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Abstract

In the current age of the Internet of Things tens of billions of connected devices are spread
over the world. They perform a plethora of different functions, from switching light bulbs over
enabling cashless payments to controlling power plants. Many of these devices handle sensitive
data or perform control critical systems and must therefore be protected using cryptographic
protocols. Modern cryptographic algorithms used in these protocols have been studied by many
experts for multiple years and deemed to provide excellent resistance against cryptoanalytical
attacks. However, countless security critical devices are no longer hidden in computing centers
behind strong doors but are potentially physically accessible to attackers. This access to a device
allows the observance of unintentional information leakage in the form of side-channels, such as
the power consumption or electromagnetic emanation. As the this information depends on the
data physically processed by a device, side-channel attacks can extract secrets without having to
break the underlying cryptographic algorithm. This thesis addresses this thread by developing
methods to assess and prevent the side-channel leakage of cryptographic implementations and
is divided into three parts.

The first part analyzes methods to assess the side-channel leakage of devices which execute
cryptographic functions. A novel, state of the art measurement system is developed that allows
the rapid collection of side-channel data. In traditional leakage assessment this data is typically
used in statistical tests, such as Welch’s t-test, in order to decide if the the side-channel is in-
fluenced by the data processed by the target device and can therefore potentially be exploited.
In order to address multiple downsides of this approach these issues, we introduce a new as-
sessment framework around confidence intervals. Subsequently, we extend this framework to
the multivariate setting allowing the assessment of advanced threads. As the computational
complexity is exponential in the attack order, we describe and compare multiple techniques to
speedup this evaluation while retaining maximal assessment confidence.

The second part of this thesis studies how essential components of cryptographic implemen-
tations can be protected against side-channel attacks. First, we develop a efficent hardware
implementation for a core part of many lattice-based post-quantum secure key encapsulation
mechanisms: a masked comparison of two polynomials. Secondly, several protected hardware
architectures for addition circuits are developed and compared. These circuits form an essential
part of multiple cryptographic implementations such as Addition-Rotation-XOR (ARX)-ciphers
and several post-quantum secure schemes. In our work, we can achieve resistance against arbi-
trarily chosen attack orders using provably secure gadgets.

In the third and final part of this thesis novel methods for the side-channel protection of com-
plex integrated systems are developed. First, we show how a secure processor for ARX-ciphers
can be designed and implemented. Our prototype can be programmed to execute arbitrary
ARX-algorithms while automatically providing security against timing and first-order side-
channel attacks. Finally, we present a novel automated procedure for protecting software im-



plementations of cryptographic algorithms on of the shelf microcontrollers against side-channel
attacks.
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Kurzfassung

Bewertung und Vermeidung von Seitenkanallecks unter besonderer
Betrachtung des multivariaten Falls.
Im heutigen Zeitalter des Internets der Dinge sind mehrere zehn Milliarden verbundene Geräte
über die Erde verteilt. Diese führen eine Unmenge verschiedener Funktionen aus: vom Schalten
von Lampen über das bargeldlose Bezahlen bis zur Steuerung von Kraftwerken. Viele dieser
Geräte arbeiten mit sensitiven Daten oder kontrollieren kritische Systeme und müssen deshalb
mittels kryptpographischer Protokolle geschützt werden. Moderne kryptograpische Algorith-
men, die in diesen Protokollen Verwendung finden, werden seit vielen Jahren von einer großen
Anzahl Experten untersucht und bieten exzellente Sicherheit gegen kryptoanalytische Angriffe.
Jedoch sind unzählige sicherheitskritische Geräte nicht länger in Rechenzentren hinter schweren
Türen versteckt, sondern potentiell physikalisch für Angreifer erreichbar. Zugriff auf diese Geräte
erlaubt die Beobachtung von unbeabsichtigten Informationslecks in Form von Seitenkanälen wie
dem Energieverbrauch oder elektromagnetischer Abstrahlung. Da diese Informationen von jenen
Daten, welche physikalisch von einem Gerät verarbeitet werden, abhängen, können Seitenka-
nalangriffe Geheimnisse extrahieren, ohne die kryptographischen Algorithmen selbst brechen
zu müssen. Die vorliegende Dissertation befasst sich mit dieser Bedrohung, indem Methoden
zur Beurteilung (Leakage Assessment) und Vermeidung (Masking) von Seitenkanallecks von
kryptograpischen Implementierungen entwickelt werden. Die Forschungsbeiträge können in drei
Teile gegliedert werden:

Im ersten Teil werden Methoden zur Beurteilung von Seitenkanalsignalen erörtert. Ein Mess-
system, welches das effiziente und schnelle Sammeln von Seitenkanalsignalen ermöglicht, wird
vorgestellt. Traditionelles Leakage Assessment nutzt diese Daten, um mittels statistischer Tests
wie dem Welch-Test zu entscheiden, ob der Seitenkanal von den vom Zielgerät verarbeiteten
Daten abhängt und somit potentiell für einen Angriff genutzt werden kann. Wir führen ein neu-
es, auf Konfidenzintervallen basiertes Assessment Modell ein, welches die vielen Probleme der
testbasierten Verfahren adressiert. Nachfolgend erweitern wir dieses Modell für das multivariate
Szenario, was die Beurteilung der Sicherheit gegen hochentwickelte Angriffe ermöglicht. Da die
Berechnungskomplexität exponentiell in der Ordnung des Angriffs ist, diskutieren wir mehrere
Verfahren zur Beschleunigung der Evaluation.

Der zweite Teil dieser Dissertation befasst sich mit dem Schutz von essentiellen Komponenten
kryptographischer Implementierungen gegen Seitenkanalangriffe. Zunächst entwickeln wir eine
effiziente Hardware-Architektur für einen wesentlichen Teil vieler gitterbasierter post-quanten-
sicherer Key Encapsulation Mechanismen: Einen für hohe Ordnungen maskierten Vergleich zwei-
er Polynome. Als zweites konzipieren und vergleichen wir mehrere maskierte Additonsschalt-
kreise. Diese spielen eine Schlüsselrolle bei vielen kryptographischen Implementierungen wie
ARX-Chiffren und bei mehreren post-quanten-sicheren Schemata. Durch den Einsatz beweis-
bar sicherer Bausteine erreichen wir hierbei Resistenz gegen beliebig gewählte Angriffsordnung.



Im dritten und letzten Teil dieser Arbeit werden neue Methoden zum Schutz komplexer,
integrierter Systeme entwickelt. Als erstes entwerfen und realisieren wir einen sicheren Prozes-
sor für ARX-Chiffren. Der entstandene Prototyp kann beliebige ARX-Algorithmen ausführen
und bietet intrinsischen Schutz gegen Timingangriffe und Seitenkanalangriffe erster Ordnung.
Schließlich stellen wir eine neue Methode zum automatisierten Schutz kryptographischer Algo-
rithmen auf industriellen Mikrokontrollern vor.

Schlagworte.
Kryptographie, Masking, Seitenkanalanalyse, Leakage Assessment, Eingebettete Sicherheit
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Chapter 1

Introduction

In this chapter we introduce the context of this thesis by providing the relevant back-
ground information regarding side-channel attacks. We summarize our research con-
tributions in this field and detail the structure of this thesis.

Contents of this Chapter

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Summary of Research Contributions and Outline . . . . . . . . . . . . . . 5

1.1 Motivation

In today’s Digital Age, computers became an essential backbone of our society. In the 1950s
and 60s, the first relay- and electron tube-based computers where displaced by faster and more
reliable transistor machines. Since then and continuing through today, all computers and more
generally all digital devices rely on transistors acting as digital switches on the physical level.

The development of the personal computer in the 1970s, the advent of the internet in the
1980s and 1990s and the modern smart phone in the 2000s continued the trend of increasing the
number of computing devices worldwide. Today, laptops, smartphones and tablets are among
the most obvious types of computers that most people interact with around the world. They
enable real-time communication across the whole globe and provide a plethora of other func-
tions like productivity assistance, entertainment, navigation or healthcare support to billions of
users worldwide. These devices are supported by massive data centers consisting of thousands
of servers that provide data storage, computation power and telecommunication to consumers
and businesses. Additionally, billions of smaller computers are deployed every year as embedded
devices, constituting central components of many modern products and systems such as TVs,
kitchen equipment, smart cards, cars, HVAC systems or industrial machines. Depending on
the concrete requirements of the respective application, such as performance, power consump-
tion and cost, these embedded devices are realized as microcontrollers, programmable hardware
such as Field Programmable Gate Arrays (FPGAs) or dedicated as dedicated Application Spe-
cific Integrated Circuits (ASICs). In recent years, the connectivity between embedded devices
increased dramatically, eventually forming the Internet of Things (IoT). In the IoT, devices
communicate directly between each other over the internet or an internet-like network without
the direct involvement of a human. Examples for the application of IoT devices include home
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Chapter 1 Introduction

automation products, wearable computers, smart traffic control, package tracking, health moni-
toring and industrial applications. In 2021, there were around 12.3 billion connected IoT devices
worldwide [iot21] while several tens of billions of additional unconnected computing devices are
shipped every year.

Many of today’s embedded and IoT devices operate with sensitive data - from personal infor-
mation in home automation systems to trade secrets in industrial environments. Additionally,
these devices are also used to control critical systems like security doors, traffic or parts of power
grids.

Therefore, the protection of the confidentiality and integrity of data processed by comput-
ing devices is essential. Cryptography provides an integral part in securing today’s digital
infrastructure by providing security primitives such as encryption, hash functions and signa-
ture schemes that can be used to construct security protocols allowing to achieve the desired
security goals. Today, the overwhelming majority of security primitives is very well studied and
considered to be secure by experts. While for many primitives, hard security proofs were not
yet found, their study is a continuing, open and international process which built trust in their
security over the past years. The potential attack surface on digital infrastructure is therefore
primarily found on the implementation level, i.e. the concrete realization of a security algorithm
in software and hardware, as well as on the integration level.

In this work, we focus on a subset of attack surfaces presented on the implementation level,
namely passive physical side-channel attacks. This type of attack aims to extract secret in-
formation from devices by exploiting the physical realization of security functions and more
fundamentally, the connection between information and its physical representation. The stor-
age of, as well as any operation on a bit of information is associated with a physical effect. For
example, in the early relay-based computers a binary information of 0 or 1 could be represented
by a closed or opened relay, while the change of a bit of information could be connected to the
opening or closing of that relay. In modern technology, such as Complementary Metal Oxide
Semiconductor (CMOS), a conducting or non-conducting set of transistors and a current flow
to the control inputs of these transistors can be associated with a bit of information and a
change of that information, respectively. Therefore, if such a physical effect could be measured
on cryptographically protected device, the related, potentially sensitive information could be
extracted without the need to break any cryptographic primitives. While the high integration
levels in modern technology nodes, combining millions to billions of transistors into a single
chip, severely limit direct access to single transistors, the aggregated signals are still accessible,
for example through the instantaneous power consumption or electromagnetic emanation of a
device. These signals can be collected and essentially viewed as an information channel (side
channel) available to an attacker in addition to the intended input and output channels of the
target device. Using statistical tools, an attacker can then combine the gathered information to
learn sensitive data processed by a device such as cryptographic keys, which can in turn be used
to completely break the security of the target system and potentially of connected systems. Due
to the pervasiveness of computers, especially embedded systems, and their increasing physical
accessibility, e.g., in the IoT context, this attack surface keeps growing and presents a serious
threat to many information technology systems.

In view of this severe threat of side-channel attacks towards information technological sys-
tems, researchers in academia and industry are developing side-channel countermeasures. These
countermeasures try to either lower the measurable side-channel information, increase unrelated
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noise in the signal or decouple the signal from the actual information that is being processed.
While several of the proposed countermeasures can be proven to be secure (sometimes in con-
straint models of the physical reality), their correct implementation in actual devices is not
trivial in most cases. For this reason, a side-channel assessment of security critical devices
which requires physical measurements of the side channel is often mandatory in practice. One
approach towards this assessment involves trying to apply every known attack on the target
device. As, however, the number of known attacks increases each year, alternative evaluation
methodologies such as TVLA were put forward. These methods aim to evaluate whether a mea-
surable side channel does or does not depend on the processed data and can therefore potentially
exclude entire classes of attacks.

More advanced (multivariate) attacks try to exploit the information that can be present
when combining side-channel leakage from multiple points in time during the computation of
the target device. As these attacks can potentially extract more information for the side-channel
leakage they need to be considered from the countermeasure as well as the leakage assessment
perspective.

1.2 Summary of Research Contributions and Outline

The research contributions in this thesis address problems in some of the fields introduced
above. Specifically, we describe new solutions for the assessment of side-channel leakage, de-
velop efficient protection approaches for cryptographic primitives and apply side-channel coun-
termeasures to integrated systems. Most of the contributions presented in this thesis have been
published in peer-reviewed conference proceedings or journals ([BSMG17, BPG18, BPW�19,
BPO�20, ABB�21], [BWSG], [BG22]). These publications are reflected in the chapters of this
thesis but are rearranged in some cases when this improves readability. Additional contributions
of the author in [SBO�15, RSBG20] are not part of this thesis as they were out of in scope.

While the research contributions in this thesis are all related to the field of passive side-channel
attacks, they can be sub-classified into three main areas. The first is related to improved meth-
ods to access the magnitude of leakage that is present in the implementation of cryptographic
algorithms in embedded devices. Here we do not focus on applying or developing attacks but
on determining the leakage level in a univariate and multivariate setting. In the second area we
develop new countermeasures for cryptographic primitives, specifically an secure comparison in
quantum computer resistant encryption schemes and modular addition. These countermeasures
can then be used as building blocks to secure more complex integrated systems. The final area
focuses on these systems and introduces a side-channel secure cryptographic hardware accelera-
tor for ARX-ciphers and a automated masking tool for software implementations on commercial
microcontrollers.

Evaluation of the Side-Channel Security of Cryptographic Implementations

In traditional TVLA, the collected side-channel information is typically used in statistical tests,
such as Welch’s t-test, in order to decide if the the side-channel is influenced by the data
processed by the target device and can therefore potentially be exploited.
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Chapter 3

In this chapter we introduce a new approach to TVLA that is based on confidence intervals.
We discuss the downsides of the previously dominant TVLA scheme and describe how the
application of confidence intervals can mitigate several severe ones. We portray a modern
side-channel acquisition system and show how it can be integrated with the confidence interval-
based approach to form an efficient evaluation framework. The work described in this chapter
was published at DATE 2017 [BPG18] and in it - Information Technology 2019 [BPW�19].
The majority of contributions in this publication were performed by the author of this thesis
except for the derivation of the confidence level for absolute differences, the proofs and the
implementation of the measurement and evaluation system.

Chapter 4

The evaluation methodology put forward in the previously described chapter allows practical
side-channel assessment in many cases. This univariate approach considers multiple points
in time where side-channel leakage occurs separately and can therefore produce fast results
without the need for excessive computational power. However, particularly in the context of
protected implementations, this univariate assessment can not always sufficiently capture the
relevant device leakage. This is especially problematic in software-based masking countermea-
sures where parts of secret values (shares) are processed at different points in time. To address
this gap, an extension to the multivariate setting is presented in this chapter. Because of the
high requirements regarding computational resources when analyzing the combined leakage of
multiple samples, we discuss several approaches to reduce this complexity and analyze their
impact on performance and validity of the evaluation results. The work described in this chap-
ter was accepted for publishing at IEEE Transactions of Computers [BWSG]. The majority of
contributions in this publication were performed by the author of this thesis.

Side-Channel Resistance for Cryptographic Primitives
As side-channel attacks represent an increasingly serious threat towards cryptographically pro-
tected devices, effective countermeasures are required. In this part of this thesis, we describe
how important components of cryptographic algorithms can be protected in software and in
hardware.

Chapter 5

Public-key cryptography classifies an important set of cryptographic algorithms that are used
in multiple applications. For example, they enable security functions like digital signatures
and encrypted email. Due to the potential threats of quantum computers towards the security
of conventional public-key cryptography, Post-Quantum Cryptography (PQC) algorithms were
and are being developed. These algorithms can (under certain mathematical assumptions)
withstand attacks from quantum computers. However, without dedicated protection, their
implementations can still be vulnerable to side-channel attacks. In this chapter, we propose
a masking scheme for an essential component of a class of lattice-based PQC algorithms –
a secure comparison – and discuss its implementation in software on a microcontroller. The
work described in this chapter was published at CHES 2020 [BPO�20]. The author of this
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thesis contributed the design of the proposed countermeasure the correctness proof, parts of the
security proof, the leakage evaluation and part of the performance evaluation.

Chapter 6

Modular addition is an important part of several cryptographic algorithms, such as ARX ciphers,
where additions are combined with boolean functions. As an addition lends itself to arithmetic
masking while boolean operations can naturally be protected with boolean masking, securing
such algorithms against side-channel attacks can be challenging. To address this issue, we study
three different designs for addition circuits and analyze their suitability for boolean masking.
We implement 32-bit variants of these designs using the TI masking scheme to achieve first-
order security and HPC2 gadgets for arbitrary security order against multivariate attacks. The
work described in this chapter was published at MDPI Applied Sciences [BG22]. The majority
of contributions were performed by the author of this thesis.

Side-Channel Resistance for Integrated Systems
While the previous chapters showed how essential parts of cryptographic functions can be pro-
tected against side-channel attacks, in this part of this thesis we describe how complete systems
can be designed to be resistant against side-channel attacks. To this end, we present a (hard-
ware) solution for protected accelerator design and a software approach to automated masking.

Chapter 7

In this chapter, we design and implement a complete (co-)processor that can execute ARX-based
cryptography. It realizes masking countermeasures that provide intrinsic resistance against
timing attacks and first-order side-channel attacks for ARX-ciphers. The main advantage of
this approach in comparison to traditional hardware implementations is the high flexibility,
allowing to change the set of implemented algorithms after finalizing the hardware design. The
work described in this chapter was published at CHES 2020 [BPO�20]. The author of this thesis
performed the majority of contributions in this publication except for the leakage evaluation.

Chapter 8

The correct and secure realization of side-channel countermeasures is a complicated and error-
prone task when implementing cryptographic functions on microcontrollers. A main reason for
this problem lies in the fact that side-channel hardening needs to be repeated for every new
cryptographic function a device should perform. Automatically applying countermeasures to
implementations can help reducing the required skill, time and other resources required in this
process. In this chapter, we develop an approach that can automatically generate side-channel
protected code from unprotected code. The work described in this chapter was published at
DATE 2021 [ABB�21]. The author of this thesis contributed the majority of the design of the
countermeasure proposed in this publication.
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Chapter 2

Physical Side-Channel Attacks on Cryptography
This section provides the background that is relevant to the research contributions
presented in the following parts of this thesis. It introduces passive side-channel
attacks, relevant countermeasures and explains the process of side-channel leakage
assessment. Additional background information that is primarily relevant in specific
chapters of this thesis is introduced in the respective chapter.

Contents of this Chapter

2.1 Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Side-Channel Leakage Assessment . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Side-Channel Attacks
Physical attacks impose serious threats towards all exposed hardware containing cryptographic
functions such as smart cards, hardware security modules or IoT devices. These attacks target
implementations of cryptographic algorithms and can corrupt the security of real-world sys-
tems [MS16] even if they rely on established ciphers such as AES, which are believed to be
secure against cryptanalytic attacks. This is possible by exploiting additional side-channel in-
formation such as power consumption [KJJ99a], electromagnetic emanation [GMO01], thermal
effects [HS13], timing behavior [Koc96], and acoustic [GST14] or photonic [SNK�12b] emissions,
which traditional cryptanalysts do not have access to. Simple and differential attacks [KJJ99b]
as well as their extensions and generalizations such as correlation [BCO04a], template [CRR03],
mutual information [GBT07] or algebraic attacks [BKP08] all rely on the dependency between
the data being processed by a device and the corresponding side-channel, allowing them to
extract the most critical secret – the cryptographic key – from the implementation.

In this thesis we focus on the subgroup of passive side-channel attacks that exploit power
consumption or electro-magnetic emanation generated by a device in order to reveal its se-
crets [KJJ99a, QS01]. We describe the two basic types of side-channel attacks, SPA and DPA,
as well CPA below.

2.1.1 Simple Power Analysis (SPA)
Simple Power Analysis [KJJ99b] directly exploits the fact that different operations performed
by a device and different data used by these operations influence the side-channel, e.g., power
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consumption of the device. We illustrate how SPA works using an example: In the RSA
decryption a simple square-and-multiply algorithm can be used for the exponentiation of the
message with the private key. This algorithm sequentially scans every bit of the key and only
performs a multiplication if the bit is equal to one. As the multiplication requires electrical
power which is not needed if no multiplication is performed, the power and electromagnetic side
channels directly depend on the secret key. In low-noise scenarios an SPA can be as simple as
visually looking at the side-channel trace and seeing the key in binary. Even if the noise level is
too high to break the implementation with a single trace, the target device can often be forced
to perform multiple operations on the same data, allowing to reduce the noise by averaging.

2.1.2 Differential Power Analysis (DPA)

While an SPA can extract sensitive information from only a single or a small amount of side-
channel traces, DPA [KJJ99b] generally requires several (from tens to millions) of traces for
an evaluation. The large number of processed traces often enables successful attacks, even the
dependency of the side channel from sensitive values is very small. In DPA, an attacker targets
a single bit of the ciphertext, which depends on a part of the key and other known values.
Then, several power measurements are collected during the encryption of multiple (unknown)
plaintexts by the target device. For every possible value of the relevant sub-key the power traces
are then assigned to two classes, depending on the targeted bit being either zero or one. If the
sub-key bit was guessed correctly, the difference of the mean traces resulting from averaging
each of the sets will contain a distinct peak, because the traces were grouped correctly in the
previous step. For all other (incorrectly) guessed key bits the grouping was random and thus
results in a net zero difference. This procedure can then be iterated over other key bits until
an exhaustive search for the remaining bits is feasible. A similar (higher-order) attack can be
performed by analyzing the variance differential instead of the mean differential. Similarly, a
multivariate attack can be performed by pre-processing the traces in order to combine multiple
samples and exploit their joint leakage.

2.1.3 Correlation Power Analysis (CPA)

Correlation Power Analysis (CPA) was proposed in [BCO04b] in order to alleviate some of the
shortcomings of DPA such as implicit restriction on a hamming weight leakage model and the
increased algorithmic noise due to only one bit being predicted at a time. The side-channel
trace acquisition part of a CPA is the same as for the DPA, i.e., several traces are collected
during the encryption of different inputs. In order to then perform the analysis, an intermediate
value of the algorithm is selected that depends on a part of the key and the ciphertext. For
every collected ciphertext and every possible value of the relevant part of the key, a hypothetical
value for the selected intermediate is computed. Then, depending on the device under test, a
leakage model is applied to these hypothetical intermediate value resulting in sets of hypothetical
leakage values. The leakage model is usually one of Hamming weight (number of bits set to one),
Hamming distance (Hamming weight of the bit-wise XOR between the current and previous
value) or the identity function. Finally, for every Point of Interest (POI) of the power traces and
every hypothesis for the relevant part of the key the correlation between the measured leakage
and the hypothetical leakage is calculated, resulting in one correlation coefficient for every key
hypothesis at every point of interest. If the attack was successful, the correct key candidate can
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be identified as the one producing the highest correlation with the measurements over all POIs.
Higher-order and multivariate attacks can be performed as in the DPA case.

2.2 Countermeasures

As the prevention of side-channel vulnerabilities is a critical part of a holistic security design,
a multitude of countermeasures have been developed. These can generally be grouped into two
classes: hiding [VMKS12] and masking [PR13, BNN�15b, RBN�15]. A combination of hiding
and masking countermeasures can also be implemented in order to achieve practical security
against higher-order attacks while keeping the overhead reasonable [MW15].

2.2.1 Hiding

The goal of hiding is to bury the information contained in the side-channel in noise. This is done
by decreasing the Signal to Noise Ratio (SNR) in order to prevent an attacker from exploiting
it. This can either be achieved by reducing the signal corresponding to the compromising
information or by artificially increasing the noise an evaluator has to face. Signal reduction
can be accomplished by using specialized logic styles like dual-rail pre-charge logic, e.g., Sense
Amplifier Based Logic (SABL) [TV04a] and Wave Dynamic Differential Logic (WDDL) [TV04b].
These approaches try to cancel the data-dependency of the (power) side-channel signature by
creating an inverted signal on-chip and thereby hiding the information from an external attacker.
While these methods can increase the resistance of a device against side-channel attacks, they are
not a perfect solution as manufacturing tolerances prevent constructing perfectly symmetrical
logic gates.

A different hiding approach reduces the information that is available to an adversary by
increasing the noise in the side-channel. This can be accomplished by randomizing the execu-
tion of cryptographic algorithms using random delays [CCD00], shuffling the order of opera-
tions [HOM06] or through dynamic reconfiguration of FPGAs [SMG17]. Additional noise can
also be introduced into the side-channel by analog circuits on the die. Possible measures in this
category include noise generators or artificial clock jitter. The pairing of other simultaneously
active non-crypto cores, e.g., processors or peripherals, on the same die can also be considered a
hiding countermeasure as this increases the overall noise an adversary needs to overcome when
performing an attack.

