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Chapter 1

Introduction

This chapter consists of two sections. The first section gives an overview of the field of

asymptotic geometric analysis, its origin, objects of study, and methodological toolbox.

Specifically, the ideas of large deviations theory and sharp large deviations theory are

briefly outlined, as they motivate several of the problems tackled within this thesis.

Lastly, the primary object of study of the present work, the `np -ball, shall be defined

and discussed with respect to its overall relevance to the field of research, and some

problems with respect to it are presented. The second section provides a guideline of

this thesis, outlining the contents of each chapter and putting them into their respective

research contexts, that is, pointing out the underlying publications they are based on

and the relevant research preceding these results.

1.1 General introduction

In n-dimensional Euclidean space there is a one-to-one correspondence between norms

and symmetric convex bodies. Any given norm ‖ · ‖ on Rn defines a symmetric convex

body in the form of its unit ball

B‖·‖ := {x ∈ Rn : ‖x‖ ≤ 1}

and, vice versa, a symmetric convex body K ⊂ Rn induces a norm ‖ · ‖K on Rn via the

Minkowski functional

‖x‖K := inf {r ∈ [0,∞) : x ∈ rK} , x ∈ Rn, (1.1)

with respect to which K itself is the unit ball B‖·‖K . We can thus see how the study of

norms (or normed spaces) and symmetric convex bodies are closely related.
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1.1. GENERAL INTRODUCTION

The study of convex bodies in high dimensions, known today as asymptotic geometric

analysis, has arisen from the local theory of Banach spaces, which aimed at analyzing

infinite-dimensional normed spaces via their local substructures, such as their unit balls.

Although there is some debate on what exact problems and perspectives are at the core

of the local theory of Banach spaces (see [96]), the characterization best befitting the

connection to asymptotic geometric analysis seems to be the one of Lindenstrauss and

Milman [86, p. 1151]:

The local theory of Banach spaces deals with convex bodies in Rn where n is finite but

large. The main theme of the theory is a quantitative study of the structure of such sets

and asymptotic estimates of various parameters associated with them as n→∞. [. . .]

The name “local theory” is applied to two somewhat different topics:

1. The quantitative study of n-dimensional normed spaces as n→∞.

2. The relation of the structure of an infinite-dimensional space and its finite-

dimensional subspaces.

Given an infinite-dimensional Banach space, local structures like its unit ball are natu-

rally of infinite dimension as well, and since working in infinite dimensions is inherently

more difficult than working in the finite-dimensional setting, it is a fruitful approach

to instead study the finite-dimensional counterparts of such structures asymptotically

in the limit of the dimension. This was the motivating impulse giving rise to the field

of asymptotic geometric analysis and has yielded some highly relevant results, such

as solutions to Banachs’ hyperplane problem by Gowers in [40] or the unconditional

basic sequence problem by Gowers and Maurey in [41] (see [90] for a broader context

on these results).

Despite having its origin in the realm of functional analysis, the field has since estab-

lished itself in its own right, also considering problems beyond the study of centrally

symmetric convex bodies that occur naturally as the unit balls of Banach spaces.

High-dimensional convexity furthermore has a large number of applications, e.g., in

signal processing, such as compressed sensing (see [20, 34]) and sparse signal recovery

(see [114, Chapter 10]), or random information and approximation theory (see, e.g.,

[49, 50, 51, 83]). Since a discussion of the many applications of high-dimensional con-

vexity is beyond the scope of this thesis, we refer to the excellent book of Vershynin

[114] for a more comprehensive look into where its concepts are used in a wide variety

of data-driven fields of work and study.
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CHAPTER 1. INTRODUCTION

In high dimensions convex bodies exhibit certain regularities, such as volume concen-

tration phenomena (see, e.g., [18, 45, 46]), which make it highly useful to approach

them from a probabilistic perspective. As pointed out in [9], it might seem counter-

intuitive to analyze something exhibiting regularities from a probabilistic perspective,

as probability concerns itself with studying the nature of irregularity, i.e., randomness,

of given quantities. But as with well-known limit theorems from probability, such

as the law of large numbers and the central limit theorem (CLT), with large sample

sizes (and analogously – with high dimensionality) random objects exhibit interesting

patterns well characterized in the language of probability and vice versa. Thus, one

can view asymptotic geometric analysis as being located somewhat at the intersection

between geometry, functional analysis, and probability theory.

Many results analogous to those from classic probability have been found for high-

dimensional convex sets, one of the most notable being the central limit theorem for

convex bodies shown by Klartag [77, 78] based on the work of Anttila, Ball and Perissi-

naki [8]. He showed that for fixed k ∈ N the k-dimensional marginal distributions of

isotropic convex bodies in high dimensions are approximately Gaussian.

This central limit theorem was actually shown in a much more general setting for

isotropic log-concave measures on Rn, and uniform distributions on convex bodies are

merely a special case for such measures. However, while the expansion of results from

convex bodies to log-concave measures is an interesting area of research, sometimes

referred to as “Geometrization of Probability” (see [87, 89]), this thesis will only focus

on convex bodies in high dimensions.

The aforementioned concentration phenomena run against our understanding of geo-

metric objects from three-dimensional space and are, on the contrary, often beauti-

fully counterintuitive. To illustrate this, let us give a very classic example of high-

dimensional concentration of mass by considering the volume of the cube [−1, 1]n and

standard unit ball Bn2 with respect to the Euclidean norm as the dimension tends to

infinity. One can see directly that Bn2 is the inball of [−1, 1]n, intersecting the cube at

the midpoints of all its facets. Calculating the volume of both [−1, 1]n and Bn2 yields

that

voln([−1, 1]n) = 2n and voln(Bn2 ) =
πn/2

Γ
(
1 + n

2

) ,
with Γ(·) denoting the Gamma function. Thus, we can see that voln([−1, 1]n) tends to

infinity in n, and applying Stirling’s formula for the Gamma function (see (2.4)) yields

3



1.1. GENERAL INTRODUCTION

that voln(Bn2 ) behaves like n−n/2, that is, tends to zero in n. So despite Bn2 intersecting

all facets of [−1, 1]n at their midpoints and obviously being convex, the volume it

encloses tends to zero with increasing dimension n, while that of the cube tends to

infinity. The conclusion thus has to be that almost all of the volume of the cube is

concentrated “in the corners”, that is, outside of the ball. Also, in relationship to the

cube, the ball tends to “disappear” in a volumetric sense. The fact that the volume,

i.e., the Lebesgue measure, which should yield a homogeneous distribution of mass,

exhibits such concentration phenomena in high dimensions is highly counterintuitive.

Figure 1.1 aims to illustrate how this volumetric relationship of [−1, 1]n and Bn2 in

high dimensions could be thought of visually, that is, the volume of Bn2 tending to

zero, specifically in relation to [−1, 1]n, contrasted with the classic way we think of the

geometric relationship of the cube and its inball.

Figure 1.1: Two-dimensional representation of the geometric (left) and the
volumetric (right) relationship between [−1, 1]n and Bn2 in high dimensions.

To add even more counterintuitive behaviour, Klartag showed the central limit theorem

for high-dimensional isotropic convex bodies in [77, 78] by proving a so-called thin-shell

concentration, i.e., that the Euclidean norm of uniform random vectors in isotropic

convex bodies in high dimensions heavily concentrates in a thin shell of radius
√
n

(see Figure 1.2). (Note that isotropy – or “being in isotropic position” – of a convex

body means that it has unit volume, its barycenter lies at the origin, and its inertia

matrix is a multiple of the identity matrix). So merely thinking that volume generally

concentrates around the boundary or in the “corners” of a convex body, as the previous

example might suggest, would not be correct.

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Volumetric representation for the concentration of mass (red)
within a thin shell of radius

√
n in an isotropic convex body in high dimensions.

Throughout this thesis we will primarily be analyzing the unit balls of the finite-

dimensional counterparts of the sequence space `p, p ∈ (0,∞], where `p is defined as

the space of absolutely p-summable sequences in R, i.e.,

`p :=
{

(xn)n∈N ∈ RN : ‖(xn)n∈N‖`p <∞
}
.

with the `p-norm ‖(xn)n∈N‖`p defined as

‖(xn)n∈N‖`p :=


(
∞∑
n=1

|xn|p
)1/p

: p <∞

sup
n∈N
{|xn|} : p =∞,

(which for p ∈ (0, 1) is only a quasi-norm, as the triangle inequality does not hold).

The corresponding unit ball with respect to the `p-norm is thus

B`p :=
{

(xn)n∈N ∈ RN : ‖(xn)n∈N‖`p ≤ 1
}
,

which is infinite-dimensional, just as `p itself. Equipped with this norm, for p ∈ [1,∞],

`p is a Banach space and is of great interest from the perspective of functional analysis,

both for its own sake and its close connection to the omnipresent Lp-space, that is, the

space of absolutely p-integrable real-valued functions, defined as

Lp :=
{
f : R→ R : ‖f‖Lp <∞

}
, (1.2)

with the Lp-norm ‖f‖Lp defined as

5



1.1. GENERAL INTRODUCTION

‖f‖Lp :=



∫
R

|f(x)|p dx

1/p

: p <∞

ess sup
x∈R

|f(x)| : p =∞,

(1.3)

with ess supx∈R |f(x)| denoting the essential supremum. (Note, that this again only

denotes a norm for p ∈ [1,∞] and only on the class of functions that differ on sets

of positive measure.) This connection is due to the fact that `p essentially forms

a discretization of Lp by considering the counting measure instead of the Lebesgue

measure. Hence, as previously explained, analyzing the finite-dimensional analogues

of `p as the dimension tends to infinity is a relevant and promising line of inquiry. For

p ∈ (0,∞], n ∈ N, and x = (x1, . . . , xn) ∈ Rn let us define the `np -norm on Rn as

‖x‖p :=


(

n∑
i=1

|xi|p
)1/p

: p <∞

max{|x1|, . . . , |xn|} : p =∞,

(again, only defining a quasi-norm for p ∈ (0, 1)). Thus, Rn equipped with the `np -

(quasi)-norm is the finite-dimensional counterpart to `p. We then define

Bnp := {x ∈ Rn : ‖x‖p ≤ 1} and Sn−1
p := {x ∈ Rn : ‖x‖p = 1}

to be the unit `np -ball and unit `np -sphere, respectively (sometimes simply referred to as

the p-ball and the p-sphere).

Another reason why we will be considering Bnp and Sn−1
p specifically, besides their

connection to the sequence space `p, is that their Minkowski functional ‖ · ‖Bnp = ‖ · ‖p
has a convenient form (see Remark 2.4.8), which allows us to construct random vectors

from i.i.d. random variables that are equal in distribution to random vectors from Bnp
and Sn−1

p with a multitude of distributions. This, in turn, makes many functionals of

random vectors in Bnp and Sn−1
p accessible for calculations. This form of reconstruction

of random vectors from Bnp and Sn−1
p via i.i.d. random vectors is what we will refer to

as probabilistic representation and it will be one of the main tools within this thesis

and will be explained in greater detail in Section 2.4.1. So overall, we consider `np -balls

in high dimensions because they are both relevant and accessible.

A detailed overview of the results for `np -balls contained within this thesis will be given

in Section 1.2, however we shall give a rough outline of some of the quantities generally

of interest when considering `np -balls, focusing specifically on those quantities at the

center of this work with the goal of introducing and motivating them.

6



CHAPTER 1. INTRODUCTION

The first canonical objects of study are volume distributions. As we have seen in the

previous example regarding the volumes of the ball and the cube, which happen to be

`np -balls for p = 2 and p = ∞, respectively, the volumetric behaviour of Bnp is by no

means equal for all values of p. The volume of `np -balls was shown by Dirichlet in [32]

to be

voln(Bnp ) =

(
2 Γ
(

1 + 1
p

))n
Γ
(

1 + n
p

) .

However, we also saw in the above example how not only considering the volumes of Bn2
and Bn∞ and their limits, but also their geometric relationship, i.e., Bn2 being the inball

of Bn∞, gave us some understanding where the mass of Bn∞ is concentrated. Thus,

a relevant question to ask about `np -balls is regarding their volumes relative to each

other, or rather, their intersection volume, as the dimension tends to infinity. (Note

that insight on the volume distribution within `np -balls can be gained via different

approaches as well, may it be by considering the marginals of uniform distributions,

showing thin-shell concentrations etc.). The intersection volume of different `np -balls

will be considered in Chapter 5.

Another natural quantity of interest is the projection behaviour of `np -balls. That is,

given a sequence of random vectors X(n) with certain distributions on Bnp or Sn−1
p and

a sequence of random subspaces E(n), one could ask for the properties of the projection

point PEX of X(n) onto E(n), i.e., its distribution or its norm ‖PEX‖, as in Figure 1.3.

Random projections of distributions on `np -balls will be the topic of Chapter 4.

Figure 1.3: Projection PEX of a random vector X(n) ∈ Bnp onto a random

(n− 1)-dimensional subspace E(n) and its norm ‖PEX‖ for n = 3 and p > 2.

7



1.1. GENERAL INTRODUCTION

The last quantity of interest we want to mention is the empirical measure with re-

spect to a random vector within Bnp or Sn−1
p . For such a random vector X(n) =(

X
(n)
1 , . . . , X

(n)
n

)
the empirical measure is a random measure on R, defined as

νn :=
1

n

n∑
i=1

δ
X

(n)
i
,

where δx denotes the Dirac measure for some x ∈ R. Understanding the behaviour

of the empirical measure gives insight into the mean behaviour of the coordinates of

X(n) and is more accessible for calculations when considering functionals of the form
1
n

∑n
i=1 f

(
X

(n)
i

)
for suitable f . The behaviour of the empirical measures with respect

to the coordinates of random vectors from Bnp will be examined in Chapter 3.

These are some of the quantities whose asymptotics are of interest and for which one

would like to obtain concentration results such as large deviation principles (LDPs),

which will be one of the main focus points of this thesis.

The field of large deviations has only been introduced into asymptotic geometric

analysis fairly recently by Gantert, Kim, and Ramanan [36] in 2017, who derived

an LDP for projections of `np -balls onto one-dimensional subspaces. This has since

spawned a wave of large deviation results in asymptotic geometric analysis (see, e.g.,

[4, 5, 35, 61, 62, 65, 69, 70, 71, 72, 73, 74, 75, 76, 85]), among which were the results

contained in this thesis. While their concrete research context will be given in Section

1.2 and a more detailed look into large deviations theory provided in Section 2.3, let

us give a rough sketch of the basic ideas in order to motivate the results in this work

and conceptually contrast them with the sharp large deviation results also contained

herein, whose details and background will be given in Section 5.1.

Generally speaking, the field of large deviations theory concerns itself with the study

of rare events, that is, deviations of sequences of random variables (Xn)n∈N from their

expectation beyond the Gaussian scale (of course, the theory has quite some more

depth to it, as it not only considers sequences of random variables, but also general

families of probability distributions (see Definition 2.3.2), but for now we shall stick

to a more simplified perspective). To be more precise, by large deviations we mean

deviations of order at least n, whereas deviations of order between
√
n and n are

referred to as moderate deviations Take the simple case of a sequence of real-valued

random variables (Xn)n∈N that concentrate around their expectation in n ∈ N (e.g.,

the empirical average of i.i.d. random variables). The goal of large deviations theory is

8



CHAPTER 1. INTRODUCTION

to characterize how the probability of deviations of order n decays, that is, to give two

functions s : N→ (0,∞) and IX : R→ [0,∞), called the speed and the rate function,

respectively, such that for ε > 0

lim
n→∞

1

s(n)
logP

(
X(n) − E

[
X(n)

]
≥ nε

)
= −IX(ε). (1.4)

This is essentially a special case of the definition of a large deviation principle (see

Definition 2.3.2). In other words, we want to give two functions, such that

P
(
X(n) − E

[
X(n)

]
≥ nε

)
= e−s(n)[IX(ε)+o(1)], (1.5)

where o(1) denotes a sequence that tends to zero as n→∞. This is the type of result

we would like to derive for functionals of random vectors in convex bodies, specifically

`np -balls, as the dimension tends to infinity, since in the setting of high-dimensional

convex geometry the sequence parameter of (Xn)n∈N coincides with the dimension of

the ambient space.

While (1.5) nicely illustrates how deviation probabilities are characterized, (1.4) under-

lines that at the core of large deviations theory are asymptotic results on a logarithmic

scale. While those are surely useful, having similar results on a non-logarithmic scale

would be preferable, as one can gain much more accurate probability estimates for

deviation events from them. If we wanted to get a non-logarithmically scaled prob-

ability estimate via a large deviation result such as (1.5), we would have to contend

with an unknown prefactor e−s(n)o(1). Hence, one would be interested additionally in

characterizing that prefactor, i.e., finding a cX : N× R→ [0,∞) such that

P
(
X(n) > z

)
= cX(n, z) e−s(n)IX(z)(1 + o(1)).

for z > E[X(n)]. Note that the error term in the above is no longer contained in the

exponent, hence the result is not logarithmically scaled. Characterizing the decay of

large deviation probabilities on a non-logarithmic scale is what we refer to as sharp large

deviations theory. It was introduced into asymptotic geometric analysis very recently

by Liao and Ramanan in [85] in 2020 and promises to be a fruitful line of inquiry

for future work. Besides interests from the purely mathematical perspective, the non-

logarithmic nature of the results, i.e., their asymptotic sharpness, is very useful for

applications like importance sampling algorithms, that is, generating samples of very

rare events, where classic Monte-Carlo methods become inefficient (see [85, Section 3]).

9



1.2. GUIDELINE

1.2 Guideline

This section will outline the specific results contained in this thesis and point out their

respective research context. The present thesis can be thematically split into two parts

with different overarching approaches: The first deals with problems from the theory

of large deviations and is comprised of Chapter 3 and Chapter 4, while the second part

addresses problems from sharp large deviations theory and is contained in Chapter 5.

Chapter 2: In this introductory chapter, we will define the concepts and notation we

will need throughout this work. This will encompass presenting some basic notation and

definitions from probability theory, among other things introducing the p-generalized

Gaussian distributions in Section 2.2, which make up the core building block of the

probabilistic representations integral to all of the results in this thesis. Section 2.3 will

then explain the basic notions of large deviations and present some essential methods

and tools of large deviations theory. The chapter will then conclude with Section

2.4, defining the relevant probability distributions on `np -balls, such as the uniform

distribution Un,p on Bnp and the so-called cone probability measure Cn,p on Sn−1
p , which

assigns to a set on Sn−1
p the probability given by the volume of the cone it encloses

with the origin relative to the volume of Bnp (see (2.12)). Also, some well-established

results for `np -balls we will need throughout this thesis are presented.

Let us provide some context by mentioning some results for `np -balls that have been

shown. For the Euclidean sphere Sn−1
2 the Poincaré-Maxwell-Borel lemma states that

the joint distribution of any fixed number of k coordinates of a random vector with

distribution Cn,2 is approximately standard Gaussian (see [31]). This was extended to

Sn−1
p for any p ∈ [1,∞] by Rachev and Rüschendorf [99] and Naor and Romik [93].

Rachev and Rüschendorf [99] and Schechtman and Zinn [106] then also provided a

probabilistic representation for random vectors with distributions Un,p and Cn,p. For

p ∈ (0,∞] this was generalized by Barthe, Guédon, Mendelson and Naor [13], who

gave a probabilistic representation for a class of “mixtures” of Cn,p and Un,p. For a

Borel probability measure W on [0,∞) they defined the class of distributions

Pn,p,W := W({0})Cn,p + ΨUn,p

on Bnp , where Ψ is an appropriate p-radial density that depends on W, and provided

a convenient representation of Pn,p,W via a random vector of p-generalized Gaussians.

The choice of W determines how exactly the cone probability measure and the uniform

distribution are “mixed”. This class of measures and its corresponding representations

10



CHAPTER 1. INTRODUCTION

have gained considerable interest in asymptotic geometric analysis and were used in

a variety of applications (see [4, 5, 12, 36, 92, 94, 109], to name just a few). These

probabilistic representation results will be presented in Section 2.4, followed by a brief

discussion on polar integration in the spirit of [98, Section 3.2]. Therein we will both

establish useful polar integration formulae and reflect on why the results within this

thesis and the surrounding research context focus specifically on `np -balls.

Chapter 3: The chapter begins by introducing a class of distributions on `np -balls

of the following form: For some suitable homogeneous function f : Rn → [0,∞) we

construct weighted versions Un,p,f and Cn,p,f of the uniform distribution Un,p and the

cone probability measure Cn,p in the sense that their densities are weighted by f . We

accordingly construct a weighted analogue to Pn,p,W in the form of

Pn,p,W,f := W({0})Cn,p,f + ΨUn,p,f .

For all of these distributions probabilistic representations results via p-generalized

Gaussian random variables in the spirit of [13] are derived, which also need to be

weighted accordingly via the function f . These weighted p-radial distributions will be

of great use when considering p-balls in other spaces than standard Euclidean space.

In this chapter, we study concentration phenomena on p-balls in both Euclidean space

and within finite-dimensional Schatten trace classes Snp in matrix space. Generally, for

a given p ∈ (0,∞], the Schatten trace class Sp is the Banach space of compact linear

operators between two Hilbert spaces whose singular values form a sequence within

the sequence space `p. We will, however, focus on the finite-dimensional Schatten trace

classes Snp , i.e., the spaces of (n × n) matrices (with real, complex or quaternionic

entries) whose singular values form a vector in `np (that is, Rn with the `np -norm).

Additionally, we will also consider their self-adjoint subclasses, that is, the spaces of

self-adjoint (n×n) matrices whose eigenvalues also form a vector in `np . The unit balls

in these Schatten trace classes Snp are what we will refer to as matrix p-balls.

There has been a rising interest in the study of these Schatten trace classes and their

unit balls in recent years. For example, Guédon and Paouris [47] provided concentra-

tion inequalities for points uniformly distributed within the matrix p-ball. Moreover,

König, Meyer, and Pajor [80] showed that the isotropic constants of matrix p-balls

(for p ∈ [1,∞]) are bounded. Barthe and Cordero-Erausquin [11] derived variance

estimates, Radke and Vritsiou [100] proved the thin-shell conjecture, and Vritsiou [115]

showed the variance conjecture for the operator norm in Snp . Hinrichs, Prochno and

Vyb́ıral [52, 53] derived optimal bounds for the entropy numbers and sharp estimates
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for the Gelfand numbers of natural embeddings of Snp and Prochno and Strzelecki [97]

also considered the approximation numbers of such embeddings and studied their re-

lationship to the Gelfand and Kolmogorov numbers. Kabluchko, Prochno and Thäle

[63, 64] gave the exact asymptotic volumes and volume ratios of matrix p-balls and

studied their intersection volumes. Also, Kabluchko, Prochno and Thäle [62, 63] stud-

ied the eigenvalue distribution as well as singular value distribution of random matrices

distributed according to the cone probability measure and the uniform distribution in

matrix p-balls. It is a well-known fact from random matrix theory that eigenvalues

of self-adjoint random matrices behave, figuratively speaking, like particles of a gas,

insofar as they “repell each other”, which is why eigenvalue distributions of random

matrices are often used in physics to model particle interactions of gasses. This means

mathematically that the distributions of eigenvalues contain a factor that vanishes if

two eigenvalues are close to each other, thereby allocating less and less probability to

this event. The same holds for singular values as well. Hence, eigen-/singular values

exhibit a tendency to spread themselves out evenly and do not have accumulation

points. Following a line of argument in the spirit of [104] in combination with an

approach from log-potential theory, Kabluchko, Prochno, and Thäle showed that for

such random matrices the vector of the eigen-/singular values has respective distribu-

tion Cn,p,f and Un,p,f on the Euclidean `np -ball Bnp , with f being the suitable repulsion

factor between the eigen-/singular values of the random matrices (see, e.g., [6]).

The aim of this chapter is to put this last result into a wider context by investigating the

eigenvalue and singular value distribution of random matrices that have the analogue

distribution to Pn,p,W on matrix p-balls. Using similar arguments as [62, 63], we

will show that the vector of eigenvalues of such a random matrix also is p-radially

distributed according to Pn,p,W,f on Bnp , with f being the appropriate repulsion factor

again, and the same holds for the vector of singular values on the non-negative segment

of Bnp , denoted as Bnp,+. This connection paves the way to approach concentration

phenomena on matrix p-balls via those on Bnp with appropriately weighted distributions.

As an application of the connection just described, we study the large deviation be-

haviours of random elements in Euclidean and matrix p-balls. In case of Euclidean

`np -balls, the results of Kim and Ramanan [74] are of particular interest to us. For

a random vector with distribution Cn,p they gave a large deviation principle for the

empirical measure of its coordinates. Their findings are in the spirit of the theorem of

Sanov [29, Theorem 2.1.10], as the corresponding rate function is given by the relative

entropy (see (3.19)) perturbed by a p-th moment penalty. We want to expand on their
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results and give a large deviation principle for the empirical measure of a random vec-

tor with distribution Pn,p,W. We will show that, even though the distribution Pn,p,W

is highly dependent on the choice of W, for certain classes of W the corresponding

rate function will be universal to all Pn,p,W. The results of Kim and Ramanan have

been further extended by Frühwirth and Prochno [35], who derived a Sanov-type large

deviation principle for the empirical measure of random vectors uniformly distributed

in Orlicz balls, which are a generalization of `np -balls (see Remark 2.4.8).

In case of the matrix p-ball, an analogue result to that of Kim and Ramanan [74] has

been given by Kabluchko, Prochno and Thäle [62]. They derived a large deviation

principle for the empirical spectral measure, i.e., the empirical measure with respect to

the eigenvalues or singular values of random matrices that are distributed according to

the uniform distribution or the cone probability measure on the matrix p-ball. We will

derive similar results for the analogue of Pn,p,W on matrix p-balls and show a similar

universality of the rate function. To do so, we will utilize the probabilistic representa-

tions for the eigenvalue and singular value distributions we derived beforehand.

Summarizing, the overall goals of this chapter are threefold. First, we want to expand

the results from [13] to weighted p-radial distributions Pn,p,W,f . This will be done in

Section 3.2. Second, we want to show that for self-adjoint and non-self-adjoint random

matrices, which are distributed according to the analogue of Pn,p,W on matrix p-balls,

the corresponding eigenvalue and singular value distributions are given by Pn,p,W,f on

Bnp (and its non-negative analogue on Bnp,+), with f being the appropriate repulsion

factor. This will be done in Section 3.3. And third, Sections 3.4 and 3.5 will then use

the previous results to derive several large deviation principles for Euclidean and matrix

p-balls, respectively. We will prove a large deviation principle for the empirical measure

of the coordinates of a random vector with distribution Pn,p,W on Bnp . Then we will

show large deviation principles for the empirical spectral measures (for eigenvalues and

singular values) of random matrices distributed according to the analogue of Pn,p,W

on matrix p-balls by using the representations of the eigenvalue and singular value

distributions as Pn,p,W,f from Section 3.3 for suitable choices of f . The chapter will,

however, begin in Section 3.1 by establishing the necessary notation and basic concepts.

Chapter 3 is partly based on the paper

� Kaufmann, T., and Thäle, C. [72]: Weighted p-radial distributions on Eu-

clidean and matrix p-balls with applications to large deviations. Journal of Math-

ematical Analysis and Applications, (2022).
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Chapter 4: In this chapter, we consider products of uniform random variables from

the Stiefel manifold of orthonormal k-frames in Rn with k ≤ n and random vectors

from the `np -ball Bnp with p-radial distributions Pn,p,W. The distribution of this product

geometrically corresponds to the projection of the distributions Pn,p,W on Bnp onto a

random k-dimensional subspace. We derive large deviation principles on the space of

probability measures on Rk for sequences of such projections.

The setting of this chapter is a generalization of the one initiated by Kabluchko and

Prochno [59] and can be described as follows. For k ≤ n, the Stiefel manifold Vn,k is

the set of all orthonormal k-frames in Rn, i. e., the set of all k-tuples of orthonormal

vectors v1, . . . , vk in Rn. Arranging these vectors into a (k × n) matrix V with rows

vT1 , . . . , v
T
k , we have the identification

Vn,k =
{
V ∈ Rk×n : V V T = Ik

}
,

where Ik denotes the (k × k) identity matrix. We denote by Un,k,V the uniform dis-

tribution on Vn,k and by Vn,k the corresponding random variable. For random vectors

X(n) taking values in Rn we may regard V ∈ Vn,k as a linear map V : Rn → Rk and

study the distribution of the vectors V X(n) ∈ Rk, which we denote by

µV X(n)(A) := P
(
V X(n) ∈ A

)
for any Borel set A ⊆ Rk. In addition, we may also choose Vn,k ∈ Vn,k at random

according to Un,k,V. In this case, the distribution of Vn,kX
(n), which we denote by

µVn,kX(n)(A) := P
(
Vn,kX

(n) ∈ A
)
,

is a random probability measure on Rk, that is, a random variable taking values in

the space M1(Rk) of probability measures on Rk, that is equipped with the topology

of weak convergence. This can geometrically be interpreted as the projection of the

distribution of the random vector X(n) onto a uniform random k-dimensional subspace.

We are interested in large deviation principles for the random probability measures

µVn,kX(n) , where X(n) ∈ Bnp with distribution Pn,p,W for some Borel probability mea-

sure W on [0,∞). Kabluchko and Prochno [59] gave very general LDPs for random

matrices in the orthogonal group and the Stiefel manifold, and showed an LDP for

k-dimensional projections of the special case of the uniform distribution Un,p on Bnp
as an application. Based on [59], the results of this chapter largely extend the set of

projected distributions for which such an LDP is shown from the uniform distribution

Un,p to the aforementioned class of p-radial distributions Pn,p,W.

14



CHAPTER 1. INTRODUCTION

In particular, we will see that the large deviation behaviour observed by Kabluchko

and Prochno [59] is universal for a large class of probability measures on Bnp . Moreover,

we shall describe geometrically motivated distributions on Bnp for which the LDP needs

a suitable modification, which we also provide.

We should also delineate this chapter’s content from the results shown by Kim and

Ramanan in [76, Theorems 2.4 & 2.6], who have shown, among other results, LDPs

for projections of uniform random vectors in Bnp onto uniform random k-dimensional

subspaces. By the same arguments as put forth in [59], we note that while the settings

are quite similar, the key difference is in the object of study. In [76] it is the projection

point itself, hence yielding an LDP on Rk, whereas in both [59] and this chapter the

object of study is the projected distribution on Rk, thus the main result yields an LDP

on the space M1(Rk) of probability measures on Rk.

The chapter will start off in Section 4.1 by briefly listing the notation and background

material we will need to formulate the central theorems, which in turn are presented

in Section 4.2. Section 4.3 will then contain their respective proofs, which can be

delineated into three steps.

Firstly, we use the probabilistic representation for random vectors in Bnp with distri-

bution Pn,p,W to reformulate the target random measure µVn,kX(n) and show that this

measure behaves asymptotically like a different, more simple measure µ̃Vn,kX(n) . This

is done by proving that their distance in the Lévy-Prokhorov metric (see (4.4)) tends

to zero for all V ∈ Vn,k. Secondly, it is shown that this asymptotic vanishing of the

Lévy-Prokhorov metric between µVn,kX(n) and the simpler measure µ̃Vn,kX(n) is sufficient

to infer a weak LDP for µVn,kX(n) , if one is given for µ̃Vn,kX(n) . Lastly, one then shows

that every µVn,kX(n) lies in a closed and compact subset of M1(Rk), where the notion

of a weak LDP coincides with that of a full LDP. Thus, one can infer a full LDP for

µVn,kX(n) by carrying over the LDP for µ̃Vn,kX(n) established in [59] in the manner just

described.

Chapter 4 is partly based on the paper

� Kaufmann, T., Sambale, H., and Thäle, C. [70]: Large deviations for

uniform projections of p-radial distributions on `np -balls. arXiv:2203.00476 (2022).
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Chapter 5: This final chapter turns the focus from results in the realm of large

deviations theory to results from sharp large deviations (SLD) theory. It has the

distinct advantage over classical large deviations theory that it gives tail asymptotics

on a non-logarithmic scale and can provide concrete and asymptotically exact tail

estimates for specific n ∈ N, which makes them significantly more useful for practical

applications. Moreover, a lot of idiosyncrasies of the underlying distributions, that are

drowned out on the LDP scale, are still visible on the SLD scale, thus giving a deeper

understanding of the geometric interpretation of the quantities involved.

The chapter will begin with Section 5.1 by expanding on the brief outline of SLD theory

in the introduction and presenting the results of Bahadur and Ranga Rao [10], who

gave the original impetus for the theory. Further, the differences to large deviations

theory are underlined, both regarding their goals and methodology. Specifically, the

saddle point method is layed out, which will be used for the essential local density

estimates in the subsequent proofs.

As Section 5.2 and Section 5.3 are based partly on individual research papers, their

content and outline will be given here individually.

In Section 5.2 sharp large deviation results of Bahadur-Ranga Rao-type are provided

for the q-norm of random vectors distributed on the `np -ball Bnp according to the cone

probability measure Cn,p or the uniform distribution Un,p for 1 ≤ q < p <∞.

The behaviour of the q-norm ‖Z‖q of a random vector Z in Bnp was first studied

by Schechtman and Zinn [106], who derived concentration inequalities for ‖Z‖q with

Z ∼ Cn,p and Z ∼ Un,p for q > p. This is closely related to the intersection volume

of t-multiples of volume-normalized `np -balls Dn
p := voln(Bnp )−1/nBnp , i.e., voln(Dn

p ∩ tDn
q )

with t ∈ [0,∞), for which Schechtman and Schmuckenschläger [105] gave asymptotics

for different values of t. Schechtman and Zinn [107] expanded their previous results

in [106], by not only considering the q-norm, but also images of random vectors under

Lipschitz functions in general. Thus, they gave concentration inequalities for f(Z),

with Z ∼ Cn,p and Z ∼ Un,p, p ∈ [1, 2), and f a Lipschitz function with respect to

the Euclidean norm. Schmuckenschläger [108] provided a CLT for ‖Z‖q with Z ∼ Cn,p

and Z ∼ Un,p and used it to refine the previous intersection results in [105] for all

t ∈ (0,∞). Naor [92] gave concentration inequalities for ‖Z‖qq with Z ∼ Cn,p, showed

that the total variation distance between Cn,p and the normalized surface measure

σn,p on Sn−1
p tends to zero proportional to n−1/2, and used the previously mentioned

results to show a concentration inequality for ‖Z‖qq with Z ∼ σn,p. He also discussed
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how concentration results similar to Schechtman and Zinn [107] for ‖Z‖q could already

be derived from previous results of Gromov and Milman [44] for the concentration

of Lipschitz functions on convex bodies. Kabluchko, Prochno and Thäle [61] gave

a multivariate CLT for (‖Z‖q1 , . . . , ‖Z‖qd) with Z ∼ Un,p in the spirit of [108] and

also considered the asymptotics for the intersection volume of multiple `np -balls, i.e.,

voln(Dn
p ∩ t1Dn

q1
∩ · · · ∩ tdDn

qd
) with ti ∈ [0,∞). This CLT was furthermore applied by

the same authors to infer a central limit theorem for the length of Bnp projected onto

a line with uniform random direction. Moreover, they provided an LDP for ‖Z‖q with

Z ∼ Cn,p and Z ∼ Un,p. In a follow-up paper [65], the same authors showed a CLT for

‖Z‖q with the distribution of Z taken from the class Pn,p,W of p-radial distributions

established in [13]. Finally, they gave a moderate and a large deviation principle for

‖Z‖q with Z ∼ Pn,p,W.

Recently, a new tool from large deviations theory was introduced to asymptotic geo-

metric analysis by Liao and Ramanan [85]. They gave sharp large deviation results in

the spirit of Bahadur and Ranga Rao [10] and Petrov [95] for the projections of random

points in `np -balls with distributions Cn,p and Un,p onto a fixed one-dimensional sub-

space.1 Other works in asymptotic geometric analysis have also employed methods from

sharp large deviations theory as well, such as Kabluchko and Prochno [60], who derived

asymptotic volumes for generalizations of `np -balls, known as Orlicz balls (see Remark

2.4.8), and showed a Schechtman-Schmuckenschläger-type result by considering inter-

section volumes of Orlicz balls. Their results on Orlicz balls were then expanded upon

by Alonso-Guiterréz and Prochno in [3], who gave the exact asymptotic volume of

Orlicz balls and provided thin-shell concentrations for them, augmenting their results

into sharp asymptotics under certain conditions.

Section 5.2 will follow closely in the footsteps of Liao and Ramanan [85] and estab-

lish SLD results for the q-norms of random vectors with distribution Cn,p and Un,p.

Furthermore, we will use these results to expand on works of Schechtman and Schmuck-

enschläger [105], Schmuckenschläger [108], and Kabluchko, Prochno and Thäle [61] for

intersection volumes of `np -balls by giving sharp asymptotics for voln(Dn
p ∩ tDn

q ) at a

considerably improved rate for 1 ≤ q < p <∞ and t > C(p, q) bigger than some con-

1Note that the case for Un,p was originally included in the second preprint version of the work of
Liao and Ramanan [85] (arXiv:2001.04053v2), but has subsequently been removed in the current third
preprint version (arXiv:2001.04053v3) to be contained in another, yet unpublished paper. Thus, while
we generally refer to the third preprint version of [85] (as listed in the references), those references
regarding Un,p necessarily concern the second version. Where we refer to specific results therein, we
will hence write [85, v2].
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stant dependent on p and q. Additionally, we will also apply our results for `np -spheres

to retain sharp asymptotics for the length of the projection of an `np -ball onto the line

spanned by a uniform random direction.

Let us give a brief outline of Section 5.2: In Section 5.2.1 some necessary notation and

definitions will be provided and we will recapitulate some relevant preexisting results,

followed by a short discussion on the Weingarten map in Section 5.2.2. This will be

needed for the geometric Laplace integration results used later in the chapter. In

Section 5.2.3 we will present the main results regarding the q-norms of random vectors

on `np -spheres and `np -balls and outline the idea of the two central proofs. Section

5.2.4 and Section 5.2.5 will contain the applications of the main results to intersection

volumes and random projections of `np -balls mentioned above. In Section 5.2.6 we will

reformulate the target probabilities from the main results in terms of useful probabilistic

representations, using well-established representations of random vectors in `np -balls

of Schechtman and Zinn [106] and Rachev and Rüschendorf [99]. In Section 5.2.7

local density approximations of these probabilistic representations will be provided.

In Sections 5.2.8 and 5.2.9 we will prove the SLD results for `np -spheres and `np -balls,

respectively, by integrating over the density estimates. For that, we will utilize some

geometric results for asymptotic expansions of Laplace integrals from Andriani and

Baldi [7] and Breitung and Hohenbichler [19], thereby finishing Section 5.2.

In the second major part of this chapter, Section 5.3, we consider the p-generalized

arithmetic-geometric mean (p-AGM) inequality for vectors chosen randomly from the

`np -ball. For n ∈ N and x1, . . . , xn ∈ Rn the classic AGM inequality states that

(
n∏
i=1

|xi|

)1/n

≤ 1

n

n∑
i=1

|xi|.

Additionally, for p > 0 the p-AGM inequality expands the above for the p-generalized

mean, i.e., for (x1, . . . , xn) ∈ Rn, n ∈ N, we have(
n∏
i=1

|xi|

)1/n

≤

(
1

n

n∑
i=1

|xi|p
)1/p

.

It was shown by Gluskin and Milman [38] that for a random vector X(n) ∈ Rn uniformly

distributed on the standard (n−1)-dimensional unit sphere Sn−1
2 in Rn, one can reverse

the p-AGM inequality for p = 2 up to a scalar constant with high probability, which
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was then extended to p = 1 by Aldaz [1, 2]. Kabluchko, Prochno, and Vysotsky [66]

provided a CLT and an LDP for the ratio of the two sides of the p-AGM inequality

for any p ∈ [1,∞) and X(n) with distribution Un,p or Cn,p on Bnp . Finally, Thäle [111]

expanded the results of [66] to a CLT and a moderate deviation principle (MDP) for

the ratio of the two sides of the p-AGM inequality with the corresponding random

vector X(n) ∈ Bnp having distribution Pn,p,W in the spirit of [13], which includes Un,p

and Cn,p as special cases. However, the arguments of Thäle show that the properties

of interest of a random vector X(n) ∈ Bnp are independent of the p-radial component of

its distribution, as long as the directional distribution is given by Cn,p and its p-radial

distribution has no atom at zero (see (5.69)).

The purpose of Section 5.3 is to develop further the LDP of [66] into SLD results in the

spirit of Bahadur and Ranga Rao [10]. For a random vector X(n) ∈ Bnp with directional

distribution Cn,p in the sense of (5.69) we now want to give sharp asymptotics for the

probability of the ratio of the two sides of the p-AGM inequality being bigger than a

constant θ ∈ [0, 1]. We thereby provide concrete and asymptotically exact estimates

on a non-logarithmic scale for the probability of the inequality being improvable or

reversible up to a constant, respectively.

The main results regarding the sharpening of the p-AGM inequality are stated right

at the beginning of Section 5.3. Since their proof orients itself heavily on the proof

in Section 5.2, it will also contain three parts: the first part provides a probabilistic

representation for the ratios of the two sides of the p-AGM inequality in Section 5.3.1,

the second part gives an asymptotic density estimate for this probabilistic representa-

tion in Section 5.3.2, and the third part consists of the final proof of the section’s main

result by integrating over said density estimate in Section 5.3.3.

Chapter 5 is partly based on the papers

� Kaufmann, T. [69]: Sharp asymptotics for q-norms of random vectors in high-

dimensional `np -balls. Modern Stochastics: Theory and Applications (2021),

� Kaufmann, T., and Thäle, C. [71]: Sharpening the probabilistic arithmetic-

geometric mean inequality. arXiv:2112.04340 (2021).
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Chapter 2

Preliminaries and notation

In this chapter basic notation and foundational concepts of probability and geometry

are established. Specifically, the basics of large deviations theory are introduced, as

they will play an integral role throughout the chapters.

2.1 Notation and basic definitions

Let N, R, and C be the natural, real, and complex numbers, respectively, and N0 :=

N ∪ {0}. For d ∈ N denote by Rd the d-dimensional Euclidean space with the stan-

dard scalar product 〈 · , · 〉, which induces the Euclidean norm ‖ · ‖2, analogue for Cd.

Further, let R+ := [0,∞) be the non-negative real numbers and Rd
+ := [0,∞)d the

non-negative d-dimensional Euclidean space. For a complex number z ∈ C, denote by

Re(z) and Im(z) its real and imaginary component, respectively. For ease of notation

we write (x1, . . . , xd) ∈ Rd for a column vector and for x, y ∈ Rd, we write their product

xTy as xy, skipping the explicit transpose. The same holds for matrices and matrix

multiplication. For a general set A define the indicator function

1A(x) =

1 : x ∈ A

0 : x /∈ A,

and denote by ∂A,A,A◦, and Ac respectively its boundary, closure, interior, and com-

plement with respect to the underlying topology. Set B(Rd) to be σ-field of Borel sets

in Rd and vold to be the d-dimensional Lebesgue measure on Rd.
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2.1. NOTATION AND BASIC DEFINITIONS

While we have given the definition of Lp in (1.2), we set a more general version as

Lp
(
Rd
)

:=

f : Rd → R :

∫
Rd

|f(x)|p dx <∞


for d ∈ N and p < ∞ (for p = ∞ consider the essential supremum of f , analogue to

(1.3)). For a function f : Rd → R we define the effective domain of f as

Dom(f) :=
{
x ∈ Rd : f(x) <∞

}
.

Further, for c ∈ R we call {x ∈ Rd : f(x) = c} and {x ∈ Rd : f(x) ≤ c} the c-level set

and c-sublevel set, respectively.

We say a set A is convex if it contains all convex combinations of its elements, that is,

λx+ (1− λ)y ∈ A for all x, y ∈ A, λ ∈ [0, 1]. A compact and convex subset of Rd with

non-empty interior is called a convex body. A real-valued function f : Rd → R is called

convex if the set above its graph is convex, i.e., if f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)

for all x, y ∈ Rd and λ ∈ [0, 1]. If this inequality holds strictly for all arguments x 6= y

and λ ∈ (0, 1), the function f is called strictly convex. A real-valued function f is

called (strictly) concave, on the other hand, if (−f) is (strictly) convex.

Next we shall set down some notation for different derivatives. For g : Rd → Rk, we

denote by Jxg(x∗) the Jacobian of g with respect to x evaluated at x∗ ∈ Rd, and for

f : Rd → R by ∇xf(x∗) and Hxf(x∗) the gradient and Hessian of f with respect to x

evaluated at x∗ ∈ Rd, respectively, and use the shorthand derivative notation

f[i1,...,id](x
∗) =

∂i1

∂xi11
. . .

∂id

∂xidd
f(x)

∣∣
x=x∗

. (2.1)

Given a convex real-valued function f : Rd → R, we denote by

f ∗(x) = sup
τ∈Rd

[〈x, τ〉 − f(τ)] (2.2)

its Legendre-Fenchel transform. We shall briefly list two of its useful properties. For

a proof of the first we refer the reader to [103, Theorem 26.5] and for a proof of the

second to [37, Chapter 4, Section 18].

Lemma 2.1.1 Let f : Rd → R be a convex and lower semi-continuous function with

Dom(f)◦ 6= ∅ and inf(f) > −∞. Additionally, let f be differentiable on Dom(f)◦

and limn→∞ ‖∇xf(xn)‖2 = +∞ for any sequence (xn)n∈N converging to a point on

∂Dom(f). Then the following holds:
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(1) For any x ∈ Dom(f ∗) the supremum in the Legendre-Fenchel transform f ∗(x) is

uniquely attained in
τ(x) = (∇τf)−1(x) ∈ Dom(f),

with (∇τf)−1 denoting the inverse of the derivative of f . Hence

f ∗(x) = 〈x, τ(x)〉 − f(τ(x)) =
〈
x, (∇τf)−1(x)

〉
− f

(
(∇τf)−1(x)

)
.

(2) The Legendre-Fenchel transform is an involution on Dom(f)◦, that is, for all

x ∈ Dom(f)◦ we have f(t) = (f ∗)∗(t).

The other transform we want to introduce is the Fourier transform. For a function

f : Rd → R with f ∈ L1(Rd) we define its Fourier transform at t ∈ Rd to be

F(f)(t) :=

∫
Rd

e〈it,y〉 f(y) dy. (2.3)

We choose this normalization of the Fourier transform such that in its applications to

densities of probability distributions it coincides with the corresponding characteristic

function. This way we can easily use results from both Fourier analysis and probability

theory without intermediate renormalization. The inverse Fourier transform, denoted

by F−1(·), of a function f : Rd → R at some y ∈ Rd is then defined as

F−1(F(f))(y) :=
1

(2π)d

∫
Rd

e−〈it,y〉F(f)(t) dt.

If the inverse Fourier transform F−1(F(f)) of F(f)) is itself absolutely integrable, then

the Fourier inversion theorem states F−1(F(f))(y) = f(y) (cf. [110, Theorem 1.9]).

Closing this section, we define Euler’s gamma and beta function and provide a well-

known approximation result for the former. For x, y ∈ R+ define

Γ(x) :=

∞∫
0

tx−1e−t dt and B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)

to be Euler’s gamma function and beta function, respectively. For x > 0, Stirling’s

approximation formula for the gamma function states that

Γ(x) =

√
2π

x

(x
e

)x(
1 +O

(1

x

))
, (2.4)

where O
(

1
x

)
denotes an approximation error with asymptotic upper bound 1

x
.

23



2.2. PROBABILITY

2.2 Probability

Given a probability space (Ω,Σ,P), a measurable space (E, E), and a random variable

X : Ω → E, we call µ := P ◦ X−1 the distribution of X and write X ∼ µ to denote

that for any A ∈ E it holds that

P(X ∈ A) =

∫
E

1A(x)µ(dx).

The distribution µ = P ◦X−1 of a random variable X is also often denoted as D(X).

For a real-valued random variable X : Ω→ R with distribution µ we write

E[X] :=

∫
R

xµ(dx)

for the expectation of X, often writing EX if it is clear from context what expectation

is considered, and Var[X] := E[(X − E[X])2] for the variance of X if E[X] < ∞. For

some r > 0 we denote by

E[Xr] :=

∫
R

xr µ(dx) and E[|X|r] :=

∫
R

|x|r µ(dx) (2.5)

the r-th moment and r-th absolute moment of X, respectively. More generally, we

denote by mr(µ) the r-th absolute moment of the probability measure µ, defined as

above. The expectation of a random vector X = (X1, . . . , Xd) ∈ Rd is the vector of its

coordinate expectations E[X] = (E[X1], . . . ,E[Xd]) and analogue holds for its variance.

For a probability distribution µ on R let µ⊗d denote its d-fold product measure on Rd.

Let X be a random vector in Rd, then for τ ∈ Rd

ϕX(τ) := E
[
e〈τ,X〉

]
and ΛX(τ) := logE

[
e〈τ,X〉

]
are the moment generating function and cumulant generating function of X, respec-

tively, where we often omit the index when it is clear from context.

