ C+ and t ∈ [t0, 1]

K = bt(z)Tn,

and note that

Dt(z)−
(bntc

n
K− zI

)
=

bntc∑
k=1

rkr
?
k −
bntc
n

K.

Multiplying with ((bntc/n)K − zI)−1 and D−1t (z) from the left and from the
right, respectively, and using identity (6.1.11) from Bai and Silverstein (2010) yields(bntc

n
K− zI

)−1
−D−1t (z)
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=

bntc∑
k=1

(bntc
n

K− zI
)−1

rkr
?
kD
−1
t (z)− bntc

n

(bntc
n

K− zI
)−1

KD−1t (z)

=

bntc∑
k=1

βk,t(z)
(bntc

n
K− zI

)−1
rkr

?
kD
−1
k,t(z)− bntc

n

(bntc
n

K− zI
)−1

KD−1t (z).

This implies for l ∈ {0, 1}

1

p
tr Tl

n

(bntc
n

K− zI
)−1
− 1

p
tr Tl

nD
−1
t (z)

=
1

p

bntc∑
k=1

βk,t(z)r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk −
1

p
tr
bntc
n

Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)

=
1

p

bntc∑
k=1

βk,t(z)εk,

where

εk =r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk − n−1β−1k,t (z) tr Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)

=r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk − n−1 tr Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)
(
1 + r?kD

−1
k,t(z)rk

)
.

We decompose εk = εk1 + εk2 + εk3, where

εk1 =n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1k,t(z)− n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1t (z)

εk2 =r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk − n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1k,t(z)

εk3 =− n−1 tr Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)
(
(1 + r?kD

−1
k,t(z)rk

)
)

+ n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1t (z)

=− n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1t (z)
{
bt(z)

(
r?kD

−1
k,t(z)rk + 1

)
− 1
}
,

and we have used the fact that the matrices Tn and ((bntc/n)K− zI)−1 commute.
Similar arguments as given by Bai and Silverstein (2010) for their estimate (9.9.13)
yield ∣∣∣∣∣∣(bntc

n
K− zI

)−1∣∣∣∣∣∣ ≤ K,

and this estimate can be used to show

E|εki|2 → 0, n→∞ , i ∈ {1, 2, 3}.
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This implies for l ∈ {0, 1}

1

p

(
E tr Tl

n

(bntc
n

K− zI
)−1
− E tr Tl

nD
−1
t (z)

)
→ 0, n→∞. (7.13)

Using (7.13) with l = 0 for the first line and l = 1 for the second one, we have

1

p
E tr

( bntc
n

Tn

1 + ybntcan,t(z)
− zI

)−1
− Es̃n,t(z)→ 0, (7.14)

1

p
E tr
bntc
n

Tn

( bntc
n

Tn

1 + ybntcan,t(z)
− zI

)−1
− an,t(z)→ 0, (7.15)

where an,t(z) = (bntc/n)p−1E tr TnD
−1
t (z), so that 1 + ybntcan,t(z) = bt(z). We use∣∣∣ 1

1 + ybntcan,t(z)

∣∣∣ ≤ |z|
v

to conclude from (7.15)

1 +
z

p
E tr

( bntc
n

Tn

1 + ybntcan,t(z)
− zI

)−1
− an,t(z)

1 + ybntcan,t(z)
→ 0.

Combining this with (7.14) yields

1 + zEs̃n,t(z)− an,t(z)

1 + ybntcan,t(z)
→ 0

and, by rearranging terms and multiplying with ybntc,

1

1 + ybntcan,t(z)
= 1− ybntc(1 + zEs̃n,t(z)) + o(1).

Substituting this in (7.14), we get

1

p
E tr

(bntc
n

Tn

(
1− ybntc(1 + zEs̃n,t(z))

)
− zI

)−1
− Es̃n,t(z)→ 0. (7.16)

Due to (7.16), any potential limit s̃·(·) of (Es̃n,·(·))n∈N satisfies

s̃t(z) =

∫
1

λt(1− yt(1 + zs̃t(z)))− z
dH(λ).

It follows from Theorem 1.1 in Bai and Zhou (2008), that this equation admits a
unique solution s̃·(·).

In the following lemma, we consider for technical reasons the functions ŝn,·(·) :
C+ × [0, 1]→ C with ŝn,t(z) = 0 for t < t0 and for t ∈ [t0, 1], z = x+ iv ∈ C+

ŝn,t(z) =


s̃n,t(z) : z ∈ Cn
s̃n,t(xr + in−1εn) : x = xr, v ∈ [0, n−1εn]

s̃n,t(xl + in−1εn) : x = xl, v ∈ [0, n−1εn]
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and for t ∈ [0, 1], z ∈ C+

m̂n,t(z) =

{
lim
t→1

ŝn,t(z) = ŝn,n−1
n

(z) : t = 1

ŝn,t(z) : t ∈ [0, 1).

Note that for t ∈ [0, 1], the functions ŝn,t(·) and s̃n,t(·) coincide on Cn, n ∈ N and
that for z ∈ C+, the functions ŝn,t(z) and m̂n,t(z) differ only in the point t = 1.

Lemma 7.4.2 The set {E[m̂n,·(·)] : n ∈ N} has a compact closure in the Skorokhod
space D[0, 1]2.

Proof of Lemma 7.4.2. The sequence (Em̂n,·(·))n∈N is bounded, since by Lemma
7.7.3, we get uniformly with respect to t ∈ [t0, 1], z ∈ Cn, n ∈ N

|Es̃n,t(z)| = 1

p

∣∣E tr D−1t (z)
∣∣ ≤ E||D−1t (z)|| ≤ K.

We aim to show

lim
δ→0

sup
n∈N

sup
(t1,t2,t)∈Aδ,

z∈C+

min (|E[ŝn,t(z)]− E[ŝn,t1(z)]|, |E[ŝn,t(z)]− E[ŝn,t2(z)]|) = 0,

(7.17)

where

Aδ = {(t1, t2, t) : t1 ≤ t ≤ t2, t2 − t1 ≤ δ}.

Let ε > 0 be given. We choose N ∈ N sufficiently large such that 1
N
< ε and δ > 0

sufficiently small such that δ < ε and for all n ∈ {1, . . . , N}

bntc − bnt2c = 0 or bntc − bnt1c = 0,

where (t1, t2, t) ∈ Aδ. Then, it holds

sup
n≤N

sup
(t1,t2,t)∈Aδ,

z∈C+

min (|E[ŝn,t(z)]− E[ŝn,t1(z)]|, |E[ŝn,t(z)]− E[ŝn,t2(z)]|) = 0.

For n ≥ N we conclude∣∣E[ŝn,t(z)]− E[ŝn,t1(z)]
∣∣ ≤K bntc − bnt1c

n

≤K
(∣∣∣bntc − nt

n

∣∣∣+ |t1 − t|+
∣∣∣bnt1c − nt1

n

∣∣∣) ≤ 3εK

and obtain

sup
n≥N

sup
(t1,t2,t)∈Aδ,

z∈C+

min
{
|E[ŝn,t(z)]− E[ŝn,t1(z)]|, |E[ŝn,t(z)]− E[ŝn,t2(z)]|

}
≤ 3εK.
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Thus, (7.17) holds true. Similarly, one can show

lim
δ→0

sup
n∈N

sup
t1,t2∈[1−δ,1),

z∈C+

|E[ŝn,t1(z)]− E[ŝn,t2(z)]| = 0.

By definition, this implies

lim
δ→0

sup
n∈N

sup
t1,t2∈[1−δ,1],

z∈C+

|E[m̂n,t1(z)]− E[m̂n,t2(z)]| = 0.

Since ŝn,t(z) = 0 for t < t0, we also have for δ < t0

sup
n∈N

sup
t1,t2∈[0,δ),
z∈C+

|E[ŝn,t1(z)]− E[ŝn,t2(z)]| = 0.

Therefore, it follows from the proof of Theorem 14.4 in Billingsley (1968) that

0 = lim
δ→0

sup
n∈N

sup
z∈C+

inf
(t0,...,tr)∈Bδ,r,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti)

|E[ŝn,t(z)]− E[ŝn,t′(z)]|

= lim
δ→0

sup
n∈N

sup
z∈C+

inf
(t0,...,tr)∈Bδ,r,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti〉

|E[m̂n,t(z)]− E[m̂n,t′(z)]|, (7.18)

where [ti−1, ti〉 is defined as [ti−1, ti] if ti = 1 and as [ti−1, ti) otherwise, and we set

Bδ,r = {(t0, . . . , tr) : 0 = t0 < t1 < . . . < tr = 1, ti − ti−1 > δ for i ∈ {1, . . . , r}}.

For the next step, we have for z1, z2 ∈ Cn

|E[s̃n,t(z1)]− E[s̃n,t(z2)]| =
1

p
|z1 − z2||E tr D−1t (z1)D

−1
t (z2)|

≤K|z1 − z2|E||D−1t (z1)D
−1
t (z2)|| ≤ K|z1 − z2|

uniformly in t ∈ [t0, 1], which implies for z1, z2 ∈ Cn or z1, z2 /∈ Cn that

|E[ŝn,t(z1)]− E[ŝn,t(z2)]| ≤ K|z1 − z2|.

In the case z1 = x1 + iv1 ∈ Cn and z2 = x2 + iv2 /∈ Cn, we conclude

|E[ŝn,t(z1)]− E[ŝn,t(z2)]| = |E[s̃n,t(z1)]− E[s̃n,t(x2 + in−1εn)]| ≤ K|z1 − (x2 + in−1εn)|

=
{

(x1 − x2)2 + (v1 − n−1εn)2
} 1

2 ≤
{

(x1 − x2)2 + (v1 − v2)2
} 1

2

≤K|z1 − z2|,

since v2 ≤ n−1εn ≤ v1. Thus, we have

lim
δ→0

sup
n∈N

sup
t∈[0,1],
z1,z2∈C+,
|z1−z2|<δ

|E[ŝn,t(z1)]− E[ŝn,t(z2)]| = 0. (7.19)
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Since for A×B ⊂ (C+)2, C ×D ⊂ [0, 1]2

sup
(z,z′)∈A×B,
(t,t′)∈C×D

|E[ŝn,t(z)]− E[ŝn,t′(z
′)]|

≤ sup
(z,z′)∈A×B,

t∈C

|E[ŝn,t(z)]− E[ŝn,t(z
′)]|+ sup

z′∈B,
(t,t′)∈C×D

|E[ŝn,t(z
′)]− E[ŝn,t′(z

′)]|,

we conclude from (7.18) and (7.19)

lim
δ→0

sup
n∈N

inf
((t0,z0),...,(tr,zr))∈B(2)δ,r ,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti)
z,z′∈[zi−1,zi〉

|E[ŝn,t(z)]− E[ŝn,t′(z
′)]|

= lim
δ→0

sup
n∈N

inf
((t0,z0),...,(tr,zr))∈B(2)δ,r ,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti〉
z,z′∈[zi−1,zi〉

|E[m̂n,t(z)]− E[m̂n,t′(z
′)]|

=0, (7.20)

where

B
(2)
δ,r = {((t0, z0), . . . , (tr, zr)) : 0 = t0 < t1 < . . . < tr = 1, 0 = z0 < z1 < . . . < zr = 1,

ti − ti−1 > δ, zi − zi−1 > δ for i ∈ {1, . . . , r}}.

Note that in this definition, an element z ∈ C+ is identified with its representative
in [0, 1].
One can observe that (7.20) is equivalent to

lim
δ→0

sup
n∈N

ω′E[m̂n,·(·)](δ) = 0,

where the modulus ω′ is defined in Neuhaus (1971). Applying Theorem 2.1 in this
reference, we conclude that {E[m̂n,·(·)] : n ∈ N} has a compact closure in D[0, 1]2.

Proof of Theorem 6.3.7. From Lemma 7.4.1 and Lemma 7.4.2, we conclude that

lim
n→∞

d2|Cn×[t0,1)(E[s̃n,·(·)], s̃·(·)) = lim
n→∞

d2|Cn×[t0,1)(E[m̂n,·(·)], s̃·(·)) = 0,

where d2|A for some set A ⊂ C+ × [0, 1] denotes the Skorokhod metric restricted to
functions on A. Observe that for t = 1

lim
n→∞

sup
z∈Cn
|E[s̃n,1(z)]− s̃1(z)| = 0.

Then it is straightforward to show that

lim
n→∞

d2|Cn×[t0,1](E[s̃n,·(·)], s̃·(·)) = 0. (7.21)

The considerations in the proof of Lemma 7.4.2 reveal that s̃·(·) ∈ C(C+ × [t0, 1]).
In this case, the convergence in the Skorokhod space in (7.21) implies the uniform
convergence

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| = 0.
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A similar convergence result with respect to the sup-norm can be shown for the
Stieltjes transform s̃n,t(z). More precisely, since

s̃t(z) = −1− yt
z

+ yts̃t(z),

s̃n,t(z) = −
1− ybntc

z
+ ybntcs̃n,t(z),

we also have

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| = 0.

7.5 Proof of Theorem 6.3.8

The second assertion directly follows from the first one combined with Theorem
6.3.7. Therefore, it is sufficient to show that (M2

n)n∈N is uniformly bounded. For
this purpose, we use the following lemma.

Lemma 7.5.1 We have

sup
n∈N,
z∈Cn,
t∈[t0,1]

∣∣∣Im(s̃0n,t(z))

Im(z)

∣∣∣ ≤ K.

Proof of Lemma 7.5.1. We have for sufficiently large n

Im(s̃0n,t(z)) =

∫
Im
( 1

λ− z

)
dF̃

ybntc,Hn
(λ) =

∫
−Im(λ− z)

|λ− z|2
dF̃

ybntc,Hn
(λ)

=

∫
Im(z)

(λ− Re(z))2 + Im2(z)
dF̃

ybntc,Hn
(λ) ≤ KIm(z),

since for z ∈ Cl ∪ Cr, Re(z) ∈ {xl, xr} is uniformly bounded away from the support

of F̃
ybntc,Hn

for sufficiently large n (Lemma 6.4.1). If z ∈ Cu, then Im(z) = v0 is
constant and hence, the denominator is also uniformly bounded away from 0.

To continue with the proof of Theorem 6.3.8, we note that it follows from (7.12)
in the proof of Lemma 6.3.6 in Section 7.3 that

bntc(E[s̃n,t(z)]− s̃0n,t(z))− bntcbntc
n

Rn,t(z)E[s̃n,t(z)]s̃0n,t(z)

=
yn
bntc
n
bntc

(
E[s̃n,t(z)]− s̃0n,t(z)

) ∫ λ2dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

) ,
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which is equivalent to

bntc
(
E[s̃n,t(z)]− s̃0n,t(z)

)
=

bntc bntc
n
Rn,t(z)E[s̃n,t(z)]s̃0n,t(z)

1−
yn
bntc
n

∫ λ2dHn(λ)

(1+λ
bntc
n E[s̃n,t(z)])(1+λ

bntc
n s̃0n,t(z))(

−z+yn
∫ λdHn(λ)

1+λ
bntc
n E[s̃n,t(z)]

−Rn,t(z)
)(
−z+yn

∫ λdHn(λ)

1+λ
bntc
n s̃0n,t(z)

) .

Note that s̃0n,t(z) is uniformly bounded which follows by a similar argument as given
in the proof of Lemma 7.5.1. In order to show that the sequence (M2

n)n∈N is uniformly
bounded, by using (6.53), it is sufficient to show that the denominator is uniformly
bounded away from 0 for sufficiently large n. For this aim, it is sufficient to prove
that ∣∣∣ yn

bntc
n

∫ λ2s̃0n,t(z)E[s̃n,t(z)]dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)∣∣∣ < 1

holds uniformly. Similarly to the proof of Lemma 7.7.6, we conclude that for any
bounded subset S ⊂ C+

inf
n∈N,
z∈S,
t∈[t0,1]

|s̃0n,t(z)| > 0.

Using this, Hölder’s inequality, Lemma 7.5.1 and Lemma 7.7.1, we obtain for suffi-
ciently large n∣∣∣∣∣yn

∫ λ2
bntc
n
dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)∣∣∣∣∣
2

≤
yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntcn s̃0n,t(z)|
2∣∣∣− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣2
yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntcn E[s̃n,t(z)])|
2∣∣∣− z + yn

∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

∣∣∣2
=

bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

×
bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2

Im(z) + bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2
+ Im(Rn,t(z))

≤1− Im(z)

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

≤1− Im(z)

Im(z) + bntc
n
K Im(z)yn

∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

≤ 1− 1

1 +K
< 1,

where we used the fact that Im(Rn,t(z)) + Im(z) ≥ 0 for sufficiently large n, which
follows from Lemma 7.7.8. This finishes the proof of Theorem 6.3.8.
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7.6 Proof of the statement (6.53)

Using (6.14) and the representation

βj,t(z) = βj,t(z)− β2

j,t(z)γ̂j,t(z) + β
2

j,t(z)βj,t(z)γ̂2j,t(z), (7.22)

we obtain

bntcRn,t(z)E[s̃n,t(z)] = ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]

=− ybntc
bntc∑
j=1

E
[
βj,t(z)

{
q?jT

1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
t (z)

]}]
=− ybntc

bntc∑
j=1

E
[
βj,t(z)

{
q?jT

1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}]
+

1

bntc

bntc∑
j=1

E
[
βj,t(z) tr(

bntc
n

E[s̃n,t(z)]Tn + I)−1TnE
[
D−1t (z)−D−1j,t (z)

] ]
=Tn,1(z, t) + Tn,2(z, t) + o(1)

uniformly with respect to z ∈ Cn, t ∈ [t0, 1], where the terms Tn,1 and Tn,2 are defined
by

Tn,1(z, t) = ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}
γ̂j,t(z)

]
, (7.23)

Tn,2(z, t) = − 1

bntc

bntc∑
j=1

E [βj,t(z)]E
[
βj,t(z)r?jD

−1
j,t (z)

(bntc
n

Es̃n,t(z)Tn + I
)−1

TnD
−1
j,t (z)rj

]
,

(7.24)

For this argument we used the fact

E
[
βj,t(z)

{
q?jT

1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

−1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}]
= 0

and that by the estimate (9.10.2) in Bai and Silverstein (2010)

E
∣∣∣β2

j,t(z)βj,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj
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− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}
γ̂j,t(z)2

∣∣∣
≤E

1
2

∣∣∣β2

j,t(z)βj,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]∣∣∣2E 1
2 |γ̂j,t(z)|4

∣∣∣
≤Kn−1η2n = o

(
n−1
)
.