All hiding countermeasures have in common, that they can be defeated by increasing the
number of acquired measurements (e.g. power traces) of a side channel of the target device
during operation. With enough traces, uncorrelated noise will average to zero when an attacker
is trying to estimate the side-channel.

2.2.2 Masking

While hiding covers the relationship between the processed (sensitive) data and the side-channel
in noise, masking countermeasures try to break the relation between sensitive data and processed
values. This is achieved by splitting the intermediate values of an algorithm into (random)
shares and processing them separately, thus forcing an adversary to collect information about
all shares to reconstruct the secret. Masking schemes can be designed to provide protection
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against attacks up to d-th order, i.e., asserting independence between any subset of up to d
shares of intermediate values. While this directly implies resistance against an attacker with
the capability to probe up to d wires in the circuit, the authors of [BDF�17] show that this
d-probing security also results in a design that is secure in the more practical bounded moments
leakage model, that we also focus on in this thesis. In this model masking countermeasures are
able to disconnect sensitive values from some statistical moments of the side-channel leakage
distribution. Therefore, in a first-order masking scheme there should be no relation between
the sensitive values and the mean of the leakage distribution, while a second-order masking
scheme must additionally remove the relation to the variance of the leakage. Note that, while
higher-order attacks can defeat masking schemes that only protect against low-order attacks,
the measurement complexity increases exponentially in the protection order [CJRR99].

To provide this level of security, masking schemes rely on certain assumptions. If these as-
sumptions are violated, the level of security can be severely decreased. Therefore, it is important
to implement a masked algorithm with particular care. Notably, glitches, which are temporary
faulty states, are a problem for masked hardware circuits and render a straight-forward imple-
mentation of a masking scheme insecure [MPO05].

2.2.3 Threshold Implementation (TI)

A commonly used concept to achieve secure masking in the presence of glitches is TI. It
provides provably first- and higher-order security for arbitrary functions and can be very ef-
ficient depending on the masked algorithm. Therefore, it has been (statically) applied to a
wide variety of ciphers (e.g., [PMK�11, CBR�15, BDN�13]). In the following, we only briefly
introduce the general concept of TI and refer the interested reader to the original publica-
tions [BNN�15a, RBN�15] for a more detailed description of the masking scheme.
A Threshold Implementation (TI) is a Boolean masking scheme, i.e., a sensitive value x is split
into shares xi such that x � Àxi. The number of input (din) and output (dout) shares of a
function following the TI notion depends on the masking order and the algebraic degree of the
function. However, we will mainly focus on the first-order secure variant here, where din ¡ d and
dout ¡ d. While higher-order TI instantiations are possible [BGN�14], their security is limited
to univariate attacks in practice[Rep15]. In order to correctly instantiate a threshold implemen-
tation, three properties have to be fulfilled. The non-completeness property requires any subset
of output shares smaller than d to be independent of at least one input share. The correctness
property guarantees that the output of a shared function can be unmasked yielding the result
an unprotected realization of the function would produce, i.e.,

À
f
px1,...,xdin q
shared � funsharedpxq.

Finally, uniformity requires each possible output sharing to be equally likely when the input
sharing is drawn from a uniform distribution. Note, that this last property is usually the hard-
est to fulfill and frequently requires the addition of fresh randomness. As with most masking
schemes, linear functions (e.g. XOR) are trivially shared by applying the unshared function to
all input shares independently, while non-linear functions (e.g. AND) are more difficult to share
correctly. To ensure the resistance of TI against leakage through glitches, registers have to be
placed between components when composing larger circuits from multiple functions.
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2.2.4 Domain-Oriented Masking (DOM)

Another well-known approach to secure masking is DOM [GMK16a], a scheme that achieves d-
th order security using the optimal solution of d�1 shares. In DOM every sensitive intermediate
value is split into d � 1 shares, which are assigned to d � 1 domains. Then, all operations on
these shares are implemented in a shared way in order to achieve independence between shares
of each domain from shares of all other domains. This is trivial for linear operations as they
can be composed from shares of one domain only. Non-linear functions are secured by adding
fresh randomness and using registers to prevent the propagation of glitches through the circuit.
This can result in smaller circuits compared to other well-established masking schemes such
as TI due to a reduced number of shares. However, latency and randomness requirements are
increased.

2.2.5 Probe-Isolating Non-Interference and Hardware Private Circuits

Several attack models have been developed in order to abstract the observation of side-channels
in a meaningful way and allow the construction of masking schemes that are provably secure
in the respective model. The probing model, formalized in [ISW03], generally requires any
set of values that can be accessed by up to d probes in a circuit to be independent of the
sensitive variables. As this property is insufficient to guarantee the security of a composition of
gadgets, which are themselves secure in this model [CPRR13], the more restrictive notions of
Non-Interference (NI) and Strong Non-Interference (SNI) [BBD�16] were introduced. In order
to satisfy NI, a set of t ¤ d probes on a gadget needs to be simulatable using at most t shares
of each input. For SNI-secure gadgets, every set of tint internal probes and tout probes on the
gadget output, where tout � tout ¤ d, can be simulated using only tint shares of each input.
While the authors of [BBD�16] showed that gadgets can be securely composed using NI or SNI
gadgets, the area and randomness costs are typically high because refresh gadgets are needed to
allow composition. The Probe Isolating Non-Interference (PINI) notion proposed in [CS20] aims
to solve this problem by developing a model which allows trivial composition with reasonable
cost. For a PINI-secure gadget, the simulatability is constraint by the share index a probe is
associated with. The resulting model allows trivial realizations of linear functions as with TI.

Following this notion, the authors of [CGLS20] proposed several hardware realizations of
PINI-secure gadgets. The HPC2 AND gadget (which we use in this 6) provides dth-order
security using d� 1 input and output shares. It has an asymmetric latency with respect to the
two input arguments, where the first argument influences the output after one cycle and the
second after two cycles. The required fresh randomness per gadget amounts to d � pd�1q{2 bits.

2.3 Side-Channel Leakage Assessment

In order to evaluate the vulnerability of sensitive devices and assess if implemented countermea-
sures are effective different strategies have been developed. Besides applying as many attacks
as possible against the target TVLA has proven very useful in this context.
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2.3.1 TVLA using Welch’s t-Test

Statistical hypothesis tests provide a method to test if observations or parameters of samples
drawn from distributions deviate from a null hypothesis with a given significance level of α.
For example, the fundamental question whether two sets of data are significantly different from
each other is often answered using Welch’s t-test. For this, the test statistics follows a Student’s
t distribution and provides a quantitative value that the mean values of both sets are different.
Formulating this as the null hypothesis H0 : µ1 � µ2, a t-test provides a probability on whether
the samples in both sets could have been drawn from the same population, i.e., indicating that
both sets are not distinguishable by the test.

Hence, given two data sets Q1 and Q2 of cardinalities n1 and n2 and their sample means
x̄1 and x̄2 and sample variances s2

1 and s2
2, the t statistic with associated degrees of freedom is

computed as:

t � x̄1 � x̄2b
s2

1
n1
� s2

2
n2
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�
s2

1
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2
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	2

1
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�
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1
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� 1

n2�1

�
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2
n2

	2

Then, assuming the null hypothesis to be true, the p-value indicates the probability of ob-
serving a difference of means as large as or larger than the one that was observed. It can
be calculated as p � 2p1 � CDFtp|t|, νqq, where CDFt is the cumulative density function of
the Student’s t-distribution. In general, larger t values indicate low probabilities for the null
hypothesis to be valid and hence give evidence to conclude that both sets Q1 and Q2 are distin-
guishable and drawn from different distributions. For the sake of simplicity, assuming a sample
size n1�n2 ¡ 1000, a fixed threshold of |t| ¡ 4.5 is often considered to reject the null hypothesis
with high confidence, as this corresponds to a probability of p   10�5 for wrong rejection of
the null hypothesis (type-I or α-error). Note that statistical tests by themselves do not provide
a bound for the probability of an error made when wrongly not rejecting the null hypothesis
(type-II error or β-error). The probability of this error, defined as β � Ppreject H0|H0q, is
directly related to the power of a test, denoted as 1� β.

The relative simplicity and generic nature of Welch’s t-test led to its common use in TVLA.
For the first-order, univariate case TVLA has been developed in the seminal paper of Goodwill
et al. [GJJR11]. Here, two leakage assessment methodologies, commonly referred to as specific
and non-specific t-tests, are proposed for leakage detection at different statistical orders.

In particular, the non-specific test enjoys great popularity due to its simplicity and high level
of abstraction. The main advantage of this test procedure is its independence of the underlying
physical architecture and other implementation details. Given a Device Under Test (DUT)
with fixed secret, two different sets of observations are acquired, only classified by fixed or
random inputs to the evaluated implementation. Then, using Welch’s t-test, rejection of the
null hypothesis is attempted with respect to distinguishing both sets. However, due to its
abstract nature, rejection of the null hypothesis may confirm detectable leakage but does not
give any evidence on successful attacks and their complexities. As a consequence, non-specific
TVLA can be used to confirm presence of observable leakage in particular, but does not allow
to draw any conclusion about successful attacks in general. In a specific t-test the sets are
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separated regarding a chosen intermediate value that is expected to be sensitive in an attack
scenario.

In [SM15] the authors extended the basic TVLA approach to higher statistical orders as well
as the multivariate case. Additionally, they proposed algorithms for the efficient calculation of
the required statistical moments of the leakage (e.g. mean, variance and kurtosis) allowing a
single-pass computation. A TVLA approach relying on the χ2-test was proposed in [MRSS18]
which shows improved detection performance in some cases when compared to the t-test.

2.3.2 Confidence Intervals
As a tool of inferential statistics, confidence intervals can be used to estimate parameters of
sampled distributions, often their mean. A confidence interval can be constructed around the
parameter providing a region containing the true parameter of the distribution with a given
probability or confidence level of 1� α. Naturally, any given confidence interval either does or
does not contain the parameter it estimates, i.e., the probability of it containing the parameter
is either one or zero. Therefore the confidence level indicates the probability of constructing a
confidence interval containing the parameter for a given (unknown) distribution.

Statistical tests and confidence intervals are dual in the following sense: A confidence interval
C1�α � rγmin, γmaxs that is constructed with a confidence level of 1�α for a parameter γ contains
exactly all points for which a hypothesis test using the same samples of the distribution with
the corresponding significance level α would not reject the null hypothesis. Confidence intervals
can also be constructed for differences of parameters of two distributions, which will be used
in the remainder of this thesis. Note that in contrast to statistical tests, there is only one type
of error possible for confidence intervals: The interval either does or does not contain the true
parameter. The concrete choice of the significance level α is up to the user applying the method
and depends on the field of application. Common values for α are 0.01, 0.05, or 0.1, where
smaller values require a larger sample size in order to limit the size of the confidence interval
to a useful range. In the remainder of this thesis we will use a significance level of 0.01 unless
noted otherwise. As we will show in chapter 3, confidence interval can be used to eliminate
some problems related to test-based TVLA.
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Chapter 3

Confident Leakage Assessment

In this chapter we propose a new side-channel assessment framework that combines
an efficient data acquisition process with an evaluation methodology based on con-
fidence intervals which extends established t-test-based approaches for TVLA. In
comparison to previous TVLA approaches the new methodology does not only enable
the detection of leakage but can also assert its absence. The framework is robust
against noise in the evaluation system and thereby avoids false negatives. These im-
provements can be achieved without overhead in measurement complexity and with
a minimum of additional computational costs compared to previous approaches. We
illustrate the steps in the evaluation process by applying them to a protected imple-
mentation of AES.
The work described in this chapter was published at DATE 2017 [BPG18] and in it
- Information Technology 2019 [BPW�19].
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3.1 Introduction
TVLA methods are frequently used to validate the effectiveness of countermeasures in crypto-
graphic devices. These methods avoid the very costly application of many known attacks and
rather use generic approaches to provide statements about physical security. In (moments-
based) TVLA, the relevant side-channel, e.g., power consumption, is measured under dif-
ferent inputs, yielding side-channel traces. Then the evaluation procedure tries to decide
whether the statistical moments of these traces are distinguishable. A widely adopted scheme
(e.g. [GJJR11, SM15]) is based on Welch’s t-test that decides if the mean values of two random
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variables are different using the t-statistic. It should be noted that TVLA can not assert a
device’s security in all cases. It may fail if the noise present in a device is too low [Sta18].

Motivation A main feature of leakage detection schemes is their ability to assure the presence
of leakage in a cryptographic computation with a given confidence 1�α. This is possible because
hypothesis tests, such as the often-used Welsh’s t-test, are designed to limit the error-probability
for false-positive results (α-error) – in the case of side-channel analysis this would correspond to
detected leakage – to an arbitrary level α. The downside of this approach is missing assurance
about the error-probability for false-negative results (β-error). Therefore, these methods cannot
support the statement: ”No leakage is present”. In consequence, a t-test-based SCA evaluation
is not guaranteed to find existing leakage in a device. A negative result merely proves the
inability of the test to find leakage, independent of its actual presence.

This issue is strongly related to the dependence of the t-test’s result on the sample size. As
the (Welch’s) t-statistic is computed as

t � sx� syb
sx

2

nx
� sy

2

ny

9?n ,

given a positive absolute difference in the sample means, the test statistic will increase as the
sample size increases and the sample means converge to the means of the underlying distribu-
tions. If the difference in means is small and/or the the variances are high, a very large n is
required to detect leakage. Therefore, an insecure implementation might be evaluated as secure
if the sample size is insufficient.

If a fixed threshold (e.g. [GJJR11, SM15]) is used, current TVLA methods fail to account for
the number of sample points in the measurements. When measuring the leakage of a device, a
trace with more sample points will generally have a higher maximal t-value than a trace with
less horizontal resolution. This problem was identified by the authors of [ZDD�17].

Contribution We develop a new framework for TVLA based on confidence intervals. This
solves two related problems with hypothesis test approaches:

■ It allows the establishment of an upper bound for leakage that is robust against noisy
evaluation systems. This allows statements about an implementations security even if a
t-test can not identity leakage.

■ It provides natural cut-off values for the number of measurements required in order to
assert or reject security claims about cryptographic implementations. By choosing an
allowable leakage level, measurements can be stopped when either the maximum lower
limit or the maximum upper limit crosses that threshold.

We also solve the problem of sample-point dependence by applying the Šidák correction to
confidence intervals. We demonstrate the overall workflow including hardware and software
interaction for a time efficient acquisition of power measurements and exemplify the process
and its parameters with an evaluation of an implementation with countermeasures. Finally, we
name possible pitfalls when assessing a device within the proposed framework.
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3.2 Confidence-Interval-based Leakage Detection

In the following section we will introduce a new method to detect the presence of leakage based
on confidence intervals as well as discuss some improvements of our basic methodology. To clarify
formalisms the following paragraph introduces the notation used throughout the chapter.

Notation Uppercase letters (X) denote random variables, whereas lowercase letters (x) denote
their realization through a random sample. Sample sizes are denoted by n, where a subscript
denotes the affiliated random variable when necessary. Arithmetic means (as random variable
as well as realization) are denoted with sX, sx resp. . The sample variance (again in both nota-
tions) is denoted with S2

X , the sample standard deviation with SX . Parameters of a normally
distributed random variable are µ and σ, subscripts denoting the affiliated random variable.
As for the normal distribution we have µX � EpXq and σ2

X � EppX � EpXqq2q � V arpXq
and use this denotations interchangeably as well as µ and σ2 for higher moments (normal and
centralized with even order) with the respective subscript. A 1�α quantile of the t-distribution
is denoted by t1�α. If the degree of freedom is relevant or unclear from context, it is added as
a subscript.

3.2.1 From Statistical Tests to Confidence Intervals

In t-test TVLA, the comparison with a fixed number (e.g. the common 4.5) relates to the
comparison of the computed t-value from the evaluation to a quantile of the t-distribution (hence
the name t-test) for a significance level α. The significance level α states the probability that
although the null-hypothesis (there is no leakage) is true, the evaluator accepts the alternative
hypothesis (there is leakage) - and thus makes a mistake. This mistake can be controlled
through choice of α and accordingly the corresponding quantile of the t-distribution. Therefore,
a smaller α corresponds to a higher confidence when accepting the alternative hypothesis (there
is leakage). It does not, however, yield any confidence for accepting the null-hypothesis (there
is no leakage). The probability of making a mistake when deciding for the null-hypothesis, i.e.
when instead the alternative hypothesis is true, the so called β-error, can not be determined a
priori.

A standard method known in statistics to cope with the problems that arise when using
hypothesis tests is the introduction of confidence intervals. They are constructed in a similar
way but their significance level can be determined without assuming the null-hypothesis to
hold. Confidence intervals are usually constructed symmetrically around a good estimator of
the investigated parameter. Given a random sample and a desired confidence, the following
statement holds: With a probability of said confidence the process to construct a confidence
interval yields an interval that contains the unknown parameter.

We are now interested in a confidence interval for the absolute difference of means of two
random samples of power consumption stemming from an implementation of a cryptographic
primitive under different inputs. To that end, given samples of the random variables X and Y ,
two confidence intervals for the difference of means sX � sY and sY � sX are constructed for a
given confidence. These are then combined to the required interval for

�� sX � sY ��. As we are now
combining two statistical and thus probabilistic statements, the confidence for the final interval
differs from its predecessors, namely the actual error αt varies between rα; 2αs, where 2α is the
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original error. Turning this procedure around, we devised the following framework to compute
a confidence interval with a given confidence 1� αt for the absolute difference of means on the
basis of given random samples:

(1) Choose a confidence level 1� αt.

(2) Draw samples from both random variables X and Y .

(3) Compute rtX,Y � X̄�Ȳ
rsn

with rsn �
b

s2
X

nX
� s2

Y
nY

(4) Interpolate α P �αt
2 , αt

�
and compute a lower and upper bound ∆min, ∆max:

a) |rtX,Y | ¤ t1�αt :

αt � α� T p�2|rtX,Y | � t1�αq
∆min � 0
∆max � rsnp|rtX,Y | � t1�αq

b) |rtX,Y | ¡ t1�αt :

αt � 2α� T p2rtX,Y � t1�αq � T p2rtX,Y � t1�αq
∆min � rsn

�|rtX,Y | � t1�α

�
∆max � rsn

�|rtX,Y | � t1�α

�
If the random samples are drawn identically and independently distributed from X (Y resp.),

the construction of I � r∆min, ∆maxs yields with probability 1 � αt an interval that contains
|µX � µY |.

Theorem 1. Let X � N pµX , σXq and Y � N pµY , σY q be normally distributed random variables
with all their parameters unknown. Then |µX � µY | P r∆min, ∆maxs with confidence of 1� αt,
where ∆min and ∆max are computed as above.

Proof. For brevity we will only sketch the proof here.
The proof works in three steps. First, the intervals containing the absolute difference are
determined. Second, the probability for those intervals is determined. Third, the turnaround
to yield a framework needs to be verified.
Let X,Y be distributed as in the theorem and Xi

iid� X and Yi
iid� Y two random samples of size

nX and nY of X and Y . From basic statistics we then know that

TX,Y �
�
X̄ � Ȳ

�� pµX � µY qb
S2

X
nX
� S2

Y
nY

approx.� tν (3.1)

with
ν �

�
s2

X
nX
� s2

Y
nY

	2

1
nX�1

�
s2

X
nX

�2
� 1

nY �1

�
s2

Y
nY

�2
nX�nY� nX � 1 (3.2)
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the estimated degree of freedom from the sample. Standard algebraic techniques then yield a
confidence interval for µX � µY for a given confidence 1� 2α:

P
�

µX � µY P
� �

X̄ � Ȳ
�� tν,1�α � rSn;�

X̄ � Ȳ
�� tν,1�α � rSn

�	
� 1� 2α

where rSn �
b

S2
X

nX
� S2

Y
nY

for brevity. Repeating that calculation for µY � µX , we receive the
mirrored confidence interval with the same confidence. As we are only interested in the distance
between means and not its direction, we can now combine these intervals to one, which yields
after some algebra and case-by-case analysis:

I �
�
0; rSn

���rtX,Y

��� t1�α

��
if
��rtX,Y

�� ¤ t1�α

I �
�rSn

���rtX,Y

��� t1�α

�
; rSn

���rtX,Y

��� t1�α

��
else

This concludes step one.
The second step investigates what confidence those intervals carry. It is clear, that this confi-
dence should vary between 1 � 2α and 1 � α, as it should at least have the confidence of one
single directed confidence interval and might have, at best, half that error probability (this only
exactly occurs when

��rtX,Y

�� � t1�α). Using probability theory, one obtains

αt � α� T p�2|rtX,Y | � t1�αq if
��rtX,Y

�� ¤ t1�α

αt � 2α� T p2rtX,Y � t1�αq � T p2rtX,Y � t1�αq else

Finally, to be able to distinct cases only with the knowledge of t1�αt and not t1�α, we show
that

��rtX,Y

�� ¡ t1�α if α P �αt
2 ; αt

�
, completing the proof.

Relaxation of assumptions As introduced above, the statistics hold for normally distributed
random variables. However, in the case of power consumption the distribution is not clear.
Nevertheless, it is not per se necessary for the distribution of X and Y to follow the normal
distribution but for their arithmetic means sX and sY . Fortunately, due to the central limit
theorem, as soon as the sample size n increases, the arithmetic mean of random variables
with arbitrary (but still iid.) distribution follows a normal distribution [Rüg02]. Furthermore,
the condition of independence is not a strict one. A small level of dependence in drawing
the random samples (as is to be expected when using the same device for the measurement
process) is tolerable (if n is big enough) as it does not influence the distribution of the respective
arithmetic means. This results in the applicability of our approach for the given task at hand.

Comparison with t-Test Method The resulting confidence interval subsumes the t-test’s re-
sult. If the confidence interval has a positive lower bound (and is computed with the same
significance level as the t-tests), this will be equivalent to the t-test asserting that there is some
leakage. At the same time, the confidence interval does also contain information about the
magnitude of the leakage. The closer the lower bound is to zero, the tighter the decision to-
wards leakage detection has been. If the lower bound is zero, this will be equivalent to the t-test
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failing to demonstrate any leakage. In addition to making both decisions statistically valid, the
confidence interval method bounds the maximal difference between the means of both power
consumptions (with a significance level). That is, it is possible to make a statement of the form:
With a confidence of 1�αt, both means do not differ more than the value of the upper bound.

Influence of parameters There are two ways of looking at this method’s parameters. First,
to interpret the results (e.g. length of the confidence interval) and second, for the evaluator to
construct the sample in a way that some properties are satisfied in the end.

■ For a given confidence level, the length of a confidence interval is initially influenced by
two factors: Deviation and sample size. Obviously, they work in opposite directions. A
higher sample size will lead to a smaller confidence interval and a higher deviation will
lead to a larger confidence interval. Additionally, the interval’s length is also influenced
by the position of rtX,Y in relation to t1�αt . This stems from the fact, that the computed
α from the above framework is closer to αt if rtX,Y is close to t1�αt - thus resulting in a
smaller confidence interval. If rtX,Y is closer to zero or its absolute value is large, α will
converge to αt

2 and thus, the confidence interval will turn out to be relatively larger.

■ For a given sample (and thus fixed sample size and deviation) the length of a confidence
interval is bigger, if the confidence level 1�αt is higher (or the probability of error smaller).

If the evaluator wants to keep the length of the confidence interval in a certain range and also
wants his confidence to fulfill some requirements, he needs to specify his sample size accordingly
and, additionally, needs to keep his deviation as small as possible, i.e., reduce measurement
noise. This is in contrast to t-test-based evaluation, where an unsuitable measurement system
may indicate a false sense of security by producing low t-test results or requiring a high sample
size.

3.2.2 Family-wise Error Rate Correction
Up until now, we only considered one timepoint j at a time. For each of those timepoints the
introduced procedure yields an intervall r∆min,j , ∆max,js that contains the expected difference
of means with significance level of α.

However, to evaluate an implementation in terms of leakage, we are not only interested in
every single point but in a statement of the form: With significance level α the difference of
means (expected values) is contained in its respective interval at every time point.

Generally speaking, if we have m timepoints of interest to us each with their respective
interval Ij � r∆min,j , ∆max,js and a significance level αt,j , the statement

@j P t1, ..., mu : |µX � µY | P r∆min,j , ∆max,js (3.3)

holds (under the assumption of independence) with significance level αtotal � 1�±m
j�1 p1� αt,jq.

But this results in three problems: First, we can not simply assume independence. Second,
αtotal is obviously highly dependent on m which should not be the case (that would build an
incentive for an evaluator to test less timepoints to get a better confidence level). Third, if we
assume sensible significance levels, αtotal converges to 1 very fast.

To adress the second and third problem, we propose the usage of Šidák correction[Sid67].
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(1) Choose total confidence level 1� αtotal

(2) Compute 1� αt � m
?

1� αtotal

(3) Execute the above procedure with 1�αt as confidence level for every time point 1 ¤ j ¤ m.