Let us present some useful properties of the cumulant generating function in the fol-

lowing lemma. The statements therein and their proof can be found in [73, Lemma

1.1.4] and its subsequent proof. Alternatively, they follow from the standard prop-

erties of the moment generating function (see, e.g., [27, Theorem 5.4]) and cumulant

generating function (see, e.g., [29, Lemma 2.2.31]), together with the properties of the

Legendre-Fenchel transform laid out in Lemma 2.1.1.
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Lemma 2.2.1 Let X be a random vector in Rd that is not almost surely constant and

has cumulant generating function ΛX . Then it holds that

(1) ΛX is convex and lower semi-continuous,

(2) ΛX is infinitely differentiable and strictly convex on Dom(ΛX)◦,

(3) Λ∗X is infinitely differentiable and strictly convex on Dom(Λ∗X)◦,

(4) for x ∈ Dom(Λ∗X)◦ there exists a unique τ(x) ∈ Dom(ΛX)◦, such that

Λ∗X(x) = 〈x, τ(x)〉 − ΛX(τ(x))

with τ(x) = (∇τΛX)−1(x),

(5) the interior of the effective domain of Λ∗X is given by

Dom(Λ∗X)◦ = ∇τΛX(Dom(ΛX)◦).

Remark 2.2.2 For a random vector X = (X1, . . . , Xd) ∈ Rd one defines the char-

acteristic function to be the function mapping some t ∈ Rd to E
[
e〈it,X〉

]
. Note here

that, on the one hand, this is just the moment generating function of X at a complex

argument it ∈ Cd, i.e., ϕX(it) = E
[
e〈it,X〉

]
. On the other hand, if X possesses a density

f , due to our chosen normalization in (2.3) the characteristic function is simply the

Fourier transform of f , that is, F(f)(t) = E
[
e〈it,X〉

]
. Thus, we have

ϕX(it) = E
[
e〈it,X〉

]
= F(f)(t),

meaning that these concepts can be used interchangeably, which will be beneficial in

the proofs within the following chapters.

For two random variables X, Y with finite expectations we denote by Cov[X, Y ] :=

E[(X −E[X])(Y −E[Y ])] their covariance and for an Rd-valued random vector X with

finite coordinate-wise expectations we write Cov[X] for its covariance matrix, i.e., the

(d× d) matrix of covariances of its components. For two random variables X, Y with

the same distribution we write X
D
= Y .

We now consider a few specific distributions of random variables. We say a real-valued

random variable X is gamma distributed with shape a > 0 and rate b > 0 if its

distribution has density

fG(x) :=
ba

Γ(a)
xa−1 e−bx 1(0,∞)(x), x ∈ R,
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with respect to the Lebesgue measure on R. We denote this by X ∼ G(a, b). For

a = 1 we call this an exponential distribution and write X ∼ E(b). Similarly, we say

a real-valued random variable X is beta distributed with parameters a, b > 0 if its

distribution has Lebesgue density

fB(x) :=
1

B(a, b)
xa−1 (1− x)b−1 1(0,1)(x), x ∈ R,

and write X ∼ B(a, b). Note the well-known relation between the gamma and beta

distribution, stating that for independent X ∼ G(a, c) and Y ∼ G(b, c) it holds that

X

X + Y
∼ B(a, b). (2.6)

Finally, we say a real-valued random variable X has a generalized Gaussian distribution

if its distribution has Lebesgue density

fgen(x) :=
b

2 aΓ
(

1
b

) e−(|x−µ|/a)b , x ∈ R,

where µ ∈ R and a, b > 0, and denote this by X ∼ Ngen(µ, a, b).

As mentioned in the introduction and as will be shown in further detail in Section 2.4.1,

the generalized Gaussian distributions are intimately connected to the geometry of `np -

balls and serve as the essential building block when constructing useful probabilistically

equivalent representations for random vectors in with a wide variety of distributions.

For these constructions we will be using the specific generalized Gaussian distributions

Np := Ngen(0, p1/p, p) (for p ∈ (0,∞)) with density

fNp(x) :=
1

2 p1/p Γ
(

1 + 1
p

) e−|x|p/p, x ∈ R,

and Ñp := Ngen(0, 1, p), which has density

fÑp
(x) :=

1

2 Γ
(

1 + 1
p

) e−|x|p , x ∈ R.

We will refer to random variables X with distribution Np or Ñp as having p-generalized

Gaussian distribution (it will always be clear from context which concrete distribution

we will be referring to). Note that for p = 2 it holds that N2 is simply the standard

normal distribution.
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Remark 2.2.3 In the literature both Np and Ñp are used. For example, the papers

[4, 5, 36, 69, 70, 71, 74] consider Np, while [13, 62, 63, 72, 106] work with Ñp. This

results merely in different normalization factors when constructing probabilistic repre-

sentations. The results within this thesis are also reflective of this, as in Chapter 3 we

use Ñp, whereas in Chapter 4 and Chapter 5 we employ Np, as this is most appropriate

to the respective research contexts of the related publications [72] and [69, 70, 71].

For X ∼ Np and r > 0 the r-th absolute moment of X is given by

E [|X|r] =
pr/p

r + 1

Γ
(

1 + r+1
p

)
Γ
(

1 + 1
p

) , (2.7)

which can be seen from [61, Lemma 4.1].

2.3 Large deviations theory

In this chapter large deviations theory is briefly introduced. We begin with the basic

ideas of the theory, including the general definition of a large deviation principle, and

then present the methodological toolbox of large deviations theory, i.e., a collection of

useful results we will often rely on throughout this thesis. For further background on

large deviations and proofs of the related results presented in this section we refer the

reader to the monographs [29, 30, 67].

2.3.1 Idea of the theory

At the end of the general introduction in Section 1.1 a rough draft of the goals of large

deviations theory was given, i.e., that it intends to - roughly speaking - characterize

the probabilistic decay of sequences of rare events. But let us start with a well-known

concrete example and then expand out to more general settings.

For a sequence (Xn)n∈N of i.i.d. real-valued random variables with E[X1] = µ < ∞
denote by (Sn)n∈N the sequence of their partial sums

Sn :=
n∑
i=1

Xi.

We know from the law of large numbers that the sequence
(

1
n
Sn
)
n∈N of the empirical

averages converges almost surely to µ as n tends to infinity. Hence, we know that the
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probability of a deviation of Sn from its expectation nµ of order n converges to 0 in

n ∈ N, that is, for any x > 0 it holds that

lim
n→∞

P (|Sn − nµ| ≥ nx) = 0.

However, we do not know how exactly this convergence to zero – that is, this probabilis-

tic decay – of the deviation probabilities takes place, both in terms of the sequence pa-

rameter n ∈ N and the deviation size x. The CLT tells us, given σ2 := Var[X1] ∈ (0,∞),

that 1√
n
(Sn−nµ) converges in distribution to a normal distribution N (0, σ2) as n tends

to infinity, and therefore

lim
n→∞

P
(
|Sn − nµ| ≥

√
nx
)

= 1− 1√
2πσ2

x∫
−x

e−y
2/2σ2

dy.

This means the probability for a deviation of Sn from nµ of order
√
n is approximately

Gaussian. The Berry-Esseen Theorem (see [114, Theorem 2.1.3]) additionally yields

that the error of the Gaussian approximation given by the CLT is of order n−1/2,

meaning we also have a rate of convergence for the above. Deviations of order up to
√
n are often refered to as “Gaussian fluctuations” or “normal deviations”, as they are

characterized via the CLT. Beyond order
√
n one talks about moderate deviations (of

order between
√
n and n) and large deviations (of order n and higher), the latter of

which is the main area of focus of this thesis.

Note that the CLT yields a limiting normal distribution - and hence Gaussian behaviour

of fluctuations of order up to
√
n - regardless of the underlying distribution of the

involved random variables Xi, given the necessary moment-conditions. The CLT is

therefore very universal in this regard.

Turning our focus to large deviations, in the previous context of the empirical average

one can rewrite deviation probabilities for some x > E[X1] using the moment generating

function ϕX of the Xi. Assume that ϕX(τ) < ∞ for all τ ∈ R, then it follows from

Markov’s inequality that for τ > 0,

P (Sn ≥ nx) = P
(
eτSn ≥ eτnx

)
≤ e−τnxE

[
eτSn

]
= e−τnxϕX(τ)n = e−n[τx−logϕX(τ)]

(cf. [81, Equation (1.1.2)]). Since one intends to give the best possible estimate of the

above, optimizing for τ > 0 gives

lim sup
n→∞

1

n
logP (Sn ≥ nx) ≤ − sup

τ>0
[τx− logϕX(τ)] = Λ∗X(x), (2.8)
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where Λ∗X is the Legendre-Fenchel transform of the cumulant generating function

ΛX(τ) = logϕX(τ) of the Xi (the supremum can be considered over all τ ∈ R, since

for x > 0 we have τ(x) > 0, as shown in [81, Lemma 1.4.1], so the above reformulation

is admissible). For a given x > 0 the corresponding τ(x) ∈ R at which the supremum

is attained is the solution to the equation

x =
∂

∂τ
ΛX(τ(x)) =

E
[
Xeτ(x)X

]
E [eτ(x)X ]

. (2.9)

We have seen in Lemma 2.2.1 that for X not being almost surely constant and x ∈
Dom(Λ∗X)◦ such a τ(x) ∈ Dom(ΛX)◦ exists and is unique. Thereby we already have a

way to describe the probabilistic decay of deviations of order n ∈ N via

P(Sn ≥ nx) ≤ e−n[Λ∗X(x)+o(1)],

again denoting by o(1) a sequence that tends to zero as n→∞.

We note that, as remarked in [81, p.2], an additional take-away of (2.9) is that trans-

forming X with the density eτ(x)X/ϕX(τ(x)) yields a new random variable with expec-

tation x. This fact, or rather its multi-dimensional counterpart, will be an essential

tool in Chapter 5, therein referred to as an exponential measure tilt.

In addition to (2.8), one can show that Λ∗X is also a lower bound for logarithmic

deviation probabilities of the empirical average, that is, that in the limit there holds

an equality. This, in fact, is the well-known theorem of Cramér (cf. [30, Theorem I.4]).

Proposition 2.3.1 Let (Xi)i∈N be a family of i.i.d. random variables such that for all

t ∈ R it holds that ϕX(t) <∞. Then for every x > E[X1]

lim
n→∞

1

n
logP

(
1

n
Sn ≥ x

)
= −Λ∗X(x).

As shown in [29, Corollary 6.1.6] the condition that ϕX(t) < ∞ for all t ∈ R in the

theorem of Cramér can be relaxed to ϕX being merely finite in a neighbourhood around

zero, while still retaining the same results. Since we will only work with the multi-

dimensional version of Cramér’s theorem, which will be presented in Proposition 2.3.3,

we will only include said relaxation of the condition therein, as the one-dimensional

version serves just to illustrate the core concepts of the theorem and large deviations

theory overall.
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Hence, we know that for sequences of real-valued i.i.d.random variables with sufficiently

finite exponential moments we can characterize the large deviation behaviour of their

empirical averages via the Legendre-Fenchel transform of their cumulant generating

function, i.e.,

P
(

1

n
Sn ≥ x

)
= e−n[Λ

∗
X(x)+o(1)]. (2.10)

Of course there are other sequences of random variables in other spaces for which one

would also like to characterize the large deviation behaviour in a manner such as (2.10),

i.e., describe the probabilistic decay of large deviation events via two functions, one

depending on the sequence parameter and one on the size of the deviation. In general,

one would like such a description for general sequences of probability distributions on

Polish spaces as well, that is, separable and completely metrizable topological spaces.

Finding the functions that allow this is one of the main goals of large deviations theory,

and the capability of describing logarithmic probabilities in such a fashion is referred to

as a large deviation principle (LDP). While the theorem of Cramér was established in

the 1930’s, the following formal and substantially more general definition of an LDP is

due to work of Varhadan (see [112, 113]), who incorporated previous results like those

of Cramér into an overarching field of study. If X is a topological space, we write B(X)

for the σ-field of Borel sets in X. If X is separable and completely metrizable, we call

X a Polish space.

Definition 2.3.2 Let X be a Polish space equipped with the Borel σ-field B(X) and

(Pn)n∈N a sequence of probability measures on X. We say that (Pn)n∈N satisfies a large

deviation principle on X if there are two functions s : N→ (0,∞), such that s(n)→∞
as n→∞, and I : X→ [0,∞], such that I is lower semi-continuous and

a) lim inf
n→∞

1

s(n)
log Pn(O) ≥ −I(O) for all O ∈ B(X) open,

b) lim sup
n→∞

1

s(n)
log Pn(C) ≤ −I(C) for all C ∈ B(X) closed,

where for B ∈ B(X) we define I(B) := infx∈B I(x). We call s(·) the speed and I(·)
the rate function. We say that I(·) is a good rate function, if it has compact sublevel

sets. Further, we say that (Pn)n∈N satisfies a weak LDP on X if a) holds but b) only

needs to hold for compact sets.
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For sequences (Xn)n∈N of random variables one applies the above definition to the se-

quence of their distributions. Hence, we see that the theorem of Cramér in Proposition

2.3.1 states that the sequence of empirical averages of real-valued i.i.d. random vari-

ables with finite exponential moments satisfies an LDP with speed n and good rate

function given by the Legendre-Fenchel transform of the cumulant generating function.

We have previously outlined the universality of the CLT with respect to the underly-

ing distributions of the involved random variables. This is generally not the case for

LDPs, which we can already see exemplified in the theorem of Cramér for the em-

pirical average: as the rate function is given by the Legendre-Fenchel transform of the

cumulant generating function, it is hence dependent of the underlying distribution. We

thus get an impression of the higher sensitivity of large deviation results towards the

distributions of the involved random variables.

Since we also apply the definition of LDPs to random measures, let us briefly address

this setting as well. For a Polish space X we denote byM1(X) the space of probability

measures on X endowed with the topology of weak convergence and recall thatM1(X) is

itself again Polish (see [68, Theorem 4.2, Lemma 4.3, Lemma 4.5]), e.g., when equipped

with the Lévy-Prokhorov metric (see (4.4)). Then a sequence of random measures on

X is just a sequence of random variables on M1(X) and the definition of an LDP can

be applied as previously.

2.3.2 Large deviations toolbox

In this section we present some results from large deviations theory which we will

frequently use to prove the results within this thesis. We start off by formulating a

multi-dimensional version of the theorem of Cramér (cf. [29, Theorem 2.2.30]) with

the relaxed condition on the exponential moments established in [29, Corollary 6.1.6].

Proposition 2.3.3 Let (Xn)n∈N be a sequence of i.i.d. random vectors in Rn with

cumulant generating function ΛX . If the origin is an interior point of Dom(ΛX), then

the sequence of empirical averages
(

1
n
Sn
)
n∈N, Sn :=

∑n
i=1Xi, satisfies an LDP with

speed n and good rate function I(·) = Λ∗X(·).

Note that in the above proposition the sequence index and the dimension of the ambient

space coincide, which generally does not need to be the case for the multi-dimensional

Theorem of Cramér. But since we consider concentration phenomena for convex bodies

as their dimension tends to infinity, it will be the case in our setting.
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The upcoming proposition concerns the large deviation behaviour of two sequences of

random variables with the same speed in a product space. For the result and its proof

see [4, Proposition 2.4, Appendix A].

Proposition 2.3.4 Let X,Y be Polish spaces. Let (Xn)n∈N, (Yn)n∈N be sequences

of random variables in X and Y, respectively. Assume that (Xn)n∈N and (Yn)n∈N are

independent. Further assume that both (Xn)n∈N and (Yn)n∈N satisfy LDPs with the same

speed s(n) and respective good rate functions IX : X → [0,∞] and IY : Y → [0,∞].

Consider the sequence of random variables (Zn)n∈N on X × Y with Zn = (Xn, Yn).

Then (Zn)n∈N satisfies an LDP with speed s(n) and good rate function IZ with IZ(z) =

IX(x) + IY (y) for all z = (x, y) ∈ X× Y.

The next result is the so-called contraction principle and it gives a way to transport

an LDP from one sequence of random variables to another by virtue of a continuous

map. The result and its proof can be found in [29, Theorem 4.2.1].

Proposition 2.3.5 Let X,Y be Polish spaces and f : X → Y be a continuous func-

tion. Also let (Xn)n∈N be a sequence of random variables in X that satisfies an LDP

with speed s(n) and good rate function IX . Then the sequence of random variables

(Yn)n∈N := (f(Xn))n∈N satisfies an LDP with speed s(n) and good rate function IY (y) =

inf{IX(x) |x ∈ X, f(x) = y}.

Remark 2.3.6 In some of the upcoming LDP results we want to use the contraction

principle in the following situation. Let X,Y be Polish spaces, f : X→ Y a continuous

map, and (µn)n∈N a sequence of random measures on X. Let (µn)n∈N satisfy an LDP

onM1(X) with speed s : N→ (0,∞) and rate function Iµ :M1(X)→ [0,∞]. We then

consider the sequence of random measures (νn)n∈N on Y with νn = µn◦f−1 and want to

use the contraction principle to infer an LDP for (νn)n∈N. In this case the function that

is actually “transporting” the LDP is not f : X→ Y itself, but F :M1(X)→M1(Y)

with F (µ) = µ◦f−1. So in general the continuity of F has to be given rather than that

of f . But the latter follows directly from the continuity of f by the definition of weak

convergence: as discussed, equipped with, e.g., the Lévy-Prokhorov metric (see (4.4))

M1(X) andM1(Y) are metric spaces, hence we can show the continuity of F by proving

sequential continuity of F . This can be done with respect to the weak convergence of

measures, since it is equivalent to the Lévy-Prokhorov metric (see [68, Lemma 4.3]).

Let (µn)n∈N be a sequence in M1(X) that converges weakly to a probability measure
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µ ∈ M1(X) as n → ∞. That means that for every bounded continuous function

h : X→ R it holds that

lim
n→∞

∫
h(x)µn(dx) =

∫
h(x)µ(dx).

To show the continuity of F we need to show that F (µn) converges weakly to F (µ)

as n → ∞. Let h : Y → R be a bounded continuous function. Since f is continuous,

we know that (h ◦ f) is bounded and continuous. Thus, by the weak convergence of

(µn)n∈N we have that

lim
n→∞

∫
h(x)F (µn)(dx) = lim

n→∞

∫
h(x)

(
µn ◦ f−1

)
(dx)

= lim
n→∞

∫
(h ◦ f) (x)µn(dx)

=

∫
(h ◦ f) (x)µ(dx)

=

∫
h(x)

(
µ ◦ f−1

)
(dx)

=

∫
h(x)F (µ)(dx).

Hence, F (µn) converges weakly to F (µ) as n→∞ and thereby F is continuous.

So far we have only covered LDP results for sequences of i.i.d. random variables. For

sequences of non-identically distributed random variables, that do however exhibit a

certain level of distributional convergence, the theorem of Gärtner-Ellis (see, e.g., [29,

Theorem 2.3.6]) provides a useful way to gain an LDP.

Proposition 2.3.7 Let (X(n))n∈N be a sequence of random variables with cumulant

generating functions Λn and k ∈ [1,∞). We assume that for all t ∈ R the limit

Λ(t) := limn→∞
1
nk

Λn(nkt) exists in [−∞,+∞] and that the origin is an interior point of

the effective domain Dom(Λ). We furthermore assume that Λ is lower semi-continuous

and differentiable on the interior of Dom(Λ). Then the sequence (X(n))n∈N satisfies an

LDP with speed nk and rate function Λ∗.

Lastly, we present a result that yields a weak LDP for a sequence of probability mea-

sures, if the limits of the logarithmic probabilities from Definition 2.3.2 have the same

supremum over the base of the underlying topology (cf. [29, Theorem 4.1.11]).
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Proposition 2.3.8 Let X be a Polish space and (Pn)n∈N a sequence of probability

measures on X. Further, let A be a base of the topology of X. If for every x ∈ X it

holds that

sup
A∈A:x∈A

lim inf
n→∞

1

n
log Pn(A) = sup

A∈A:x∈A
lim sup
n→∞

1

n
log Pn(A),

then (Pn)n∈N satisfies a weak LDP with speed n and rate function

I(x) := sup
A∈A:x∈A

lim inf
n→∞

1

n
log Pn(A).

2.4 `np-balls

In this section we establish the distributions on `np -balls that are at the core of the

results within this thesis. Furthermore, we present some probabilistic representations

that are essential to their proofs. Furthermore, we list some classic polar integration

tools, which are also frequently of use.

2.4.1 Probabilistic representation results on `np-balls

As mentioned in the introduction, for p ∈ (0,∞], n ∈ N, and x = (x1, . . . , xn) ∈ Rn we

denote by

‖x‖p :=


(

n∑
i=1

|xi|p
)1/p

: p <∞

max{|x1|, . . . , |xn|} : p =∞

the `np -norm of x (which for p ∈ (0, 1) is only a quasi-norm) and set

Bnp := {x ∈ Rn : ‖x‖p ≤ 1} and Sn−1
p := {x ∈ Rn : ‖x‖p = 1} (2.11)

to be the unit ball and unit sphere with respect to this (quasi-)norm, respectively. We

define the uniform distribution on Bnp and the cone probability measure on Sn−1
p as

Un,p( · ) :=
voln( · )
voln(Bnp )

and Cn,p( · ) :=
voln ({rx : r ∈ [0, 1], x ∈ · })

voln(Bnp )
, (2.12)

where the cone probability measure (often just called the cone measure) assigns to a

set A ⊂ Sn−1
p the volume of the cone it encloses with the origin relative to the volume

of Bnp (see Figure 2.1).
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Figure 2.1: Cone which a set A ⊂ Sn−1
p encloses with the origin for n = 2, p = 2.

Remark 2.4.1 On Sn−1
p one can also consider the surface measure σnp , which is defined

to be the sufficiently normalized (n− 1)-dimensional Hausdorff measure. However, as

discussed in [98, Section 3.1], the cone measure Cn,p is more canonical to consider on

`np -balls, as it is unique in its ability on the `np -sphere to be probabilistically represented

as in Proposition 2.4.2. This is due to the fact that this representation result relies

heavily on polar integration arguments, and the cone measure has been shown in [93,

Proposition 1] to be the unique measure on Sn−1
p such that the polar integration formula

(2.14) holds for any integrable f : Rn → R. While Cn,p and σnp have been shown in

[99] to coincide (exclusively) for p ∈ {1, 2,∞}, their difference in form of their total

variation distance

dTV
(
Cn,p, σ

n
p

)
:= sup

{
|Cn,p(A)− σnp (A)| : A ∈ B(Sn−1

p )
}

is bounded and was shown to decrease as n−1/2 in [92].

For a random vector X(n) ∈ Rn, which is uniformly distributed on the (sufficiently

scaled) standard Euclidean sphere, i.e., n1/2 Sn−1
2 ⊂ Rn, and k ∈ N, any k coordinates

X
(n)
i1
, . . . , X

(n)
ik

of X(n) seen as a random vector in Rk converge weakly in distribution

to a Gaussian random vector. In short, for fixed k ∈ N, the k-dimensional marginals of

the uniform distribution on the high-dimensional sphere are approximately Gaussian.

This result is the well-known Poincaré-Maxwell-Borel Lemma, which was shown around

the start of the 20th century (see [31]). In 1991 this was generalized by Mogulski [91]

and Rachev and Rüschendorf [99], who showed that for random vectors distributed

according to the cone measure on the (sufficiently scaled) `np -sphere, p ∈ [1,∞), the k-

marginals converge to p-generalized Gaussian random vectors. This was incorporated

by Rachev and Rüschendorf [99] and Schechtman and Zinn [106] into the following

probabilistic representation for random vectors with distributions Cn,p and Un,p.
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Proposition 2.4.2 Let p ∈ [1,∞), Y = (Y1, . . . , Yn) be a random vector in Rn with

Yi ∼ Np i.i.d., and U be an independent random variable uniformly distributed on [0, 1].

Then

i) the random vector Y
‖Y ‖p has distribution Cn,p and is independent of ‖Y ‖p,

ii) the random vector U1/n Y
‖Y ‖p has distribution Un,p.

For p ∈ (0,∞] this was generalized by Barthe, Guédon, Mendelson and Naor [13], who

gave a probabilistic representation for a class of mixtures of Cn,p and Un,p. For a Borel

probability measure W on [0,∞) they defined the class of distributions

Pn,p,W := W({0})Cn,p + ΨUn,p (2.13)

on Bnp , where Ψ(x) = ψ(‖x‖p), x ∈ Bnp , is a p-radial density given by

ψ(s) =
1

pn/p Γ
(
n
p

+ 1
) 1

(1− sp)
n
p

+1

 ∫
(0,∞)

w
n
p e−

1
p

(
sp

1−sp

)
w W(dw)

 , 0 ≤ s ≤ 1,

and provided a convenient representation of Pn,p,W via a random vector of p-generalized

Gaussians (see Proposition 2.4.4).

The choice of W determines how exactly the cone measure and the uniform distribution

get mixed. Heuristically, one can think of W as indicating how probability mass is

distributed p-radially within Bnp (see Figure 2.2).

Figure 2.2: Distributions Pn,p,W of probability mass (red) within Bnp for n = 2,
p > 2 and different choices of W for W = δ0, W ∈ M1([0,∞)) and W = E(1)

(from left to right).
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Remark 2.4.3 It was shown in [13] that choosing W = δ0 to be the Dirac measure

at 0 yields that Pn,p,W = Cn,p, and for W = E(1), we have that Pn,p,W = Un,p. For

m ∈ N choosing W = G
(
m
p
, 1
p

)
, i.e., a gamma distribution with shape m

p
and rate 1

p
, it

can be shown that Pn,p,W then corresponds to the projection of Cn+m,p onto its first

n coordinates. An analogue correspondence is given for W = G
(
1 + m

p
, 1
p

)
and the

projection of Un+m,p onto its first n coordinates (see [13]).

Thus, the motivation behind considering this class of distributions is twofold. First, as

outlined in Remark 2.4.3, they encompass many relevant distributions on Bnp . The sec-

ond reason we consider Pn,p,W specifically is the following probabilistic representation

result via p-generalized Gaussians shown for it in [13, Theorem 3].

Proposition 2.4.4 Let n ∈ N and p ∈ (0,∞). Let W be a Borel probability measure

on [0,∞) and W be a random variable with W ∼W. Further, let X1, . . . , Xn be i.i.d.

random variables with Xi ∼ Np, which are independent of W . Then the random vector

X

(‖X‖pp +W )1/p

has distribution Pn,p,W on Bnp as in (2.13).

Both the class of probability measures Pn,p,W and their above representation result can

be formulated just as well for sequences (Wn)n∈N of Borel probability measures Wn

on [0,∞) instead of a single fixed distribution W. In such cases, we write

Pn,p,Wn := Wn ({0}) Cn,p + ΨnUn,p,

with Ψn defined as previously for Wn.

As mentioned in Remark 2.2.3, different research papers use different versions of p-

generalized Gaussian distributions Np and Ñp for their probabilistic representations.

Hence, for the sake of completeness, we shall include a version of Proposition 2.4.4

using Ñp instead of Np, as it will be used within Chapter 3. However, for notational

brevity we will keep the same naming conventions as previously for Pn,p,W etc., since

the differences are comparably small and the areas of applications are clearly separated,

with Chapter 3 using Ñp and Chapter 4 and Chapter 5 using Np.
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Proposition 2.4.5 Let n ∈ N and p ∈ (0,∞). Let W be a Borel probability measure

on [0,∞) and W be a random variable with W ∼W. Further, let X1, . . . , Xn be i.i.d.

random variables with Xi ∼ Ñp, which are independent of W . Then the random vector

X

(‖X‖pp +W )1/p

has distribution
Pn,p,W := W ({0}) Cn,p + ΨUn,p

on Bnp , where Ψ(x) = ψ(‖x‖p), x ∈ Bnp , is a p-radial density with

ψ(s) =
1

Γ
(
n
p

+ 1
) 1

(1− sp)
n
p

+1

 ∫
(0,∞)

w
n
p e−

sp

1−spw W(dw)

 , 0 ≤ s ≤ 1.

2.4.2 Polar integration

At the very start of this thesis in (1.1) we discussed the Minkowski functional of a

symmetric convex body K ⊂ Rn, set to be

‖x‖K := inf {r ∈ [0,∞) : x ∈ rK} , x ∈ Rn,

which defines a norm ‖ · ‖K . Generally, we say a function f : Rn → R is K-radially

symmetric - or just K-radial, for short - if f(x) is only dependent on ‖x‖K . If a prob-

ability measure’s distribution function is K-radial, we call it a K-radial distribution.

For the special case K = Bnp we speak of p-radial distributions.

Since distributions given by radially symmetric densities (such as Pn,p,Wn) play a cen-

tral role in this thesis, we need a tool to work with them efficiently. This tool is

provided by the polar integration formula. Let K ⊂ Rn, n ∈ N, be a set that is

star-shaped with respect to the origin and has finite non-zero volume. We define the

uniform distribution on K and the cone probability measure on the boundary ∂K as

UK( · ) :=
voln( · )
voln(K)

and CK( · ) :=
voln ({rx : r ∈ [0, 1], x ∈ · })

voln(K)
,

respectively. We can now formulate the general version of the polar integration formula.

Lemma 2.4.6 For any set K ⊂ Rn, n ∈ N, that is star-shaped with respect to the

origin, contains the origin in its interior, and has finite non-zero volume, and for any

measurable function h : Rn → R it holds that
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∫
Rn

h(x) dx = n voln(K)

∞∫
0

rn−1

∫
∂K

h(ry) CK(dy) dr.

The proof of this is the same as that of Proposition 3.3 in [98], which deals with the

case where K is a symmetric convex body (see also [93, Proposition 1]). Note that

setting K = Bnp yields UBnp = Un,p and CBnp = Cn,p and the polar integration formula

for `np -balls, i.e., for any measurable function h : Rn → R it holds that∫
Rn

h(x) dx = n voln(Bnp )

∞∫
0

rn−1

∫
Sn−1
p

h(ry) Cn,p(dy) dr. (2.14)

Polar integration actually plays a key role in the proofs of the probabilistic represen-

tation results in the previous section. Since we will need a polar integration formula

in the non-negative orthant Rn
+ of Rn later in Chapter 3, we will present one for that

specific case.

Corollary 2.4.7 For any set K ⊂ Rn
+, n ∈ N, that is star-shaped with respect to the

origin, contains the origin in its interior with respect to Rn
+, and has finite non-zero

volume, and for any measurable function h : Rn
+ → R it holds that∫

Rn+

h(x) dx = n voln(K)

∞∫
0

rn−1

∫
∂K

h(ry) CK(dy) dr.

The proof of this again follows along the same lines as that of Proposition 3.3 in [98],

and hence will be omitted here.

Remark 2.4.8 Let us briefly address why we are considering `np -balls specifically in-

stead of other symmetric convex bodies, with the discussion in this remark being largely

based on [98, Proposition 3.3]. As pointed out therein, probabilistic representations of

Schechtman-Zinn-type as in Proposition 2.4.2 can be found for other symmetric con-

vex bodies K as well (this holds even for merely star-shaped bodies, although for these

‖ · ‖K does not define a norm as it generally is not absolutely homogeneous). For any

such body K, a random vector Z with K-radial distribution ψZ , and an independent

U ∼ Unif[0, 1] it holds that

i) Z
‖Z‖K

has distribution CK and is independent of ‖Z‖K ,

ii) the random vector U1/n Z
‖Z‖K

has distribution UK .
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The important difference to Bnp is, however, that by the specific shape of the Minkowski

functional of `np -balls we can construct a p-radial distribution for Z such that its co-

ordinates are i.i.d. and exhibit a convenient distribution in form of Np. For Bnp the

related Minkowski functional has the form

‖x‖Bnp = ‖x‖p =

(
n∑
i=1

|xi|p
)1/p

,

which is absolutely homogeneous and for which one can construct the p-radial distri-

bution

ψZ(‖x‖p) = (2 p1/p Γ(1 + 1/p))−ne−
1
p
‖x‖pp =

n∏
i=1

fNp(xi),

resulting in a probabilistic representation via i.i.d. p-generalized Gaussians. To under-

stand why `np -balls specifically are so accessible for calculations, let us consider a more

general case. Assume that for some K ⊂ Rn the Minkowski functional has the form

‖x‖K = F

(
n∑
i=1

fi(xi)

)
, (2.15)

where the f1, . . . , fn are so-called Orlicz functions, that is, real-valued, even, and convex

functions with fi(0) = 0 and fi(xi) > 0 for xi 6= 0 for all i ∈ {1, . . . , n}, and F is

non-negative and invertible. Then, up to normalizing constants, one can construct a

K-radial density

ψZ(‖x‖K) = e−F
−1(‖x‖K) = e−

∑n
i=1 fi(xi) =

n∏
i=1

e−fi(xi). (2.16)

This yields that a random vector Z with K-radial density ψZ has independent coordi-

nates. Choosing fi = f for all i ∈ {1, . . . , n} then yields that the coordinates of Z are

identically distributed as well. Using such Orlicz functions f and f1, . . . , fn, one can

define the objects

Bnf :=

{
x ∈ Rn :

n∑
i=1

f(xi) ≤ n

}
and Bnf1,...,fn :=

{
x ∈ Rn :

n∑
i=1

fi(xi) ≤ n

}
,

respectively called Orlicz balls and Musielak–Orlicz balls (cf. [75, Section 3.3]). These

are generalizations of `np -balls and have been subject to a lot of promising research (see

[3, 14, 35, 56, 60, 75]). However, it is actually the case that `np -balls are in fact the only

convex bodies, for which the Minkowski functional has the form as in (2.15).
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This is due to the fact that for any Orlicz function except f(x) = |x|p, x ∈ R, the

expression on the right-hand side in (2.15) does not define a norm, as the condition

of absolute homogeneity is not satisfied. If we postulate an Orlicz function f to be

absolutely homogeneous of some degree α > 0, it directly follows that f(x) = |x|αf(1),

yielding the Orlicz function corresponding to `np -balls up to a constant f(1). Thus,

Orlicz balls are an interesting and promising area of research, and they do allow for

a general Schechtman-Zinn-type probabilistic representation as above, but the cor-

responding radial density does not factorize, and therefore, one cannot represent a

random vector from an Orlicz ball via a random vector with i.i.d. coordinates that

have some distribution analogue to Np.

So, overall, one can see that while the `np -balls are not alone in the fact that there

exist very general Schechtman-Zinn-type representations, they do, however, combine

this with the specific convenient structure of their Minkowski functional, which is both

absolutely homogeneous and results in the probabilistic representations to be made up

of i.i.d. p-generalized Gaussians, making those representations specifically useful and

thereby `np -balls very accessible for calculations.
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Chapter 3

Weighted p-radial distributions on

Euclidean and matrix p-balls

This chapter extends the probabilistic representation result of [13] in Proposition 2.4.5

from the previous class of p-radial distributions Pn,p,W by an additional homogeneous

weight function f , denoted by Pn,p,W,f . These distributions are based on weighted

versions of the cone measure and the uniform distribution, Cn,p,f and Un,p,f , for which

we will first derive Schechtman-Zinn-type representations as in Proposition 2.4.2.

We then turn from Euclidean space Rn to the spaces of self-adjoint and non-self-adjoint

(n × n) matrices and consider analogues of the `np -balls therein, which we will call

matrix p-balls. We make use of the previously derived representation result for weighted

p-radial distributions on Euclidean p-balls to derive the eigenvalue distribution and

singular value distribution of random matrices with (unweighted) p-radial distribution

on those matrix p-balls.

As an application, we show large deviation principles both for the empirical measure

of random vectors with weighted p-radial distribution in Euclidean p-balls and for the

empirical spectral measure of random matrices with p-radial distributions in matrix

p-balls. For both cases, we chose Pn,p,W and its matrix-analogue for a Wn that varies

in n ∈ N, for which different limiting distributions of Wn encapsulate several concrete

distributions on Euclidean and matrix p-balls.

43



3.1. PRELIMINARIES

3.1 Preliminaries

Since the representation results for weighted p-radial distributions are often tailored

to their further use for matrix p-balls, we begin by establishing matrix p-balls and the

distributions on them which are of interest. Further, we will need quite a few Laplace

integration results to show the aforementioned large deviation principles, therefore we

will also present them here.

3.1.1 Matrix p-balls

Let Fβ be the real numbers (if β = 1), the complex numbers (if β = 2) or the Hamilto-

nian quaternions (if β = 4). For n ∈ N and β ∈ {1, 2, 4} we let Mn(Fβ) be the space of

(n× n) matrices with entries from Fβ. For a matrix A ∈Mn(Fβ) let A∗ be the adjoint

of A. It is well known that, together with the scalar product 〈A,B〉M := Re Tr(AB∗),

Mn(Fβ) becomes a Euclidean vector space. By volβ,n( · ) we denote the volume on

Mn(Fβ) corresponding to this scalar product. We can now introduce the self-adjoint

matrix space Hn(Fβ) := {A ∈Mn(Fβ) : A = A∗}. For each A ∈Hn(Fβ) we denote by

λ1(A) ≤ . . . ≤ λn(A) the (real) eigenvalues of A (see [6, Appendix E] for a formal defi-

nition in the case β = 4) and define λ(A) := (λ1(A), . . . , λn(A)) ∈ Rn. For 0 < p ≤ ∞
the self-adjoint matrix p-ball in Hn(Fβ) is defined as

Bn,Hp,β := {A ∈Hn(Fβ) : ‖λ(A)‖p ≤ 1} ,

where we interpret the condition as max{|λ1(A)|, . . . , |λn(A)|} ≤ 1 if p =∞. Similarly,

let
Sn−1,H
p,β := {A ∈Hn(Fβ) : ‖λ(A)‖p = 1}

be the self-adjoint matrix p-sphere. The uniform distribution on Bn,Hp,β and the cone

probability measure on Sn−1,H
p,β are denoted by UH

n,p,β and CH
n,p,β, respectively.

In the self-adjoint case, one can identify the matrix p-balls by virtue of the eigenvalues.

We now consider the non-self-adjoint case, where this will be done via the singular

values. For A ∈Mn(Fβ), n ∈ N, we denote by s1(A) ≤ . . . ≤ sn(A) the singular values

of A, that is, s1(A), . . . , sn(A) are the non-negative eigenvalues of
√
AA∗ (for the cases

β ∈ {1, 2}, and if β = 4 we refer to [6, Corollary E.13] for a formal definition) and define

s(A) := (s1(A), . . . , sn(A)) ∈ Rn
+. Additionally, set s2(A) := (s2

1(A), . . . , s2
n(A)) ∈ Rn

+

to be the vector of squared ordered singular values. We do so, as the coordinates of

s2(A) are the eigenvalues of AA∗ and can hence be treated in a fashion analogue to the

vector of eigenvalues without needing to account for the root-operation. For 0 < p ≤ ∞
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the non-self-adjoint matrix p-ball is defined as

Bn,Mp,β := {A ∈Mn(Fβ) : ‖s(A)‖p ≤ 1} ,

once again replacing the condition by max{|s1(A)|, . . . , |sn(A)|} ≤ 1 if p =∞. We also

denote by
Sn−1,M
p,β := {A ∈Mn(Fβ) : ‖s(A)‖p = 1}

the non-self-adjoint matrix p-sphere. The uniform distribution on Bn,Mp,β is denoted by

UM
n,p,β and we let CM

n,p,β be the cone probability measure on Sn−1,M
p,β . Since the singular

values are non-negative, we define the non-negative parts of the `np -ball and `np -sphere

as Bnp,+ := Bnp ∩ Rn
+ and Sn−1

p,+ := Sn−1
p ∩ Rn

+. Accordingly, we define the respective

uniform distribution Un,p,+ := UBnp,+ and cone probability measure Cn,p,+ := CSn−1
p,+

.

We thus identify each matrix in real, complex and quaternionic space with the n-

dimensional vector of its ordered eigen-/singular values and define the matrix p-balls

as the set of (non-)self-adjoint matrices, whose vector of ordered eigen-/singular values

has `np -norm less or equal to one, i.e., lies in the Euclidean p-ball. This identification of

matrix p-balls via Euclidean p-balls will be a running theme of this chapter. These sets

of matrices, as explained in the introduction, are the finite-dimensional analogue of the

unit balls of the Schatten trace classes of compact linear operators between two Hilbert

spaces with singular values forming a sequence in `p and their self-adjoint counterparts.

Remark 3.1.1

(i) Note that both Hn(Fβ) and Mn(Fβ) are Euclidean vector spaces of dimensions
βn(n−1)

2
+ βn and βn2, respectively, and Bn,Hp,β and Bn,Mp,β both contain their re-

spective origin in their interior and are star-shaped with respect to their origins,

as ‖λ(κA)‖p = κ‖λ(A)‖p ≤ 1 for κ ∈ [0, 1]
(
analogue for Bn,Mp,β

)
. Finally, the

volumes of Bn,Hp,β and Bn,Mp,β are non-zero and bounded (see, e.g., [63, 64]). Hence,

they both satisfy the conditions of the general polar integration formula given in

Lemma 2.4.6.

(ii) When referring to Bnp as the “Euclidean” `np -ball the term is supposed to denote

the commutative setting of Bnp in contrast to matrix p-balls Bn,Hp,β and Bn,Mp,β in the

non-commutative setting of matrix space, despite the matrix spaces themselves

being Euclidean vector spaces as well.
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For a Borel probability measure W on [0,∞) we can now construct the analogues of

the measure Pn,p,W on the matrix p-balls Bn,Hp,β and Bn,Mp,β as

PH
n,p,W,β := W({0})CH

n,p,β + ΨHUH
n,p,β on Bn,Hp,β , (3.1)

with ΨH(A) := ψH(‖λ(A)‖p) for A ∈ Bn,Hp,β , and

PM
n,p,W,β := W({0})CM

n,p,β + ΨMUM
n,p,β on Bn,Mp,β , (3.2)

with ΨM(A) := ψM(‖s2(A)‖p) for A ∈ Bn,Mp,β , where ψH(s) and ψM(s) are p-radial

densities given by

1

Γ
(

1 + n+m
p

) 1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w
n+m
p e−

sp

1−spw W(dw)

 , 0 ≤ s ≤ 1,

with m = βn(n−1)
2

for ψH(s), and m = β
2
n2 − n for ψM(s).

We define our distribution classes on matrix p-balls similarly to those on Euclidean

p-balls via a p-radial distribution. Although we do not yet have a probabilistic rep-

resentation for PH
n,p,W,β and PM

n,p,W,β as in Proposition 2.4.5, we still want to analyze

the eigenvalue and singular value distribution of random matrices selected on Bn,Hp,β and

Bn,Mp,β according to these distributions. We will be able to achieve this by establishing

a new connection between these distributions on matrix p-balls and suitably weighted

distributions on Euclidean p-balls. In contrast to the results of Proposition 2.4.5, how-

ever, we need to account for the repulsion between the eigenvalues and singular values,

hence the p-radial densities ψH(s), ψM(s) look different than the ψ in Proposition 2.4.5,

insofar as the n in ψ is replaced by n + m, with m being the degree of homogeneity

m of these repulsion factors. We will denote these repulsion factors of the eigen- and

singular values by ∆c
β and ∇c

β (formal definitions will follow in Section 3.3), and as

we will see, the two values for m in the definitions (3.1) and (3.2) are their respective

degrees of homogeneity. We will explain this in further detail in the following sections.

Also, the fact that PH
n,p,W,β and PM

n,p,W,β are in fact probability measures will follow

directly from their probabilistic representations in Theorem 3.3.1 and Theorem 3.3.5,

respectively.
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3.1.2 Asymptotic approximations for Laplace-type integrals

We will need some tools to analyze asymptotic behaviour of Laplace-type integrals

to prove our large deviation results. One of them will be provided by the Laplace

principle, as presented in [4, Proposition 2.10], and several useful adaptations fitting

for our purposes. We begin with the former.

Proposition 3.1.2 Let −∞ < a < b < +∞ and f : [a, b]→ R be a twice continuously

differentiable function with a unique point x0 ∈ (a, b) such that f(x0) = maxx∈[a,b] f(x)

and f ′′(x0) < 0. Further, let h : [a, b]→ R be a positive measurable function. Then

lim
n→∞

 b∫
a

h(x) enf(x) dx

(√ 2π

n|f ′′(x0)|
h(x0) enf(x0)

)−1

= 1.

Remark 3.1.3 Proposition 3.1.2 effectively means that

lim
n→∞

1

n
log

b∫
a

h(x) enf(x) dx = f(x0).

However, we want to fit this result somewhat further to our needs. Assuming the

set-up of Proposition 3.1.2, let s(1) :=
(
s

(1)
n

)
n∈N and s(2) :=

(
s

(2)
n

)
n∈N be sequences,

where s(1) is non-negative and bounded, and s(2) is positive (or at least positive almost

everywhere), such that

lim
n→∞

1

n

∣∣log s(2)
n

∣∣ < +∞. (3.3)

Expanding the fraction in the Laplace principle in Proposition 3.1.2 by s
(2)
n and adding

lim
n→∞

s
(1)
n

s
(2)
n

√
2π

n|f ′′(x0)| h(x0) enf(x0)
,

which is zero, since s
(1)
n is bounded, yields that

lim
n→∞

s(1)
n + s(2)

n

b∫
a

h(x) enf(x) dx

(s(2)
n

√
2π

n|f ′′(x0)|
h(x0) enf(x0)

)−1

= 1.

Thus, we have that

lim
n→∞

1

n
log

s(1)
n + s(2)

n

b∫
a

h(x) enf(x) dx

 = lim
n→∞

1

n
log s(2)

n + f(x0). (3.4)

47



3.1. PRELIMINARIES

The last tool for analyzing asymptotic integral behaviour will be the following result

by Breitung and Hohenbichler [19], that provides us with asymptotic approximations

of Laplace-type integrals even if the involved functions maximize on the boundary of

the integration domain, specifically at the origin. Concretely, this is the result given in

[19, Lemma 4] for n = 1, k = 1, applied to functions h and f . The parameter λ from

[19] in our setting is replaced by the integer n ∈ N. Since n = k = 1, the last condition

in [19, Lemma 4] regarding the Hessian of f at 0, that is, f ′′(0), falls away.

Proposition 3.1.4 Let F ⊂ R be a compact set with 0 ∈ F ◦. If

(a) f : F → R and h : F → R are continuous functions with h(0) 6= 0,

(b) f(x) < f(0) for all x ∈ F ∩ R+ \ {0},

(c) there exists a neighbourhood V ⊂ F of 0 in which f is twice continuously

differentiable,

(d) f ′(0) < 0,

then it holds that

lim
n→∞

 ∫
F∩R+

h(x) enf(x) dx

(n−1 |f ′(0)|−1
h(0) enf(0)

)
= 1.

We will only need the results from Proposition 3.1.4 to handle the asymptotics of one

specific Laplace-type integral over the set [0, 1], where the function in the exponent

maximizes on the boundary at 0. Hence we will derive another asymptotic integral

expansion result tailored specifically to our purposes.

Remark 3.1.5 For functions h and f as described in Proposition 3.1.4 and the set

F = [−1, 1] it holds that

lim
n→∞

1

n
log

1∫
0

h(x) enf(x) dx = lim
n→∞

1

n
log

∫
[−1,1]∩R+

h(x) enf(x) dx = f(0).

By the same arguments as in Remark 3.1.3 it also holds that

lim
n→∞

1

n
log

s(1)
n + s(2)

n

1∫
0

h(x) enf(x) dx

 = lim
n→∞

1

n
log s(2)

n + f(0) (3.5)

for sequences s(1) :=
(
s

(1)
n

)
n∈N and s(2) :=

(
s

(2)
n

)
n∈N as described there.
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3.2 Weighted p-radial distributions on Euclidean

p-balls

In this section, we describe a class of probability distributions on the `np -ball Bnp in

Rn and its non-negative counterpart Bnp,+ in Rn
+, generalizing the approach in [13], by

allowing for an additional homogeneous weight function. To introduce our framework,

we let f : Rn → [0,∞) be a measurable function, which we assume to be (positively)

homogeneous of degree m for some m ≥ 0. By this we mean that f(tx) = tmf(x) for

all t ≥ 0. We also assume that f is integrable with respect to the cone probability

measure Cn,p on the `np -sphere Sn−1
p . In this chapter, we write F+

m (Rn) for the class

of such functions (omitting its dependence on p in our notation). For p ∈ (0,∞) and

f ∈ F+
m (Rn) we let Cn,p,f ∈ (0,∞) be the normalization constant such that

Cn,p,f

∫
Rn

f(x) e−‖x‖
p
p dx = 1, (3.6)

and denote by Un,p,f the probability measure on Bnp with density

x 7→ Cn,p,f voln(Bnp ) Γ

(
n+m

p
+ 1

)
f(x), x ∈ Bnp ,

with respect to Un,p. Similarly, let Cn,p,f be the probability measure on Sn−1
p with

density

y 7→ Cn,p,f n voln(Bnp ) p−1 Γ

(
n+m

p

)
f(y), y ∈ Sn−1

p ,

with respect to Cn,p. Un,p,f and Cn,p,f are the aforementioned weighted versions of

uniform distribution and cone measure, repectively.