For the term in (7.23) we obtain the representation

Tn,1(z, t) =ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

}
γ̂j,t(z)

]
− ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnE[D−1j,t (z)]γ̂j,t(z)
]

+ ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)γ̂j,t(z)

]

=ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

}
γ̂j,t(z)

]
=ybntc

bntc∑
j=1

z2s̃2t (z)E
[{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

}
γ̂j,t(z)

]
+ o(1),

where in the last step we used the inequality (9.10.2) in Bai and Silverstein (2010),
to replace all of the terms βj,t(z), βj,t(z), bj,t(z) and similarly defined quantities by
−zs̃t(z). This argument also implies for the term Tn,2 defined in (7.24)

Tn,2(z, t) = −z
2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(bntc

n
Es̃n,t(z)Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1).

We now consider the complex case, where we have from equation (9.8.6) in Bai and
Silverstein (2010)

Tn,1(z, t) =
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(bntc

n
E[s̃n,t(z)]Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1).



74 Chapter 7. More details on the proof of Theorem 6.1.1

which yields Tn,1(z, t) + Tn,2(z, t) = o(1), and as a consequence (6.53) in this case.

Next, we consider the real case using again equation (9.8.6) in Bai and Silverstein
(2010), which gives

bntcRn,t(z)E[s̃n,t(z)] = Tn,1(z, t) + Tn,2(z, t) + o(1)

=
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(bntc

n
E[s̃n,t(z)]Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1)

=
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(
ts̃t(z)Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1). (7.25)

For a detailed analysis of the random variable in (7.25), we recall the decom-
position of the resolvent D−1j (z) given in (7.42). In the following, investigate these
terms appearing in this representation in more detail.

Using the decomposition given in (6.25), the estimates (6.32) and (6.33) (which
shows that all terms involving Bt(z) and Ct(z) are negligible) and the fact

E
[

tr
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
(ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
= 0,

we obtain

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]

=
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
(ts̃t(z)Tn + I)−1 Tn

×
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
Tn

]
+
z2s̃2t (z)

bntcn

bntc∑
j=1

b2j,t(z)E
[
tr At(z) (ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
+ o(1)

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z4s̃4t (z)

bntcn

bntc∑
j=1

E
[
tr At(z) (ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
+ o(1). (7.26)

For the term At(z) in (6.26) (which actually depends on j) we have

At(z) =
∑

i 6=j,1≤i≤bntc

(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z)

=
∑

i 6=j,1≤i≤bntc

D−1i,j,t(z)
(
rir

?
i − n−1Tn

) (
zI− bntc − 1

n
bj,t(z)Tn

)−1
,
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which follows from At(z) = (At(z))?. Substituting the first and second expression
for the term At(z) on the left and on the right in (7.26), respectively, yields

z4s̃4t (z)

bntcn

bntc∑
j=1

E
[
tr At(z) (ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
=
z4s̃4t (z)

bntcn

bntc∑
j=1

∑
i,l 6=j

E
[

tr
(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z)

× (ts̃t(z)Tn + I)−1 TnD
−1
l,j,t(z)

(
rlr

?
l − n−1Tn

) (
zI− bntc − 1

n
bl,t(z)Tn

)−1
Tn

]
=
z2s̃4t (z)

bntcn

bntc∑
j=1

∑
i,l 6=j

Ai,l,j(z, t) + o(1), (7.27)

where

Ai,l,j(z, t) = E
[

tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn
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D−1i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

×D−1l,j,t(z)
(
rlr

?
l − n−1Tn

) ]
.

In the following, we will show that the sum of the cross terms Ai,l,j(z, t) (i.e., l 6= i)
in (7.27) vanishes asymptotically. For this purpose we use the following formula for
l 6= i

D−1i,j,t(z) =D−1l,i,j,t(z)− βl,i,j,t(z)D−1l,i,j,t(z)rlr
?
lD
−1
l,i,j,t(z),

where

βl,i,j,t(z) =
1

1 + r?lD
−1
l,i,j,t(z)rl

.

Note that the expectation appearing in the cross term Ai,l,j(z, t) will be 0 if D−1i,j,t(z)

or D−1l,j,t(z) are replaced by D−1l,i,j,t(z). Hence, it remains to bound for i 6= l (use also
(7.22))

|Ai,l,j(z, t)|
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,

which is shown in Lemma 7.7.7 and corrects a wrong statement on p. 260 in the
monograph of Bai and Silverstein (2010).
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Summarizing, we have shown that

ybntc
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bntcn3

bntc∑
j=1

∑
i 6=j

E
[

tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
tr
{
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)Tn

} ]
+ o(1)

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z2s̃4t (z)

n3

bntc∑
j=1

E
[

tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
(7.28)

× tr
{
D−1j,t (z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

} ]
+ o(1). (7.29)

Here we used for the last estimate the fact∣∣∣E[ tr
{
D−1j,t (z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

}
− tr

{
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)Tn

} ]∣∣∣
≤E
∣∣∣ tr (D−1i,j,t(z)−D−1j,t (z)

)
(ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

∣∣∣
+ E

∣∣∣ tr D−1i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

(
D−1i,j,t(z)−D−1j,t (z)

)
Tn

∣∣∣
=E
∣∣∣βi,j,t(z)r?iD

−1
i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)TnD

−1
i,j,t(z)ri

∣∣∣
+ E

∣∣∣βi,j,t(z)r?iD
−1
i,j,t(z)TnD

−1
i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)ri

∣∣∣
≤K + E

∣∣∣βi,j,t(z)r?iD
−1
i,j,t(z) (ts̃t(z)Tn + I)−1 Tn
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×
(
D−1i,j,t(z)− βi,j,t(z)D−1i,j,t(z)rir

?
iD
−1
i,j,t(z)

)
TnD

−1
i,j,t(z)ri

∣∣∣
≤K.

Hence,∣∣∣z2s̃4t (z)

bntcn3

bntc∑
j=1

∑
i 6=j

tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
E
[

tr
{
D−1j,t (z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

}
− tr

{
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)Tn

} ]∣∣∣ = o(1).

We now apply (7.25) for (7.29) and obtain

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
s̃2t (z)bntc

n2
tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)] + o(1).

This implies (6.53) for the real case, namely,

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)] =
s̃2t (z)

n
tr
{

(ts̃t(z)Tn + I)−3 T2
n

}
1− s̃2t (z)bntc

n2 tr
{

(ts̃t(z)Tn + I)−2 T2
n

} + o(1)

=
y
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)

1− ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

+ o(1).

7.7 Further auxiliary results

Lemma 7.7.1 It holds

yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2∣∣∣∣−z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣∣2 =

bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

and

yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2∣∣∣∣−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
+Rn,t

∣∣∣∣2

=

bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2

Im(z) + bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2
+ Im(Rn,t)

,

where Rn,t is defined in Lemma 6.3.6.
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Proof. We only show the first assertion, since the second one can be shown in a
similar way. Applying

Im

(
1

z

)
=
−Im(z)

|z|2

to (7.7) yields

Im(s̃0n,t(z)) =
Im(z) + bntc

n
Im(s̃0n,t(z))yn

∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2∣∣∣∣−z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣∣2 .

We conclude

bntc
n
yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2∣∣∣∣−z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣∣2 = 1− Im(z)∣∣∣∣−z + yn
∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣∣2 Im(s̃0n,t(z))

= 1− Im(z)

Im(z) + bntc
n

Im(s̃0bntc(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

=

bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

.

Lemma 7.7.2

sup
n∈N,z∈Cn,t∈[t0,1]

∥∥∥(
bntc
n

E[s̃n,t(z)]Tn + I)−1
∥∥∥ ≤ K.

Proof of Lemma 7.7.2. By Lemma 6.10 (a) in Bai and Silverstein (2010), we have
for z ∈ Cu, t ∈ [t0, 1]∣∣∣∣∣

∣∣∣∣∣
(
bntc
n

E[s̃n,t(z)]T + I

)−1∣∣∣∣∣
∣∣∣∣∣ ≤ max

(
4
bntc
nv0
||T||, 2

)
≤ max

(
4

v0
, 2

)
.

Thus, the assertion holds for z ∈ Cu × [t0, 1] ⊂ Cn. Let x ∈ {xl, xr}. Since x/t /∈
ΓF yt,H for t ∈ [t0, 1], it follows from Lemma 6.1 in Bai and Silverstein (2010),

−
(
st

(x
t

))−1
/∈ ΓH , so − (ts̃t(x))−1 /∈ ΓH

and thus, for any λ ∈ ΓH

ts̃t(x)λ+ 1 6= 0.
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Let λ0 ∈ ΓH . Then, there exist δ1, µ1 > 0 such that

inf
z∈C0,
t∈[t0,1]

|ts̃t(z)λ0 + 1| > δ1, (7.30)

sup
z∈C0,
t∈[t0,1]

|ts̃t(z)| < µ1, (7.31)

where

C0 = {x+ iv : v ∈ [0, v0]}.

The boundedness condition given in (7.31) is clear, and we continue by proving
(7.30). Assume that,

inf
z∈C0,
t∈[t0,1]

|ts̃t(z)λ0 + 1| = 0.

Then, there exists a sequence (zn, tn)n∈N in C0 × [t0, 1] such that

tns̃tn(zn)λ0 + 1→ 0, n→∞,

which contains a further subsequence (znk , tnk)n∈N converging to (z?, t?) ∈ C0×[t0, 1].
By continuity of (z, t) 7→ st(z) on C0 × [t0, 1] (see proof of Theorem 6.3.7), we have

tnk s̃tnk (znk)λ0 + 1→ t?s̃t?(z
?)λ0 + 1, k →∞,

yielding the contradiction

0 = t?s̃t?(z
?)λ0 + 1.

Thus, (7.30) and (7.31) hold true. Since Hn
D→ H and hence λ0 ∈ ΓHn for sufficiently

large n, there exists an eigenvalue λ(Tn) of Tn such that

|λ(Tn)− λ0| <
δ1

4µ1

.

Recalling Theorem 6.3.7, we also have for sufficiently large n

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| < δ1
4
.

Since

|s̃t(z)λ0 + 1| ≤ |s̃t(z)||λT − λ0|+ |ts̃t(z)λT + 1|
≤|s̃t(z)||λT − λ0|+ t|E[s̃n,t(z)]− s̃(z)||λT|+ |tE[s̃n,t(z)]λT + 1|

we get a contradiction to (7.30) if

inf
z∈Cn,
t∈[t0,1]

∣∣tE[s̃n,t(z)]λT + 1
∣∣ ≤ δ1

4

would hold true. This proves Lemma 7.7.2.
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Lemma 7.7.3 We have uniformly in n ∈ N, t ∈ [t0, 1], z ∈ Cn

E||D−1t (z)||q ≤ K, (7.32)

where K > 0 is a constant depending on q ∈ N. Similarly, for pairwise different
integers i, j, k ∈ {1, . . . , bntc},

max
(
E||D−1t (z)||q,E||D−1j,t (z)||q,E||D−1j,k,t(z)||q

)
≤ K.

It also holds that

||D−1t (z)|| ≤K + nε−1n I{||Bn,t|| ≥ ηr,t or λp(Bn,t) ≤ ηl,t}, (7.33)

where ηr,t denotes a fixed number between

lim sup
n→∞

||Tn||(1 +
√
yt)

2t

and xr and ηl,t between

lim inf
n→∞

λp(Tn)(1−√yt)2I(0,1)(yt)t

and xl.

Proof of Lemma 7.7.3. We begin with a proof of (7.33). Let first z ∈ Cu, that is,
z = x+ iv0 for some x ∈ [xl, xr]. Then,

||D−1t (z)|| = 1

min(|λp(Bn,t)− z|, |λ1(Bn,t)− z|)
≤ 1

v0
= K.

This implies E||D−1t (z)||q ≤ K. Next, assume z ∈ Cl ∪ Cr, that is, z = xr + iv or
z = xl + iv for some v ∈ [n−1εn, v0]. By formula (9.7.8) and (9.7.9) in Bai and
Silverstein (2010) we have for t ∈ [t0, 1] and any m > 0

P (||Bn,t|| > ηr,t or λp(Bn,t) < ηl,t) = o
(
bntc−m

)
= o

(
n−m

)
. (7.34)

We estimate

E||D−1t (z)||q ≤KE
[
||D−1t (z)||I{||Bn,t|| ≤ ηr,t and λp(Bn,t) ≥ ηl,t}

]q
+KE

[
||D−1t (z)||I{||Bn,t|| > ηr,t or λp(Bn,t) < ηl,t}

]q
To derive a bound for the first summand, we distinguish the cases z ∈ Cr and z ∈ Cl.
For the sake of brevity, we only consider the first one. It holds

||D−1t (z)||I{||Bn,t|| ≤ ηr,t and λp(Bn,t) ≥ ηl,t}

=
I{||Bn,t|| ≤ ηr,t and λp(Bn,t) ≥ ηl,t}

min(|λp(Bn,t)− (xr + iv)|, |λ1(Bn,t)− (xr + iv)|)

≤ 1

xr − λ1(Bn,t)
I{||Bn,t|| ≤ ηr,t and λp(Bn,t) ≥ ηl,t}
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≤ 1

xr − ηr,t
≤ 1

xr − lim sup
n→∞

||Tn||(1 +
√
yt0)

2
= K. (7.35)

For the second summand, we conclude

||D−1t (z)||I{||Bn,t|| > ηr,t or λp(Bn,t) < ηl,t}

≤ 1

min(|λp(Bn,t)− z|, |λ1(Bn,t)− z|)
I{||Bn,t|| > ηr,t or λp(Bn,t) < ηl,t}

≤nε−1n I {||Bn,t|| > ηr,t or λp(Bn,t) < ηl,t} . (7.36)

The bounds in (7.35) and (7.36) show that (7.33) holds true. The assertion in (7.32)
follows by applying (7.34).

Proof of Lemma 7.2.1

The proof of Lemma 7.2.1 requires some preparations. Note that while a fourth
moment condition is sufficient for proving the convergence of the finite-dimensional
distribution of (M̂1

n)n∈N (Theorem 6.3.1) and the convergence of the non-random part
(M̂2

n)n∈N (Theorem 6.3.3), we need the stronger moment assumption from Theorem
3.2.1, namely

sup
i,j,n

E|xij|12 <∞, (7.37)

exclusively for a proof of the asymptotic tightness of (M̂1
n)n∈N.

Under this assumption, by Lemma B.26 in Bai and Silverstein (2010), the following
estimates for moments of quadratic forms hold true for q ≥ 2

E|x?jAxj − tr A|q . (tr AA?)q/2 + η(2q−12)∨0n n(q−6)∨0 tr(AA?)q/2

.

{
(tr AA?)q/2

(
1 + n(q−6)∨0) ,

nq/2||A||q + nn(q−6)∨0||A||q.

Thus, we have for q ≥ 2

E|r?jArj − n−1 tr TnA|q .

{
(tr AA?)q/2 n−(q∧6),

||A||qn−((q/2)∧5).
(7.38)

Furthermore, combining (7.38) with arguments given in the proof of (9.9.6) in
Bai and Silverstein (2010), we obtain the following lemma.

Lemma 7.7.4 Let j,m ∈ N0, q ≥ 2 and Al, l ∈ {1, . . . ,m + 1} be p× p (random)
matrices independent of rj which obey for any q̃ ≥ 2

E||Al||q̃ <∞, l ∈ {1, . . . ,m+ 1}.

Then, it holds

E
∣∣∣( m∏

k=1

r?jAkrj

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q . n−((q/2)∧5).
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If even for any l ∈ {1, . . . ,m+ 1}, q̃ ≥ 2

E [tr AA?
l ]
q̃ <∞,

holds true, then we have

E
∣∣∣( m∏

k=1

r?jAkrj

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q . n−(q∧6).

Remark 7.7.5 In fact, as the proof of Lemma 7.7.4 reveals, we could impose a
less restrictive condition on the spectral moments of Al, l ∈ {1, . . . ,m + 1}. For
our purpose, it is sufficient to state the previous lemma in this form, since, when
applying Lemma 7.7.4, the involved matrices will have bounded spectral moments
of any order.
In particular, the second assertion will be useful if Bl involves a term like rkr

?
k for

some k 6= j among other matrices like D−1k,j,t(z), while we will make use of the first

assertion in the case that Bl only involves matrices like D−1j,t (z). In the latter case,
contrary to the first one, we are not able to control moments of tr BlB

?
l uniformly

in n.

Proof of Lemma 7.7.4. For m = 0, the assertion of the lemma follows directly from
(7.38) for any q ≥ 2. We continue the proof by an induction over the integer m for
some fixed q ≥ 2.

E
∣∣∣( m∏

k=1

r?jAkrj

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q
.E
∣∣∣(m−1∏

k=1

r?jAkrj

) (
r?jAmrj − n−1 tr TnAm

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q
+ E

∣∣∣(m−1∏
k=1

r?jAkrj

)
n−1 tr TnAm

(
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q
≤
(
E
∣∣∣(m−1∏

k=1

r?jAkrj

) (
r?jAmrj − n−1 tr TnAm

) ∣∣∣2qE ∣∣(r?jAm+1rj − n−1 tr TnAm+1

)∣∣2q ) 1
2

+ E
∣∣∣(m−1∏

k=1

r?jAkrj

)
n−1 tr TnAm

(
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q.
By applying the induction hypothesis to these three terms, we get the desired result
for each case.

Adapting the proof of (9.10.5) in Bai and Silverstein (2010), we obtain under the
strong moment condition (7.37) for q ≥ 2

E|γj,t(z)|q . n−((q/2)∧5). (7.39)

We need an estimate for moments of complex martingale difference schemes. We
refer to Lemma 2.1 in Li (2003), which is a corollary from Burkholder’s inequality
and can easily be extended to the complex case. We are now in the position to give
a proof of Lemma 7.2.1.
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Proof of Lemma 7.2.1. In the following, we will often make use of the decomposi-
tions

D−1t (z) = D−1j,t (z)− βj,t(z)D−1j,t (z)rjr
?
jD
−1
j,t (z), (7.40)

βj,t(z) = bj,t(z)− βj,t(z)bj,t(z)γj,t(z).