This method yields confidence intervals Ij for every time point, such that statement 3.3 holds
with confidence 1 � αtotal. This solves problems two and three to the extent that it shifts the
problem towards the length of the confidence intervals. In this setting it is possible for the
evaluator to set a confidence at which he wants to evaluate the given implementation which is
then by design neither close to 1 nor dependent on m. Obviously, a large m constrains αt to
be rather small and thus the confidence intervals to be larger. Still, the resulting confidence
intervals contain useful information (instead of an αtotal that converges to 1) and as the size of
t1�αt , which is relevant to the confidence intervals’ size, is highly affected by the sample size n,
i.e. how many traces an evaluator uses, it is possible to counter large values of m with large
values of n.

Problem 1, independence, is both more critical and less at the same time. On the one hand,
it is unclear what kind of dependence exits and how it was to be measured if one wanted to
include it in an evaluation. The authors of [WO19] note that this approach only produces
conservative results if there is no dependence between the analyzed parameters at different
points. We therefore propose to use the Bonferroni correction procedure which does not rely
on this assumption. Here, the per-point confidence is computed as 1� αpp � 1� α

m1 .
All Family-Wise Error Rate (FWER) correction procedures reduce the statistical power of the
analysis by reducing the accepted (type-I) error rate for each point. For statistical tests, e.g.,
Welch’s t-test this results in increased type-II error rate which leads to potentially undiscovered
leakage in the context of TVLA. When confidence intervals are used, increased per-point
confidence produces larger intervals. While the Bonferroni correction does reduce the statistical
power of the analysis when compared the Šidák correction, the loss is small in practically relevant
cases1 and outweighed by the strict FWER control in case of dependencies.

3.2.3 Higher-Order Moments

Our confidence interval based approach for leakage assessment can be extended to provide limits
for higher-order leakage using methods analogous to the ones described in previous TVLA-
schemes [GJJR11], [SM15]. There, the authors reduce the task of detecting higher-order leakage
to the problem of detecting first-order leakage in pre-processed traces. First, the acquired traces
are pre-processed, combining samples with an appropriate function. The result is then evaluated
with the same metric as in the first-order case. For example, second-order univariate leakage
is analyzed using mean-free, squared traces, yielding bounds for the difference of the traces’
variance. In general, while the first-order confidence interval yields bounds for the difference of
means of the signals, the higher order test can provide bounds for the difference of the higher-
order moments. For statistical moments µd for d ¡ 2, the authors of [SM15] construct a t-test
based on standardized moments. We deviate from this approach by using centralized moments

1For example, given α ¤ 0.05, m ¥ 5, d ¥ 2: p1�αq
1

m1

1�α{m1
¡ 0.99992.
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instead, allowing the analysis of the SNR if required. For d ¡ 1, the means µd used to calculate
the dth-order confidence interval are given as the dth central moments of the signals:

µd � 1
n

¸
px� µqd. (3.4)

The variance used to estimate the dth-order confidence interval can then be computed based
on the central moments:

s2
d �

1
n

¸�
px� µqd � µd

	2

� 1
n

¸�
px� µq2d � 2px� µqdµd � µ2

d

	
� µ2d � µd. (3.5)

The confidence intervals can then be constructed according to Sect. 3.2.1.
If the evaluator has access to the masks, the traces can be pre-processed by averaging before

calculating the higher-order moments, in order to reduce the measurement noise as suggested in
[ZDD�17]. This will in general result in reduced measurement complexity. However, for SNR
calculation, the variance over all randomly chosen masks should be used as this is the noise an
attacker has to face.

3.2.4 Efficient Implementation
In order to compute confidence intervals for moments up to order d an evaluator needs to
estimate the mean values and the central moments µi for 1   i   2d of the signals. This can be
achieved by fast iterative methods described in [SM15] or using histograms as demonstrated in
[RGV17]. The actual source of the traces is independent of our framework: it is applicable to
non-specific fixed-versus-random or fixed-vs-fixed measurements, as well as analysis regarding
specific intermediate values. The confidence interval can then be computed in regular intervals,
e.g., after each 1000 measurements. As the calculations are independent for each sample point,
they can easily be parallelized.

3.3 Side-Channel Evaluation Workflow
All aforementioned statistical methods used in side-channel attacks and evaluation settings
have in common that they require the acquisition of a large number of measurements of the
power consumption of the targeted device during its operation. A measurement setup capable
of acquiring the side channel traces within reasonable time is therefore crucial in performing
attacks and assessments.

For a setup with the purpose of evaluating hardware implementations, the SAKURA-G eval-
uation board [SAK], specifically designed for power trace acquisition has been used throughout
the literature (e.g. in [CBG�16, SM15, MOBW13]). The board features two Xilinx Spartan 6
FPGAs, one of which is programmed with the design under test (target).

Since the only communication channel between the SAKURA-G and the measurement com-
puter (host) is via a slow serial link, the second FPGA (control) is commonly used to generate
the inputs to the target. The actual acquisition of the current consumption of the target is
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Figure 3.1: Measurement setup

achieved by measuring the voltage drop at a small resistor in the its supply line with an os-
cilloscope. As charging an output pin of the FPGA to trigger the oscilloscope’s measurement
significantly increases the chips power consumption, this should be done on the control FPGA
to prevent any influence on the measurement of the power usage of the target.

To be able to have the target design run at different clock speeds its clock should also be
generated by the control FPGA. For synchronization with the internal clock of the oscilloscope
this clock can also be forwarded to the oscilloscope. This general setup is depicted in Fig. 3.1.

To reduce the amount of data transferred over the serial link between host and control,
following [SM15] a setup should feature seedable RNG on the control FPGA to generate random
input data and random masks, and to randomly decide whether a trace with fixed or random
data should be collected.

This setup enables the use of so-called sequence or block mode of most oscilloscopes, in which
a fixed number of identical traces are captured successively with only short time in between
trigger signals. These traces are usually buffered in the internal memory of the oscilloscope.
The acquired power traces are transferred to the host as a batch after all measurements in a
block have finished. Depending on the duration of the operation to be analyzed and the amount
of the scope’s memory this enables to capture thousands of traces without any data exchanged
between the board, the computer and the oscilloscope.

Communication from host to control FPGA is therefore limited to seeding the RNG and some
initial configuration. Additionally, after each block of measurements has been collected, a hash
over all the (unmasked) ciphertext generated by the target FPGA is sent back to the host.

Since all operations of the control and target FPGA only depend on the RNG’s seeds and
thus they can be performed identically on the host, the expected output should be hashed and
compared against a hash of the target’s outputs generated on the control FPGA. Thus, correct
operation of the target design during the acquisition phase is confirmed at regular intervals.

Since most communication during measurements is between the two FPGAs, an efficient
design should feature a fast communication channel, e.g. a bidirectional parallel interface or a
high speed serial link, between them.
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As the target FPGA is fully controlled (clock, reset, data) by the control FPGA, the latter
can reset the target, issue the trigger signal to the oscilloscope and start the target’s operation
after some constant time. After each operation, the control FGPA reads the target’s result
and puts the target back into reset state. The result is iteratively hashed to ensure correct
operation, and the next measurement is started. The sequence of steps during a measurement
is shown in Fig. 3.2.

Throughout the remainder of this chapter we will repeatedly refer to an example implemen-
tation to illustrate key points of the assessment process more clearly. We chose a 128-bit AES
engine protected with a domain-oriented masking scheme [GMK16a] for several reasons: It is
a masking-protected core of a very well-known cipher, it does exhibit (small) leakage in our
assessment and the design is available online [Gro16a]. The implementation allows arbitrary
protection order by setting a VHDL-generic accordingly and uses d�1 shares in order to achieve
d-order security as described in Section 2.2.2. For our evaluation, we chose the first-order secure
variant of the design. We synthesized the interleaved variant with 5-stage S-boxes on our FPGA
platform. The bitstream was generated using Xilinx ISE 14.7 with the options keep hierarchy
on and register duplication off, in order to prevent interference with the masking counter-
measure. If the synthesis tool supports register retiming, it must be disabled as the position of
registers is critical for the security of masked implementations.

For the confidence intervals and t-test evaluations we assume a significance level α of 0.01,
unless stated otherwise.

3.3.1 Measurement Parameters

As flawed measurements might give an assessor the false impression of a secure implementation,
care has to be taken to select appropriate parameters and to reduce noise within the system.

Input Range A first step in this process is to ensure that the full input range of the oscilloscope
is used. While most oscilloscopes feature different settings for their input ranges and the target
FPGA’s power signal is already amplified on the SAKURA-G, we found that especially for
smaller designs consuming less current – such as a single protected s-box –, an additional
Variable-Gain Amplifier (VGA) is necessary. Otherwise, the measured samples only yield a few
bits of information, and show immense quantization noise. If the oscilloscope’s analog front-end
features a VGA it can be used instead. Note that while an additional amplifier enables the
use of the full vertical resolution of the oscilloscope, it may also affects the measurement as it
effectively functions as a bandpass filter, as it has been shown in [MM13].

Bandwidth While the bandwidth of single switching cells on the FPGA is typically in the
GHz range, capacitances on the chip’s die, its bonding wires and traces on the PCB essentially
act as low-pass filters (see [MOP07]). Thus, the relevant information is contained in lower
frequencies. To reduce externally introduces noise in the power traces, one should limit the
oscilloscope’s bandwidth to, e.g. 25 MHz to obtain a cleaner signal, as shown in Fig. 3.3.
However, additional (digital) filters can also be applied during postprocessing. When using
filters in leakage assessment care must be taken that the side-channel does not contain leakage
in the suppressed frequency range in order to avoid a false negative evaluation. When in doubt,
filtering should be not be applied and increased measurement complexity must be accepted.
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Figure 3.3: Comparison of a power trace recorded without and with a 25MHz lowpass input
filter.

Sample Rate and Clock Frequency Furthermore, the oscilloscope’s sample rate is the main
measurement parameter. In the general case the sample rate should be high enough to clearly
separate the power consumption peaks at each clock cycle, and thus is dependent on the target
device’s clock frequency. While a higher sample rate gives a more detailed picture of the current
consumption during a single clock cycle of the target it significantly increases the amount of data
to be processed later on. In contrast to this, a higher clock frequency leads to the current peaks
of clock cycles overlapping. As argued in Section 3.2.2, when later performing statistical tests
or computing confidence intervals, a large number of sample points skews the analysis. Thus,
choosing the clock frequency of the target and the sample rate of the oscilloscope is a tradeoff
between fine-granular power traces, and the time effort for measurement, postprocessing and
evaluation.

We found that a clock frequency of 4 MHz, combined with a sample rate of 1.25 GS{s, using a
25 MHz bandwidth limiter gives a good starting point. In our example, where one trace of the
AES target design covers 55.25 µs, these parameters yield 69062 samples per trace. To fully use
the oscilloscope’s input range, we add an external amplifier (Mini Circuits ZFL-1000LN+) after
the SAKURA-G’s onboard amplifier. A sample trace with these parameters from our setup is
given in Fig. 3.4.

3.3.2 Data Acquisition

Having determined suitable parameters for the target’s clock frequency, the oscilloscope’s input
range and the sample rate, to ensure the fastest possible data acquisition, the block size, i.e. the
number of successively captured traces, should be determined to fully utilize the oscilloscope’s
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Figure 3.4: A sample trace of the DOM AES core.

internal memory. This reduces the impact of the overhead for host-to-control FPGA and host-
to-oscilloscope communication on total acquisition time.

In our example, we used a PicoScope 6404D oscilloscope equipped with memory for 2 GS.
However, the oscilloscope distributes all available memory evenly among active input channels
– including the trigger channel. Thus, at 69062 samples per trace, we would be able to capture
around 14k traces in a single block measurement. However, our analysis showed that the
maximum data transfer rate over the oscilloscope’s USB3 interface is roughly 1.5 Gbit{s and
not increasing with larger blocks of data. As the setup overhead for each block at this size is
already negligible, we captured 10k traces in each block. Other oscilloscopes might benefit more
from larger blocks.

Including an overhead for reset, random number generation and communication between both
FPGAs, the capture of each trace takes 76.2 µs, while transferring the full block of data from
the oscilloscope’s internal memory to the host accounts for more than 930 µs per trace. With
incremental and parallel computation of the centralized moments (in parallel to the acquisition
of traces) taking far less, data transfer forms the bottleneck of our measurement system. To
summarize these metrics, our system acquires and processes 990 traces per seconds of the
example AES core with aforementioned parameters.

3.4 Evaluation Results
In this section we study the effectiveness of our evaluation framework by applying it to the
previously described first-order secure implementation of the AES, protected by a domain-
oriented masking scheme. We analyze the absolute difference in the statistical moments of
the power consumptions using our proposed framework and compare the results to a Welch’s
t-test. More precisely, we use our framework to answer the question: Which band contains the
absolute difference between the means of the moments of X and Y for all sample points. As
an encryption on the target device took 55.25 µs, the resulting traces consist of 69062 samples
each. Therefore, the corrected confidence level is 1 � αt � 0.99 1

69062 � 1 � 1.46 � 10�7 as by
Sect. 3.2.2.

Figure 3.5 depicts the result of a t-test trying to prove the hypothesis H1: Dj : µj,X � µj,Y

which states that at some sample point(s) there is a difference in the mean power consumption.
The results indicate that there is some first and second order leakage, as the maximum t-value
exceeds the corresponding threshold after a sufficient number of measurements. However, the
t-test can not provide a confident assurance of the magnitude of leakage. Even worse, if we
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Figure 3.5: Maximum of absolute t-statistics and detection threshold for moments 1 and 2.

only captured two million traces the t-test would not allow any confident statement regarding
the first order leakage, as the maximum t-value would not have crossed the threshold. There
could be two reasons for failing to detect leakage: either there is no leakage, or the number of
measurements is too low to discover it. In contrast, Fig. 3.6a shows the confidence intervals,
as constructed by our method, using two million traces. While the interval does not prove
the presence of leakage (the lower limit is zero), it limits (with confidence 0.99) the maximum
possible leakage at each point by the corresponding upper interval limit.

If more traces are available, the interval limits become tighter, allowing a closer estimation
of the leakage. Figure 3.6b shows the intervals computed using three million traces. As the
threshold of 5.26 (corresponding to αt � 1.46�10�7) is exceeded in the t-test, by definition of the
interval, the lower limit becomes non-zero for some points, while the upper limits simultaneously
converge against the true leakage. If even closer estimates are required, more traces can be
recorded. Figure 3.6c shows the tight leakage estimation using 150 million traces.

Specific sample points can also be analyzed independently. Figure 3.7 depicts the development
of the interval at sample point 8715, corresponding to a peak in leakage at 6.97 µs, over the
number of traces. If statements about (single) arbitrarily chosen points are made, as in the multi-
point case, it is important to use the FWER-corrected confidence level as described in Sect. 3.2.2.
If the point was chosen at random or using prior knowledge (such as prior measurements) and
only a single point is considered, the unadjusted confidence level can be used.

As discussed in Sect. 3.2.3, the framework can also be used to assess higher-order leakage.
Figure 3.8 shows the obtained intervals for second order. As the difference in the second moment
is much higher than in the first, considerably less traces are required to tightly bound it.

It is important to note that our results do not necessarily support the conclusion that the
countermeasures in the analyzed implementations fail to provide protection against side-channel
attacks. We can merely state that the concrete instantiation using the bitstream created by us
and programmed into our target device exhibits the leakage described above.
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(a) 1st-order confidence intervals using 2M traces.
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(b) 1st-order confidence intervals using 3M traces.
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(c) 1st-order confidence intervals using 150M traces.

Figure 3.6: Confidence intervals depicting lower (green) and upper (blue) bounds for the abso-
lute difference in means. Please note different scales.

3.5 The Influence of Noise

The noise level in TVLA plays a significant role for assessment accuracy and the security of Side-
Channel Analysis (SCA) countermeasures. Hiding countermeasures directly rely on a low SNR
to prevent attacks and masking schemes are only secure if the noise in the system is sufficient.
From an evaluator’s standpoint the noise should be minimal in order to correctly and efficiently
access the security of an implementation. In classical t-test-based TVLA noise can even lead
to wrong assertions of security. Figure 3.9 shows an example for the effect of a high noise
floor during a security evaluation. An evaluator with a noisy measurement system collecting
the power traces resulting in the evaluation shown in Fig. 3.9b might wrongly conclude that
no leakage is detectable while a cleaner measurement system will detect leakage as shown in
Fig. 3.9a. The reason for this susceptibility to noise is that t 9�

?
n{s, therefore the required
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Figure 3.7: First-order confidence intervals at sample point 8715 over the number of measured
traces.

number of traces increases r2-fold if the SNR is lowered by a factor of r, in order to reach the
same detection power.

When using the confidence-interval-based approach described in this work such ambiguity can
be prevented. Figure 3.10 depicts an evaluation using our approach under the same parameters.
While the evaluation in a noisy environment can not reliably detect any leakage – reflected by
the lower bound being constant zero – the uncertainty of the evaluation is made explicitly
visible in the correspondingly higher upper bound for the leakage. Therefore an evaluator with
a noisier acquisition system needs to collect more traces in order to achieve a sufficiently low
upper bound of the intervals and thus assert the absence of leakage above a certain threshold.

If an evaluator can control the masks and the Random Number Generator (RNG) on the
DUT it is possible to reduce the measurement complexity for a higher-order evaluation by
averaging over several traces with the same masks and RNG seed before preprocessing the data
for evaluation. This is possible because the noise in the traces is reduced before the amplification
through preprocessing [Sta18].

3.6 Signal to Noise Ratio
In order to assess the resistance of an implementation against SCA the absolute difference
between the statistical moments for different inputs is not the only relevant metric. As shown
in [MOP07] the measurement complexity of an attack increases with more noisy signals because
the statistical distinction becomes more complex. A standard way of capturing the relation
between the leakage and the noise, that also provides a scale independent metric for a devices
security, is the application of an SNR. The confidence-interval-based evaluation allows a sound
estimation of the SNR in the leakage if three properties hold:

■ The second order leakage needs to be small, i.e., σX � σY . This implies similar noise
levels for all input classes.

■ There must be sufficient noise in the system: ?σX " |µX � µY |.

■ The number of traces must be high enough for a close estimation of the noise: sX � σX .

If these requirements are fulfilled, the the traces t acquired by an attacker will be distributed
closely to t � N pµX , σXq allowing the construction of a confidence interval for the SNR as
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(a) 2nd-order confidence intervals using 5k traces.
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(b) 2nd-order confidence intervals using 500k traces.

Figure 3.8: Confidence intervals for the absolute difference in variance (2nd-order analysis).

ISNR �
�

∆min
sX

; ∆max
sX

�
Note that, as this interval depends on the estimated variance s2

X , the
result is no longer valid for arbitrary measurement systems. An exemplary SNR-interval for is
depicted in Fig. 3.11.

If an implementation with combined countermeasures, e.g., masking and a noise generator,
is assessed the evaluator may choose to disable the hiding countermeasure for the confidence
interval calculation. The decreased noise will yield a close leakage estimation while requiring
less measurements. The actual noise with enabled hiding countermeasure can then be assessed
subsequently and used as reference for an SNR interval. This noise estimation has much lower
time complexity than a TVLA measurement because only an estimation for the variance itself
is required, not for the – possibly very small – difference in variance between classes.

3.7 Pre-Evaluation Checks
Before a new design is evaluated using TVLA the correctness of the assessment system should
be established: It should successfully detect actual leakage while not introducing spurious leak-
age through the measurement and evaluation setup that is not present in the DUT. The first
property can be asserted by measuring the DUT in fixed-vs-random mode with constant masks,
e.g., setting all masks to zero. In this mode, the device should show leakage even at orders
that are protected by the masking scheme because the prerequisite of random uniform sharing
is not fulfilled. If this test can not be conducted, e.g., because the DUT generates or refreshes
the masks itself before executing the cryptographic algorithm, an unprotected dummy imple-
mentation with identical input-output behavior to the DUT should be synthesized and tested.
Figure 3.12 shows the expected result of a fixed-vs-random evaluation with disabled masking
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Figure 3.9: Influence of noise on a t-test-based TVLA after 4 M measurements. Dotted lines
mark the critical value corresponding to a significance of 0.01.
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(b) Noise doubled (simulated)

Figure 3.10: Influence of noise on a confidence-interval-based TVLA after 4 M measurements.
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Figure 3.11: A SNR-interval for first-order leakage using 150 M traces.
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(b) Second order interval

Figure 3.12: The first 1 µs of a system test for fixed-vs-random input with constant masks using
100 k traces.

for a first-order secure design. Note the very high and tight estimation of the difference in both
moments.

In order to ensure that detected leakage actually originates from the DUT an evaluation can
be performed in which all input classes for the DUT are indistinguishable, e.g., by choosing
them all uniformly at random. In all regards other than input generation, such as randomly
interleaving the input class selection, the measurement system should operate as in the real
assessment. Even with a high number of collected traces the lower limit of the calculated
confidence interval should be zero for all moments. If the correctness of the mask-generating
RNG can be asserted otherwise, a fixed-vs-fixed test with the same input for all classes is
preferred as less traces will be required to show problems in the evaluation system, because
of the reduced algorithmic noise. An example for the expected evaluation result is depicted
in Fig. 3.13. Note that even after 45 M measurements the lower leakage bound is zero for all
sample points while the upper bound is very low for both orders.
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Figure 3.13: System test for fixed-vs-fixed input with the same input for both classes after 45 M
measurements.

3.8 Conclusion
We describe a new confidence interval-based framework for TVLA and demonstrate its advan-
tages in comparison to established methods. We suggest our new framework to be applied as a
drop-in replacement for t-test TVLA-methods currently in use in the industry and the scientific
community to provide a clearer picture of the side-channel resistance of protected cryptographic
implementations. To this end, instead of calculating a maximum t-value that is reached after
a certain amount of measurements, maximum and minimum bounds for the leakage should be
measured. We hope that our suggestions for a time efficient acquisition framework and the
overview of our measurement parameter choices in conjunction with the interval-based analysis
metric help evaluators and researchers in producing sound assessments of cryptographic devices
and SCA countermeasures.
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Chapter 4

Multivariate Leakage Assessment
In masked implementations, sensitive information is hidden in higher statistical mo-
ments of the leakage if processed at the same time (univariate) or in the combination
of side-channel information from different points in time (multivariate) if processed
sequentially. Test Vector Leakage Assessment (TVLA) is a common evaluation tech-
nique to address the growing number of specific attacks. However, the assessment
of multivariate leakage requires the evaluation of all possible combinations of sam-
ple points, massively slowing down the evaluation and in turn the development of
countermeasures due to computational complexity. In this chapter, we develop and
compare different techniques to determine clock cycle combinations that leak infor-
mation in a multivariate setting but allow to reduce the dimensional complexity of
the measured data.
For this we develop an efficient multivariate assessment framework and show how
this approach can be used to generate evaluation results that satisfy a desired con-
fidence level, removing the uncertainty introduced by a measurement system. Even-
tually, we demonstrate the practical relevance of our approach by applying it to
a masked sequential implementation of the PRESENT block cipher and a publicly
available implementation of AES using a state-of-the-art masking scheme.
The work described in this chapter was accepted for publishing at IEEE Transactions
of Computers [BWSG].
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4.1 Introduction
In the previous chapter, we introduced a novel framework based on confidence intervals which
addresses known shortcomings of t-test-based leakage assessment and evaluation. However, this
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approach is still limited to univariate analysis but does not cover the combination of multiple
measurements and samples for multivariate leakage evaluation. Unfortunately, in a black-box
setting, without any information on POIs, multivariate analysis rapidly becomes infeasible as
it requires exhaustive evaluation of all possible sample point combinations. Hence, given such
an exponential complexity, multivariate leakage assessment is strongly limited in the number
of sample points and massively increases development and evaluation time of protected crypto-
graphic implementations.

4.1.1 Contribution

Given the previously mentioned limitations, this work presents an efficient assessment framework
for multivariate leakage assessment based on confidence intervals.

More precisely, we first discuss and compare different pre-processing techniques for POI iden-
tification mainly with respect to efficiency and accuracy. Efficient and accurate identification
of POIs and application of appropriate pre-processing and compression techniques eventually
allows to reduce the evaluation complexity dramatically, again enabling continuous evaluation
during development of countermeasures even when considering multivariate leakages. In a sec-
ond step, we apply the concept of confidence intervals to multivariate leakage, hence, removing
the uncertainty introduced by the measurement setup and assisting designers in achieving the
desired level of security with high confidence. Ultimately, to demonstrate the application of our
approach, we apply our concepts using a sequential implementation of a masked PRESENT
as case study. In particular, this implementation has been constructed such that it does not
exhibit any univariate leakage, but has some (expected) multivariate leakage due to sequential
processing of masked shares. Finally, to emphasize the practical relevance of our framework,
we conduct the evaluation of a state-of-the-art masked AES implementation, demonstrating the
real-world applicability of our approach.

4.1.2 Related Work

Leakage Assessment Methodologies.

In order to improve the performance of TVLA evaluations, Reparaz et al. [RGV17] proposed
an alternative computation of the statistical moments using histograms. In chapter 3, we pro-
posed the concept of confidence intervals for the univariate case and demonstrated the benefits
by overcoming known shortcomings in hypothesis testing due to noisy evaluation systems and
sample point dependencies for larger number of sample points. Recently, Althoff et al. [ABK19]
proposed a multivariate leakage assessment approach metric using a k-nearest neighbor crite-
rion. Unfortunately, assessment of the effectiveness of this approach in the context of masked
implementations is challenging, as results on practical experiments are not provided. Finally,
Wegener et al. [WMM19] presented a leakage assessment concept that uses neural networks to
build a distinguisher for leakage traces. Based on the results, this approach can detect leakage
in masked implementations and also has a limited ability to detect POIs by using sensitivity
analysis but can not provide assurance about the absence of leakage.