Let us briefly show that the functions above defining Cn,p,f and Un,p,f are in fact

densities. Since f is chosen to be measurable and non-negative, it only remains to

check that they integrate to one over their respective domains. We start off with

Cn,p,f . It holds that∫
Sn−1
p

Cn,p,f (dy) = Cn,p,f n voln(Bnp ) p−1 Γ

(
n+m

p

) ∫
Sn−1
p

f(y) Cn,p(dy).

Furthermore, it follows via a change of variable that

∞∫
0

rn+m−1 er
p

dr = p−1

∞∫
0

(rp)
n+m
p
−1 er

p

drp = p−1 Γ

(
n+m

p

)
. (3.7)

49
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Using (3.7) and the polar integration formula for `np -balls (2.14), we get that∫
Sn−1
p

Cn,p,f (dy) = Cn,p,f n voln(Bnp )

∞∫
0

rn+m−1 er
p

dr

∫
Sn−1
p

f(y) Cn,p(dy)

= Cn,p,f n voln(Bnp )

∞∫
0

rn−1

∫
Sn−1
p

f(ry) er
p

Cn,p(dy) dr

= Cn,p,f

∫
Rn

f(x) e‖x‖
p
p dx

= 1.

Hence, the function defining Cn,p,f is in fact a density with respect to Cn,p. As an

auxiliary formula we get∫
Sn−1
p

f(y) Cn,p(dy) =

(
Cn,p,f n voln(Bnp ) p−1 Γ

(
n+m

p

))−1

. (3.8)

We now proceed to Un,p,f . Again, using the polar integration formula for `np -balls (2.14)

and the above auxiliary result (3.8), we get that∫
Bnp

Un,p,f (dx) = Cn,p,f voln(Bnp ) Γ

(
n+m

p
+ 1

) ∫
Bnp

f(x) Un,p(dx)

= Cn,p,f Γ

(
n+m

p
+ 1

) ∫
Rn

f(x) 1Bnp (x) dx

= Cn,p,f Γ
(n+m

p
+ 1
)
n voln(Bnp )

∞∫
0

rn−1

∫
Sn−1
p

f(ry) 1Bnp (ry) Cn,p(dy) dr

= Cn,p,f n voln(Bnp ) Γ
(n+m

p
+ 1
) 1∫

0

rn+m−1 dr

∫
Sn−1
p

f(y) Cn,p(dy)

= Cn,p,f n voln(Bnp ) p−1 Γ
(n+m

p

) ∫
Sn−1
p

f(y) Cn,p(dy)

= 1.

As mentioned in Section 3.1.1, the singular values of a matrix are non-negative and

therefore, as we will see in Section 3.3.2, the vector of singular values is distributed

on Bnp,+ and Sn−1
p,+ . For p ∈ (0,∞) and f ∈ F+

m (Rn
+) we define a constant Cn,p,f,+
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and distributions Un,p,f,+ and Cn,p,f,+ analogue to the above with respect to Bnp,+ and

Sn−1
p,+ . We want to formulate all results in this section for both the classical `np -balls

and -spheres and their non-negative counterparts. However, as the proofs work in an

entirely analogue fashion, for the sake of brevity we will use the index � with all relevant

quantities, indicating that any given result can be formulated with and without a “+”

in the index of these quantities, i.e., for both Bnp , Sn−1
p and Bnp,+, Sn−1

p,+ . The relevant

proof will then always be carried out for Bnp and Sn−1
p , and only the changes necessary

in the non-negative case pointed out, if any need to be made.

In the next lemma we derive probabilistic representations of the distributions Un,p,f,�

and Cn,p,f,�. This was proven in [63, Lemma 4.2] for the classical case in Rn and the

proof here works completely analogously.

Lemma 3.2.1 Let 0 < p < ∞ and f ∈ F+
m (Rn

�) for some m ≥ 0. Further, let

X = (X1, . . . , Xn) be a random vector with joint density Cn,p,f,� e
−‖x‖pp f(x), x ∈ Rn

�.

(i) Then the random vector X
‖X‖p has distribution Cn,p,f,� and X

‖X‖p and ‖X‖p are

independent.

(ii) Independently of X, let U be uniformly distributed on [0, 1]. Then U
1

n+m X
‖X‖p has

distribution Un,p,f,�.

Proof. Consider a non-negative measurable function h : Sn−1
p → R. We use the polar

integration formula for `np -balls (2.14) as well as the homogeneity of f to deduce that

Eh
(

X

‖X‖p

)
= Cn,p,f

∫
Rn

f(x) e−‖x‖
p
p h

(
x

‖x‖p

)
dx

= Cn,p,f n voln(Bnp )

∞∫
0

rn+m−1 e−r
p

dr

∫
Sn−1
p

f(y)h(y) Cn,p(dy)

= Cn,p,f n voln(Bnp ) p−1 Γ

(
n+m

p

) ∫
Sn−1
p

f(y)h(y) Cn,p(dy)

=

∫
Sn−1
p

h(y) Cn,p,f (dy).

This proves the claim in (i). To show (ii), let h : Bnp → R be a non-negative measurable

function. We notice that if U is uniformly distributed on [0, 1], the random variable

U
1

n+m has density r 7→ (n+m) rn+m−1, r ∈ [0, 1], with respect to the Lebesgue measure
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on [0, 1]. Using the result from part (i), the homogeneity of f , and the polar integration

formula for `np -balls (2.14), we find that

Eh

(
U

1
n+m

X

‖X‖p

)

= Cn,p,f n voln(Bnp ) p−1 Γ

(
n+m

p

) 1∫
0

(n+m) rn+m−1

∫
Sn−1
p

f(y)h(ry) Cn,p(dy) dr

= Cn,p,f Γ

(
n+m

p

)
n+m

p
n voln(Bnp )

1∫
0

rn−1

∫
Sn−1
p

f(ry)h(ry) Cn,p(dy) dr

= Cn,p,f Γ

(
n+m

p
+ 1

) ∫
Bnp

f(x)h(x) dx

= Cn,p,f voln(Bnp ) Γ

(
n+m

p
+ 1

) ∫
Bnp

f(x)h(x) Un,p(dx).

=

∫
Bnp

h(x) Un,p,f (dx).

The proof for Bnp and Sn−1
p is thus complete. In the non-negative setting one proceeds

in the same way, but applies the non-negative polar integration formula from Corollary

2.4.7 for K = Bnp,+.

Remark 3.2.2 Note, that the distribution of a random vector X with joint den-

sity Cn,p,f e
−‖x‖pp f(x), x ∈ Rn, is just the n-fold product distribution Ñ⊗np of the p-

generalized Gaussian distribution Ñp, weighted by the function f (and appropriately

renormalized). So the distribution Ñp is in fact the core building block of the proba-

bilistic representations, but is somewhat implicit in the density of the random vector.

In the non-negative case Ñp is replaced by the truncated and renormalized version of

Ñp in this role.

Next we present the main result of this section. As stated previously, it is a more

general version of [13, Theorem 3] including a homogeneous weight function. Plugging

in the function f ≡ 1, which is homogeneous of degree m = 0, yields the original results

of [13], again as in Proposition 2.4.5. The proof will work along the lines of that in [13]

and relies on multiple applications of the polar integration formula.
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Theorem 3.2.3 Let W be a Borel probability measure on [0,∞). Let 0 < p <∞ and

f ∈ F+
m (Rn

�) for some m ≥ 0. Let X = (X1, . . . , Xn) be a random vector with density

Cn,p,f,� e
−‖x‖pp f(x), x ∈ Rn

�, and W a non-negative random variable with distribution

W, which is independent of X. Then the random vector

X

(‖X‖pp +W )1/p

has distribution Pn,p,W,f,� := W({0})Cn,p,f,� + ΨfUn,p,f,�, where Ψf (x) = ψf (‖x‖p),

x ∈ Bnp,�, is a p-radial density with

ψf (s) =
1

Γ
(
n+m
p

+ 1
) 1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w
n+m
p e−

sp

1−spw W(dw)

 , 0 ≤ s ≤ 1.

Proof. Let h : Rn → R be an arbitrary non-negative measurable function. Then,

Eh

(
X

(‖X‖pp +W )1/p

)
=

∫
[0,∞)

Eh

(
X

(‖X‖pp + w)1/p

)
W(dw)

=

∫
[0,∞)

Eh

(( ‖X‖pp
‖X‖pp + w

)1/p
X

‖X‖p

)
W(dw). (3.9)

For fixed w > 0 we compute the expectation under the integral sign as follows by

means of the polar integration formula for `np -balls (2.14):

Eh

(( ‖X‖pp
‖X‖pp + w

)1/p
X

‖X‖p

)

= Cn,p,f

∫
Rn

e−‖x‖
p
p f(x)h

(( ‖x‖pp
‖x‖pp + w

)1/p
x

‖x‖p

)
dx

= n voln(Bnp )Cn,p,f

∞∫
0

rn−1 e−r
p

∫
Sn−1
p

f(ry)h

((
rp

rp + w

)1/p

y

)
Cn,p(dy) dr

= n voln(Bnp )Cn,p,f

∞∫
0

rn+m−1 e−r
p

∫
Sn−1
p

f(y)h

((
rp

rp + w

)1/p

y

)
Cn,p(dy) dr,

where, in addition, we used the assumption that f is m-homogeneous. Applying the

change of variables rp = sp

1−sp w, we get
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Eh

(( ‖X‖pp
‖X‖pp + w

)1/p
X

‖X‖p

)

= n voln(Bnp )Cn,p,f w
n+m
p

1∫
0

sn+m−1

(1− sp)
n+m
p

+1
e−

sp

1−spw

∫
Sn−1
p

f(y)h(sy) Cn,p(dy) ds.

Also, we know from Lemma 3.2.1 (i) that X
‖X‖p has distribution Cn,p,f , which in turn

has density

y 7→ Cn,p,f n voln(Bnp ) p−1 Γ

(
n+m

p

)
f(y), y ∈ Sn−1

p ,

with respect to Cn,p. Thus,

Eh

(( ‖X‖pp
(‖X‖pp + w)1/p

)1/p
X

‖X‖p

)

= pΓ

(
n+m

p

)−1

w
n+m
p

1∫
0

sn+m−1

(1− sp)
n+m
p

+1
e−

sp

1−spw Eh

(
s
X

‖X‖p

)
ds.

As a consequence, recalling (3.9), we see that

Eh

(
X

(‖X‖pp +W )1/p

)
−W({0})Eh

(
X

‖X‖p

)

= pΓ

(
n+m

p

)−1 ∫
(0,∞)

w
n+m
p

1∫
0

sn+m−1

(1− sp)
n+m
p

+1
e−

sp

1−spw Eh

(
s
X

‖X‖p

)
dsW(dw)

=
n+m

Γ
(
n+m
p

+ 1
) 1∫

0

sn+m−1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w
n+m
p e−

sp

1−spw W(dw)

Eh

(
s
X

‖X‖p

)
ds

= (n+m)

1∫
0

sn+m−1 ψf (s) Eh

(
s
X

‖X‖p

)
ds. (3.10)

Finally, if M is any probability measure on Bnp with p-radial density Φ(x) = φ(‖x‖p),
x ∈ Bnp , with respect to Un,p,f , the polar integration formula (2.14), together with

Lemma 3.2.1 (i), yield the identity
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∫
Bnp

h(x) M(dx) =

∫
Bnp

h(x) Φ(x) Un,p,f (dx)

= Cn,p,f Γ

(
n+m

p
+ 1

)∫
Bnp

h(x)φ(‖x‖p) f(x) dx

= (n+m)Cn,p,f p
−1 Γ

(
n+m

p

)
n voln(Bnp )

×
1∫

0

φ(s) sn+m−1

∫
Sn−1
p

f(y)h(sy) Cn,p(dy) ds

= (n+m)

1∫
0

φ(s) sn+m−1 Eh

(
s
X

‖X‖p

)
ds. (3.11)

The claim follows by comparing (3.10) with (3.11). Again, the same follows in the non-

negative setting by using the non-negative polar integration formula from Corollary

2.4.7 for K = Bnp,+.

Remark 3.2.4 Taking f ≡ 1, which is homogeneous of degree m = 0, reduces Un,p,f,�

to Un,p,� on Bnp,� and Cn,p,f,� to Cn,p,�. As a consequence, Theorem 3.2.3 turns into

[13, Theorem 3] (see Proposition 2.4.5), as already pointed out above.

Let us now consider a few specific distributions for W and observe the corresponding

distributions Pn,p,W,f,� on Bnp,�.

Example 3.2.5 Let f ∈ F+
m (Rn

�) and W = δ0 be the Dirac measure at 0. Then

Ψf ≡ 0 and W({0}) = 1, thus for Pn,p,W,f,� we obtain the weighted cone probability

measure Cn,p,f,� on Bnp,�.

Example 3.2.6 Let f ∈ F+
m (Rn

�) and W = E(1) be the exponential distribution with

parameter 1. In this case, we get

ψf (s) =
1

Γ
(
n+m
p

+ 1
) 1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w
n+m
p e−

sp

1−spw E(1)(dw)


=

1

Γ
(
n+m
p

+ 1
) 1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w(n+m
p

+1)−1e−
1

1−spw dw

 = 1.

Thus, Pn,p,W,f,� is the weighted uniform distribution Un,p,f,� on Bnp,�.
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Example 3.2.7 As a third example, we consider f ∈ F+
m (Rn

�) and W = G(α, 1) to

be a gamma distribution with shape α > 0 and rate 1. In this situation the random

variable X/(‖X‖pp + W )1/p generates a beta-type distribution Pn,p,W,f,� = ΨfUn,p,f,�

on Bnp,�, whose density is a constant multiple of x 7→ (1 − ‖x‖pp)α−1, ‖x‖p ≤ 1. To see

that, we set W = G(α, 1) and compute ψf (s) for s ∈ [0, 1]:

ψf (s) =
1

Γ
(
n+m
p

+ 1
) 1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w
n+m
p e−

sp

1−spw G(α, 1)(dw)


=

1

Γ(α)Γ
(
n+m
p

+ 1
) 1

(1− sp)
n+m
p

+1

 ∫
(0,∞)

w(α+n+m
p

)−1e−
1

1−spw dw


=

Γ
(
α + n+m

p

)
Γ(α)Γ

(
n+m
p

+ 1
)(1− sp)α−1.

Remark 3.2.8 In [63, Lemma 4.2] (and Lemma 3.2.1 (ii)) we have seen a different

probabilistic representation for the uniform distribution Un,p,f,� to that in Example

3.2.7, namely U
1

n+m X
‖X‖p , where U is uniformly distributed on [0, 1] and independent of

X. However, these two representations are equivalent. Indeed, since both are p-radially

symmetric, it is sufficient to prove that the distributions of the p-norms of the random

variables U
1

n+m X
‖X‖p and X

(‖X‖pp+W )1/p
with W ∼ W = G(α, 1), α = 1, are the same.

For this we start by noticing that

P
(
‖X‖pp ≤ t

)
= P

(
‖X‖p ≤ t1/p

)
= Cn,p,f

∫
{x∈Rn:‖x‖p≤t1/p}

e−‖x‖
p
pf(x) dx.

Using the polar integration formula for `np -balls (2.14), the fact that f is homogeneous

of degree m, and the substitution s = rp, we deduce that

P(‖X‖pp ≤ t) = Cn,p,f n voln
(
Bnp
) t1/p∫

0

rn−1 e−r
p

∫
Sn−1
p

f(ry) Cn,p(dy) dr

= Cn,p,f n voln
(
Bnp
) t1/p∫

0

rn+m−1 e−r
p

∫
Sn−1
p

f(y) Cn,p(dy) dr

=
1

Γ
(
n+m
p

) t∫
0

s
n+m
p
−1 e−s ds.
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This proves that ‖X‖pp ∼ G(n+m
p
, 1). By the well-known relation between the gamma

and the beta distribution (2.6), this implies that

‖X‖pp
‖X‖pp +W

∼ B

(
n+m

p
, 1

)
.

The proof is completed by noting that U
p

n+m follows precisely the same beta distribu-

tion: For t ∈ [0, 1] it holds that

P
(
U

p
n+m ≤ t

)
= P

(
U ≤ t

n+m
p

)
= t

n+m
p .

Taking the derivative of the above yields

d

dt
P
(
U

p
n+m ≤ t

)
=
n+m

p
t
n+m
p
−1 =

Γ
(
n+m
p

+ 1
)

Γ
(
n+m
p

)
Γ(1)

t
n+m
p
−1 (1− t)1−1,

which shows the aforementioned beta distribution of U
p

n+m . By analogue arguments

the same holds in the non-negative setting. Note that taking the p-norm of X
(‖X‖pp+W )1/p

for W = G(α, 1) for some α > 0, by the same arguments, yields

‖X‖pp
‖X‖pp +W

∼ B

(
n+m

p
, α

)
.

Again, by analogue arguments the same holds in the non-negative setting.

Choosing W to be a gamma distribution in the distribution Pn,p,W,f,� leaves us with

Pn,p,W,f,� = ΨfUn,p,f,�, as W({0}) = G(a, b)({0}) = 0 for all a, b > 0. So, in this case

all probability mass is distributed within the interior of Bnp,�. But we are also interested

in cases where a certain amount of probability mass remains at the boundary. For this

we consider the mixture Pn,p,W,f,� = ϑCn,p,f,� + (1− ϑ)ΨfUn,p,f,� for ϑ ∈ [0, 1], which

is simply a convex combination of weighted cone probability measure and weighted

uniform distribution or beta-type distribution as in Example 3.2.7. This will be the

main class of distributions we will consider in Section 3.4 and Section 3.5 below. In

this context, the following two propositions will turn out to be useful. The first one

shows that for a specific choice of W the random vector from Theorem 3.2.3 generates

the required distribution. The second deals with the p-norm of that random vector.

Proposition 3.2.9 Let ϑ ∈ [0, 1], α ∈ (0,∞), and consider the probability measure

W = ϑδ0 + (1− ϑ) G(α, 1). Other than that, we assume the set-up of Theorem 3.2.3.

Then the random vector X/
(
‖X‖pp + W

)1/p
generates the distribution Pn,p,W,f,� =

ϑCn,p,f,� + (1− ϑ)ΨfUn,p,f,�, with ΨfUn,p,f,� on Bnp,� being a beta-type distribution.
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Proof. Let h : Rn → R be a non-negative measurable function. Then, following the

arguments in the proof of Theorem 3.2.3 and using the results from Lemma 3.2.1 (i)

and Example 3.2.7, we get

Eh

(
X

(‖X‖pp +W )1/p

)

=

∫
[0,∞)

Eh

(
X

(‖X‖pp + w)1/p

)
W(dw)

= Eh

(
X

‖X‖p

)
W({0}) +

∫
(0,∞)

Eh

(
X

(‖X‖pp + w)1/p

)
W(dw)

= ϑ

∫
Sn−1
p

h(x) Cn,p,f (dx) + (1− ϑ)

∫
(0,∞)

Eh

(
X

(‖X‖pp + w)1/p

)
G(α, 1)(dw)

= ϑ

∫
Sn−1
p

h(x) Cn,p,f (dx) + (1− ϑ)

∫
Bnp

h(x) ΨfUn,p,f (dx).

This completes the proof.

Proposition 3.2.10 We assume the same set-up as in Theorem 3.2.3 for the specific

choice W = ϑδ0 + (1− ϑ) G(α, 1), where ϑ ∈ [0, 1] and α ∈ (0,∞). Then the random

variable B := ‖X‖pp/
(
‖X‖pp +W

)
has distribution ϑδ1 + (1− ϑ)B

(
n+m
p
, α
)
.

Proof. Let A ⊂ R be a Borel set. Then, by the same arguments as in Remark 3.2.8,

we get

P(B ∈ A) = P
( ‖X‖pp
‖X‖pp +W

∈ A
)

=

∫
[0,∞)

P
( ‖X‖pp
‖X‖pp + w

∈ A
)

W(dw)

= P(1 ∈ A)ϑδ0({0}) +

∫
(0,∞)

P
( ‖X‖pp
‖X‖pp + w

∈ A
)

(1− ϑ) G(α, 1)(dw)

= ϑδ1(A) + (1− ϑ) B

(
n+m

p
, α

)
(A).

The proof is thus complete.
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3.3 Eigenvalue & singular value distributions on

matrix p-balls

After having studied weighted p-radial distributions in Euclidean p-balls, we now turn

to the eigenvalue and singular value distributions for self-adjoint and non-self-adjoint

random matrices in matrix p-balls. To do so, we present two versions of the Weyl

integration formula, one for self-adjoint matrices and one for non-self-adjoint matrices.

For matrix-functions that only depend on their eigen-/singular values, they allow us

to rewrite their integral over matrix space as an integral over Euclidean space with an

additional (weight-)function in the integral.

The main results of this section provide the explicit eigen-/singular value distributions

for random matrices with distributions PH
n,p,W,β and PM

n,p,W,β on matrix p-balls by

representing them as weighted p-radial distributions on Euclidean p-balls, thereby gen-

eralizing the probabilistic representations in [63, Corollary 4.3], using a similar method

of proof to do so, based on polar integration and the Weyl integration formula.

3.3.1 Eigenvalue distribution for self-adjoint random matrices

in matrix p-balls

We begin by presenting the Weyl integration formula for Hn(Fβ), see [6, Proposition

4.1.1] and also [6, Proposition 4.1.14]. It states that for any measurable function

f : Hn(Fβ)→ [0,∞), such that f(A) only depends on the eigenvalues of A, we have∫
Hn(Fβ)

f(A) volβ,n(dA) = cHn,β

∫
Rn

f(λ)
∏

1≤i<j≤n

|λi − λj|β dλ, (3.12)

where for every λ = (λ1, . . . , λn) ∈ Rn we write f(λ) = f(A) for any self-adjoint matrix

A ∈Hn(Fβ) with (unordered) eigenvalues λ1, . . . , λn, and the constant cHn,β is given by

cHn,β :=
1

n!

(
2πβ/2

Γ
(
β
2

))−n n∏
k=1

2(2π)βk/2

2β/2Γ
(
βk
2

) .
To distinguish between the distributions of random eigenvalues in the standard in-

creasing order and in unordered form, we will use the following version of the Weyl

integration formula∫
Hn(Fβ)

f(A) volβ,n(dA) = n! cHn,β

∫
Rn

f(λ)
∏

1≤i<j≤n

|λi−λj|β 1{x∈Rn:x1≤...≤xn}(λ) dλ. (3.13)
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We do so to carry out most of the proof of the main theorem of this section in the

more canonical increasingly ordered setting, so we only need to apply an appropriate

permutation argument at the very end.

The following theorem shows how the distribution PH
n,p,W,β in matrix p-balls is con-

nected to the weighted p-radial distribution Pn,p,W,f in Euclidean p-balls studied in

the previous section. It is derived by application of Weyl’s integration formula in con-

nection with the polar integration formula. In the case that W({0}) = 0 it could also

be deduced from a classical formula in [104], which is essentially based on the same

ingredients, see also [18, Lemma 4.3.1]. However, we present a detailed argument for

completeness.

The following functions and normalization terms are needed for said result: For x ∈ Rn,

set

∆β(x) :=
∏

1≤i<j≤n

|xi − xj|β,

which is the repulsion factor of the eigenvalues of a random matrix given by the Weyl

integration formula (3.12). For a matrix with eigenvalues λ note that ∆β(λ) is also

its Vandermonde determinant. Additionally, in the spirit of (3.6), define a constant

Cn,p,∆β
such that

Cn,p,∆β

∫
Rn

∆β(x) e−‖x‖
p
p dx = 1.

Further, define the function ∆c
β(x) := C∆β

∆β(x) with a more elaborate normalization

factor

C∆β
:=

cHn,β

volβ,n
(
Bn,Hp,β

)
Cn,p,∆β

Γ
(
n+m
p

+ 1
) ,

where m = 1
2
βn(n− 1) is the degree of homogeneity of ∆β. Lastly, we define another

normalization constant Cn,p,∆c
β

in the spirit of (3.6) satisfying

Cn,p,∆c
β

∫
Rn

∆c
β(x) e−‖x‖

p
p dx = 1.

Theorem 3.3.1 Let 0 < p < ∞, β ∈ {1, 2, 4} and W be a probability measure on

[0,∞). Let W be a real-valued random variable with distribution W and, independently

of W , X be a random vector with density Cn,p,∆c
β
e−‖x‖

p
p ∆c

β(x), x ∈ Rn, with respect to

the Lebesgue measure. Let Z be a random matrix with distribution

PH
n,p,W,β := W({0})CH

n,p,β + ΨHUH
n,p,β
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on Bn,Hp,β , where ΨH(A) := Ψ∆c
β
(λ(A)) = ψ∆c

β
(‖λ(A)‖p) for A ∈ Bn,Hp,β , and ψ∆c

β
is

defined as in Theorem 3.2.3 for f = ∆c
β. Independently, let σ be a uniform random

permutation in the symmetric group on n elements. Then

λσ(Z) :=
(
λσ(1)(Z), . . . , λσ(n)(Z)

)
and

X

(‖X‖pp +W )1/p

are identically distributed on Bnp with distribution

Pn,p,W,∆c
β

:= W({0})Cn,p,∆c
β

+ Ψ∆c
β
Un,p,∆c

β
.

Remark 3.3.2

(i) If the probability measure W is the Dirac measure at 0 (that is, PH
n,p,W,β = CH

n,p,β)

or the exponential distribution with parameter 1 (that is, PH
n,p,W,β = UH

n,p,β) the

result was previously obtained in [63].

(ii) We can see that the definition ΨH(A) := ψ∆c
β
(‖λ(A)‖p) coincides with that of

ΨH(A) from (3.1), as the degree of homogeneity m = 1
2
βn(n− 1) is the same.

Proof of Theorem 3.3.1. Let h : Rn → R be a non-negative measurable function and

h̃ : Hn(Fβ)→ R given by h̃(A) := h(λ(A)) for A ∈Hn(Fβ). We now compute Eh̃(Z):

Eh̃(Z) =

∫
Hn(Fβ)

h̃(A)
(
W({0})CH

n,p,β + ΨHUH
n,p,β

)
(dA)

= W({0})
∫

Sn−1,H
p,β

h(λ(A)) CH
n,p,β(dA) +

∫
Bn,Hp,β

h(λ(A)) ΨHUH
n,p,β(dA). (3.14)

Consider the radial extension h
(
λ(A)/‖λ(A)‖p

)
, A ∈Hn(Fβ), of h(λ(A)) from Sn−1,H

p,β

onto Hn(Fβ). By Remark 3.1.1 (i) we can apply the polar integration formula from

Lemma 2.4.6 to Bn,Hp,β to get∫
Bn,Hp,β

h

(
λ(A)

‖λ(A)‖p

)
UH
n,p,β(dA)

=

(
βn(n− 1)

2
+ βn

) 1∫
0

r
βn(n−1)

2
+βn−1

∫
Sn−1,H
p,β

h(λ(A)) CH
n,p,β(dA) dr

=

∫
Sn−1,H
p,β

h(λ(A)) CH
n,p,β(dA). (3.15)
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With (3.15) it follows that (3.14) can be rewritten as:

Eh̃(Z) = W({0}) volβ,n

(
Bn,Hp,β

)−1
∫

Bn,Hp,β

h

(
λ(A)

‖λ(A)‖p

)
volβ,n(dA)

+ volβ,n

(
Bn,Hp,β

)−1
∫

Bn,Hp,β

h(λ(A))ΨH(A)volβ,n(dA).

To both of those terms on the right-hand side we can now apply the “ordered” Weyl

integration formula (3.13) with respect to the functions f1(A) = h
(
λ(A)/‖λ(A)‖p

)
and

f2(A) = h(λ(A)) ΨH(λ(A)). It follows from ∆β ∈ F+
m (Rn) with m = 1

2
βn(n − 1) and

ΨH = Ψ∆β
= Ψ∆c

β
that

Eh̃(Z) =
n! cHn,β

volβ,n

(
Bn,Hp,β

) W({0})
∫
Bnp

h
( λ

‖λ‖p

)
∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) dλ

+
n! cHn,β

volβ,n

(
Bn,Hp,β

) ∫
Bnp

h(λ) Ψ∆c
β
(λ) ∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) dλ

=
n! cHn,β

volβ,n
(
Bn,Hp,β

) W({0})
∫
Bnp

h
( λ

‖λ‖p

)
∆β

( λ

‖λ‖p

)
‖λ‖mp 1{x∈Rn:x1≤...≤xn}(λ) dλ

+
n! cHn,β

volβ,n
(
Bn,Hp,β

) ∫
Bnp

h(λ) Ψ∆c
β
(λ) ∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) dλ.

Applying now the polar integration formula from Lemma 2.4.6, we conclude that the

last expression is equal to

n! cHn,β n voln(Bnp )

volβ,n

(
Bn,Hp,β

) W({0})
1∫

0

rn+m−1dr

∫
Sn−1
p

h(λ) ∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) Cn,p(dλ)

+
n! cHn,β

volβ,n

(
Bn,Hp,β

) ∫
Bnp

h(λ) Ψ∆c
β
(λ) ∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) dλ

=
n! cHn,β n voln(Bnp )

volβ,n

(
Bn,Hp,β

)
(n+m)

W({0})
∫

Sn−1
p

h(λ) ∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) Cn,p(dλ)

+
n! cHn,β voln(Bnp )

volβ,n

(
Bn,Hp,β

) ∫
Bnp

h(λ) Ψ∆c
β
(λ) ∆β(λ) 1{x∈Rn:x1≤...≤xn}(λ) Un,p(dλ).
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Next, we use the definition of Un,p,f and Cn,p,f for f = ∆β and the definition of

∆c
β = C∆β

∆β. This gives

Eh̃(Z)

=
n! cHn,β

volβ,n

(
Bn,Hp,β

)
Cn,p,∆β

Γ
(
n+m
p

+ 1
)W({0})

∫
Sn−1
p

h(λ) 1{x∈Rn:x1≤...≤xn}(λ) Cn,p,∆β
(dλ)

+
n! cHn,β

volβ,n

(
Bn,Hp,β

)
Cn,p,∆β

Γ
(
n+m
p

+ 1
) ∫

Bnp

h(λ) Ψ∆c
β
(λ) 1{x∈Rn:x1≤...≤xn}(λ) Un,p,∆β

(dλ)

= n! W({0})
∫

Sn−1
p

h(λ) 1{x∈Rn:x1≤...≤xn}(λ) Cn,p,∆c
β
(dλ)

+ n!

∫
Bnp

h(λ) Ψ∆c
β
(λ) 1{x∈Rn:x1≤...≤xn}(λ) Un,p,∆c

β
(dλ).

As a consequence, when applying a uniform random permutation σ in the symmetric

group on n elements, we get by Theorem 3.2.3

E(h̃ ◦ σ)(Z) = W({0})
∫

Sn−1
p

h(λ) Cn,p,∆c
β
(dλ) +

∫
Bnp

h(λ) Ψ∆c
β
(λ) Un,p,∆c

β
(dλ)

= Eh

(
X

(‖X‖pp +W )1/p

)
.

This proves the claim.

Remark 3.3.3 Let us briefly show that for ∆c
β the degree of homogeneity is in fact

m = βn(n−1)
2

. Let s ∈ [0,∞), x ∈ Rn, β ∈ {1, 2, 4}, then

∆c
β(sx) = C∆β

∏
1≤i<j≤n

|sxi − sxj|β

= C∆β

n∏
i=1

n∏
j=i

sβ|xi − xj|β

= C∆β

n∏
i=1

s(n−i)β
n∏
j=i

|xi − xj|β

= sβ
∑n−1
i=0 iC∆β

n∏
i=1

n∏
j=i

|xi − xj|β

= sβ
(n−1)n

2 ∆c
β(x).
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Remark 3.3.4 Since the degree of homogeneity of ∆c
β is m = βn(n−1)

2
, if one considers

the set-up of Theorem 3.2.3 for f = ∆c
β and W = G(α, 1) for α > 0, by the results

outlined in Remark 3.2.8, we have that

‖X‖pp
‖X‖pp +W

∼ B

(
βn2

2p
− βn

2p
+
n

p
, α

)
,

and for W = ϑδ0 + (1− ϑ) G(α, 1), where ϑ ∈ [0, 1] and α ∈ (0,∞), by the arguments

from Proposition 3.2.10, we have that

‖X‖pp
‖X‖pp +W

∼ ϑδ1 + (1− ϑ)B

(
βn2

2p
− βn

2p
+
n

p
, α

)
.

3.3.2 Singular value distribution for non-self-adjoint random

matrices in matrix p-balls

Let us now consider the non-self-adjoint case, where the singular values take over the

role of the eigenvalues. The following result is proven by almost literally repeating the

proof of Theorem 3.3.1 (or, at least in the case that W({0}) = 0, by applying a formula

from [104], which corresponds to [18, Lemma 4.3.1] as we explained before Theorem

3.3.1). However, this time the argument is based on the Weyl-type integration formula

from [6, Proposition 4.1.3], which replaces (3.12). This formula primarily changes

the repulsion factor from ∆β to an appropriate ∇β and the normalization constant

from cHn,β to cMn,β as follows: It says that for any non-negative measurable function

f : Mn(Fβ) → [0,∞), such that f(A) only depends on the singular values of A, we

have that∫
Mn(Fβ)

f(A) volβ,n(dA) = cMn,β

∫
Rn+

f(s)
∏

1≤i<j≤n

∣∣s2
i − s2

j

∣∣β n∏
i=1

si
β−1 ds, (3.16)

writing f(s) = f(A) for any matrix A ∈ Mn(Fβ) with (unordered) singular values

(s1, . . . , sn) ∈ Rn
+, and where

cMn,β :=
1

n!

1

2
β
2
n(n−1)

(
2πβ/2

Γ
(
β
2

))−n n∏
k=1

(
2(2π)βk/2

2β/2Γ
(
βk
2

))2

.

To apply the same arguments as previously, we only consider the non-negative mea-

surable function f : Mn(Fβ) → [0,∞), such that f(A) only depends on the vector

s2(A) := (s2
1(A), . . . , s2

n(A)) of squared singular values of A, i.e., f(A) = f(s2(A)). For

such a function, we derive an “ordered version” of the Weyl integration formula to shift
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the necessity for permutations to the end of the proof, and additionally apply some

change of variables argument to get:∫
Mn(Fβ)

f(A) volβ,n(dA)

= n! cMn,β 2−n
∫
Rn+

f
(
s2
) ∏

1≤i<j≤n

∣∣s2
i − s2

j

∣∣β n∏
i=1

(
s2
i

)β
2
−1

1{x∈Rn+:x1≤...≤xn}
(
s2
)

ds2. (3.17)

As discussed in Section 3.1.1, the vectors s(A) and s2(A) of (squared) singular values

of a matrix A ∈Mn(Fβ) live in the non-negative orthant Bnp,+ of the `np -ball Bnp . Fur-

thermore, the matrix p-ball Bn,Mp,β will be represented in Euclidean space via Bnp/2,+, not

Bnp,+, due to the structure of the Weyl integration formula for singular values in (3.17).

Since it uses the squares of the singular values in its repulsion factor, we adapt our

representation appropriately, such that the same arguments as for the eigenvalues are

applicable. Thus, we reformulate the defining condition of Bn,Mp,β from
∑n

i=1 |si(A)|p ≤ 1

to
∑n

i=1 |s2
i (A)|p/2 ≤ 1, and apply the same arguments as before to the vector s2(A),

which then in turn lies in Bnp/2,+.

As in the self-adjoint setting, we need to define some functions and normalization terms

to formulate the next result. For x ∈ Rn
+ we set

∇β(x) :=
∏

1≤i<j≤n

|xi − xj|β
n∏
i=1

x
β
2
−1

i ,

which again is the repulsion factor of singular values from the Weyl integration formula

(3.17), and define Cn,p,∇β ,+ to be the normalization constant such that

Cn,p,∇β

∫
Rn+

∇β(x) e−‖x‖
p
p dx = 1.

Based on this definition, we further set ∇c
β(x) := C∇β ∇β(x) for x ∈ Rn

+ with

C∇β :=
cMn,β

volβ,n

(
Bn,Mp,β

)
Cn,p/2,∇β Γ

(
n+m
p/2

+ 1
)

2n
,

where m = β
2
n2−n is the degree of homogeneity of ∇c

β. A final normalization constant

Cn,p,∇cβ ,+ is defined by

Cn,p,∇cβ

∫
Rn+

∇c
β(x) e−‖x‖

p
p dx = 1.
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Theorem 3.3.5 Let 0 < p < ∞, β ∈ {1, 2, 4} and W be a probability measure on

[0,∞). Let W be a real-valued random variable with density W and, independently of

W , X be a random vector with distribution given by the density Cn,p/2,∇cβ ,+ e
−‖x‖p/2

p/2∇c
β(x),

x ∈ Rn
+, with respect to the Lebesgue measure . Let σ be a uniform random permutation

in the symmetric group on n elements and Z be a random matrix with distribution

PM
n,p,W,β := W({0})CM

n,p,β + ΨMUM
n,p,β

on Bn,Mp,β , where ΨM(A) := Ψ∇cβ(s(A)) = ψ∇cβ(‖s(A)‖p) for A ∈ Bn,Mp,β , and ψ∇cβ is

defined as in Theorem 3.2.3 for f = ∇c
β. Then

s2
σ(Z) :=

(
s2
σ(1)(Z), . . . , s2

σ(n)(Z)
)

and
X

(‖X‖p/2p/2 +W )2/p

are identically distributed on Bnp/2,+ with distribution

Pn,p/2,W,∇cβ ,+ = W({0})Cn,p/2,∇cβ ,+ + Ψ∇cβUn,p/2,∇cβ ,+ .

The proof of this goes along the same lines as that of Theorem 3.3.1, just using the

representation results from Theorem 3.2.3 in the non-negative setting and the Weyl

integration formula from (3.17) instead of (3.13). We do, however, include it for the

self-containedness of this chapter.

Proof of Theorem 3.3.5. Let h : Rn → R be a non-negative and measurable function

and consider h̃ : Mn(Fβ)→ R with h̃(A) := h(s2(A)). We proceed to compute Eh̃(Z):

Eh̃(Z) =

∫
Mn(Fβ)

h̃(A)
(
W({0})CM

n,p,β + ΨMUM
n,p,β

)
(dA)

= W({0})
∫

Sn−1,M
p,β

h
(
s2(A)

)
CM
n,p,β(dA) +

∫
Bn,Mp,β

h
(
s2(A)

)
ΨMUM

n,p,β(dA).

Again, one considers the radial extension of h(s2(A)) from Sn−1,M
p,β onto Mn(Fβ), which

has the form h
(
s2(A)/‖s2(A)‖p/2

)
, A ∈Mn(Fβ), since we are considering s2(A) instead

of s(A). Following Remark 3.1.1 (i), the polar integration formula from Lemma 2.4.6

applied to Bn,Mp,β gives∫
Bn,Mp,β

h

(
s2(A)

‖s2(A)‖p/2

)
UM
n,p,β(dA) = βn2

1∫
0

rβn
2−1

∫
Sn−1,M
p,β

h(s2(A)) CM
n,p,β(dA)dr

=

∫
Sn−1,M
p,β

h
(
s2(A)

)
CM
n,p,β(dA). (3.18)
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Rewriting Eh̃(Z) via (3.18) implies that

Eh̃(Z) =W({0}) volβ,n

(
Bn,Mp,β

)−1
∫

Bn,Mp,β

h

(
s2(A)

‖s2(A)‖p/2

)
volβ,n(dA)

+ volβ,n

(
Bn,Mp,β

)−1
∫

Bn,Mp,β

h(s2(A))ΨM(A)volβ,n(dA).

We apply the Weyl integration formula for non-self-adjoint matrices (3.17) with re-

spect to the functions f1(A) = h
(
s2(A)/‖s2(A)‖p/2

)
and f2(A) = h(s2(A)) ΨM(s2(A)).

The repulsion factor therein is given by ∇β. Further, it holds that ∇β ∈ F+
m (Rn

+) with

m = 1
2
βn2−n and ΨM = Ψ∇β = Ψ∇cβ (since they only depend on m), from which follows

Eh̃(Z) =
n! cMn,β

volβ,n

(
Bn,Mp,β

)
2n

W({0})
∫

Bn
p/2

h

(
s2

‖s2‖p/2

)
∇β

(
s2
)

1{x∈Rn+:x1<...<xn}
(
s2
)

ds2

+
n! cMn,β

volβ,n

(
Bn,Hp,β

)
2n

∫
Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)
∇β(s) 1{x∈Rn+:x1<...<xn}

(
s2
)
ds2

=
n! cMn,β

volβ,n

(
Bn,Hp,β

)
2n

W({0})

∫
Bn
p/2

h

(
s2

‖s2‖p/2

)
∇β

(
s2

‖s2‖p/2

)
‖s2‖mp/2 1{x∈Rn:x1<...<xn}(s) ds2

+
n! cMn,β

volβ,n

(
Bn,Mp,β

)
2n

∫
Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)
∇β

(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)

ds2.

We use the polar integration formula from Lemma 2.4.6 for K = Bnp/2, by which it

follows that the above is equal to

n! cMn,β n voln(Bnp/2)

volβ,n

(
Bn,Mp,β

)
2n

W({0})
1∫

0

rn+m−1dr

×
∫

Sn−1
p/2

h
(
s2
)
∇β

(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)
Cn,p/2

(
ds2
)

+
n! cMn,β

volβ,n

(
Bn,Hp,β

)
2n

∫
Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)
∇β

(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)

ds2
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=
n! cMn,β n voln(Bnp/2)

volβ,n

(
Bn,Mp,β

)
(n+m)2n

W({0})
∫

Sn−1
p/2

h
(
s2
)
∇β

(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)
Cn,p/2

(
ds2
)

+
n! cMn,β voln(Bnp/2)

volβ,n

(
Bn,Mp,β

)
2n

∫
Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)
∇β

(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)
Un,p/2

(
ds2
)
.

By the definition of Un,p/2,f and Cn,p/2,f for f = ∇β and ∇c
β := C∇β ∇β it thereby

follows that

Eh̃(Z) =
n! cMn,β

volβ,n

(
Bn,Mp,β

)
Cn,p,∇β Γ

(
n+m
p/2

+ 1
)

2n

×W({0})
∫

Sn−1
p/2

h
(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)
Cn,p/2,∇β(ds2)

+
n! cMn,β

volβ,n

(
Bn,Mp,β

)
Cn,p,∇β Γ

(
n+m
p/2

+ 1
)

2n

×
∫

Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)

1{x∈Rn+:x1<...<xn}
(
s2
)
Un,p/2,∇β

(
ds2
)

= n! W({0})
∫

Sn−1
p/2

h
(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)
Cn,p/2,∇cβ

(
ds2
)

+ n!

∫
Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)
1{x∈Rn+:x1<...<xn}

(
s2
)

Un,p/2,∇cβ

(
ds2
)
.

Finally, when permuting the coordinates of s2(A) by a uniform random permutation σ

from the symmetric group on n elements, our probabilistic representation in Theorem

3.2.3 yields

E(h̃ ◦ σ)(Z) = W({0})
∫

Sn−1
p/2

h
(
s2
)
Cn,p/2,∇cβ

(
ds2
)

+

∫
Bn
p/2

h
(
s2
)

Ψ∇cβ
(
s2
)

Un,p/2,∇cβ

(
ds2
)

= Eh

(
X

(‖X‖p/2p/2 +W )2/p

)
,

which concludes the proof.
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Remark 3.3.6 We now show that the degree of homogeneity of ∇c
β is m = β

2
n2 − n

as assumed in Theorem 3.3.5: Let s ∈ [0,∞), x ∈ Rn, β ∈ {1, 2, 4}, then

∇c
β(sx) = C∇β

∏
1≤i<j≤n

|sxi − sxj|β
n∏
i=1

(sxi)
β
2
−1

= s
β
2
n−nC∇β

n∏
i=1

n∏
j=i

sβ|xi − xj|β
n∏
i=1

x
β
2
−1

i

= s
β
2
n−nC∇β

n∏
i=1

s(n−i)β
n∏
j=i

|xi − xj|β
n∏
i=1

x
β
2
−1

i

= s
β
2
n−n sβ

∑n−1
i=0 iC∇β

n∏
i=1

n∏
j=i

|xi − xj|β
n∏
i=1

x
β
2
−1

i

= s
β
2
n2−n∇c

β(x).

Hence, our assumption was indeed justified.

Remark 3.3.7 For ∇c
β the degree of homogeneity is m = β

2
n2 − n. Thus, if we chose

W = G(α, 1) for α > 0, analogue arguments as in Remark 3.2.8 for a random vector

X distributed on Rn
+ as in Theorem 3.3.5 yield that

‖X‖p/2p/2

‖X‖p/2p/2 +W
∼ B

(
β

p
n2, α

)
,

and for W = ϑδ0 + (1 − ϑ) G(α, 1), where ϑ ∈ [0, 1] and α ∈ (0,∞), we have by the

arguments from Proposition 3.2.10 that

‖X‖p/2p/2

‖X‖p/2p/2 +W
∼ ϑδ1 + (1− ϑ)B

(
β

p
n2, α

)
.

3.4 Sanov-type LDPs for p-radial distributions on

Euclidean p-balls

In [74] an LDP was derived for the empirical measure of the (suitably scaled) co-

ordinates of a random vector that is distributed according to the cone probability

measure Cn,p on Bnp . In this section, we prove a similar large deviation principle

with the random vectors chosen according to one of the more general distributions

Pn,p,W. We restrict ourselves to the following situation: for each n ∈ N we consider

Wn := ϑnδ0 + (1 − ϑn)G(αn, 1) with ϑn ∈ [0, 1] and αn ≥ 0. This way, the distri-

bution is specific enough to compute a concrete rate function, yet broad enough to
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still encapsulate many interesting distributions for the corresponding Pn,p,Wn , such as

those outlined in Remark 2.4.3. As we will see, the large deviation behaviour of the

empirical measure will be dependent both on the limits limn→∞ ϑn =: ϑ ∈ [0, 1] and

limn→∞ αnn
−1 =: α ∈ [0,∞) of the parameter sequences and their speed of conver-

gence, and thus will be universal to all distributions who have the same parameter

limits and parameter convergence speeds. We shall appropriately write Ψf,n for the p-

radial density associated with Wn as defined in Theorem 3.2.3 (however, the weighting

function will not be needed in this section, i.e., it can be set to f ≡ 1). For probability

measures ν, µ ∈M1(R) we define the relative entropy of ν with respect to µ as

H(ν‖µ) :=


∫
R

log
ν(dx)

µ(dx)
ν(dx) : ν � µ

+∞ : otherwise,

(3.19)

where ν � µ denotes absolute continuity of ν with respect to µ and ν(dx)
µ(dx)

denotes the

corresponding Radon-Nikodým derivative. For a random vector Z(n) :=
(
Z

(n)
1 , . . . , Z

(n)
n

)
in Rn the empirical measure of its coordinates is defined as

νn :=
1

n

n∑
i=1

δ
Z

(n)
i
.

In the following result, the random vector Z(n) will have distribution Cn,p on Bnp , thus

we will consider the empirical measure of the coordinates scaled by the factor n1/p, i.e.,

µn :=
1

n

n∑
i=1

δ
n1/pZ

(n)
i
.

The scaling is necessary to receive non-trivial results and can be derived by the following

reasoning. Since the defining condition of Sn−1
p restricts the n-fold sum of p-th powers

of the coordinates of a random vector to be equal to one, it follows that the typical

coordinate of that vector must be of order n−1/p, which the rescaling counteracts (cf.

[74, Proposition 2.2]). The same scaling will be applied for all other distributions on

`np -balls as well, as they all have p-radial components that are less or equal to that

of the cone probability measure. We will often just call µn the empirical measure of

a random vector Z(n). As mentioned in the introduction, Rachev and Rüschendorf

[99] showed that the (one dimensional) marginal distributions of Cn,p asymptotically

are p-generalized Gaussian distributions Ñp, thus the expectation of the µn is Ñp. In

[74, Proposition 3.6] Kim and Ramanan derived the following Sanov-type LDP for the

empirical measure of a random vector in Bnp with distribution Cn,p.
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Proposition 3.4.1 Let 0 < p <∞ and let (Z(n))n∈N be a sequence of random vectors

Z(n) =
(
Z

(n)
1 , . . . , Z

(n)
n

)
in Bnp with distribution Cn,p. For µ ∈M1(R) denote by mp(µ)

its p-th absolute moment as in (2.5). Then the sequence of random probability measures

(µn)n∈N with µn := 1
n

∑n
i=1 δn1/pZ

(n)
i

satisfies a large deviation principle on M1(R) with

speed n and good rate function

Icone(µ) =

H
(
µ‖Ñp

)
+ (1−mp(µ)) : mp(µ) ≤ 1

+∞ : otherwise.