Observing the decomposition (7.11), our aim is to show the inequalities in (7.9) and
(7.10), where we assume t2 > t1 w.l.o.g.

Step 1: Analysis of Z2
n

Beginning with the proof of (7.10) for Z2
n, we are able to show that (using Lemma

2.1 in Li (2003) with q = 4 + δ)

E|Z2
n(z, t1, t2)|4+δ = E

∣∣∣ bnt2c∑
j=bnt1c+1

(Ej − Ej−1)βj,t2(z)r?jD
−2
j,t2

(z)rj

∣∣∣4+δ
. (bnt2c − bnt1c)1+δ/2

bnt2c∑
j=bnt1c+1

E
∣∣(Ej − Ej−1)βj,t2(z)r?jD

−2
j,t2

(z)rj
∣∣4+δ

.
(bnt2c − bnt1c

n

)2+δ/2
,

since we can bound

E
∣∣(Ej − Ej−1)βj,t2(z)r?jD

−2
j,t2

(z)rj
∣∣4+δ

. E
∣∣(Ej − Ej−1)bj,t2(z)r?jD

−2
j,t2

(z)rj
∣∣4+δ

+ E
∣∣(Ej − Ej−1)βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ

. E
∣∣(Ej − Ej−1)

{
r?jD

−2
j,t2

(z)rj − n−1 tr TnD
−2
j,t2

(z)
}∣∣4+δ

+ E
∣∣βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ (7.41)

. n−(2+δ/2).

We should explain the bound for (7.41) in more detail: First, note that we are able
to bound the moments of ||D−1j,t (z)|| independent of n, z, t (see Lemma 7.7.3). As a
further preparation, we observe for z ∈ Cn, t ∈ [t0, 1] from Lemma 7.7.3

||D−1t (z)|| .1 + nε−1n I{||Bn,t|| ≥ ηr,t or λp(Bn,t) ≤ ηl,t}
≤1 + n2I{||Bn,t|| ≥ ηr,t or λp(Bn,t) ≤ ηl,t}, (7.42)

where we used the fact that εn ≥ n−α for some α ∈ (0, 1). Thus, since |rj|2 ≤ n, we
obtain

|βj,t(z)| =|1− r?jD
−1
t (z)rj| ≤ 1 + |rj|2||D−1t (z)||

.1 + |rj|2 + n3I{||Bn,t|| ≥ ηr,t or λp(Bn,t) ≤ ηl,t}. (7.43)
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It is easy to see that the inequality (9.10.6) in Bai and Silverstein (2010) also holds
for βj,t(z) and by the same arguments following (9.10.6), we obtain

|bj,t(z)| . 1. (7.44)

Similarly to these bounds, using (7.33) in Lemma 7.7.3 for the matrix D−1j,t (z), we
get for any m ≥ 1

|γj,t(z)| =|r?jD−1j,t (z)rj − n−1E[tr TnD
−1
j,t (z)]| . |rj|2||D−1j,t (z)||+ E||D−1j,t (z)||

.|rj|2 + |rj|2nε−1n I{||B(−j)
n,t || ≥ ηr,t or λp(B

(−j)
n,t ) ≤ ηl,t}

+ |rj|2nε−1n P{||B(−j)
n,t || ≥ ηr,t or λp(B

(−j)
n,t ) ≤ ηl,t}

≤|rj|2 + n3I{||B(−j)
n,t || ≥ ηr,t or λp(B

(−j)
n,t ) ≤ ηl,t}+ o

(
n−m

)
,

where we used the fact that for any m > 0

P{||B(−j)
n,t2 || ≥ ηr,t2 or λp(B

(−j)
n,t2 ) ≤ ηl,t2} = o

(
n−m

)
,

P{||Bn,t2|| ≥ ηr,t2 or λp(Bn,t2) ≤ ηl,t2} = o
(
n−m

)
(7.45)

and the notation

B
(−j)
n,t = Bn,t − rjr

?
j .

Using (7.38) and (7.39), we can also bound

E
∣∣∣|rj|2γj,t(z)

∣∣∣4+δ =E|r?jrjγj,t(z)|4+δ . E|
(
r?jrj − n−1 tr Tn

)
γj,t(z)|4+δ + E|n−1 tr(Tn)γj,t(z)|4+δ

≤
(
E|r?jrj − n−1 tr Tn|8+2δE|γj,t(z)|8+2δ

) 1
2 + E|γj,t(z)|4+δ . n−(2+δ/2).

By induction, one can show for some q ∈ N0 and δ ≥ 0

E
∣∣∣|rj|2qγj,t(z)

∣∣∣4+δ . n−(2+δ/2). (7.46)

Combining these inequalities, we conclude

E
∣∣βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ

.E
∣∣∣(1 + |rj|2 + n3I{||Bn,t2 || ≥ ηr,t2 or λp(Bn,t2) ≤ ηl,t2}

)
|rj|2

×
(

1 + n2I{||B(−j)
n,t2 || ≥ ηr,t2 or λp(B

(−j)
n,t2 ) ≤ ηl,t2}

)2
γj,t2(z)

∣∣∣4+δ. (7.47)

The expectation in (7.47) can now be estimated by multiplying these terms out
and using the inequalities (7.44), (7.45) and (7.46).

Thus, we conclude that

E
∣∣βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ . n−(2+δ/2).
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Step 2: Analysis of M1
n(z1, t)−M1

n(z2, t)
Before investigating the term Z1

n in the decomposition (7.11), we show that (7.8)
holds true in a similar fashion to the considerations above. We write for z1, z2 ∈
Cn, t ∈ [t0, 1]

M1
n(z1, t)−M1

n(z2, t) =

bntc∑
j=1

(Ej − Ej−1) tr
(
D−1t (z1)−D−1t (z2)

)
=

bntc∑
j=1

(Ej − Ej−1)(z1 − z2) tr D−1t (z1)D
−1
t (z2)

= Gn1 +Gn2 +Gn3,

where

Gn1 = (z1 − z2)
bntc∑
j=1

(Ej − Ej−1)βj,t(z1)βj,t(z2)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
,

Gn2 = −(z1 − z2)
bntc∑
j=1

(Ej − Ej−1)βj,t(z1)r?jD−2j,t (z1)D
−1
j,t (z2)rj,

Gn3 = −(z1 − z2)
bntc∑
j=1

(Ej − Ej−1)βj,t(z2)r?jD−2j,t (z2)D
−1
j,t (z1)rj.

The terms Gn2 and Gn3 can be estimated using similar arguments as given in the
proof of (7.10). More precisely, we obtain for the second term

E|Gn2|2+δ . |z1 − z2|2+δ,

and a similar inequality holds for the third term. For the first summand, we have

Gn1 = Gn11 +Gn12 +Gn13,

where

Gn11 =(z1 − z2)
bntc∑
j=1

(Ej − Ej−1)bj,t(z1)bj,t(z2)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
,

Gn12 =− (z1 − z2)
bntc∑
j=1

(Ej − Ej−1)bj,t(z2)βj,t(z1)βj,t(z2)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
γj,t(z2),

Gn13 =− (z1 − z2)
bntc∑
j=1

(Ej − Ej−1)bj,t(z1)bj,t(z2)βj,t(z1)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
γj,t(z1).

Here, the terms Gn12 and Gn13 can be treated by similar arguments as in the deriva-
tion of (7.41) using Lemma 2.1 in Li (2003), which gives for l ∈ {1, 2}

E|Gn1l|2+δ . |z1 − z2|2+δ.
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Therefore, it remains to investigate the term Gn11:

E|Gn11|2+δ .|z1 − z2|2+δnδ/2
bntc∑
j=1

E
∣∣∣(Ej − Ej−1)bj,t(z1)bj,t(z2)

(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2∣∣∣2+δ .
We obtain for the summands in E|Gn11|2+δ observing (7.44)

E
∣∣∣(Ej − Ej−1)bj,t(z1)bj,t(z2)

(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2∣∣∣2+δ
.E

∣∣∣(Ej − Ej−1)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2∣∣∣2+δ
=E

∣∣∣(Ej − Ej−1)
[(

r?jD
−1
j,t (z1)D

−1
j,t (z2)rj

)2 − (n−1 tr TnD
−1
j,t (z1)D

−1
j,t (z2)

)2]∣∣∣2+δ
=E
∣∣∣(Ej − Ej−1)

[ (
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj − n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

)
×
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj + n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

) ]∣∣∣2+δ
.E
∣∣∣(Ej − Ej−1)

[ (
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj − n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

)
× r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

]∣∣∣2+δ
+E
∣∣∣(Ej − Ej−1)

[ (
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj − n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

)
× n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

]∣∣∣2+δ
.n−(1+δ/2),

where we used Lemma 7.7.4 with q = 2 + δ and m = 1 and Lemma 7.7.3 for the last
inequality. These considerations show that (7.8) holds true.

Step 3: Analysis of Z1
n

Next, we show the estimate (7.9) for the term Z1
n. Doing so, we will need condition

(7.37) on the moments of xij. For the following calculation, we will write βt instead of
βt(z), D−1t instead of D−1t (z) and further omit the z-argument for similar quantities.
We have for j ≤ bnt1c

βj,t2r
?
jD
−2
j,t2

rj − βj,t1r?jD−2j,t1rj = (βj,t2 − βj,t1)r?jD−2j,t2rj + βj,t1r
?
j

(
D−2j,t2 −D−2j,t1

)
rj

=(βj,t2 − βj,t1)r?jD−2j,t2rj + βj,t1r
?
j

(
D−1j,t2 −D−1j,t1

)
D−1j,t1rj + βj,t1r

?
jD
−1
j,t2

(
D−1j,t2 −D−1j,t1

)
rj

=
(
r?jD

−1
t1

rj − r?jD
−1
t2

rj
)
r?jD

−2
j,t2

rj − βj,t1r?jD−1j,t1
( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2D

−1
j,t1

rj

− βj,t1r?jD−1j,t2D
−1
j,t1

( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2rj

=r?jD
−1
t2

( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1t1 rjr

?
jD
−2
j,t2

rj − βj,t1r?jD−1j,t1
( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2D

−1
j,t1

rj
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− βj,t1r?jD−1j,t2D
−1
j,t1

( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2rj

=

bnt2c∑
k=bnt1c+1

{
r?jD

−1
t2

rkr
?
kD
−1
t1

rjr
?
jD
−2
j,t2

rj − βj,t1r?jD−1j,t1rkr
?
kD
−1
j,t2

D−1j,t1rj

− βj,t1r?jD−1j,t2D
−1
j,t1

rkr
?
kD
−1
j,t2

rj

}
.

Hence, using the identity (7.40), we obtain the representation

Z1
n(z, t1, t2)

=

bnt1c∑
j=1

bnt2c∑
k=bnt1c+1

(Ej − Ej−1)
{
− βj,t1r?jD−1j,t1rkr

?
kD
−1
j,t2

D−1j,t1rj − βj,t1r
?
jD
−1
j,t2

D−1j,t1rkr
?
kD
−1
j,t2

rj

+ r?jD
−1
j,t2

rkr
?
kD
−1
j,t1

rjr
?
jD
−2
j,t2

rj − βj,t1r?jD−1j,t2rkr
?
kD
−1
j,t1

rjr
?
jD
−1
j,t1

rjr
?
jD
−2
j,t2

rj

− βj,t2r?jD−1j,t2rjr
?
jD
−1
j,t2

rkr
?
kD
−1
j,t1

rjr
?
jD
−2
j,t2

rj

+ βj,t1βj,t2r
?
jD
−1
j,t2

rjr
?
jD
−1
j,t2

rkr
?
kD
−1
j,t1

rjr
?
jD
−1
j,t1

rjr
?
jD
−2
j,t2

rj

}
.

We use the substitutions

D−1j,t2 = D−1k,j,t2 − βk,j,t2D
−1
k,j,t2

rkr
?
kD
−1
k,j,t2

(7.48)

and

βj,t = bj,t − bj,tβj,tγj,t, βk,j,t2 = bk,j,t2 − bk,j,t2βk,j,t2γk,j,t2 ,

where γk,j,t(z) = r?kD
−1
k,j,t(z)rk − n−1E[tr TnD

−1
k,j,t(z)]. This yields the representation

Z1
n(z, t1, t2) =

∑ bnt1c∑
j=1

bnt2c∑
k=bnt1c+1

(Ej − Ej−1)Tj,k.

Here, the first sum corresponds to the summation with respect to a finite number
of different terms Tj,k, which are of the form

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
,

(βj,t1γj,t1)
X1 (βj,t2γj,t2)

X2

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
,

(βk,j,t2γk,j,t2)
X

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
,

(βk,j,t2γk,j,t2)
X (βj,t1γj,t1)

X1 (βj,t2γj,t2)
X2

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
.
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Here, q ∈ N, ql1 ∈ N0, l1 ∈ {1, . . . , q}, there exists an index l1 ∈ {1, . . . , q}
such that ql1 ≥ 1, and the matrices Al1 and Bl1,l2 are products of the matrices
D−1j,t1 ,D

−1
k,j,t2

and Tn for l2 ∈ {1, . . . , ql1}, l1 ∈ {1, . . . , q} and of the deterministic
scalars bj,t1 , bj,t2 , bk,j,t2 . We assume that X ∈ N and that one of the exponents
X1 ∈ N0 and X2 ∈ N0 is positive, that is, X1 +X2 ≥ 1. Since, again by Lemma 2.1
in Li (2003),

E|Z1
n(z, t1, t2)|4 = E

∣∣∣∑ bnt1c∑
j=1

bnt2c∑
k=bnt1c+1

(Ej − Ej−1)Tj,k
∣∣∣4

. n
∑ bnt1c∑

j=1

E
∣∣∣ bnt2c∑
k=bnt1c+1

(Ej − Ej−1)Tj,k
∣∣∣4,

in order to prove (7.9), it suffices to show that for j ∈ {1, . . . , bnt1c} and k ∈
{bnt1c+ 1, . . . , bnt2c}

E |(Ej − Ej−1)Tj,k|4 . n−6.

In order to derive this estimate, we note that we can ignore the deterministic
and bounded terms bj,t1 , bj,t2 , bk,j,t2 and denote by Al, l ∈ N, a p×p (random) matrix
which is a product of D−1j,t1 ,D

−1
k,j,t2

and Tn. For the sake of brevity, we only consider
terms of the type

R1 =E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2rkr

?
kA3rjγj,t1|4, (7.49)

R2 =E|(Ej − Ej−1)r?jA1rkr
?
kA2rkr

?
kA3rj|4, (7.50)

R3 =E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rjγj,t2|4, (7.51)

R4 =E|(Ej − Ej−1)βk,j,t2r?jA1rkr
?
kA2rkr

?
kA3rjγk,j,t2|4, (7.52)

R5 =E|(Ej − Ej−1)βk,j,t2βj,t2r?jA1rkr
?
kA2rkr

?
kA3rjγk,j,t2γj,t2|4. (7.53)

For further investigations, we observe that

(Ej − Ej−1) tr
( q1∏
l=1

rkr
?
kAl

)
= 0, (7.54)

since rkr
?
kAl, l ∈ {1, . . . , q1} does not depend on rj. In order to estimate the term

in (7.49), we note that due to independence

E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2

(
rkr

?
kA3 − n−1TnA3

)
rjγj,t1 |4 = 0,

so that we obtain, using similar arguments as in the derivation of (7.41), in particular
the bound in (7.46),

R1 .E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2

(
rkr

?
kA3 − n−1TnA3

)
rjγj,t1|4

+ n−4E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2TnA3rjγj,t1|4

=n−4E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2TnA3rjγj,t1|4 . n−6.
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For (7.50), we have using Lemma 7.7.4 and (7.54)

R2 = E
∣∣∣(Ej − Ej−1)

[
r?jA1rkr

?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3

]∣∣∣4
.E
∣∣∣(Ej − Ej−1)

[
r?jA1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3rj

− n−1 tr TnA1rk
(
r?kA2rk − n−1 tr TnA2

)
r?kA3

]∣∣∣4
+ E

∣∣∣(Ej − Ej−1)
[
r?jA1rk

(
n−1 tr TnA2

)
r?kA3rj − n−1 tr TnA1rk

(
n−1 tr TnA2

)
r?kA3

]∣∣∣4
=E
∣∣∣(Ej − Ej−1)

[
r?jA1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3rj

− n−1 tr TnA1rk
(
r?kA2rk − n−1 tr TnA2

)
r?kA3

]∣∣∣4
+ n−4E

∣∣∣(Ej − Ej−1)
[
r?jA1Tn

(
n−1 tr TnA2

)
A3rj − n−1 tr TnA1Tn

(
n−1 tr TnA2

)
A3

]∣∣∣4
.n−4E

(
tr
(
A1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3

) (
A1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3

)?)2
+ n−6

=n−4E
(

tr
(
A1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3

) (
A?

3rk(r
?
kA2rk − n−1 tr TnA2)r

?
kA

?
1

))2
+ n−6

=n−4E|
(
r?kA2rk − n−1 tr TnA2

)2
r?kA3A

?
3rkr

?
kA

?
1A1rk|2 + n−6

.n−6.

Next, we have for the term R4 defined in (7.52) by similar arguments as in the
derivation of (7.41)

R4 =E|(Ej − Ej−1)βk,j,t2{r?jA1rkr
?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3}γk,j,t2|4

.n−4E
[

(tr (A1rkr
?
kA2rkr

?
kA3) (A1rkr

?
kA2rkr

?
kA3)

?)
2 |βk,j,t2γk,j,t2|4

]
.n−6,

where we used the bound in Lemma 7.7.4 and the fact that rj is independent of
γk,j,t2 and βk,j,t2 .
Concerning the term R3 in (7.51), we first decompose using (7.48)

γj,t2(z)

=γj,k,t2(z)−
(
βk,j,t2(z)r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1E
[
βk,j,t2(z) tr TnD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)]

=γj,k,t2(z)− βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

− n−1
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rk − E
[
βk,j,t2(z) tr TnD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
])

=γj,k,t2(z)− βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

− n−1bk,j,t2(z)
(
r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rk − n−1E
[
tr TnD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)
])

+ n−1bk,j,t2(z)
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)

− E
[
βk,j,t2(z) tr TnD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)γk,j,t2(z)
] )
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=γj,k,t2(z)− βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

− n−1bk,j,t2(z)γ̃k,j,t2(z) + n−1bk,j,t2(z)
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)

− E
[
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)
] )

=γj,k,t2(z)− bk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

+ bk,j,t2(z)βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)
γk,j,t2(z)

− n−1bk,j,t2(z)γ̃k,j,t2(z) + n−1bk,j,t2(z)
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)

− E
[
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)
] )
,

where

γ̃k,j,t2(z) = r?kD
−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rk − n−1E
[
tr TnD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)
]
.