40



4.2 Preliminaries

Pre-processing and POIs Identification.

As multivariate testing and evaluation is known to suffer from exponential complexity, different
pre-processing techniques for POIs identification and complexity reduction have been presented
and proposed in literature. In the course of research in this field, different approaches mainly
based on Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) for di-
mensionality reduction have been presented [BHvW12, BGH�15, SA08]. All these techniques
have been shown to successfully reduce the complexity, but with varying quality in evaluation
and analysis results. In a different attempt, the authors of [DSV�15] proposed a heuristic ap-
proach to POI detection based on projections pursuits. Here, a two-step optimization algorithm
is used on masked implementations in order to find a projection of complete measurement traces
to a smaller subspace. A downside of this approach is the number of parameters that must be
selected a priori.

4.2 Preliminaries

In this section, we define the basic mathematical notations used in the remainder of the chapter
and introduce the relevant statistical and mathematical tools.

4.2.1 Notation

In this chapter the same notation as in chapter 3 is used, with the following additions: The
sample mean and sample variance of a random sample x drawn from a distribution are x̄ and
sx, respectively. The number of samples in a measured trace, the number of traces measured,
and the order of an analysis are denoted as m, n and d, respectively. The probability that
statement X is true is denoted as PpXq, whereas the conditional probability of X being true
given Y is denoted as PpX|Y q.

4.3 Multivariate Leakage Assessment

This sections details our evaluation framework for multivariate leakage, including the concepts
for multivariate confidence intervals, and introduces complexity reduction approaches to make
the evaluation feasible a the black-box setting (i.e., without prior knowledge of POIs).

Generation of Multivariate Traces.

In order to provide metrics for multivariate leakage we eventually construct confidence intervals
for the difference of means of multivariate traces. In this step every d-tuple of samples is
combined using a combination function for a d-variate analysis. If the original leakage traces
consist of m samples each, this step results in traces of size md. Following [SM15], we use the
centered product as the optimal (in case of Hamming-weight leakage) combination function.
However, note that this combination function is commutative, hence, the number of distinct
points in the multivariate trace is m1 � �m�d�1

d

�   md.
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Construction of Confidence Intervals.

After the generation of multivariate traces, we then construct a confidence interval for the
leakage contained at every index of the multivariate traces. As we require a (pre-selected)
confidence α for each interval, a FWER controlling procedure for the confidence error resulting
from multiple simultaneous interval constructions needs to be applied as in Sect. 3.2.2. This
process ensures that the following analysis is valid for all samples when they are assessed in
conjunction.

Multivariate Evaluation.

While our metric can be applied to higher variates, we focus on the bivariate case in this section
as this is the most common case for practical black-box evaluation. Given a leakage trace L
consisting of m samples L1, . . . , Lm, the bivariate leakage trace L1 at sample points i and j is
constructed using the centered product as:

L1
i,j �

�
Li � L̄i

� � �Lj � L̄j

�
.

This results in a preprocessed trace containing m2 samples. As the centered product is sym-
metric only m1 � m�pm�1q

2 points need to be calculated. The confidence interval is then created
for the absolute difference between the sets of collected traces as in chapter 3. Note that we
compute intervals for the absolute leakage instead of the direct value in order to be able to
construct a meaningful global interval, i.e., a single set of bounds which is followed by all com-
binations of samples. For this, the statistical moments of the preprocessed trace required for the
construction of the confidence intervals are calculated using the one-pass algorithm described
in [SM15].

As a consequence, the confidence intervals rγmin,i,j , γmax,i,js provide lower and upper bounds
for the combined leakage at all sample points i, j for the chosen confidence level 1 � α. The
Bonferroni correction assures that the probability of all of the intervals containing the true
leakage is ¥ 1� α.

In a final step the individual intervals can be combined in a worst-case analysis similar to
the min-p approach used in traditional test-based leakage assessment [SM15]. By construction,
Dpi, jq : leakagepi, jq ¥ maxpγmin,i,jq and @pi, jq : leakagepi, jq ¤ maxpγmax,i,jq, i.e., at least
one combination of points exhibits at least leakage maxpγmin,i,jq and no combination exhibits
more than maxpγmax,i,jq. Therefore, γmin � maxpγmin,i,jq and γmax � maxpγmax,i,jq are a useful
global metric to describe the evaluation result. Intuitively, γmin holds the same information
as the test-based assessment while γmax can additionally certify1 absence of leakage above a
threshold.

Evaluation Procedure.

The overall procedure can be described as follows:

(1) Collect n side-channel traces, each containing m samples, using a fixed-versus-random or
a fixed-versus-fixed measurement procedure.

1As for all statistical evaluation methods, this holds with the chosen confidence.
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(2) Optionally apply complexity reduction algorithms described in subsection 4.3.1 resulting
in m1{R samples per trace, with a reduction factor R. The choice of R primarily depends
on the available computational resources.

(3) Choose the desired overall confidence level 1 � α and calculate the per-point confidence
1� αpp using the Bonferroni correction based on m1{R intervals.

(4) Generate the multivariate traces by combining the leakage samples as explained above.

(5) For each point in the preprocessed trace, calculate the confidence interval for the difference
in means according to chapter 3.

(6) Calculate the overall leakage bounds using the global maxima of the lower and upper
bounds.

Steps 2-6 can be repeated for different complexity reduction algorithms and parameters in order
to obtain a more complete view of the possible leakage of the device.

4.3.1 Efficient Computation
The assessment of multivariate leakage is inherently computationally expensive if performed in
a black-box setting, i.e., without the assumptions about POIs. This stems from the fact that
an exhaustive d-th order multivariate leakage evaluation of n traces consisting of m samples
each requires asymptotically Opn � mdq operations in order to calculate the leakage for all
d-tuples in the trace. As SCA traces can often contain more than 105 samples and more
than 106 traces are typically collected, exhaustive evaluation becomes very resource intensive
even for a bivariate analysis. Therefore, the computational complexity can easily outweigh the
measurement complexity which is proportional to Opn �mq. In order to address these issues we
study several techniques that can reduce the constants driving the computational load. Another
approach to speed up the computation of the multivariate statistical moments is depicted in
Appendix A.1.

Averaging over Traces (AoT).

When observing and processing side-channel information of cryptographic implementations,
evaluators and attackers alike have to cope with measurement noise that affect evaluation or
attack quality.

We can model the leakage observed by an attacker or evaluator at each sample point as
L � Ldata � Lnoise, where Ldata depends on the input data of the target device and Lnoise is
independent of it. Hence, in order to understand how averaging over repeated measurements
can improve the evaluation result, we may decompose the measured noise into algorithmic noise
Lnoise-a and non-algorithmic noise Lnoise-na. Algorithmic noise captures all dependence of the
leakage on data processed by the target that is independent of the input varied by the evaluator
during TVLA measurements. When evaluation masked implementations, different sharings of
the same unmasked input data are not treated as different inputs as an attacker usually does
not have access to them. Therefore, Lnoise-a mainly includes noise resulting from different masks
and other random values needed by the target implementation. Consequently, Lnoise-na models
all noise which is not captured by Lnoise-a. This includes electrical noise in the target device
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and measurement system, quantization noise due to digitization and any environmental noise
sources, e.g. resulting from temperature changes or radiation.

In order to reduce the non-algorithmic noise, it is possible to record multiple power traces
for every computation of the target device with identical inputs, masks and randomness. These
can then be averaged before any further analysis to reduce the number of (averaged) traces navg
needed for a meaningful analysis. As described in [Sta18], this preprocessing leads to a quantita-
tive disconnection between the security perceived by an attacker (without access to masks) and
the measured security when t-test-based TVLA is used. The disconnection stems from the fact
that averaging the signal and (uncorrelated) noise using N measurements increases the SNR by
a factor2 of

?
N , reducing number of traces required for leakage detection, while an attacker

does not have this advantage. However, confidence intervals do not suffer from this problem as
they do not use the t-statistic (or associated p-value) directly as a metric but rather the upper
and lower bounds of a confidence interval. While the size of the confidence interval decreases
with averaging and therefore the accuracy increases, this does not influence the evaluation re-
sult. Thus, averaging by combining N traces can decrease the number of traces navg needed
for the multivariate evaluation, and therefore the computational complexity while increasing
the measurement complexity resulting in a trade-off between those two. However, note that
the increase in SNR from averaging usually can not be determined before the measurement
unless Lnoise-na and Lnoise-a can be characterized. When assuming that all Lnoise-na are i.i.d.,
independent of Lnoise-a, and following normal distributions, their distributions can be estimated
by collecting several traces while keeping the algorithmic noise at zero, i.e., with constant masks
and randomness. Unfortunately these assumptions do not tend to hold in practice.

The choice of the averaging factor therefore depends on the concrete implementation (total
clock cycles, clock frequency), the measurement system (sample rate, acquisition speed) and
computational resources available to the evaluator and needs to be adjusted accordingly for the
fastest evaluation. As a rule of thumb, faster measurement systems, higher evaluation orders
and lower computational resources justify higher averaging factors.
In order to improve the readability of this document we will use the full term averaging over
traces or the abbreviation AoT in the following sections to discriminate averaging over traces
from averaging over samples described below.

Dimensionality Reduction.

Besides reducing the number of traces n, another approach to reduce the computational com-
plexity of multivariate analysis lies in the reduction of the number of samples m per trace. As
shown above, a reduction of m by a factor of R will reduce the computational complexity by
a factor of OpRdq. To this end, we evaluate several methods to reduce the number of samples
in each clock cycle of the target device. In order to retain the ability to locate POIs when
reducing m, which in practice often corresponds to detecting potentially leaking clock cycles,
our dimensionality reduction approaches try to preserve as much information about clock cycles
as possible. Therefore, we focus on methods that reduce the number of samples per clock cycle
while keeping the relations between cycles. This is assured by partitioning the unprocessed
trace into segments corresponding to clock cycles and performing the dimensionality reduction
on these segments. Each segment starts with the sample point at which the first transistors in

2This is only valid when ignoring Lnoise-a.
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4.3 Multivariate Leakage Assessment

the respective clock cycle start switching, i.e., with the clock edge usually visible in the trace.
We compare the algorithms described in the following sections by keeping the number of result-
ing points constant for each of them. This results in a fair comparison in terms of computational
complexity.

While the primary objective of the dimensionality reduction is the management of the com-
putational complexity of the multivariate evaluation, the algorithms described below can also
change the sensitivity of the analysis depending on parameter choices. As there is no a-priori
indication of what information of the leakage traces can help in a multivariate analysis, a reduc-
tion of sample points could lead to loss of such information and thereby reduce the detection
performance. On the other hand, a reduction of noise and (linear) combinations of leaking
samples in the dimensionality reduction could lead to increased leakage detection sensitivity.

These effects are certainly not desirable when trying to quantify the leakage of a device.
However, note that all of the preprocessing algorithms described below only use information
which is available to any attacker as well. An attacker therefore can also apply these techniques
to increase the success rate and/or reduce the complexity of a multivariate attack. We therefore
argue that increased detection sensitivity through dimensionality reduction is not a downside
of our approach but rather a potential attack vector that should be considered in any leakage
assessment procedure.

On the other hand, the possible reduction of assessment power through preprocessing is a
more serious problem for an evaluator. When selecting a reduction heuristic and its parameters
there is no guarantee that the resulting evaluation will find all leaking tuples of clock cycles.
While there is an optimal dimensionality reduction given a perfect leakage model [BGH�15] an
evaluator does typically not have access to this model. Still, an attacker does face the same
problem. A computationally constrained evaluator should therefore act economically by choos-
ing the parameters resulting in the lowest complexity first. Due to the d-th order polynomial
computational complexity of multivariate evaluations, one evaluation with a reduction factor of
R needs approximately the same recourses as xd evaluations with a reduction factor of x � R.
The overhead of the reduction approaches is small compared to the calculation of the confidence
intervals as all reduction algorithms described below have approximately linear complexity in
the number of samples and traces. We therefore encourage the application of multiple prepro-
cessing algorithms with high R instead of performing an evaluation using a single algorithm
with lower R. If the resulting assessment bounds the leakage to sufficiently small values and
additional resources are available to the evaluator, subsequent evaluation runs can be performed
with lower reduction factors on the same measurements. If, on the other hand, the relevant
leakage threshold is exceeded, the evaluation can be stopped and the design must be rejected
as insecure.

Downsampling. A trivial, simple, and computationally inexpensive approach to reduce the
number of samples m can be achieved by dropping all but every R-th sample in each cycle.
The result is similar to reducing the sample rate of the measurement system by a factor of
R. However, we would like to note that even this simple dimensionality reduction algorithm
may decrease or increase the detection sensitivity of the evaluation depending on the measured
signal. In fact, a decrease in detection sensitivity can be obviously attributed to the (accidental)
dismissal of leakage samples. On the other hand, a reduction of the size of the preprocessed trace
m1 leads to a higher corrected per-point confidence level 1� αpp resulting in tighter confidence
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Chapter 4 Multivariate Leakage Assessment

intervals and therefore better leakage detection compared to a full evaluation. Typically, the
latter effect is less pronounced in the similar case of a reduced sample rate of the acquisition
system instead of post-measurement downsampling. This is because the jitter in the trigger
response of some oscilloscopes depends on the sample rate3, leading to increased jitter with
lower sampling rates. Therefore, downsampling should be preferred to reducing the sample rate
even if this is the only dimensionality reduction method used if the additional measurement
complexity can be tolerated.

Averaging over Samples. This paragraph studies oversampling, the averaging over adjacent
samples, in contrast to the averaging described in above. The reduced trace is computed by
partitioning the samples corresponding to a clock cycle into sets and computing the average of
each set, effectively creating a low-pass filtered and downsampled version of the leakage trace:

L̄i � 1
R

pi�1q�R¸
j�i�R

Lj . (4.1)

In contrast to using pure downsampling, an analysis using averaging can result in more leakage
being detected compared to a full-trace analysis even when disregarding the improvement in
per-point confidence. Averaging over samples increases the SNR by averaging out uncorrelated
noise similar to averaging over traces as described above. However, this preprocessing technique
can also reduce the leakage signal if the leakage contains frequency components that are higher
than the resulting sample rate of the processed traces.

1-Norm. The 1-Norm calculates the sum of absolute values as:

}Li}1 �
pi�1q�R¸
j�i�R

|Lj |. (4.2)

By summing over absolute values the potential signal reduction described in above can be
avoided. However, for the same reason there is no increase in SNR. Note that the proportionality
of the result to R prevents direct comparisons of results with different reduction factors.

2-Norm. The 2-Norm, or euclidean norm, is calculated as:

}Li}2 �
gffepi�1q�R¸

j�i�R

L2
j . (4.3)

The resulting trace }L}2 is related to the energy of the part of the measured signal between
time points i � R and pi � 1q � R. Using the 2-Norm instead of the energy results in the same
scale in confidence intervals computed from reduced traces when compared to raw traces.

3If no countermeasures such as trigger interpolation are employed.
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Principal Component Analysis. PCA is a statistical tool commonly used to reduce the dimen-
sionality of a data set. This is achieved by projecting the input data to space spanned by an
orthonormal basis with linearly uncorrelated dimensions. The data reduction is then performed
by dropping all dimensions but the once containing the maximal variances of the data. In the
context of cycle-wise reduction of the number of samples, a PCA is be performed on every
cycle separately and only the m{R � c most important dimensions are retained, where c is the
number of cycles in a trace. Note that these dimensions can differ for different clock cycles,
requiring separate PCAs for each cycle. As shown in [BHvW12], the dimensions containing the
most variance do not necessarily contain the most side-channel leakage, but rather the most
noise. This can be especially pronounced when evaluation protected implementations where
the SNR can be very low. Therefore, noise reduction as described above will often benefit this
preprocessing technique. In general, the optimal reduction factor is hard to estimate before an
analysis has been performed.

4.4 Case Study: Sequential PRESENT

This section provides practical insights on how our assessment framework performs with different
algorithms and parameter choices and on how to choose these parameters. We limit our analysis
to the bivariate case in order to keep the computational requirements reasonable and to aid the
visualization of our results.

4.4.1 Target Architecture

In order to evaluate our proposed multivariate leakage assessment scheme, we chose a hardware
implementation of the PRESENT block cipher on an FPGA. The implementation was protected
against first order side-channel attacks using a three-share threshold implementation [NRR06]
with a quadratic decomposition of the cubic S-boxes similar to [PMK�11]. The evaluation of the
resulting six component functions of the S-box was stretched into twelve clock cycles in order to
avoid univariate second order leakage. This was achieved by placing a register stage before and
after each layer of component functions. Each register was then sampled in a separate clock
cycle and after the evaluation of each stage the other was reset (sequentially) in order to avoid
transitional leakage between rounds. Note that this implementation was not designed to be
efficient but rather to limit and prevent univariate leakage while having detectable multivariate
leakage.

4.4.2 Measurement Setup

To measure the power consumption of the target design we used a dedicated Sakura-G SCA
assessment board equipped with two Spartan-6 FPGAs - one FPGA generating (masked) input,
key and randomness material, the other executing the PRESENT cipher on this data. The
system randomly interleaves fixed and random plaintexts following the usual TVLA procedure
from [SM15].

The design was clocked at 4 MHz. To capture the power consumption we used the internal
14 dB gain amplifier of the Sakura-G board, and additionally amplified the signal with an
external zfl-1000+ [Min] low-noise amplifier with a gain of 20 dB to use the full amplitude of
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Figure 4.1: Overlay of four sample traces of the sequential PRESENT implementation without
(left) and with 16-fold AoT (right).
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Figure 4.2: Per-cycle confidence interval maps for sequential PRESENT without (left) and with
16-fold (right) AoT. Lower bounds are in upper left half including the diagonal,
upper bounds in the lower right half.

the digitizer. The traces were collected with a Spectrum Instrumentation M4 PCIe digitizer
and a 400 MHz analog bandwidth limiter was enabled in order to reduce noise.

For this first case study we capture 1M traces at a sample rate of 1.25 GS s�1, each with a
duration of 12 µs, yielding 15 040 samples per trace. As a result, one clock cycle of the target
design covers 312.5 samples. We then analyzed one round of the cipher, taking 13 clock cycles,
thus limiting our subsequent analysis to a window of 4062 samples.

4.4.3 Parameter Space Exploration and Results

This section shows the influence of the parameters of the preprocessing algorithms and displays
the advantages and disadvantages of each algorithm.

Averaging over Traces (AoT).

The measurements are performed with averaging factors of 1 and 16. When comparing both
cases, we keep the number of traces after averaging constant, e.g., 16-fold AoT requires 16
times the number of measurements when compared to an evaluation without AoT. However,
this method results in the same computational complexity for the evaluation after the first AoT
step. Figure 4.1 depicts four sample traces of the measured power consumption for both AoT
factors. As expected the trace acquired with 16-fold AoT is notably cleaner.
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4.4 Case Study: Sequential PRESENT

The confidence interval maps with and without AoT are shown in Figure 4.2.4 The upper
left half of the plot shows the lower bounds while the upper bounds are displayed in the lower
right half. The diagonal (corresponding to a univariate analysis) contains the lower bounds as
well. For improved readability, the plots only show the maximum values corresponding to each
clock cycle.

Note that the analysis of the traces that were not averaged can only identify two combination
of cycles (p6, 7q and p8, 11q) where leakage can be detected. Furthermore, the upper bounds of
the intervals are very large compared to the detected leakage. The highest detected leakage
is γmin � 7.15 mV2 and the highest upper bound is γmax � 1638.5 mV2 producing a ratio of
γmin
γmax

� 1 � 10�5. This result signifies low statistical power of the evaluation and would call for
more measurements in an assessment of a target device.

As expected, AoT improves the evaluation performance significantly. The result of the aver-
aged traces show a closer estimation of the leakage present in the target resulting in 37 leaking
cycle combinations being identified. In this scenario, the leakage is assessed to be between
γmin � 35.28 mV2 and γmin � 87.26 mV2, resulting in a relative interval ratio of γmin

γmax
� 0.40.

These metrics and the metrics for the following cases are depicted in Table 4.1.

Dimensionality Reduction.

We perform all reduction algorithms described in section 4.3.1 with different numbers of resulting
samples per cycle and therefore different reduction factors R. We chose 1, 4, and 16 target
dimensions per cycle, as starting with a minimal target dimension count is the economic choice
when having limited computational power.

Downsampling. Figure 4.3 shows the assessment using the downsampling reduction approach.
Note that the analysis without averaging over traces can only identify one tuple of points as
leaking when keeping 16 samples per clock cycle. In the other two cases, no leakage is detected.
When AoT is performed first, 11 to 31 tuples are detected, depending on the number of kept
samples. An interesting observation can be made when comparing the result from the non-
reduced and downsampling reduced evaluation in the AoT case: the latter finds some tuples
to be sensitive which the former does not. This can be attributed to the resulting different
per-tuple confidence level as explained in section 4.3.1.

Averaging over Samples. The result using the averaging reduction is depicted in Figure 4.4.
Note that the difference between the cases with and without averaging over traces is compar-
atively small. This can be explained by the partially redundancy of the SNR improvement
through averaging over traces which is achieved in a similar way by averaging points within a
clock cycle. In both cases the minimal detected leakage increases with increasing dimensions
but the relative size of the global interval remains approximately constant.

1-Norm. Figure 4.5 shows the results when applying the 1-norm reduction. In comparison to
the other parameter choices, reducing each cycle to one point yields very poor results. In the
non-AoT case, no tuple can be detected at all. Note that increasing the target dimension from 4

4All remaining figures depicting confidence interval maps are constructed by combining the lower and upper
bound of the intervals into a single figure.
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Figure 4.3: Per-cycle confidence interval maps for sequential PRESENT without (top) and with
16-fold (bottom) averaging over traces with downsampling reduction to 1, 4 and 16
(left to right) samples per cycle.

to 16 does not improve the assessment quality but reduces the number of detected tuples (only
without AoT) and the interval ratio (both cases).

2-Norm. The results for the 2-norm reduction are depicted in Figure 4.6. As the difference
between disabled and enabled AoT is similar to the 1-norm case, only the plot with 16-fold
AoT is shown. Similarly, an increase of dimensions from 4 to 16 does not improve assessment
quality.

Principal Component Analysis. Figure 4.7 shows the evaluation using the PCA dimensional-
ity reduction algorithm. In contrast to all other algorithms, the number of detected tuples and
the interval ratio decrease when increasing the number of dimensions even when starting from
one when applied without prior AoT. This can be attributed to the most informative princi-
pal components being the first ones. Therefore, adding more components primarily decreases
statistical power.

4.4.4 Discussion

As expected, all algorithms benefit from averaging over traces before performing a dimension-
ality reduction and the subsequent multivariate analysis. Therefore, if control of the masks and
randomness used in the target device is possible and the trade-off between measurement and
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Figure 4.4: Per-cycle confidence interval maps for sequential PRESENT without (top) and with
16-fold (bottom) AoT with averaging reduction to 1, 4 and 16 (left to right) samples
per cycle.

computational complexity is favorable, averaging over traces should be used.
In the AoT case, not all tuples that are detected as leaking by the full analysis are also recog-
nized with the reduction algorithms (e.g., tuple p1, 12q). However, with or without AoT, for all
reduction approaches (except for downsampling) the number of detected tuples is higher than
with a full evaluation for at least some parameters. In particular, downsampling performs the
worst in terms of detected tuples and interval ratio in comparison to all other approaches when
the same reduction factor is considered. Still, downsampling and averaging benefit from a lower
reduction factor and therefore a higher number of resulting samples per clock cycles. The PCA,
1- and 2-norm reductions show diminishing returns or even decrease in performance when the
dimensionality is increased.
It is important to note that all reduction approaches find leaking clock cycle tuples that are
not detected by an evaluation without reduction and the detected tuples do not completely
overlap for all parameters signifying the importance of a battery of reduction algorithms. As
the complexity of the evaluation grows exponential in the dimensionality using higher reduction
factors first when allocating computational resources is justified.

4.5 Case Study: AES-DOM
In the second case study we chose a more practical implementation in order to show the real-
world applicability of our framework. The evaluation is restricted to the bivariate case for the
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Figure 4.5: Per-cycle confidence interval maps for sequential PRESENT without (top) and with
16-fold (bottom) averaging over traces with 1-norm reduction to 1, 4 and 16 (left to
right) samples per cycle.
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Figure 4.6: Per-cycle confidence interval maps for sequential PRESENT with 16-fold averaging
over traces with 2-norm reduction to 1, 4 and 16 (left to right) samples per cycle.
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Figure 4.7: Per-cycle confidence interval maps for sequential PRESENT without (top) and with
16-fold (bottom) averaging over traces with PCA reduction to 1, 4 and 16 (left to
right) samples per cycle.

same reasons as in the first case. The parameters were discovered analogous to the PRESENT
case study, therefore we omit the detailed derivation of the parameters. While we still did
perform an analysis without averaging over measurements, we omit the results here because
they (unsurprisingly) confirm that AoT improves evaluation performance.
The measurement setup for this case study was the same as for the PRESENT target. The
only changes lie in adjusted gain of the amplifier and oscilloscope and a different traces length.
As above, 1 M measurements where collected. We evaluated 6250 samples corresponding to the
first AES round.