Thus, in accordance with the theorem of Sanov, the rate function is given by the

relative entropy with respect to the asymptotic coordinate distribution Ñp, but with

an additional “penalty term” based on the p-th absolute moment of a measure.

Remark 3.4.2

(i) The original version of this result in [74, Proposition 3.6] was only formulated

for p ∈ [1,∞], but can be expanded to p ∈ (0,∞], since all the probabilistic

representations used in the proof also hold for p ∈ (0, 1), and neither the convexity

of Bnp nor the norm-property of ‖ · ‖p was used in the proof. We exclude the case

p =∞ in this chapter though, hence we only present results for p ∈ (0,∞).

(ii) As mentioned in Remark 2.2.3, the scale of the p-generalized Gaussians in [74] is

p1/p instead of 1, that is, one considers Np instead of Ñp. Accordingly, the rate

function in Proposition 3.4.1 had to be adjusted to compensate for the different

parametrization in this chapter, which was chosen to keep the main results more

in line with those for matrix p-balls from [62], which employ Ñp.

(iii) The above Sanov-type LDP for Euclidean p-balls of Kim and Ramanan [74] has

been recently generalized to a Sanov-type LDP for Orlicz balls by Frühwirth and

Prochno in [35]. Despite being proven differently, due to the lack of Schechtman-

Zinn-type probabilistic representations, their results still exhibit a similarity to

those in [74] with the rate function of the LDP being given by a relative entropy

term and a generalization of the moment penalty.

We now extend Proposition 3.4.1 to random vectors with distribution Pn,p,Wn on Bnp .

It will turn out that the rate function will again be based on the relative entropy, this

time perturbed by some more elaborate p-th moment penalty.
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Theorem 3.4.3 Let 0 < p < ∞ and let (ϑn)n∈N be a sequence in [0, 1] such that

limn→∞ ϑn = ϑ ∈ [0, 1] and denote by k(ϑ) ≥ 1 the smallest number for which

limn→∞ n
−k(ϑ) | log(1 − ϑn)| < +∞. Also let (αn)n∈N be a positive, real sequence such

that limn→∞ αn n
−1 = α ∈ [0,∞). For each n ∈ N let Wn = ϑnδ0 + (1− ϑn)G(αn, 1),

and let (Z(n))n∈N be a sequence of random vectors Z(n) =
(
Z

(n)
1 , . . . , Z

(n)
n

)
in Bnp chosen

according to the distribution Pn,p,Wn. Then the sequence of random probability mea-

sures (µn)n∈N with µn := 1
n

∑n
i=1 δn1/pZ

(n)
i

satisfies a large deviation principle onM1(R)

with speed n and good rate function

Iemp(µ) =



Icone(µ)− c(1−ϑ) :
mp(µ) ≤ 1, k(ϑ) ≥ 1,

α = 0

Icone(µ) +
1

p
log

(
1

p

)
−
(

1

p
+ α

)
log

(
1

p
+ α

)
−α log

(
1−mp(µ)

α

)
− c(1−ϑ)

:
mp(µ) < 1, k(ϑ) = 1,

α > 0

+∞ : otherwise,

where Icone is the same as in Proposition 3.4.1 and

c(1−ϑ) :=


lim
n→∞

n−1 log(1− ϑn) : k(ϑ) = 1

0 : k(ϑ) > 1.

Remark 3.4.4

(i) The term c(1−ϑ) serves as a correction term that is only positive if ϑn tends

to 1 in such a way that both n−1 log(1 − ϑn) and (αnn
−1)n∈N share the same

speed of convergence. For the case ϑ ∈ [0, 1) we always have that k(ϑ) = 1

and c(1−ϑ) = limn→∞ n
−1 log(1 − ϑn) = 0, hence the rate function simplifies

accordingly. For k(ϑ) > 1 (which implies that ϑn tends to ϑ = 1 faster than αnn
−1

tends to α), the term c(1−ϑ) also vanishes and the sequence (µn)n∈N from Theorem

3.4.3 based on Pn,p,Wn shares its rate function with that for the cone measure

Cn,p from Proposition 3.4.1. Any convergence speeds slower than k(ϑ) = 1 would

only yield trivial results, as the resulting LDP for the p-radial component of our

probabilistic representation (see Lemma 3.4.5) would have a speed slower than

the LDP of the directional component (see Proposition 3.4.1). However, overall

we see that for many parameter sequences (ϑn)n∈N, i.e., for many distributions

Pn,p,Wn , the rate functions of the corresponding LDPs are universal.
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(ii) We need to consider k(ϑ) such that limn→∞ n
−k(ϑ) | log(1 − ϑn)| < ∞ in or-

der to analyze the interplay between the convex combination of measures in

Wn = ϑnδ0 + (1 − ϑn)G(αn, 1) and the parameter sequence (αn)n∈N of the in-

volved gamma distributions. The value of k(ϑ) and the limiting behavior of

n−k(ϑ) | log(1 − ϑn)| determine if the convex combination in Wn “drowns out”

the involved gamma distributions G(αn, 1) faster than their parameter sequence

(αn)n∈N can grow and have an influence on the large deviation behavior.

The strategy of the proof of Theorem 3.4.3 will be the following: for a given random

vector in Bnp with distribution Pn,p,Wn we apply the probabilistic representation from

Proposition 2.4.5 for the specific Wn. We split that representation into two com-

ponents, one representing the directional component and the other representing the

p-radial component of the random vector and we will derive LDPs for them separately.

However, the LDP for the directional component (which has distribution Cn,p) has been

obtained in [74] (see Proposition 3.4.1). So, only the LDP for the p-radial component

has to be established. Applying the contraction principle will then conclude the proof.

Lemma 3.4.5 Let 0 < p < ∞ and let (ϑn)n∈N be a sequence in [0, 1] such that

limn→∞ ϑn = ϑ ∈ [0, 1] and denote by k(ϑ) ≥ 1 the smallest number for which

limn→∞ n
−k(ϑ) | log(1− ϑn)| < +∞ holds. Also let (αn)n∈N be a positive, real sequence

such that limn→∞ αn n
−1 = α ∈ [0,∞). For each n ∈ N let X(n) =

(
X

(n)
1 , . . . , X

(n)
n

)
be a random vector with independent coordinates such that Xi ∼ Ñp. Independently

of
(
X(n)

)
n∈N, let

(
W (n)

)
n∈N be a sequence of random variables with W (n) ∼ Wn =

ϑnδ0 +(1−ϑn)G(αn, 1). Then the sequence of random variables
(
B(n)

)
n∈N with B(n) :=∥∥X(n)

∥∥p
p

/(∥∥X(n)
∥∥p
p

+ W (n)
)

satisfies a large deviation principle on [0, 1] with speed n

and good rate function

Ibeta(x) =



0 : k(ϑ) > 1, x = 1

−1
p

log(x)− c(1−ϑ) :
k(ϑ) = 1, α = 0,

x ∈ (0, 1]

−1

p
log(xp)−α log

(
1− x
α

)
−
(

1

p
+ α

)
log

(
1

p
+ α

)
−c(1−ϑ)

:
k(ϑ) = 1, α > 0,

x ∈ (0, 1)

+∞ : otherwise,
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where

c(1−ϑ) :=


lim
n→∞

n−1 log(1− ϑn) : k(ϑ) = 1

0 : k(ϑ) > 1.

Proof. We have seen in Proposition 3.2.10 that B(n) ∼ ϑnδ1 + (1 − ϑn)B
(
n
p
, αn
)

(for

f ≡ 1 with m = 0). We intend to apply the theorem of Gärtner-Ellis (Proposition

2.3.7) to show the above LDP, somewhat following along the proof of Lemma 4.1 in

[4], and thus consider the following limit for t ∈ R:

Λ(t) := lim
n→∞

1

n
logE

[
entB

(n)
]

= lim
n→∞

1

n
log

 1∫
0

entx
(
ϑnδ1 + (1− ϑn)B

(
n

p
, αn

))
(dx)


= lim

n→∞

1

n
log

ϑnent + (1− ϑn)

1∫
0

entx B

(
n

p
, αn

)
(dx)


= t+ lim

n→∞

1

n
log

ϑn + (1− ϑn)

1∫
0

ent(x−1) B

(
n

p
, αn

)
(dx)

 ,
which yields

Λ(t) = t+ lim
n→∞

1

n
log

ϑn + (1− ϑn)
1

B
(
n
p
, αn

) 1∫
0

ent(x−1) x
n
p
−1(1− x)αn−1 dx

 .
The change of variables y = 1− x then gives us

Λ(t)

= t+ lim
n→∞

1

n
log

ϑn +
1− ϑn

B
(
n
p
, αn

) 1∫
0

e−nty (1− y)
n
p
−1yαn−1 dy


= t+ lim

n→∞

1

n
log

ϑn +
1− ϑn

B
(
n
p
, αn

) 1∫
0

en(−ty+
n/p−1
n

log(1−y)+αn−1
n

log(y)) dy

 . (3.20)

At this point, we need to distinguish the cases k(ϑ) = 1 and k(ϑ) > 1, and the cases

α = 0 and α > 0. The method of the proof will be mostly the same for those cases
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with k(ϑ) = 1, which is to give upper and lower bounds for the integrand in the above

expression, such that only the initial coefficient in the exponent remains dependent on

n, whereby we can apply one of the asymptotic integral expansion results presented

in Section 3.1.2. After some explicit calculations, we will then let our upper and

lower estimates approach our initial integrand, and thereby give the sought-after limit

explicitly. For k(ϑ) > 1 the proof follows from rather straightforward calculations.

We begin with k(ϑ) = 1 and α > 0. For any ε > 0 there exists n0 ∈ N such that for

n ≥ n0 and y ∈ (0, 1) we have that

en(−ty+( 1
p
− 1
n) log(1−y)+αn−1

n
log(y)) ≤ en(−ty+( 1

p
−ε) log(1−y)+(α−ε) log(y)) (3.21)

and

en(−ty+( 1
p
− 1
n) log(1−y)+αn−1

n
log(y)) ≥ en(−ty+( 1

p
+ε) log(1−y)+(α+ε) log(y)). (3.22)

Thus, the term in (3.20) for α > 0 is bounded from above by

t+ lim
n→∞

1

n
log

ϑn + (1− ϑn)
1

B
(
n
p
, αn

) 1∫
0

en(−ty+( 1
p
−ε) log(1−y)+(α−ε) log(y)) dy

, (3.23)

and bounded from below by

t+ lim
n→∞

1

n
log

ϑn + (1− ϑn)
1

B
(
n
p
, αn

) 1∫
0

en(−ty+( 1
p

+ε) log(1−y)+(α+ε) log(y)) dy

, (3.24)

which we denote as Λ−ε(t) and Λ+ε(t), respectively. We want to apply the adapted

Laplace principle from Remark 3.1.3 to the terms in limits of the above expressions,

and thus denote

%−ε,t(y) := −ty +

(
1

p
− ε
)

log(1− y) + (α− ε) log(y),

and

%+ε,t(y) := −ty +

(
1

p
+ ε

)
log(1− y) + (α + ε) log(y).

We already have that (ϑn)n∈N is bounded and non-negative. Also, (1− ϑn)B
(
n
p
, αn
)−1

is positive for all n ∈ N bigger than some N ∈ N, since k(ϑ) = 1 implies that ϑn 6= 1

for n ∈ N bigger than some N ∈ N.
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Furthermore, both %−ε,t and %+ε,t are twice continuously differentiable on (0, 1). It

remains to show that (3.3) holds for the sequence
(
s(2)
)
n∈N with

s(2)
n := (1− ϑn)B

(
n

p
, αn

)−1

,

and that the maximum conditions of the Laplace principle are met by %−ε,t and %+ε,t.

We begin with the former. It follows from α > 0 that αn → +∞, thus Stirling’s

formula (2.4) tells us that, for increasing n, B
(
n
p
, αn
)

behaves like

√
2π

(
n
p

)n/p− 1/2

α
αn−1/2
n(

n
p

+ αn

)n/p+αn− 1/2
.

Hence, we have

lim
n→∞

1

n
log

1

B
(
n
p
, αn

)
= − lim

n→∞

[
log
√

2π

n
+

n
p
− 1

2

n

(
log n+ log

n/p

n

)
+
αn − 1

2

n

(
log n+ log

αn
n

)

−
n
p

+ αn − 1
2

n

(
log n+ log

n
p

+ αn

n

)]

= −1

p
log

1

p
− α logα +

(
1

p
+ α

)
log

(
1

p
+ α

)
. (3.25)

Thus, with k(ϑ) = 1 and the above, it follows for the sequence
(
s

(2)
n

)
n∈N, given by

s
(2)
n = (1− ϑn)B

(
n
p
, αn
)−1

, that

lim
n→∞

1

n
log s(2)

n = c(1−ϑ) −
1

p
log

1

p
− α logα +

(
1

p
+ α

)
log

(
1

p
+ α

)
< +∞. (3.26)

Regarding the maximum conditions of the Laplace principle, direct calculation yields

that for ε < min
{
α, 1

p

}
and t ∈ R \ {0} we have

sup
y∈(0,1)

%−ε,t(y) = sup
y∈(0,1)

[
−ty +

((
1

p
− ε
)

log(1− y) + (α− ε) log(y)

)]
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=
1

2

[
− t−

(
α +

1

p
− 2ε

)
−
√(

α +
1

p
− 2ε+ t

)2

− 4(α− ε)t

]

+

(
1

p
− ε
)

log
t−
(
α + 1

p
− 2ε

)
−
√(

α + 1
p
− 2ε+ t

)2

− 4(α− ε)t

2t

+ (α− ε) log
t+
(
α + 1

p
− 2ε

)
+

√(
α + 1

p
− 2ε+ t

)2

− 4(α− ε)t

2t
,

and for t = 0 it holds that

sup
y∈(0,1)

%−ε,0(y) =

(
1

p
− ε
)

log

1
p

α + 1
p
− 2ε

+ (α− ε) log
α− ε

α + 1
p
− 2ε

.

The analogue of the above holds for the maximum of %+ε,t, simply replacing −ε by +ε

(also, in this latter calculation the condition ε < min
{
α, 1

p

}
is not required). By the

above, it follows that the suprema of %−ε,t and %+ε,t are not attained on the boundary

of the interval [0, 1], hence the Laplace principle can be applied to both. But before

doing so, by setting

Ψ−ε(y) := −
(

1

p
− ε
)

log(1− y)− (α− ε) log(y),

and

Ψ+ε(y) := −
(

1

p
+ ε

)
log(1− y)− (α + ε) log(y),

we see that

sup
y∈(0,1)

%−ε,t(y) = sup
y∈(0,1)

[
(−t)y −Ψ−ε(y)

]
= Ψ∗−ε(−t), (3.27)

and

sup
y∈(0,1)

%+ε,t(y) = sup
y∈(0,1)

[
(−t)y −Ψ+ε(y)

]
= Ψ∗+ε(−t), (3.28)

i.e., the suprema of %−ε,t and %+ε,t can be written as Legendre-Fenchel transforms of Ψ−ε

and Ψ+ε at (−t), respectively. Now, using the adapted Laplace principle from (3.4),

and the identities from (3.26), (3.27), and (3.28), we can reformulate the respective

upper and lower bounds Λ−ε(t),Λ+ε(t) from (3.23) and (3.24) as

Λ−ε(t) = t+ c(1−ϑ) −
1

p
log

1

p
− α logα +

(
1

p
+ α

)
log

(
1

p
+ α

)
+ Ψ∗−ε(−t)
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and

Λ+ε(t) = t+ c(1−ϑ) −
1

p
log

1

p
− α logα +

(
1

p
+ α

)
log

(
1

p
+ α

)
+ Ψ∗+ε(−t).

As the above holds for every sufficiently small ε > 0, considering the limit of Λ−ε(t)

and Λ+ε(t) as ε tends to 0 yields that

Λ(t) = t+ c(1−ϑ) −
1

p
log

1

p
− α logα +

(
1

p
+ α

)
log

(
1

p
+ α

)
+ Ψ∗(−t),

where Ψ∗ is the Legendre-Fenchel transform of Ψ with Ψ(y) := −1
p

log(1−y)−α log(y),

which is the limit of both Ψ−ε and Ψ+ε as ε tends to 0. Since Λ is finite in an open

neighbourhood of the origin and is lower semi-continuous and differentiable, it now

follows via the theorem of Gärtner-Ellis (Proposition 2.3.7) that the sequence
(
B(n)

)
n∈N

satisfies an LDP with speed n and rate function Λ∗. Setting

cϑ,p,α := c(1−ϑ) −
1

p
log

1

p
− α logα +

(
1

p
+ α

)
log

(
1

p
+ α

)
for notational brevity, we get that for x ∈ (0, 1)

Λ∗(x) = sup
t∈R

[
tx− Λ(t)

]
= sup

t∈R

[
tx− t−Ψ∗(−t)

]
− cϑ,p,α

= sup
t∈R

[
t(x− 1)−Ψ∗(−t)

]
− cϑ,p,α.

Again, using the change of variables z = 1− x as in (3.20), we get

Λ∗(x) = sup
t∈R

[
(−t)z + Ψ∗(−t)

]
− cϑ,p,α = sup

t̃∈R

[
t̃z −Ψ∗(t̃)

]
− cϑ,p,α = (Ψ∗)∗(z)− cϑ,p,α.

By Lemma 2.1.1 (2), the Legendre-Fenchel transform is an involution on (0, 1), hence

Λ∗(x) = (Ψ∗)∗(z)− cϑ,p,α = Ψ(z)− cϑ,p,α.

Plugging in the definition of Ψ and rolling back the previous change of variables, we

have that
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Λ∗(x) =− 1

p
log(1− z)− α log(z) +

1

p
log

1

p
+ α logα−

(
1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ)

=− 1

p
log(x)− α log(1− x) +

1

p
log

1

p
+ α logα−

(
1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ)

=− 1

p
log(xp)− α log

(
1− x
α

)
−
(

1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ),

yielding the first case of the rate function. For x ∈ {0, 1} direct computation yields

that Λ∗(x) = +∞ in these cases.

For k(ϑ) = 1 and α = 0 we need to slightly adapt some of the steps in the proof of

the previous case. We again provide upper and lower bounds for the integrand, where

the lower bound will be handled completely analogously to the previous case via the

adapted Laplace principle (3.4), but the upper bound needs to be approached via the

asymptotic integral results from (3.5). Let α = 0, then there exists n0 ∈ N such that

for n ≥ n0 and y ∈ (0, 1) we have that

en(−ty+( 1
p

+ε) log(1−y)+ε log(y)) ≤ en(−ty+( 1
p
− 1
n) log(1−y)+αn−1

n
log(y))

≤ en(−ty+( 1
p
−ε) log(1−y)).

We choose a different upper bound here than in the previous case in (3.21), since for

α = 0 and (−1) ≤ t the function −ty +
(

1
p
− ε
)

log(1 − y) + (α − ε) log(y) is strictly

decreasing in y and attains its maximum over [0, 1] on the boundary of the interval at

0. Since this is not the case for the lower bound in (3.22), we can use its analogue for

α = 0 here as well. With these bounds we get the following respective upper and lower

bounds for the term in (3.20):

t+ lim
n→∞

1

n
log

ϑn + (1− ϑn)
1

B
(
n
p
, αn

) 1∫
0

en(−ty+( 1
p
−ε) log(1−y)) dy

 (3.29)

and

t+ lim
n→∞

1

n
log

ϑn + (1− ϑn)
1

B
(
n
p
, αn

) 1∫
0

en(−ty+( 1
p

+ε) log(1−y)+ε log(y)) dy

 , (3.30)

again denoting these as Λ−ε(t) and Λ+ε(t), repectively. We again need to consider the

behaviour of
(
s(2)
)
n∈N with s

(2)
n := (1− ϑn)B

(
n
p
, αn
)−1

and check the conditions of the

relevant asymptotic integral expansions for the functions in the respective integrands,

79



3.4. SANOV-TYPE LDPs FOR EUCLIDEAN p-BALLS

denoted as

%̃−ε,t(y) := −ty+

(
1

p
− ε
)

log(1−y) and %̃+ε,t(y) := −ty+

(
1

p
+ ε

)
log(1−y)+ε log(y).

If, on the one hand, both αn → +∞ and α = 0 hold simultaneously, applying Stirling’s

formula as in (3.25) and interpreting the expression 0 log(0) as 0 yields that

lim
n→∞

1

n
log

1

B
(
n
p
, αn

) = 0. (3.31)

If, on the other hand, αn is bounded, again, by Stirling’s formula (2.4), it follows that

B
(
n
p
, αn
)

behaves like Γ(αn)
(
n
p

)−αn
for large n ∈ N, which implies

lim
n→∞

1

n
log

1

B
(
n
p
, αn

) = − lim
n→∞

log(Γ(αn))

n
− lim

n→∞

αn
n

log

(
n

p

)
= 0. (3.32)

The positivity of s
(2)
n (at least almost everywhere) follows again by k(ϑ) = 1. The

function %̃+ε,t satisfies the conditions of the Laplace principle (Proposition 3.1.2) by

the same arguments as in the previous case. We again set

Ψ̃−ε(y) := −
(

1

p
− ε
)

log(1− y), and Ψ̃+ε(y) := −
(

1

p
+ ε

)
log(1− y)− ε log(y),

such that

sup
y∈(0,1)

%̃−ε,t(y) = Ψ̃∗−ε(−t) and sup
y∈(0,1)

%̃+ε,t(y) = Ψ̃∗+ε(−t), (3.33)

as in (3.27) and (3.28). Now, using (3.31), (3.32), (3.33), and applying the adapted

Laplace principle from (3.4) to the limit in Λ+ε(t) in (3.30), we get

Λ+ε(t) = t+ c(1−ϑ) + Ψ̃∗+ε(−t).

Again, we consider the limit of Λ+ε as ε tends to zero, giving the lower bound for Λ(t):

Λ+0(t) = t+ c(1−ϑ) + Ψ̃∗+0(−t) = t+ c(1−ϑ) + sup
y∈(0,1)

[
−ty +

1

p
log(1− y)

]
. (3.34)

As to the upper bound, for (−1) ≤ t the function Ψ̃∗−ε satisfies conditions (a) − (d)

from Proposition 3.1.4, thus, by (3.5) from Remark 3.1.5, from (3.29) we get the upper

bound for Λ(t):

Λ−ε(t) = t+ c(1−ϑ) + Ψ̃∗−ε(0) = t+ c(1−ϑ) + sup
y∈[0,1]

[
−
(

1

p
− ε
)

log(1− y)

]
= t+ c(1−ϑ).
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For t < (−1) the function Ψ̃−ε is again strictly concave and attains its supremum on

(0, 1), so applying the adapted Laplace principle (3.4) to (3.29) yields

Λ−ε(t) = t+ c(1−ϑ) + Ψ̃∗−ε(−t).

Combining the two cases and again considering the limit for ε tending to zero, we see

that overall it holds for t ∈ R,

Λ−0(t) = t+ c(1−ϑ) + Ψ̃∗−0(t) = t+ c(1−ϑ) + sup
y∈(0,1)

[
−ty +

1

p
log(1− y)

]
,

which together with (3.34) yields that

Λ(t) = t+ c(1−ϑ) + sup
y∈(0,1)

[
−ty +

1

p
log(1− y)

]
= t+ c(1−ϑ) + Ψ̃∗(−t),

with Ψ̃∗ being the Legendre-Fenchel transform of Ψ̃ with Ψ̃(y) := −1
p

log(1 − y). By

the theorem of Gärtner-Ellis (Proposition 2.3.7) and the same involution and change

of variables arguments as in the previous case, we get that for α = 0 the sequence

(B(n))n∈N thus satisfies an LDP with speed n and rate function

Λ∗(x) = −1

p
log(x)− c(1−ϑ).

Lastly, let k(ϑ) > 1. This implies on the one hand that ϑ = 1 and on the other hand

that (1−ϑn) tends to zero faster than the integral expression in (3.20) tends to infinity,

i.e., the product of both tends to zero. Hence, the expression in (3.20) simplifies to

Λ(t) = t+ lim
n→∞

1

n
log

ϑn + (1− ϑn)
1

B
(
n
p
, αn

) 1∫
0

en(−ty+
n/p−1
n

log(1−y)+αn−1
n

log(y)) dy


= t+ lim

n→∞

1

n
log [ϑn] = t,

which implies via the theorem of Gärtner-Ellis (Proposition 2.3.7) that the sequence

(B(n))n∈N satisfies an LDP on [0, 1] with speed n and rate function

Ibeta(x) = Λ∗(x) = sup
t∈R

[
tx − t

]
= sup

t∈R

[
t(x− 1)

]
=

0 : x = 1

+∞ : otherwise.

This finishes the proof of Lemma 3.4.5.

81



3.4. SANOV-TYPE LDPs FOR EUCLIDEAN p-BALLS

Proof of Theorem 3.4.3. By the probabilistic representation results from Proposition

2.4.5 and Lemma 3.2.1 (i), and the distributional identities from Proposition 3.2.9 and

Proposition 3.2.10 (all for f ≡ 1), we have that

µn =
1

n

n∑
i=1

δ
n1/pZ

(n)
i

D
=

1

n

n∑
i=1

δ
n1/p

X
(n)
i

(‖X(n)‖pp+W (n))
1/p

=
1

n

n∑
i=1

δ
n1/pB(n)1/p

X
(n)
i

‖X(n)‖p

,

where X(n) is a random vector with density Cn,p,1 e
−‖x‖pp , x ∈ Rn, (i.e., with distribution

Ñ⊗np ), W (n) is a random variable on [0,∞), independent of X(n), with distribution

Wn = ϑnδ0 + (1− ϑn)G(αn, 1), and B(n) :=
∥∥X(n)

∥∥p
p

/(∥∥X(n)
∥∥p
p

+W (n)
)

as in Lemma

3.4.5. Let us define a sequence of random probability measures (ξn)n∈N by

ξn :=
1

n

n∑
i=1

δ
n1/p

X
(n)
i

‖X(n)‖p

.

Then, since X(n)
/∥∥X(n)

∥∥
p

is independent from ‖X(n)‖p by Lemma 3.2.1, it follows from

Proposition 2.3.4, Proposition 3.4.1, and Lemma 3.4.5 that the sequence (ξn, B
(n))n∈N

satisfies a large deviation principle on M1(R) × [0, 1] with speed n and good rate

function
I1(ξ, z) = Icone(ξ) + Ibeta(z), (ξ, z) ∈M1(R)× [0, 1].

In the case z = 0, we can see by Lemma 3.4.5, that Ibeta(0) = +∞ and thereby

I1(ξ, 0) = Icone(ξ) + ∞ = +∞ for all ξ ∈ M1(R). Thus, we confine ourselves to

z ∈ (0, 1]. Next, we introduce the continuous map Fp :M1(R)× (0, 1]→M1(R) with

(ξ, z) 7→ ξ(z−1/p · ) and notice that for each n ∈ N and for any Borel set A ∈ B(R),

Fp
(
ξn, B

(n)
)

(A) = Fp

(
1

n

n∑
i=1

δ
n1/p

X
(n)
i

‖X(n)‖p

, B(n)

)
(A)

=
1

n

n∑
i=1

δ
n1/p

X
(n)
i

‖X(n)‖p

(
B(n)−1/p

A
)

=
1

n

n∑
i=1

δ
n1/pB(n)1/p

X
(n)
i

‖X(n)‖p

(A)

= µn(A).

By the contraction principle in Proposition 2.3.5, the sequence of random probability

measures (µn)n∈N thus satisfies a large deviation principle with speed n and good rate

function I2 :M1(R)× (0, 1]→ [0,∞] given by

I2(µ) = inf
ξ(z−1/p · )=µ(·)

[
Icone(ξ) + Ibeta(z)

]
, µ ∈M1(R), z ∈ (0, 1].
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It remains to show that I2 in fact coincides with the rate function Iemp stated in the

theorem. The rate functions Icone and Ibeta each depend on their respective parameters

mp(µ) ∈ [0,∞], k(ϑ) ≥ 1, and α ∈ [0,∞), so we need to check for which parameter

configurations they remain finite.

Case 1. Let µ ∈ M1(R) be such that mp(µ) > 1. Then, by ξ(z−1/p · ) = µ( · ),
we know that mp(ξ) = z−1mp(µ), so mp(ξ) > 1. Therefore Icone(ξ) = +∞ and

Iemp(µ) = I2(µ) = +∞.

Case 2. Let µ ∈ M1(R) be such that mp(µ) ≤ 1 and Wn be such that α = 0. By

ξ(z−1/p · ) = µ( · ), we again know that mp(ξ) = z−1mp(µ). Now we have to distinguish

between the cases mp(ξ) > 1 and mp(ξ) ≤ 1. In the first case, Icone(ξ) = +∞ and

therefore Iemp(µ) = I2(µ) = +∞. If mp(ξ) ≤ 1, then z is restricted to the non-empty

interval [mp(µ), 1]. Hence, z ∈ [mp(µ), 1] ∩ (0, 1]. If k(ϑ) > 1, we know by Lemma

3.4.5 that Ibeta(z) is only finite for z = 1, in which case it follows that ξ = µ and

I2(µ) = Icone(µ) = Icone(µ) − c(1−ϑ). If k(ϑ) = 1, by Proposition 3.4.1 and Lemma

3.4.5, we get

I2(µ) = inf
ξ(z−1/p · )=µ(·)

[
H(ξ‖Ñp) + (1−mp(ξ))−

1

p
log(z)− c(1−ϑ)

]

= inf
ξ(z−1/p · )=µ(·)

∫
R

log
ξ(dx)

Ñp(dx)
ξ(dx) + (1− z−1mp(µ))− 1

p
log(z)

− c(1−ϑ).

The change of variables y = z1/px then gives us ξ(dx) = ξ(dz−1/py) = µ(dy), and

Ñp(dx) = Ñp

(
dz−1/py

)
=
(
2z1/pΓ(1 + 1/p)

)−1
e−z

−1|y|pdy =: Ñp,z(dy).

Thus,

I2(µ) = inf
z∈[mp(µ),1]∩(0,1]

∫
R

log
µ(dy)

Ñp,z(dy)
µ(dy) +

(
1− z−1mp(µ)

)
− 1

p
log(z)

− c(1−ϑ),

which is only dependent on z ∈ [mp(µ), 1] ∩ (0, 1]. We further compute

∫
R

log
µ(dy)

Ñp,z(dy)
µ(dy) =

∫
R

log

(
µ(dy)

Ñp(dy)

Ñp(dy)

Ñp,z(dy)

)
µ(dy)

=

∫
R

log
µ(dy)

Ñp(dy)
µ(dy) +

∫
R

log
Ñp(dy)

Ñp,z(dy)
µ(dy)
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= H(µ‖Ñp) +

∫
R

log
Ñp(dy)

Ñp,z(dy)
µ(dy).

Since

Ñp(dy)

Ñp,z(dy)
= e(z−1−1)|y|pz1/p,

we conclude that∫
R

log
µ(dy)

Ñp,z(dy)
µ(dy) = H(µ‖Ñp) +

∫
R

log
(
e(z−1−1)|y|pz1/p

)
µ(dy)

= H(µ‖Ñp) + (z−1 − 1)

∫
R

|y|p µ(dy) +
1

p
log(z)

∫
R

µ(dy)

= H(µ‖Ñp) + (z−1 − 1)mp(µ) +
1

p
log(z), (3.35)

which minimizes for z = 1. Hence, the rate function is of the form

I2(µ) = H(µ‖Ñp) + (1−mp(µ))− c(1−ϑ) = Icone(µ)− c(1−ϑ).

Case 3. Let µ ∈ M1(R) be such that mp(µ) ≤ 1 and Wn be such that α > 0. By

the same arguments as above, we assume that mp(ξ) ≤ 1 and z ∈ [mp(µ), 1] ∩ (0, 1),

where we exclude z = 1 due to Lemma 3.4.5. Then, by Proposition 3.4.1 and Lemma

3.4.5, we get

I2(µ) = inf
ξ(z−1/p · )=µ(·)

[
H(ξ‖Ñp) + (1−mp(ξ))−

1

p
log(pz)− α log

1− z
α

−
(

1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ)

]

= inf
ξ(z−1/p · )=µ(·)

∫
R

log
ξ(dx)

Ñp(dx)
ξ(dx) + (1− z−1mp(µ))− 1

p
log(pz)− α log

1− z
α


−
(

1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ).

The change of variables y = z1/px as in Case 2 then lets us reformulate the above to

inf
z∈[mp(µ),1]∩(0,1)

∫
R

log
µ(dy)

Ñp,z(dy)
µ(dy) + (1− z−1mp(µ))− 1

p
log(pz)− α log

1− z
α


−
(

1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ).
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Using the argument from (3.35) it follows that

I2(µ) = inf
z∈[mp(µ),1]∩(0,1)

[
H(µ‖Ñp) + (z−1 − 1)mp(µ) +

1

p
log(z) + (1− z−1mp(µ))

− 1

p
log(pz)− α log

1− z
α

]
−
(

1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ)

= H(µ‖Ñp) + (1−mp(µ))− 1

p
log(p) + α log(α)−

(
1

p
+ α

)
log

(
1

p
+ α

)
− c(1−ϑ) + inf

z∈[mp(µ),1]∩(0,1)

[
− α log(1− z)

]
= Icone(µ) +

1

p
log
(1

p

)
−
(

1

p
+ α

)
log

(
1

p
+ α

)
− α log

(
1−mp(µ)

α

)
− c(1−ϑ),

where the last equality only holds for mp(µ) < 1, since for mp(µ) = 1, we have

z ∈ [mp(µ), 1] ∩ (0, 1) = ∅, and thus I2(µ) = +∞. Hence, mp(µ) = 1 can only be

permitted if α = 0.

Thus, we have shown that I2 in fact coincides with Iemp as given in Theorem 3.4.3,

finishing its proof.

Example 3.4.6 If ϑ = 0, we get the large deviation behaviour of the empirical mea-

sure of a random vector distributed according to some beta-type distribution Ψf,nUn,p,f

as discussed in Example 3.2.7 for f ≡ 1. Note that this could be any distribution

ϑnCn,p+(1−ϑn)Ψf,nUn,p,f with ϑn → ϑ = 0. Since ϑ only influences the rate function

via c(1−ϑ) and c(1−ϑ) = 0 for ϑ ∈ [0, 1), any distribution ϑnCn,p + (1 − ϑn)Ψf,nUn,p,f

with ϑn → ϑ ∈ [0, 1) exhibits the same large deviation behaviour, i.e., shares the same

universal rate function for the sequence (µn)n∈N of corresponding empirical measures

Iemp(µ) =



Icone(µ) : mp(µ) ≤ 1, α = 0

Icone(µ) +
1

p
log

1

p
−
(

1

p
+ α

)
log

(
1

p
+ α

)
−α log

(
1−mp(µ)

α

) : mp(µ) < 1, α > 0

+∞ : otherwise.

85



3.5. SANOV-TYPE LDPs FOR MATRIX p-BALLS

3.5 Sanov-type LDPs for p-radial distributions

on matrix p-balls

In this section, we want to use the tools from the previous sections to analyze the

large deviation behaviours of random matrices in Bn,Hp,β and Bn,Mp,β distributed according

to PH
n,p,W,β and PM

n,p,W,β, respectively. We will use the probabilistic representations

from Theorem 3.3.1 and Theorem 3.3.5 regarding the eigenvalue and singular value

distributions together with further large deviation results for their p-radial component

in the spirit of Lemma 3.4.5 to derive LDPs for Bn,Hp,β and Bn,Mp,β .

3.5.1 Self-adjoint matrix p-balls

In the case of the matrix p-balls our goal is to derive an LDP for the so-called empirical

spectral measure of a random matrix in Bn,Hp,β . Let Z(n) ∈ Hn(Fβ) be a self-adjoint

random matrix with eigenvalues λ1

(
Z(n)

)
≤ . . . ≤ λn

(
Z(n)

)
. We then define the

empirical spectral measure as the random measure

νn :=
1

n

n∑
i=1

δλi(Z(n)),

i.e., the empirical measure with respect to the eigenvalues. We will again consider the

suitably scaled version

µn :=
1

n

n∑
i=1

δn1/pλi(Z(n))

and refer to it as the empirical spectral measure of the random matrix Z(n). In [63] a

large deviation principle for the empirical spectral measure of random matrices chosen

according to either UH
n,p,β or CH

n,p,β was proven. In this section, we generalize this result

by proving a large deviation principle for random matrices chosen according to one of

the more general distributions PH
n,p,W,β := W({0})CH

n,p,β + ΨHUH
n,p,β on Bn,Hp,β intro-

duced in Section 3.3. We again consider distributions Wn := ϑnδ0 + (1− ϑn)G(αn, 1)

with weight sequence (ϑn)n∈N in [0, 1] and parameter sequence (αn)n∈N in [0,∞), and

thus write PH
n,p,Wn,β

and ΨH
n (and Ψf,n in the Euclidean representation).

Theorem 3.5.1 Let 0 < p < ∞, β ∈ {1, 2, 4}, and let (ϑn)n∈N be a sequence in [0, 1]

with limn→∞ ϑn = ϑ ∈ [0, 1] and denote by k(ϑ) ≥ 2 the smallest number such that

limn→∞ n
−k(ϑ) | log(1−ϑn)| < +∞. Further, let (αn)n∈N be a positive, real sequence such

that limn→∞ αnn
−2 = α ∈ [0,∞). For each n ∈ N let Wn = ϑnδ0 + (1− ϑn)G(αn, 1),

and let Z(n) be a random matrix in Bn,Hp,β chosen according to the distribution PH
n,p,Wn,β

.
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Then the sequence of random probability measures µn := 1
n

∑n
i=1 δn1/pλi(Z(n)) satisfies a

large deviation principle on M1(R) with speed n2 and good rate function

IHemp(µ) =



IHcone(µ)− cH(1−ϑ) :

mp(µ) ≤ 1,

k(ϑ) ≥ 2,

α = 0

IHcone(µ) +
β

2p
log

(
β

2p

)
−
(
β

2p
+ α

)
log

(
β

2p
+ α

)
−α log

(
1−mp(µ)

α

)
− cH(1−ϑ)

:

mp(µ) < 1,

k(ϑ) = 2,

α > 0

+∞ : otherwise,

where

IHcone(µ) =


−β

2

∫
R

∫
R

log |x− y|µ(dx)µ(dy) +
β

2p
log

( √
π pΓ(p

2
)

2p
√
eΓ
(
p+1

2

)) : mp(µ) ≤ 1

+∞ : otherwise,

and

cH(1−ϑ) :=


lim
n→∞

n−2 log(1− ϑn) : k(ϑ) = 2

0 : k(ϑ) > 2.

The proof of this result is rather similar to that of Theorem 3.4.3, with the main

difference that it uses the probabilistic representation from Theorem 3.3.1, which is

weighted by the repulsion factor ∆β of the eigenvalues (∆c
β with normalizing constants).

We again split that probabilistic representation into two components, one directional

component with distribution CH
n,p,β on the matrix p-ball and the other reflecting the

p-radial component. The main difference will be that the degree of homogeneity m

of the weight function f is non-zero if f = ∆c
β, but m = βn(n−1)

2
. Therefore, as

outlined in Remark 3.3.4, the first parameter of the beta distribution involved in the

distribution of the p-radial component (compare with Lemma 3.4.5) will have a different

limit behaviour, affecting both the speed (via the order of convergence) and the rate

function (via the limit).

We now present two results outlining the large deviation behaviour of the aforemen-

tioned two components of the probabilistic representation of a random matrix with

distribution PH
n,p,Wn,β

. One will do so for the empirical spectral measure of random

matrices with distribution CH
n,p,β on Bn,Hp,β and the other for the p-radial component of

the probabilistic representation. We start with the latter.
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Lemma 3.5.2 Let 0 < p < ∞, β ∈ {1, 2, 4}, and let (ϑn)n∈N be a sequence in [0, 1]

with limn→∞ ϑn = ϑ ∈ [0, 1] and denote by k(ϑ) ≥ 2 the smallest number such that

limn→∞ n
−k(ϑ) | log(1 − ϑn)| < +∞. Also let (αn)n∈N be a positive, real sequence such

that limn→∞ αnn
−2 = α ∈ [0,∞). For each n ∈ N let X(n) =

(
X

(n)
1 , . . . , X

(n)
n

)
be

a random vector with density Cn,p,∆c
β
e−‖x‖

p
p ∆c

β(x), x ∈ Rn, with ∆c
β defined as in

Theorem 3.3.1. Independently of the sequence
(
X(n)

)
n∈N, let

(
W (n)

)
n∈N be a sequence

of random variables with W (n) ∼Wn = ϑnδ0 + (1−ϑn)G(αn, 1). Then the sequence of

random variables
(
B(n)

)
n∈N with B(n) :=

∥∥X(n)
∥∥p
p

/(∥∥X(n)
∥∥p
p

+ W (n)
)

satisfies a large

deviation principle on [0,∞) with speed n2 and good rate function

IHbeta(x) =



0 : k(ϑ) > 2, x = 1

− β
2p

log(x)− cH(1−ϑ)(x) :
k(ϑ) = 2, α = 0,

x ∈ (0, 1]

− β
2p

log
(

2xp
β

)
− α log

(
1−x
α

)
−
(
β
2p

+ α
)

log
(
β
2p

+ α
)

− cH(1−ϑ)(x)
:
k(ϑ) = 2, α > 0,

x ∈ (0, 1)

+∞ : otherwise,

where

cH(1−ϑ) :=


lim
n→∞

n−2 log(1− ϑn) : k(ϑ) = 2

0 : k(ϑ) > 2.

This is proven in the same way as Lemma 3.4.5 with only a few differences. Since we

are dealing with matrix p-balls here, the weight function is ∆c
β, which is homogeneous

of degree m = 1
2
βn(n− 1). We use the probabilistic representation of the `np -norm

of the eigenvalue-vector via the distributional convex combination given in Remark

3.3.4. We have seen in the proof of Lemma 3.4.5 that the LDP of the latter is heavily

dependent on the limits and orders of convergence of the involved parameter sequences.

It holds for the first parameter of the involved beta distribution from Remark 3.3.4 that

limn→∞
n+m
p
n−2 = β

2p
. This explains the appearance of n2 instead of n for the speed

and the factor β
2p

instead of 1
p

in the rate function.

The second lemma is a large deviation principle for the sequence of empirical spectral

measures of a random matrix in Bn,Hp,β with distribution CH
n,p,β from [62, Theorem 1.1].
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Lemma 3.5.3 Let 0 < p <∞, β ∈ {1, 2, 4} and n ∈ N. Further, let Z(n) be a random

matrix in Bn,Hp,β with distribution CH
n,p,β and eigenvalues λi(Z

(n)), i ∈ {1, . . . , n}. Then

the sequence of random probability measures µn := 1
n

∑n
i=1 δn1/pλi(Z(n)) satisfies a large

deviation principle on M1(R) with speed n2 and good rate function

IHcone(µ) =


−β

2

∫
R

∫
R

log |x− y|µ(dx)µ(dy) +
β

2p
log

( √
π pΓ

(
p
2

)
2p
√
eΓ
(
p+1

2

)) : mp(µ) ≤ 1

+∞ : otherwise.

Proof of Theorem 3.5.1. Since this proof is again quite similar to that of Theorem 3.4.3,

we reduce it to the essential differences. We use the probabilistic representations from

Theorem 3.3.1 and Lemma 3.2.1 (i), and the distributional identities from Proposition

3.2.9 and Proposition 3.2.10 to get

µn :=
1

n

n∑
i=1

δn1/pλi(Z(n))
D
=

1

n

n∑
i=1

δ
n1/p

X
(n)
i(

‖X(n)‖pp+W (n)

)1/p =
1

n

n∑
i=1

δ
n1/pB(n)1/p

X
(n)
i

‖X(n)‖p

,

where X(n) is a random vector with density Cn,p,∆c
β
e−‖x‖

p
p ∆c

β(x), x ∈ Rn, W (n) a ran-

dom variable on [0,∞) with distribution Wn = ϑnδ0 + (1 − ϑn)G(αn, 1), and with

B(n) :=
∥∥X(n)

∥∥p
p

/(∥∥X(n)
∥∥p
p

+ W (n)
)
. Note, that while Theorem 3.3.1 makes a dis-

tributional statement for the randomly permuted eigenvalue vector λσ(Z), the above

statement holds for the empirical measure of the ordered eigenvalue vector λ(Z) as

well, since we are considering the Dirac measures of its coordinates within a sum, in

which the order of the summands is irrelevant. Using Lemma 3.5.2 and Lemma 3.5.3,

by the same arguments as in the proof of Theorem 3.4.3, we get that (µn)n∈N satisfies

an LDP with speed n2 and good rate function IH2 :M1(R)× (0, 1]→ [0,∞) given by

IH2 (µ) = inf
ξ(z−1/p · )=µ(·)

[
IHcone(ξ) + IHbeta(z)

]
, µ ∈M1(R), z ∈ (0, 1].

It remains to show that IH2 is just the rate function IHemp stated in the theorem.

However, this is done analogously to the Euclidean setting by a case-by-case analysis

of parameter configurations mp(µ) ∈ [0,∞], k(ϑ) ≥ 2 and α ∈ [0,∞), such that the

rate functions IHcone and IHbeta remain finite, hence we omit the details.

Example 3.5.4 Similar to Example 3.4.6, it follows that empirical spectral measure

of a random matrix Z(n) of any distribution ϑnC
H
n,p,β + (1 − ϑn)ΨH

n UH
n,p,β with ϑn →

ϑ ∈ [0, 1) exhibits large deviation behaviour described by the rate function
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IHemp(µ) =



IHcone(µ) :
mp(µ) ≤ 1,

α = 0

IHcone(µ) +
β

2p
log

(
β

2p

)
−
(
β

2p
+ α

)
log

(
β

2p
+ α

)
− α log

(
1−mp(µ)

α

) :
mp(µ) < 1,

α ∈ (0,∞)

+∞ : otherwise,

hence the rate function and the corresponding large deviation behaviour is universal

for all these distributions.

3.5.2 Non-self-adjoint matrix p-balls

If the matrix is not self-adjoint, we define the empirical spectral measure of a matrix

Z(n) ∈Mn(Fβ) with respect to the squared singular values s2
1

(
Z(n)

)
≤ . . . ≤ s2

n

(
Z(n)

)
as

µn :=
1

n

n∑
i=1

δn2/ps2i (Z
(n)).

Note that, just as before, the coordinates of the vector
(
s2

1

(
Z(n)

)
, . . . , s2

n

(
Z(n)

))
∈ Rn

+

are suitably scaled. In the non-self-adjoint case, we refer to the rescaled empirical

spectral measure with respect to the squared singular values when we talk of the

empirical spectral measure. As in the previous section, a large deviation principle

for the empirical spectral measure of a sequence of random matrices with distribution

UM
n,p,β or CM

n,p,β on Bn,Mp,β was proven in [62]. Especially, it was observed that the rate

function in both cases is the same up to a constant. Slightly adapting the proof of

Theorem 3.5.1, we can show that this phenomenon occurs in a more general context.

The proof is now based on Theorem 3.3.5 and the norm distribution outlined in Remark

3.3.7 instead of Theorem 3.3.1 and Remark 3.3.4, but this time also on [62, Theorem

1.5] instead of [62, Theorem 1.1], the latter of which we stated as Lemma 3.5.3 above.

Theorem 3.5.5 Let 0 < p < ∞, β ∈ {1, 2, 4}, and let (ϑn)n∈N be a sequence in [0, 1]

with limn→∞ ϑn = ϑ ∈ [0, 1] and denote by k(ϑ) ≥ 2 the smallest number such that

limn→∞ n
−k(ϑ) | log(1− ϑn)| < +∞. Also, let (αn)n∈N be a positive, real sequence such

that limn→∞ αnn
−2 = α ∈ [0,∞). For each n ∈ N let Wn = ϑnδ0 + (1− ϑn)G(αn, 1),

and let Z(n) be a random matrix in Bn,Mp,β chosen according to the distribution PM
n,p,Wn,β

.

Then the sequence of random probability measures µn := 1
n

∑n
i=1 δn2/ps2i (Z

(n)) satisfies a

large deviation principle on M1(R+) with speed n2 and good rate function
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IMemp(µ) =



IMcone(µ)− cM(1−ϑ) :
mp(µ) ≤ 1, k(ϑ) ≥ 2,

α = 0

IMcone(µ) +
β

p
log

(
β

p

)
−
(
β

p
+ α

)
log

(
β

p
+ α

)
−α log

(
1−mp(µ)

α

)
− cM(1−ϑ)

:
mp(µ) < 1, k(ϑ) = 2,

α > 0

+∞ : otherwise,

where

IMcone(µ) =


−β

2

∫
R

∫
R

log |x− y|µ(dx)µ(dy) +
β

p
log

( √
π pΓ

(
p
2

)
2p
√
eΓ
(
p+1

2

)) : mp/2(µ) ≤ 1

+∞ : otherwise,

and

cM(1−ϑ) :=


lim
n→∞

n−2 log(1− ϑn) : k(ϑ) = 2

0 : k(ϑ) > 2.