Thus, we conclude for (7.51), using the notations A3 = D−1k,j,t2 and A4 = D−1k,j,t2TnD
−1
k,j,t2

and the fact that bk,j,t2 is deterministic and bounded,

R3 . E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rjγj,k,t2|4

+ E|(Ej − Ej−1)βj,t2bk,j,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4

+ E|(Ej − Ej−1)βj,t2βk,j,t2bk,j,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
γk,j,t2|4

+ n−4E|(Ej − Ej−1)βj,t2bk,j,t2r?jA1rkr
?
kA2rj γ̃k,j,t2|4

+ n−4E|(Ej − Ej−1)βj,t2βk,j,t2bk,j,t2r?jA1rkr
?
kA2rjr

?
kA4rkγk,j,t2|4

+ n−4E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rj|4E|βk,j,t2bk,j,t2r?kA4rkγk,j,t2|4

. R31 +R32 +R33 + n−6,

where

R31 =E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rjγj,k,t2|4, (7.55)

R32 =E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4,

R33 =E|(Ej − Ej−1)βj,t2βk,j,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
γk,j,t2|4,

(7.56)

and we used an analogue of the estimate (7.46) for the terms γk,j,t2 and γ̃k,j,t2 in the
last step. The term R31 in (7.55) can be bounded using the bounds in (7.42), (7.43)
and (7.45) as follows:

R31 . R311 +R312 + o
(
n−l
)
,

where

R311 =E|r?jA1rkr
?
kA2rjγj,k,t2|4,

R312 =E|r?jrjr?jA1rkr
?
kA2rjγj,k,t2|4.
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Since R312 can be handled similarly to R311, we only consider R311 and obtain by
Lemma 7.7.4

R311 .E|
(
r?kA2rjr

?
jA1rk − n−1 tr TnA2rjr

?
jA1

)
γj,k,t2|4 + n−4E|r?jA1TnA2rjγj,k,t2|4

.n−6 + n−4E
[
|γj,k,t2|4

(
tr
(
A2rjr

?
jA1

) (
A2rjr

?
jA1

)?)2]
≤n−6.

Note that the term R33 defined in (7.56) can be bounded similarly. Similarly as R31

given in (7.55), we bound |βj,t2| and get

R32 . R321 +R322 + o
(
n−l
)
,

where

R321 =E|r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4,

R322 =E|r?jrjr?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4.

For the sake of brevity, we shall limit ourselves to investigating the summand R321.

R321 . E|
(
r?kA2rjr

?
jA1rk − n−1 tr TnA2rjr

?
jA1

) (
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4

+ n−4E|r?jA1TnA2rj
(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4

. n−6 +
(
E|r?kA2rjr

?
jA1rk − n−1 tr TnA2rjr

?
jA1|8E|r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3|8

) 1
2

. n−6.

Finally, invoking Lemma 7.7.4 and (7.46), we can show for the term R5 defined
in (7.53) that

R5 . R51 +R52,

where

R51 =E|βk,j,t2βj,t2
(
r?jA1rkr

?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3

)
γk,j,t2γj,t2|4

≤
(
E|r?jA1rkr

?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3|8E|βk,j,t2βj,t2γk,j,t2γj,t2|8

) 1
2

.n−6,

R52 =n−4E|βk,j,t2βj,t2r?kA2rkr
?
kA3TnA1rkγk,j,t2γj,t2|4 . n−6.

Thus, the moment inequalities (7.8), (7.9) and (7.10) for M1
n hold true.

Lemma 7.7.6 For any bounded subset S ⊂ C+, we have

inf
z∈S,t∈[t0,1]

|s̃t(z)| > 0.
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Proof of Lemma 7.7.6. Let us assume that the assertion does not hold. In this case,
there exists sequences (zn)n∈N in S and (tn)n∈N in [t0, 1] with the property

lim
n→∞

s̃tn(zn) = 0.

By choosing appropriate subsequences, we assume without loss of generality that
(zn)n∈N converges to a limit in the closure of S and (tn)n∈N converges to a limit in
[t0, 1]. From (3.2), we conclude

lim
n→∞

y

∫
λs̃tn(zn)

1 + λtns̃tn(zn)
dH(λ) = 1.

But, using the fact that H is compactly supported, we see that the expression
above tends to 0. Thus, we get a contradiction.

Lemma 7.7.7 In the real case, it holds for i 6= l (i, l ∈ {1, . . . , n} \ {j})

sup
z∈Cn,
t∈[t0,1]

∣∣∣E[ tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
βl,i,j,t(z)D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z)

× (ts̃t(z)Tn + I)−1 Tnβi,l,j,t(z)D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ]∣∣∣ (7.57)

=o
(
n−1
)
.

Proof of Lemma 7.7.7. Denoting

γ̂i,l,j,t(z) =r?iD
−1
i,l,j,t(z)ri − n−1 tr TnD

−1
i,l,j,t(z),

β
2

i,j,l,t(z) =
1

1 + n−1 tr TnD
−1
i,l,j,t(z)

,

we use the representation (7.22) in order to replace βl,i,j,t(z) and βi,l,j,t(z). Note that
E[||D−1l,i,j,t(z)||] ≤ K and || (ts̃t(z)Tn + I)−1 || ≤ K which follows from Lemma 7.7.3
and Lemma 7.7.2 in Section 7.7. By applying the triangle inequality, this gives us
several summands for the mean in (7.57). More precisely, we can write∣∣∣E[ tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
βl,i,j,t(z)D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z)

× (ts̃t(z)Tn + I)−1 Tnβi,l,j,t(z)D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ]∣∣∣
≤
∑
ζ1,ζ2

|E[T (ζ1, ζ2)]|,

where T (ζ1, ζ2) has the following form

tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
ζ1D

−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

× ζ2D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)
,

and
ζ1 ∈ {βl,i,j,t(z),−β2

l,i,j,t(z)γ̂l,i,j,t(z), βl,i,j,t(z)β
2

l,i,j,t(z)γ̂2l,i,j,t(z)},
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ζ2 ∈ {βi,l,j,t(z),−βi,l,j,t(z)2γ̂i,l,j,t(z), βi,l,j,t(z)β
2

i,l,j,t(z)γ̂2i,l,j,t(z)}.
The assertion now follows, if we show that for all ζ1, ζ2

|E[T (ζ1, ζ2)]| = o
(
n−1
)
. (7.58)

In the following, we restrict ourselves to three different cases noting that the re-
maining cases can be handled similarly.
To begin with, let ζ1 = βl,i,j,t(z) and ζ2 = βi,l,j,t(z). In this case, we have

|E[T (ζ1, ζ2)]|

≤K
∣∣∣E tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

×D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ∣∣∣
≤K

∣∣∣E tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1

×TnD
−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l

∣∣∣
+Kn−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 T2
nD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1

×TnD
−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l

∣∣∣
+Kn−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1

×TnD
−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)Tn

∣∣∣
+Kn−2

∣∣∣E tr (ts̃t(z)Tn + I)−2 T2
nD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1

×TnD
−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)Tn

∣∣∣
=K(T1 + T2 + T3) + o

(
n−1
)
,

where

T1 =
∣∣∣E[r?iD−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)

× rlr
?
l (ts̃t(z)Tn + I)−2 Tnri

]∣∣∣,
T2 =n−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 T2
nD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1

×TnD
−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l

∣∣∣,
T3 =n−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1

×TnD
−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)Tn

∣∣∣.
For the first summand, we obtain using (9.8.6) in Bai and Silverstein (2010) for the
real case

T1 ≤
∣∣∣E[{r?iD−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)ri
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− n−1 tr TnD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)

}
×
{
r?iD

−1
i,l,j,t(z)rlr

?
l (ts̃t(z)Tn + I)−2 Tnri − n−1 tr TnD

−1
i,l,j,t(z)rlr

?
l (ts̃t(z)Tn + I)−2 Tn

}]∣∣∣
+ o

(
n−1
)

=o
(
n−1
)
.

With similar ideas, it can be shown that T2 = o (n−1) and T3 = o (n−1) and that

(7.58) holds true in the case ζ1 = βl,i,j,t(z) and ζ2 = −β2

i,l,j,t(z)γ̂i,l,j,t(z).

Finally, we consider the case ζ1 = −β2

l,i,j,t(z)γ̂l,i,j,t(z) and ζ2 = −β2

i,l,j,t(z)γ̂i,l,j,t(z).

Note that βi,l,j,t(z) = βl,i,j,t(z). We obtain (7.58), that is,

|E[T (ζ1, ζ2)]|

=
∣∣∣E[β4

i,j,l,t(z) tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z)

× (ts̃t(z)Tn + I)−1 Tnγ̂l,i,j,t(z)D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)
γ̂i,l,j,t(z)

]∣∣∣
≤E

1
2 |E1|2E

1
4 |E2|4E

1
4 |E3|4 = o

(
n−1
)
,

if

E
1
2 |E1|2 ≤ Kn−1, (7.59)

E
1
4 |E2|4 ≤ K, (7.60)

E
1
4 |E3|4 = o(1), (7.61)

where

E1 =β
4

i,j,l,t(z)γ̂i,l,j,t(z)γ̂l,i,j,t(z),

E2 =r?lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)ri,

E3 = tr
{

(ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1l,i,j,t(z)rlr

?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)}
.

We begin with a proof of (7.59). Note that γ̂l,i,j,t(z) is independent of ri and βi,j,l,t(z)
is independent of ri and rj. Using (9.9.6) in Bai and Silverstein (2010) twice, we
obtain

E|E1|2 ≤ Kn−2,

which proves (7.59). The estimate (7.60) can be proven similarly to Bai and Silver-
stein (2010), p. 290.

Finally, we will prove that (7.61) holds true. We obtain

E3 =r?iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)
(ts̃t(z)T + I)−2 T

(
rir

?
i − n−1T

)
D−1l,i,j,t(z)rl

=E31 + E32 + E33 + E34,

where

E31 =r?iD
−1
i,l,j,t(z)rlr

?
l (ts̃t(z)T + I)−2 Trir

?
iD
−1
l,i,j,t(z)rl
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E32 =− n−1r?iD−1i,l,j,t(z)rlr
?
l (ts̃t(z)T + I)−2 T2D−1l,i,j,t(z)rl,

E33 =− n−1r?iD−1i,l,j,t(z)Tn (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl,

E34 =n−2r?iD
−1
i,l,j,t(z)Tn (ts̃t(z)T + I)−2 T2D−1l,i,j,t(z)rl.

For k ∈ {2, 3, 4}, it holds

E|E3k|4 = o(1).

For the first summand, we conclude

E|E31|4

≤KE
1
2

∣∣∣r?l (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl

∣∣∣8
≤KE

1
2

∣∣∣r?l (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl − n−1 tr T (ts̃t(z)T + I)−2 Trir

?
iD
−1
l,i,j,t(z)

∣∣∣8
+KE

1
2

∣∣∣n−1 tr T (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)

∣∣∣8
≤KE

1
2

∣∣∣r?l (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl − n−1 tr T (ts̃t(z)T + I)−2 Trir

?
iD
−1
l,i,j,t(z)

∣∣∣8
+Kn−4

≤Kn−
1
2 +Kn−4 = o(1),

which proves (7.61). Hence, the proof of Lemma 7.7.7 is finished.

Lemma 7.7.8 It holds for sufficiently large N ∈ N

inf
n≥N

inf
z∈Cn,
t∈[t0,1]

(Im(z) + Im(Rn,t(z))) ≥ 0.

Proof of Lemma 7.7.8. We start by investigating real and imaginary part of 1/E[s̃n,t(z)].
As a preparation for the latter, one can show similarly to Lemma 7.7.6 that Re(s̃t(z))
is uniformly bounded away from 0. Thus, due to Theorem 6.3.7, we also have for
some sufficiently large N ∈ N

inf
n≥N

inf
z∈Cn,
t∈[t0,1]

|ReE[s̃n,t(z)]| > 0 and inf
n≥N

inf
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]| > 0.

Using also |E[s̃n,t(z)]| ≤ 1/ Im(z), this implies for the real part of the inverse for
some K1 > 0

Re

(
1

E[s̃n,t(z)]

)
=

Re
(
E[s̃n,t(z)]

)
|E[s̃n,t(z)]|2

≥ K1 Im2(z).

For the imaginary part, we conclude for some K2 > 0

Im

(
1

E[s̃n,t(z)]

)
=
− Im

(
E[s̃n,t(z)]

)
|E[s̃n,t(z)]|2

=
1

|E[s̃n,t(z)]|2
E Im

(∫ −1

λ− z
dFBn,t(λ)

)
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=
1

|E[s̃n,t(z)]|2
E
∫
− Im(z)

|z − λ|2
dFBn,t(λ) ≥ KE

∫
− Im(z)

|λ− z|2
dFBn,t(λ)

≥−K2 Im(z).

By definition of Rn,t(z), we have for all n ≥ N

Im(Rn,t(z)) = ybntcbntc−1
bntc∑
j=1

Im
(
E[βj,t(z)dj,t(z)]

(
E[s̃n,t(z)]

)−1)

=ybntcbntc−1
bntc∑
j=1

Im (E[βj,t(z)dj,t(z)]) Re

(
1

E[s̃n,t(z)]

)

+ ybntcbntc−1
bntc∑
j=1

Re (E[βj,t(z)dj,t(z)]) Im

(
1

E[s̃n,t(z)]

)

≥K1 Im2(z)bntc−1 Im
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

Im
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0


−K2 Im(z)bntc−1 Re

(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

Re
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

 ,

which implies that

Im(Rn,t(z)) + Im(z)

≥ Im(z) +K1 Im2(z)bntc−1 Im
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

{
Im
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

}

−K2 Im(z)bntc−1 Re
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

{
Re
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

}

≥ Im(z)

[
1 +K1 Im(z)bntc−1 Im

(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

{
Im
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

}

−K2bntc−1 Re
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

{
Re
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

}]
.

Due to (6.54), we have for some N ∈ N

sup
n≥N

sup
z∈Cn,
t∈[t0,1]

∣∣∣K1 Im(z)bntc−1 Im
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

{
Im
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

}

−K2bntc−1 Re
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
I

{
Re
( bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
> 0

}∣∣∣ < 1.
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Thus, we conclude that

inf
n≥N

inf
z∈Cn,
t∈[t0,1]

(Im(z) + Im(Rn,t(z))) ≥ 0.



Chapter 8

Proof of Theorem 5.2.1

8.1 Proof of Theorem 5.2.1

Due to the invariance of Un,t under H0, we may assume w.l.o.g. that that Σ1 =

. . .Σn = I, which implies Σ̂n,t = Bn,t. Let f1(x) = x and f2(x) = x2. We recall from
Corollary 4.2.1 that(

(Xn(f1, t))t∈[t0,1], (Xn(f2, t))t∈[t0,1]
)
n∈N  

(
(X(f1, t))t∈[t0,1], (X(f2, t))t∈[t0,1]

)
in (`∞([t0, 1]))2, where

Xn(f1, t) = tr (Bn,t)− bntcyn,

Xn(f2, t) = tr
(
B2
n,t

)
− bntcyn

(bntc
n

+ yn

)
, t ∈ [t0, 1],

and

E[X(f1, t)] = 0, E[X(f2, t)] = ty, (8.1)

and

cov(X(f1, t1), X(f1, t2)) = 2ymin(t1, t2),

cov(X(f2, t1), X(f2, t2)) = 4 min(t1, t2)y
{

2t1t2 + [min(t1, t2) + 2(t1 + t2)] y + 2y2
}
,

(8.2)

cov(X(f1, t1), X(f2, t2)) = 4 min(t1, t2)y(t2 + y), t1, t2 ∈ [t0, 1].

With the definition φ(x, y) = y
x2
, we obtain the representation

Un,t = φ
(1

p
tr(Bn,t),

1

p
tr(B2

n,t)
)
, t ∈ [t0, 1], n ∈ N,

for the process Un,t in (5.3). Consequently, the assertion can be proved by the
functional delta method.

To be precise, note that it follows from yn = p/n

p

(
1
p

tr(Bn,t)− bntcn
1
p

tr(B2
n,t)−

bntc
n

(
bntc
n

+ yn

))
t∈[t0,1]

 

(
X(f1, t)
X(f2, t)

)
t∈[t0,1]

(8.3)
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in (`∞([t0, 1]))2 . Let an(t) = bntc
n

and bn(t) = bntc
n

( bntc
n

+ yn
)
, such that

lim
n→∞

an(t) = t = a(t), lim
n→∞

bn(t) = t(t+ y) = b(t)

uniformly in t ∈ [t0, 1]. For a sequence (hn,1, hn,2)n∈N in (`∞([t0, 1]))2 converging to
0, a straightforward calculation shows that

p
{
φ
(
an + p−1hn,1, bn + p−1hn,2

)
− φ (an, bn)

}
→ h2

a2
− 2bh1

a3
= φ′(a,b)(h1, h2)

in l∞([t0, 1]), as n→∞. Moreover, we have

φ (an(t), bn(t)) =
bntc
n

( bntc
n

+ yn
)( bntc

n

)2 =
n

bntc

(bntc
n

+ yn

)
= 1 + ybntc.