4.5.1 Target Architecture

We use the configurable and publicly available DOM implementation of the AES [Gro16b]
as a second benchmark for our proposed SCA evaluation framework. In general, the DOM
scheme [GMK16b] provides provable d-th order security using d� 1 shares by splitting compu-
tations into d� 1 domains. When information from different domains is combined in non-linear
functions, randomness and register stages are added to ensure uniformity and prevent glitches
respectively. We chose the 2-share variant providing resistance against first-order attacks. The
implementation takes 20 cycles per round and requires additional randomness which we created
using LFSRs on the target device.
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Table 4.1: Evaluation results for the masked sequential PRESENT implementation. Confidence
interval bounds are in mV2.

1-fold averaging over traces 16-fold averaging over traces
Algorithm Dim. Confidence Intervals Tupl. Confidence Intervals Tupl.

[γmin] [γmax] [ γmin
γmax

] [γmin] [γmax] [ γmin
γmax

]

full 312.5 7.15 1638.5 0.00 2 35.28 87.26 0.40 37

down- 1 0.00 178.42 0.00 0 5.62 24.71 0.23 11
sampling 4 0.00 236.74 0.00 0 17.29 38.43 0.45 27

16 9.72 283.86 0.03 1 35.69 77.32 0.46 31

averaging 1 9.33 18.02 0.52 32 9.62 17.36 0.56 37
4 29.25 55.98 0.52 38 29.79 54.74 0.54 49
16 32.05 70.92 0.45 28 34.23 67.82 0.50 50

1-Norm 1 0.00 2.49 � 105 0.00 0 6.27 � 104 1.20 � 105 0.52 28
4 7.02 � 104 1.34 � 105 0.52 33 1.71 � 105 3.32 � 105 0.54 49
16 1.15 � 104 2.51 � 104 0.46 25 1.24 � 104 2.44 � 104 0.50 49

2-Norm 1 0.00 1158.98 0.00 0 430.44 780.08 0.55 29
4 1980.62 3899.00 0.51 27 2186.89 4016.97 0.54 50
16 563.89 1296.39 0.43 22 647.66 1283.40 0.50 50

PCA 1 3873.02 7016.89 0.55 26 3564.50 6264.84 0.57 35
4 3633.47 7256.47 0.50 25 3358.74 6470.63 0.52 40
16 3420.09 7469.82 0.46 22 3175.46 6653.88 0.48 40

4.5.2 Results and Discussion
In this section, the evaluation results from the application of our framework to the AES-DOM
target are discussed. Again, we used all dimensionality reduction approaches and parameters
as in section 4.4. The figures and a table depicting the evaluation results are provided in
Appendix A.2 in Figure A.1 and Table A.1.

Interestingly, there are some notable differences between this evaluation and the previous
case study. First, no reduction approach detects as many leaking tuples as the full analysis.
However, the reduction algorithms outperformed the full analysis in terms of interval ratio
for some parameter choices. Additionally, the battery of reduction algorithms detects leaking
tuples that are not identified by the full analysis as in the previous case study. Secondly, for all
algorithms except for PCA, more dimensions improve the result. In the PCA-case the increase
in number of detected tuples when changing the number of dimensions per cycle from one to
four is comparatively large but the leakage estimation performance is reduced when using 16
dimensions. Thirdly, the strongest detected leakage is univariate but many multivariate tuples
leak as well. Finally, downsampling is not the worst algorithm in general anymore.

4.6 Performance Evaluation.
The measurement speeds on our Spectrum Instrumentation M4 PCIe digitizer for both case
studies are provided in Table 4.2. In the cases where averaging over traces was enabled it was
performed simultaneously and the figures refer to the number of traces after averaging. The
PRESENT and AES traces consist of 15 040 samples and 19 552 samples respectively and where
cropped to one round after the measurement. The measurement speed is faster for the AES
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although its trace contains more samples because the assessed implementation takes less cycles.
In the 16-fold AoT case there is reduced disk load on the measurement system and no inter-
FPGA communication overhead between acquisitions with the same sharing and randomness
resulting a slowdown factor of only 5.8 and 5.6 respectively when compared to the baseline.

Table 4.2: Measurement performance for the PRESENT and DOM-AES case studies.
PRESENT DOM-AES

no AoT 16-fold AoT no AoT 16-fold AoT
Traces/second 3095 530 5000 895
Megasamples/second 46.5 8.0 97.8 17.5

Table 4.3 provides the performance figures for the generation of the statistical moments of the
bivariate traces for the PRESENT and DOM-AES case studies. The PRESENT traces capture
13 cycles and the DOM-AES traces 20 cycles consisting of 312.5 samples each. An Nvidia Tesla
P100 GPU was used to perform the calculations on multiple points in parallel. For the chosen
parameters, bottlenecks of the evaluation platform (e.g. disk access times and throughput) as
well as better utilization of the GPU by larger traces overlay the quadratic complexity in the
effective number of samples. Still, an evaluation without dimensionality reduction takes longer
than four evaluations with all three reduction factors in the PRESENT case. For the longer
AES, the full evaluation takes 7.4 times as long as an evaluation with all exemplary reduction
factors. Therefore, it is faster to perform all five reduction approaches with one, four and 16
samples per cycles than one full evaluation.

Performance figures for the pre-processing steps are omitted because of their linear com-
plexity5 in the number of samples per trace. Even an unoptimized Python implementation
outperforms the moment generation by at least an order of magnitude. Similarly, the final cal-
culation of the confidence intervals from the statistical moments, while quadratic in the number
of samples, is constant in the number of traces and can therefore be neglected.

4.7 Conclusion

In this work we proposed a novel side-channel leakage assessment framework based on confidence
intervals that can be used to analyze multivariate leakage of protected implementations. The
evaluation results can attest the presence as well as the absence of leakage and are robust

5Finding PCA projections is cubic in the number of samples per cycle and linear in the number of cycles but
only needs a constant number of traces. The impact is therefore negligible.

Table 4.3: Evaluation performance for the PRESENT and DOM-AES case studies in traces per
second.

Dim./cycle 1 4 16 312.5
PRESENT 2210 1955 1546 147
DOM-AES 2233 1915 1352 79
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against noise in the measurement system. The feasibility of our approach is supported by a set
of pre-processing algorithms that reduce the number of traces required in the evaluation and the
number of tuples that need to be analyzed. We accomplish the former by averaging traces which
provides strong benefits in the multivariate setting while tying in naturally with a confidence-
interval-based assessment. The latter is achieved by reducing the effective dimensionality of each
clock cycle allowing to retain cycle accurate POI information. While the parameter choice for
the reduction algorithms is heuristic we provide a clear guideline for this choice when challenged
by finite computational resources.
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Chapter 5

High-Speed Masking for Polynomial
Comparison in Lattice-based KEMs

With the National Institute of Standards and Technology (NIST) post-quantum stan-
dardization competition entering the third round, the interest in practical imple-
mentation results of the remaining NIST candidates is steadily growing. Especially
implementations on embedded devices are often not protected against side-channel
attacks, such as differential power analysis. In this regard, the application of coun-
termeasures against side-channel attacks to candidates of the NIST standardization
process is still an understudied topic. Our work aims to contribute to the NIST
competition by enabling a more realistic judgment of the overhead cost introduced
by side-channel countermeasures that are applied to lattice-based Key Encapsula-
tion Mechanisms (KEMs) that achieve CCA-security based on the Fujisaki-Okamoto
transform. We present a novel higher-order masking scheme that enables an efficient
comparison of polynomials as previous techniques based on arithmetic-to-Boolean
conversions renders this (generally inexpensive) component extremely expensive in
the masked case. Our approach has linear complexity in the number of shares com-
pared to quadratic complexity of previous contributions and it applies to lattice-based
schemes with prime modulus. It comes with a proof in the probing model and an effi-
cient implementation on an ARM Cortex-M4F microcontroller which was defined as
a preferred evaluation platform for embedded implementations by NIST. Our algo-
rithm can be executed in only 1.5-2.2 milliseconds on the target platform (depending
on the masking order) and is therefore well suited even for lightweight applications.
While in previous work, practical side-channel experiments were conducted using
only 5,000 - 100,000 power traces, we confirm the absence of first-order leakage in
this work by collecting 1 million power traces and applying the t-test methodology.
The work described in this chapter was published at CHES 2020 [BPO�20].

Contents of this Chapter

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Higher-Order Masking of Comparison of Polynomials . . . . . . . . . . . . 65
5.4 Microcontroller Implementation . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 79

59



Chapter 5 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

5.1 Introduction
As shown in previous chapters, cryptographic implementations on embedded devices often have
to consider countermeasures against side-channel attacks such as timing attacks, power analysis,
or fault injections. Remedies against timing attacks are usually simpler to realize, however, there
are exceptions, like Gaussian samplers [AJS16, SBG�18, KMRV18, KRVV19].

In response to the looming threat of quantum computers rendering most contemporary public
key crypto obsolete, NIST started a standardization competition for post-quantum cryptogra-
phy that has entered the second round in early 2019. NIST explicitly mentions the side-channel
security of schemes as one of their evaluation criteria [NIS16]. Among the remaining 17 en-
cryption schemes and Key Encapsulation Mechanisms (KEMs) in round two, there were 9
lattice-based KEMs, which constitute the largest group of KEMs. Many of these schemes use
the Fujisaki-Okamoto transform [FO99] or a variant [TU16] to achieve CCA-security. One of
those schemes – KYBER – was selected as a third round NIST finalist in July 2020. A crucial
component of the transform is the comparison of outputs. The comparison component has been
widely disregarded in side-channel analysis of post-quantum cryptography so far as the perfor-
mance cost for this component is negligible in the unmasked case. In this work, we show that
when masking is applied using a conventional approach, the comparison step actually amounts
for a sizable number of clock cycles in the execution of the KEM. We therefore propose a novel
and highly efficient higher-order masked algorithm for the comparison component that solves
the aforementioned problem and works on lattice based schemes with prime modulus. Our
solution significantly outperforms the previous approach by one to two orders of magnitude,
depending on the masking order. Our masking scheme is applicable for the NIST post-quantum
standardization candidates NewHope [ADPS16], Kyber [BDK�18], and LAC [LLZ�18].

5.1.1 Related Work
Applying masking to schemes based on the Ring-Learning with Errors (Ring-LWE) prob-
lem as countermeasure to power analysis has been first analyzed by Reparaz et al. in
[RRVV15, RdCR�16, RRdC�16]. Their masking proposals however only protect schemes pro-
viding security against chosen-plaintext attackers (CPA). In a CPA-secure Ring-LWE-based
scheme, no comparison is required. Previous approaches for masked polynomial comparison
for lattice-based cryptography have been proposed by Oder et al. [OSPG18], Barthe et al.
[BBE�18], and Migliore et al. [MGTF19]. The approach from [OSPG18] also targets Ring-
LWE-based schemes and explicitly takes CCA-security into account, but is optimized for first-
order masking only and cannot be adapted to higher orders. The approaches from [BBE�18]
and [MGTF19] are masking schemes for lattice-based digital signatures. The comparison al-
gorithms in both works are alike and both are based on conversion algorithms that transform
arithmetic shares to Boolean shares. These transformations are computationally extremely ex-
pensive and have a quadratic complexity regarding the number of shares [SPOG19]. This makes
the polynomial comparison an unnecessary overhead in masked implementations of lattice-based
cryptography. Several contributions performed practical experiments to verify the side-channel
security of their proposals. However, the extensiveness of these experiments is lower compared
to this work with only 5k traces in [RdCR�16], 10k traces in [MGTF19], and 100k in [OSPG18].

Our approach relies on reducing the comparison of multiple values to one comparison of
a function these values. Similar approaches have been applied in other contexts than mask-
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ing, e.g., batch verification of the equality of logarithms [APB�04]. However, to the best of
our knowledge, our approach is the first to utilize this basic principle to speed up the secure
comparison of masked values.

5.1.2 Contribution

In this work, we present the first higher-order masking algorithm for polynomial comparison
that is specifically optimized for usage in lattice-based KEMs. The contributions in this chapter
are as follows:

■ We show that the adaption of other approaches (from lattice-based signatures) introduces
a significant computational overhead. That is because the A2B conversions used in this
naive approach are expensive and have a quadratic complexity in the masking order.

■ We present a new algorithm that has a simpler structure, better asymptotic run time,
less constant overhead, and is still provable secure for higher masking orders. Our ap-
proach exploits that the comparison steps reduces the entire information contained in a
polynomial to just a single bit.

■ A theoretical proof in the t�probing model of the new scheme is provided. In particular
we show that it satisfies the stronger property of NI.

■ Our developed ARM Cortex-M4F assembly implementation shows the superior practical
performance of our approach as it is able to reduce the computational cost of the com-
parison step by a factor of 16 for first-order masking security and even more for higher
orders.

■ The side-channel security of our approach is evaluated in practical experiments with 1
million power traces that is significantly more than the number of power traces used in
previous work on power analysis attacks on lattice-based cryptography.

Our algorithm can be applied to multiple lattice-based KEMs that are submitted to the NIST
post-quantum standardization competition and with the publication of this work, we will make
the source code of our microcontroller implementation publicly available.

5.1.3 Outline

This chapter is organized as follows: In Section 5.2, the necessary theoretical background that
is crucial for the understanding of this chapter is introduced. After that, we present our novel
approach for higher-order masked polynomial comparison in Section 5.3. The implementation of
this algorithm is discussed in Section 5.4. In Section 5.5, we present the results of our evaluation
of the algorithm. Finally, we draw a conclusion in Section 5.6.

5.2 Preliminaries
In this section, we introduce the necessary theoretical background. This includes a description
of the NewHope KEM, a definition of side-channel security, and the masking countermeasure.
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5.2.1 Notation

In the rest of the chapter, we denote with q the modulus in the lattice-based scheme, which in
this work is always a prime number. We will indicate with k the number of coefficients in a
polynomial. Moreover, the lower case will be used for Boolean encoding and the upper one for
arithmetic encoding. To refer to the i-th coefficient of a polynomial A, we will write Ai, while
we write Aj

i to refer to the j-th share of the i-th coefficient of the polynomial.

5.2.2 The Basic NewHope Scheme

We chose NewHope as case study to evaluate our comparison algorithm. There are two variants
of NewHope, one that is secure against chosen-plaintext attackers (CPA-secure) and one that is
secure against chosen-ciphertext attackers (CCA-secure). Even though the comparison is only
necessary in the CCA-secure scheme, we still review the basic construction of the CPA-secure
NewHope as it is necessary for the understanding of how our comparison algorithm works. For
the sake of simplicity, we omit a lot of details concerning efficiency, like the application of the
number-theoretic transform or compression of polynomials, in the description of the key gener-
ation, encryption, and decryption in Algorithms 1,2, and 3. The most important parameters of
the scheme are the modulus q, the lattice dimension k, and the sampling parameter κ.

Algorithm 1 NewHope CPA.Keygen

Input: Public constant polynomial a
Output: Public key pk and secret key sk

1: seed
$Ð t0, . . . , 255u32

2: r1, r2 Ð SampleBinomialpseedq
3: p Ð r1 � ar2
4: return pk � pa, pq, sk � r2

Algorithm 2 NewHope CPA.Encryption

Input: Public key pk, message µ P t0, . . . , 255u32, coin P t0, . . . , 255u32

Output: Ciphertext A � pc1, c2q
1: e1, e2, e3 Ð SampleBinomialpcoinq
2: c1 Ð ae1 � e2
3: c2 Ð pe1 � e3 � Encodepµq
4: return pc1, c2q

Algorithm 3 NewHope CPA.Decryption

Input: Secret key sk � r2, ciphertext A � pc1, c2q
Output: Message µ

1: return Decodepc2 � c1r2q

The algorithm SampleBinomial() uses a PRNG that is seeded by a random bit string. The
PRNG sends two random bit strings of length κ bits to the sampling algorithm. The sampler
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then calculates the Hamming weight of both bit strings and subtracts the Hamming weights.
The result is a binomial distributed random number. SampleBinomial() outputs an entire
polynomial with binomially distributed coefficients. The algorithm Encode() transforms the
input message into a polynomial. Each bit of the message is encoded into four coefficients. This
is done by setting these four coefficients to t0, 0, 0, 0u if the message bit is 0. If the message bit
is 1, the respective coefficients are set to tt q

2 u, t q
2 u, t q

2 u, t q
2 uu.

Many lattice-based KEMs use a very similar base construction. The main difference to
Kyber is that the security of Kyber is based on the Module-LWE problem while the security of
NewHope is based on the Ring-LWE problem. The security of Frodo is based on the plain LWE
problem. This implies that the parameters of Frodo are much bigger, but the underlying lattice
is actually random and not structured as in the case of the Ring-LWE and the Module-LWE
problem. Saber and Round5 are based on the the (Ring-) Learning with Rounding (LWR)
problem that is related to LWE.

5.2.3 Fujisaki-Okamoto Transform as Applied to NewHope

As many lattice-based KEMs that base their security on the LWE or LWR problems, the
original NewHope proposal [ADPS16] is only secure against chosen-plaintext attackers. The
Fujisaki-Okamoto transform [FO99] is a standard conversion algorithm that many designers
of post-quantum cryptography use to turn a CPA-secure scheme into a CCA-secure one. The
idea behind the Fujisaki-Okamoto transform is that a re-encryption in the decryption detects
whether the input ciphertext was valid or not. Therefore the re-encrypted ciphertext will be
compared to the original input and if this comparison fails, a random value will be output by
the algorithm. Figure 5.1 depicts how the Fujisaki-Okamoto transform is applied to NewHope
in the specification of the NIST post-quantum standardization [AAB�]. The ciphertext Ã is
initially decrypted to µ1 using the secret key sk and then used as input to the random oracle
G. The random oracle outputs a) the seed for the PRNG of the re-encryption coin”, b) the
(symmetric) key material k’, and c) and additional 256-bit value d’. After the re-encryption of
µ1 using the public key and the PRNG seed, the resulting ciphertext A is compared to the input
Ã. Only if this comparison and the comparison of the bit string d’ with the input d is true, the
key material k’ is hashed together with d and Ã to receive the final symmetric key. Otherwise,
k’ is replaced by a random value.

As noted in [OSPG18], all intermediate values depending on the output of the initial decryp-
tion are sensitive and need to be masked as indicated in Figure 5.1 by bold lines. In particular,
this also includes the output of the re-encryption A which is compared to the initial ciphertext
Ã. This comparison step is linear in the number of coefficients k and therefore negligible re-
garding the performance for the unmasked case. When masking is applied to the comparison of
these polynomials, the performance cost gets significantly larger. Therefore, this work analyzes
how an efficient masking scheme can be applied to this comparison step.

5.2.4 Security against Side Channel Attacks
In order to secure our scheme against side-channel attacks, we adopt the countermeasure of
masking, which consists in randomizing the computation of the targeted circuit such that if a
bounded amount of information is leaked during the execution, this is statistically independent
of the sensitive variable. To this scope, every sensitive variable S is encoded into n shares Sj ,
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Figure 5.1: IND-CCA-secure variant of the NewHope KEM. The dashed line highlights the
comparison component that is subject of this work. Bold lines indicate masked
data.

such that the sum of all of them gives the original masked variable S but a collection of less
than n shares does not allow to reconstruct S. Ishai et al. in [ISW03] formalized for the first
time the concept of masking and introduced the so-called t-probing model, where an adversary
is allowed to access up to t intermediate values in a circuit.

The definition of t�probing security requires the existence of a simulator, which can simulate
the adversary’s view without having access to the sensitive variables, but using only a subset
of cardinality at most t of their shares. The first security definition has been enriched later
on in [BBD�15] in order to additionally guarantee security also when an algorithm is part of
a bigger circuit and ensuing that using the output of a gadget as input to another one does
not add sensitive information to the adversary’s knowledge. The new security definitions are
called t�non interference (abbreviated with t–NI) and t�strong non interference (abbreviated
with t–SNI). Under some circumstances, t–NIgadgets and t–SNIones can be securely composed.
Instead, t–SNIgadgets can always be securely composed with each other. The formal definitions
are given below.

Definition 1 (t–NI). A given gadget G is t-Non-Interfering (t–NI), if every set of t probes on
the internal and output values can be simulated by using at most t shares of each input.

Definition 2 (t–SNI). A given gadget G is t-Strong-Non-Interfering (t–SNI), if every set of t1
probes on the internal values and t2 probes on the output values, with t1 � t2 ¤ t, can be
simulated by using at most t1 shares of each input.

In particular, the last definition requires that the number of probes on the outputs are inde-
pendent from the number of the shares needed by the simulation.

In the rest of the chapter, n will always refer to the number of shares and t to the security or-
der.
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5.2.5 Arithmetic and Boolean Masking

Masking schemes for cryptographic algorithms can apply different forms of masking. When
Boolean masking is applied, the shares have to be combined via the XOR operation to recon-
struct the secret value.

A � à
j

Aj � A1 `A2 ` . . .`An

In arithmetic masking, this operation is replaced by modular addition

A �
¸
j

Aj � A1 �A2 � . . .�An mod q

Some components of lattice-based KEMs are more efficient when masked arithmetically, like
polynomial multiplication. Other parts, especially symmetric components as used for PRNGs
and XOFs, are more efficient when using Boolean masking. Therefore, we need to be able to
switch between both forms of masking. Special conversion algorithms have been developed for
Arithmetic-to-boolean (A2B) and Boolean-to-arithmetic (B2A) conversion. For this work, A2B
conversions are especially relevant. We therefore review in Algorithm 4 the A2B conversion
algorithm from [SPOG19] that is specifically designed for arbitrary moduli. The subroutines
Expandpq and SecAddpq are given in Appendix A.3.

Algorithm 4 ConvertA2B [CGV14]
Input: pAiq1¤i¤n P Fq such that

°
i Ai � A mod q

Output: pziq1¤i¤n P F2 such that
À

i zi � A
1: if n=1 then return A1
2: end if
3: pxiq1¤i¤n{2 Ð ConvertA2BppAiq1¤i¤n{2q
4: px1iq1¤i¤n{2 Ð Expandppxiq1¤i¤n{2q
5: pyiq1¤i¤n{2 Ð ConvertA2BppAiqn{2�1¤i¤nq
6: py1iq1¤i¤n{2 Ð Expandppyiq1¤i¤n{2q
7: pziq1¤i¤n Ð SecAddppx1iq1¤i¤n, py1iq1¤i¤nq
8: return pziq1¤i¤n

5.3 Higher-Order Masking of Comparison of Polynomials

In this section, we first explain why previous approaches from lattice-based signature schemes
are not suitable for application in lattice-based KEMs. Then, we present a more efficient solution
and provide a security proof for the side-channel security of our algorithm.

65



Chapter 5 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

5.3.1 Evaluation of Previous Approaches
In [OSPG18], Oder et al. explain why it is necessary to apply masking to the comparison step.
In short, a CCA-attacker is able to make predictions about the input to the comparison and by
applying masking to the comparison we prevent the attacker from verifying these predictions.
The approach for the comparison of arithmetically masked polynomials from [OSPG18] however
only works for first-order masking schemes and is not adaptable to higher-order masking. In
[OSPG18] the reported cycle counts also do not explicitly mention the cost of the compari-
son. The approaches from [BBE�18] and [MGTF19] rely on A2B conversions. They have been
proposed for application in lattice-based signature schemes, but an adaptation to lattice-based
KEMs is possible and trivial to realize. Due to costly conversions, these comparisons can be-
come a major slow-down factor in implementations of higher-order masked lattice-based schemes
[SPOG19]. Therefore, we first analyze the impact that a comparison algorithm based on A2B
conversions on the overall performance would have. We give a lower bound for the cost in terms
of cycle counts on Cortex-M4 by measuring the necessary cycle counts of an A2B conversion
as the most expensive component of the algorithm. Due to the lack of code availability for the
implementation described in [BBE�18] and [MGTF19], we developed an A2B implementation
ourselves. For our assembly-optimized implementation, we follow the quadratic A2B approach
from [SPOG19] that improves upon the cubic A2B algorithm from [BBE�18]. Adjusting the
algorithms from [BBE�18] and [MGTF19] to the specific NewHope parameters (n � 1024 and
q � 12289), we measure 4,031 cycles for one first-order masked A2B conversion. In one exe-
cution of the CCA-secure NewHope decapsulation, 2048 A2B conversions are necessary for the
comparison of both ciphertext polynomials. These 2048 conversions therefore take 8.3 million
cycles and would introduce a significant performance overhead. For reference, in [OSPG18]
a first-order-only masked implementation of NewHope takes 25.3 million cycles in total. This
means that using A2B conversions for a higher-order masked comparison would introduce an
unexpected performance overhead. In the following section, we describe a more efficient way
that significantly reduces this overhead.

5.3.2 Our Proposal
The inputs to the new comparison algorithm are one unshared polynomial Ã P FqrXs, that is
also the input to the CCA.Decryption algorithm, and one shared polynomial A P FqrXs that
is the result from the re-encryption in CPA.Encrypt. For k coefficients and n shares we have

0 ¤ i   k : Ai �
ņ

j�1
Aj

i mod q.