The proof of Theorem 3.5.5 is completely analogous to the one of Theorem 3.5.1, thus

we will only point out the changes in the auxiliary results that need to be made.

Lemma 3.5.6 Let 0 < p < ∞, β ∈ {1, 2, 4}, and let (ϑn)n∈N be a sequence in [0, 1]

with limn→∞ ϑn = ϑ ∈ [0, 1] and denote by k(ϑ) ≥ 2 the smallest number such that

limn→∞ n
−k(ϑ) | log(1− ϑn)| < +∞. Also, let (αn)n∈N be a positive, real sequence such

that limn→∞ αnn
−2 = α ∈ [0,∞). For each n ∈ N let X(n) = (X

(n)
1 , . . . , X

(n)
n ) be a

random vector with density Cn,p/2,∇cβ e
−‖x‖p/2

p/2∇c
β(x), x ∈ Rn

+, with ∇c
β defined as in

Theorem 3.3.5. Independently of the sequence (X(n))n∈N, let (W (n))n∈N be a sequence

of random variables with W (n) ∼ Wn = ϑnδ0 + (1 − ϑn)G(αn, 1). Then the sequence

of random variables (B(n))n∈N with B(n) :=
∥∥X(n)

∥∥p/2
p/2

/(∥∥X(n)
∥∥p/2
p/2

+ W (n)
)

satisfies a

large deviation principle on [0,∞) with speed n2 and good rate function

IMbeta(x) =



0 : k(ϑ) > 2, x = 1

−β
p

log(x)− cM(1−ϑ)(x) :
k(ϑ) = 2, α = 0,

x ∈ (0, 1]

−β
p

log
(
xp
β

)
−α log

(
1−x
α

)
−
(
β
p

+α
)

log
(
β
p

+α
)

− cM(1−ϑ)(x)
:
k(ϑ) = 2, α > 0,

x ∈ (0, 1)

+∞ : otherwise,

91



3.5. SANOV-TYPE LDPs FOR MATRIX p-BALLS

where

cM(1−ϑ) :=


lim
n→∞

n−2 log(1− ϑn) : k(ϑ) = 2

0 : k(ϑ) > 2.

This first lemma establishes an LDP for the beta distributed `np/2-norm of the random

vector X(n)/
(
‖X(n)‖p/2p/2 +W (n)

)2/p
. This is proven in the same way as Lemma 3.4.5. In

the non-self-adjoint case nothing changes in comparison to the self-adjoint case, besides

the value for p (which becomes p
2
) and the density of the random vector X(n) underlying

that representation. For the singular value distribution in non-self-adjoint matrix p-

balls a different weight function ∇c
β is needed with a different degree of homogeneity

m = (β
2
)n2−n. This m only plays a role in the first parameter of the beta distribution

involved in the distribution of the p-radial component (see Remark 3.3.7). It affects

the large deviation behaviour of the random variable B(n) only insofar as the limit of

the first parameter changes from β
2p

to limn→∞ n
−2(n+m)/(p

2
) = β

p
.

The second lemma is the analogue of Lemma 3.5.3 and gives a large deviation principle

for the empirical spectral measure of a non-self-adjoint random matrix in Bn,Mp,β with

distribution CM
n,p,β. This result can be found in [62, Theorem 1.5].

Lemma 3.5.7 For n ∈ N let Z(n) be a random matrix in Bn,Mp,β with distribution CM
n,p,β

and singular values si
(
Z(n)

)
, i ∈ {1, . . . , n}. Then the sequence of random probability

measures µn := 1
n

∑n
i=1 δn2/ps2i (Z

(n)) satisfies a large deviation principle onM1(R+) with

speed n2 and good rate function

IMcone(µ) =


−β

2

∫
R+

∫
R+

log |x− y|µ(dx)µ(dy) +
β

p
log

( √
π pΓ

(
p
2

)
2p
√
eΓ
(
p+1

2

)) : mp/2(µ) ≤ 1

+∞ : otherwise.

From here on the proof will be completely analogous to that of Theorem 3.5.1, with

the difference being that one uses the rate functions from Lemma 3.5.6 and Lemma

3.5.7 instead of those from Lemma 3.4.5 and Lemma 3.5.3, and the probabilistic rep-

resentation from Theorem 3.3.5 instead of the one from Theorem 3.3.1. We thus again

omit the details.
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Chapter 4

Large deviations for random

projections of `np-balls

The objects of study in this chapter are projections of probability distributions on

`np -balls onto uniform random k-dimensional subspaces for k ≤ n. The main goal is to

show large deviation principles for these projected distributions on the space M1(Rk)

of probability measures on Rk. The distributions that are projected will be taken

from the class of p-radial distributions Pn,p,W. The uniform random projection will

be facilitated by a random variable Vn,k uniformly distributed on the so-called Stiefel

manifold of orthonormal k-frames in Rn.

The specifics of the set-up, which was already sketched in Section 1.2, shall be layed

out in the following Section 4.1, followed by a formulation of the chapter’s main results

in Section 4.2 and their subsequent proofs in Section 4.3. The idea of both proofs

can be formulated in three steps: First, one shows that the distance of any projected

distribution (with respect to the Lévy–Prokhorov metric, see (4.4)) to some more sim-

plified distribution tends to zero with increasing dimension n ∈ N. For this simplified

distribution a weak LDP already follows by results of Kabluchko and Prochno from

[59], and hence we infer a weak LDP for said projected distribution as a second step.

The third step then is to ameliorate this weak LDP to a full LDP by some compactness

arguments.
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4.1. PRELIMINARIES

4.1 Preliminaries

For n, k ∈ N, k ≤ n, a tuple of k linearly independent vectors in Rn is called a k-

frame. The set of all such k-frames whose constituent (row-)vectors are additionally

orthonormal is referred to as the Stiefel manifold, denoted as

Vn,k :=
{
V ∈ Rk×n : V V T = Ik

}
,

with Ik denoting the (k × k) identity matrix and V being a (k × n) matrix consisting

row-wise of the k orthonormal vectors from Rn. As outlined in the introduction, we

equip Vn,k with the uniform distribution (i.e., the invariant Haar probability measure,

cf. [82, Chapter 3]) Un,k,V, writing Vn,k for the corresponding random variable, and

recall that Vn,k is characterized by the following invariance property: for any orthogonal

matrices O ∈ Rk×k and O′ ∈ Rn×n, OVn,kO
′ has the same distribution as Vn,k. Also,

the multiplication of a vector X(n) in Rn with an element V ∈ Vn,k from the Stiefel

manifold can be interpreted geometrically as a projection of X(n) onto a k-dimensional

subspace. Hence, for a random variable Vn,k with distribution Un,k,V the multiplication

of a vector X(n) ∈ Rn with Vn,k corresponds to a projection of X(n) onto a uniform

random subspace of dimension k. For a random vector X(n) on Bnp with distribution

Pn,p,W for some Borel probability measure W on [0,∞) as in (2.13) the distribution

of Vn,kX
(n) on Rk, given by

µVn,kX(n)(A) := P
(
Vn,kX

(n) ∈ A
)
, A ∈ B(Rd), (4.1)

can be interpreted as the uniform random k-dimensional projection of Pn,p,W. This

distribution is the object of study in this chapter. Viewed as a random variable on the

space M1(Rk) of probability measures on Rk, we want to analyze its large deviation

behaviour. This will be done by transporting the following large deviation results onto

the target sequence of random measures, which was originally given in [59, Theorem

D]. It provides an LDP for random projections of product measures, which we will use

in conjunction with the representation from Proposition 2.4.4 to prove this chapter’s

central theorems. In what follows we shall write

Rk×∞
2 :=

{
A = (Aij)

k,∞
i,j=1 : (Aij)j∈N ∈ `2, i = 1, . . . , k

}
for the set of all matrices A ∈ Rk×∞ with square-summable rows. For A ∈ Rk×∞ we

denote by ‖AAT‖op the operator norm of the matrix AAT ∈ Rk×k (that is, the spectral

norm given by the square root of the biggest eigenvalue of AAT , see [88, Section 5.2]),

where the condition A ∈ Rk×∞
2 guarantees that ‖AAT‖op is well-defined.
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Remark 4.1.1 Let us briefly address how to sample a uniform random k-frame from

Vn,k. As every k-frame in Vn,k is orthonormal, its k row vectors are orthogonal and of

length one, i.e., spherical. Hence, such a k-frame can be seen as an element of
(
Sn−1

2

)k
with orthogonal coordinates. Thus, to uniformly sample a k-tuple of orthogonal spher-

ical vectors, we begin by sampling a uniform vector x1 from Sn−1
2 by using Proposition

2.4.2, that is, sampling a standard Gaussian vector in Rn and normalizing. As for p = 2

the cone measure Cn,p and the surface measure σnp coincide (see Remark 2.4.1), this

yields a uniform random spherical vector. Second, we sample another uniform random

spherical vector x2 from Sn−1
2 ∩x⊥1 in the same fashion, with x⊥1 denoting the orthogonal

complement of x1. We repeat this procedure successively until we have k orthogonal

vectors on Sn−1
2 , which, by construction, row-wise make up a uniform random k-frame.

We shall now present the results from [59, Theorem D].

Proposition 4.1.2 Fix k ∈ N. For each n ∈ N let Z(n) = (Z1, . . . , Zn) be a random

vector, where the Zi are i.i.d. non-Gaussian random variables with symmetric distribu-

tion, finite moments of all orders, and variance σ2 > 0. Then the sequence of random

probability measures (µVn,kZ(n))n∈N, n ≥ k, as in (4.1) satisfies an LDP on M1(Rk)

with speed n and good rate function Iproj : M1(Rk)→ [0,∞] given by

Iproj(ν) = −1

2
log det

(
Ik − AAT

)
,

if ν admits a representation of the form

ν = D

(
∞∑
j=1

A•,jZj + σ(Ik − AAT )1/2Nk

)

for some matrix A ∈ Rk×∞
2 with columns (A•j)j∈N such that ‖AAT‖op < 1, where Nk

is a k-dimensional standard Gaussian random vector independent of all Zi. If ν does

not admit a representation of this form, we set Iproj(ν) =∞.

Note that the specific distribution of the Zi has a rather subtle influence on the rate

function of the LDP via the matrix A used in the representation of a given measure

ν ∈ M1(Rk). As a side remark, note that in [59, Theorem D], the case of σ2 = 0

actually has to be excluded. The result was amended accordingly.
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4.2 LDPs for random projections of p-radial

distributions on `np-balls

We are now in the position to present the first of this chapter’s main results for random

projections of p-radial distributions Pn,p,Wn on `np -balls.

Theorem 4.2.1 Fix p ∈ [1,∞), p 6= 2, and k ∈ N. Moreover, let (Wn)n∈N be a

sequence of Borel probability measures on [0,∞) and (Wn)n∈N a sequence of random

variables with Wn ∼ Wn, such that Wn/n → α ∈ [0,∞) in probability. Finally, let

X(n), Y (n) be random vectors in Bnp with Y (n) ∼ Pn,p,Wn and X(n) D= n1/p Y (n). Then

the sequence of random probability measures (µVn,kX(n))n∈N, n ≥ k, as in (4.1) satisfies

an LDP on M1(Rk) with speed n and good rate function Iproj : M1(Rk)→ [0,∞] given

by

Iproj(ν) = −1

2
log det

(
Ik − AAT

)
,

if ν admits a representation of the form

ν = D

((
1

1 + α

)1/p ∞∑
j=1

A•,jZj + σp,α
(
Ik − AAT

)1/2
Nk

)

for some matrix A ∈ Rk×∞
2 with columns (A•j)j∈N such that ‖AAT‖op < 1, where

Zj ∼ Np i.i.d.,

σ2
p,α :=

(
p

1 + α

)2/p Γ
(

3
p

)
Γ
(

1
p

) ,
and Nk is an independent k-dimensional standard Gaussian random vector. If ν does

not admit a representation of this form, we set Iproj(ν) =∞.

As discussed in Remark 2.4.3, choosing Wn ≡ δ0 gives Pn,p,Wn = Cn,p and Wn ≡ E(1)

yields Pn,p,Wn = Un,p. In both cases it holds for Wn ∼ Wn that Wn/n → α = 0 in

probability and Theorem 4.2.1 reduces to the results from [59, Theorem C]. Hence, we

can see that in this setting both Cn,p and Un,p share the same large deviation behaviour

in high dimensions, which is in line with similar observations made for other functionals

(see, e.g., [4, 62, 72]). Moreover, the result even implies a certain universality of the rate

function, since despite the expected sensitivity of LDPs to the underlying distributions,

the rate function is the same for all sequences (Wn)n∈N that share the same limiting

behaviour on a scale of order n.
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Given the setting of Theorem 4.2.1, if we consider the case Wn/n→∞ in probability

(formally corresponding to the choice α = ∞), by the representation result in Propo-

sition 2.4.4 one can see that this corresponds to each component of X(n) converging to

zero in probability, that is, we arrive at a trivial limit. To avoid this, we may choose a

different scaling, as carried out in the following theorem.

Theorem 4.2.2 Fix p ∈ [1,∞), p 6= 2, and k ∈ N. Moreover, let (Wn)n∈N be a

sequence of Borel probability measures on [0,∞) and (Wn)n∈N a sequence of random

variables with Wn ∼ Wn and Wn/n
κ → β ∈ (0,∞) in probability for some κ > 1,

and assume that the sequence of random variables (Wn/n
κ)−2/p is uniformly integrable.

Finally, let X(n) and Y (n) be random vectors in Bnp such that Y (n) ∼ Pn,p,Wn and

X(n) D= nκ/p Y (n). Then the sequence of random probability measures (µVn,kX(n))n∈N,

n ≥ k, as in (4.1) satisfies an LDP on M1(Rk) with speed n and good rate function

Iproj : M1(Rk)→ [0,∞] given by

Iproj(ν) = −1

2
log det

(
Ik − AAT

)
if ν admits a representation of the form

ν = D

((
1

β

)1/p ∞∑
j=1

A•,jZj + σp,β
(
Ik − AAT

)1/2
Nk

)

for some matrix A ∈ Rk×∞
2 with columns (A•j)j∈N such that ‖AAT‖op < 1, where

Zj ∼ Np,

σ2
p,β :=

(
p

β

)2/p Γ
(

3
p

)
Γ
(

1
p

) ,
and Nk is an independent k-dimensional standard Gaussian random vector. If ν does

not admit a representation of this form, we set Iproj(ν) =∞.

Theorem 4.2.2 includes an additional integrability condition for Wn, due to the fact

that Wn is no longer of the same order as the `np -norm of Z(n). Why this is needed

specifically can be seen in its proof. Note that a helpful sufficient condition for the

uniform integrability of (Wn/n
κ)−2/p is given by

sup
n∈N

E

[(
nκ

Wn

)4/p
]
≤ C

for some absolute constant C > 0 (since a sequence of random variables being bounded

in Lp for some p > 1 – with p = 2 in this case – implies its uniform integrability).
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In particular, it can be applied to verify the uniform integrability for certain gamma

distributions. In such settings the following lemma will also be useful.

Lemma 4.2.3 For each n ∈ N consider a random variable Wn ∼ G(an, b), where

(an)n∈N is a positive increasing sequence and b > 0. Assume further that an satisfies

infn∈N an =: m > 4
p

and limn→∞
an
nκ

= λ ∈ (0,∞) for some κ ∈ (0,∞). Then

sup
n∈N

E

[(
nκ

Wn

)4/p
]
≤ b4/pMp(λm)−4/p <∞,

where M−1
p :=

∏4
i=0

(
1− 4

p(m+i)

)
.

Proof. We start by observing that

E

[(
nκ

Wn

)4/p
]

= n4κ/p ban

Γ(an)

∞∫
0

xan−1−4/pe−bx dx = n4κ/p b4/p

Γ(an)
Γ

(
an −

4

p

)
.

According to the inequality [55, Equation (12)] for quotients of gamma functions (ap-

plied with x = an + 5− 4
p

and y = 4
p
) one has that

Γ
(
an − 4

p

)
Γ(an)

=

 4∏
i=0

(an + i)(
an − 4

p
+ i
)
 Γ

(
an − 4

p
+ 5
)

Γ(an + 5)

=

(
4∏
i=0

(
1− 4

p(an + i)

))−1

1(
Γ(an− 4

p
+5)

Γ(an+5)

)
≤

(
4∏
i=0

(
1− 4

p(m+ i)

))−1

1(
an + 4− 4

p

)4/p

≤

(
4∏
i=0

(
1− 4

p(m+ i)

))−1

1

a
4/p
n

= Mp a
−4/p
n ,

where we also used that p ≥ 1. By our assumption on the growth of an and since an is

increasing it follows that

E

[(
nκ

Wn

)4/p
]
≤ n4κ/pb4/pMpa

−4/p
n ≤ n4κ/pb4/pMp(λmn

κ)−4/p = b4/pMp(λm)−4/p

for all n ∈ N. This completes the proof.
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Remark 4.2.4 A concrete and geometrically motivated example where Theorem 4.2.1

and Theorem 4.2.2 can be applied is given by the distribution on Bnp arising as the

projection to the first n coordinates of the cone probability measure Cn+mn,p on Bn+mn
p ,

where mn is an element of an increasing sequence (mn)n∈N satisfying infn∈Nmn = m > 4

and limn→∞
mn
nκ

= λ for some κ ≥ 1 and λ ∈ (0,∞). As discussed in Remark 2.4.3, this

case corresponds to Pn,p,Wn with Wn = G
(
mn
p
, 1
p

)
and fits the assumptions of Lemma

4.2.3, and thereby of Theorem 4.2.1 or Theorem 4.2.2, depending on the value of κ ≥ 1.

The same holds for the projection of the uniform distribution Un+mn,p corresponding

to Pn,p,Wn with Wn = G
(
1 + mn

p
, 1
p

)
. Thus, the LDPs from the main results of this

section do hold for distributions of particular geometric interest.

4.3 Proof of the LDPs for projections

of p-radial distributions on `np-balls

This section shall prove Theorem 4.2.1 and Theorem 4.2.2. The proofs will follow in

the footsteps of the proof of [59, Theorem C], adapting and generalizing the arguments

therein where necessary. We start off by formulating some probabilistic representations

of the target quantities and show some auxiliary results for the proofs.

Assume the set-up of Theorem 4.2.1 and for a fixed Stiefel matrix V ∈ Vn,k denote

by V•,j, j = 1, . . . , n its columns. Then, by (4.1) and the representation results from

Proposition 2.4.4, it follows that for any Borel set A ∈ B(Rk),

µV X(n)(A) = P(V X(n) ∈ A) = P

(
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j ∈ A

)
, (4.2)

where Z(n) = (Z1, . . . , Zn) with Zj ∼ Np i.i.d. and Wn ∼ Wn independent of Z(n).

Moreover, let

µ̃V X(n)(A) := P

((
1

1 + α

)1/p n∑
j=1

ZjV•,j ∈ A

)
, (4.3)

again with i.i.d. Zj ∼ Np. We shall see that we can confine our analysis to µ̃V X(n)

instead of µV X(n) , since they are arbitrarily close to each other in n ∈ N with respect

to the Lévy-Prokhorov metric. On the space M1(Rk) of probability measures on Rk,

the Lévy–Prokhorov metric ρLP is defined by

ρLP(µ, ν) := inf
{
ε > 0: µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε ∀A ∈ B

(
Rk
)}
, (4.4)
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where Aε denotes the ε-neighborhood of A ∈ B
(
Rk
)
, defined as

Aε := {x ∈ Rk : ‖a− x‖2 < ε for some a ∈ A}, ε > 0.

We shall now prove that the distance of µV X(n) and µ̃V X(n) in M1(Rk) with respect

to the Lévy–Prokhorov metric, i.e., ρLP(µV , µ̃V ), converges to 0 uniformly over all

V ∈ Vn,k as n tends to infinity.

Lemma 4.3.1 For p ∈ [1,∞) and n ∈ N, n > 4, set X(n) as in Theorem 4.2.1. Then,

for k ≤ n, we have

lim
n→∞

sup
V ∈Vn,k

ρLP (µV X(n) , µ̃V X(n)) = 0.

Proof. Let A ∈ B(Rk), V ∈ Vn,k fixed, and ε > 0. Then,

µ̃V X(n)(A)

= P

((
1

1 + α

)1/p n∑
j=1

ZjV•,j ∈ A

)

≤ P

(
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j ∈ Aε

)

+P

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

≥ ε


= µV X(n)(Aε)

+P

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

≥ ε

 . (4.5)

Let us prove that the second summand on the right-hand side converges to 0 as n→∞.

By Markov’s inequality,

P

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

≥ ε


≤ ε−1 E

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

,

and by the Cauchy–Schwarz inequality,
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E

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

= E

∥∥∥∥∥
n∑
j=1

ZjV•,j

∥∥∥∥∥
2

∣∣∣∣∣
(

1

1 + α

)1/p

− n1/p

(‖Z(n)‖pp +Wn)1/p

∣∣∣∣∣


≤

√√√√√E

∥∥∥∥∥
n∑
j=1

ZjV•,j

∥∥∥∥∥
2

2


√√√√√E

 ∣∣∣∣∣
(

1

1 + α

)1/p

− n1/p

(‖Z(n)‖pp +Wn)1/p

∣∣∣∣∣
2
. (4.6)

As Z1, . . . , Zn are i.i.d. with mean zero and V•,1, . . . , V•,n are orthonormal vectors, the

first factor in (4.6) reads

E

∥∥∥∥∥
n∑
j=1

ZjV•,j

∥∥∥∥∥
2

2

= E

[
n∑

i,j=1

ZiZj〈V•,i, V•,j〉2

]
= E

[
Z2

1

] n∑
j=1

〈V•,i, V•,j〉2 = kE
[
Z2

1

]
. (4.7)

To address the second factor in (4.6), let us first argue that

ξn :=

((
1

1 + α

)1/p

− n1/p

(‖Z(n)‖pp +Wn)1/p

)2

−→ 0 (4.8)

in probability as n → ∞. Indeed, by the continuous mapping theorem, it suffices to

show that
‖Z(n)‖pp

n
+
Wn

n
−→ 1 + α

in probability. This follows from the fact that Z1, . . . , Zn are i.i.d. p-generalized Gaus-

sian random variables, which means that E[|Zi|p] = 1 (see (2.7)), and moreover that

by assumption, Wn n
−1 → α in probability. In fact, we even have ξn → 0 in L1. To

see this, by the Vitali convergence theorem (see [16, Theorem 4.5.4]), it is sufficient

to show that (ξn)n∈N is uniformly integrable, which in combination with (4.8) yields

convergence in L1. Clearly, (ξn)n∈N is uniformly integrable if the sequence(
n

‖Z(n)‖pp +Wn

)2/p

≤
(

n

‖Z‖pp

)2/p

is uniformly integrable, where we have used that Wn ≥ 0. This, in turn, follows from

the fact that ‖Z(n)‖pp ∼ G
(
n
p
, 1
p

)
together with Lemma 4.2.3 for rate an = n

p
> 1

p
, shape

b = 1
p
, κ = 1, and λ = 1

p
, which yields
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E
(

n

‖Z(n)‖pp

)4/p

≤ p4/pMpm
−4/p ∈ (0,∞)

for all n > 4. Hence, ξn −→ 0 in L1, and as a consequence, the second factor in (4.6)

converges to zero. This implies that the second summand in (4.5) converges to zero

uniformly in n ∈ N. Altogether, we have proven that for any ε > 0,

µ̃V X(n)(A) ≤ µV X(n)(Aε) + ε

for n sufficiently large. In the same way, we may also prove that

µV X(n)(A) ≤ µ̃V X(n)(Aε) + ε

for n sufficiently large, which finishes the proof.

Next, we replace the fixed element V ∈ Vn,k by a random variable Vn,k ∼ Un,k,V on

the Stiefel manifold. Based on Lemma 4.3.1, we may prove that a weak LDP for the

modified sequence µ̃Vn,kX(n) implies a weak LDP for µVn,kX(n) , both respectively defined

as in (4.2) and (4.3) with respect to Vn,k.

Lemma 4.3.2 Assume the set-up of Theorem 4.2.1 and recall the notation (4.2) and

(4.3). If the sequence µ̃Vn,kX(n) satisfies a weak LDP on M1(Rk) at speed n and rate

function Iproj, then the sequence µVn,kX(n) satisfies the same weak LDP.

Proof. It suffices to check the weak LDP on a basis of the topology of M1(Rk), e. g.,

the balls

Br(ν) :=
{
µ ∈M1

(
Rk
)

: ρLP(µ, ν) < r
}

for any radius r ∈ (0,∞). By Lemma 4.3.1, for n sufficiently large we have

ρLP

(
µ̃Vn,kX(n) , µVn,kX(n)

)
< r/2

uniformly over all realizations of Vn,k ∈ Vn,k. Therefore, by the triangle inequality for

the Lévy–Prokhorov metric ρLP, it follows that

1

n
logP

(
µ̃Vn,kX(n) ∈ Br/2(ν)

)
≤ 1

n
logP

(
µVn,kX(n) ∈ Br(ν)

)
≤ 1

n
logP

(
µ̃Vn,kX(n) ∈ B3r/2(ν)

)
,
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and hence,

lim sup
n→∞

1

n
logP

(
µ̃Vn,kX(n) ∈ Br/2(ν)

)
≤ lim inf

n→∞

1

n
logP

(
µVn,kX(n) ∈ Br(ν)

)
≤ lim sup

n→∞

1

n
logP

(
µVn,kX(n) ∈ Br(ν)

)
≤ lim inf

n→∞

1

n
logP

(
µ̃Vn,kX(n) ∈ B3r/2(ν)

)
.

Thus, by monotonicity in r, taking the infimum over r ∈ (0,∞), the LDP for µ̃Vn,kX(n)

yields

−Iproj(ν) ≤ inf
r∈(0,∞)

lim inf
n→∞

1

n
logP

(
µVn,kX(n)∈Br(ν)

)
≤ inf

r∈(0,∞)
lim sup
n→∞

1

n
logP

(
µVn,kX(n)∈Br(ν)

)
≤ −Iproj(ν).

From here the claim follows directly from Proposition 2.3.8.

On a compact space, weak and full LDPs coincide. Thus, to “lift” a weak LDP to a

full LDP in our setting, we provide compactness by the following lemma.

Lemma 4.3.3 There is a constant C ∈ (0,∞) such that for all n ≥ k and all V ∈ Vn,k,

µV X(n) ∈MC :=

µ ∈M1

(
Rk
)

:

∫
Rk

‖x‖2 µ(dx) ≤ C

 ,

where the set MC is compact for any choice of C ∈ (0,∞).

Proof. The compactness of the set MC in the topology of weak convergence onM1(Rk)

has been shown in [59, Proof of Lemma 5.3], so it remains to prove the first assertion.

To this end, recalling the representation of the distribution µV X(n) given in (4.2), it

suffices to prove that

lim sup
n→∞

sup
V ∈Vn,k

E

∥∥∥∥∥
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

<∞,

for i.i.d. Zj ∼ Np and Wn ∼ Wn as in Theorem 4.2.1. By the triangle inequality it
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then follows that

E

∥∥∥∥∥
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

n1/p Zj
(‖Z(n)‖pp +Wn)1/p

V•,j

∥∥∥∥∥
2

+ E

∥∥∥∥∥
(

1

1 + α

)1/p n∑
j=1

ZjV•,j

∥∥∥∥∥
2

.

The first summand on the right-hand side converges to zero uniformly in n ∈ N, as was

shown after (4.6). Moreover, by Hölder’s inequality and (4.7), the second summand is

uniformly bounded by
√
kE[Z2

1 ]/(1 + α)1/p, and thus the claim follows.

Combining the accumulated auxiliary results, we now have the sufficient tools to prove

Theorem 4.2.1.

Proof of Theorem 4.2.1. We apply Proposition 4.1.2 to a random vector with coordi-

nates being the symmetric non-Gaussian random variables Zj/(1 + α)1/p, Zj ∼ Np,

which, by (2.7), have finite moments of all orders and, in particular, variance

σ2
p,α =

(
p

1 + α

)2/p Γ
(

3
p

)
Γ
(

1
p

) .
Hence, the sequence (µ̃Vn,kX(n))n∈N as in (4.3) satisfies an LDP on M1(Rk) with speed

n and rate function Iproj as stated in Theorem 4.2.1. Therefore, by Lemma 4.3.2,

µVn,kX(n) satisfies the same weak LDP, which extends to a full LDP by the compactness

arguments given in Lemma 4.3.3, thus finishing the proof.

The proof of Theorem 4.2.2 works in a very similar way to that of Theorem 4.2.1, hence

we will only point out the steps where it differs from the previous proof. Given the

different scaling of the p-radial component of X(n), it follows via the same probabilistic

representation arguments as previously that for a Stiefel matrix V ∈ Vn,k,

µV X(n)(A) := P
(
V X(n) ∈ A

)
= P

(
n∑
j=1

nκ/p
Zj

(‖Z(n)‖pp +Wn)1/p
V•,j ∈ A

)

for any A ∈ B(Rk), and set
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µ̃V X(n)(A) := P

((
1

β

)1/p n∑
j=1

ZjV•,j ∈ A

)
,

using the same notation as in Theorem 4.2.1 and its proof. The only argument that

needs to be adapted is the proof of Lemma 4.3.1, which will be replaced by the following

Lemma.

Lemma 4.3.4 For p ∈ [1,∞) and any n ∈ N, n > 4, set X(n) as in Theorem 4.2.2.

Then, for k ≤ n, we have

lim
n→∞

sup
V ∈Vn,k

ρLP (µV X(n) , µ̃V X(n)) = 0.

Proof. Let A ∈ B(Rk), V ∈ Vn,k fixed, and ε > 0. Then, by analogue expansion as in

(4.5), we have that

µ̃V X(n)(A)

≤ µV X(n)(Aε)

+P

∥∥∥∥∥
(

1

β

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

nκ/p
Zj

(‖Z(n)‖pp +Wn)1/p
V•,j

∥∥∥∥∥
2

≥ ε

 . (4.9)

Again, we need to show that the second summand on the right-hand side in the above

converges to zero as n tends to infinity. By Markov’s inequality it holds that

P

∥∥∥∥∥
(

1

β

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

nκ/p
Zj

(‖Z(n)‖pp +Wn)1/p
V•,j

∥∥∥∥∥
2

≥ ε


≤ ε−1E

∥∥∥∥∥
(

1

β

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

nκ/p
Zj

(‖Z(n)‖pp +Wn)1/p
V•,j

∥∥∥∥∥
2

,

and a further application of the Cauchy–Schwarz inequality as in (4.6) yields

E

∥∥∥∥∥
(

1

β

)1/p n∑
j=1

ZjV•,j −
n∑
j=1

nκ/p
Zj

(‖Z(n)‖pp +Wn)1/p
V•,j

∥∥∥∥∥
2

≤

√√√√√E

∥∥∥∥∥
n∑
j=1

ZjV•,j

∥∥∥∥∥
2

2


√√√√√E

 ∣∣∣∣∣
(

1

β

)1/p

− nκ/p

(‖Z(n)‖pp +Wn)1/p

∣∣∣∣∣
2
, (4.10)

with the first factor simplifying to kE[Z2
1 ] as in (4.7). It remains to show that

105



4.3. PROOF OF THE LDPs FOR RANDOM PROJECTIONS OF `np -BALLS

ξn :=

((
1

β

)1/p

− nκ/p

(‖Z(n)‖pp +Wn)1/p

)2

−→ 0 (4.11)

in probability as n→∞ to address the second factor. We again do so by showing

‖Z(n)‖pp
nκ

+
Wn

nκ
−→ β

in probability due to the continuous mapping theorem. Since κ > 1, by the same

arguments as in the proof of Theorem 4.2.1, it follows that ‖Z(n)‖pp/nκ → 0 and the

behaviour of Wn dominates. By assumption, Wn/n
κ −→ β in probability. In fact, we

even have ξn −→ 0 in L1. Indeed, since the sequence of random variables (Wn/n
κ)−2/p

is uniformly integrable by assumption, it follows that the sequence of random variables

ξn is uniformly integrable as well, which in combination with (4.11) yields convergence

in L1. As a consequence, the second factor in (4.10) converges to zero. This implies

that the second summand in (4.9) converges to zero uniformly in n ∈ N. Altogether,

by these and analogous arguments for the reverse case of (4.9), it follows that for ε > 0

and n sufficiently large

µ̃V X(n)(A) ≤ µV X(n)(Aε) + ε and µV X(n)(A) ≤ µ̃V X(n)(Aε) + ε,

thus finishing the proof.

Since the rest of the proof of Theorem 4.2.1 does not depend on the specific choice of

α or the scaling of the X(n), the remainder of the proof of Theorem 4.2.2 can proceed

in the very same way.
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Chapter 5

Sharp large deviations on `np-balls

Within this chapter we will move away from showing large deviation results in high-

dimensional convex geometry and begin doing the same for sharp large deviation (SLD)

results in the spirit of Bahadur and Ranga Rao [10]. The differences between these two

closely related areas of study, especially regarding their goals and methodology, will be

outlined in Section 5.1.

We then turn to showing concrete sharp large deviation results within `np -balls. Section

5.2 provides such results for the q-norm of random vectors distributed in the `np -ball

Bnp according to the cone probability measure Cn,p or the uniform distribution Un,p

for 1 ≤ q < p < ∞. As will be explained therein, the regime 1 ≤ p < q < ∞ cannot

be handeled by our approach, as certain exponential moment conditions are no longer

met in this case. In Section 5.3 the p-generalized arithmetic-geometric mean (p-AGM)

inequality for vectors chosen randomly from the `np -ball in Rn is considered and sharp-

ened by showing a Bahadur-Ranga Rao-type result for the underlying probabilistic

representation of the random vectors from Bnp .

5.1 Preliminaries

We have seen in Section 2.3.1 that classic LDPs give an idea of the asymptotic deviation

behaviour of a sequence of probability distributions on a logarithmic scale, that is, for

a sequence of probability measures (Pn)n∈N on a Polish space X an LDP allows to

describe the limiting behaviour of

1

s(n)
log Pn(·)
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via the rate function I(·), with s(·) being the speed. Hence, we can write

Pn(G) = e
−s(n)

[
inf
x∈G
I(x) + o(1)

]
,

where, for simplicity, we assumed G ∈ B(Rn) to be a set with

inf
x∈G◦
I(x) = inf

x∈G
I(x).

By considering these logarithmic probabilities, however, a lot of subtleties of the un-

derlying distributions can be drowned out. Many small- and medium-scale properties

of a given sequence of distributions can be missed in the asymptotic analysis of LDPs,

since they either disappear for very large n ∈ N or are overshadowed by other, more

significant phenomena of the distribution. This is clear when considering the error of

concrete probability estimates based on large deviation results, given by e−s(n)o(1), for

which we cannot even say whether or not it goes to zero in n ∈ N, as we generally

do not know the relative behaviour of s(n) and o(1). Thus, one is also interested in

considering large deviations on a non-logarithmic scale, which we refer to as “sharp”

large deviations (also called “precise” or “strong” large deviations in the literature).

One of the first results in this regard was given by Bahadur and Ranga Rao in [10].

They showed that for a sequence (X(n))n∈N of non-lattice i.i.d. random variables and

any z > E[X(n)] with Λ∗X(z) < ∞ it holds for the sequence of empirical averages(
1
n
S(n)

)
n∈N that

P
(

1

n
S(n) > z

)
=

1√
2πnκ(z)ξ(z)

e−nΛ∗X(z) (1 + o(1)), (5.1)

where κ(z) and ξ(z) are prefactor functions which are only dependent on the distribu-

tion of the X(n) and the deviation size z. Specifically, they are given by functions of

the first and second derivative of Λ∗X , which, as the Legendre-Fenchel transform of the

cumulant generating function ΛX , is very dependent on the distribution of the X(n).

This result is a significant improvement on the theorem of Cramér, which in comparison

states that in the same setting as previously

P
(

1

n
S(n) > z

)
= e−s(n)[Λ∗X(z)+o(1)].

However, showing sharp large deviation results has proven substantially more difficult,

even for functionals of empirical averages, which for LDPs can often be handled in

straight-forward fashion via the theorem of Cramér and the contraction principle. Let

us take a closer look at how the methodology of the proofs need to be adapted.
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The result of Bahadur and Ranga Rao is proven via a (somewhat implicit) application

of the the so-called saddle point method (also called method of steepest descent or

method of stationary phase), which was established by Debye [28], and brought to

the realm of probability by Esscher [33] and Daniels [26]. The saddle point method

generalizes Laplace’s method for integral approximation to the complex plane, and is

therefore highly useful when dealing with integrals over characteristic functions.

In general, for analytic functions f, g and n ∈ N large, the saddle point method gives

a way to approximate Laplace-type integrals∫
P

g(z) enf(z) dz

along complex paths P by deforming the path of integration using Cauchy’s theorem

(in the homotopic interpretation as in [84, Theorem 5.1]), into some P̃ that passes

through a critical point of f , around which the mass of the reformulated integral

then heavily concentrates. This is done such that standard integral approximation

methods can be used to great effect. Thus, the path of integration should be chosen

such that the integrand is consistently small along most of the path and then take

the steepest route through said critical point. It follows from the Cauchy-Riemann

equations that this point is always a saddle point, since the second derivatives of an

analytical function in any critical point have opposite signs, hence the name of the

method. Like in the classical Laplace-type approach, one would expect such a critical

point to be attained where the magnitude Re(f(z)) maximizes, but also where the

phase Im(f(z)) is constant, such that the oscillating components of the integral do not

cancel out. And indeed, due to the Cauchy-Riemann equations, it again follows that

the path of stationary phase and the path of steepest descent coincide. For large n ∈ N
the integral can then be approximated well by only considering it locally around the

saddle point. Also, since the phase Im(f(z)) along the deformed path of integration

is constant, the remaining integral can be approached using the standard Laplace

principle.

In the realm of probability, this has been used for both tail probabilities (e.g., Ess-

cher [33], Cramér [25]) and densities of random variables (e.g., Daniels [26], Richter

[101, 102]), by writing them as an integral over their characteristic functions, using

the Fourier inversion formula (see [110, Theorem 1.9]), and then approximating those

integrals via the use of a complex saddle point.
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We say that this was used “somewhat implicitly” in certain results, such as those

of Esscher [33], Cramér [25], and Bahadur and Ranga Rao [10], since the technique

used therein, which is an Edgeworth expansion in conjunction with a certain change

of measure, often called exponential tilting or Esscher/Cramér transform, under the

surface employs saddle points as well. Edgeworth expansion approximates an unknown

density via a series expansion of its (unknown) characteristic function by using known

(Gaussian) characteristic functions and then applying the Fourier inversion theorem,

so we see how the saddle point method is employed here as well.

As pointed out by Richter in [101], the condition of finite exponential moments in a

neighbourhood of the origin in all results that implicitly or explicitly use the saddle

point method just amounts to assuming that the moment and cumulant generating

functions are analytical in an open strip {z ∈ C : |Re(z)| < r} of the complex plane

containing the origin, so the aforementioned arguments can be applied.

Let us briefly walk through the application of the saddle point method to derive an

asymptotic density estimate for the classical example of the empirical average of i.i.d.

random vectors: Let X1, ..., Xn ∈ Rd be i.i.d. random vectors with moment generat-

ing function ϕX , cumulant generating function ΛX , and denote by fS(n) the unknown

density of their empirical average 1
n
S(n). Assume its Fourier transform F(fS(n)) to be

known and sufficiently integrable, i.e., F(fS(n)) ∈ L1(Rd). Then the Fourier inversion

theorem lets us write the density fS(n) of S(n) for some x ∈ Dom(Λ∗X)◦ as

fS(n)(x) =
( n

2π

)d +∞∫
−∞

F(fS(n))(t)e−〈it,nx〉 dt

=
( n

2π

)d +∞∫
−∞

ϕX(it)ne−〈it,nx〉 dt

=
( n

2π

)d +∞∫
−∞

en[ΛX(it)−〈it,x〉] dt.

where we rewrote the Fourier transform via the moment generating function ϕX , as

outlined in Remark 2.2.2. As discussed above, we assume that ϕX is finite around the

origin in order for the moment and cumulant generating functions to be analytical in

an open strip {z ∈ C : |Re(z)| < r} of the complex plane containing the origin. For

the same reason we restrict ourselves to arguments x ∈ Dom(Λ∗X)◦. Thus, Cauchys

integral theorem allows for a change of the path of integration, such that
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fS(n)(x) =
( n

2π

)d +∞∫
−∞

en[ΛX(τ+it)−〈(τ+it),x〉] dt,

for τ ∈ Rd such that ΛX(τ + it) <∞. By some standard arguments for the cumulant

generating function and complex integrals (see, e.g., Daniels [26, Section 2]), one can

show that [ΛX(τ + it)− 〈(τ + it), x〉] is a convex function in τ ∈ Dom(ΛX), attaining

its minimum in τ at some τ(x) ∈ Dom(ΛX), and a concave function in t ∈ R, attaining

its maximum in t at t = 0, with the modulus of the integrand itself also attaining its

maximum there. Note that this τ(x) minimizing [ΛX(τ + it)−〈(τ + it), x〉] is the same

as that from Lemma 2.2.1 (4) for which Λ∗X(x) = 〈(τ(x)), x〉 − ΛX(τ(x)). Thus, the

point (τ(x) + i0) ∈ Dom(ΛX)× iR is the saddle point of the exponent in the integrand

and we can write

fS(n)(x) =
( n

2π

)d +∞∫
−∞

e−n[〈(τ(x)+it),x〉−ΛX(τ(x)+it)] dt. (5.2)

Thus, for large n ∈ N, most of the mass in the integral in (5.2) concentrates in a neigh-

bourhood around τ(x), and hence, appropriate expansions of the integrand around

τ(x) yield good approximations to the integral (5.2) and thereby fS(n) . By local ap-

proximation as in [7, Theorem 3.1] it then follows that

fS(n)(x) =
( n

2π

)d [
detHτ (ΛX(τ(x))

]−1/2
en[ΛX(τ(x))−〈τ(x),x〉] (1 + o(1))

=
( n

2π

)d [
detHτ (ΛX(τ(x)))

]−1/2
e−nΛ∗X(x) (1 + o(1)).

Versions of the saddle point method were used for density approximations of empirical

averages of both sequences of i.i.d. random variables (e.g., Daniels [26], Richter [101,

102], Borovkov and Rogozin [17] etc.) and arbitrary sequences of random variables (e.g.,

Chaganty and Sethuraman [21, 22, 23, 24], Joutard [57, 58] etc.), so this procedure is

not limited to the case of considering i.i.d. random variables.

We previously mentioned how many results from (sharp) large deviations theory im-

plicitly employ the saddle point method in the form of so-called exponential tilting.

Let us consider how this works in more detail as well. The accuracy of classic results

for the approximation of probabilities and densities severly detereorate in the tails of

a distribution, as can be seen when trying to estimate large deviation probabilities

using, e.g., CLT results. Such results are accurate around the expectation, but worsen

considerably in the tails. Hence, the idea of exponential tilting is to construct a new
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distribution for a given large deviation event, under which this event becomes typical

and classic approximation techniques can again be applied.

We again consider the previous example of trying to give a good estimate for the density

fS(n) of the empirical average 1
n
S(n) of i.i.d. random vectors X1, . . . , Xn in Rd. For a

given x ∈ Dom(Λ∗X)◦ we define a family of exponentially tilted densities (often also

called “conjugate densities”) as

fS(n),τ (x) := en[〈τ,x〉−ΛX(τ)]fS(n)(y),

where τ is in the effective domain Dom(ΛX) of ΛX . Hence, we can write fS(n) via this

exponentially tilted density as

fS(n)(x) := e−n[〈τ,x〉−ΛX(τ)]fS(n),τ (x).

Choosing τ = τ(x) ∈ Dom(ΛX)◦ from Lemma 2.2.1 (4) yields a distribution cen-

tered around x ∈ Dom(Λ∗X)◦, and the approximation of fS(n)(x) may now be obtained

efficiently by approximating fS(n),τ(x)(x) via various techniques such as Edgeworth ex-

pansion, which, as we mentioned, employ the saddle point method as well.

5.2 Sharp large deviations for q-norms of `np-balls

In this section sharp large deviation results in the spirit of Bahadur and Ranga Rao

as in (5.1) are provided for the q-norm of random vectors distributed in the `np -ball Bnp
according to Cn,p or Un,p for 1 ≤ q < p <∞. As stated in Section 1.2, there is a close

connection between the behaviour of q-norms of random vectors in `np -balls and the

intersection volumes of t-multiples of volume-normalized `np -balls voln(Dn
p ∩ tDn

q ) with

t ∈ [0,∞). We will use this connection to derive sharp asymptotics for said intersection

volumes at an improved rate compared to those provided by previous results. Lastly,

these sharp large deviation results will be applied to retain sharp asymptotics for the

length of the projection of an `np -ball onto a line with uniform random direction.

The proof of the main results is separated into three steps. Using the results of Schecht-

man and Zinn in Proposition 2.4.2, we first rewrite the target deviation probability of

the q-norm of a random vector from Bnp as the probability of the empirical average

of some vector of p-generalized Gaussians lying in some domain, which we will refer

to as the deviation area. The geometric shape of this deviation area will turn out to

have a major influence on the main result. Hence, we can write the target deviation

probability as an integral of the (unknown) density of this empirical average over the

deviation area. The second step then consists of deriving this density explicitly using
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the saddle point method (in the implicit form of exponential tilting). Thus, the devi-

ation probability can be written as the integral of the density approximation over the

deviation area. In the third and final step we then calculate this integral concretely

for `np -spheres and `np -balls. To do so, we will utilize some geometric results for asymp-

totic expansions of Laplace integrals from Andriani and Baldi [7] and Breitung and

Hohenbichler [19].

5.2.1 LDPs for q-norms of `np-balls

We start by laying out the target variables and presenting the relevant results that were

established for them previously. Throughout Section 5.2 we assume 1 ≤ q < p < ∞,

even if the results we present therein hold for q > p as well, since this section’s main

results will only hold in this particular case. The main variables of interest will be the

q-norms of the random vectors

Z(n) ∼ Cn,p and Z(n) ∼ Un,p.

Note, that within this section we will denote quantities related to Z(n) ∼ Un,p cursively.

To get non-trivial results, our target variables also need to be appropriately rescaled.

Thus, for random vectors Z(n),Z(n) ∈ Bnp with Z(n) ∼ Cn,p and Z(n) ∼ Un,p, our

target variables will be

n1/p− 1/q ‖Z(n)‖q and n1/p− 1/q ‖Z(n)‖q,
and we set

‖Z‖ :=
(
n1/p− 1/q ‖Z(n)‖q

)
n∈N and ‖Z‖ :=

(
n1/p− 1/q ‖Z(n)‖q

)
n∈N .

Applying the result of Schechtman and Zinn in Proposition 2.4.2, we get the following

probabilistic representation for this section’s target random variables: Let (Y (n))n∈N

be a sequence of i.i.d. random vectors Y (n) :=
(
Y

(n)
1 , . . . , Y

(n)
n

)
with Y

(n)
i ∼ Np, and U

a random variable uniformly distributed on [0, 1] independent of the Y
(n)
i . Then

n1/p− 1/q ‖Z(n)‖q
D
= n1/p− 1/q

∥∥Y (n)
∥∥
q∥∥Y (n)
∥∥
p

=

(
1
n

n∑
i=1

∣∣Y (n)
i

∣∣q)1/q

(
1
n

n∑
i=1

∣∣Y (n)
i

∣∣p)1/p
, (5.3)

and

n1/p− 1/q ‖Z(n)‖q
D
= n1/p− 1/q U1/n ‖Y (n)‖q

‖Y (n)‖p
= U1/n

(
1
n

n∑
i=1

|Y (n)
i |

q
)1/q

(
1
n

n∑
i=1

|Y (n)
i |

p
)1/p

. (5.4)
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Since the p-th absolute moment of a p-generalized Gaussian is one (see (2.7)), it follows

via the strong law of large numbers and the continuous mapping theorem applied to

the probabilistic representations in (5.3) and (5.4) that the expectations of ‖Z‖ and

‖Z‖ converge in n ∈ N to

mp,q := E
[∣∣Y (n)

1

∣∣q]1/q

=

 pq/p

q + 1

Γ
(

1 + q+1
p

)
Γ
(

1 + 1
p

)
1/q

. (5.5)

For fixed n ∈ N we will denote

E
[
n1/p− 1/q

∥∥Z(n)
∥∥
q

]
=: mn,p,q and E

[
n1/p− 1/q

∥∥Z(n)
∥∥
q

]
=: mn,p,q.