Thus, it follows from (8.3) and Theorem 3.9.5 in Van Der Vaart and Wellner (1996)
that

p
{
Un,t − 1− ybntc

}
t∈[t0,1]

= p
{
φ
(1

p
tr(Bn,t),

1

p
tr(B2

n,t)
)
− φ (an(t), bn(t))

}
t∈[t0,1]

 (Ut)t∈[t0,1]

in `∞([t0, 1]), where

Ut =
X(f2, t)− 2X(f1, t)(t+ y)

t2
, t ∈ [t0, 1]

is a Gaussian process. Recalling (8.1) and (8.2) we obtain for t, t1, t2 ∈ [t0, 1] with
t2 ≤ t1 by straightforward calculations

E[Ut] =
1

t2
(E[X(f2, t)]− 2(t+ y)E[X(f1, t)]) =

ty

t2
= yt,

cov(Ut1 , Ut2) =
1

t21t
2
2

cov (X(f2, t1)− 2(t1 + y)X(f1, t1), X(f2, t2)− 2(t2 + y)X(f1, t2))

=
1

t21t
2
2

{
4t2y

{
2t1t2 + [t2 + 2(t1 + t2)] y + 2y2

}
− 2(t2 + y)4 min(t1, t2)y(t1 + y)

− 2(t1 + y)4 min(t1, t2)y(t2 + y) + 4(t1 + y)(t2 + y)2ymin(t1, t2)
}

=
1

t21t
2
2

{
4t2y

{
2t1t2 + [t2 + 2(t1 + t2)] y + 2y2

}
− 8(t2 + y) min(t1, t2)y(t1 + y)

}
=4

y2

t21
= 4y2max(t1,t2)

.

which proves the assertion of Theorem 5.2.1.
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8.2 Auxiliary results for the proof of Theorem

5.2.1

8.2.1 How to calculate mean and covariance in Theorem
3.2.1

Proof of Proposition 4.1.1. If suffices to consider the real case. Since H = δ1, we
obtain from Theorem 3.2.1

E[X(fi, t)] =− 1

2πi

∮
C

fi(z)
ty

s̃3t (z)

(ts̃t(z)+1)3(
1− ty s̃2t (z)

(ts̃t(z)+1)2

)2dz, i = 1, 2,

cov(X(f1, t1), X(f2, t2)) =
1

2π2

∮
C1

∮
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1,

where the contours C, C1, C2 enclose the interval given in (3.7) and C1 and C2 are
assumed to be non-overlapping.
Step 1: Specifying the contours
We claim that it suffices for C = Ct to enclose the interval

[
t(1−√yt)2, t(1 +

√
yt)

2
]

and we will prove this assertion in a first step. Similar arguments hold true for
contours C1 = C1,t1 and C2 = C2,t2 .
The assertion is clear in the case yt < 1. In the case yt > 1, the transformed
Marčenko-Pastur distribution F̃ ybntc has a discrete part at the origin for sufficiently
large n. A priori, the contour should enclose the whole support of F̃ yt , including
the origin. However, by the exact separation theorem in Bai and Silverstein (1999),
we see that the mass at 0 of the spectral distribution FBn,t coincides with that of
F̃ ybntc for sufficiently large n. Thus, we can restrict the integration in (3.5) to the
interval

[
t(1−√yt)2, t(1 +

√
yt)

2
]

and neglect the discrete part at the origin.
Step 2: Calculation of the mean
Recall that ht =

√
yt. For calculation of the mean, we use a change of variables

z(ξ) = z = t(1 + htrξ + htr
−1ξ−1 + h2t ),

where r > 1 is close to 1 and |ξ| = 1. It can be checked that when ξ runs anticlock-
wise on the unit circle, z will run a contour C enclosing the interval [t(1−ht)2, t(1 +
ht)

2]. Using the identity (3.2), we have for z ∈ C

s̃t(z) = − 1

t(1 + htrξ)
,

s̃t(z)

ts̃t(z) + 1
= − 1

thtrξ
, dz = tht(r − r−1ξ−2)dξ.

Thus, we can write for i ∈ {1, 2}

E[X(fi, t)] = lim
r↘1

1

2πi

∮
|ξ|=1

fi(z(ξ))t2h2t

(
1

thtrξ

)3(
1− t2h2t

(
1

thtrξ

)2)2 tht (r − r−1ξ−2) dξ
= lim

r↘1

t

2πi

∮
|ξ|=1

fi(z(ξ))
r−2

ξt(ξ2 − r−2)
dξ
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= − lim
r↘1

t

2πi

∮
|ξ|=1

fi (z(ξ))
( 1

ξt
− ξ

t(ξ2 − r−2)
)
dξ

= lim
r↘1

1

2πi

∮
|ξ|=1

fi (z(ξ))
( ξ

(ξ2 − r−2)
− 1

ξ

)
dξ.

Step 3: Calculation of the covariance function
In order to calculate the covariance structure, we define two non-overlapping con-
tours through

zj = zj(ξj) = t
(

1 + htjξj + htjr
−1
j ξj + h2tj

)
, j = 1, 2,

where r2 > r1 > 1. Thus, we have for t2 ≤ t1

cov(X(f1, t1), X(f2, t2)) = lim
r2>r1,
r1,r2↘1

1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

f1(z1(ξ1))f2(z2(ξ2))

× σ2
t1,t2

(z1(ξ1), z2(ξ2))t1ht1(r1 − r−11 ξ−21 )t2ht2(r2 − r−12 ξ−22 )dξ2dξ1

= lim
r2>r1,
r1,r2↘1

1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

f1(z1(ξ1))f2(z2(ξ
−1
2 ))

× σ2
t1,t2

(z1(ξ1), z2(ξ
−1
2 ))t1ht1(r1 − r−11 ξ−21 )t2ht2(r2 − r−12 ξ22)dξ2dξ1.

Proceeding similarly as for the mean, we get by straightforward but tedious algebra
the desired formula for the covariance (we partially used a computer algebra system).

8.2.2 Proof of Corollary 4.2.1

We apply Theorem 3.2.1 for the special case f1(x) = x, f2(x) = x2,Tn = I, that is

Xn(f1, t) = tr (Bn,t)− bntcyn,

Xn(f2, t) = tr
(
B2
n,t

)
− bntcyn

(bntc
n

+ yn

)
, t ∈ [t0, 1].

Note that all conditions from Theorem 3.2.1 are satisfied, and therefore(
(Xn(f1, t))t∈[t0,1], (Xn(f2, t))t∈[t0,1]

)
n∈N  

(
(X(f1, t))t∈[t0,1], (X(f2, t))t∈[t0,1]

)
(8.4)

in the space (`∞([t0, 1]))2, where
(
(X(f1, t))t∈[t0,1], (X(f2, t))t∈[t0,1]

)
is a Gaussian pro-

cess. Thus, it is left to calculate mean, covariance and the centering term appearing
in Theorem 3.2.1. We begin determining the centering term. Using the moments of
the Marčenko-Pastur distribution (e.g., see Example 2.12 in Yao et al. (2015)), we
get ∫

f1(x)dF̃ ybntc(x) =

∫
xdF̃ ybntc(x) =

bntc
n

∫
xdF ybntc(x) =

bntc
n

,
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where F y denotes the Marčenko-Pastur distribution with index parameter y > 0
and scale parameter σ2 = 1. Similarly, we see that by using Proposition 2.13 in Yao
et al. (2015)∫

f2(x)dF̃ ybntc(x) =

∫
x2dF̃ ybntc(x) =

(bntc
n

)2 (
1 + ybntc

)
=
bntc
n

(bntc
n

+ yn

)
.

We calculate the quantities given in Proposition 4.1.1 by using the residue theorem.
We find for the real case

E[X(f1, t)] =
t

2πi
lim
r↘1

∮
|ξ|=1

ξ + htrξ
2 + htr

−1 + h2t ξ

ξ

( ξ

ξ2 − r−2
− 1

ξ

)
dξ

=
t

2πi
lim
r↘1

∮
|ξ|=1

ξ + htrξ
2 + htr

−1 + h2t ξ

(ξ − r−1)(ξ + r−1)
dξ − t

2πi

∮
|ξ|=1

ξ + htrξ
2 + htr

−1 + h2t ξ

ξ2
dξ

(8.5)

= lim
r↘1

t
ξ + htrξ

2 + htr
−1 + h2t ξ

ξ + r−1

∣∣∣
ξ=r−1

+ lim
r↘1

t
ξ + htrξ

2 + htr
−1 + h2t ξ

ξ − r−1
∣∣∣
ξ=−r−1

− t ∂
∂ξ

(
ξ + htrξ

2 + htr
−1 + h2t ξ

) ∣∣∣
ξ=0

=t lim
r↘1

2r−1 + 2h2t r
−1

2r−1
− t(1 + h2t ) = 0.

Note that ξ = ±r−1 are poles of order 1 for the first integrand in (8.5), since r > 1,
while ξ = 0 is a pole of order 2 for the second integrand in (8.5). For the complex
case, we directly have E[X(f1, t)] = E[X(f2, t)] = 0.
For f2(x) = x2, we have

E[X(f2, t)] = I1 − I2,

where

I1 =
t2

2πi
lim
r↘1

∮
|ξ|=1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ (ξ − r−1) (ξ + r−1)
dξ,

I2 =
t2

2πi
lim
r↘1

∮
|ξ|=1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ3
dξ.

The integrand in I1 has poles which are all of the order 1 at the points 0, r−1,−r−1.
Thus, using the residue theorem,

I1 =t2 lim
r↘1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

(ξ − r−1) (ξ + r−1)

∣∣∣
ξ=0

+ t2 lim
r↘1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ (ξ + r−1)

∣∣∣
ξ=r−1

+ t2 lim
r↘1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ (ξ − r−1)

∣∣∣
ξ=−r−1
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=− t2h2t +
t2(1 + ht)

4

2
+
t2(1− ht)4

2
= −th2 +

t2(1 + ht)
4

2
+
t2(1− ht)4

2
.

Using that the integrand in I2 has a pole at ξ = 0 of order 3, similar calculations
yield I2 = (1 + 4h2t + h4t )t

2, which gives

E[X(f2, t)] = th2 = ty.

For the covariance function of (X(f1, t))t∈[t0,1], we have for t2 ≤ t1

cov(X(f1, t1), X(f1, t2)) =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

t1
(
1 + ht1ξ1 + ht1r

−1
1 ξ−11 + h2t1

)
t2

×
(
1 + ht2ξ2 + ht2r

−1
2 ξ−12 + h2t2

) g1(ξ1, ξ2)
g2(ξ1, ξ2)

dξ2dξ1

=− 2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

ht1t1t2(h1 + r1ξ1 + h21r1ξ1 + h1r
2
1ξ

2
1)

r21r
2
2ξ

3
1

dξ1

=− (2πi)2

2π2
lim
r2>r1,
r1,r2↘1

∂2

∂2ξ1

ht1t1t2(h1 + r1ξ1 + h21r1ξ1 + h1r
2
1ξ

2
1)

r21r
2
2

∣∣∣
ξ1=0

=2 lim
r1>r2,
r1,r2↘1

h21t2
r22

= 2h21t2 = 2yt2,

where we used a computer algebra system for simplifying the first integrand and
then applied the residue theorem twice. Considering the function f2, we have for
(t2 ≤ t1)

cov(X(f2, t1), X(f2, t2))

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

t21
(
1 + ht1ξ1 + ht1r

−1
1 ξ−11 + h2t1

)2
t22

×
(
1 + ht2ξ2 + ht2r

−1
2 ξ−12 + h2t2

)2 g1(ξ1, ξ2)
g2(ξ1, ξ2)

dξ2dξ1

=
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

2h1t1t
2
2

r41r
4
2ξ

5
1

(
h1 + r1x+ h21r1x+ h1r

2
1ξ

2
1

)2
×
(
−h1t1 − h21r1t1ξ1 − r1r22t1ξ1 − h22r1r22t1ξ1 + h22r1t2ξ1 + h21r

3
1t1ξ

3
1 − h22r31t2ξ31

)
dξ1

(8.6)

=
(2πi)2

2π2
lim
r2>r1,
r1,r2↘1

1

(5− 1)!

∂4

∂4ξ1

{2h1t1t
2
2

r41r
4
2

(
h1 + r1ξ1 + h21r1ξ1 + h1r

2
1ξ

2
1

)2
×
(
−h1t1 − h21r1t1ξ1 − r1r22t1ξ1 − h22r1r22t1ξ1 + h22r1t2ξ1 + h21r

3
1t1ξ

3
1 − h22r31t2ξ31

)
dξ1

}∣∣∣
ξ1=0

=4t2y
{

2t1t2 + [t2 + 2(t1 + t2)] y + 2y2
}
, t2 ≤ t1.

Note that ξ1 = 0 is a pole of order 5 for the integrand in (8.6) and that in the
special case t1 = t2 = 1 we recover the mean and covariance given in (9.8.14) and,
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respectively, (9.8.15) in Bai and Silverstein (2010).
Finally, we want to calculate the dependence structure betweenX(f1, t1) andX(f2, t2).
Using similar techniques as above, we obtain for t2 ≤ t1

cov(X(f1, t1), X(f2, t2))

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

t1
(
1 + ht1ξ1 + ht1r

−1
1 ξ−11 + h2t1

)
t22

×
(
1 + ht2ξ2 + ht2r

−1
2 ξ−12 + h2t2

)2 g1(ξ1, ξ2)
g2(ξ1, ξ2)

dξ2dξ1 (8.7)

=
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

1

r31r
4
2ξ

4
1

2h1t
2
2(h1 + r1ξ1 + h21r1ξ1 + h1r

2
1ξ

2
1)

×
{
−h1t1 + h21r1t1ξ1(−1 + r21ξ

2
1)− r1ξ1

[
(1 + h22)r

2
2t1 + h22t2(−1 + r21ξ

2
1)
]}
dξ1
(8.8)

=4t2y(t2 + y). (8.9)

After simplifying the integrand in (8.7) with a computer algebra program, we see
that it has a pole at ξ2 = 0 of order 2. Note that the pole at

ξ2 =
h2r2
h1r1ξ1

is not relevant for an application of the residue theorem, since∣∣∣∣ h2r2h1r1ξ1

∣∣∣∣ =

∣∣∣∣ √t1r2r1
√
t2ξ1

∣∣∣∣ =

√
t1r2√
t2r1

> 1.

The integrand in (8.8) has a pole at ξ1 = 0 of order 4. Similarly, we have, again for
t2 ≤ t1,

cov(X(f2, t1), X(f1, t2)) = 4t2y(t1 + y). (8.10)

By combining (8.9) and (8.10), we have for t1, t2 ∈ [t0, 1]

cov(X(f1, t1), X(f2, t2)) = 4 min(t1, t2)y(t2 + y).

8.2.3 Proof of Corollary 4.3.1

We apply Theorem 3.2.1 for the choice h(x) = log(x). Note that, if y ≥ t0, the
interval in (3.7) contains the point 0. Thus, we have to impose y < t0, since h is not
analytic in a neighborhood of 0.
Using Example 2.11 in Yao et al. (2015), we obtain for the centering term∫

log xdF̃ ybntc(x) =

∫
log xdF ybntc

( n

bntc
x
)

=

∫
log xdF ybntc (x) + log

(bntc
n

)
=
(
− 1 +

ybntc − 1

ybntc
log(1− ybntc)

)
+ log

(bntc
n

)
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=− 1− 1

ybntc
log(1− ybntc) + log

(bntc
n
− yn

)
,

which implies

p

∫
log xdF̃ ybntc(x) = −p− bntc log(1− ybntc) + p log

(
bntc
n
− yn

)
.

By Proposition 4.1.1, we have for the mean of the limiting process D in the real case

E[D(t)] = I1 + I2, (8.11)

where

I1 =
1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htrξ + htr
−1ξ−1 + h2t ))

ξ

ξ2 − r−2
dξ

=
1

2πi
lim
r↘1

∮
|ξ|=1

log(t|1 + htξ|2)
ξ

ξ2 − r−2
dξ, (8.12)

I2 =− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htrξ + htr
−1ξ−1 + h2t ))

1

ξ
dξ

=− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t|1 + htξ|2)
1

ξ
dξ

(see also Wang and Yao (2013) for a similar representation). Beginning with I1, we
further decompose (note that for |ξ| = 1, it holds ξ−1 = ξ )

I1 = I11 + I12,

where

I11 =
1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ))
ξ

(ξ − r−1)(ξ + r−1)
dξ,

=
1

2
lim
r↘1

{
log
(
t
(
1 + htr

−1))+ log
(
t
(
1− htr−1

))}
=

1

2
log
(
t2
(
1− h2t

))
,

I12 =
1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ
−1))

ξ

(ξ − r−1)(ξ + r−1)
dξ

=
1

2πi
lim
r↘1

∮
|z|=1

log(t(1 + htz))
r2

z(z − r)(r + z)
dz

= lim
r↘1

log(t(1 + htz))
r2

(z − r)(z + r)

∣∣∣
z=0

= − log(t).



106 Chapter 8. Proof of Theorem 5.2.1

These calculations imply

I1 =
1

2
log
(
t2
(
1− h2t

))
− log(t). (8.13)

The quantity I2 in (8.11) can be determined similarly using the decomposition

I2 = I21 + I22,

where

I21 =− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ))
1

ξ
dξ = − log t

I22 =− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ
−1))

1

ξ
dξ = log t.

This gives I2 = 0, and by (8.13) and (8.11), we obtain

E[D(t)] =
1

2
log
(
t2
(
1− h2t

))
− log(t) =

1

2
log
(
1− h2t

)
=

1

2
log (1− yt) .

Next, we calculate the covariance structure. Similarly to (8.12), we obtain for t2 ≤ t1

cov(D(t1),D(t2))

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

log(t1|1 + ht1ξ1|2)log(t2|1 + ht2ξ2|2)
g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

log(t1|1 + ht1ξ1|2) log(t2|1 + ht2ξ2|2)
g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1

=I3 + I4,

where (note that |1 + ht2ξ2|2 = (1 + ht2ξ2)(1 + ht2ξ
−1
2 ) )

I3 =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1|1 + ht1ξ1|2)
∮
|ξ2|=1

log(t2(1 + ht2ξ2))
g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1,

I4 =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1|1 + ht1ξ1|2)
∮
|ξ2|=1

log(t2(1 + ht2ξ
−1
2 ))

g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1.

Using a computer algebra program for simplifying I3 and I4, we see that I3 = 0 and
for I4, and we perform the substitution ξ2 = z−12 , which yields

I4 =
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1|1 + ht1ξ1|2)
h1r1

r2 + h1r1ξ1
dξ1 = I41 + I42,
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where

I41 =
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1(1 + ht1ξ1))
h1r1

r2 + h1r1ξ1
dξ1,

I42 =
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1(1 + ht1ξ
−1
1 ))

h1r1
r2 + h1r1ξ1

dξ1.