The core idea of our efficient algorithm is to perform the comparison directly on a large set of the
coefficients of the two polynomials, instead on each of them individually as in previous schemes.
The set of coefficients is chosen in such a way that an attacker could pass the comparison step
using a malformed ciphertext only with negligible probability. The k coefficients are distributed
into x sets of cardinality l � k

x using index sets Im (for the sake of simplicity, we assume that
x|k). The sets Im are constructed in the following way:

0 ¤ m   x : Im :� tm � k

x
, . . . , pm� 1q � k

x
� 1u.
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After the construction of the sets Im the following x shared sums Bj
m over subsets of coefficients

are calculated (all operations are mod q and performed share-wise):

0 ¤ j   n, 0 ¤ m   x : Bj
m �

¸
iPIm

�
Aj

i � r1,i

	
r2,i

with r1,i and r2,i being uniformly random numbers Pr Fq. Then each of the shares is summed
up:

Bm �
n�1̧

j�0
Bj

m

By computing the sum we get

Bm �
n�1̧

j�0

�¸
iPIm

�
pAj

i � r1,iqr2,i

	�

�
¸

iPIm

��
n�1̧

j�0
Aj

i � n � r1,i

�
r2,i

�
�

¸
iPIm

ppAi � n � r1,iq r2,iq .

Therefore we can now calculate the sums B̃m of the coefficients of the same index sets of the
unshared polynomial Ã

@m P r0, x� 1s : B̃m �
¸

iPIm

��
Ãi � n � r1,i

�
r2,i

�
and compare it to the sums Bm. This comparison is performed unmasked using any method,

e.g., subtracting the Bm from B̃m and checking the zero-Bit.
The comparison returns success if B̃m � Bm for every m P r0, x � 1s and fails otherwise.

This approach needs 2k q-sized words randomness and the performance is linear in k and n.
Algorithm 5 shows how to compute the masked sums Bm and B̃m. In the following, our analysis
will focus on this algorithm.

Correctness

The correctness of the algorithm is given if a valid ciphertext input successfully passes the
comparison and the probability that a malformed ciphertext successfully passes the comparison
is negligible. It is trivial to see that the first condition is fulfilled. For the second condition, we
analyze the upper bound Y for the probability that an attacker can create a collision, indicated
with Pcoll, i.e., that all m masked sums Bm and B̃m are equal even though A � Ã.

Pcoll � P pcomparepA, Ãq � true |Di : Ai � Ãiq ¤ Y
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Algorithm 5 MaskedSum of m-th set
Input: A1, . . . , Al P Fn

q such that
°

j Aj
i � Ai mod q, Ã1, . . . , Ãl P Fq

Output: Bm, B̃m P Fq

1: pBi
mq1¤i¤n Ð 0

2: Bm Ð 0
3: B̃m Ð 0
4: for i � 1 to l do
5: R1

$Ð Fq

6: R2
$Ð Fq

7: for j � 1 to n do
8: Bj

m Ð Bj
m � pAj

i �R1q �R2 mod q
9: end for

10: B̃m Ð B̃m � pÃi � n �R1q �R2 mod q
11: end for
12: for j � 1 to n do
13: Bm Ð Bm �Bj

m mod q
14: end for

In order to determine Pcoll, we point out that

Pcoll � pPsingle�collqx

where Psingle�coll is the probability that one pair of masked sums Bm and B̃m is equal when
A � Ã. Assuming random input A, Psingle�coll is given by:

Psingle�coll � P pBm � B̃mq � P p@i P Im : Ai � Ãiq

� P

�
ļ

i�1

�
Ai � Ãi

� � r2,i � 0
�
� q�l

� P
�pAl � Ãlq � r2,l � 0

� � P �l�1̧

i�1
pAi � Ãiq � r2,i � 0

�

�
q�1̧

c�1

�
P ppAl � Ãlq � r2,l � cq � P

�
l�1̧

i�1
pAi � Ãiq � r2,i � q � c

��
� q�l

�
�

1�
�

q � 1
q


2
�
� P
�

l�1̧

i�1
pAi � Ãiq � r2,i � 0

�

�
q�1̧

c�1

��
q � 1

q2



� P
�

l�1̧

i�1
pAi � Ãiq � r2,i � q � c

��
� q�l

� 1� q�l

q
� 1

q
.
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If this assumption holds, the overall collision probability is then

Pcoll � 1
qx

.

As shown in Fig 5.1, the attacker has full control over Ã, but cannot directly influence A.
In the following, we want to show that for some input Ã the resulting A is indistinguishable
from a deterministic but random vector and therefore the equation above holds. As Figure
5.1 shows, A is the output of the CPA.Encryption and as such also depends on the output of
the CPA.Decryption that in turn depends on the secret key. With his choice of the Ã, the
attacker can single out single coefficients of the secret key and therefore minimize the influence
of the secret key. By doing so, the number of possible outputs of the CPA.Decryption is q.
The output of the CPA.Decryption is also the input to the random oracle G, which outputs
the seed for the PRNG that is used in the CPA.Encryption. The PRNG is then used to
generate the noise polynomials in the CPA.Encryption. This means that, while the attacker
can reduce his uncertainty about the output of the CPA.Decryption to a single coefficient, this
uncertainty will spread through the PRNG and influence all other coefficients in the output of
the CPA.Encryption. Therefore A will look random and our equation for Pcoll holds.

The number of sets is therefore calculated as x � r� logq Y s. For q � 12289 and Y   2�128,
we have x � 10. In our implementation, we will set x � 16 since 16|pk � 1024q and there is
no difference in performance. The only downside of increasing the number of sets is that the
maximum masking order is reduced. But for x � 16 sets and k � 1024 coefficients, the possible
number of shares is still n ¤ l � 64, which should be much more than needed in practice. For
x � 16, the collision probability is Pcoll � 2�217.

Probing Security Proof

In this section we provide the formal proof that our comparison algorithm is t probing secure,
with t ¤ minpn� 1, lq, with probability 1� q�l. We proceed by first showing, in the following
proposition, that the algorithm MaskedSum is t–NI.

Proposition 1. Algorithm 5 is t–NIat any order t ¤ minpn� 1, lq, unless @i P Im : Ai � Ãi.

Proof. Let P � pI, Oq be the set of t adversarial probes on Algorithm 5, with I the ones on
the internals and O on the output. The elements of I belong to the following possible groups:

(0) Aj
i

(1) R
piq
1 , R

piq
2 , the values of R1 and R2 at the ith iteration of the loop at line 4

(2) Aj
i �R

piq
1

(3) pAj
i �R

piq
1 q �Rpiq

2

(4) pAj
1 �R

p1q
1 q �Rp1q

2 � � � � � pAj
k �R

pkq
1 q �Rpkq

2 with k ¤ l, for j � 1, . . . , n

(5) B1
m � � � � �Bh

m with h   n
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(6) Ãi

(7) pÃi � n �Rpiq
1 q �Rpiq

2

(8)
°k

i�1pÃi � n �Rpiq
1 q �Rpiq

2 with k   l

with, where not differently stated, i � 1, . . . , l and j � 1, . . . , n. The set O, instead, is consti-
tuted by Bm and B̃m.

We start by constructing l sets of indexes Ip1q, . . . , Iplq in the following way: for each probe
in group (0), (2) or (3) add the index j to the set Ipiq and for each probe in group (4) add the
index j to each Ipiq with i ¤ k. Since for each adversarial observation at most one index is
added to the Ip1q, . . . , Iplq and no index is added when there is a probe on the output, then each
of the sets has cardinality at most |P|.

We now simulate the set of probes P by using only the Aj
i with j P Ipiq. Since the Ãi are

already public, group (6) does not need to be simulated.

Step 1 For each element in group (0), by construction j P Ipiq and therefore the element can
be simulated as in the real algorithm.

Step 2 Each element in group (1) is simulated uniformly at random, i.e., by picking R
piq
1 P Fq

and R
piq
2 P Fq.

Step 3 For each element in group (2), we distinguish two cases. If R
piq
1 was already observed,

we take the value simulated in the previous step. Otherwise we pick R
piq
1 uniformly at

random from Fq. In both cases, since j P Ipiq we can simulate Aj
i as in the real algorithm.

Step 4 For each element in group (3), we distinguish the following cases. If pAj
i � R

piq
1 q was

probed, we take the already simulated value, otherwise we simulate it according to the
previous step. Additionally, we simulate the value R

piq
2 with his value from Step 2, if it

was previously observed, and by picking it uniformly at random from Fq otherwise. We
finally calculate the product pAj

i �R
piq
1 q �Rpiq

2 .

Step 5 For each element in group (4), we distinguish the following cases. For any sum°h
i�1pAj

i � n � Rpiq
1 q � Rpiq

2 with h   k that has already been probed, use the probed value
for its simulation. For the rest of the addends, if one of the sums pAj

i � R
piq
1 q � Rpiq

2 was
probed, we take the simulated value, otherwise we simulate it as in the previous step. We
finally calculate the sum of the values as in the real algorithm. Note that by construction,
even if all the random bits are probed, the simulation needs at most one share Aj

i of each
input.

Step 6 If the probe is in group (5), we point out that, due to the common random bits among
the addends, the sum can be rewritten as

°l
i�1pA1

i � � � � � Ah
i � hR

piq
1 qRpiq

2 . Despite the
simplification, since t ¤ l, then there exists at least one pair R

p̂iq
1 and R

p̂iq
2 that has not

been probed. We pick such R
p̂iq
1 and R

p̂iq
2 uniformly at random from Fq, and therefore there

exists at least one of the sums that will be simulated at random, and as a consequence
the entire sum is simulated randomly and independently from each Ai.
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Step 7 In the case the probe is in group (7), if R
piq
1 (resp. R

piq
2 ) has not already been simulated

during one of the steps above, pick uniformly at random R
piq
1 P Fq (resp. R

piq
2 P Fq),

otherwise take the value already assigned and in both cases compute the probe as in the
algorithm, using the public value Ãi.

Step 8 In the case the probe is in group (8), for any sum
°h

i�1pÃi � n �Rpiq
1 q �Rpiq

2 with h   k
that has already been probed, use the probed value for its simulation. For the rest of the
sums, for each pÃi�n �Rpiq

1 q �Rpiq
2 already observed, take the value already simulated. For

the remaining addends, simulate them as in Step 7. Finally sum up the pÃi�n �Rpiq
1 q �Rpiq

2
as in the real algorithm.

Step 9 For the output Bm � B1
m � � � � � Bn

m, since this corresponds to an element in group
(5) with h � n, the simulations follows the same procedure as Step 6. This time the sum
reduces to

°l
i�1pAi � nR

piq
1 qRpiq

2 . We point out again that, since t ¤ l, then there exists
at least one pair of elements R

piq
1 and R

piq
2 that has not been probed.

Step 10 Finally, for the simulation of the output B̃m, i.e.,
°l

i�1pÃi � n � Rpiq
1 q � Rpiq

2 we notice
that since t ¤ l, there exists at least one pair R

piq
1 and R

piq
2 that has not been probed,

and therefore there exists at least one of the sums that will be simulated at random, and
as a consequence the entire sum is simulated randomly and independently from Ã. If
@i P Im : Ai � Ãi, this simulation is not consistent because B̃m must be equal to Bm in
this case and it therefore depends on the Ai.

From the simulation above and Definition 1 we can conclude that Algorithm 5 is t–NI, unless
@i P Im : Ai � Ãi.

In the following we show, that the probabilistic nature of our security proof is of no conse-
quence and the comparison is secure when using practical parameters.
Note that Proposition 1 implies that the outputs Bm and B̃m of Alg. 5 and, by extension, the
result of the comparison of these values can be simulated without knowledge of any coefficient
Ai unless @i P Im : Ai � Ãi. In this case the proof fails which results in possible leakage of the
Ai. This type of collision can happen in one of the following two cases:

(1) @m,@i P Im : Ai � Ãi, i.e., all coefficients are equal.

(2) Dm,@i P Im : Ai � Ãi and Dm, Di P Im : Ai � Ãi, i.e, only the coefficients used in some
sums are equal.

In case (1) the Ai are not sensitive as they are already known by the attacker.
As noted in Sect. 5.3.2 any change in a coefficient of Ã is propagated to all coefficients of A
through the random oracle G. Therefore, if the output coin2 of G is collision free, the probability
of case (2) is PB�coll � q�l. When using practical values for q and l, PB�coll is always smaller
than the collision probability of G1 and the algorithm is secure against t-order attackers. For
example, with our parameter choice for NewHope (q � 12289, l � 64) PB�coll   2�869.

1More precisely, the relevant metric is second-preimage resistance. In the case of NewHope coin2 is
P t0, ..., 255u32.
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5.3.3 Application to NewHope and Other Schemes

While our masking scheme is relevant for a large variety of schemes, we specifically pick NewHope
[ADPS16] as case study to be consistent with previous work [RRVV15, RdCR�16, RRdC�16,
OSPG18, SPOG19]. The relevant parameters of the scheme are the lattice dimension (i.e.,
the number of coefficients in the polynomials) of k � 1024 and the modulus q � 12289. We
expect similar results when our algorithm is applied to other schemes. Generally, higher-order
masked lattice-based KEM implementations that rely on the Fujisaki-Okamoto transform to
achieve CCA security can benefit from our comparison approach as long as the parameters are
compatible to the requirements described in Sect. 5.3.2. For example, in Kyber [BDK�18] the
lattice dimension is only k � 256, but depending on the parameters set there are more (up to
four) polynomials in the ciphertext. As the CCA security of Kyber depends on the Fujisaki-
Okamoto transform and as shown in Alg. 9 in the Kyber specification [SAB�19], the comparison
is the same as in NewHope. Consequentially, the input to the comparison in line 6 also depends
on the output of a random oracle G, therefore our proof in Sect. 5.3.2 holds. The modulus of
LAC [LLZ�18] is only q � 251. This modulus would lead to reduced memory requirements as
each coefficient can be stored in a single byte.

5.4 Microcontroller Implementation

In this section, we discuss our microcontroller implementation in detail and the methodology
for our side-channel measurements.

5.4.1 Microcontroller Implementation

Our evaluation platform is the STM32F4-DISCOVERY board that is based on the STM32F407VGT6
ARM Cortex-M4F microcontroller. NIST recommends to use the Cortex-M4F as target plat-
form for microcontroller evaluations of post-quantum standardization candidates [Moo19]. Fur-
thermore, the concrete processor and board we used in our performance and side-channel eval-
uation was suggested as a reference platform for PQC algorithms in [KRSS19]. It runs with a
clock frequency of up to 168 MHz. The board offers 192 kB of RAM as well as 1 MB of flash
memory. Furthermore, it features a true random number generator (TRNG) based on analog
circuitry and a floating-point unit (FPU). The Cortex-M4F has 13 general purpose registers
and (R0�R12), one register reserved for the stack pointer, a link register, one register reserved
for the program counter, and special-purpose program status registers. When mixing C with
assembly it is important to note that the calling convention requires parameters to be in R0�R3
and the result to be in R0 � R1. The link register can be used as general purpose register as
well, if the assembly function does not call any other function and its original value is restored
before leaving the function.

To prevent timing leakages, implementations of cryptographic schemes are usually expected
to be protected against timing attacks, this is usually referred to as constant-time property of
implementations. However, we need to distinguish between two different notions of constant-
time. In the following, we will use the expression constant-time in case the execution time
of an implementation is actually constant. Furthermore, we will refer to an implementation
as timing-independent if the implementation has a non-constant execution time but is still
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protected against timing side channels because the execution is independent from the input
data.

The implementation of our comparison algorithm requires the generation of random numbers
in r0, q � 1s, where q is an arbitrary integer and in many cases (like NewHope) a prime. To
ensure a uniform distribution of these numbers, we apply the rejection sampling method from
[SPOG19] that takes as input random bit vectors from the on-board TRNG and only accepts
the input if the value is in r0, q�1s and rejects otherwise. As this method works with rejections,
it is timing-independent, but not constant-time. We therefore implemented two variants of the
algorithm - one constant-time implementation that is suitable for side-channel evaluation and
one performance-optimized variant for practical use. The main difference between these two
implementations is that the side-channel measurement-friendly variant first fills a buffer with
random values in r0, q � 1s. The implementation of the actual comparison then just accesses
this buffer to load the necessary random numbers. By doing so, side-channel measurements can
be triggered after the (non-constant-time) generation of random numbers is completed avoiding
the necessity of trace alignment in the side-channel experiments. However, as the on-board
TRNG needs to sample sufficient thermal noise in the background, requesting random numbers
from the TRNG in rapid succession is quite slow as the program will be halted until the TRNG
is ready. In our second performance-optimized approach, we therefore spread out the TRNG
calls throughout the algorithm to minimize the TRNG waiting time.

MOV TMP,#0x3001
ADD INPUT A, INPUT B
SUB INPUT A, TMP
SXTB TMP2, INPUT A, ROR #24
AND TMP, TMP2
ADD INPUT A, TMP

Listing 5.1: Combined modular addition and subtraction in assembly.

For the modular reduction, we use the constant-time Barrett reduction from [OSPG18] that
uses the floating point unit of the Cortex-M4F. We furthermore use a special method to combine
the addition and modular reduction of two values mod q as shown in Listing 5.1. The idea is to
perform a conditional subtraction of the modulus in constant-time. We first load the modulus
into a temporary registers tmp1. Then we add the two inputs and subtract the modulus from the
sum. With the help of the SXTB instruction and the internal barrel shifter of the Cortex-M4F we
create a bit mask that is either 1...12 in case the result of the subtraction was negative or 0...02
if the result was positive and store the bit mask in tmp2. We then compute the AND of tmp1
and tmp2. The register tmp1 now contains either the modulus if the result of the subtraction
was negative or 0...02 if the result was positive. Finally, tmp1 is added to the result of the
subtraction to receive the output. This approach takes only six cycles for combined addition
and modular reduction and needs two temporary registers for intermediate results.

We try to minimize the load and store memory accesses by efficiently using the available
registers of the Cortex-M4F. While doing so, it is important to keep in mind that we first sum
up all coefficients within a set of a share and then sum up the sums of each share. It might be
tempting to switch the order of these summation because it would save a big number of loads
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and stores of the random r values. However, this would also introduce a side-channel leakage as
the secret shares would be combined without sufficient randomness. Apart from the r values,
no value is loaded twice and no store instruction is used. We therefore argue that our memory
access scheme is optimal.

5.4.2 Side-channel Measurements
In order to practically evaluate the resistance of the proposed comparison algorithm against
side-channel attacks, we performed a Test Vector Leakage Assessment [GJJR11] of the constant-
time implementation described in Section 5.4.1. With the goal of reducing the computational
complexity of the evaluation, we set the number of coefficients in the measured implementation
to four and only considered k � 1 sets. Note, that this does not weaken the evaluation results
due to the construction of our algorithm. By using the non-specific fixed-versus-random t-test,
the analysis can show possible leakage points independent of specific sensitive variables. In this
evaluation methodology, the target device is supplied with either a fixed or random input in a
random order. During the computation of the target, the side channel (e.g. power consumption
or EM emanation) is measured on which the test metric is applied to decide if the consumption
is distinguishable depending on the input. For the first-order univariate case, the test statistic
to evaluate if the mean of a sample point of the two sets of traces F and R is different can be
computed as

tF,R � F̄ � R̄

sn

with

sn �
d

s2
F

nF
� s2

R

nR

where nX , X̄, and s2
X are the number of collected samples, the estimated means and the

estimated variance of the respective point. The magnitude of this test-statistic can then be
compared to a threshold which is required to be reached to confirm an input-dependent mean
of the analyzed sample point. For the evaluation of complete power- or EM-traces, the statistic
can be computed point-wise. As pointed out in [DZD�17], this simultaneous application of
multiple tests can artificially skew the outcome towards a positive result. In order to obtain a
result with a given confidence, the detection threshold must therefore be adjusted depending
on the number of samples in a trace. We use the Šidák Correction as suggested in [BPG18] to
calculate the threshold for a confidence level of α given a trace length L and n measurements:

tth � Qtp1� L
?

1� α, vq,

where Qtp�q is the quantile-function of the t-distribution and v � n{2 the degree of freedom.
Therefore a threshold for multivariate leakage (with L�L points) is always higher when compared
to the univariate case. As our experiment targets a software implementation where different
shares of a sensitive variable are manipulated at different points in time, a multivariate anal-
ysis is necessary for achieving a meaningful evaluation of higher-order leakage. We restricted
the experiments to first- and second-order analysis of the two- and three-share variants of the
comparison algorithm, as higher-order multivariate leakage assessment is computationally pro-
hibitive. This is because the effort for the required sample-point combination is proportional
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to n � LE where E is the evaluation order. The evaluation of second-order multivariate leakage
was performed following [SM15] by combining all pairs of points in a trace using the optimal
centered product according to [SVO�10].

We sent a fixed or random challenge to the target microcontroller in a random order. The
power consumption was measured while the microcontroller was evaluating the comparison
algorithm on either a fixed or a random input. The device generated a trigger pulse for optimal
trace alignment and performed the comparison algorithm on the provided input and a fixed set of
coefficients stored at compile-time. When generating the random input, we rejected values that
were equal to the reference coefficients to avoid producing high false-positive (non-exploitable)
t-test results in the evaluation.

The measurements were conducted on the same ARM Cortex-M4F board that was used for
the performance evaluation.

In order to show the side-channel resistance of our implementation in a worst-case scenario,
we increased the signal-to-noise ratio as much as possible by modifying the PCB as well as
adapting the firmware accordingly. For data transfer between a host computer and the target
board, we made use of a UART-core of the microcontroller which eliminates noise introduced
by the on-board USB interface. In addition to disabling data and instruction caches available in
the STM32F407VG, the SysTick-timer and all interrupt source in the controller were disabled
to ensure constant-time behavior of the measured code. For further noise reduction in the
measurement system, all non-essential clock paths in the target controller were disabled. In an
effort to reduce other noise sources as much as possible, all non-essential peripheral devices on
the board, such as the MEMS accelerometer and the audio DAC, were de-soldered.

As power measurements appeared to not contain a sufficient signal-to-noise ratio for a suc-
cessful evaluation on our microcontroller board, we collected EM traces with a near-field probe
and amplified them before feeding them into an oscilloscope. The EM traces were acquired with
a sample rate of 156.25 MS{s at 8 bit resolution using a 50 MHz-bandwidth H-field probe. We
kept the position of the probe relative to the microcontroller fixed between measurements in
order to produce comparable results.

The findings of the practical SCA-evaluation are provided in Sect. 5.5.3.

5.5 Results

In this section, we present the results of our practical evaluations. This includes performances
evaluations as well as side-channel evaluations.

5.5.1 Performance Evaluation

We evaluated our work by using the OpenSTM32 System Workbench (version 2.6), which is
based on the development environment Eclipse and has specifically been designed to support
the development for ARM-based STM32 boards. The IDE uses the GNU ARM Embedded
Toolchain (version 7.2) and we set the optimization level to -O3. Determining the performance
of our implementation was done by using the cycle count register DWT_CYCCNT of the Data
Watchpoint and Trace unit that the Cortex-M4F offers. We set the clock frequency of the
microcontroller to 24 MHz to avoid any wait cycles at the memory. All cycles counts were
obtained by measuring our performance-optimized implementation. With the publication of
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this work, we will make our implementation publicly available to allow independent verification
of our results.

In Table 5.1, we show the cycle counts for the comparison algorithm of one polynomial with
k � 1024 coefficients. We compare our approach with the cost of 1024 A2B conversions as
explained in Section 5.3.1. Both implementations benefit from assembly optimization. The
direct comparison of both approaches shows that for two shares already, our approach is at
least 14 times faster than an A2B-based approach. It is also obvious from the table that our
algorithm has a better asymptotic complexity as it is only linear in the number of shares while
A2B conversions are at best quadratic. Therefore the speed-up factor gets even bigger when
the number of shares is increased which makes our algorithm two orders of magnitude faster for
five shares already. Extrapolating these numbers we expect the cycle counts for higher orders
to be around 165, 000� 41, 000 � n, where n is the number of shares.

Table 5.1: Clock cycle counts for our ARM implementations of the masked comparison at 24
MHz for k � 1024 including randomness generation. All results are averaged over
100 runs.

Shares 2 3 4 5
Comparison in [OSPG18] 480,227 - - -
NewHope CCA-DEC [OSPG18] 25,334,493 - - -
1024 A2B conversions 4,127,744 11,875,328 21,027,840 35,353,600
Our comparison algorithm 250,991 284,989 329,053 373,860
Speed-up factor x16 x42 x64 x95

At our measurement frequency of 24 MHz, 250,991 cycles are executed in 10 milliseconds.
However, the maximum clock frequency of the microcontroller is 168 MHz. For reference, we
also measured our implementation at 168 MHz, to get a realistic impression of the time needed
to execute the algorithm. We observe only a minor increase in the number of cycles at 168
MHz, namely to 258,695 cycles. Since the algorithm does not load any constants values from
flash memory, we assume that this difference is mainly caused by the variable timing behavior of
our implementation (see Section 5.4.1 for a discussion about why our implementation is secure
against timing attacks). We therefore conclude that the cycle counts obtained at 24 MHz also
give a realistic impression of the performance of the implementation at 168 MHz. Therefore,
at 168 MHz, the masked comparison of one polynomial takes 1.5 ms for two shares, 1.7 ms
for three shares, 2.0 ms for four shares, and 2.2 ms for five shares. This makes our approach
a low-overhead component for the construction of higher-order masking schemes lattice-based
cryptography.