For ‖Z‖ and ‖Z‖ LDPs have been given in previous works, which we will present here

explicitly. But first, let us consider some auxiliary probabilistic representations used

both in the proofs of those LDPs and our sharp large deviations results. Define

V (n) :=
(
V

(n)
1 , . . . , V (n)

n

)
∈ R2n with V

(n)
i :=

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p) , (5.6)

and

V(n) :=
(
V

(n)
1 , . . . ,V(n)

n

)
∈ R3n with V

(n)
i :=

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p, U1/n
)
. (5.7)

We denote the moment and cumulant generating function of the V
(n)
i respectively as

ϕp(τ) :=

∫
R

eτ1|y|
q+τ2|y|pfNp(y) dy and Λp(τ) := log

∫
R

eτ1|y|
q+τ2|y|pfNp(y) dy, (5.8)

for τ = (τ1, τ2) ∈ R2 and by Λ∗p the Legendre-Fenchel transform of Λp as in (2.2). Since

q < p, for the integral in both ϕp and Λp to be finite, the sign of the dominant term

|y|p in the exponent must be negative. Recalling the definition of fNp , one can see

that this is given for τ2 <
1
p
, thus Dom(Λp) = R ×

(
− ∞, 1

p

)
. Note that for q > p

we no longer have finite exponential moments in a neighbourhood of the origin, which

is why we set the condition 1 ≤ q < p < ∞. By Lemma 2.2.1 we have Dom(Λ∗p)
◦ =

∇τΛp

(
Dom(Λp)

◦) and for every x ∈ Dom(Λ∗p)
◦ there exists a unique τ(x) ∈ Dom(Λp)

◦

such that Λ∗p(x) = 〈x, τ(x)〉 − Λp(τ(x)). Since Dom(Λp) = R ×
(
−∞, 1

p

)
is open and,

by Lemma 2.2.1 (2), the derivative ∇τΛp is continuous, we even have that

Dom(Λ∗p) = Dom(Λp)
◦ = ∇τΛp

(
Dom(Λp)

◦) = ∇τΛp

(
Dom(Λp)

)
. (5.9)

Furthermore, for x ∈ Dom(Λ∗p), set

Hx := HτΛp(τ(x)) (5.10)

to be the Hessian of Λp(τ) in τ ∈ R2, evaluated at τ(x) as in Lemma 2.2.1 (4).
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Lemma 5.2.1 It holds that

i) ∇xΛ
∗
p(x) = τ(x),

ii) HxΛ
∗
p(x) = Hx

−1.

Proof. By the definition of τ(x) in Lemma 2.2.1 (4) it follows that x−∇τΛp(τ(x)) = 0.

Hence,

∇xΛ
∗
p(x) = ∇x

[
〈x, τ(x)〉 − Λp(τ(x))

]
= τ(x) + Jxτ(x)x− Jxτ(x)∇τΛp(τ(x))

= τ(x) + Jxτ(x)
[
x−∇τΛp(τ(x))

]
= τ(x).

Let us now prove that HxΛ
∗
p(x) = Hx

−1. On the one hand, it follows from the above

HxΛ
∗
p(x) = Jxτ(x), (5.11)

while on the other hand, it holds that

HxΛ
∗
p(x) = Hx

[
〈x, τ(x)〉 − Λp(τ(x))

]
= Hx

[
〈x, τ(x)〉

]
−Hx

[
Λp(τ(x))

]
= Jx

[
∇x〈x, τ(x)〉

]
− Jx

[
∇xΛp(τ(x))

]
= Jx

[
τ(x) + Jxτ(x)x

]
− Jx

[
Jxτ(x)∇τΛp(τ(x))

]
= Jxτ(x) + Jx

[
Jxτ(x)x

]
−Hxτ(x)∇τΛp(τ(x))− Jxτ(x)Jx

[
∇τΛp(τ(x))

]
= 2Jxτ(x) +Hxτ(x)

[
x−∇τΛp(τ(x))

]
− Jxτ(x) Jxτ(x)HτΛp(τ(x))

= 2Jxτ(x)− Jxτ(x) Jxτ(x)HτΛp(τ(x)). (5.12)

Equating the terms (5.11) and (5.12) yields

Jxτ(x) = 2Jxτ(x)− Jxτ(x) Jxτ(x)HτΛp(τ(x))

⇔ 0 = Jxτ(x)− Jxτ(x) Jxτ(x)HτΛp(τ(x))

⇔ 0 = I2 − Jxτ(x)HτΛp(τ(x))

⇔ Jxτ(x) = HτΛp(τ(x))−1,

where I2 again denotes the identity matrix in R2. Again applying (5.11) then gives

HxΛ
∗
p(x) = Jxτ(x) = HτΛp(τ(x))−1 = H−1

x ,

and thereby finishes the proof.
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For the sequence ‖Z‖ the following LDP has already been shown by Kabluchko,

Prochno, and Thäle [61, Section 5.1]:

Proposition 5.2.2 Let 1 ≤ q < p <∞ and Z(n) ∼ Cn,p be a random vector in Sn−1
p .

Then the sequence
(
n1/p− 1/q ‖Z(n)‖q

)
n∈N satisfies an LDP with speed n and good rate

function

I‖Z‖(z) :=


inf

t1, t2 > 0

t
1/q
1 t

−1/p
2 = z

Λ∗p(t1, t2) : z > 0

+∞ : z ≤ 0.

Remark 5.2.3 In the case 1 ≤ q < p <∞ this is proven in [61] in the classical way es-

tablished by Gantert, Kim and Ramanan [36]: First, give a probabilistic representation

for the target random variables, which works out to be a function of empirical averages

of the coordinates of the V
(n)
i as in (5.3). Second, use the theorem of Cramér from

Proposition 2.3.3 to establish an auxiliary LDP for those empirical averages of the V
(n)
i

with speed n and rate function Λ∗p. Third, map this auxiliary LDP to the target se-

quence using the contraction principle from 2.3.5 for the function F (t1, t2) = t
1/q
1 t

−1/p
2 ,

yielding the infimum operator in the above rate function. So we see that the functional

structure of the representation in (5.3) has a direct influence on the LDP in the form

of the infimum of the rate function over the level sets of the “transporting function”

F . Since for sharp large deviations we do not have access to the contraction principle,

this influence will be quite a bit more subtle, as we will see.

In [85, Lemma 2.1, Appendix A] Liao and Ramanan established a simplification of

a similar rate function in a different setting by calculating the infimum in the rate

function explicitly. Their arguments can be analogously applied in our setting to derive

the following result:

Lemma 5.2.4 Let z > mp,q such that z∗ := (zq, 1) ∈ Dom(Λ∗p). Then

I‖Z‖(z) = inf
y1, y2 > 0

y
1/q
1 y

−1/p
2 = z

Λ∗p(y1, y2) = Λ∗p(z
∗),

with z∗ being the unique point at which Λ∗p attains its infimum under the above condi-

tions.

To keep this section self-contained, we will present the analogous proof of this as well.
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Proof. Let z > mp,q such that z∗ = (zq, 1) ∈ Dom(Λ∗p). Then it holds that

I‖Z‖(z) = inf
y1, y2 > 0

y
1/q
1 y

−1/p
2 = z

Λ∗p(y1, y2) = inf
x1,x2>0:x1=z x2

Λ∗p(x
q
1, x

p
2) = inf

x2>0
Λ∗p(z

qx2
q, x2

p).

We set xz := (zqxq2, x
p
2), then with Lemma 2.2.1 it follows that

I‖Z‖(z) = inf
x2>0

sup
τ∈R2

[〈τ, xz〉 − Λp(τ)] = inf
x2>0

[
〈τ(xz), xz〉 − Λp(τ(xz))

]
.

Our goal is to show that the infimum is attained at x∗z := z∗, i.e., at x2 = 1. For the

function
gx(τ) := 〈τ, x〉 − Λp(τ), τ ∈ R2,

with x ∈ Dom(Λ∗p), Lemma 2.2.1 implies it attains its supremum at τ(x). Hence, it

holds for x = xz that

∇τ gxz(τ(xz)) = xz −∇τΛp(τ(xz)) = 0,

which gives

xz = (zqxq2, x
p
2) =

(
∂

∂τ1

Λp(τ(xz)),
∂

∂τ2

Λp(τ(xz))

)
. (5.13)

We now aim to write ∂
∂τ2

Λp(τ) with respect to ∂
∂τ1

Λp(τ) and then use the above equa-

tion. To do so, we first want to reformulate Λp along the lines of [36, Lemma 5.7]. It

holds that

Λp(τ) = log

∫
R

eτ1|y|
q+τ2|y|pfNp(y) dy

= log

 1

2 p1/pΓ
(

1 + 1
p

) ∫
R

eτ1|y|
q− 1

p
(1−pτ2)|y|p dy

.
The change of variable ỹ = (1− pτ2)1/py then gives

Λp(τ) = log

(1− pτ2)−1/p

∫
R

e
τ1

(1−pτ2)q/p
|ỹ|q
fNp(ỹ) dỹ


= −1

p
log(1− pτ2) + logϕ|Y |q

(
τ1

(1− pτ2)q/p

)
,

where ϕ|Y |q is the moment generating function of a random variable |Y |q with Y ∼ Np.
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Hence,

∂

∂τ1

Λp(τ) =
∂

∂τ1

[
logϕ|Y |q

(
τ1

(1− pτ2)q/p

)]

= ϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1
∂

∂τ1

[
ϕ|Y |q

(
τ1

(1− pτ2)q/p

)]

= ϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1 ∫
R

(1− pτ2)−q/p |y|q e
τ1

(1−pτ2)q/p
|y|q
fNp(y) dy

= (1− pτ2)−q/pϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1

ϕ′|Y |q

(
τ1

(1− pτ2)q/p

)
,

where ϕ′|Y |q
(

τ1
(1−pτ2)q/p

)
= ∂

∂τ1
ϕ|Y |q

(
τ1

(1−pτ2)q/p

)
. Moreover, with the above we get that

∂

∂τ2

Λp(τ)

= (1− pτ2)−1 +
∂

∂τ2

[
logϕ|Y |q

(
τ1

(1− pτ2)q/p

)]

= (1− pτ2)−1 + ϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1
∂

∂τ2

[
ϕ|Y |q

(
τ1

(1− pτ2)q/p

)]

= (1− pτ2)−1 + ϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1 ∫
R

qτ1

(1− pτ2)(q+p)/p
|y|q e

τ1

(1−pτ2)q/p
|y|q
fNp(y) dy

= (1− pτ2)−1 +
qτ1

(1− pτ2)(q+p)/p
ϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1

ϕ′|Y |q

(
τ1

(1− pτ2)q/p

)

= (1− pτ2)−1 +
qτ1

1− pτ2

(1− pτ2)−q/p ϕ|Y |q

(
τ1

(1− pτ2)q/p

)−1

ϕ′|Y |q

(
τ1

(1− pτ2)q/p

)

= (1− pτ2)−1 + qτ1(1− pτ2)−1 ∂

∂τ1

Λp(τ). (5.14)

Plugging in the identities from (5.13) into (5.14) it follows for (τ1, τ2) =
(
τ(xz)1, τ(xz)2

)
:

xp2 = (1− pτ(xz)2)−1 + qτ(xz)1(1− pτ(xz)2)−1 zqxq2. (5.15)

Using this, we can calculate the derivative of Λ∗p(xz) in x (we write x instead of x2 for

notational brevity), where τ(xz) is considered as a function in x as well. It holds that
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∂

∂x
Λ∗p(xz) =

∂

∂x
Λ∗p(z

qxq, xp)

=
∂

∂x
[〈xz, τ(xz)〉 − Λp(τ(xz))]

=
∂

∂x
[zqxqτ(xz)1 + xpτ(xz)2 − Λp(τ(xz))]

= zqqxq−1τ(xz)1 + zqxq
∂

∂x
τ(xz)1 + pxp−1τ(xz)2 + xp

∂

∂x
τ(xz)2

− ∂

∂x
Λp(τ(xz))

= zqqxq−1τ(xz)1 + zqxq
∂

∂x
τ(xz)1 + pxp−1τ(xz)2 + xp

∂

∂x
τ(xz)2

−Jx(τ(xz))∇τΛp(τ(xz))

= zqqxq−1τ(xz)1 + zqxq
∂

∂x
τ(xz)1 + pxp−1τ(xz)2 + xp

∂

∂x
τ(xz)2

− ∂

∂x
τ(xz)1

∂

∂τ1

Λp(τ(xz))−
∂

∂x
τ(xz)2

∂

∂τ2

Λp(τ(xz)).

We now use the identity from (5.13), which yields

∂

∂x
Λ∗p(xz) = zqqxq−1τ(xz)1 + zqxq

∂

∂x
τ(xz)1 + pxp−1τ(xz)2

+xp
∂

∂x
τ(xz)2 −

∂

∂x
τ(xz)1z

qxq − ∂

∂x
τ(xz)2x

p

= zqqxq−1τ(xz)1 + pxp−1τ(xz)2. (5.16)

Reformulating the identity in (5.15) yields

xp = (1− pτ(xz)2)−1 + qτ(xz)1(1− pτ(xz)2)−1 zqxq

⇔ (1− pτ(xz)2)xp−1 − x−1 = zqxq−1qτ(xz)1. (5.17)

Thus, if we set ∂
∂x

Λ∗p(xz) = 0, we get from (5.16) and (5.17) that

∂

∂x
Λ∗p(xz) = 0 ⇔ 0 = zqqxq−1τ(xz)1 + pxp−1τ(xz)2

⇔ 0 = (1− pτ(xz)2)xp−1 − x−1 + pxp−1τ(xz)2

⇔ x = 1.
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Hence, the infimum of Λ∗p under the conditions in the rate function from Proposition

5.2.2 is attained at x∗z = (zq, 1) = z∗. Since by Lemma 2.2.1 we know that Λ∗p is strictly

convex on Dom(Λ∗p)
◦ and Dom(Λ∗p)

◦ = Dom(Λ∗p), this minimum is unique. Thereby,

our claim is proven.

For the sequence ‖Z‖ the following LDP was also provided by Kabluchko, Prochno,

and Thäle in [61, Theorem 1.2]:

Proposition 5.2.5 Let 1 ≤ q < p < ∞ and Z(n) ∼ Un,p be a random vector in Bnp .

Then the sequence
(
n1/p− 1/q ‖Z(n)‖q

)
n∈N satisfies an LDP with speed n and good rate

function

I‖Z‖(z) :=


inf

z = z1z2
z1, z2 > 0

[
I‖Z‖(z1) + IU(z2)

]
: z > 0

+∞ : z ≤ 0,

with I‖Z‖ as in Proposition 5.2.2 and

IU(z2) :=

− log(z2) : z2 ∈ (0, 1]

+∞ : otherwise.

We again show that the infimum in the rate function is attained at a unique point.

Lemma 5.2.6 Assume the same setting as in Proposition 5.2.5. For z > mp,q, we can

simplify the rate function by combining the two infimum operations to get

I‖Z‖(z) = inf
z = x

1/q
1 x

−1/p
2 x3

x1, x2 > 0, x3 ∈ (0, 1]

[
Λ∗p(x1, x2)− log(x3)

]
.

We define

IS(x) := Λ∗p(x1, x2)− log(x3), x1, x2 ∈ R, x3 ∈ (0, 1],

and set z∗ := (zq, 1) ∈ R2, z∗∗ := (zq, 1, 1) ∈ R3. It then holds for z > mp,q with

z∗ ∈ Dom(Λ∗p) that
I‖Z‖(z) = IS(z∗∗) = Λ∗p(z

∗),

with z∗∗ being the unique point at which IS attains its infimum under the above condi-

tions.

Thus, for z > mp,q with z∗ ∈ Dom(Λ∗p) both ‖Z‖ and ‖Z‖ satisfy LDPs with the same

speed and rate function.
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Proof. Let z > mp,q such that z∗ = (zq, 1) ∈ Dom(Λ∗p). Furthermore, set z∗∗ :=

(zq, 1, 1) and IS(x) := Λ∗p(x1, x2)− log(x3), x ∈ R3. We use the definitions of I‖Z‖ and

IU , together with Lemma 5.2.4, to get that

I‖Z‖(z) = inf
z = x

1/q
1 x

−1/p
2 x3

x1, x2 > 0, x3 ∈ (0, 1]

IS(x)

= inf
z = z1z2

z1 > 0, z2 ∈ (0, 1]

 inf
x1, x2 > 0

x
1/q
1 x

−1/p
2 = z1

Λ∗p(x1, x2) + IU(z2)


= inf

z = z1z2
z1 > 0, z2 ∈ (0, 1]

[
Λ∗p(z

q
1, 1)− log(z2)

]
.

It follows by Lemma 2.2.1 (3) that I‖Z‖(z) = Λ∗p(z
q, 1) is strictly convex in z on

Dom(Λ∗p)
◦ = Dom(Λ∗p). As I‖Z‖ is a rate function, it has a root in the (limit) expecta-

tion z = mp,q of the underlying sequence ‖Z‖ (see, e.g., [29, Lemma 2.2.5]). Hence, it

follows that for z > mp,q with z ∈ Dom(Λ∗p) it holds that I‖Z‖(z) = Λ∗p(z
q, 1) is strictly

increasing in z. Since z2 ≤ 1, z = z1z2, and 1 ≤ q, we have zq1 ≥ z > mp,q, meaning

that Λ∗p(z
q
1, 1) is strictly increasing in z1. Furthermore, we can see that (− log(z2)) is

strictly decreasing in z2. Hence, rewriting z1 with respect to z2 then gives

I‖Z‖(z) = inf
z1 = z/z2
z2 ∈ (0, 1]

[
Λ∗p

(( z
z2

)q
, 1
)
− log(z2)

]
,

which is strictly decreasing in z2. Thus, choosing z2 = 1 gives z1 = z and

I‖Z‖(z) = IS(z∗∗) = Λ∗p(z
∗),

finishing the proof.

Remark 5.2.7 As mentioned in Section 1.2, Schmuckenschläger [108] gave a central

limit theorem for q-norms of random vectors with either distribution Cn,p or Un,p.

He showed that for p, q ∈ [1,∞) with q 6= p, and a random vector Z(n) ∈ Bnp with

Z(n) ∼ Cn,p or Z(n) ∼ Un,p it holds that

√
n

(
n1/p− 1/q ‖Z(n)‖q

mp,q

− 1

)
d−→

n→∞
N (0, σ2),

with N (0, σ2) denoting a centered normal distribution, where σ2 is also given explicitly

in terms of p and q and moments of Np. This result shows that on the Gaussian scale

the q-norm behaviours of both Cn,p and Un,p coincide. It is thus a natural question

whether one can tell the distributions apart in terms of their their q-norm behaviours
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by considering it beyond the Gaussian scale, e.g., via an LDP. And while the original

LDPs in Proposition 5.2.2 and Proposition 5.2.5 given by Kabluchko, Prochno, and

Thäle [61] at first seem to answer this in the positive by giving different rate functions

for the LDPs, the reformulations of Lemma 5.2.4 and Lemma 5.2.6 show that one still

observes the same q-norm behaviour of cone measure and uniform distribution when

employing the tool of LDPs. Since the sharp large deviation results in this section

actually look different for Cn,p and Un,p, they provide the first concentration result in

which one can actually tell the two distributions apart. This again goes to show the

high sensitivity of sharp large deviation results towards the underlying distributions.

Remark 5.2.8 Note that in the results within this section, deviations from the “limit

expectation” mp,q are considered, even though the elements of the sequences ‖Z‖ and

‖Z‖ have respective expectations mn,p,q and mn,p,q, that only converge to mp,q in

n ∈ N. This, however, is not an issue for our results. As shown in (5.3) and (5.4), the

sequences are represented via the empirical averages of probabilistic representations

seen in (5.6) and (5.7). The expectations of these representations only ever play a

role in our proofs regarding the behaviour of the corresponding cumulant generating

functions, specifically only in the case of ‖Z‖ (e.g., in the proofs of Lemma 5.2.6 and

Lemma 5.2.18 or implicitly in the proof of the density approximations in Section 5.2.7).

As the V
(n)
i in (5.6) are i.i.d., they all share the same cumulant generating function as

given in (5.8) and the same expectation

E[V
(n)
i ] =

(
E
[
|Y (n)

1 |q
]
,E
[
|Y (n)

1 |p
])

=
(
(mp,q)

q, 1
)
.

Hence, the fact that the expectation mn,p,q only converges to mp,q does not affect our

proofs. This is in keeping with classical results from large deviations theory like the

Theorem of Gärtner-Ellis (see Proposition 2.3.7), where an arbitrary (i.e., not necessar-

ily i.i.d.) sequence of random variables is not required to have a shared expectation, but

rather that the sequence of the (appropriately rescaled) cumulant generating functions

of the individual random variables in the sequence converge to a fixed function with the

origin in the interior of its effective domain. The resulting LDP then considers devia-

tion probabilities from the limit expectation as well. In the case of ‖Z‖ the cumulant

generating functions of the V
(n)
i are not employed at all (neither themselves nor their

limit in n). Since our main results assume n ∈ N to be sufficiently large (that is, large

enough for the local density approximations in Section 5.2.7 to hold), this effectively

means that for n ∈ N sufficiently large, the difference of mp,q and mn,p,q,mn,p,q is of

order at most o(1) and therefore does not affect our sharp large deviation estimates.
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5.2.2 Weingarten maps and curvature

The proof of the main result for `np -spheres will proceed by integrating over a previously

established density estimate via a result of Andriani and Baldi [7] for Laplace-type

integrals. This result has a heavily geometric flavour and relies on the Weingarten

maps of certain hypersurfaces, which in our setting will simply be curves in R2. We

will therefore just give a brief reminder of the Weingarten map in this setting, recall

some of its properties, and refer to the relevant literature (e.g., [48, 79]) or Andriani

and Baldi [7] for a more in-depth discussion of the topic.

In general, the Weingarten map of a smooth hypersurface M ⊂ Rd at a point p ∈ M
is an endomorphism of the tangent space TpM at p, mapping any y ∈ TpM to the

directional derivative of a normal field of M in p in the direction of y. However, as

remarked in [7, Example 4.3], for d = 2, hypersurfaces simplify to planar curves and

the Weingarten map at a point p simplifies to the absolute value of the curvature K(p)

of the curve at p. For implicit curves, i.e., curves given as the zero set of a function,

we have the following formula for its curvature from [39, Proposition 3.1]:

Lemma 5.2.9 Let F : R2 → R be a twice differentiable function. Further, let C :=

{x ∈ R2 : F (x) = 0} be a curve given as the zero set of F , and p ∈ C be a point where

∇xF (p) 6= 0. Using the derivative notation F[i,j] = F[i,j](p) as in (2.1), it holds that

K(p) =

(
−F[0,1], F[1,0]

)( F[2,0] F[1,1]

F[1,1] F[0,2]

)(
−F[0,1], F[1,0]

)
(
F[1,0]

2 + F[0,1]
2
)3/2

.

Corollary 5.2.10

i) Given the set-up of the previous lemma, straightforward calculation of the above

fraction gives that

K(p) =
F[0,1]

2F[2,0] − 2F[0,1]F[1,0]F[1,1] + F[1,0]
2F[0,2](

F[1,0]
2 + F[0,1]

2
)3/2

.

ii) In case that C is the graph of a twice differentiable function f : R→ R, that is,

C = {(x1, x2) ∈ R2 : x2 = f(x1)}, and p = (x, f(x)), the above reduces to

K(p) =
|f ′′(x)|(

1 + f ′(x)2)3/2
.
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5.2.3 SLD results for q-norms of `np-balls and -spheres

Using the concepts and notation previously established, we now proceed to present the

main results of Section 5.2:

For 1 ≤ q < p < ∞ and Z(n) ∼ Cn,p we want to give sharp asymptotics for the

probability

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

for z > mp,q such that z∗ ∈ Dom(Λ∗p), with z∗ := (zq, 1) as in Lemma 5.2.4. Let us

define prefactor functions ξ(z) and κ(z), as mentioned also in the sharp large deviation

results of Bahadur and Ranga Rao in (5.1). For z > mp,q such that z∗ ∈ Dom(Λ∗p), we

set

ξ(z)2 := 〈Hz∗ τ(z∗), τ(z∗)〉 detHz∗ , (5.18)

with Hz∗ = HτΛp(τ(z∗)) as in (5.10), and

κ(z)2 := 1− cκ(z), (5.19)

with

cκ(z) :=

(
τ(z∗)2

1 + τ(z∗)2
2

)3/2 |pq(p− q)zq|∣∣τ(z∗)2
2

(
H−1
z∗

)
11
− 2τ(z∗)1τ(z∗)2

(
H−1
z∗

)
12

+ τ(z∗)2
1

(
H−1
z∗

)
22

∣∣ (z2q + p2q−2
)3/2

.

We refer to Lemma 5.2.1 to see why the inverse matrix H−1
z∗ in the above is in fact

well-defined for z∗ ∈ Dom(Λ∗p). Let us now present the main result of Section 5.2 for

`np -spheres.

Theorem 5.2.11 Let 1 ≤ q < p <∞, n ∈ N, and Z(n) be a random vector in Bnp with

Z(n) ∼ Cn,p. Then, for n sufficiently large and any z > mp,q such that z∗ ∈ Dom(Λ∗p),

it holds that

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

=
1√

2πnκ(z)ξ(z)
e−nΛ∗p(z∗) (1 + o(1)).

We shall now turn from `np -spheres to `np -balls. For 1 ≤ q < p < ∞ and Z(n) ∼ Un,p

we want to provide similar sharp asymptotics for

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)
.

for z > mp,q such that z∗ ∈ Dom(Λ∗p).
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Again, we start by defining a prefactor function for z > mp,q with z∗ ∈ Dom(Λ∗p) as

γ(z)2 := detHz∗ τ(z∗)2
1

(
qzqτ(z∗)1 + 1

)2

×

[
z2qq2

p2

(
H−1
z∗

)
11

+
2zqq

p

(
H−1
z∗

)
12

+
(
H−1
z∗

)
22

+ τ(z∗)1
zqq(q − p)

p2

]
, (5.20)

with which we can now give this section’s main result for `np -balls.

Theorem 5.2.12 Let 1 ≤ q < p <∞, n ∈ N, and Z(n) be a random vector in Bnp with

Z(n) ∼ Un,p. Then, for n sufficiently large and any z > mp,q such that z∗ ∈ Dom(Λ∗p),

it holds that

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

=
1√

2πn γ(z)
e−nΛ∗p(z∗) (1 + o(1)).

We have seen in Section 5.2.1 that ‖Z‖ and ‖Z‖ both satisfy LDPs with the same

speed and rate function for z > mp,q such that z∗ ∈ Dom(Λ∗p), despite the underly-

ing distributions being different (see Remark 5.2.7). Comparing Theorem 5.2.11 and

Theorem 5.2.12 now paints a different picture, with the sharp asymptotics for ‖Z‖
and ‖Z‖ being noticeably different. As mentioned in the introduction and Section

5.1, idiosyncratic phenomena of underlying distributions, which can be drowned out

on the LDP scale, are often still visible on the scale of sharp large deviations. This is in

keeping with what was shown in [85, Theorem 2.4, Theorem 2.6] for one-dimensional

projections of `np -spheres and `np -balls.

Remark 5.2.13 Let us draw a brief comparison between our results and the concen-

tration inequality that follows by the Gromov-Milman Theorem as discussed in [92,

Remark, p. 1062]. Therein, it is shown that the Gromov-Milman theorem from [44]

implies that for 1 < q ≤ p <∞ and a random vector Z(n) ∼ Cn,p, it holds that

P
(∣∣n1/p− 1/q

∥∥Z(n)
∥∥
q
−mn,p,q

∣∣ ≥ z
)
≤ C exp

(
− c n zmax{2,p}

)
,

where C > 0 and c > 0 are constants. If we consider the set-up of Theorem 5.2.11,

i.e., 1 ≤ q < p <∞ and z > mn,p,q, and only consider deviations without the absolute

value, we can derive from the above that

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)
≤ C exp

(
− c n zmax{2,p}

)
.
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Comparing this with our sharp large deviation results from Theorem 5.2.11 for z > mp,q

such that z∗ ∈ Dom(Λ∗p),

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

=
1√

2πnκ(z)ξ(z)
e−nΛ∗p(z∗) (1 + o(1)),

we can see that our results improve on the estimate in terms of n ∈ N by a factor

of n−1/2 and give explicit and deviation-dependent prefactor functions κ(z) and ξ(z)

instead of fixed constants for all deviations z.

Remark 5.2.14 When comparing the sharp large deviation results in Theorem 5.2.11

and Theorem 5.2.12 to those of Liao and Ramanan [85, Theorem 2.4] and [85, v2, The-

orem 2.6], one directly notices the core difference in the settings. Liao and Ramanan

examine projections of random vectors on Sn−1
p and Bnp with respective distributions

Cn,p and Un,p onto fixed one-dimensional subspaces, and therefore have to consider

weighted sums of dependent random vectors as probabilistic representations. Thus,

all their results have to be conditioned on the projection space and include additional

terms accounting for the specifics of the subspace. In our case, however, the proba-

bilistic representations are given as sums of i.i.d. random variables (see Section 5.2.6),

which does not necessitate these additional factors. Therefore, when using results from

Liao and Ramanan [85], we adapt their usage accordingly to the given probabilistic

representations in our setting. Beyond that, however, the sharp large deviation results

share several similarities, especially when comparing the prefactor functions κ, ξ and

γ, which for q = 1 are almost equal.

5.2.4 Application 1: Intersection volumes of `np-balls

We want to use our sharp large deviation results to further the findings of Schechtman

and Schmuckenschläger [105] and Schmuckenschläger [108] for intersection volumes of

t-multiples of different volume-normalized `np -balls. We will first give a brief overview

of the original results along the lines of [61, Section 2.1]. For p ∈ [1,∞), we define

Dn
p := voln(Bnp )−1/n Bnp

to be the volume-normalized `np -ball and recall that

voln(Bnp ) =

(
2 Γ
(

1 + 1
p

))n
Γ
(

1 + n
p

) .
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We furthermore set

cn,p := n1/p voln
(
Bnp
)1/n

and cp := 2 e1/p p1/p Γ

(
1 +

1

p

)
,

and recall that it was shown in [105] that

lim
n→∞

cn,p = cp.

Moreover, for p, q ∈ [1,∞), p 6= q, we set

cn,p,q :=
cn,p
cn,q

, An,p,q :=
cn,p

mp,q cn,q
, and Ap,q := lim

n→∞
An,p,q.

Hence, it follows that

Ap,q =
cp

mp,q cq
=

Γ
(

1 + 1
p

)1+(1/q)

Γ
(

1 + 1
q

)
Γ
(
q+1
p

)1/q
e1/p− 1/q.

Lastly, for t ≥ 0 and n ∈ N, we define tn ≥ 0 such that

tn
Ap,q
An,p,q

= t.

We shall now recall the result of Schmuckenschläger [108, Theorem 3.3]. Therein, it

was shown that for p, q ∈ [1,∞), p 6= q, and t ≥ 0 it holds that

voln
(
Dn
p ∩ tDn

q

)
−→
n→∞


1 : Ap,q t > 1

1
2

: Ap,q t = 1

0 : Ap,q t < 1

(5.21)

(where the cases Ap,q t > 1 and Ap,q t < 1 had already been established in [105]).

To prove this, a central limit theorem for n1/p− 1/q‖Z(n)‖q with Z(n) ∼ Un,p and

p, q ∈ [1,∞), p 6= q, is shown in [108, Proposition 2.4, Proof of Theorem 3.2], since

voln(Dn
p ∩ tDn

q ) can be written as

voln(Dn
p ∩ tDn

q ) = voln

({
z ∈ Dn

p : z ∈ tn
Ap,q
An,p,q

Dn
q

})

= voln

({
z ∈ Dn

p : z ∈ tnAp,qmp,q
cn,q
cn,p

Dn
q

})
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= voln
({
z ∈ voln(Bnp )−1/n Bnp : z ∈ tnAp,qmp,q n

1/q− 1/p voln(Bnp )−1/n Bnq
})

= voln(Bnp )−1 voln
({
z ∈ Bnp : z ∈ tnAp,qmp,q n

1/q− 1/p Bnq
})

= P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
≤ tnAp,qmp,q

)
. (5.22)

However, we know from the Berry-Esseen Theorem (see [114, Theorem 2.1.3]) that the

error of the Gaussian approximation given by a central limit theorem decreases with

rate n−1/2. Thus, using (5.22) and the central limit theorem from [108], we can only

infer a rate of convergence of n−1/2 in (5.21). The LDP for q-norms from Proposition

5.2.5 already takes this from a sublinear rate to an exponential rate. This can then be

improved upon for 1 ≤ q < p < ∞ by using Theorem 5.2.12, yielding a more precise

result that also allows to derive concrete estimates of this intersection volume, due to

its asymptotic sharpness.

Proposition 5.2.15 Let 1 ≤ q < p < ∞ and n ∈ N. Using the notation established

above, for t > mp,q c
−1
n,p,q such that (t cn,p,q)

∗ ∈ Dom(Λ∗p), and sufficiently large n ∈ N it

then holds that

voln
(
Dn
p ∩ tDn

q

)
= 1− 1√

2πn γ(t cn,p,q)
e−nΛ∗p((t cn,p,q)∗) (1 + o(1)).

Proof. Let 1 ≤ q < p < ∞ and t > mp,q c
−1
n,p,q such that (t cn,p,q)

∗ ∈ Dom(Λ∗p). Fur-

ther, assume Z(n) is a random vector in Bnp with Z(n) ∼ Un,p. Using (5.22), we get that

voln
(
Dn
p ∩ tDn

q

)
= P

(
n1/p− 1/q

∥∥Z(n)
∥∥
q
≤ tnAp,qmp,q

)
= 1− P

(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> tnAp,qmp,q

)
.

It now holds, by t > mp,q c
−1
n,p,q, that we have tm−1

p,q cn,p,q = t An,p,q = tnAp,q > 1,

and hence t cn,p,q = tnAp,qmp,q > mp,q with (t cn,p,q)
∗ ∈ Dom(Λ∗p). Thus, by Theorem

5.2.12, it follows that

voln
(
Dn
p ∩ tDn

q

)
= 1− 1√

2πn γ(t cn,p,q)
e−nΛ∗p((t cn,p,q)∗) (1 + o(1)),

which finishes the proof.
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5.2.5 Application 2: One-dimensional projections of `nq -balls

In Remark 5.2.14 we have already discussed the differences between the setting of

the results of Liao and Ramanan [85] and the setting of this section. However, a

geometrically similar result to those in [85] follows from Theorem 5.2.11. In [61, Section

2.4] Kabluchko, Prochno, and Thäle derived a central limit theorem for the the length

of the projection of an `np -ball onto the line spanned by a random vector θ(n) ∈ Sn−1

with θ(n) ∼ Cn,2 as a corollary of their main results. We will proceed similarly and

derive sharp large deviation results in the same setting. To be specific, in [85] sharp

asymptotics where provided for the scalar product of a random vector Z(n) ∼ Cn,p on

Sn−1
p with a vector θ(n) ∈ Sn−1, which can be negative. We, on the other hand, consider

the absolute value of the scalar product of such random vectors. Additionally, in [85]

the vector θ(n) ∈ Sn−1
p is fixed instead of chosen randomly.

In the following define for q ∈ [1,∞] its conjugate q∗ via 1
q

+ 1
q∗

= 1, setting 1
∞ = 0

by convention. Furthermore, for a direction θ(n) ∈ Sn−1, we write Pθ(n)Bnq for the

projection of Bnq onto the line spanned by θ(n). Then, our quantity of interest is the

projection length vol1
(
Pθ(n)Bnq

)
for some random direction θ(n) ∼ Cn,2.

Corollary 5.2.16 Let 2 < q ≤ ∞ and θ(n) ∈ Sn−1 be a random vector with θ(n) ∼
Cn,2. Then, for any z > 2m2,q∗ such that

(
z
2

)∗ ∈ Dom(Λ∗p), and sufficiently large

n ∈ N, it holds that

P
(
n1/2− 1/q vol1

(
Pθ(n)Bnq

)
> z
)

=
1√

2πnκ
(
z
2

)
ξ
(
z
2

) e−nΛ∗2(( z
2

)∗) (1 + o(1)),

with Λ2 as in (5.8) and ξ, κ as in (5.18), (5.19), respectively, defined for q∗ and p = 2.

Proof. It holds that

P
(
n1/2− 1/q vol1

(
Pθ(n)Bnq

)
> z
)

= P

(
n1/2− 1/q 2 sup

x∈Bnq

∣∣〈x, θ(n)
〉∣∣ > z

)

= P
(
n1/2− 1/q

∥∥θ(n)
∥∥
q∗
>
z

2

)
.

Since 2 < q ≤ ∞, we have 1 ≤ q∗ < 2 = p, whereby we can apply Theorem 5.2.11 to

get that

P
(
n1/2− 1/q vol1

(
Pθ(n)Bnq

)
> z
)

=
1√

2πnκ
(
z
2

)
ξ
(
z
2

) e−nΛ∗2(( z
2

)∗) (1 + o(1)),

with Λ2, ξ, κ as described above, which concludes the proof.

129



5.2. SHARP LARGE DEVIATIONS FOR q-NORMS OF `np -BALLS

5.2.6 Probabilistic representations for q-norms of `np-balls

The first step in proving Theorem 5.2.11 and Theorem 5.2.12 will be rewriting the target

probabilities in both theorems with respect to convenient probabilistic representations.

Recalling the definitions of the random vectors V (n) and V(n) from (5.6) and (5.7), we

define

S(n) :=
1

n

n∑
i=1

V
(n)
i and S(n) :=

1

n

n∑
i=1

V
(n)
i (5.23)

as the empirical averages of their respective coordinates. Furthermore, for z > mp,q we

define the sets
Dz :=

{
(t1, t2) ∈ R2 : t1, t2 > 0, t

1/q
1 t

−1/p
2 > z

}
,

and
Dz :=

{
(t1, t2, t3) ∈ R3 : t1, t2 > 0, t3 ∈ (0, 1], t3 t

1/q
1 t

−1/p
2 > z

}
.

It then follows from the reformulations of ‖Z(n)‖q and ‖Z(n)‖q in (5.3) and (5.4) that

we can write the probabilities within Theorem 5.2.11 and Theorem 5.2.12 with respect

to S(n) and S(n), respectively, as

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

= P

 1

n

n∑
i=1

∣∣Y (n)
i

∣∣q > zq

(
1

n

n∑
i=1

∣∣Y (n)
i

∣∣p)q/p


= P
(
S(n) ∈ Dz

)
,

and

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

= P

U q/n 1

n

n∑
i=1

∣∣Y (n)
i

∣∣q > zq

(
1

n

n∑
i=1

∣∣Y (n)
i

∣∣p)q/p


= P
(
S(n) ∈ Dz

)
.

We refer to these sets Dz and Dz as “deviation areas”, since S(n) and S(n) lying in Dz

and Dz, respectively, represent a deviation of ‖Z(n)‖q and ‖Z(n)‖q of size z. The idea

will then be to write the target deviation probabilities as an integral of the densities

of S(n) and S(n) over the deviation areas Dz and Dz.

Remark 5.2.17 Note that the boundaries of the deviation areas

∂Dz = {(t1, t2) ∈ R2 : t1, t2 > 0, t
1/q
1 t

−1/p
2 = z} (5.24)

and

∂Dz = {(t1, t2, t3) ∈ R3 : t1, t2 > 0, t3 ∈ (0, 1], t3 t
1/q
1 t

−1/p
2 = z}
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are the same sets given by the infimum conditions in the respective LDPs for ‖Z‖
and ‖Z‖ in Proposition 5.2.2 and Proposition 5.2.5. As mentioned in Remark 5.2.3,

the structure of the functional one considers – the q-norm of a random vector from

Bnp in our setting – has a direct influence on an LDP via the infimum operator from

the contraction principle. In the realm of sharp large deviations this influence is still

there, however, it is quite a bit more subtle, as it originates from the geometric shape

of the deviation area. Indeed, as we will see in the proofs of Theorem 5.2.11 and

Theorem 5.2.12, these shapes actually do have an influence on the sharp large deviation

behaviours, specifically via the prefactor functions.

The fact that for z > mp,q the rate functions of the LDPs for ‖Z‖ and ‖Z‖ in Propo-

sition 5.2.2 and Proposition 5.2.5 both assume a unique minimum on ∂Dz and ∂Dz,

respectively, as was shown in Lemma 5.2.4 and Lemma 5.2.6, will be essential to the

proof of Theorem 5.2.11 and Theorem 5.2.12 in Section 5.2.8 and Section 5.2.9. We can

expand this unique infimum property onto the entirety of Dz and Dz, as the following

lemma will show:

Lemma 5.2.18 Assume the same set-up as in Lemma 5.2.4 and Lemma 5.2.6. Let

z > mp,q such that z∗ ∈ Dom(Λ∗p). Then

i) z∗ = (zq, 1) is the unique point at which Λ∗p attains its infimum on Dz,

ii) z∗∗ = (zq, 1, 1) is the unique point at which IS attains its infimum on Dz.

Proof. We start off by showing i). Let t ∈ R2 such that t ∈ D◦z , which means that

t
1/q
1 t

−1/p
2 > z. We assume t ∈ Dom(Λ∗p), as otherwise it trivially holds that Λ∗p(z

q, 1) <

Λ∗p(t1, t2) = ∞. We then have that t ∈ ∂Dz̃ for z̃ := t
1/q
1 t

−1/p
2 , and thus, by Lemma

5.2.4, Λ∗p(t1, t2) > Λ∗p(z̃
q, 1) = I‖Z‖(z̃). We know by Lemma 2.2.1 that Λ∗p is strictly

convex on Dom(Λ∗p) with a unique root in the limit expectation (mq
p,q, 1) of the V

(n)
i .

Thus follows the strict convexity of I‖Z‖(z) = Λ∗p(z
∗) in z on Dom(Λ∗p) with a unique

root in mp,q. Hence we know that I‖Z‖(z) is strictly increasing in z for z > mp,q, and

as z̃ > z > mp,q, it follows that

Λ∗p(t1, t2) > Λp(z̃
q, 1) = I‖Z‖(z̃) > I‖Z‖(z) = Λ∗p(z

q, 1) = Λ∗p(z
∗),

showing that z∗ = (zq, 1) minimizes Λ∗p over Dz. The proof of ii) is analogous, also

using the strict monotonicity of the rate function.
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Suppose that the distributions of S(n) and S(n) have respective densities h(n) and h(n).

Then we can formulate our probabilities of interest as

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

= P
(
S(n) ∈ Dz

)
=

∫
Dz

h(n)(x) dx, (5.25)

and

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

= P
(
S(n) ∈ Dz

)
=

∫
Dz

h(n)(x) dx. (5.26)

In the following section we will show the existence of these densities h(n) and h(n) and

present asymptotic estimates for them, while Section 5.2.8 and Section 5.2.9 will then

approximate the above integrals over the respective deviation areas Dz and Dz.

5.2.7 Asymptotic density estimate for q-norms of `np-balls

The second step in proving Theorem 5.2.11 and Theorem 5.2.12 is giving local den-

sity approximations for the probabilistic representations S(n) and S(n). Recalling the

notation and definitions established in Section 5.2.1, we assume the same set-up as in

Section 5.2.6 and formulate the following local limit theorems for the densities h(n) and

h(n) of our probabilistic representations:

Proposition 5.2.19 For S(n) = 1
n

∑n
i=1 V

(n)
i with V

(n)
i =

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p), Y (n)
i ∼ Np

i.i.d., and x ∈ Dom(Λ∗p), it holds that for sufficiently large n ∈ N the distribution of

S(n) has Lebesgue density

h(n)(x) =
n

2π
(detHx)

−1/2 e−nΛ∗p(x) (1 + o(1)),

where Hx := HτΛp(τ(x)) as in (5.10).

For the proof of this we proceed along the lines of Borovkov and Rogozin [17] – or rather

their convenient reformulation in [7, Theorem 3.1] and subsequent proof. Therein, a

local density estimate is derived for a sum of i.i.d. random vectors in Rd via the saddle

point method. As discussed in Section 5.1, this means one writes the density via the

Fourier inversion theorem as a complex path integral of its Fourier transform and then

uses Cauchy’s theorem to deform the path of integration, such that it passes through a

complex saddle point. For sufficiently large n ∈ N, the mass of the integral then heavily

concentrates around that saddle point and standard integral expansion methods can

be used to great effect.
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Naturally, this requires the conditions of the Fourier inversion theorem to be met, that

is, the Fourier transform of the density has to be integrable. In [7, Theorem 3.1] this

follows from the assumption that all the i.i.d. random vectors have a common bounded

density, though it is noted in [7, Remark 3.2], that this can be replaced by any argument

ensuring that the Fourier inversion theorem can be applied.

In the setting of this chapter (and the case of `np -spheres) the i.i.d. vectors are given by

the
V

(n)
i :=

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p) ∈ R2,

whose coordinates are highly dependent and who lie on the curve

$p,q := {y ∈ R2 : |y2| = |y1|p/q}.

Thus, such a non-degenerate density of the V
(n)
i in R2 is not available. However, their

Fourier transforms can be given explicitly. Additionally, while the coordinates of the

V
(n)
i are highly dependent, the different V

(n)
i are i.i.d. and their sums do not lie on said

curve, as one can see in Figure 5.1.

y1

y2

S(n)

V
(n)

1 + V
(n)

2

$p,q

y1

Figure 5.1: Empirical average S(n) (black) of V
(n)

1 (green), V
(n)

2 (red) for
n = 2, q = 1, p = 3 lying outside of the curve $p,q (blue)

We will show that the empirical average of the V
(n)
i does in fact have an integrable

Fourier transform and thus its density can be written as an integral of this Fourier

transform. We will show this using the underlying distribution Np of the Y
(n)
i and the

Hausdorff-Young inequality [43, Proposition 2.2.16], as was done by Liao and Ramanan

in [85, Lemma 6.1]. Heuristically speaking, this means that while the individual V
(n)
i

do not possess densities in R2, for n ∈ N sufficiently large their empirical average S(n)

asymptotically does. Beyond that, the proof will follow along the lines of Borovkov

and Rogozin [17, Theorem 2] as presented in [7], using the saddle point method (im-

plicitly via an exponential tilting argument) to approximate the integral of the Fourier

transform.
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The first step is to calculate the density g(n) of

G(n) :=
n∑
i=1

V
(n)
i ,

for n > 1. As previously mentioned, due to the high dependence (even comonotonicity)

of the coordinates of the V
(n)
i , the individual V

(n)
i do not have a density in R2. But

since the Y
(n)
i ∼ Np have sufficiently finite exponential moments for 1 ≤ q < p < ∞,

both the moment and cumulant generating functions ϕp and Λp of the V
(n)
i from (5.8)

are finite in a neighbourhood of the origin. This can be used to show integrability of

the Fourier transform of G(n). We will begin by showing this for two summands, that

is, for V
(n)
j + V

(n)
k , j 6= k, in the following lemma in the spirit of [85, p.20, Claim].

Lemma 5.2.20 Let x ∈ Dom(Λ∗p) and denote by g
(n)
j,k the density of V

(n)
j + V

(n)
k ,

j, k ∈ {1, . . . n}, j 6= k, as in (5.6). For general τ ∈ Dom(Λp) consider the function

fτ : R2 → R with fτ (x) := e〈τ,x〉g
(n)
j,k (x), where we suppress its dependence on other

parameters such as j, k in the notation. Then there exists an s > 1 such that the

Fourier transform of fτ(x) is Ls-integrable, i.e., F(fτ(x)) ∈ Ls(R2).

Proof. Without loss of generality we chose j = 1, k = 2 for ease of notation. For

x ∈ Dom(Λ∗p) and general τ ∈ Dom(Λp) consider the Fourier transform at some t ∈ R2:

F(fτ )(t) =

∫
R2

e〈τ,x〉g
(n)
1,2 (x) e〈it,x〉 dx =

∫
R2

e〈τ+it,x〉g
(n)
1,2 (x) dx = E

(
e

〈
τ+it,V

(n)
1 +V

(n)
2

〉)
.

By the definition and the independence of the V
(n)
i and the properties of the moment

generating function we have

F(fτ )(t) = E
(
e

〈
τ+it,V

(n)
1

〉)2

= E
(
e

〈
τ+it,

(
|Y (n)

1 |
q
,|Y (n)

1 |
p)〉)2

=

∫
R

e〈τ+it,(|y|q ,|y|p)〉fNp(y) dy

2

,

where the last equality yields that F(fτ )(t) = ϕp(τ + it)2 with ϕp being the moment

generating function of the V
(n)
i as in (5.8) at the complex argument τ + it. Since this

holds for any τ ∈ Dom(Λp), for τ(x) ∈ Dom(Λp) we have that

F(fτ(x))(t) = ϕp(τ(x) + it)2. (5.27)
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By the Hausdorff-Young inequality [43, Proposition 2.2.16] we can show that there

exists an s > 0 such that F(fτ ) ∈ Ls(R2) by showing instead that there exists an

r ∈ (0, 1) such that fτ ∈ L1+r(R2) for general τ ∈ Dom(Λp). We thus want to prove

that for some r ∈ (0, 1) ∫
R2

∣∣e〈τ,x〉g(n)
1,2 (x)

∣∣1+r
dx <∞. (5.28)

Since the density g
(n)
1,2 itself is unknown, we want to rewrite it as a transformation of

the density of the Y
(n)
i in the coordinates of V

(n)
1 and V

(n)
2 , whose density fNp is known.