It holds I41 = 0, since we have for the pole at ξ1 = −r2/(h1r1) that |ξ1|2 > 1
h2t1

=
t1
y
≥ t0

y
≥ 1.

As above, we perform for I42 the substitution ξ−11 = z1 and obtain

I42 =− 2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|z1|=1

log(t1(1 + ht1z1))
ht1r1

ht1r1z1 + r2z21
dz1

=− (2πi)2

2π
lim
r2>r1,
r1,r2↘1

{
− log(t1) + log

(
t1

(
1−

h2t1r1

r2

))}
=− 2 log(1− h2t1).

Finally, we obtain for t2 ≤ t1

cov(D(t1),D(t2)) = I3 + I4 =− 2 log(1− h2t1) = −2 log(1− yt1).



Chapter 9

Gaussian fluctuations for diagonal
entries of a large sample precision
matrix

In this chapter, we prove joint asymptotic normality for several diagonal entries of
the inverse of the sample covariance matrix, the so-called sample precision matrix.
An introduction to this problem and its connection to linear spectral statistics of
sample covariance matrices can be found in Section 9.1. Some notation is introduced
in 9.2. The CLT for a single diagonal entry given in Section 9.3 is generalized
in Section 9.4 to the joint convergence of several diagonal entries. All proofs are
provided in Section 9.6. Section 9.7 sheds light on the QR-decomposition of the
data matrix, which is an important tool used in the proofs.

9.1 Introduction

In this chapter, we establish a central limit theorem for the diagonal entries of a
large sample precision matrix. In order to ensure that this object is well-defined, we
assume that p < n and the data generating process follows a continuous distribu-
tion, so that the resulting sample covariance matrix is an invertible matrix. When
investigating the diagonal entries of the sample precision matrix, an immediate con-
nection to linear spectral statistics of the sample covariance matrix is noteworthy.
Recall Cramer’s rule, which gives the representation

(A−1)qq =
|A(−q)|
|A|

, 1 ≤ q ≤ p,

for the diagonal elements of A−1 in terms of minors of an invertible matrix A ∈ Rp×p.
Here, A(−q) denotes the (p− 1)× (p− 1) submatrix of A where the qth row and qth
column are deleted. If Σ̂ = Bn,1 denotes some sample covariance matrix, then we
obtain by an application of Cramer’s rule

log(Σ̂−1)qq = log |Σ̂(−q)| − log |Σ̂|, (9.1)

108
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which turns out to be a difference of linear spectral statistics of Σ̂ and its submatrix
Σ̂(−q) ∈ R(p−1)×(p−1). A further interesting connection to linear spectral statistics of
the sample covariance matrix is the fact that the limiting variance of (Σ̂−1)qq is de-
termined by the fourth moment of the underlying data generating distribution. Due
to the strong dependence between the eigenvalues of Σ̂ and Σ̂(−q), the asymptotic
behavior of (9.1) cannot be investigated by using techniques established for the proof
of Theorem 3.2.1, and in particular, such statistics are not covered by Bai and Silver-
stein’s CLT (Bai and Silverstein, 2010). In fact, we will observe that the difference
in (9.1) fluctuates on a scale 1/

√
n which is of significantly smaller order than the

fluctuations of each single linear spectral statistic log |Σ̂| and log |Σ̂(−q)|. In order
to tackle the difficulties arising for this difference of two dependent linear spectral
statistics, we perform a QR-decomposition for the data matrix which is useful in a
broader context in random matrix theory: Wang et al. (2018) used this tool in order
to derive the logarithmic law of the sample covariance matrix for the case p/n→ 1
near singularity, while Heiny and Parolya (2021) investigated the log-determinant
of the sample correlation matrix under infinite fourth moment. These papers were
partially inspired by works of Nguyen and Vu (2014) and Bao et al. (2015b), in
which the authors proved Girko’s logarithmic law for a general random matrix with
independent entries and brought his “method of perpendiculars” (see Girko, 1998)
to a mathematically rigorous level. Using such a QR-decomposition for the data
matrix in our setting, we derive a representation of the diagonal entry as the inverse
of a quadratic form. With this knowledge in hand, we show that a central limit
theorem for martingale difference schemes is applicable to the quadratic form. By
the delta method, we finally get asymptotic normality for (Σ̂−1)qq being the inverse
of this quadratic form. In this chapter, we will also consider the joint asymptotic
distribution of several diagonal entries, which calls for particular attention due to
the dependencies of the diagonal elements of the sample precision matrix.
Considering the special case of a sample precision matrix based on a sample fol-
lowing a multivariate normal distribution, the exact distribution of (Σ̂−1)qr is well-
understood in the literature for fixed dimension and sample size (1 ≤ q, r ≤ p). In
fact, n−1Σ̂ is said to follow an inverse Wishart distribution. For more details on this
matrix-valued distribution, we refer the reader to Von Rosen (1988), Nydick (2012)
and Gupta and Nagar (2018).
In the Gaussian case, the entries of the population precision matrix capture the
dependence of two components of a random vector conditionally on all others. More
precisely, if x = (x1, . . . , xp)

> ∼ N (0,Σ), then the coordinates xi and xj are in-
dependent conditionally on {x1, . . . , xp} \ {xi, xj} if and only if (Σ−1)ij = 0 (see
Lauritzen, 1996). A popular field using precision matrices is Gaussian graphical
models, where the vertices of a graph represent the different coordinates. Two ver-
tices i and j are connected with an edge if and only if the (i, j)th entry of the
estimated precision matrix does not vanish. Beyond normally distributed data, this
one-to-one correspondence between conditional independence and precision matrix
does not hold true in general. However, for various statistical problems such as lin-
ear regression, linear prediction, kriging and partial correlation, the behavior of the
precision matrix is crucial (see Huang et al., 2010; Van de Geer et al., 2014; Chang
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et al., 2018; Huang et al., 2021, among many others).
Motivated by its importance in statistics, several authors investigated the sample
precision matrix using techniques from random matrix theory. While the asymptotic
behavior of specific entries of the sample precision matrix has received less attention
in the literature so far, some works are devoted to the investigation of its spectral
properties. Zheng et al. (2015a) established a central limit theorem for linear spec-
tral statistics of a rescaled version of the sample precision matrix. If the dimension
exceeds the sample size, the sample covariance matrix is singular and in this case,
the sample precision matrix can be defined as a generalized inverse of the sample
precision matrix: Bodnar et al. (2016) concentrate on linear spectral statistics of
the Moore-Penrose inverse of the sample covariance matrix.

9.2 Notation

In this section, we introduce the sample precision matrix formally in order to for-
mulate the central limit theorem for its diagonal entries. In contrast to previous
chapters, note that we use for the sample covariance matrix Bn,1 either the notation

Σ̂ or Î in order to differentiate clearly between the cases of a general population
covariance matrix T = Σ and the special case T = Σ = I.
Let

Xn = (xij) i=1,...,p
j=1,...,n

= (b1, . . . ,bp)
> = (x1, . . . ,xn) ∈ Rp×n

be a random matrix with i.i.d. entries following a continuous distribution, Σ =
Σn ∈ Rp×p nonrandom and (symmetric) positive definite matrix with symmetric
square root Σ1/2. The matrix Σ denotes the population covariance matrix and for
most of the following results, it is assumed to be a diagonal matrix (except for the
normal case). Define

Î =
1

n
XnX

>
n =

1

n

n∑
i=1

xix
>
i ∈ Rp×p.

If we set for some q ∈ {1, . . . , p}

X̃(−q)
n = (b1, . . . ,bq−1,bq+1, . . . ,bp)

> ∈ R(p−1)×n,

then

Î(−q) =
1

n
X̃(−q)
n

(
X̃(−q)
n

)>
∈ R(p−1)×(p−1)

can be obtained from Î by deleting the qth row and the qth column. Similarly, if we
set Yn = Σ

1
2 Xn = (d1, . . . ,dp)

> ∈ Rp×n and Ỹ
(−q)
n = (d1, . . . ,dq−1,dq+1, . . . ,dp)

>,
we define

Σ̂ =
1

n
YnY

>
n and Σ̂(−q) =

1

n
Ỹ(−q)
n

(
Ỹ(−q)
n

)>
.
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Additionally, the matrix Σ(−q) ∈ R(p−1)×(p−1) can be obtained from Σ by deleting
the qth row and the qth column. Moreover, we denote by

P(q) =I− X̃>n,q

(
X̃n,qX̃

>
n,q

)−1
X̃n,q ∈ Rn×n,

the projection matrix on the orthogonal complement of the subspace generated by
the first q rows of Xn, that is,

X̃n,q =(b1, . . . ,bq)
> ∈ Rq×n. (9.2)

9.3 CLT for a single diagonal entry

All proofs for results of this section are deferred to Section 9.5.

Theorem 9.3.1 (CLT for diagonal entries of full-sample precision matrix) Let Σ ∈
Rp×p be a diagonal matrix with positive diagonal entries. Assume that the random
variables xij are i.i.d. with E[x11] = 0, Var(x11) = 1 and 1 < E[x411] = ν4 < ∞
for 1 ≤ i ≤ p, 1 ≤ j ≤ n. Then, it holds for n → ∞, p/n → y ∈ [0, 1) and
q ∈ {1, . . . , p}

√
n− p+ 1

(Σ−1)qq

(
n− p+ 1

n

(
Σ̂−1

)
qq
−
(
Σ−1

)
qq

)
D→ W ∼ N (0, ρ), n→∞,

where ρ = 2 + (ν4 − 3)(1− y).

Remark 9.3.2 It is of interest to compare this statement with related results in the
literature. The statistic

log
(
Î−1
)
qq

= log
∣∣∣Î∣∣∣− log

∣∣∣Î(−q)∣∣∣ (9.3)

can be interpreted as a difference of two linear spectral statistics of sample covari-

ances matrices and a CLT for this random variable would yield a CLT for
(
Î−1
)
qq

via the delta method. Recently, Cipolloni and Erdős (2018) developed a CLT for
the difference of general linear spectral statistics of a sample covariance matrix and

its minor, which is applicable to a standardized and centered version of log
(
Î−1
)
qq

.

To be precise, when applying Theorem 2.2 of their work, the random variables xij
are assumed to admit finite moments of all order. Moreover, the asymptotic regime
of p, n is more restrictive in comparison to Theorem 9.3.1 and does not include the
case p/n→ 0 for n→∞. In contrast to Theorem 9.3.1, the authors do not need the
limit y of p/n to exist. While this assumption allows us to determine the limiting
variance ρ, it is not necessary for proving a CLT as in Theorem 9.3.1 (one could
instead divide by 1/

√
ρn defined in (9.9)). We would also like to emphasize that the

technique used for proving Theorem 9.3.1 sets us in the position to investigate the
joint convergence of several diagonal elements of the sample precision matrix given
in Theorem 9.4.1.



112
Chapter 9. Gaussian fluctuations for diagonal entries of a large sample precision

matrix

We may allow for a general form of the population covariance matrix Σ when
imposing a normal assumption on the data. The following corollary follows directly
from Theorem 9.3.1 and Lemma 9.5.2 given in Section 9.5.1.

Corollary 9.3.3 Let Σ ∈ Rp×p be a symmetric positive definite matrix and assume

that xij
i.i.d.∼ N (0, 1) for 1 ≤ i ≤ p, 1 ≤ j ≤ n. Then, it holds for n → ∞, p/n →

y ∈ [0, 1) and q ∈ {1, . . . , p}
√
n− p+ 1

(Σ−1)qq

(
n− p+ 1

n

(
Σ̂−1

)
qq
−
(
Σ−1

)
qq

)
D→ W ∼ N (0, 2), n→∞.

Concluding this section, we investigate a simple subsampling strategy (see, e.g.,
Ma et al., 2014; Raskutti and Mahoney, 2016; Wang et al., 2019; Wang and Ma,
2021, for subsampling procedures in various settings). For this purpose, we need
to introduce some further notation. Choose m ∈ N with m ≤ n for the size of the
subsample and define the set

P(n,m) = {A ∈ 2[n] : |A| = m}.

Let Un be the uniform distribution on P(n,m), that is, each subset with cardinality
m of {1, . . . , n} occurs with probability 1/

(
n
m

)
. We define

δi = I{i∈Un}, 1 ≤ i ≤ n.

The subsample covariance matrix is then defined as

Ĭ =
1

m

n∑
i=1

δixix
>
i =

1

m

∑
i∈Un

xix
>
i .

Let

X̆n = (xj)j∈Un = (b̆1, . . . , b̆p)
> ∈ Rm×p,

where b̆1, . . . , b̆p denote the subsampled data, that is, b̆j = (xij)
>
i∈Un ∈ Rm, 1 ≤ i ≤

p. We denote the projection matrix on the orthogonal complement of the subspace
generated by the first q rows of X̆, that is,

P̆(q) = I− X̆>n,q

(
X̆n,qX̆

>
n,q

)−1
X̆n,q ∈ Rm×m,

where we set similarly to (9.2)

X̆n,q =(b̆1, . . . , b̆q)
> ∈ Rq×m.

Similarly as before, if we set Y̆n = Σ
1
2 X̆n = (d̆1, . . . , d̆p)

> ∈ Rp×m and Y̆
(−q)
n =

(d̆1, . . . , d̆q−1, d̆q+1, . . . , d̆p)
> ∈ R(p−1)×m, we define

Σ̆ =
1

m
Y̆nY̆

>
n and Σ̆(−q) =

1

m
Y̆(−q)
n

(
Y̆(−q)
n

)>
.
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Theorem 9.3.4 (CLT for diagonal entries of subsample precision matrix) Let Σ ∈
Rp×p be a diagonal matrix with positive diagonal entries. Assume that the random
variables xij are i.i.d. with E[x11] = 0, Var(x11) = 1 and 1 < E[x411] = ν4 < ∞
for 1 ≤ i ≤ p, 1 ≤ j ≤ n. Then, if p/m

n→∞→ γ ∈ [0, 1),m = mn
n→∞→ ∞ and

q ∈ {1, . . . , p}

√
m− p+ 1

(Σ−1)qq

(
m− p+ 1

m

(
Σ̆−1

)
qq
−
(
Σ−1

)
qq

)
D→ N (0, ρ̆), n→∞.

where ρ̆ = 2 + (ν4 − 3)(1− γ).

9.4 Joint convergence of diagonal entries

The next theorem presents the joint asymptotic distribution of two diagonal entries
and is proven in Section 9.6.

Theorem 9.4.1 Let Σ ∈ Rp×p be a diagonal matrix with positive diagonal entries.
Assume that the random variables xij are i.i.d. with E[x11] = 0, Var(x11) = 1 and
1 < E[x411] = ν4 < ∞ for 1 ≤ i ≤ p, 1 ≤ j ≤ n. Then, it holds for n → ∞, p/n →
y ∈ [0, 1) and 1 ≤ q1 6= q2 ≤ p{√

n− p+ 1

(Σ−1)ii

(
n− p+ 1

n

(
Σ̂−1

)
ii
−
(
Σ−1

)
ii

)}>
i=q1,q2

D→ N2 (0, ρI2) , n→∞,

where ρ = 2 + (ν4 − 3)(1− y).

Remark 9.4.2 Note that Theorem 9.4.1 provides a nontrivial generalization of The-
orem 9.3.1 since the diagonal entries are not independent. For more details on the
concrete dependence structure, we refer the reader to Lemma 9.6.1 and Lemma
9.6.2. However, it is noteworthy that these random variables are asymptotically
independent in the sense that

lim
n→∞

P(Zn,q1 ∈ A,Zn,q2 ∈ B) = lim
n→∞

P(Zn,q1 ∈ A) lim
n→∞

P(Zn,q2 ∈ B), 1 ≤ q1 6= q2 ≤ p,

for any Borel sets A,B ⊂ R, which is a consequence of Theorem 9.3.1 and Theorem
9.4.1. Here, Zn,q1 denotes a transformation of the q1th diagonal element of the
sample precision matrix, that is,

Zn,q1 =

√
n− p+ 1

(Σ−1)q1,q1

(
n− p+ 1

n

(
Σ̂−1

)
q1,q1
−
(
Σ−1

)
q1,q1

)
.

9.5 Proofs of results in Section 9.3

We continue by proving Theorem 9.3.1 using a CLT for martingale difference schemes.
Subsequently, these ideas are generalized for the subsampling case in Theorem 9.3.4.
The auxiliary results for these proofs can be found in Section 9.5.1.
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Proof of Theorem 9.3.1. Using Lemma 9.5.1 and noting that the distribution of Xn

is invariant under a permutation of the qth and the pth row, we see that(
Σ̂−1

)
qq

(Σ−1)qq
=
(
Î−1
)
qq

D
=
(
Î−1
)
pp

=

(
Σ̂−1

)
pp

(Σ−1)pp
.

Thus, we may assume q = p without loss of generality. From now on, the proof is
divided in several steps.

Step 1: QR decomposition

In this step, we rewrite |Î| and |Î(−p)| in a more handy form via the QR decomposi-
tion. More details on this decomposition can be found in Section 9.7.

As explained in detail in Section 9.7, we get by proceeding the QR-decomposition
for X>n

X>n = QR, Xn = R>Q>, (9.4)

where Q = (e1, . . . , ep) ∈ Rn×p denotes a matrix with orthonormal columns satisfy-
ing Q>Q = I and R ∈ Rp×p is an upper triangular matrix with entries rij = (ei,bj)

for i ≤ j and rij = 0 for i > j, i, j ∈ {1, . . . , p}. Note that, since
(
X̃

(−p)
n

)>
is the

same as X>n but with the pth column bp removed, we have(
X̃(−p)
n

)>
= QR̃, X̃(−p)

n = R̃>Q>, (9.5)

where R̃ = (rij) 1≤i≤p,
1≤j≤p−1

∈ Rp×(p−1) and we set R̃(−p) = (rij)1≤i,j≤p−1 ∈ R(p−1)×(p−1).

Using (9.4), we write

|XnX
>
n | = |R>Q>QR| = |R>R| = |R|2 =

p∏
i=1

r2ii

and similarly, by using (9.5) and the Cauchy-Binet formula,∣∣∣∣X̃(−p)
n

(
X̃(−p)
n

)>∣∣∣∣ = |R̃>R̃| = |R̃(−p)|2 =

p∏
i=1,
i 6=p

r2ii.