For polynomials with k � 1024, the maximum masking order that our implementation sup-
ports is 64 as we decided to implement 16 subsets of coefficients. We expect this to be sufficient
for practical uses in the foreseeable future. One downside of our approach is the relatively high
dynamic memory consumption as we need to store 2k random values mod q. This is equal to
the memory consumption of two polynomials. However, embedded into a lattice-based KEM,
we do not expect our algorithm to increase the dynamic memory consumption at all as the peak
memory usage is expected to be in the CPA.Encryption or CPA.Decryption and the compari-
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son algorithm is executed after these two components. The static Flash memory consumption
of our algorithm is also very low as it needs only about 200 lines of assembly code.

To our knowledge, currently there exists no higher-order CCA-secure implementation of any
lattice-based KEM. However, we also implemented the approach from [OSPG18], even though
this algorithm is only first-order secure and cannot be extended to higher orders. Table 5.1
includes the cycle count for the complete CCA2-secure decryption as well as for only the com-
parison step. The board used to measure these performance values was identical to the one
we used in our evaluation. The idea from [OSPG18] is to subtract Ã from one share of A,
individually hash the result of this subtraction and the other share and compare the outputs of
the hash calls. Our implementation achieves similar performance even though our source code
can generically support higher orders too and the implementation from [OSPG18] is optimized
for the first-order case.

Table 5.2: Clock cycle counts for our ARM implementations of the masked comparison at 24
MHz for different parameter sets including randomness generation. All results are
averaged over 100 runs.

Shares 2 3 4 5

KYBER-768
A2B conversions 3,095,040 8,906,496 15,770,880 26,515,968

Our algorithm 185,338 216,945 248,455 279,973
Speed-up factor x17 x41 x63 x95

LAC-192
A2B conversions 2,267,136 6,360,064 11,131,904 18,551,808

Our algorithm 230,432 272,489 314,558 356,621
Speed-up factor x10 x23 x35 x52

In Table 5.2 we also exemplarily evaluated the performance of our implementation for the
parameter sets of KYBER-768 and LAC-192 to show the impact of the choice of n on the per-
formance of the comparison. KYBER-768 uses k � 768 coefficients and a modulus q � 3329. In
this case, we observe very similar speed-up factors in comparison with an A2B approach. This
is expected since both approaches are linear in k. Therefore the cycle counts for k � 768 are
also roughly equal to three quarters of the cycle counts for k � 1024. In this scenario the cycle
count for higher orders can be expected to be around 122, 000� 32, 000 � n with n shares.
While LAC-192 operates on the same number of k � 1024 coefficients as NewHope the modulus is
q � 251 in this case. This results in lower randomness requirements of our algorithm and there-
fore slightly increased performance when compared to NewHope. As the A2B-based approach
benefits even more from this, the speed-up gained by our approach is lower. For LAC-192, the
cycle count for higher orders can be expected to be around 145, 000� 42, 000 � n with n shares.

As stated before, complete higher-order masked lattice-based KEMs are currently not avail-
able for comparison. However, we can roughly estimate the impact of our comparison algorithm
at higher orders. For obvious reasons, the cycle count of any masked implementation must be
at least linear in the number of shares n.2 As our algorithm has linear complexity in n the
relative overhead of the algorithm does not (asymptotically) grow with increasing n.

2Otherwise it could just use less shares.
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5.5.2 Randomness Consumption

In this section, we analyze how much randomness our implementation needs for the masking
scheme. For our specific choice of q � 12289, the rejection-based sampling of uniform random
numbers mod q has an acceptance rate of 75% since the acceptance rate ar is calculated as
ar � 12289

214 . For efficiency reasons, we use chunks of 16 bits of randomness for one sampling
attempt of which two bits are simply ignored. On our evaluation platform the randomness can
be efficiently generated by the on-board TRNG. On platforms with lower randomness generation
capabilities the randomness requirements can be reduced to 87.5% of the values below by using
14- instead of 16-bit chunks. This approach requires more memory to store the randomness
and more processor cycles to extract it. As we need 2k random numbers mod q, the expected
number of required random bits for our approach is

rbits � 2k
16 bits

ar
� 2 � 1024 � 16 bits

0.75 � 43, 688 bits

This calculation is valid for any number of shares n   64. This theoretical amount of ran-
domness is confirmed by our practical experiments. We compare the randomness consumption
of our approach to the A2B-based approach in Table 5.3 as measured by our implementation.
The first-order only approach from [OSPG18] does not need any additional randomness. While
our algorithm needs less randomness than the A2B-based approach even for low masking orders
this advantage increases for higher orders because the randomness requirement is independent
of the masking order.

Table 5.3: Random bit consumption for our ARM implementations of the masked comparison
for different parameter sets. All results are averaged over 100 runs.

Shares 2 3 4 5

NewHope
A2B conversions 655,360 2,392,064 4,653,056 8,519,680

Our algorithm 43,648 43,680 43,584 43,712
Improvement factor x15 x55 x107 x195

KYBER-768
A2B conversions 491,520 1,794,048 3,489,792 6,389,760

Our algorithm 30,240 30,208 30,176 30,272
Improvement factor x16 x59 x116 x211

LAC-192
A2B conversions 393,216 1,343,488 2,555,904 4,587,520

Our algorithm 16,704 16,711 16,706 16,705
Improvement factor x24 x80 x153 x275

5.5.3 Leakage Evaluation

This section details the results of our experimental side-channel evaluation. We used a signif-
icance level of α � 0.01 for all assessments in this section. For reference, Figure 5.2a shows
an example trace of the measured EM-emanation. When the masking countermeasure is de-
activated by setting the masks to zero, large first-order leakage can be observed as shown in
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Figure 5.2b even using only 5000 traces. This behavior is expected as the algorithm operates
on unmasked values in this case.
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(a) Example trace of two-share version with four
coefficients.
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(b) First-order leakage for two-share version with

four coefficients (masks disabled, 5 k measure-
ments, tth � 4.77).

Figure 5.2: Sample trace and reference measurement.

When random masks are used, an evaluation using 1 million traces does not show detectable
first-order leakage (Fig. 5.3a). The two-dimensional plot resulting from the bivariate TVLA
is shown in Figure 5.4. Each pixel is colored according to the absolute t-value present in the
respective combinations of points in time. In order to ensure readability of Figures 5.4 and 5.5
we binned the sample points into a 100 times 100 pixel-grid and plotted the maximum t-value
of each bin. The multivariate analysis of the second-order leakage allows to clearly identify
points at which different shares of coefficients are handled, as the 2-share implementation only
protects against first-order attacks.

Figure 5.3b shows the result of a first-order evaluation on traces collected from the three-share
implementation with four coefficients and activated masking after 1 million measurements. As
expected, no first-order leakage can be detected. The results of the second-order multivariate
t-test is shown in Fig. 5.5. The leakage detection threshold of tth � 6.36 is not reached at any
point in time.

In summary, we were not able to detect first-order leakage in the two-share constant-time
implementation or second-order multivariate leakage in the three-share implementation even
using 1 million measurements.

5.6 Conclusions and Future Work
In this work, we identify the comparison step of the Fujisaki-Okamoto transform as, a so far
overlooked, bottleneck in higher-order masking of lattice-based cryptography. We present a
novel higher-order masking scheme for the comparison, that outperforms the naive approach by
at least one order of magnitude and it is applicable to constructions with prime modulus. The
naive approach based on A2B conversions has a complexity of Opn2kq, while the asymptotic
complexity of our algorithm is only Opnkq, i.e., it is linear in the number of shares and in
the number of coefficients of the polynomial. Furthermore, the probability for an attacker

79



Chapter 5 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

0 1000 2000 3000 4000 5000
Sample

5

0

5

t

(a) First-order leakage for two-share version with
four coefficients (masks enabled, 1 M measure-
ments, tth � 4.77).

0 1000 2000 3000 4000 5000 6000 7000
Sample

5

0

5

t

(b) First-order leakage for three-share version
with four coefficients (masks enabled, 1 M
measurements, tth � 4.82).

Figure 5.3: First-order SCA analysis of 2- and 3-share implementation.
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Figure 5.4: Second-order leakage for two-share version with four coefficients (masks enabled,
1 M measurements, tth � 6.28). Points with t-values above the threshold are high-
lighted red.
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Figure 5.5: Second-order leakage for three-share version with four coefficients (masks enabled,
1 M measurements, tth � 6.36). Points with t-values above the threshold are high-
lighted red (none present).

to forge an invalid ciphertext that is still accepted by our comparison is negligible (2�217).
We give a theoretical proof of the side-channel security of our algorithm and confirm with
practical measurements that our highly efficient microcontroller implementation does not show
side-channel leakage, even for significantly more power traces than in previous work on masking
for lattice-based cryptography. In the ongoing NIST post-quantum standardization, our work
is an important step towards understanding the overhead cost of side-channel countermeasures
applied to the NIST candidates.

After the publication of our work at CHES 2020 [BPO�20] the authors of [BDH�21] discov-
ered two possible attacks against the masking scheme proposed in this chapter. The first attack
relates to the fact that, while the final result of the comparison is not sensitive, the comparison
over a subset of coefficients is, if a slightly modified ciphertext is generated by an attacker.
A similar vulnerability was also found to apply to [OSPG18]. The second attack exploits a
similar weakness by which the assumed collision probability of q�x can be increased to 1

q . This
effectively breaks the CCA security of the scheme without requiring side-channel information.
In order to prevent these vulnerabilities the authors of [BDH�21] propose to generate a masked
sum over all coefficients instead of a subset of coefficients. This sum generation is then to be
repeated x times, such that the collision probability q�x is acceptably low.
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As future work, we advise extending the comparison algorithm to work for power of two
moduli, which at the moment are not considered in our scheme. Furthermore it would be
interesting to see how our masking countermeasure can be combined with countermeasures
against other attacks, like fault injection attacks, since it was already analyzed in [OSPG18]
that the comparison step could be a primary target for fault attacks.
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Chapter 6

Masking Addition with Boolean Shares

Modular addition is an important component of many cryptographic algorithms such
as ARX-ciphers and lattice-based post-quantum secure schemes. In order to protect
devices that execute these algorithms against side-channel attacks, countermeasures
such as masking must be applied. However, if an implementation needs to be secured
against multivariate attacks, univariately secure masking schemes do not suffice.
In this chapter, we focus on hardware architectures for higher-order masked addi-
tion circuits. We present and discuss three adder designs that are protected with a
provably secure masking scheme. Concretely, we discuss Kogge-Stone, Sklansky and
Brent-Kung adders regarding their suitability for high-order masking and their per-
formance in this setting. All architectures are fully pipelined and achieve a through-
put of one addition per cycle. In order to achieve multivariate security at arbitrary
orders, we use HPC2 Gadgets that satisfy the PINI security notion. Additionally,
we apply a first-order secure threshold implementation scheme to the adder variants
and compare their performance in the univariate case. The work described in this
chapter was published at MDPI Applied Sciences [BG22].
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6.1 Introduction
Modular addition in the ring Z2n is a core part of several cryptographic schemes. For example, in
ARX ciphers they perform similar function to S-boxes in classical block ciphers, being the only
non-linear part of the algorithm. ARX constructions, such as SPECK or SALSA20, combine this
arithmetic function with the boolean exclusive or operation (XOR) and a bit-wise rotation to
produce a secure algorithm. When hardware implementations of such algorithms can potentially
be targets of side-channel attacks, masking can be used as an effective countermeasure. However,
while the separate protection of the arithmetic and boolean parts of these algorithms is possible
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using an arithmetic and a boolean masking scheme, the conversion between these representations
poses a significant problems, especially in hardware.

6.1.1 Contribution
In this work we study how addition operations can be protected against side-channel attacks in
the hardware context using boolean masking. We propose three different designs for parallel-
prefix addition circuits that can generically be masked at arbitrary order using gadgets that
follow the PINI security notion. To this end, we study their suitability for masking and compare
them regarding their area and randomness requirements as well as their latency. In order to
achieve higher-order multivariate security, we employ the HPC2-gadgets that were proposed
in [CGLS20]. We used the source code for the gadgets from the library provided by the au-
thors [Cas] in our implementations. Concretely, the proposed adder structures are:

(1) A Kogge-Stone adder with a latency of log n-cycles.

(2) A Sklansky adder with the same latency but reduced area and randomness requirements.

(3) A Brent-Kung adder which trades of higher latency for an even lower area requirement
and requires less randomness.

After performing a detailed analysis of their structure, we implement these adder types as 32-
bit variants on an FPGA. All implemented variants are fully pipelined and therefore achieve
a throughput of one addition per cycle. To our knowledge, the proposed adders are the first
arbitrary-order masked hardware designs that are secure against multivariate attacks.

Additionally, we discuss the application of the TI masking scheme to the Sklansky and Brent-
Kung structures, where we use the same sharing that the authors of [SMG15a] applied to
ripple-carry and Kogge-Stone adders. Only the first order variant is considered, as higher-order
TI can not generically provide protection against multivariate attacks [Rep15]. In this case,
randomness and area can be saved in comparison to the variants that are secure at arbitrary
order.

6.2 Preliminaries
6.2.1 Notation
The binary operations and, or and xor are denoted by the symbols ^, _ and `, while the
� sign is used for the addition over integers or rings. All logarithms are in base two. The
least significant and most significant bits of the n-bit variable a are a0 and an�1 , respectively.
Single subscripts indicate the index of multi-bit variable (e.g. ai) and consecutive groups of bits
between index i and j are indicated as ati,ju. In order to simplify equations, indices are treated
as zero if they become negative. Superscripts note the respective share of a shared variable.
Logarithms are always in base two.

6.2.2 Parallel Prefix Adders
In order to compute the sum s of two n-bit inputs over Zn, an addition circuit needs to compute
a sum bit si for every pair of input bits pai, biq using carry bits ci as:
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Table 6.1: Number of elementary XOR and AND operations per basic function.
Function gpiq ppiq gpti, juq ppti, juq spiq
AND 1 0 1 1 0
XOR 0 1 1 0 1

si � ai ` bi ` ci with

ci � ci�1 ^ pai�1 ` bi�1q _ pai�1 ^ bi�1q @i ¡ 0 , else 0

A direct realization of these equations leads to a carry-ripple adder with a circuit depth of n due
to the dependency of ci from ci�1. When masking this architecture in hardware where glitches
occur, the required registers in each stage lead to a latency of n cycles.

Parallel-prefix adders can reduce this latency by restating the computation of the carry bits
using (group-) generate and propagate terms and computing them in parallel. Intuitively, the
generate term pti,ju determines if the groups of input bits ati,ju and bti,ju will generate a carry
output cj�1, independently of the carry input ci. The propagate term determines if an input
carry ci will affect the output carry cj�1.

For single-bit inputs pai, biq, the generate and propagate terms are computed as gi � ai ^ bi

and pi � ai ` bi, respectively. We call this initial step, which is the same for all parallel-prefix
adders, the preprocessing step. Given i ¡ k ¥ j, the group-generate term is calculated as

gti,ju � gtk,ju ` pptk,ju ^ gti,k�1uq (6.1)

and the group-propagate term as

pti,ju � pti,k�1u ^ ptk,ju . (6.2)

The final sum bits can then be computed as si � gi�1:0 ` pi, where g�1:0 � 0. The costs in
XOR and AND operations for implementing each of the functions mentioned above are itemized
in Table 6.1.

In the following we use pgti,ju (or PG-term where the indices are not relevant) as a short
form for the tuple ppti,ju, gti,juq. We define the function block that computes these terms by
combining existing terms as PGpti, ju, tk, luq � pppti, luq, gpti, luqq and call them PG blocks.

The different variants of parallel-prefix adders, such as the ones discussed here, all apply this
same principle but differ in the way PG-terms of larger groups of bits are constructed from
smaller ones.

6.3 Boolean Masking for Addition Circuits

In this section, we discuss the application of three different architectures for parallel addition
circuits that can be effectively used for higher-order masked applications. In many cryptographic
schemes, e.g., in ARX algorithms, the addition operation is performed in the ring Zn, where
n � 2m, m P Z. Therefore, we assume the width of the addition circuits to be 2m and do not
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7 6 5 4 3 2 1 0

Figure 6.1: 8-bit Kogge-Stone Adder.

consider input and output carry bits. However, the proposed designs can be adapted to other
bit widths and to the handling of carries, if required by an application.

Throughout this sections we use diagrams to illustrate the structures of the algorithms under
discussion. In these diagrams, the preprocessing blocks are represented by oval shapes while all
other blocks are rectangular. A block is shaded gray if both, the generate and propagate terms,
are computed by it. If a block only needs to calculate the generate or propagate term, it is
shaded green or orange, respectively. Blocks that are only needed if an output carry is required
are not filled. All described adder designs require a final stage for the calculation of the sum
bits, which is not shown in the diagrams.

6.3.1 Kogge-Stone Adder (KSA)
KSAs [KS73] are parallel-prefix adders that are similar to greedy algorithms in the sense that
the maximal number of PG-terms are combined in each stage. A n-bit KSA requires log n stages
to compute all g({i, 0}) terms and one additional stage to compute the final sum bits. In order
to better illustrate the architecture, an 8-bit KSA is depicted in Fig. 6.1. When excluding the
preprocessing step and the final sum calculation, it requires 3 stages and 14 PG-blocks.

In the first stage after the preprocessing step, every PG-term is combined with its neighbor,
i.e., PGpti, iu , ti�1, i�1uq @0   i   n�1 is computed. Therefore, n�1 PG function blocks need
to be instantiated in that stage. In the second stage, PGpti, i�1u , ti�2, i�4uq @1   i   n�1
is computed, requiring n � 2 PG function blocks. Note that ppt1, 0uq is not needed in this
computation and the hardware for its generation can therefore be omitted in the first stage. In
general, stage k computes n� 2k PG-terms as1:

PGpti, i� 2k � 1u , ti� 2k, i� 2k�1 � 1uq @k   i   n� 1.

1When numbering the stages, the stage number k of the first stage after preprocessing is zero.
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Table 6.2: Number of required basic functions for different parallel-prefix adders.
gpiq ppiq gpti, juq ppti, juq spiq

Kogge-Stone n� 1 n pn� 1q � log n� n� 1 pn� 1q � log n� 2 � n� 3 n

Sklansky n� 1 n pn{2� 1q � log n pn{2� 1q � log n� n� 2 n

Brent-Kung n� 1 n 2 � n� 2 � log n� 2 n� 2 � log n n

Table 6.3: Number of elementary XOR and AND operations for different parallel-prefix adders
including the preprocessing stage and final computation of the sum bits.

Kogge-Stone Sklansky Brent-Kung

AND 2 � pn� 1q � log n� 2 � n� 3 pn� 2q � log n� n� 1 3 � n� 4 � log n� 1
XOR pn� 1q � log n� 3 � n pn{2� 1q � log n� 2 � n 4 � n� 2 � log n� 2

As we do not consider the output carry generation, the calculation of pgptn � 1, iuq @i �
n � 1 can be skipped, saving log n PG blocks. This reasoning does not only apply to Kogge-
Stone adders but also to the other structures discussed below. Over all stages excluding the
preprocessing, pn � 1q � log n � n � 1 PG blocks are required. Of these blocks, n � 2 blocks
do not need to compute the propagate term. In the preprocessing step, which is the same for
all parallel-prefix adders, n generate functions and n � 1 propagate functions are needed. A
summary of the required numbers of all the basic blocks for all adder types is provided in table
Table 6.2. By combining Table 6.1 and Table 6.2, we can summarize that an n-bit Kogge-Stone
adder requires pn�1q � log n�3 �n�1 XOR gates and 2 � pn�1q � log n�2 �n�3 AND gates.The
number of elementary operations per adder is depicted in Table 6.3.

Masking KSAs When compared to the other designs discussed in this work, an implementation
of a KSA requires the highest number of PG-blocks, resulting in the largest area requirement
when implemented using masking. As dth-order secure HPC2 AND-Gadgets require d � pd�1q{2
bits of fresh randomness, the total randomness requirement of a HPC2-masked n-bit KSA is
the highest of the discussed variants at d � pd � 1q � ppn � 1q � plog n � 1q � 1q bits. However,
the required randomness can be drastically reduced if only univariate security is considered, as
shown in [SMG15a]. Here, a first-order secure TI of a KSA using 3 shares that only needs n
bits of fresh randomness is proposed. As noted by the authors, their second-order variant does
not provide protection against multivariate attacks.

6.3.2 Sklansky Adder (SA)

The Sklansky Adder was introduced in 1960 [Skl60] as an efficient parallel adder with low area
requirements. It has the same latency as a KSA at log n � 1 cycles but requires a lower total
number of PG blocks. In contrast to the previously described circuit, the number of PG blocks
per stage is constant at n{2. Figure 6.2 depicts an 8-bit Sklansky adder, realized with 12 PG
blocks in 3 stages, excluding preprocessing.
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Figure 6.2: 8-bit Sklansky Adder.

In the first stage, every other PG-term is combined with its neighbor, i.e.,

PGpt2 � i� 1, 2 � i� 1u , t2 � i, 2 � iuq @0 ¤ i   n{2

is computed. The second stage combines these 2-bit PG-terms as

PGpt
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^
� 1, 4 �
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^
uq @0 ¤ i   n{2.

In general, the k-th stage for k ¡ 0 combines the previous PG terms using n{2 PG-blocks in
the following way:

PGpt
Z

i

2k

^
� 2k�1 � 2k � pi mod 2kq,

Z
i

2k

^
� 2k�1 � 2ku ,

t
Z

i
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^
� 2k�1 � 2k � 1,

Z
i

2k

^
� 2k�1 � 2k�1 � 1uq @0 ¤ i   n{2

Following the reasoning of section 6.3.1, pn{2 � 1q � log n PG blocks are needed to build a SA
when excluding the preprocessing stage. As in in the Kogge-Stone case, n � 2 of these do not
need to compute the propagate term. The resulting number of required the basic blocks is
provided in table Table 6.2.

Masking SAs When compared to a KSA, the main advantage of an SA in the context of masked
implementations lies in the reduced number of required PG blocks, which directly results in a
lower area requirement. If HPC2 gadgets are used this also leads to reduces randomness use of
d � pd� 1q � ppn� 2q � log n� n� 1q bit.

If only first-order security is desired, a TI similar to [SMG15a] can be used to reduce the ran-
domness requirements in comparison to HPC2 gadgets. In this publication, the authors re-use
shares of the generate terms to reduce the required fresh randomness in the computation of the
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7 6 5 4 3 2 1 0

Figure 6.3: 8-bit Brent-Kung Adder, generation of the MSB carry bit.

propagate term. Specifically, when computing pti,ju as a masked version of Equation 6.2, the
first share of gtk,ju is used to achieve the uniformity of the tuple ppti,ju, gti,juq. In the KSA-case,
each p-term is not used more than once per stage as the rightmost term in Equation 6.2. There-
fore, each g-term is not used more than once to replace a bit of fresh randomness, preventing
potential violations of the joint uniformity of the pg tuples in later stages. Unfortunately, this
randomness reduction approach can not directly be applied to SAs, due to the higher fan-out
of the PG-blocks of up to n{2 � 1 in this case. Therefore, SAs require additional randomness
when masked with TI. However, the number of required fresh random bits can be reduced by
following the the construction of the second-order secure KSA presented in [SMG15a]. Here,
the authors take four shares from gtk,ju to replace fresh mask bits. Following this approach,
instead of taking the same first share as mask replacement, we can use up to three different
shares. In stages with a fan-out higher than three, additional fresh random bits need to be
inserted. This results in 27 additional random bits required by a 32-bit first-order secure SA
when masked with TI.

6.3.3 Brent-Kung Adder (BKA)

A BKA [BK82] allows a further reduction in the number of PG blocks in comparison to an
SA, albeit with the cost of increased latency. The general structure of BKA is composed of
two trees, where the first tree computes the group generate and propagate terms of increasingly
larger groups of bits until the carry bit for the most significant output can be determined. The
resulting structure can be viewed as a binary tree where the output carry for the most significant
bit represents the root and the PG-terms generated by the preprocessing represent the leafs.
An 8-bit version of this tree is shown in Figure 6.3. As PG-terms, which are not required to
compute the most significant carry bit, are not considered in this process, a second reversed
tree is needed in order to generate them. A full 8-bit BKA that can compute all bits of the final
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Figure 6.4: Complete 8-bit Brent-Kung Adder.

sum is depicted in Figure 6.4. Note that in this 8-bit case, the carry for the most significant
bit is already available after log 8 � 3 stages. However, an additional stage is required for the
reverse tree, which computes the remaining carry bits. As a result, the 8-bit BKA requires a
total of 4 stages and 11 PG blocks, excluding the preprocessing stage.