It holds that

V
(n)

1 + V
(n)

2 =
(∣∣Y (n)

1

∣∣q +
∣∣Y (n)

2

∣∣q, ∣∣Y (n)
1

∣∣p +
∣∣Y (n)

2

∣∣p) =: T
(
Y

(n)
1 , Y

(n)
2

)
. (5.29)

In order to make a transformation of densities argument, for a given x ∈ R2
+ we need

to solve x = T (y) for y ∈ R2. This means we are interested in the set

T−1(x) =
{
y ∈ R2 : |y1|q + |y2|q = x1, |y1|p + |y2|p = x2

}
. (5.30)

If either of the x1, x2 is zero, either both are zero and T−1(x) = (0, 0), or T−1(x) = ∅
otherwise. As this only holds for a zero set of x ∈ R2

+, we assume x1 > 0, x2 > 0. It

follows from (5.30) that T−1(x) is the intersection of two `2
p-spheres of radius x

1/q
1 and

x
1/p
2 , respectively, which we will denote as S1

q

(
x

1/q
1

)
and S1

p

(
x

1/p
2

)
. Therefore, we have

T−1(x) = S1
q

(
x

1/q
1

)
∩ S1

p

(
x

1/p
2

)
.

As one can see in Figure 5.2, the number of intersection points depends on the relative

size of their radii x
1/q
1 and x

1/p
2 . Since q < p and Bnq ⊆ Bnp , there are no intersection

points if x
1/q
1 < x

1/p
2 . The same holds if x

1/q
1 > 21/q− 1/p x

1/p
2 , yielding that T−1(x)

is empty, hence we disregard both cases. If x
1/q
1 = x

1/p
2 we have the canonical four

intersection points of `np -spheres on the coordinate axes scaled by their common ra-

dius, and if x
1/q
1 = 21/q− 1/p x

1/p
2 we again have exactly four intersections at the points

2−1/p x
1/p
2 (±1,±1) ∈ R2. However, the set of x ∈ R2

+ for which these equalities hold is

merely a zero set with respect to the distribution of V
(n)
j + V

(n)
k , hence we disregard

these cases as well. Hence, we only concentrate on x
1/q
1 ∈

(
x

1/p
2 , 21/q− 1/p x

1/p
2

)
, which

yields eight intersection points in R2, which we denote by

T−1(x)(1) = y(1) , . . . , T−1(x)(8) = y(8). (5.31)

Further, we write

Hp,q :=
{
x ∈ R2

+ : x1, x2 > 0, x
1/q
1 ∈

(
x

1/p
2 , 21/q− 1/p x

1/p
2

)}
.
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Figure 5.2: Intersection points (red) of S1
1(r) (orange) and S1

2(1) (blue) for
different radii of S1

1(r) with r ∈
{

0.75, 1, 1.25,
√

2, 1.75
}

(from left to right).

We use a version of the well-known change of variable argument for “many-to-one”

transformation functions, i.e., locally bijective functions, from [54, Section 4.5, p.151 ff.]

which states the following: Let Y1, . . . , Yn be continuous real-valued random variables

with joint density ϕ(y1, . . . , yn), and A := {y ∈ Rn : ϕ(y) > 0}, denoting Y =

(Y1, . . . , Yn). Further, let X1 = T1(Y1, . . . , Yn), . . . , Xn = Tn(Y1, . . . , Yn) be real-valued

transformations for which one can partition A (up to zero sets) into disjoint A1, . . . , Ak

such that X = T (Y ) = (T1(Y ), . . . , Tn(Y )) is bijective on these sets. We denote these

bijective components as T−1
•,j : Rn → Aj with T−1

•,j := (T−1
1,j , . . . , T

−1
n,j ), where T−1

i,j

maps to the preimage of Ti on Aj. Then the joint density of the X1, . . . , Xn at some

x = (x1, . . . , xn) is given by

g(x) =
∑

y∈Rn:T (y)=x

∣∣det
[
JxT

−1(x)
]∣∣ϕ(y) =

k∑
j=1

∣∣det
[
JxT

−1
•,j (x)

]∣∣ϕ(T−1
•,j (x)

)
.

We apply this to the transformation T of
(
Y

(n)
1 , Y

(n)
2

)
from (5.29) with A = R2 and

A1, . . . , A8 chosen to be a partition of R2 up to zero sets such that y(j) ∈ Aj for all

j ∈ {1, . . . , 8} with y(j) as in (5.31). This yields that the density g
(n)
1,2 of V

(n)
1 + V

(n)
2 at

some x ∈ R2
+ is given by

g
(n)
1,2 (x) =

(
8∑
j=1

∣∣∣det
[
JxT

−1
•,j (x)

]∣∣∣ fNp

(
T−1

1,j (x)
)
fNp

(
T−1

2,j (x)
))

1Hp,q(x), (5.32)

with T−1
•,j =

(
T−1

1,j (x), T−1
2,j (x)

)
. Let us calculate the determinant of JxT

−1
•,j (x) explicitly.

First off, it holds that T (y1, y2) = (|y1|q+|y2|q, |y1|p+|y2|p) is continuously differentiable

for any 1 ≤ q < p <∞ outside of (0, 0) with

JyT (y) =

(
sgn(y1)q|y1|q−1 sgn(y2)q|y2|q−1

sgn(y1)p|y1|p−1 sgn(y2)p|y2|p−1

)
,

with sgn(t) denoting the sign of t ∈ R, and
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det
[
JyT (y)

]
= sgn(y1) sgn(y2) qp

(
|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

)
, (5.33)

which is only zero for |y1| = |y2|. This case can be disregarded, however, since geomet-

rically this would mean that S1
q(x

1/q
1 ) and S1

p(x
1/p
2 ) intersect at 2−1/px

1/p
2 (±1,±1) and

hence, x
1/q
1 = 21/q− 1/p x

1/p
2 , which we excluded, as we only consider T (y) = x ∈ Hp,q.

Since T is continuously differentiable with non-zero functional determinant at the

points y(1), . . . , y(8), the inverse function theorem yields that for all j ∈ {1, . . . , 8}

JxT
−1
•,j (x) =

[
JyT

(
y(j)
)]−1

,

which, together with standard rules for determinants of square matrices, yields that

det
[
JxT

−1
•,j (x)

]
= det

[[
JyT

(
y(j)
)]−1

]
= det

[
JyT

(
y(j)
)]−1

. (5.34)

Further, it holds that

fNp

(
T−1

1,j (x)
)
fNp

(
T−1

2,j (x)
)

=

(
2 p1/p Γ

(
1 +

1

p

))−2

e−
1
p

(
T−1
1,j (x)

p
+T−1

2,j (x)
p
)

=

(
2 p1/p Γ

(
1 +

1

p

))−2

e−
1
p

(
T2

(
T−1
1,j (x), T−1

2,j (x)
))

=

(
2 p1/p Γ

(
1 +

1

p

))−2

e−
1
p
x2 .

Setting ηp := 2 p1/p Γ
(

1 + 1
p

)
and using the above, (5.32) yields

g
(n)
1,2 (x) = ηp

−2

(
8∑
j=1

∣∣∣det
[
JxT

−1
•,j (x)

]∣∣∣ e− 1
p
x2

)
1Hp,q(x).

To finish the proof of Lemma 5.2.20, as stated in (5.28), we want to show that

g
(n)
1,2 (x) ∈ L1+r(R2) for some r > 0. We thus consider∫

R2

∣∣e〈τ,x〉g(n)
1,2 (x)

∣∣1+r
dx

=

∫
R2

∣∣∣∣∣e〈τ,x〉ηp−2

(
8∑
j=1

∣∣∣det
[
JxT

−1
•,j (x)

]∣∣∣ e− 1
p
x2

)
1Hp,q(x)

∣∣∣∣∣
1+r

dx

= ηp
−2(1+r)

∫
R2

∣∣eτ1x1+ 1
p

(pτ2−1)x2
∣∣1+r

∣∣∣∣∣
8∑
j=1

det
[
JxT

−1
•,j (x)

]∣∣∣∣∣
1+r

1Hp,q(x) dx.

Now it generally holds for x1, x2 > 0 and r > 0 that (x1 + x2)1+r ≤ 2r(x1+r
1 + x1+r

2 ).

Successively applying this for x1, . . . , xk > 0 yields

137



5.2. SHARP LARGE DEVIATIONS FOR q-NORMS OF `np -BALLS

(
k∑
i=1

xi

)1+r

≤ 2kr
n∑
i=1

x1+r
i .

Since we know from (5.33) and (5.34) that
∣∣det

[
JxT

−1
•,j (x)

]∣∣ > 0 for x ∈ Hp,q and all

j ∈ {1, . . . , 8}, it follows from the above that∫
R2

∣∣e〈τ,x〉g(n)
1,2 (x)

∣∣1+r
dx

≤ 28r ηp
−2(1+r)

∫
Hp,q

∣∣eτ1x1+ 1
p

(pτ2−1)x2
∣∣1+r

8∑
j=1

∣∣∣det
[
JxT

−1
•,j (x)

]∣∣∣1+r

dx

= 28r ηp
−2(1+r)

8∑
j=1

∫
Hp,q

∣∣∣det
[
JxT

−1
•,j (x)

]∣∣∣1+r

e(1+r)(τ1x1+ 1
p

(pτ2−1)x2) dx.

Moreover, using the change of variable argument in the other direction for each T−1
•,j ,

together with the fact that T−1
•,j (Hp,q) = Aj by construction, and that for y ∈ Aj with

T (y) = x it holds by (5.34) that

det
[
JxT

−1
•,j (x)

]
ϕ
(
T−1
•,j (x)

)
= det

[
JyT (y)

]−1
ϕ(y),

one can conclude by the partition property of the A1, . . . , A8 that

8∑
j=1

∫
Hp,q

∣∣∣det
[
JxT

−1
•,j (x)

]∣∣∣1+r

e(1+r)(τ1x1+ 1
p

(pτ2−1)x2) dx

=
8∑
j=1

∫
Aj

∣∣∣det
[
JyT (y)

]∣∣∣−r e(1+r)(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) dy

=

∫
R2

∣∣∣det
[
JyT (y)

]∣∣∣−r e(1+r)(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) dy

=

∫
R2

(
qp
∣∣(|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

)∣∣)−r e(1+r)(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) dy,

where the last equality is due to (5.33). For a neighbourhood of the origin B ⊂ R2 we

can split up the above integral on B and its complement Bc as∫
B

(
qp
∣∣(|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

)∣∣)−r e(1+r)(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) dy

+

∫
Bc

(
qp
∣∣(|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

)∣∣)−r e(1+r)(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) dy.

(5.35)
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Since τ ∈ Dom(Λp) = R×
(
−∞, 1

p

)
, it holds for any r > 0 that

e(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) ∈ Lr(R2).

For the first integral in (5.35) we can find a sufficiently small r1 ∈ (0, 1) such that(
qp
∣∣(|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

)∣∣)−1 ∈ Lr1(B).

Hence, for r = r1 both factors in the first integral term in (5.35) are in L1(B), and since

B is bounded it follows via Hölders inequality that their product also lies in L1(B), i.e.,

the first integral is finite. For the second integral expression, we can find a sufficiently

large r2 > 1 such that(
qp
(
|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

))−1 ∈ Lr2(Bc).

Hence, for r3 := r2
r1
> 1 it follows that(
qp
(
|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

))−r1 ∈ Lr3(Bc).

Lastly, for r∗3 > 1 such that 1
r3

+ 1
r∗3

= 1 we know that

e(1+r1)(τ1(|y1|q+|y2|q)+ 1
p

(pτ2−1)(|y1|p+|y2|p)) ∈ Lr∗3 (Bc),

thus, by again applying Hölders inequality, we get that the product of the two functions

lies in L1(Bc), and thereby the second integral term in (5.35) is also finite. Overall, we

have shown that for sufficiently small r = r1 ∈ (0, 1)∫
R2

∣∣fτ (x)
∣∣1+r

dx =

∫
R2

∣∣e〈τ,x〉g(n)
1,2 (x)

∣∣1+r
dx

≤ 28r ηp
−2(1+r)

8∑
j=1

∫
Hp,q

det
[
JxT

−1
•,j (x)

]1+r

e(1+r)(τ1x1+ 1
p

(pτ2−1)x2) dx

= 28r ηp
−2(1+r)

∫
R2

(
qp
∣∣(|y1|q−1|y2|p−1 − |y1|p−1|y2|q−1

)∣∣)−r
× e(1+r)(τ1(|y1|q+|y2|q)+ 1

p
(pτ2−1)(|y1|p+|y2|p)) dy

< ∞.

By the same arguments, one can also infer fτ (x) ∈ L1+r̃ for any r̃ ∈ (0, r1). As

stated previously, by the Hausdorff-Young inequality [43, Proposition 2.2.16] we can

hence conclude for τ = τ(x) ∈ Dom(Λp) that there exists an s ∈
(

1+r
r
,∞
)

such that

F(fτ(x)) ∈ Ls(R2), which proves Lemma 5.2.20.
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By (5.27) and Lemma 5.2.20 it follows that there exists an s > 1 such that

ϕp(τ(x) + it) ∈ Ls/2(R2). (5.36)

This will now be used to write the density g(n) of
∑n

i=1 V
(n)
i via is Fourier transform,

that is, to prove the following lemma.

Lemma 5.2.21 For G(n) =
∑n

i=1 V
(n)
i with V

(n)
i :=

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p), Y (n)
i ∼ Np i.i.d.,

x ∈ Dom(Λ∗p), and sufficiently large n ∈ N, it holds that the distribution of
∑n

i=1 V
(n)
i

has Lebesgue density

g(n)(x) =

(
1

2π

)2

e−〈τ(x),x〉
∫
R2

e−〈it,x〉(ϕp(τ(x) + it))ndt.

Proof. For x ∈ Dom(Λ∗p) and general τ ∈ Dom(Λp) define fτ : R2 → R with fτ (x) :=

e〈τ,x〉g(n)(x) and proceed similar to the proof of Lemma 5.2.20 by considering its Fourier

transform at some t ∈ R2. The first goal is to show that F(fτ(x)) ∈ L1(R2) to apply

the Fourier inversion theorem. It holds that

F(fτ )(t) =

∫
R2

e〈τ,x〉g(n)(x) e〈it,x〉 dx =

∫
R2

e〈τ+it,x〉g(n)(x) dx = E
(
e〈τ+it,

∑n
i=1 V

(n)
i 〉
)
.

Again, the independence of the V
(n)
i and the properties of the moment generating

function yield that

F(fτ )(t) = E
(
e〈τ+it,(|Y1|q ,|Y1|p)〉

)n
=

∫
R

e〈τ+it,(|y|q ,|y|p)〉fNp(y)dy

n

= ϕp(τ + it)n.

As seen previously, it follows from Lemma 5.2.20 that there exists an s > 1 such that,

as in (5.36), we have
ϕp(τ(x) + it) ∈ Ls/2(R2).

For n ∈ N large enough such that n > s
2
, it thus follows that

F(fτ(x))(t) = ϕp(τ(x) + it)n ∈ L1(R2).

Applying the Fourier inversion theorem (cf. [110, Theorem 1.9]) to fτ (x) = e〈τ,x〉g(n)(x)

then yields

e〈τ,x〉g(n)(x) =

(
1

2π

)2 ∫
R2

e−〈it,x〉F(fτ )(t)dt =

(
1

2π

)2 ∫
R2

e−〈it,x〉(ϕp(τ + it))ndt,
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thus,

g(n)(x) =

(
1

2π

)2

e−〈τ,x〉
∫
R2

e−〈it,x〉(ϕp(τ + it))ndt.

Since the above holds for arbitrary τ ∈ Dom(Λp), it also follows for τ(x) ∈ Dom(Λp)

that

g(n)(x) =

(
1

2π

)2

e−〈τ(x),x〉
∫
R2

e−〈it,x〉(ϕp(τ(x) + it))ndt, (5.37)

which proves the claim.

The exponential term e〈τ,x〉 in the definition of fτ and the specific choice of τ(x) ∈
Dom(Λp) in (5.37) were not necessary up to this point, but will be helpful to approx-

imate the remaining integral term in the density. We will now expand the results of

Lemma 5.2.21 to yield a similar integral expression for the density h(n) of S(n):

Proposition 5.2.22 For S(n) = 1
n

∑n
i=1 V

(n)
i with V

(n)
i :=

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p), Y (n)
i ∼ Np

i.i.d., x ∈ Dom(Λ∗p), and for n ∈ N large enough the distribution of S(n) has Lebesgue

density

h(n)(x) =
( n

2π

)2

e−nΛ∗p(x)

∫
R2

e−n〈it,x〉
(
ϕp(τ(x) + it)

ϕp(τ(x))

)n
dt.

Proof. Setting φ : R2 → R2 with φ(x) = 1
n
x such that S(n) = φ

(∑n
i=1 V

(n)
i

)
, yields

h(n)(x) = g(n)
(
φ−1(x)

) ∣∣ det Jx(φ
−1)
∣∣ = g(n)(nx)n2.

Hence, Lemma 5.2.21 gives

h(n)(x) =
( n

2π

)2

e−n〈τ(x),x〉
∫
R2

e−n〈it,x〉(ϕp(τ(x) + it))ndt.

Furthermore, note that by Lemma 2.2.1 (4) we have 〈τ(x), x〉 = Λ∗p(x) + Λp(τ(x)), and

by definition (5.8) it holds that e−Λp(τ(x)) = ϕp(τ(x))−1. Thus,

h(n)(x) =
( n

2π

)2

e−n(Λ∗p(x)+Λp(τ(x)))

∫
R2

e−n〈it,x〉(ϕp(τ(x) + it))ndt

=
( n

2π

)2

e−nΛ∗p(x)

∫
R2

e−n〈it,x〉
(
ϕp(τ(x) + it)

ϕp(τ(x))

)n
dt,

finishing the proof.
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We denote the integral term in the above as

I(n)(x) :=

∫
R2

e−n〈it,x〉
(
ϕp(τ(x) + it)

ϕp(τ(x))

)n
dt. (5.38)

The approximation of I(n)(x) will be the content of the next result and the final step

in the proof of the asymptotic density estimate in Proposition 5.2.19.

Lemma 5.2.23 Let x ∈ Dom(Λ∗p) and h(n) be the density from Proposition 5.2.22 with

integral coefficient I(n)(x) as in (5.38). It then holds that

I(n)(x) =
( n

2π

)−1(
detHx

)−1/2
(1 + o(1)),

where Hx := HτΛp(τ(x)).

As one can see, Proposition 5.2.22 and Lemma 5.2.23 directly imply the asymptotic

density estimate in Proposition 5.2.19.

We prove Lemma 5.2.23 via the saddle point method, whose basic idea was outlined

in Section 5.1. Specifically, this will be done via what we have called an “implicit”

application of the saddle point method in the form of exponential tilting. We will

define a conveniently shifted and exponentially tilted distribution, such that the em-

pirical average of random variables with that tilted distribution is centered, and has

the integrand of I(n)(x) as its Fourier transform. The integral over this distribution’s

Fourier transform then heavily concentrates around the origin and can therefore be

efficiently approximated using standard techniques.

For general τ ∈ Dom(Λp) and n ∈ N, we define the probability measure on R

Np,τ := e〈τ,(|y|
q ,|y|p)〉−Λp(τ) Np, (5.39)

which is Np exponentially tilted with respect to τ ∈ Dom(Λp). Accordingly, Np,τ has

the density
fNp,τ (y) := e〈τ,(|y|

q ,|y|p)〉−Λp(τ) fNp(y).

One can quickly check that this is indeed still a probability measure, since∫
R

Np,τ (dy) = e−Λp(τ)

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy = ϕp(τ)−1 ϕp(τ) = 1.
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For x ∈ Dom(Λ∗p) we define the i.i.d. random vectors V(n)
1 , . . . ,V(n)

n , with

V(n)
i :=

(∣∣Y(n)
i

∣∣q, ∣∣Y(n)
i

∣∣p), with Y(n)
i ∼ Np,τ(x),

resulting in an exponentially tilted version of V
(n)
i . We also define the sums

G(n) :=
n∑
i=1

(
V(n)
i − x

)
and S(n) :=

1√
n

n∑
i=1

(
V(n)
i − x

)
(5.40)

of the V(n)
i shifted by x, denoting by g

(n)
x the density of G(n). We show two useful results

for these auxiliary quantities.

Lemma 5.2.24 For x ∈ Dom(Λ∗p) and G(n) as defined in (5.40) it holds that

F
(
g(n)
x

)
(t) = e−n〈it,x〉

(
ϕp(τ(x) + it)

ϕp(τ(x))

)n
.

Proof. For t ∈ R2 it holds that

F
(
g(n)
x

)
(t) =

∫
R2

e〈it,y〉 g(n)
x (y) dy

= E
[
e〈it,G(n)〉

]
= E

[
e

〈
it,
∑n
i=1

(
V(n)
i −x

)〉]
= e−〈it,nx〉 E

[
e

〈
it,V(n)

1

〉]n

= e−〈it,nx〉

∫
R

e〈it,(|y|
q ,|y|p)〉Np,τ(x)(dy)

n

= e−〈it,nx〉

∫
R

e〈it,(|y|
q ,|y|p)〉 e〈τ(x),(|y|q ,|y|p)〉−Λp(τ(x)) fNp(y) dy

n

= e−〈it,nx〉 e−nΛp(τ(x))

∫
R

e〈τ(x)+it,(|y|q ,|y|p)〉 fNp(y) dy

n

= e−n〈it,x〉
(
ϕp(τ(x) + it)

ϕp(τ(x))

)n
,

finishing the proof.
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Lemma 5.2.25 For S(n) as defined in (5.40) it holds that

i) E
[
S(n)

]
= 0,

ii) Cov
[
S(n)

]
= Hx, with Hx := HτΛp(τ(x)),

with Λp still being the cumulant generating function of V
(n)
i as defined as in (5.8) with

respect to Np.

Proof. Since the V(n)
i are i.i.d., it holds that E

[
S(n)

]
=
√
n
(
E
[
V(n)

1

]
− x
)

. We continue

by showing

E
[
V(n)

1

]
= ∇s E

[
e

〈
s,V(n)

1

〉] ∣∣∣
s=(0,0)

= ∇τΛp(τ(x)).

It holds that

∇s E
[
e

〈
s,V(n)

i

〉]
=

 ∂

∂s1

∫
R

e〈s,(|y|
q ,|y|p)〉Np,τ(x)(dy),

∂

∂s2

∫
R

e〈s,(|y|
q ,|y|p)〉Np,τ(x)(dy)



=

∫
R

|y|q e〈s,(|y|q ,|y|p)〉Np,τ(x)(dy),

∫
R

|y|p e〈s,(|y|q ,|y|p)〉Np,τ(x)(dy)

 ,

thus,

∇s E
[
e

〈
s,V(n)

i

〉] ∣∣∣
s=(0,0)

=

∫
R

|y|q Np,τ(x)(dy),

∫
R

|y|p Np,τ(x)(dy)


=

(
E
[∣∣Y(n)

i

∣∣q],E[∣∣Y(n)
i

∣∣p])
= E

[
V(n)
i

]
.

Furthermore, for some τ ∈ Dom(Λp),

∇τΛp(τ) =

 ∂

∂τ1

log

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy,

∂

∂τ2

log

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy


= e−Λp(τ)

∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy,

∫
R

|y|p e〈τ,(|y|q ,|y|p)〉 fNp(y) dy


=

∫
R

|y|q Np,τ (dy),

∫
R

|y|p Np,τ (dy)

 . (5.41)
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Thus,

∇τΛp(τ(x)) =

∫
R

|y|q Np,τ(x)(dy),

∫
R

|y|p Np,τ(x)(dy)


=

(
E
[∣∣Y(n)

1

∣∣q],E[∣∣Y(n)
1

∣∣p])
= E

[
V(n)

1

]
.

Recalling Lemma 2.2.1 (4), τ(x) was defined to be the argument, where the supremum

of [〈x, τ〉 − Λp(τ)] is attained, hence,

∇τ

[
〈x, τ(x)〉 − Λp(τ(x))

]
= x−∇τΛp(τ(x)) = 0,

yielding ∇τΛp(τ(x)) = x, and thereby E[V(n)
1 ] = x. Hence, we see that the (V(n)

i − x)

are centered and E[S(n)] =
√
n
(
E[V(n)

1 ]− x
)

= 0, which proves i).

It remains to show that Cov[S(n)] = Hx = HτΛ(τ(x)). By independence and identical

distribution of the V(n)
i it holds that Cov[S(n)] = 1

n

∑n
i=1 Cov[(V(n)

i − x)] = Cov[V(n)
1 ].

Hence, we need to show that(
E
[(
V(n)

1

)
j

(
V(n)

1

)
k

]
− E

[(
V(n)

1

)
j

]
E
[(
V(n)

1

)
k

])
j,k∈{1,2}

=

(
∂2

∂τk∂τj
Λp(τ(x))

)
j,k∈{1,2}

.

We can reformulate the left-hand side in the above for individual j, k ∈ {1, 2} as

a) (j, k) = (1, 1) : E
[∣∣Y(n)

1

∣∣2q]− E
[∣∣Y(n)

1

∣∣q]2

b) (j, k) = (2, 2) : E
[∣∣Y(n)

1

∣∣2p]− E
[∣∣Y(n)

1

∣∣p]2

c) (j, k) = (1, 2) and (j, k) = (2, 1) : E
[∣∣Y(n)

1

∣∣q+p]− E
[∣∣Y(n)

1

∣∣q]E [∣∣Y(n)
1

∣∣p].
Now, using the calculations from (5.41), it holds for general τ ∈ Dom(Λp) that

∂2

∂τ1∂τ1

Λp(τ) =
∂

∂τ1

e−Λp(τ)

∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy


=

∂

∂τ1

(
e−Λp(τ)

) ∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy

+ e−Λp(τ) ∂

∂τ1

∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy


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=
∂

∂τ1

(
e−Λp(τ)

) ∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy

+ e−Λp(τ)

∫
R

|y|2q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy,

and

∂

∂τ1

(
e−Λp(τ)

)
=

∂

∂τ1

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy

−1

= −

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy

−2

∂

∂τ1

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy

= −

∫
R

e〈τ,(|y|
q ,|y|p)〉 fNp(y) dy

−2 ∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy

= −

∫
R

e〈τ,(|y|
q ,|y|p)〉−Λp(τ) fNp(y) dy

−2

e−Λp(τ)

×
∫
R

|y|q e〈τ,(|y|q ,|y|p)〉−Λp(τ) fNp(y) dy

= −

∫
R

Np,τ (dy)

−2

e−Λp(τ)

∫
R

|y|q Np,τ (dy)

= − e−Λp(τ)

∫
R

|y|q Np,τ (dy).

Hence,

∂2

∂τ1∂τ1

Λp(τ) =

∫
R

|y|2q e〈τ,(|y|q ,|y|p)〉−Λp(τ) fNp(y) dy

−

∫
R

|y|q e〈τ,(|y|q ,|y|p)〉−Λp(τ) fNp(y) dy

2

=

∫
R

|y|2q Np,τ (dy)−

∫
R

|y|q Np,τ (dy)

2

,
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which, evaluated at τ = τ(x) ∈ Dom(Λp), yields

∂2

∂τ1∂τ1

Λp(τ(x)) =

∫
R

|y|2q Np,τ(x)(dy)−

∫
R

|y|q Np,τ(x)(dy)

2

= E
[∣∣Y(n)

∣∣2q]− E
[∣∣Y(n)

∣∣q]2.
Analogously it follows that

∂

∂τ2

(
e−Λp(τ(x))

)
= e−Λp(τ(x)) E

[∣∣Y(n)
1

∣∣p],
and thus

∂2

∂τ2∂τ2

Λp(τ(x)) = E
[∣∣Y(n)

1

∣∣p]2

+ E
[∣∣Y(n)

1

∣∣2p].
Finally, using the derivatives of e−Λp(τ) from the previous two cases, yields

∂2

∂τ1∂τ2

Λp(τ) =
∂2

∂τ2∂τ1

Λp(τ)

=
∂

∂τ2

(
e−Λp(τ)

) ∫
R

|y|q e〈τ,(|y|q ,|y|p)〉 fNp(y) dy

+ e−Λp(τ) ∂

∂τ2

∫
R

|y|q e〈τ2,(|y|q ,|y|p)〉 fNp(y) dy



=

∫
R

|y|q+p Np,τ (dy)−

∫
R

|y|p Np,τ (dy)

∫
R

|y|q Np,τ (dy)

 .

Then, for τ = τ(x) ∈ Dom(Λp) we get

∂2

∂τ1∂τ2

Λp(τ(x)) =

∫
R

|y|q+p Np,τ(x)(dy)−

∫
R

|y|p Np,τ(x)(dy)

∫
R

|y|q Np,τ(x)(dy)


= E

[∣∣Y(n)
1

∣∣q+p]− E
[∣∣Y(n)

1

∣∣q]E [∣∣Y(n)
1

∣∣p],
proving ii).

We proceed to prove the integral approximation in Lemma 5.2.23.
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Proof of Lemma 5.2.23. By Lemma 5.2.24, we can rewrite the integral I(n)(x) from

(5.38) via the Fourier transform of the density g
(n)
x of G(n) as

I(n)(x) =

∫
R2

e−n〈it,x〉
(
ϕp(τ(x) + it)

ϕp(τ(x))

)n
dt =

∫
R2

F
(
g(n)
x

)
(t) dt.

It remains to show that∫
R2

F
(
g(n)
x

)
(t) dt =

( n
2π

)−1

(detHx)
−1/2 (1 + o(1)).

To do so, we will show that most of the mass of the integral is concentrated in a

neighbourhood of the origin, outside of which it drops exponentially in n. It holds that

ϕp(τ(x) + it)

ϕp(τ(x))
= e−Λp(τ(x))

∫
R

e〈τ(x)+it,(|y|q ,|y|p)〉 fNp(y) dy = E
[
e〈it,V

(n)
1 〉
]
,

i.e., the term can also be writen as a Fourier transform. Hence, for t ∈ R we have∣∣∣∣ϕp(τ(x) + it)

ϕp(τ(x))

∣∣∣∣ =
∣∣∣E [e〈it,V(n)

1 〉
]∣∣∣ ≤ E

[∣∣∣e〈it,V(n)
1 〉
∣∣∣] = 1, (5.42)

with E[e〈it,V
(n)
1 〉] = 1 only for t = (0, 0). Also, from the density property of Np,τ(x)

follows that e〈τ(x),(|y|q ,|y|p)〉−Λp(τ(x)) fNp(y) ∈ L1(R2). By the Riemann-Lebesgue lemma

[42, Proposition 2.2.17] we hence know that

lim
‖t‖→+∞

E
[
e〈it,V

(n)
1 〉
]

= 0.

Together with (5.42) we thus conclude that for every neighbourhood B of the origin,

there is a C < 1, such that E[e〈it,V
(n)
1 〉] < C for all t ∈ Bc. Also, we have seen in Lemma

5.2.20, that there is some s > 1 such that ϕp(τ(x) + it) ∈ Ls(R2) and the same extends

to E
[
e〈it,V

(n)
1 〉]. Thereby, for some sufficiently large s0 > 1 it follows that∣∣∣∣∣∣

∫
Bc

F
(
g(n)
x

)
(t) dt

∣∣∣∣∣∣ ≤
∫
Bc

∣∣F (g(n)
x

)
(t)
∣∣ dt

=

∫
Bc

∣∣∣∣e−n〈it,x〉(ϕp(τ(x) + it)

ϕp(τ(x))

)n∣∣∣∣ dt

=

∫
Bc

∣∣∣∣ϕp(τ(x) + it)

ϕp(τ(x))

∣∣∣∣n dt

≤ C(n−s0)

∫
Bc

∣∣∣∣ϕp(τ(x) + it)

ϕp(τ(x))

∣∣∣∣s0 dt,
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which goes to zero exponentially fast in n ∈ N, that is,∫
Bc

F
(
g(n)
x

)
(t) dt = o(1). (5.43)

We see, that the contribution of the integral outside of a neighbourhood of the origin

can be neglected for large n ∈ N. Hence, it remains to consider the integral over said

neighbourhood. By substituting t by t̃ =
√
n t, we get∫

B

F
(
g(n)
x

)
(t) dt =

1

n

∫
√
nB

F
(
g(n)
x

)( t̃√
n

)
dt̃. (5.44)

The integrand on the right-hand side is just the characteristic function of 1√
n
G(n) =

S(n). By Lemma 5.2.25 S(n) is the
√
n-multiple of the empirical average of centered

i.i.d. random vectors
(
V(n)
i − x

)
with covariance matrix Cov

(
S(n)

)
= Hx. Thus, by

the central limit theorem, it holds that S(n) converges in distribution to a centered

Gaussian distribution in Rn with covariance matrix Hx, denoted as N (n)(0,Hx). Thus,

the characteristic function of the distribution of S(n) will converge pointwise to that of

N (n)(0,Hx), i.e.,

lim
n→∞

F
(
g(n)
x

)( t̃√
n

)
= exp

(
−1

2

〈
Hx t̃, t̃

〉)
. (5.45)

To use the above on (5.44), we show the conditions of the dominated convergence

theorem. Using Taylor expansion of F
(
g

(n)
x

)(
t̃√
n

)
around the origin (see, e.g., [67,

Lemma 4.10]), we have that for α ∈ N2
0, k ∈ N0, and t in a neighbourhood of the origin

F
(
g(n)
x

)( t̃√
n

)
=

∑
||α||1≤ k

(
it̃
)α
α!

E
[
S(n)α

]
+ o
(
t̃ k
)
,

using the multi-index notation tα = tα1
1 t

α2
2 and α! = α1!α2!. For k = 2, by Lemma

5.2.25, this gives

F
(
g(n)
x

)( t̃√
n

)
= 1 + (it̃1)E

[(
S(n)

)
1

]
+ (it̃2)E

[(
S(n)

)
2

]
+

(it̃1)2

2
E
[(
S(n)

)2

1

]
+

(it̃2)2

2
E
[(
S(n)

)2

2

]
+ (it̃1)(it̃2)E

[(
S(n)

)
1

(
S(n)

)
2

]
+ o(t̃ k)

= 1− 1

2

(
t̃ 2
1 E
[(
V(n)

1

)2

1

]
+ t̃ 2

2 E
[(
V(n)

1

)2

2

]
+ 2 t̃1t̃2 E

[(
V(n)

1

)
1

(
V(n)

1

)
2

])
+ o(t̃ k)

= 1− 1

2

〈
Hx t̃, t̃

〉
+ o
(
t̃ 2
)
. (5.46)

149



5.2. SHARP LARGE DEVIATIONS FOR q-NORMS OF `np -BALLS

By [67, Lemma 4.14] and the Jensen inequality for 〈t̃,S(n)〉, we can give the following

upper bound on the error term∣∣∣∣F(g(n)
x

)( t̃√
n

)
− 1 +

1

2

〈
Hxt̃, t̃

〉∣∣∣∣ =

∣∣∣∣∣∣E
[
ei〈t̃,S(n)〉

]
−

∑
||α||1≤ 2

(
it̃
)α
α!

E
[(
S(n)

)α]∣∣∣∣∣∣
≤ E

 ∣∣∣∣∣∣ei〈t̃,S(n)〉 −
∑
||α||1≤ 2

(
it̃
)α
α!

(
S(n)

)α∣∣∣∣∣∣


≤ E
[ ∣∣〈t̃,S(n)

〉∣∣2 ]
≤ E

[ ∥∥t̃∥∥2

2

∥∥S(n)
∥∥2

2

]
=

∥∥t̃∥∥2

2
E
[ ∥∥S(n)

∥∥2

2

]
. (5.47)

The next step is to show that E
[ ∥∥S(n)

∥∥2

2

]
is bounded, which will be done along the

lines of [85, Lemma 6.3]. It holds that

E
[ ∥∥S(n)

∥∥2

2

]
= E

( 1√
n

n∑
i=1

(
V(n)
i − x

)
1

)2

+

(
1√
n

n∑
i=1

(
V(n)
i − x

)
2

)2


=
1

n
E

( n∑
i=1

(
V(n)
i − x

)
1

)2
+

1

n
E

( n∑
i=1

(
V(n)
i − x

)
2

)2
 ,

where, by independence of the V(n)
i and Lemma 5.2.25, we have for k ∈ {1, 2} that

1

n
E

( n∑
i=1

(
V(n)
i − x

)
k

)2


=
1

n

n∑
i=1

E
[((
V(n)
i − E

[
V(n)
i

])
k

)2 ]
+

1

n

∑
1≤i<j≤n

E
[(
V(n)
i − E

[
V(n)
i

])
k

]
E
[(
V(n)
j − E

[
V(n)
j

])
k

]
= (Hx)kk +

1

n

∑
1≤i<j≤n

Cov
[(
V(n)
i

)
k
,
(
V(n)
j

)
k

]
= (Hx)kk .

Thus, E
[∥∥S(n)

∥∥2

2

]
is bounded, and thereby the same holds for the error term in (5.47).
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Recall, that Hx := HτΛp(τ(x)) is positive definite, as it is invertible by Lemma 5.2.1

and positive semi-definite by the convexity of Λp on its effective domain. For n ∈ N
sufficiently large, we can now always choose a small enough neighbourhood B of the

origin, such that there is an ε > 0 with

1

2

〈
ε I2 t̃, t̃

〉
≥
∥∥t̃∥∥2

2
E
[∥∥S(n)

∥∥2

2

]
,

and Hx − ε I2 positive definite, where I2 denotes the (2 × 2) identity matrix in R2.

Together with the well-known inequality 1 + x ≤ ex, x ∈ R, this yields with 5.46 that

F
(
g(n)
x

)( t̃√
n

)
= 1− 1

2

〈
Hx t̃, t̃

〉
+ o
(
t̃ 2
)

≤ 1− 1

2

〈
Hx t̃, t̃

〉
+

1

2

〈
ε I2 t̃, t̃

〉
= 1− 1

2

〈
(Hx − ε I2) t̃, t̃

〉
≤ exp

(
−1

2

〈
(Hx − ε I2) t̃, t̃

〉)
.

Furthermore, it holds that∫
R2

exp

(
−1

2

〈
(Hx − ε I2) t̃, t̃

〉)
dt̃ =

2π(
det(Hx − ε I2)

)1/2
,

i.e., the function is integrable. The conditions of the dominated convergence theorem

are thus fulfilled, and thereby it follows with (5.45) that∫
√
nB

F
(
g(n)
x

)( t̃√
n

)
dt̃ =

∫
R2

exp

(
−1

2
〈Hx t̃, t̃ 〉

)
dt̃ (1 + o(1))

=
2π(

detHx

)1/2
(1 + o(1)). (5.48)

Combining (5.43), (5.44), and (5.48) to get∫
R2

F
(
g(n)
x

)
(t) dt =

∫
B

F
(
g(n)
x

)
(t) dt+

∫
Bc

F
(
g(n)
x

)
(t)dt

=
1

n

∫
√
nB

F
(
g(n)
x

)( t̃√
n

)
dt̃+ o(1)

=
( n

2π

)−1(
detHx

)−1/2
(1 + o(1))

finishes the proof of Lemma 5.2.23.
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Combining Proposition 5.2.22 and Lemma 5.2.23 then yields the asymptotic density

estimate in Proposition 5.2.19. We shall now consider the case of `np -balls, that is,

derive an asymptotic density estimate for S(n) as in (5.23).

Proposition 5.2.26 For S(n) = 1
n

∑n
i=1 V

(n)
i with V

(n)
i =

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p, U1/n
)
,

Y
(n)
i ∼ Np i.i.d., U uniformly distributed on [0, 1] independently of the Y

(n)
i , and x =

(x1, x2) ∈ Dom(Λ∗p), y ∈ (0, 1], it holds that for sufficiently large n ∈ N the distribution

of S(n) has Lebesgue density

h(n)(x1, x2, y) =
n2

2π
y−1(detHx)

−1/2 e−n IS(x1,x2,y) (1 + o(1)),

where IS(x1, x2, y) :=
[
Λ∗p(x)− log(y)

]
and Hx := HτΛp(τ(x)) as in (5.10).

Proof. By direct calculation we can see for y ∈ [0, 1] that P
(
U1/n ≤ y

)
= P (U ≤ yn) =

yn, hence the density of U1/n is given by fU1/n(y) = n yn−1. As U1/n is independent

of the Y
(n)
i , and thereby also of S(n) = 1

n

∑n
i=1

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p), the density of S(n) =
1
n

∑n
i=1

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p, U1/n
)

is given by the product of their densities, hence

h(n)(x1, x2, y) = h(n)(x1, x2)fU1/n(y) =
n2

2π
y−1
(
detHx

)−1/2
e−n [Λ∗p(x)−log(y)] (1 + o(1)).

This completes the proof.

5.2.8 Proof of the SLD results for `np-spheres

The third and final step to prove Theorem 5.2.11 is to calculate the integral in (5.25)

over the deviation area Dz using the density estimates from Proposition 5.2.19. Based

on the density estimate, one can tell that the integral in (5.25) is of Laplace-type, i.e.,∫
Dz

h(n)(x) dx =
n

2π

∫
Dz

(
detHx

)−1/2
e−nΛ∗p(x) dx (1 + o(1)).

Hence, for large n ∈ N one would assume it behaves like the integrand evaluated

at the infimum of Λ∗p. However, as we have seen in Lemma 5.2.18, the infimum of

Λ∗p over D̄z is attained at z∗ = (zq, 1) and lies on the boundary ∂Dz of the area of

integration, which needs to be accounted for. This is done by a result of Andriani

and Baldi [7], which construes the boundary of the deviation area ∂Dz and the level

sets of Λ∗p as hypersurfaces (which are just planar curves in our setting), and uses their

Weingarten maps (i.e., absolute value of their curvature) to give a Laplace-type integral

approximation with the critical point lying on the boundary of the area of integration.
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The resulting factors accounting for the minimizer z∗ of Λ∗p lying on ∂Dz will partly

make up the prefactor functions from Theorem 5.2.11. This will thereby confirm what

was said in Remark 5.2.17, that is, that the geometric shape of Dz – which in itself

is a result of the functional structure of the quantity being considered – indeed does

have an influence on the sharp large deviation result. So while this influence is very

direct for LDPs via the infimum operator from the contraction principle, for sharp

large deviations it is considerably more subtle in the form of the absolute curvature of

the boundary of the deviation area.

Similar to the proof of the density estimate itself, the proof will again rely on splitting

up the integral onto some domain where the mass of the integral concentrates and its

complement on which the integral is negligible. Specifically, the integral will be split

up into a neighbourhood Bz of z∗ and its complement Bc
z. The LDP from Proposition

5.2.2 will be used to show the comparative negligibility of the integral on Bc
z. On Bz

we then apply the Laplace-integration result of Andriani and Baldi [7]. Following that,

we derive the Weingarten maps used therein explicitly, thus finishing the proof.

Proof of Theorem 5.2.11. We assume the set-up of Theorem 5.2.11 and use the refor-

mulation (5.25) to proceed by considering P
(
S(n) ∈ Dz

)
. Let Bz ⊂ R2 be an open

neighbourhood around z∗, small enough that Bz ⊂ Dom(Λ∗p). Then it holds that

P
(
S(n) ∈ Dz

)
=

∫
Dz

h(n)(x) dx =

∫
Dz∩Bz

h(n)(x) dx+

∫
Dz∩Bcz

h(n)(x) dx. (5.49)

Since z∗ /∈ Bc
z, by Lemma 5.2.18 , there exists an η > 0, such that

inf
y∈Dz∩Bcz

Λ∗p(y) > Λ∗p(z
∗) + η,

and thus, by the LDP in Proposition 5.2.2, it follows

lim sup
n→∞

1

n
logP

(
S(n) ∈ Dz ∩ Bc

z

)
≤ − inf

y ∈Dz∩Bcz
Λ∗p(y) ≤ −Λ∗p(z

∗)− η.

This gives

P
(
S(n) ∈ Dz ∩ Bc

z

)
≤ e−nΛ∗p(z∗)−n η (1 + o(1)) =

1

en η
e−nΛ∗p(z∗)(1 + o(1)). (5.50)

Furthermore, by the density estimate in Proposition 5.2.19, we have∫
Dz∩Bz

h(n)(x) dx =
n

2π

∫
Dz∩Bz

(
detHx

)−1/2
e−nΛ∗p(x) dx (1 + o(1)). (5.51)
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As stated above, to calculate this explicitly we rely on a technique established by

Andriani and Baldi in [7, Proof of Theorem 4.4]. Therein, an asymptotic integral

expansion of Bleistein and Handelsmann [15, Equation (8.3.63)] for Laplace integrals

with critical point on the boundary of the area of integration is reformulated via the

Weingarten maps of the integration area’s boundary and the level set of the exponential

function at its critical point, both seen as hypersurfaces. We will present it as one

concise result, similar to that formulated in [85, Lemma 5.6].

Proposition 5.2.27 Let D ⊂ Rd be a bounded domain such that ∂D is a differentiable

hypersurface in Rd. Furthermore, let g : Rd → R be a differentiable function and

φ : D → [0,∞) a non-negative function that is twice differentiable and attains a unique

infimum over D at x∗ ∈ ∂D. Define the hypersurfaces

CD = ∂D and Cφ = {x ∈ Rd : φ(x) = φ(x∗)},

and denote by LD and Lφ their respective Weingarten maps at x∗. Then, for sufficiently

large n ∈ N, it holds that∫
D

g(x) e−nφ(x) dx =
(2π)(d−1)/2 det

(
L−1
φ

(
Lφ − LD

))−1/2

n(d+1)/2
〈
Hx φ(x∗)−1∇xφ(x∗),∇xφ(x∗)

〉1/2
g(x∗) e−nφ(x∗)(1 + o(1)).

The proof of this is given by first applying the result from [15, Equation (8.3.63)] for

Laplace-type integrals and then using the reformulation of the terms therein from [7,

Equation (4.6)] with respect to the Weingarten map.

We shall check that the above conditions hold for the integral in (5.51). Dz ∩ Bz is

bounded and for z > mp,q, we can write ∂Dz as the graph of the infinitely differentiable

function f : (0,∞) → (0,∞) with f(t1) = z−p t
p/q
1 (see (5.24)), thus both ∂Dz and

∂(Dz ∩ Bz) are differentiable planar curves. For Bz chosen small enough such that

Dz∩ Bz ⊂ Dom(Λ∗p), by Lemma 2.2.1 and (5.9),it follows that Λ∗p is twice differentiable

on Dz∩ Bz. From Lemma 2.2.1 we also know that 〈x, τ〉−Λp(τ) has a unique argument

τ(x) of its supremum in τ , i.e., x − ∇τΛp(τ) = 0 has a unique solution in (x, τ(x)).

Further, by Lemma 2.2.1 and Lemma 5.2.1 we have that HτΛp(τ) is invertible for all

τ ∈ Dom(Λp). Thus, it follows from the implicit function theorem that x 7→ τ(x) is

as differentiable in x as (x, τ) 7→ (x−∇τΛp(τ)) is in τ , yielding that τ(x) is infinitely

differentiable on Dom(Λ∗p). Hence, we get that
(
detHx

)−1/2
=
(
detHτΛp(τ(x)

)−1/2
is

differentiable in x. Lastly, by Lemma 5.2.18, z∗ ∈ ∂(Dz ∩ Bz) is the unique argument

at which the infimum of Λ∗p on Dz and Dz ∩ Bz is attained.
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Thus, in view of the above, we can use Proposition 5.2.27 for D = Dz ∩ Bz ⊂ R2 with

g(x) =
(
detHx

)−1/2
, φ(x) = Λ∗p(x), and x∗ = z∗, to get that∫

Dz∩Bz

h(n)(x) dx

=
n

2π

(2π)1/2 det
(
L−1

Λ

(
LΛ − LD

))−1/2
(detHz∗)

−1/2 e−nΛ∗p(z∗)

n3/2
〈
Hx Λ∗p(z

∗)−1∇x Λ∗p(z
∗),∇x Λ∗p(z

∗)
〉1/2

(1 + o(1)), (5.52)

for the respective Weingarten maps LD and LΛ at z∗ of the curves

CD = ∂
(
Dz ∩ Bz

)
and CΛ =

{
x ∈ R2 : Λ∗p(x) = Λ∗p(z

∗)
}
.

Via Lemma 5.2.1 we get〈
Hx Λ∗p(z

∗)−1∇x Λ∗p(z
∗),∇x Λ∗p(z

∗)
〉

=
〈
Hz∗ τ(z∗), τ(z∗)

〉
.