Thus, we obtain from Lemma 9.5.1 and Cramer’s rule
(
Σ̂−1

)
qq

(Σ−1)qq


−1

=

((
Î−1
)
pp

)−1
=
|Î|
|Î(−q)|

=
1

n
r2pp. (9.6)

Before continuing with Step 2 of the proof of Theorem 9.3.1, we visit as an
illustrating example the normal case where the distribution of r2pp is explicitly known.
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Illustration: The normal case

If we assume additionally that xij ∼ N (0, 1) i.i.d. for i ∈ {1, . . . , p}, j ∈ {1, . . . , n},
then it is well-known that r2pp ∼ Xn−p+1 (see, e.g., Goodman (1963) or directly use
(9.25)), that is,

r2pp
D
=

n−p+1∑
j=1

Z2
j ,

where Zj are i.i.d. standard normal distributed random variables, j ∈ {1, . . . , n −
p+ 1}. Thus, we are able to apply a CLT for r2pp, namely,

√
n− p+ 1

(
1

n− p+ 1
r2pp − 1

)
=

1√
n− p+ 1

n−p+1∑
j=1

(Z2
j − 1)

D→ N (0, 2).

Applying the delta method, we get√
n− p+ 1

(
n− p+ 1

r2pp
− 1

)
D→ N (0, 2).

Thus, using (9.6), we conclude

√
n− p+ 1

(Σ−1)pp

(
n− p+ 1

n

(
Σ̂−1

)
pp
−
(
Σ−1

)
pp

)

=
√
n− p+ 1

n− p+ 1

n

(
Σ̂−1

)
pp

(Σ−1)pp
− 1


=
√
n− p+ 1

(
n− p+ 1

r2pp
− 1

)
D→ N (0, 2). (9.7)

Note that in the normal case, we have ν4 = 3. Thus, we have recovered the assertion
of Theorem 9.3.1 in this special case.

Step 2: CLT for quadratic forms

In this step, we will show that the random variable r2pp meets the conditions of a
CLT for martingale difference schemes. In Section 9.7, it is shown that (see (9.25))

r2pp = b>p P(p− 1)bp,

where P(0) = In and for p > 1

P(q) =I− X̃>n,q

(
X̃n,qX̃

>
n,q

)−1
X̃n,q ∈ Rn×n (9.8)

denotes the projection matrix on the orthogonal complement of the subspace gen-
erated by the first q rows of Xn. Note that the matrix X̃n,q is defined in (9.2). For
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the following analysis, we denote P(p − 1) = P = (pik)1≤i,k≤n, which only depends
on the random variables b1, . . . ,bp−1 and is independent of bp.

We write√
n− p+ 1

ρn

1

n− p+ 1

(
r2pp − (n− p+ 1)

)
=

1√
ρn(n− p+ 1)

(
b>p Pbp − E

[
b>p Pbp

])
=

1√
ρn(n− p+ 1)

n∑
i=1

Zpi,

where for i ∈ {1, . . . , n}, n ∈ N

Zpi =2bpi

i−1∑
k=1

pkibpk + pii
(
b2pi − E[b2pi]

)
,

ρn =2 +
ν4 − 3

n− p+ 1

n∑
i=1

p2ii. (9.9)

For i ∈ {1, . . . , n}, let Ei denote the conditional expectation with respect to the σ-
field Fpi generated by {b1, . . . ,bp−1}∪{bpk : 1 ≤ k ≤ i}. Furthermore, E0[X] = E[X]
denotes the usual expectation.
Since bpk is measurable with respect to Fp,i−1 for k ∈ {1, . . . , i − 1} and bpj is
independent of Fp,i−1 for j ∈ {i, . . . , n}, and P is measurable with respect to Fpi for
all i ∈ {1, . . . , n}, we obtain

Ei−1[Zpi] =2
i−1∑
k=1

Ei−1[bpipki]bpk + Ei−1
[
pii
(
b2pi − E[b2pi]

)]
=2E[bpi]

i−1∑
k=1

pkibpk + pii
(
E[b2pi]− E[b2pi]

)
= 0, 2 ≤ i ≤ n.

Note that Zpi is measurable with respect to Fpi (1 ≤ i ≤ n). These observations
imply that for each n ∈ N, (Zpi)1≤i≤n forms a martingale difference sequence with
respect to the filtration (Fpi)1≤i≤n. This representation of a random quadratic form
as a martingale difference scheme generalizes the one of Bhansali et al. (2007). Note
that we are not able to apply their Theorem 2.1 directly in order to prove asymptotic
normality, since in our case P is a random matrix and the random vectors bp vary
with n ∈ N. Thus, we have to give a direct proof showing that it satisfies the
conditions of the central limit theorem for martingale difference sequences provided
in Lemma 9.5.3 in Section 9.5.1. More precisely, we will show that for all δ > 0

σ2
n =

1

ρn(n− p+ 1)

n∑
i=1

Ei−1[Z2
pi]

P→ 1, (9.10)

rn(δ) =
1

ρn(n− p+ 1)

n∑
i=1

E
[
Z2
piI{|Zpi|≥δ

√
(n−p+1)ρn}

]
→ 0, (9.11)
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as n→∞.
As a preparation for the following steps, we note that

max
l=1,...,n

n∑
m=1

p2lm ≤ ||P||2 ≤ 1, (9.12)

tr
(
P2
)

=
n∑

i,k=1

pkipik = ||P||22 = tr P = n− p+ 1, (9.13)

where ||P|| denotes the spectral norm of P and ||P||2 denotes the Euclidean norm
of P. The first inequality in (9.12) is a well-known estimate for general symmetric
matrices and can be shown by choosing the unit vectors for the maximum appearing
in the definition of the spectral norm, while the equality in (9.13) follows from the
fact that P2 = P.

Step 2.1: Calculation of the variance

We begin with a proof of (9.10). For this purpose, we calculate

σ2
n =

1

ρn(n− p+ 1)

n∑
i=1

Ei−1
[
Z2
pi

]
=

4

ρn(n− p+ 1)

n∑
i=1

Ei−1

( i−1∑
k=1

pkibpk

)2


+
4

ρn(n− p+ 1)

n∑
i=1

{(
E
[
b3pi
]
− E[bpi]E

[
b2pi
]) i−1∑

k=1

bpkEi−1[pkipii]

}

+
1

ρn(n− p+ 1)

n∑
i=1

Ei−1[p2ii]E
[
b2pi − E[b2pi]

]2
=

4

ρn(n− p+ 1)

n∑
i=1

Ei−1

( i−1∑
k=1

pkibpk

)2
+

4E
[
b3p1
]

ρn(n− p+ 1)

n∑
i=1

{
i−1∑
k=1

bpkpkipii

}

+
(ν4 − 1)

ρn(n− p+ 1)

n∑
i=1

p2ii. (9.14)

Here, we used that bpk is measurable with respect to Fpi for k ∈ {1, . . . , i} and bpj
is independent of Fpi for j ∈ {i+ 1, . . . , n}, and P is measurable with respect to Fpi
for all i ∈ {1, . . . , n}. Moreover, we obtain using (9.13)

1 =ρ−1n

(
2 +

ν4 − 3

n− p+ 1

n∑
i=1

p2ii

)

=
2

ρn(n− p+ 1)

n∑
i,k=1,
i 6=k

p2ki +
ν4 − 1

ρn(n− p+ 1)

n∑
i=1

p2ii
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=
4

ρn(n− p+ 1)

n∑
i=1

i−1∑
k=1

p2ki +
ν4 − 1

ρn(n− p+ 1)

n∑
i=1

p2ii. (9.15)

Denoting ν4 = 1 + ε for some small ε > 0, we note that ρn is uniformly bounded
away from 0, since for all n ∈ N

ρn = 2− 2− ε
n− p+ 1

n∑
i=1

p2ii ≥ 2− 2− ε
n− p+ 1

n∑
i=1

pii = ε > 0. (9.16)

In the following, we will show that (9.10) holds true with σ2 = 1. For this
purpose, we write using (9.14), (9.15) and (9.16)

|σ2
n − 1| ≤ 4

ρn(n− p+ 1)

∣∣∣∣∣∣
n∑
i=1

Ei−1

[
i−1∑
k=1

pkibpk

]2
−

i−1∑
k=1

p2ki

∣∣∣∣∣∣
+

4E|bp1|3

ρn(n− p+ 1)

∣∣∣∣∣
n∑
i=1

{
i−1∑
k=1

bpkpkipii

}∣∣∣∣∣
.

1

n− p+ 1
(δn,1 + δn,2 + δn,3) , (9.17)

where

δn,1 =

∣∣∣∣∣
n∑
i=1

∑
1≤k<j≤i−1

pkipjibpkbpj

∣∣∣∣∣ ,
δn,2 =

∣∣∣∣∣
n∑
i=1

i−1∑
k=1

(
b2pk − 1

)
p2ki

∣∣∣∣∣ ,
δn,3 =

∣∣∣∣∣
n∑
i=1

i−1∑
k=1

bpkpkipii

∣∣∣∣∣ .
Similarly as in Bhansali et al. (2007), one can show that δn,i/(n − p + 1) = oP(1),
as n → ∞ for i ∈ {1, 2, 3}, by bounding the second moments of δn,1, δn,2, δn,3.
Exemplarily, we demonstrate this for the term δn,3. Notice that an application of
Lemma 2.1 in Bhansali et al. (2007) and (9.13) yields n∑

i,i′=1

min(i,i′)−1∑
k=1

pikpi′k

2
1
2

.
√
n− p+ 1||P|| ≤

√
n− p+ 1. (9.18)

Using the Cauchy-Schwarz inequality, (9.18) and (9.13),

E[δ2n,3] = E

 n∑
i,i′=1

piipi′i′

min(i,i′)−1∑
k=1

pkipki′


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≤ E

( n∑
i

p2ii

) n∑
i,i′=1

min(i,i′)−1∑
k=1

pkipki′

2
1
2


. (n− p+ 1)
3
2 = o

(
(n− p+ 1)2

)
, n→∞.

Proceeding similarly for the remaining terms δn,1 and δn,2, we get σ2
n = 1 + oP(1)

as n → ∞. By an application of Lemma 9.5.4 given at the end of this section, the
normalizing term ρn converges in probability towards ρ as n→∞.

Step 2.2: Verifying the Lindeberg-type condition (9.11)

Using a truncation argument as in Bhansali et al. (2007), it is sufficient to prove
(9.11) under the assumption E[b811] <∞. Then, we obtain by using (9.16)

rn(δ) ≤ 1

(n− p+ 1)2ρ2nδ
2

n∑
i=1

E
[
Z4
pi

]
. J1 + J2,

where

J1 =
1

(n− p+ 1)2δ2

n∑
i=1

E

b4pi
(

i−1∑
k=1

pkibpk

)4


.
1

(n− p+ 1)2δ2

n∑
i=1

E

( i−1∑
j,k=1

pkipjibpkbpj

)2


.
1

(n− p+ 1)δ2

n∑
i=1

E

( i−1∑
k=1

p2kib
2
pk

)2


+
1

(n− p+ 1)δ2

n∑
i=1

E


 i−1∑
j,k=1
j<k

pkipjibpkbpj


2 ,

J2 =
1

(n− p+ 1)2δ2

n∑
i=1

E
[
p4ii
(
b2pi − E[b2pi]

)4]
.

1

(n− p+ 1)δ2

n∑
i=1

E
[
p4ii
]
.

This implies using (9.12) and (9.13)

J1 + J2 .
1

(n− p+ 1)2δ2

n∑
i=1

(
i−1∑
j,k=1

E[p2kip
2
ji] + E[p4ii]

)
.

1

(n− p+ 1)2δ2

n∑
i,j,k=1

E[p2kip
2
ji]

.
1

(n− p+ 1)2δ2

n∑
j,k=1

E

[
p2jk max

l=1,...,n

n∑
m=1

p2lm

]

.
1

(n− p+ 1)2δ2

n∑
j,k=1

E[p2jk] = o(1).
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Step 3: Conclusion via delta method

In Step 2, we have shown that an appropriately centered and standardized version
of r2pp satisfies a CLT. By applying the delta method and using (9.6), we conclude
that
√
n− p+ 1

(Σ−1)pp

(
n− p+ 1

n

(
Σ̂−1

)
pp
−
(
Σ−1

)
pp

)
=
√
n− p+ 1

(
n− p+ 1

r2pp
− 1

)
D→ N (0, ρ), n→∞,

which finishes the proof of Theorem 9.3.1.

Next, we prove the corresponding result for the subsampling procedure.

Proof of Theorem 9.3.4. The proof of Theorem 9.3.1 can be generalized to this sub-
sampling strategy. In the following, we discuss only the main steps. Again, we may
assume w.l.o.g. that q = p, since(

Σ̆−1
)
qq

(Σ−1)qq
=
(
Ĭ−1
)
qq

D
=
(
Ĭ−1
)
pp

=

(
Σ̆−1

)
pp

(Σ−1)pp
.

Proceeding with a similar QR decomposition as in the proof of Theorem 9.3.1 (see
also Section 9.7), we obtain (

Ĭ−1
)−1
pp

=
1

m
r̆2pp,

where r̆2qq has the representation

r̆2pp = b̆>p P̆b̆p.

We write√
m− p+ 1

ρ̆n

1

m− p+ 1

(
r̆2pp − (m− p+ 1)

)
=

1√
ρ̆n(m− p+ 1)

(
b̆>p P̆b̆p − E

[
b̆>p P̆b̆p

])
=

1√
ρ̆n(m− p+ 1)

m∑
i=1

Z̆pi,

where for i ∈ {1, . . . ,m}, n ∈ N

Z̆pi =2b̆pi

i−1∑
k=1

p̆kib̆pk + p̆ii

(
b̆2pi − E[b̆2pi]

)
,

ρ̆n =2 +
ν4 − 3

m− p+ 1

m∑
i=1

p̆2ii.

When defining F̆pi as the σ−field generated by {b1, . . . ,bp−1} ∪ {bpk : 1 ≤ k ≤
i} ∪ {Un : n ∈ N}, 1 ≤ i ≤ n, one can show that for each n ∈ N, (Z̆pi)1≤i≤m forms a
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martingale difference sequence with respect to the σ-fields (F̆pi)1≤i≤m defined above.
Similarly as in the proof of Theorem 9.3.1, it is seen that

σ̆2
n =

1

ρ̆n(m− p+ 1)

m∑
i=1

E[Z̆2
pi|F̆pi]

=
4

ρ̆n(m− p+ 1)

m∑
i=1

E

( i−1∑
k=1

p̆kib̆pk

)2 ∣∣∣F̆p,i−1


+
4

ρ̆n(m− p+ 1)

m∑
i=1

{
E
[
b̆3pi

] i−1∑
k=1

b̆pkp̆kip̆ii

}

+
1

ρ̆n(m− p+ 1)

m∑
i=1

p̆2ii

(
E[b̆4pi]− 1

)
and

1 =ρ̆−1n

(
2 +

ν4 − 3

m− p+ 1

m∑
i=1

p̆2ii

)

=
2

ρ̆n(m− p+ 1)

m∑
i,k=1,
i 6=k

p̆2ki +
ν4 − 1

ρ̆n(m− p+ 1)

m∑
i=1

p̆2ii

=
4

ρ̆n(m− p+ 1)

m∑
i=1

i−1∑
k=1

p̆2ki +
ν4 − 1

ρ̆n(m− p+ 1)

m∑
i=1

p̆2ii.

Then, one can show in a similar fashion that σ̆2
n = 1 + oP(1), as n → ∞, meaning

that condition (9.22) in Lemma 9.5.3 holds true. Condition (9.23) is proven similarly
as (9.11) in the proof of Theorem 9.3.1. Similarly to Lemma 9.5.4, we also get the

convergence ρ̆n
P→ ρ̆ for n→∞, and thus, by applying Lemma 9.5.3, we conclude

√
m− p+ 1

(
r̆2pp

m− p+ 1
− 1

)
D→ N (0, ρ̆), n→∞.

Similarly to Step 3 in the proof of Theorem 9.3.1, we conclude that

√
m− p+ 1

(Σ−1)pp

(
m− p+ 1

m

(
Σ̆−1

)
pp
−
(
Σ−1

)
pp

)
D→ N (0, ρ̆), n→∞.

This finishes the proof of Theorem 9.3.4.

9.5.1 Auxiliary results

As the following result reveals, the diagonal entries of the sample precision matrix
for standardized data are closely connected to those for data with inhomogeneous
variances.
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Lemma 9.5.1 For 1 ≤ q ≤ p and a diagonal matrix Σ ∈ Rp×p, it holds

(
Î−1
)
qq

=

(
Σ̂−1

)
qq

(Σ−1)qq
.

Proof of Lemma 9.5.1. Applying Cramer’s rule and noting that |Σ̂| = |Σ||Î|, we get(
Σ̂−1

)
qq

(Σ−1)qq
=
|Σ|
|Σ̂|
|Σ̂(−q)|
|Σ(−q)|

=
1

|Î|
|Σ̂(−q)|
|Σ(−q)|

. (9.19)

Let (Σ1/2)(−q,·) denote the (p−1)×p submatrix of Σ1/2 where the qth row is deleted.
Similarly, (Σ1/2)(·,−q) denotes the p×(p−1) submatrix of Σ1/2 where the qth column
is deleted. Using these definitions, we see that

Σ̂(−q) = (Σ1/2)(−q,·)XnX
>
n (Σ1/2)(·,−q) = (Σ1/2)(−q,·)Xn

(
(Σ1/2)(−q,·)Xn

)>
. (9.20)

(In order to enforce (9.20), Σ does not need to be a diagonal matrix.) Since Σ is a
diagonal matrix, it holds

(Σ1/2)(−q,·)Xn =
(
Σ(−q))1/2 X̃(−q)

n ,

which implies

|Σ̂(−q)| = |Σ(−q)||Î(−q)|. (9.21)

Using (9.19), (9.21) and Cramer’s rule again, we obtain(
Σ̂−1

)
qq

(Σ−1)qq
=
|Î(−q)|
|Î|

=
(
Î−1
)
qq
.

The connection given in Lemma 9.5.1 can be generalized to the case of dependent
coordinates if we assume that the data follows a standard normal distribution.

Lemma 9.5.2 If Σ is a general (not necessarily diagonal) p× p population covari-

ance matrix and xij
i.i.d.∼ N (0, 1) (1 ≤ i ≤ p, 1 ≤ j ≤ n), then for any 1 ≤ q ≤ p(

Σ̂−1
)
qq

(Σ−1)qq

D
=
(
Î−1
)
qq
.

Proof of Lemma 9.5.2. Recall formula (9.20) from the proof of Lemma 9.5.1. It
follows from our normal assumption that

(Σ1/2)(−q,·)Xn ∼ N (0,Σ(−q)),



9.5. Proofs of results in Section 9.3 123

where we used that

(Σ1/2)(−q,·)
(
(Σ1/2)(−q,·)

)>
= (Σ1/2)(−q,·)(Σ1/2)(·,−q) = Σ(−q).

This implies that

(Σ1/2)(−q,·)Xn
D
= Ỹ(−q)

n .

Using Cramers rule, we get(
Σ̂−1

)
qq

(Σ−1)qq
=
|Σ|
|Σ̂|
|Σ̂(−q)|
|Σ(−q)|

D
=
|Î(−q)|
|Î|

=
(
Î−1
)
qq
.

The proof of Lemma 9.5.2 concludes.

In order to prove asymptotic normality of the quadratic forms appearing in the
previous proofs, we make use of the following CLT for martingale difference schemes.

Lemma 9.5.3 (Theorem 35.12 in Billingsley (1995)) Suppose that for each n ∈ N,
Zn1, ..., Znrn form a real martingale difference sequence with respect to the increasing
σ-field (Fnj) having second moments. If, as n→∞

rn∑
j=1

E[Z2
nj|Fn,j−1]

P→ σ2, (9.22)

where σ2 > 0, and for each ε > 0,

rn∑
j=1

E[Z2
njI{|Znj |>ε}]→ 0, (9.23)

then

rn∑
j=1

Znj
D→ N (0, σ2).

We conclude this section by proving the following lemma which was used in the
proof of Theorem 9.3.1 and provides the limiting variance.

Lemma 9.5.4 It holds

ρn
P→ ρ, n→∞,

where ρ is defined in Theorem 9.3.1 and ρn in (9.9).

Proof of Lemma 9.5.4. Assume that y = 0. For this case, we note that

1

n

n∑
i=1

p2ii =
1

n

n∑
i=1

(1− pii)2 − 1 +
2

n

n∑
i=1

pii =
2(n− p+ 1)

n
− 1 + oP(1)
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= 1 + oP(1), n→∞, (9.24)

where we used

1

n

n∑
i=1

E(1− pii)2 ≤
1

n

n∑
i=1

E[1− pii] =
1

n
tr(I−P) =

p− 1

n
= o(1), n→∞.

Then, (9.24) implies

ρn = 2 +
(ν4 − 3)n

n− p+ 1
+ oP(1) = ν4 − 1 = ρ.

Let y ∈ (0, 1). Then we have from Theorem 3.2 in Anatolyev and Yaskov (2017)

1

n

n∑
i=1

(1− pii − y)2
P→ 0, n→∞,

which implies

1

n

n∑
i=1

p2ii =
1

n

n∑
i=1

(1− pii − y)2 − (1− y)2 +
2(1− y)

n

n∑
i=1

pii

=
2(1− y)(n− p+ 1)

n
− (1− y)2 + oP(1) = (1− y)2 + oP(1), n→∞.

We conclude for n→∞

ρn = 2 +
(ν4 − 3)(1− y)2n

n− p+ 1
+ oP(1) = 2 + (ν4 − 3)(1− y) + oP(1) = ρ+ oP(1).

9.6 Proofs of results in Section 9.4

9.6.1 Auxiliary results

The following lemma gives a concrete representation for any diagonal element of the
sample precision matrix in terms of the entries of the triangular matrix R.

Lemma 9.6.1 For 1 ≤ q ≤ p, it holds

n
(
Î−1
)−1
qq

= r2qq

p∏
i=q+1

r2ii
r2ii,q

,

where the matrix R is defined in the proof of Theorem 9.3.1 and

r2ii,q = b>i P(i− 1, q)bi, 1 ≤ i 6= q ≤ p.

Here, P(i − 1, q) denotes the projection matrix on the orthogonal complement of
span({b1, . . . ,bi−1} \ {bq} ). In particular, if q = p− 1, we obtain

n
(
Î−1
)−1
p−1,p−1

=
r2ppr

2
p−1,p−1

b>p P(p− 2)bp
.
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Proof of Lemma 9.6.1. Recall the QR-decomposition of X>n given in Section 9.7 and
the resulting formula

|XnX
>
n | =

p∏
i=1

r2ii.

Note that the first (q − 1) step in the QR-decomposition of the matrices X̃>n =

(X̃
(−q)
n )> and X>n coincide, which implies

|X̃nX̃
>
n | =

q−1∏
i=1

r2ii

p∏
i=q+1

r2ii,q.

Combining these formulas with Cramer’s rule, we conclude

n
(
Î−1
)−1
qq

=
|XnX

>
n |

|X̃nX̃>n |
= r2qq

p∏
i=q+1

r2ii
r2ii,q

.

Recall from the proof of Theorem 9.3.1 (or see Section 9.7 for more details) that(
Î−1
)−1
pp

=
1

n
r2pp =

1

n
b>p P(p− 1)bp,

while it follows from the fact the entries xij of the matrix Xn are i.i.d. random
variables that (

Î−1
)−1
qq

D
=
(
Î−1
)−1
pp
, 1 ≤ q ≤ p,

These quantities can also be written as a quadratic form, but its concrete structure
is unknown so far. The next lemma provides such a representation and specifies the
dependency structure between two diagonal elements. For convenience, we restrict
ourselves to the case q = p− 1.

Lemma 9.6.2 It holds

n
(
Î−1
)−1
p−1,p−1

= b>p−1 (P(p− 2)−Q(p)) bp−1,

where P(p − 2) − Q(p) is a projection matrix of rank n − p + 1 and independent
of bp−1. More precisely, Q(p) denotes the matrix corresponding to the projection to
P(p− 2)bp, that is,

Q(p) =
P(p− 2)bpb

>
p P(p− 2)

b>p P(p− 2)bp
.
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Proof of Lemma 9.6.2. Recall from Lemma 9.6.1 that

n
(
Î−1
)−1
p−1,p−1

=
r2ppr

2
p−1,p−1

b>p P(p− 2)bp
.

Note that P(p− 1)bp = P(p− 2)bp− projep−1
(bp), where the projection of a vector

a ∈ Rn to a vector e ∈ Rn is given by

proje(a) =
(e, a)

(e, e)
e

and (for details, see Section 9.7)

up−1 = P(p− 2)bp−1, ep−1 =
up−1
||up−1||2

.

Thus, we obtain

n
(
Î−1
)−1
p−1,p−1

=b>p−1P(p− 2)bp−1

(
1−

b>p projep−1
(bp)

b>p P(p− 2)bp

)

=b>p−1P(p− 2)bp−1

(
1− b>p

(up−1,bp)

(up−1,up−1)b>p P(p− 2)bp
up−1

)
=b>p−1P(p− 2)bp−1 −

b>p (up−1,bp)up−1

b>p P(p− 2)bp

=b>p−1P(p− 2)bp−1 − b>p−1Q(p)bp−1.

Note that Q(p)2 = Q(p) and P(p− 2)Q(p) = Q(p)P(p− 2) = Q(p). Consequently,
we obtain

(P(p− 2)−Q(p))2 =P(p− 2)2 + Q(p)2 −P(p− 2)Q(p)−Q(p)P(p− 2)

=P(p− 2) + Q(p)− 2Q(p) = P(p− 2)−Q(p).

This implies that P(p−2)−Q(p) is a projection matrix independent of bp−1 of rank

tr (P(p− 2)−Q(p)) = n− p+ 2− 1 = n− p+ 1.

Lemma 9.6.2 helps us to understand the dependence structure between two di-
agonal entries and thus, sets us in the position to prove Theorem 9.4.1, which is
done in the following section.

9.6.2 Proof of Theorem 9.4.1

Since the distribution of Î−1 is invariant under interchanging rows of Xn, we have
using Lemma 9.5.1
(
Σ̂−1

)
q1,q1

(Σ−1)q1,q1
,

(
Σ̂−1

)
q2,q2

(Σ−1)q2,q2

 =

((
Î−1
)
q1,q1

,
(
Î−1
)
q2,q2

)
D
=

((
Î−1
)
p−1,p−1

,
(
Î−1
)
pp

)
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=

((
Î−1
)
p−1,p−1

,
(
Î−1
)
pp

)
.

Thus, we may assume q1 = p− 1 and q = p without loss of generality. Similarly as
in the proof of Theorem 9.3.1, we start by investigating the asymptotic properties
of

Wn =

{
1√

n− p+ 1

n

(
Σ̂−1

)
pp

(Σ−1)pp


−1

− (n− p+ 1)

 ,

1√
n− p+ 1

n

(
Σ̂−1

)
p−1,p−1

(Σ−1)p−1,p−1


−1

− (n− p+ 1)

}>

=

{
1√

n− p+ 1

(
n
(
Î−1
)−1
pp
− (n− p+ 1)

)
,

1√
n− p+ 1

(
n
(
Î−1
)−1
p−1,p−1

− (n− p+ 1)

)}>

=
1√

n− p+ 1

{
b>p P(p− 1)bp − (n− p+ 1),

b>p−1(P(p− 2)−Q(p))bp−1 − (n− p+ 1)

}>
,

where we used Lemma 9.5.1 and Lemma 9.6.2. From now on, the proof is divided
in several steps.

Approximation and MDS

Note that for any rank-one projection matrix Q ∈ Rn×n independent of bp, we have

Var(b>p Qbp) . 1 ∀n ∈ N,

and consequently, by Slutsky’s lemma, it is sufficient to investigate

W (1)
n =

1√
n− p+ 1

{
b>p P(p− 2)bp − (n− p+ 2),b>p−1P(p− 2)bp−1 − (n− p+ 2)

}
= Wn + oP(1).

Throughout the rest of this proof, we denote P(p − 2) = P = (pij)1≤i,j≤n. By
an application of the Cramer-Wold device, we note that it is sufficient to prove a
one-dimensional central limit theorem for

W (2)
n =

1√
n− p+ 1

{
a
(
b>p Pbp − (n− p+ 2)

)
+ b
(
b>p−1Pbp−1 − (n− p+ 2)

)}
, a, b ∈ R,
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in order to ensure that the vector W
(1)
n converges to a two-dimensional normal

distribution. We write

1
√
ρn
W (2)
n =

1√
(n− p+ 1)ρn

n∑
i=1

Wpi,

where

Wpi =a

(
2bpi

i−1∑
k=1

pkibpk + pii
(
b2pi − 1

))
+ b

(
2bp−1,i

i−1∑
k=1

pkibp−1,k + pii
(
b2p−1,i − 1

))
,

ρn =2 +
ν4 − 3

n− p+ 1

n∑
i=1

p2ii.

For p ∈ N, 1 ≤ i ≤ n, let Api denote the σ field generated by {b1, . . . ,bp−2} ∪
{bpk, bp−1,k : 1 ≤ k ≤ i}. Similarly as in the proof of Theorem 9.3.1, one can show
that (Wpi)1≤i≤n forms a martingale difference sequence with respect to the σ-fields
(Api)1≤i≤n for each p ∈ N. In order to apply the central limit theorem given in
Lemma 9.5.3, we need to verify the conditions (9.22) and (9.23).

Calculation of the variance

We begin with a proof of condition (9.22). Note that

1

ρn(n− p+ 1)

n∑
i=1

E[W 2
pi|Ai−1]

=
a2

ρn(n− p+ 1)
E

(2bpi

i−1∑
k=1

pkibpk + pii
(
b2pi − 1

))2 ∣∣∣Ai−1


+
b2

ρn(n− p+ 1)
E

(2bp−1,i

i−1∑
k=1

pkibp−1,k + pii
(
b2p−1,i − 1

))2 ∣∣∣Ai−1


+
2ab

ρn(n− p+ 1)
E

[(
2bp−1,i

i−1∑
k=1

pkibp−1,k + pii
(
b2p−1,i − 1

))

×

(
2bpi

i−1∑
k=1

pkibpk + pii
(
b2pi − 1

)) ∣∣∣Ai−1]

=
a2

ρn(n− p+ 1)
E

(2bpi

i−1∑
k=1

pkibpk + pii
(
b2pi − 1

))2 ∣∣∣Ai−1


+
b2

ρn(n− p+ 1)
E

(2bp−1,i

i−1∑
k=1

pkibp−1,k + pii
(
b2p−1,i − 1

))2 ∣∣∣Ai−1


=a2 + b2 + oP(1), n→∞,

where we used (9.10) from the proof of Theorem 9.3.1.
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Verification of the Lindeberg-type condition

For a proof of condition (9.23), we use the results from Step 2.2 in the proof of
Theorem 9.3.1 and obtain

1

ρn(n− p+ 1)

n∑
i=1

E
[
W 2
piI{|Wpi|≥δ

√
(n−p+1)ρn}

]
≤ 1

(n− p+ 1)2ρ2nδ
2

n∑
i=1

E
[
W 4
pi

]
.

a4

(n− p+ 1)2ρ2nδ
2

n∑
i=1

E

(2bpi

i−1∑
k=1

pkibpk + pii
(
b2pi − 1

))4


+
b4

(n− p+ 1)2ρ2nδ
2

n∑
i=1

E

(2bp−1,i

i−1∑
k=1

pkibp−1,k + pii
(
b2p−1,i − 1

))4
 = o(1), n→∞.

Conclusion via delta method

Summarizing the steps above, we obtain from Lemma 9.5.3

Wn
D→ N2(0, ρI2), n→∞.

By an application of the multivariate delta method, we have

(Zn,p, Zn,p−1)
> =

{√
n− p+ 1

(
n− p+ 1

b>p P(p− 1)bp
− 1

)
,

√
n− p+ 1

(
n− p+ 1

b>p−1(P(p− 2)−Q(p))bp−1
− 1

)}>
D→N2(0, ρI2), n→∞.

9.7 Details on the QR-decomposition of X>n

In this section, we give more details on the QR-decomposition of the matrix X>n
(compare Section 2 in Wang et al., 2018) and provide an explicit representation of
the diagonal elements of R as a quadratic form in the rows of Xn.
To begin with, we describe the QR-decomposition of a general full-column rank
matrix A = (a1, . . . , ap) ∈ Rn×p by applying the Gram-Schmidt procedure to the
vectors a1, . . . , ap. Recall the definition of the projection of a vector a ∈ Rn on a
vector e ∈ Rn, e 6= 0, is given by

proje(a) =
(e, a)

(e, e)
e.
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It holds

u1 = a1, e1 =
u1

‖u1‖
,

u2 = a2 − proju1
a2, e2 =

u2

‖u2‖
,

u3 = a3 − proju1
a3 − proju2

a3, e3 =
u3

‖u3‖
,

...
...

un = an −
n−1∑
j=1

projuj an, en =
un
‖un‖

.

Rearranging these equations, we may write A = QR, where Q = (e1, . . . , ep) ∈ Rn×p

denotes a matrix with orthonormal columns satisfying Q>Q = I and R ∈ Rp×p is
an upper triangular matrix with entries rij = (ei, aj) for i ≤ j and rij = 0 for i > j,
i, j ∈ {1, . . . , p}.

In order to ensure formal correctness of the QR decomposition for the matrix
X>n = (b1, . . . ,bp), we note that the matrix X>n has full column rank since we
assumed that each xij follows a continuous distribution for 1 ≤ i ≤ p, 1 ≤ j ≤ n.
Performing the QR decomposition for the special choice A = X>n = (b1, . . . ,bp), we
get

X>n = QR,

where Q = (e1, . . . , ep) ∈ Rn×p denotes a matrix with orthonormal columns satisfy-
ing Q>Q = I and R ∈ Rp×p is an upper triangular matrix with entries rij = (ei,bj)
for i ≤ j and rij = 0 for i > j, i, j ∈ {1, . . . , p}. Using the definitions r2qq = (ei,bi)

2

for 1 ≤ q ≤ p and P(0) = I, we have

r211 = (e1,b1)
2 = ||b1||22 = b>1 P(0)b1,

and for 2 ≤ q ≤ p

r2qq = (eq,bq)
2 =

(
u>q bq

||uq||2

)2

=

(
b>q P(q − 1)bq

||P(q − 1)bq||2

)2

= b>q P(q − 1)bq, (9.25)

where the projection matrix P(q − 1) is defined in (9.8) and satisfies P(q − 1)2 =
P(q − 1).



List of symbols

| · | determinant of a matrix or absolute value of a complex number

|| · || spectral norm of a matrix

0 vector filled with zeros of appropriate dimension

a . b a is smaller than b up to a positive constant or a = b

a ∨ b maximum of a and b

a ∧ b minimum of a and b

Bn,t sequential sample covariance matrix

X 2
d chi-squared distribution with d degrees of freedom

C set of complex numbers

C+ set of complex numbers with positive imaginary part
D→ weak convergence (convergence in distribution) in Rd

 weak convergence in a metric space

FA empirical spectral distribution of a quadratic matrix A with real eigenvalues

F y,σ2
Marčenko–Pastur law with index y and scale parameter σ2

F y Marčenko–Pastur law with index y and scale parameter σ2 = 1

F y,H generalized Marčenko–Pastur law for y > 0 and a distribution H

ΓF support of a c.d.f. F

H limiting spectral distribution of Tn

I identity matrix

I indicator function

Im(·) imaginary part of a complex number

λ1(·) largest eigenvalue of a (p× p) Hermitian matrix

λp(·) smallest eigenvalue of a (p× p) Hermitian matrix
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`∞(I) space of bounded functions mapping from I ∈ {[0, 1], [t0, 1]} into R or C

N set of all positive integers

n sample size

N (µ,Σ) multivariate normal distribution with mean vector µ and covariance

matrix Σ

p dimension

P, P(·) projection matrix

R set of real numbers

Re(·) real part of a complex number

sF Stieltjes transform of a measure F

Tn,T population covariance matrix

(X(f, t)) Gaussian process defined in Theorem 3.2.1

Xn (p× n) data matrix

y limit of the dimension-to-sample-size ratio
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