With the definition of ξ(z)2 in (5.18) the integral in (5.52) hence simplifies to∫
Dz∩Bz

h(n)(x) dx =
1√

2πn ξ(z)

(
det(L−1

Λ (LΛ − LD)
)−1/2

e−nΛ∗p(z∗) (1 + o(1)). (5.53)

It only remains to prove that det
(
L−1

Λ

(
LΛ − LD

))
= κ(z)2. We proceed to calculate

the Weingarten maps of the curves CD and CΛ explicitly. As discussed in Section

5.2.2, the Weingarten map of a planar curve at a point x reduces to the absolute

value of its curvature in x. As previously mentioned, ∂Dz is the graph of the function

f(t1) = z−pt
p/q
1 . Thus, the same holds locally for CD = ∂(Dz∩ Bz) in a neighbourhood

of z∗, so the curvature formula for graphs of functions in Corollary 5.2.10 ii) gives

LD =
|f ′′(zq)|(

1 + f ′(zq)2
)3/2

,

where

f ′(t1)2 =
(
pq−1 z−p t1

p/q− 1
)2 ⇒ f ′(zq)2 = p2q−2z−2q,

and

f ′′(t1) = pq−1
(
pq−1 − 1

)
z−p t1

p/q− 2 ⇒ f ′′(zq) =
(
p2 − pq

)
q−2 z−2q.

This yields

LD =

∣∣(p2 − pq
)
q−2 z−2q

∣∣(
1 + p2q−2z−2q

)3/2
=

∣∣pq(p− q)zq∣∣(
z2q + p2q−2

)3/2
. (5.54)
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The curve CΛ is the zero set of the function F (x) := Λ∗p(x) − Λ∗p(z
∗). From Lemma

5.2.1 we know that(
F[1,0], F[0,1]

)
=

(
∂

∂x1

Λ∗p(z
∗),

∂

∂x2

Λ∗p(z
∗)

)
= τ(z∗),

and

(
F[2,0] F[1,1]

F[1,1] F[0,2]

)
=


∂2

∂x2
1

Λ∗p(z
∗)

∂2

∂x2∂x1

Λ∗p(z
∗)

∂2

∂x1∂x2

Λ∗p(z
∗)

∂2

∂x2
2

Λ∗p(z
∗)

 = H−1
z∗ ,

for derivatives F[i,j] = F[i,j](z
∗) as in (2.1). Hence, by the curvature formula for implicit

curves from Lemma 5.2.9 and Corollary 5.2.10 i), we get

LΛ =

∣∣τ(z∗)2
2

(
H−1
z∗

)
11
− 2τ(z∗)1τ(z∗)2

(
H−1
z∗

)
12

+ τ(z∗)2
1

(
H−1
z∗

)
22

∣∣(
τ(z∗)2

1 + τ(z∗)2
2

)3/2
. (5.55)

Since both LD and LΛ are one-dimensional, it follows from (5.54) and (5.55) that

det(L−1
Λ (LΛ − LD)) = L−1

Λ (LΛ − LD) = 1− LD
LΛ

= κ(z)2.

for κ(z)2 as in (5.19). It now follows with (5.53) that∫
Dz∩Bz

h(n)(x) dx =
1√

2πn ξ(z)κ(z)
e−nΛ∗p(z∗) (1 + o(1)). (5.56)

Comparing (5.56) with the upper bound of the integral outside of Bz in (5.50), we can

see that the integral over Bc
z is negligible for large n ∈ N. Thus, combining (5.49),

(5.50), and (5.56) finishes the proof of Theorem 5.2.11.

5.2.9 Proof of the SLD results for `np-balls

We now turn to proving Theorem 5.2.12, that is, consider ‖Z‖ distributed in the `np -

ball according to Un,p. We assume the set-up of Theorem 5.2.12 and proceed similarly

to the previous proof, using the reformulation of the target probability as a density

integral over Dz from (5.26) in conjunction with the density approximation from Propo-

sition 5.2.26. The resulting integral over Dz is again split into a neighbourhood of the

minimizer of IS over Dz and its complement, which, according to Lemma 5.2.18, is
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attained at z∗∗ = (zq, 1, 1). However, in this setting the integral approximation of

Andriani and Baldi [7] from Proposition 5.2.27 is not applicable, as certain differentia-

bility conditions are no longer met. Hence, for the integral within that neighbourhood

we apply a result of Breitung and Hohenbichler [19], which yields a Laplace integral

approximation under less restrictive differentiability conditions. This result is again

geometric in nature, as the behaviour of the density on ∂Dz still heavily dictates the

value of the overall approximation. However, since this result is formulated for a cer-

tain neighbourhood of the origin, we first need to construct a sufficient transformation,

mapping our deviation area onto such a neighbourhood. After that, we calculate the

specific approximation in the setting of `np -balls.

Proof of Theorem 5.2.12. We assume the set-up of Theorem 5.2.12 and use the refor-

mulation (5.26) to proceed by considering P
(
S(n) ∈ Dz

)
. Let Bz ⊂ R3 be an open

neighbourhood around z∗∗ = (zq, 1, 1) small enough such that the first two coordinates

of points within Bz lie in Dom(Λ∗p) and the third is positive. Then it holds that

P
(
S(n) ∈ Dz

)
=

∫
Dz∩Bz

h(n)(x, y) dx dy +

∫
Dz∩Bc

z

h(n)(x, y) dx dy, (5.57)

for x = (x1, x2) ∈ R2 and y ∈ (0, 1]. As in the proof of Theorem 5.2.11, it follows from

Lemma 5.2.18 ii) and the LDP in Proposition 5.2.5 that there is an η > 0, such that

P
(
S(n) ∈ Dz ∩ Bc

z

)
≤ e−n IS(z∗∗)−nη (1 + o(1)) =

1

en η
e−nΛ∗p(z∗)(1 + o(1)), (5.58)

with IS(t) =
[
Λ∗p(t1, t2) − log(t3)

]
as defined in Lemma 5.2.6. We will again use this

to show the comparative negligibility of the integral over Dz ∩ Bc
z.

Let us now consider the first integral in (5.57). Since z∗ ∈ Dom(Λ∗p), for sufficiently

small Bz, we have that x = (x1, x2) ∈ Dom(Λ∗p) and y ∈ (0, 1]. By the density approx-

imation from Proposition 5.2.26, it then holds that∫
Dz∩Bz

h(n)(x1, x2, y) dx1 dx2 dy

=
n2

2π

∫
Dz∩Bz

y−1
(
detHx

)−1/2
e−n IS(x1,x2,y) dx1 dx2 dy (1 + o(1)).

As we have seen in Lemma 5.2.18, IS attains its infimum on Dz at z∗∗. However, we

cannot use the result of Andriani and Baldi from Proposition 5.2.27 here, since at z∗∗

the boundary of Dz ∩Bz is not differentiable, and thereby not a smooth planar curve.
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As a substitute we use the following asymptotic integral approximation result based on

Breitung and Hohenbichler [19, Lemma 4], which gives a Laplace integral approxima-

tion very similar to that in Liao and Ramanan [85, v2, Lemma 5.1], but under weaker

conditions. Note that this version of [19, Lemma 4] is not to be confused with that in

Proposition 3.1.4, where the setting was simpler and merely one-dimensional.

Proposition 5.2.28 Let F ⊂ R3 be a compact set containing the origin in its interior.

If

(a) f : F → R and g : F → R are continuous functions with g(0) 6= 0,

where 0 := (0, 0, 0),

(b) f(x) > f(0) for all x ∈ F ∩
(
R2

+ × R
)
\ {0},

(c) there is a neighbourhood V ⊂ F of 0 in which f is twice continuously

differentiable,

(d) f[1,0,0] > 0, f[0,1,0] > 0, and f[0,0,2] > 0, with f[i,j,k] = f[i,j,k](0) as in (2.1),

then it holds that∫
F∩
(
R2
+×R
) g(x) e−nf(x) dx =

√
2π

n5/2

g(x∗)

f[1,0,0] f[0,1,0]

√
f[0,0,2]

e−nf(x∗) (1 + o(1)).

Remark 5.2.29 This is the result from [19, Lemma 4] for n = 3, k = 2 and functions

g and (−f) instead of h and f . The parameter λ from [19, Lemma 4] in our setting

is replaced by the integer n ∈ N. Furthermore, a typo within said result has been

corrected, namely the sum in [19, Equation (11)] is replaced by a product (compare

proof therein). This proposition is quite close to [85, v2, Lemma 5.1], but does not

require the same level of smoothness of f and g, and g does not depend on n ∈ N.

To apply this, we use a transformation of Dz ∩ Bz, mapping z∗∗ = (zq, 1, 1) to 0.

Consider

I : R3 → R3 with I(x1, x2, y) =
(
yqx1 − zqxq/p2 , 1− y, x2 − 1

)
= (t1, t2, t3).

It then holds that

I(z∗∗) = 0 and I(Dz) = D̃z :=
{
t ∈ R3 : t1 > 0, t2 ∈ [0, 1), t3 > −1

}
.
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Furthermore, in a neighbourhood of z∗∗ small enough such that t2 < 1, I is invertible

with

I−1(t1, t2, t3) =

(
t1 + zq(t3 + 1)q/p

(1− t2)q
, t3 + 1, 1− t2

)
.

Let us calculate the Jacobian of I−1:

JtI
−1(t) =


1

(1−t2)q
q(t1+zq(t3+1)q/p)

(1−t2)q+1

zq q
p

(t3+1)q/p− 1

(1−t2)q

0 0 1

0 −1 0

. (5.59)

Thus, we have that
∣∣det JtI

−1(t)
∣∣ = (1− t2)−q. We set g(x1, x2, y) := y−1

(
detHx

)−1/2
,

as well as B̃z := I
(
Bz

)
, and transform the area of integration via I−1, yielding

P
(
S(n) ∈ Dz ∩Bz

)
=

∫
Dz∩Bz

h(n)(x1, x2, y) dx dy

=
n2

2π

∫
Dz∩Bz

y−1(detHx)
−1/2 e−n [Λ∗p(x1,x2)−log(y)] dx dy (1 + o(1))

=
n2

2π

∫
Dz∩Bz

g(x1, x2, y) e−n IS(x1,x2,y) dx dy (1 + o(1))

=
n2

2π

∫
D̃z∩ B̃z

g ◦ I−1(t) e−n IS◦I
−1(t) (1− t2)−q dt (1 + o(1)).

We now set g̃(t) := (1− t2)−q g ◦ I−1(t) and f̃(t) := IS ◦ I−1(t), then

P
(
S(n) ∈ Dz ∩Bz

)
=
n2

2π

∫
D̃z∩ B̃z

g̃(t) e−n f̃(t) dt (1 + o(1)). (5.60)

We intend to apply Proposition 5.2.28 to the integral in (5.60). It holds that D̃z∩ B̃z is

bounded and since the value of the integral is the same if we integrate over the open set

B̃z or its closure, we will continue to work with B̃z. Further, we have that B̃z contains

the origin in its (relative) interior, as the interior point z∗∗ of Bz is again mapped by

the continuous function I onto an interior point, which is I(z∗∗) = 0. Since we have

chosen the neighbourhood Bz of z∗∗ small enough for B̃z to not contain (t1, 1, t3), it

holds that

g̃(t) = (1− t2)−q
[
(1− t2)−1

(
detH(I−1(t)1,I−1(t)3)

)−1/2
]
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is also differentiable on D̃z ∩ B̃z as a composition of differentiable functions, and is

thereby continuous on B̃z. The differentiability of I−1, together with that of Λ∗p given

by Lemma 2.2.1, yields the differentiability (and thereby the continuity) of f̃(t) :=

IS ◦ I−1(t) on B̃z. It holds furthermore that

g̃(0) = (detHz∗)
−1/2, (5.61)

which is positive, since Hz∗ is positive definite on Dom(Λ∗p), as argued in Section 5.2.8.

Again, for Bz small enough, it also holds (up to a null set) that B̃z∩(R2
+×R) = B̃z∩D̃z,

on which we know from Lemma 5.2.18 that 0 = I(z∗∗) is the unique infimum of f̃ since

f̃(0) = IS ◦ I−1(0) = IS(z∗∗) = Λ∗p(z
∗). (5.62)

We can see from (5.59) that all partial derivatives of I−1 are themselves continuously

differentiable in a sufficiently small neighbourhood of 0. Thereby, I−1 is twice continu-

ously differentiable in such a neighbourhood. The two-fold continuous differentiability

of Λ∗p on Dom(Λ∗p) has already been shown in the proof of Theorem 5.2.11. Finally, by

Lemma 5.2.1 i), it holds that

∇(x1,x2,y)IS(z∗∗) =

(
∂

∂x1

Λ∗p(x1, x2),
∂

∂x2

Λ∗p(x1, x2),−1

y

) ∣∣∣
(x1,x2,y)=z∗∗

=

(
τ(x)1, τ(x)2,−

1

y

) ∣∣∣
(x1,x2,y)=z∗∗

= (τ(z∗)1, τ(z∗)2,−1) ,

from which we can deduce that

∇tf̃(0) = ∇(x1,x2,y)IS(z∗∗) JtI
−1(0)

= (τ(z∗)1, τ(z∗)2,−1)

 1 qzq zq q
p

0 0 1

0 −1 0


=

(
τ(z∗)1, qz

qτ(z∗)1 + 1, zq
q

p
τ(z∗)1 + τ(z∗)2

)
. (5.63)

It thereby follows that ∇tf̃(0) 6= 0, as the first two components cannot be equal to

zero simultaneously. But since f̃(t) attains its infimum on B̃z ∩ (R2
+ × R) in t = 0, it

holds that f̃[1,0,0] > 0 and f̃[0,1,0] > 0, as otherwise a step into either direction t1 or t2

would maintain or decrease the value of f̃ , contradicting the unique infimum property.

160



CHAPTER 5. SHARP LARGE DEVIATIONS ON `np -BALLS

On the other hand, by the same argument it has to hold that f̃[0,0,1] = 0 and f̃[0,0,2] > 0,

as otherwise a step into either direction t3 or (−t3) would maintain or decrease f̃ , again

contradicting the unique infimum property of 0. Hence, we have shown all conditions

for Proposition 5.2.28, whereby it now follows for the integral in (5.60) that

P
(
S(n) ∈ Dz ∩Bz

)
=

n2

2π

∫
D̃z∩ B̃z

g̃(t) e−n f̃(t) dt (1 + o(1))

=
n2

2π

∫
B̃z∩(R2

+×R)

g̃(t) e−n f̃(t) dt (1 + o(1))

=
1√
2πn

g̃(0)

f̃[1,0,0] f̃[0,1,0]

√
f̃[0,0,2]

e−nf̃(0) (1 + o(1)). (5.64)

The final term that remains to be calculated explicitly is f̃[0,0,2], as f̃[1,0,0] and f̃[0,1,0]

are given in (5.63). We start by noting that

∂

∂t3
I−1(t)

∣∣∣
t=0

=

(
zq q

p
(t3 + 1)q/p− 1

(1− t2)q
, 1, 0

)∣∣∣∣∣
t=0

=

(
zq
p

q
, 1, 0

)
,

and

∂2

∂t23
I−1(t)

∣∣
t=0

=

(
zq q

p

(
q
p
− 1
)
(t3 + 1)q/p− 2

(1− t2)q
, 0, 0

)∣∣∣∣∣
t=0

=

(
zqq2

p2
− zqq

p
, 0, 0

)
.

By Lemma 5.2.1 ii), we get that

H(x1,x2,y)IS(z∗∗) =


(
H−1
z∗

)
11

(
H−1
z∗

)
12

0(
H−1
z∗

)
21

(
H−1
z∗

)
22

0

0 0 y−2

 .

It thereby follows that

f̃[0,0,2] =
∂2

∂2t3
IS ◦ I−1(0)

=
∂

∂t3

[
∇(x1,x2,y)IS

(
I−1(t)

) ∂

∂t3
I−1(t)

] ∣∣∣∣∣
t=0

=
∂

∂t3

[
∇(x1,x2,y)IS

(
I−1(t)

)] ∣∣
t=0

∂

∂t3
I−1(0) +∇(x1,x2,y)IS(z∗∗)

∂2

∂t23
I−1(0)
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=

(
zq
q

p
, 1, 0

)
H(x1,x2,y)IS(z∗∗)

(
zq
q

p
, 1, 0

)

+
(
τ(z∗)1, τ(z∗)2,−1

)(zqq2

p2
− zqq

p
, 0, 0

)

=

(
zqq

p
, 1, 0

)(
zqq

p

(
H−1
z∗

)
11

+
(
H−1
z∗

)
12
,
zqq

p

(
H−1
z∗

)
21

+
(
H−1
z∗

)
22
, 0

)

+τ(z∗)1

(
zqq2

p2
− zqq

p

)

=
z2qq2

p2

(
H−1
z∗

)
11

+
2zqq

p

(
H−1
z∗

)
12

+
(
H−1
z∗

)
22

+ τ(z∗)1

(
zqq2

p2
− zqq

p

)
.(5.65)

Plugging the terms from (5.61), (5.63) and (5.65) into the fraction in (5.64) yields

g̃(0)

f̃[1,0,0]f̃[0,1,0]

√
|f̃[0,0,2]|

= (detHz∗)
−1/2 (τ(z∗)1)−1 (qzqτ(z∗)1 + 1)−1

×

[
z2qq2

p2

(
H−1
z∗

)
11

+
2zqq

p

(
H−1
z∗

)
12

+
(
H−1
z∗

)
22

+ τ(z∗)1

(
zqq2

p2
− zqq

p

)]−1/2

=

[
detHz∗ (τ(z∗)1)2 (qzqτ(z∗)1 + 1)2

×

(
z2qq2

p2

(
H−1
z∗

)
11

+
2zqq

p

(
H−1
z∗

)
12

+
(
H−1
z∗

)
22

+ τ(z∗)1
zqq(q − p)

p2

)]−1/2

= γ(z)−1, (5.66)

with γ(z) as in (5.20). Hence, it follows with (5.62), (5.64), and (5.66) that

P
(
S(n) ∈ Dz ∩Bz

)
=

1√
2πn γ(z)

e−nΛ∗p(z∗) (1 + o(1)). (5.67)

Combining (5.57) with the two integral estimates from (5.58) and (5.67) shows that

the integral over the complement of Bz can be comparatively neglected and it follows

P
(
n1/p− 1/q

∥∥Z(n)
∥∥
q
> z
)

= P
(
S(n) ∈ Dz ∩Bz

)
=

1√
2πn γ(z)

e−nΛ∗p(z∗) (1 + o(1)),

which proves the second main result of this section for `np -balls.
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5.3 Sharpening the p-AGM inequality using SLDs

In this section we use sharp large deviation results to derive improvements for a prob-

abilistic version of the p-generalized arithmetic-geometric mean (p-AGM) inequality,

expanding on works of Kabluchko, Prochno, and Vysotsky [66] and Thäle [111]. We will

begin by laying out the setting and the main results of this section and then proceed to

prove them via the same three-pronged approach of the proof in the previous section,

i.e., giving probabilistic representations for the target variables, deriving asymptotic

density estimates for those representations, and then integrating over those densities

using the geometric Laplace integration results of Andriani and Baldi [7] to finish the

proof. Due to the similar nature of Section 5.2 and Section 5.3, we refer to proofs in

the former whenever possible for the sake of brevity.

The well-established AGM inequality states that for n ∈ N and x1, . . . , xn ∈ Rn(
n∏
i=1

|xi|

)1/n

≤ 1

n

n∑
i=1

|xi|,

which can be generalized for some p > 0 to(
n∏
i=1

|xi|

)1/n

≤

(
1

n

n∑
i=1

|xi|p
)1/p

, (5.68)

referred to as the p-generalized AGM inequality. As layed out in Section 1.2, if the

vector one applies the inequality to is chosen randomly from Bnp with directional dis-

tribution Cn,p, the p-AGM inequality can be improved or reversed up to a respective

scalar constant with high probability. By a random vector X(n) ∈ Bnp having directional

distribution Cn,p we mean that there is a distribution R on [0, 1] with R({0}) = 0 such

that for a random variable R with distribution R and a random variable Z(n) with

distribution Cn,p independent of R we have that

X(n) D= R · Z(n). (5.69)

This can also be expanded to sequences of p-radial distributions
(
R(n)

)
n∈N, if the limit-

ing distribution also has no atom at zero. Furthermore, note that it can be conjectured

that all such distributions are already characterized by the class of p-radial distribu-

tions Pn,p,W from Proposition 2.4.4, however, it has not been proven at this point

that this is in fact the case. The relevant quantity to consider when deriving such a

result is the ratio of the two sides of the inequality in (5.68), which is analyzed with

respect to is distributional properties. For a random vector X(n) ∈ Bnp with directional
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distribution Cn,p and p-radial distribution R without an atom at zero we now want

to give sharp asymptotics for the probability that the ratio of the two sides of the

p-AGM inequality is, respectively, bigger or smaller than a constant θ ∈ [0, 1]. Effec-

tively this means that we provide asymptotically exact estimates on a non-logarithmic

scale for the probability of the p-AGM inequality being improvable or reversible up to

a constant, respectively.

To state this section’s main result, we define the following functions: For τ ∈ R2, set

Λ̃p(τ) := log

∫
R

eτ1 log(|y|)+τ2|y|p fNp(y) dy, (5.70)

and denote by Λ̃∗p the Legendre-Fenchel transform of Λ̃p, where we employ the notation

“Λ̃p” etc. to avoid confusion with Λp from (5.8). However, the two functions are indeed

very similar to each other, as only the first summand in the exponent of Λp from (5.8) is

exchanged from |y|q to log(|y|). Hence, we will often refer to arguments from Section 5.2

regarding Λp when making the same point for Λ̃p if the argument remains the same. As

we will see in Section 5.3.1, Λ̃p is the cumulant generating function of the probabilistic

representation used in this section, so by Lemma 2.2.1 there is a τ(x) ∈ Dom(Λ̃p) for

every x ∈ Dom(Λ̃∗p), such that

Λ̃∗p(x) = 〈x, τ(x)〉 − Λ̃p(τ(x)).

For x ∈ Dom(Λ̃∗p) set

H̃x := Hτ Λ̃p(τ(x)) (5.71)

analogue to (5.10). By the same arguments as in Lemma 5.2.1 it holds that

∇xΛ̃
∗
p(x) = τ(x), and HxΛ̃

∗
p(x) = H̃−1

x . (5.72)

For x > 0 we define the digamma function ψ and a constant mp based on p and ψ as

ψ(x) :=
Γ′(x)

Γ(x)
, and mp :=

1

p

(
ψ

(
1

p

)
+ log(p)

)
< 0.

As Section 5.3.1 will show, emp is the limit towards which the expectations of the ratio

of the p-AGM inequality converge in n ∈ N, thereby filling the same role as mp,q from

(5.5) in Section 5.2. Furthermore, we define the prefactor functions ξ̃(θ) and κ̃(θ) for

θ ∈ [0, 1]. For θ ∈ (0, 1], we denote θ∗ := (log θ, 1) ∈ R2 and for θ ∈ (0, 1) set

ξ̃(θ)2 := 〈H̃θ∗ τ(θ∗), τ(θ∗)〉 det H̃θ∗ ,

and
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κ̃(θ)2 := 1− cκ̃(θ),
with cκ̃(θ) given by (

τ(θ∗)2
1 + τ(θ∗)2

2

)3/2
p2epθθ−p∣∣τ(θ∗)2

2

(
H̃−1
θ∗

)
11
− 2τ(θ∗)1τ(θ∗)2

(
H̃−1
θ∗

)
12

+ τ(θ∗)2
1

(
H̃−1
θ∗

)
22

∣∣ (1 + p2e2pθθ−2p
)3/2

.

With the necessary definitions and notation set up, we now proceed to formulate the

main result of Section 5.3.

Theorem 5.3.1 Let 1 ≤ p < ∞, n ∈ N, and X(n) be a random vector in Bnp with

directional distribution Cn,p in the sense of (5.69). It then holds

i) for θ ∈ (emp , 1) and n sufficiently large that

P

( n∏
i=1

∣∣X(n)
i

∣∣)1/n

> θ ·

(
n∑
i=1

∣∣X(n)
i

∣∣)1/p
 =

1√
2πn κ̃(θ)ξ̃(θ)

e−n Ip(θ) (1 + o(1)),

ii) and for θ ∈ (0, emp) and n sufficiently large that

P

( n∏
i=1

∣∣X(n)
i

∣∣)1/n

< θ ·

(
n∑
i=1

∣∣X(n)
i

∣∣)1/p
 =

1√
2πn κ̃(θ)ξ̃(θ)

e−n Ip(θ) (1 + o(1)),

where

Ip(θ) :=
[
pGp(θ)− 1

]
log(θ) +Gp(θ)

[
logGp(θ)− 1

]
− log Γ(Gp(θ))

+
1

p

(
1 + log(p)

)
+ log Γ

(
1

p

)
, (5.73)

with Gp(θ) := H−1
(
p log(θ)

)
, where H : (0,∞) → (−∞, 0) is an increasing bijection

given by

H(x) := ψ(x)− log(x). (5.74)

The two parts of the above theorem describe the decay of the probability that the

p-AGM inequality is either reversible with a prefactor θ ∈ (emp , 1) [part i)] or can be

sharpened with a prefactor θ ∈ (0, emp) [part ii)]. Conversely, their respective opposites,

i.e., the probabilities that the inequality can be reversed with a prefactor θ ∈ (0, emp)

or sharpened with a prefactor θ ∈ (emp , 1) tend to 1 in n ∈ N. This will be pointed out

in further detail in Section 5.3.1.
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Note that this result is not dependent on the p-radial distribution of X(n), as is also

the case in [66, 111], even though SLD results usually tend to be more sensitive to the

idiosyncrasies of the underlying distributions.

These results are consistent with the LDP of Kabluchko, Prochno, and Vysotsky, as

taking the logarithm of the probability in the above theorem, dividing by n, and then

considering the limit, yields what they have shown in [66, Theorem 1.2], namely that

lim
n→∞

1

n
logP

( n∏
i=1

∣∣X(n)
i

∣∣)1/n

> θ ·

(
n∑
i=1

∣∣X(n)
i

∣∣)1/p
 = −Ip(θ) (5.75)

for θ ∈ (emp , 1) and

lim
n→∞

1

n
logP

( n∏
i=1

∣∣X(n)
i

∣∣)1/n

> θ ·

(
n∑
i=1

∣∣X(n)
i

∣∣)1/p
 = −Ip(θ) (5.76)

for θ ∈ (0, emp). However, we do provide a refinement of their findings in the classic

sense of sharp large deviation results refining LDPs, as layed out in Section 5.1: Theo-

rem 5.3.1 gives estimates on a non-logarithmic scale and we can thereby give concrete

and asymptotically exact probability estimates for the reversibility and improvability

of the p-AGM inequality for a specific (sufficiently large) n ∈ N, whereas on the loga-

rithmic scale of an LDP, as in (5.75) and (5.76), this is not possible and the prefactor

in Theorem 5.3.1 vanishes.

5.3.1 Probabilistic representation for p-AGM ratios

We now turn to the first of the three steps in proving Theorem 5.3.1, which is providing

a probabilistic representation for the ratio of the two sides of the p-AGM inequality

in terms of p-generalized Gaussian random vectors. Furthermore, the large deviation

results of Kabluchko, Prochno, and Vysotsky [66] for this ratio will be given explicitly

and expanded to general distributions with directional component Cn,p.

For a random vector X(n) ∈ Bnp with directional distribution Cn,p in the sense of (5.69)

the main variable of interest is the ratio of the two sides of the p-AGM inequality given

as

Rn :=

(
n∏
i=1

∣∣X(n)
i

∣∣)1/n

(
1
n

n∑
i=1

∣∣X(n)
i

∣∣p)1/p
. (5.77)
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We want to formulate the target probabilities P(Rn > θ) and P(Rn < θ) via a ran-

dom vector Y (n) with p-generalized Gaussian distribution Np of its coordinates. It

directly follows from Proposition 2.4.2 for a random vector X(n) ∈ Bnp with directional

distribution Cn,p and p-radial distribution R on [0, 1] in the sense of (5.69) that

Rn
D
=

(
n∏
i=1

∣∣∣∣∣R Y
(n)
i∥∥Y (n)
i

∥∥
p

∣∣∣∣∣
)1/n

(
1
n

n∑
i=1

∣∣∣∣∣R Y
(n)
i∥∥Y (n)
i

∥∥
p

∣∣∣∣∣
p)1/p

=

(
n∏
i=1

∣∣Y (n)
i

∣∣)1/n

(
1
n

n∑
i=1

∣∣Y (n)
i

∣∣p)1/p
, (5.78)

with i.i.d. Y
(n)
i ∼ Np. Thus, we see thatRn does not depend on the p-radial distribution

R, which is why the rate function in the main result is universal for all random vectors

in Bnp with directional distribution Cn,p. This calculation, previously given in [111],

also shows that the central limit theorem and the LDP established in [66] and the MDP

shown in [111] also hold for any random vector in Bnp with directional distribution Cn,p

as in (5.69). In the light of the representation in (5.78), let us present the LDP based

on [66, Theorem 1.4] here in this more general form.

Proposition 5.3.2 Let 1 ≤ p <∞ and X(n) be a random vector in Bnp with directional

distribution Cn,p in the sense of (5.69). Then the sequence (Rn)n∈N with Rn as defined

in (5.77) based on X(n) satisfies an LDP on [0, 1] with speed n and rate function Ip as

in (5.73).

It is furthermore shown in [66] that Ip(emp) = 0 and Ip(0+) = Ip(1−) = +∞, where

Ip(0+) and Ip(1−) denote the limits of Ip for sequences that converge to zero and one

from above and below, respectively. As suggested by the central limit theorem in [66,

Theorem 1.1], the expectations of Rn converge to emp , that is, emp is the value from

which deviation probabilities are given in the above LDP and the sharp large deviation

results in Theorem 5.3.1.

Proposition 5.3.2 is proven in [66] by showing an LDP for the sequence of empirical

averages of the coordinates of the random vector

Ṽ (n) :=
(
Ṽ

(n)
1 , . . . , Ṽ (n)

n

)
, with Ṽ

(n)
i :=

(
log
∣∣Y (n)
i

∣∣, ∣∣Y (n)
i

∣∣p) , (5.79)

with Y
(n)
i i.i.d. and Y

(n)
i ∼ Np (we again employ the notation “Ṽ (n)” to avoid confusion

with the terms from (5.6)). This is done via Cramér’s theorem in Proposition 2.3.3,

i.e., by showing that the cumulant generating function of the Ṽ
(n)
i , which is given by Λ̃p
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from (5.70), is finite in a neighbourhood of the origin, hence the sequence of empirical

averages of the coordinates

S̃(n) :=
1

n

n∑
i=1

Ṽ
(n)
i =

1

n

n∑
i=1

(
log
∣∣Y (n)
i

∣∣, ∣∣Y (n)
i

∣∣p) (5.80)

satisfies an LDP with speed n and rate function given by Λ̃∗p. This LDP is then mapped

to the sequence (Rn)n∈N via the probabilistic representation from (5.78) and the con-

traction principle in Proposition 2.3.5, considering the map F (x1, x2) := ex1x2
−1/p,

yielding an LDP for (Rn)n∈N with speed n and rate function

inf
(x1,x2):F (x1,x2)=θ

Λ̃∗p(x1, x2), θ ∈ [0, 1].

This is then finalized by showing that the above infimum is attained uniquely at θ∗ :=

(log θ, 1) and that this infimum can be given explicitly as

inf
(x1,x2):F (x1,x2)=θ

Λ̃∗p(x1, x2) = Λ̃∗p(θ
∗) = Ip(θ), (5.81)

with Ip as in (5.73). Further, it is shown that the effective domain of Ip is (0, 1) and

that for x ∈ Dom(Λ̃∗p) it holds that

τ(x) =
(
pH−1

(
px1 − log x2

)
− 1, p−1− x−1

2 H−1
(
px1− log x2

))
(5.82)

with H as in (5.74) (see [66, p. 11 f.]).

We use the same probabilistic representations from (5.79) and (5.80), but proceed with

them in a different fashion. Hence, as in Section 5.2, we rewrite the target probability

as the probability of S̃(n) lying in some domain dependent on θ, which we again refer

to as the deviation area. It holds that for θ ∈ [0, 1]

P
(
Rn > θ

)
= P

(
S̃(n) ∈ Dθ,>

)
and P

(
Rn < θ

)
= P

(
S̃(n) ∈ Dθ,<

)
, (5.83)

with
Dθ,> :=

{
x ∈ R2 : x2 > 0, ex1x2

−1/p > θ
}
, (5.84)

and
Dθ,< :=

{
x ∈ R2 : x2 > 0, ex1x2

−1/p < θ
}
. (5.85)

Remark 5.3.3 Again the points satisfying the infimum condition F (x1, x2) = θ in

(5.81) are exactly those on the boundary {(x1, x2) ∈ R2 : x2 > 0, ex1x2
−1/p = θ} of

Dθ,> and Dθ,< (which coincide). Hence, (5.81) shows that the infimum of Λ̃∗p over this

boundary is uniquely attained at θ∗.
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5.3.2 Asymptotic density estimate for p-AGM ratios

We now give an asymptotic estimate for the density of S̃(n), denoted by h̃(n), such that

for sufficiently large n ∈ N we can write the probabilities in (5.83) as integrals of h̃(n)

over Dθ,> and Dθ,<.

Proposition 5.3.4 Let p ∈ [1,∞) and n ∈ N. For S̃(n) = 1
n

∑n
i=1 Ṽ

(n)
i with Ṽ

(n)
i =(

log
∣∣Y (n)
i

∣∣, ∣∣Y (n)
i

∣∣p), Y (n)
i ∼ Np i.i.d., x ∈ Dom(Λ̃∗p), and n sufficiently large, it holds

that the distribution of S̃(n) has Lebesgue density

h̃(n)(x) =
n

2π

(
det H̃x

)−1/2
e−n Λ̃∗p(x) (1 + o(1)),

with H̃x as in (5.71).

Deriving the density estimate in Section 5.2.7 was quite involved, so to prove the

above we only adapt the parts of the proof therein in which the specific nature of the

probabilistic representation, that is, the change from
∣∣Y (n)
i

∣∣q to log
∣∣Y (n)
i

∣∣, is relevant.

As pointed out in Section 5.2.7, the proof of Proposition 5.2.19 follows along the lines of

Borovkov and Rogozin [17]. However, since the conditions therein, namely the random

variables having a common bounded density, are not satisfied in either of our settings,

one mainly needs to show the integrability of the Fourier transform (see [7, Remark

3.2]). The main part of the proof of Proposition 5.2.19 for which the structure of

the first component of the V
(n)
i =

(∣∣Y (n)
i

∣∣q, ∣∣Y (n)
i

∣∣p) plays a role is in Lemma 5.2.20.

Therein it was proven that there is an s > 1 such that the Fourier transform of the

sum of two V
(n)
i (times some exponential term) is in Ls(R2). This can be proven for

Ṽ
(n)
i =

(
log
∣∣Y (n)
i

∣∣, ∣∣Y (n)
i

∣∣p) in a mostly analogue fashion by rewriting their sum as a

transformation of the Y
(n)
i and making a transformation of densities argument, and we

will briefly argue why that is the case. For i = 1, j = 2 we can write

Ṽ
(n)

1 + Ṽ
(n)

2 =
(

log
∣∣Y (n)

1

∣∣+ log
∣∣Y (n)

2

∣∣, ∣∣Y (n)
1

∣∣p +
∣∣Y (n)

2

∣∣p) =: T̃
(
Y

(n)
1 , Y

(n)
2

)
.

For some given x ∈ R2 we solve x = T̃ (y) for y ∈ R2, which amounts to characterizing

T̃−1(x) =
{
y ∈ R2 : log(|y1|) + log(|y2|) = x1, |y1|p + |y2|p = x2

}
.

If x2 ≤ 0, the above set is clearly empty, hence we assume x2 > 0, in which case the

set
{
y ∈ R2 : |y1|p + |y2|p = x2

}
is an `np -sphere with radius x

1/p
2 , again denoted as

Sn−1
p

(
x

1/p
2

)
. For x1 ∈ R the set G(x1) :=

{
y ∈ R2 : log(|y1|) + log(|y2|)) = x1

}
can be

interpreted as the graph of the function f(y) = ex1y−1 mirrored along the axes and at

the origin into all orthans of R2 (see Figure 5.3).
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Figure 5.3: The set G(r) for r = 0.

Therefore, we have
T̃−1(x) = G(x1) ∩ S1

p

(
x

1/p
2

)
.

As one can see in Figure 5.4, the number of points in the above set is zero in case

exp
(
x1
2

)
>
(
x2
2

)1/p
, four if exp

(
x1
2

)
=
(
x2
2

)1/p
, and eight if exp

(
x1
2

)
<
(
x2
2

)1/p
. Since the

case exp(x1
2

) =
(
x2
2

)1/p
only holds for a zero set of x ∈ R × (0,∞), we only consider

x ∈ R× (0,∞) with exp(x1
2

)<
(
x2
2

)1/p
.

Figure 5.4: Intersection points (red) of G(r) (orange) and S1
2

(
1) (blue) for

different values of r with r ∈
{

0.25, 0, −1
}

(from left to right).

The transformation T̃ is continuously differentiable outside of (0, 0) with Jacobian

JyT̃ (y) =

(
sgn(y1)|y1|−1 sgn(y2)|y2|−1

sgn(y1)p|y1|p−1 sgn(y2)p|y2|p−1

)
,

and

det
[
JyT̃ (y)

]
= sgn(y1) sgn(y2) |y1|−1|y2|−1 p

(
|y2|p − |y1|p

)
,

which is only zero for |y1| = |y2|, thus can be disregarded, since it geometrically amounts

to G(x1) and S1
p(x

1/p
2 ) intersecting at the points 2−1/px

1/p
2 (±1,±1), which we excluded.

For the remainder of the proof, one can proceed just as was done in the proof of Lemma

5.2.20, that is, apply the density transformation argument from [54, Section 4.5, p. 151

ff.] via T̃ and use the same integral estimates therein.
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Thus, we see that one can show an analogue version of Lemma 5.2.20 in this setting,

and hence, we can proceed in an analogue fashion as the remainder of the proof of

Proposition 5.2.19 to show the density estimate in Proposition 5.3.4. The details of

this are therefore omitted.

5.3.3 Proof of the sharpening of the p-AGM inequality

Assuming the set-up of Theorem 5.3.1 and combining the probabilistic representation

results in (5.78) and (5.83) with the local density approximation in Proposition 5.3.4,

we get that

P(Rn > θ) = P
(
S̃(n) ∈ Dθ,>

)
=

∫
Dθ,>

h̃(n)(x) dx

=
n

2π

∫
Dθ,>

(det H̃x)
−1/2

e−n Λ̃∗p(x) dx (1 + o(1)), (5.86)

and

P(Rn < θ) = P
(
S̃(n) ∈ Dθ,<

)
=

∫
Dθ,>

h̃(n)(x) dx

=
n

2π

∫
Dθ,<

(
det H̃x

)−1/2
e−n Λ̃∗p(x) dx (1 + o(1)), (5.87)

with Dθ,> and Dθ,< as in (5.84) and (5.85). The final step of the proof of Theorem

5.3.1 now is to calculate the above integrals explicitly. We will only do this in detail for

the integral in (5.86), as the calculation for the integral in (5.87) proceeds in a mostly

analogue fashion, and we will merely point out the specific differences at the end of

the proof. As in [7, 69, 85], the first step is to split up the integration area into a

neighbourhood around the point θ∗, at which the exponent in the integrand attains its

infimum on the boundary of Dθ,>, and its complement. On this neighbourhood we then

employ the Laplace integral approximation from Proposition 5.2.27 by Andriani and

Baldi [7], and on the complement we use the large deviation principle from Proposition

5.3.2 to show the comparative negligibility of the corresponding integral.

171



5.3. SHARPENING THE p-AGM INEQUALITY USING SLDs

Proof of Theorem 5.3.1. We begin by proving the statement in Theorem 5.3.1 i). Let us

assume the setting therein and let Bθ be an open neighbourhood of θ∗, small enough

such that Bθ ⊂ Dom(Λ̃∗p). The fact that θ∗ ∈ Dom(Λ̃∗p) follows from the fact that

Λ̃∗p(θ
∗) = Ip(θ) < ∞ for θ ∈ (0, 1), as seen in Proposition 5.3.2. Splitting up the

reformulation of our target probability in (5.86) into integrals of h̃(n) over Bθ and Bc
θ

yields

P(Rn > θ) =

∫
Dθ,>∩Bθ

h̃(n)(x) dx +

∫
Dθ,>∩Bcθ

h̃(n)(x) dx. (5.88)

We begin by showing the comparative negligibility of the second integral term. We

know from Remark 5.3.3 that Λ̃∗p attains its unique infimum on ∂Dθ,> at θ∗. This

property can be shown to hold for the closure Dθ,> as follows: assume t ∈ R2 with

t ∈ D◦θ,>, i.e., et1t
−1/p
2 > θ. We then consider ϑ := et1t

−1/p
2 . If ϑ∗ /∈ Dom(Λ̃∗p), it

trivially holds that Λ̃∗p(θ
∗) < Λ̃∗p(t) = ∞. Hence, assume that ϑ∗ ∈ Dom(Λ̃∗p). It now

follows that t ∈ ∂Dϑ,>, which yields that Λ̃∗p(t) > Λ̃∗p(ϑ
∗) = Ip(ϑ) by Remark 5.3.3. By

Lemma 2.2.1 Λ̃∗p is strictly convex on Dom(Λ̃∗p). From Proposition 5.3.2 we have that

Λ̃∗p(e
mp∗) = Ip(emp) = 0, thus Ip is strictly increasing on the interval (emp , 1), hence

for ϑ > θ we have Λ̃∗p(t) > Ip(ϑ) > Ip(θ) = Λ̃∗p(θ
∗), thereby proving that Λ̃∗p attains its

unique infimum on Dθ,> at θ∗.

Therefore, it follows from θ∗ /∈ Bc
θ that there is an η > 0, such that

inf
t∈Dθ,>∩Bcθ

Λ̃∗p(t) > Λ̃∗p(θ
∗) + η.

The LDP in Proposition 5.3.2 then implies that

lim sup
n→∞

1

n
logP

(
S̃(n) ∈ Dθ,> ∩ Bc

θ

)
≤ − inf

y ∈Dθ∩Bcθ
Λ̃∗p(y) ≤ −Λ̃∗p(θ

∗)− η,

from which it follows that

P
(
S̃(n) ∈ Dθ,> ∩ Bc

θ

)
≤ e−n Λ̃∗p(θ∗)−n η (1 + o(1)) =

1

en η
e−nΛ̃∗p(θ∗)(1 + o(1)). (5.89)

Due to the leading exponential term e−n η, the above will be comparatively negligible

compared to the other integral term∫
Dθ,>∩Bθ

h̃(n)(x) dx =
n

2π

∫
Dθ,>∩Bθ

(
det H̃x

)−1/2
e−n Λ̃∗p(x) dx (1 + o(1)), (5.90)

which we will concretely calculate in the following. The clear course of action for this

will be to apply Proposition 5.2.27 to the integral in (5.90) with D = Dθ,> ∩ Bθ ⊂ R2,
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x∗ = θ∗, g(x) :=
(
det H̃x

)−1/2
and φ(x) = Λ̃∗p(x). The area of integration is clearly

bounded and since for sufficiently small Bθ it follows from (5.84) that ∂(Dθ,> ∩ Bθ)

around θ∗ is a section of the graph of the differentiable function f(t1) = θ−pept1 , it is

indeed a differentiable planar curve. Also, Λ̃∗p attains a unique infimum on ∂(Dθ,>∩Bθ)

in θ∗ (see (5.81) and Remark 5.3.3), which also holds for the entirety of Dθ,> ∩Bθ, as

was shown above. The other conditions of Proposition 5.2.27 follow by the same argu-

ments put forth in the proof of Theorem 5.2.11 in Section 5.2.8. Hence, we can apply

Proposition 5.2.27 as intended, which gives∫
Dθ,>∩Bθ

h̃(n)(x) dx

=
1√
2πn

det
(
L−1

Λ̃

(
LΛ̃ − LD

))−1/2
e−n Λ̃∗p(θ∗)〈

Hx Λ̃∗p(θ
∗)
−1∇x Λ̃∗p(θ

∗),∇x Λ̃∗p(θ
∗)
〉1/2 (

det H̃θ∗
)1/2

(1 + o(1)), (5.91)

where LΛ̃ and LD are the respective Weingarten maps of the curves

CD = ∂(Dθ,> ∩ Bθ) and CΛ̃ = {x ∈ R2 : Λ̃∗p(x) = Λ̃∗p(θ
∗)}

at θ∗. We now need to resolve the different components in this fraction. As stated in

(5.72), by the same arguments as in Lemma 5.2.1 it holds that ∇xΛ̃
∗
p(x) = τ(x), and

HxΛ̃
∗
p(x) = H̃−1

x . This allows rewriting the term in the denominator in (5.91) as〈
Hx Λ̃∗p(θ

∗)
−1∇x Λ̃∗p(θ

∗),∇x Λ̃∗p(θ
∗)
〉

det H̃θ∗

=
〈
H̃θ∗ τ(θ∗), τ(θ∗)

〉
det H̃θ∗ = ξ̃(θ)2. (5.92)

It remains to give the Weingarten maps of the curves CD and CΛ̃ explicitly. We start

by noting that det(L−1

Λ̃
(LΛ̃−LD)) = 1−LDLΛ̃

−1 = κ̃(θ)2, the determinant falling away

due to the Weingarten maps being one-dimensional. As discussed in Section 5.2.2, the

Weingarten map of a planar curve at a given point reduces to the absolute value of its

curvature at that point. Since CD = ∂(Dθ,>∩ Bθ) around θ∗ is a segment of the graph

of f(t1) = θ−pept1 , we get from Corollary 5.2.10 ii) that

LD =
|f ′′(θ)|

(1 + f ′(θ)2)3/2
=

p2epθθ−p

(1 + p2e2pθθ−2p)3/2
. (5.93)

The curve CΛ̃ can be written as the zero set of the function F (x) := Λ̃∗p(x) − Λ̃∗p(θ
∗),

and its derivatives F[i,j] at θ∗ as in Corollary 5.2.10 i) are known from the identities

∇xΛ̃
∗
p(x) = τ(x) and HxΛ̃

∗
p(x) = H̃−1

x . (Note, that for θ = emp we have that CΛ̃ is the
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zero set of F (x) = Λ̃∗p(x), since Λ̃∗p(e
mp∗) = 0. By (5.82) it follows that τ(x) = 0 only if

x = emp∗ = (mp, 1). Hence, the zero set of F (x) = Λ̃∗p(x) is solely the point emp∗, which

is not a differentiable curve, and hence is not accessible by these geometric methods).

It thus follows that

LΛ̃ =

∣∣∣τ(θ∗)2
2

(
H̃−1
θ∗

)
11
− 2τ(θ∗)1τ(θ∗)2

(
H̃−1
θ∗

)
12

+ τ(θ∗)2
1

(
H̃−1
θ∗

)
22

∣∣∣(
τ(θ∗)2

1 + τ(θ∗)2
2

)3/2
.

This, together with (5.93), now yields that 1−LDLΛ̃
−1 = κ̃(θ)2, which combined with

(5.81) and (5.92) and applied to (5.91) gives∫
Dθ,>∩Bθ

h̃(n)(x) dx =
1√

2πn ξ̃(θ) κ̃(θ)
e−nIp(θ) (1 + o(1)). (5.94)

Comparing (5.94) with the upper bound of the integral outside of Bθ in (5.89), we can

see that the integral over Bc
θ is negligible, as it is of order o(1). Thus, combining (5.88),

(5.89) and (5.94) finishes the proof of Theorem 5.3.1 i).

The proof of Theorem 5.3.1 ii) is almost completely the same regarding probabilistic

representation, local density estimation, and integral approximation, as hardly any of

the steps therein use the fact that we are working on Dθ,> for θ ∈ (emp , 1) instead

of Dθ,< for θ ∈ (0, emp), but rather consider a neighbourhood of ∂Dθ,> around θ∗,

which coincides with that same neighbourhood of ∂Dθ,< around θ∗, and are therefore

the same in both settings. The only notable difference is that one shows the fact

that θ∗ minimizes Λ̃∗p not only on ∂Dθ,<, as in (5.81), but also on Dθ,<, by using the

fact that Λ̃∗p is strictly decreasing on (0, emp) instead of it being strictly increasing on

θ ∈ (emp , 1). Beyond this, the proof is the same as for Theorem 5.3.1 i) and is hence

omitted here.

174



Bibliography

[1] Aldaz, J. M. Selfimprovement of the inequality between arithmetic and geo-

metric means. J. Math. Inequal. 2, 4 (2008), 473–477.

[2] Aldaz, J. M. Concentration of the ratio between the geometric and arithmetic

means. J. Theor. Probab. 23, 2 (2010), 498–508.

[3] Alonso-Gutiérrez, D., and Prochno, J. Thin-shell concentration for ran-

dom vectors in Orlicz balls via moderate deviations and Gibbs measures.

[4] Alonso-Gutiérrez, D., Prochno, J., and Thäle, C. Large deviations for
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