The first stage in a BKA is the same as for the SA, combining every other PG term with its
neighbor and therefore generating n

2 2-bit PG terms. Following the tree structure of BKAs, the
second stage combines adjacent 2-bit PG terms to 4-bit terms as:

PGpt4 � i� 3, 4 � i� 2u , t4 � i� 1, 4 � iuq @0 ¤ i   n{4.

This pattern is repeated until the final carry can be computed, requiring log n stages. The k-th
stage therefore computes PG-terms for increasingly larger groups of bits using n

2k�1 PG-blocks
according to:

PGpti � 2k�1 � 1, p2 � i� 1q � 2ku ,

tp2 � i� 1q � 2k � 1, pi� 1q � 2k�1uq @1 ¤ i   n

2k�1 .

The resulting structure consists of n � 1 PG blocks, of which log n are only needed for the
output carry generation. As explained above, this binary tree does only generate the group PG
terms that are necessary to calculate carry for the MSB. The reversed tree is therefore inserted
to the circuit below the initial binary tree, generating the remaining terms. In order to improve
the readability of the equations describing the PG term generation, we count the stages of this
subtree beginning with the output stage of the adder, i.e., the stage number l of the inverse tree

90



6.4 Implementation Results and Discussion

is related to the stage of the complete adder k through l � 2 � log n� 2� k. On the lowest level
(l � 0), the inverse tree generates all even PG terms, i.e., pgpt2 � i, 0uq @1 ¤ i   n{2 as:

PGpt2 � i, 2 � iu , t2 � i� 1, 0uq @1 ¤ i   n{2.

In general, the inverse tree in a BKA computes n
2k�1 � 1 PG terms in log n� 1 stages as:

PGpti � 2l�1 � 2l � 1, i � 2l�1u , ti � 2l�1 � 1, 0uq @1 ¤ i   n

2l�1 � 1.

The total number of PG terms in this lower tree is equal to n� log n� 1.
When joining both tree structures, the last stage of the upper tree and the first stage of the

lower tree can be combined in one stage, as there is no direct dependency between them. If no
carry output is required, this step is trivial as the last stage of the upper tree can be omitted.
As a result, a BKA can be realized in with a total of 2 � pn� log n� 1q PG blocks in 2 � log n� 2
stages, when no carry output is computed.

Masking BKAs The asymptotic complexity of the number of PG blocks in a BKA is Opnq in
comparison to Opn � lognq in the KSA and SA cases. This leads directly to smaller implemen-
tations if masking countermeasures are employed. Additionally, as the number of AND-gates
has the same linear complexity, the required number of fresh random bits is reduced further to
d � pd� 1q � p3 � n� 4 � log n� 1q. These improvements are bought with a higher latency due to
BKAs requiring 2 � log n� 2 stages, while KSAs and SAs can be realized in only log n stages.

However, if a first-order TI is used as the masking scheme, the randomness requirements are
higher than in the KSA case. As BKAs have a maximal fan-out of log n, additional randomness
is needed, similar to the SA case. Due to the tree-like structure of the BKA the randomness
overhead is not as severe as for SA adders, amounting to only 3 additional bits in a 32-bit
adder.

6.4 Implementation Results and Discussion
This section provides implementation details for the proposed addition structures. We imple-
mented 32-bit versions of the three algorithms as this size is commonly needed in cryptographic
algorithms such as SALSA20. Note that adaptions to other widths are trivial. All designs
were specified in VHDL and VERILOG and were synthesized for a Xilinx Spartan 6 XC6SLX75
FPGA with speed grade -3 using Xilinx ISE 14.7. In order to assure the correct realization of
masked gadgets the relevant signals were exclude form optimizations and the design hierarchy
was preserved. The implementation results are presented in Table 6.4.

6.4.1 TI Implementations
If first-order security is sufficient in an application, TI is a valid choice for a masking scheme.
Regarding area, our results for the KSA adder are similar to the figures from [SMG15a]. The
clock frequency that was estimated by the synthesis tool differs significantly from our results,
although the authors performed their benchmark on an FPGA from the same family as we did.
Different speed grades of the devices and different constraining of the synthesis might explain
this discrepancy. The SA design utilizes less logic than the KSA, which can be attributed to the
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Table 6.4: Implementation results for different 32-bit adder designs.
Design Flip-Flops LUTs Freq (MHz) Latency Rand.

TI KSA [SMG15a] 1416 1008 197 6 32
TI KSA 1330 937 62 6 32
1st-order HPC2-KSA 3869 3197 143 12 249
2nd-order HPC2-KSA 7646 4427 132 12 747

TI SA 1423 804 216 6 59
1st-order HPC2-SA 3093 2219 180 12 119
2nd-order HPC2-SA 5761 2959 123 12 357

TI BKA 1749 839 220 9 35
1st-order HPC2-BKA 3207 2045 216 18 74
2nd-order HPC2-BKA 5518 2677 174 18 222

lower number of PG blocks. The number of flip-flops is very similar, as it is dominated by the
number of stages in a pipelined architecture. The clock frequency can be increased slightly, but
the higher randomness requirement offsets the advantages in many applications. When masking
using TI, the BKA does not pose any advantages when compared to the other designs. In spite
of requiring the lowest number of PG blocks, the number of LUTs is higher than for the SA
adder, due to the higher number of stages leading to higher routing overhead.

6.4.2 HPC2 Implementations
If resistance against multivariate attacks is demanded, the KSA shows the worst performance
in all categories. It should therefore not be considered in this scenario. The SA can effectively
be utilized if the latency of the adder is the most important factor. The logic and memory
requirements are significantly lower and the randomness requirement is less than half when
compared to the KSA. If latency is less important, the BKA should be preferred. While its
area is only slightly lower, the randomness requirement can be further reduced by almost 40 %
in comparison to the SA. Due to the differing asymptotic complexity this difference increases
for larger widths.

6.5 Conclusion
In this chapter we study three adder designs regarding their suitability for boolean masking. The
algorithms where masked with the TI scheme for first-order security and with HPC2 gadgets
that provide resistance against multivariate attacks. After a detailed complexity analysis and
practical realization on an FPGA we found different scopes of application for the algorithms.
The KSA can effectively be used to achieve univariate security. If randomness requirements are
less important than area, a SA can be considered. In the multivariate case the SA provides
the lowest latency, while the BKA can reduce area and randomness requirements at the cost of
latency.
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Chapter 7

A Side-Channel Protected Processor for
ARX-based Cryptography

ARX-based cryptographic algorithms are composed of only three elemental operations
— addition, rotation and exclusive or — which are mixed to ensure adequate con-
fusion and diffusion properties. While ARX-ciphers can easily be protected against
timing attacks, special measures like masking have to be taken in order to prevent
power and electromagnetic analysis. In this chapter we present a processor archi-
tecture for ARX-based cryptography, that intrinsically guarantees first-order SCA
resistance of any implemented algorithm. This is achieved by protecting the com-
plete data path using a Boolean masking scheme with three shares.
We evaluate our security claims by mapping an ARX-algorithm to the proposed ar-
chitecture and using the common leakage detection methodology based on Student’s
t-test to certify the side-channel resistance of our processor.
The results presented in this chapter were published at DATE 2017 [BSMG17].

Contents of this Chapter

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Design Considerations and Technical Description . . . . . . . . . . . . . . 97
7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Introduction
When designing security-critical digital devices, the security system designers are often faced
with two contradictory challenges. On the one hand, they are required to build and integrate
a robust cryptographic subsystem that is efficient but resistant against any type of (physical)
attack. On the other hand, they must create a lifetime-secure but agile system with included mi-
gration paths to allow updates of cryptographic components in the field, if necessary. While the
first requirement indicates a hardware implementation that combines computational efficiency
and physical protection, the second update criterion demands a software-like implementation.
In this context FPGAs can be one viable solution for some situations, but in many lightweight
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contexts (e.g., Smart Cards) they are not applicable for several reasons. Hence, for a con-
ventionally combined setting (i.e, using hardware-software co-design) the implementation of a
holistic security concept is far from trivial and requires particular care and security expertise
from both hardware and software engineers.

7.1.1 Contribution

In this work, we present a novel co-processor subsystem that is designed as an Application-
Specific Instruction-Set Processor (ASIP) for a specific class of cryptosystems with inherent
hardware resistance against side-channel analysis. More precisely, our architecture and instruc-
tion set follows principles from the Threshold Implementation (TI) concept that is known to
provide provable security against power side-channel analysis. As an ASIP it can be loaded with
software implementations of different symmetric ARX-based cryptographic primitives, such as
stream and block ciphers or hash-functions without the need for adaption of the hardware. We
show that a prototype of our design including a software implementation of Speck is not only se-
cure against first-order side-channel analysis and timing attacks but can be realized at moderate
costs that are even comparable against pure (protected) hardware implementations. Note that
the hardware is designed to completely counter the aforementioned side-channel attack which
significantly relaxes the requirements for software engineers to handle complex constraints of
physical side-channel security.

7.1.2 Related work

While we provide the first ASIP specifically built for ARX-based symmetric cryptosystems,
the authors of [Gro15] had previously reported on an approach to protect an existing mi-
crocontroller architecture with a power side-channel countermeasure - yet without practical
evaluation. The work [SKR�13] provides a dedicated accelerator for ARX-based cryptography,
which does not include a consideration on physical attacks. Finally, we refer to the proposals
for side-channel resistant (hardware) implementations of ARX-based constructions as reported
in [STE15, CITE15].

7.2 Preliminaries

7.2.1 ARX Algorithms

ARX-based cryptography is denoting a set of symmetric constructions that are purely based
on Additions (mod 2n), Rotations and XOR (ARX). In [KN10] the set of ARX operations was
proven to be functionally complete over Z2n . The main advantage of ARX cryptosystems is
their compact and fast instantiation on most instruction-set architectures, including resistance
against timing attacks by design. Examples for ARX-based constructions are the block ciphers
FEAL, Threefish or Speck; the stream ciphers Salsa20, ChaCha, HC-128 or the hash functions
BLAKE and Skein. While there is a wealth of different ARX-constructions, we will focus in
this work on the Speck block cipher and the Salsa20 stream cipher as case studies.
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Speck

Speck is a recently proposed and lightweight ARX-based block cipher optimized for software
implementations presented in [BSS�13]. It is specified for block sizes between 32 and 128 bit and
uses key sizes between 64 and 256 bit. The operand length for the elemental ARX-operations
is half of the block size. In each round, the state is updated using a very simple Feistel-like
function, defined as

xi�1 � ppxi " αq � yiq ` ki,

yi�1 � xi�1 ` pyi ! βq

where pxi, yiq is the current state, ki is the round key, and α and β are constants. The Speck
key schedule is very similar to its round function and is computed as

li�m�1 � pki � li " αq ` i,

ki�1 � ki ! β ` li�m�1.

where m is the chosen number of key words, plm�2, . . . , l0, k0q is the key and ki is the ith round
key.

Salsa20

Salsa20 is a lightweight ARX-based stream cipher presented in [Ber08] and a final candidate
in the eSTREAM hardware profile. The keystream is generated by calculating a hash of the
256-bit key, a 128-bit constant, a 64-bit nonce and a 64-bit block number using the Salsa20
hash function. The initial 512-bit state is composed by arranging these inputs in a 4-by-4-word
matrix containing 32 bit in each entry. After 20 iterations of the round function the result can
be used as a keystream. In each round every column is treated separately while each word is
updated once, starting with the below-diagonal words. Let xi be the word in column i that is
to be updated, then the update process is defined as:

xi Ð
��

xpi�1q mod 4 � xpi�2q mod 4
� ! 7

�` xi.

After each round the state is transposed. A study analyzing the susceptibility of the phase three
eSTREAM candidates towards SCA attests Salsa20 exploitable SPA and DPA vulnerabilities
(especially in its rotate function), while assessing the cost of countermeasures as high [GBC�08].
A successful (simulated) Correlation Power Analysis (CPA) attack on Salsa20 is presented
in [MAS15].

7.3 Design Considerations and Technical Description
Our system is designed as a generic and intrinsically SCA-protected co-processor platform for
ARX ciphers. It supports arbitrary ARX algorithms by updating the program code, without
the need for adapting the hardware design. In particular, we merge the concept of the TI
countermeasure into our SPARX microarchitecture instead of applying it to a dedicated cipher
implementation. For this purpose, we designed an application-specific CPU with a TI-protected
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ARX-ALU that is provably secure against first-order attacks (using d � 3 shares). Certainly,
higher-order attacks can also be prevented by increasing d at higher hardware costs. Our system
is designed to separate any (SCA-critical) data flow from the control flow.
The fourfold pipelined architecture is based on a RISC approach and incorporates two separate
ALUs. The side-channel protected ALU performs all elementary ARX operations on a pro-
tected register file with direct access to a source of randomness that is required for the addition
operation. We further identified that a dedicated unprotected ALU, which operates on a ded-
icated register file, is beneficial to increase the overall performance at reasonable costs. Load
and store instructions are available for moving data between the RAM and the register files.
The high-level structure of SPARX is provided in Fig. 7.1.
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Figure 7.1: High-Level Block Diagram of SPARX

7.3.1 Protected ARX-Specific ALU
The main ALU operates on triple-shared 32-bit words and is used for all calculations on the
sensitive state of the implemented ciphers. It consists of a TI-protected adder, an xor and a
rotation unit and is connected to a dedicated register file. Because both, the xor and rotation
operations are linear, ensuring that each share is processed independently is sufficient for the
masked implementation. However, addition in Z232 is non-linear. The construction of a TI-
conform shared representation of the addition is non-trivial.
We therefore refer to the discussion of this issue in [SMG15b]. Schneider et al. proposed two
different types of addition circuits for Boolean-masked values which follow the TI principle. For
our purpose, we use a similar variant of their proposal based on the ripple-carry adder as it
is far more area-efficient for lightweight application than their presented Kogge-Stone adder,
while only requiring four bits of fresh randomness per operation. In addition, we found that
a slight modification of the original blinded addition circuit can enhance the versatility of our
processor. More precisely, in [SMG15b] the additions only take the two summands as input
and no initial carry. However, it is easily possible to tweak the original design to include this
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capability without breaching the security assumptions. To this end, we require that the input
carry is uniformly shared, which is implicitly given if it is the output carry of a previous ad-
dition. As the output carry shares are not independent of their related sum bits they must
not be used as joint inputs to a shared function. Our design accounts for that by only using
the carry bits for adding multiple 32-bit blocks. With this tweaked adder, our processor can
support multi-precision addition of inputs larger than 32 bits (e.g., for Speck128/256, Blake2b
or Threefish) without negatively affecting the performance of the single-limb 32-bit addition.
Note that the adder is the slowest element in the overall design, requiring 32 cycles to complete
one 32-bit addition. In order to still allow for high throughput the module is provided with
a separate clock running at double the frequency of the main clock. This reduces the latency
of one addition to 16 cycles. In order to increase the CPU’s resource utilization, the adder is
connected asynchronously to the rest of the processor using two instructions: one for starting
the addition and one for retrieving the result. The retrieve instruction returns the current state
of the addition, regardless of whether the operation has finished or not. It is the responsibility
of the programmer or compiler to ensure that a retrieve operation is only issued after at least
16 cycles have passed since the addition has started. This task is trivial and can easily be
automated because in every cycle exactly one new instruction is fetched.
In order to further increase the throughput of SPARX four parallel addition units were instanti-
ated. This reduces the average number of required clock cycles per addition from 16�2 � 18 to
p16� 8q{4 � 6 including the time needed for the add- and retrieve-instructions. Incorporating
more than four adders provides diminishing returns in performance and could not be efficiently
exploited by most ARX algorithms.

7.3.2 Auxiliary General-Purpose ALU

For increased efficiency, SPARX contains an unprotected 8-bit auxiliary ALU that supports
general purpose arithmetic and logical operations in particular for control flow operations. It
provides single-cycle addition, subtraction, and, or and xor operations, each with either two
register operands or one register and one immediate value. Furthermore, the auxiliary ALU can
be used to compute counters and flags to control the key-independent program flow, without
occupying the main TI-adders. It can also safely calculate round constants and other inputs to
the cryptographic algorithm. Sensitive data cannot be leaked by the auxiliary ALU, because
there is no connection between the protected register file and the unprotected ALU. Unmasked
data can be loaded from and stored in the RAM to enable interaction with the control flow
from outside of the CPU. This is useful to dynamically select a cipher algorithm or to generate
an “encryption-done” flag for an external main CPU.

7.3.3 Data and Control Flow

SPARX is designed based on a standard RISC architecture. The pipeline is composed of four
stages, namely Fetch, Decode, Execute and Writeback. The design relies on single-cycle read-
latency memory and therefore uses neither data- nor instruction-caching. The architecture does
not incorporate a stack or call and return operations to enable function calls, as cryptographic
primitives do not benefit from this in general. It does, however, support branches and loops
which can reduce the code size for round-based algorithms – like ARX ciphers – significantly. In
order to control the program flow, two branching operations are implemented: an unconditional
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jump and a branch-not-zero (bnz) instruction. The condition for the bnz instruction is generated
by comparing the result of the general purpose ALU operations to zero. Masked data cannot be
used as input to this process, which ensures that the execution times of all programs running
on the proposed architecture are data independent, rendering the design resistant to timing-
attacks. In conclusion, there are no operations that stall or flush the pipeline, which results in
a throughput of one instruction per cycle.

7.3.4 Memory Configuration

Our SPARX processor is based on a Harvard architecture, i.e., it has as separate program and
data memory. This enables increased instruction throughput without requiring another memory
port and cleanly supports different widths for data and instruction words.
Each instruction word is encoded in 16 bits so a program memory of the same width can easily
provide one instruction per cycle. The program memory size is limited to 4096 words. For
comparison, our implementations of Speck and Salsa20 need 113 and 310 instruction words
respectively.
The data port width is 96 bit to natively support access to 32-bit masked values. Only direct
addressing of RAM data is supported. The amount of RAM is not fixed but the instruction-
word width limits its size to 512 96-bit words. Besides for buffering data, the RAM is also used
as IO interface.
In order to improve the throughput while keeping the number of pipeline stage reasonably
low, the processor has access to dedicated registers. However, it is imperative to isolate the
masked sensitive data from the unmasked general purpose data in order to prevent information
leakage. To this end, two separate register files were implemented in the proposed architecture.
The eight general purpose registers are 8 bit wide and can be used for storing rotation offsets,
round constants, counters or flags. The second register file is used as a working memory for the
sensitive data words SPARX is operating on such as the key, the plaintext and the ciphertext.
The number of shared registers had to be considered carefully because each register is 96 bit
wide and therefore costly in terms of hardware resources. In order to maximize the utilization
of the four adders, up to eight operands / registers are optimal. While some ARX-algorithms
could benefit from more than eight registers, the extra hardware cost does not pay off for most
scenarios. As an example, Salsa20’s throughput could be increased by 12% when 12 registers
are available but, according to our benchmarks as described in Section 7.5, at an additional
area cost of more than 16%

7.3.5 Data Separation

In order to ensure SCA-protection for arbitrary ARX-implementations, information flow from
the protected data to the unprotected auxiliary data must be prohibited. Otherwise, information
could be leaked although the ARX-primitives have been securely implemented. This is ensured
by instantiating separate registers for the critical masked data and the auxiliary non-masked
data.
The protected xor module operates on either two masked values or one masked and one non-
masked input. In both cases masked output values are generated. This feature can significantly
improve performance for algorithms relying on round constants: Because the constants are
public and do not need to be protected they can be computed using the general purpose ALU
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instead of the slower, more restricted ARX ALU. The xor of the non-masked value B and the
shared value A � A1 `A2 `A3, which is internally represented as the triple Ã � pA1, A2, A3q,
is computed as Ã`B � pA1, A2, A3`Bq. The resistance of SPARX against SCA is not harmed
during this operation because only one share of the masked value is modified by the linear and
invertible xor function.
For the rotation, the value to rotate is always masked while the rotation offset is non-masked.
This is not an issue as long as the offset does not depend on secret information. Preventing
information flow from the masked to the non-masked data through main memory access is not
enforced in hardware. Hence, the compiler must ensure that sensitive data is never loaded into
non-masked registers.

7.4 Implementation

In this section we describe the technical hardware instantiation of the SPARX processor and a
set of ARX-based ciphers in software.

7.4.1 Hardware Instantiation of the SPARX Processor

The Instruction Set Architecture of SPARX was specified using the Language for Instruction Set
Architecture (LISA) in version 2.0. In order to develop a working prototype of the processor,
Synopsis Processor Designer was used to generate HDL code, an assembler and a simulator for
the proposed architecture. The rotate-module, the TI-adder and the required RNG-component
were hand-coded in VHDL because LISA does not directly support these structures or the
generated code was inefficient.

7.4.2 SPARX-Compliant Cipher Implementations

Two ciphers were implemented for SPARX as case studies.

Speck

The Speck variant with a 64 bit state and 128 bit key that uses 27 rounds when mapped to
the platform. In a straight-forward implementation of Speck only two additions, one for the
round function and one for the key schedule, are computed per round such that two of SPARX’
four TI-adders remain unused. For improved resource utilization, block parallelism with Speck
can be used that performs three encryptions and computes the key schedule at once. In our
implementation, the rotation of xi is performed in each round first, after which the additions
are started. While the adders are operational, the yi are bitwise rotated, the round counter
is incremented, li is stored in the main memory and li�1 is loaded into a register. While
load/store-operations are necessary due to SPARX’ limited register count, they do not reduce
the throughput because the following computations have to wait for the result of the addition
either way. After retrieving the addition result, the rest of each round is computed. Our Speck
implementation consists of 113 16-bit instruction words and can encrypt three 64-bit words in
1057 cycles.
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Salsa20

As the Salsa20 round function operates on four independent columns, its implementation can
directly utilize the four addition units of SPARX. Except for the first four words updated in
each round, every word depends on the previous computations, which limits the possibilities for
reordering the operations with respect to latency of our TI-adder. The 16-word state of Salsa20
is too large to fit into the register file but virtually all necessary load/store-operations can be
performed while waiting for the adders. Because every other round operates on rows instead
of columns, two rounds of Salsa20 were unrolled in order to avoid the overhead associated with
transposing the state. The resulting program contains 310 instructions and takes 2937 cycles
to compute 512 bit of key-stream.

7.5 Evaluation
In this section we evaluate the SCA protection of the proposed architecture, provide size and
performance figures and compare them to previous publications.

7.5.1 Leakage

As stated in the preliminaries, correctly implemented TI-based masking provides provable resis-
tance against power- and EM-attacks. In practice however, ensuring that the TI requirements
are actually met in the synthesized design can be difficult, especially for more complex archi-
tectures. In order to practically assess SPARX’ resistance against SCA attacks, we made use
of a SAKURA-G board [SAK] as an SCA evaluation platform. The design was mapped to a
Xilinx Spartan6 XC6SLX75 FPGA, and a 4-round version of our Speck implementation was
realized as the target ARX algorithm. Such a reduced-round implementation has been chosen
to shorten the power traces in order to accelerate the measurement and evaluation processes,
while still utilizing all the processor’s components. The power traces have been collected by a
digital oscilloscope at a sampling rate of 500 MS/s while the design was clocked at a frequency
of 3 MHz thereby obtaining clear traces with minimal level of noise where the power peaks of
adjacent clock cycles are not overlapping.

As the evaluation metric, we applied a leakage detection scheme instead of an arbitrary attack
vector. The non-specific t-test – known as fixed versus random t-test – has been employed to
examine the ability of the design to prevent SCA leakages. For more detailed information we
refer to the original articles [GJJR11, SM15]. For such an evaluation, we collected 10 million
power traces, one of which is shown in Figure 7.2a. The t-test results at first and second orders
are shown by Figure 7.2, which confirm the robustness of our construction against first-order
attacks. Since first-order TI is the underlying masking scheme, the design as expected exhibits
(although small) higher-order leakages, which should in practice complicate the feasibility of
higher-order SCA key-recovery attacks.

7.5.2 Performance and Size

The performance of SPARX was evaluated for two different target architectures: a Xilinx
Spartan-6 FPGA and the Faraday 180nm ASIC process. The bitstream for the FPGA was
generated using Xilinx ISE 14.7 with the optimization goal speed. In order to prevent the
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(a) sample trace

(b) 1st-order t-test

(c) 2nd-order t-test

Figure 7.2: A sample power trace, and the result of “fixed versus random” t-test using 10 million
traces

mapping tool from using the same Look-Up Table (LUT) to compute functions on bits of inde-
pendent shares, and thereby violating the TI requirements, the design hierarchy was maintained
during synthesis. This resulted in a total number of 1519 used slices and a maximum clock-
frequency of 112 MHz. The ASIC netlist was created with Synopsis Design Compiler 2010.12.
To ensure that the security assumptions are not violated, ungrouping, flattening and register
re-timing were disabled for the synthesis. The total number of cells required by the design
amounts to 40358 NAND-gate equivalents. The sizes of SPARX’ main modules for the ASIC as
well as the FPGA process are provided in Table 7.1. In the FPGA results, slices that are used
in more than one module, are counted multiple times.
The throughput of our Speck implementation is 20.3 Mbit{s on the FPGA and 75.7 Mbit{s on
the ASIC, while the Salsa20 core can encrypt 19.5 Mbit{s or 69.7 Mbit{s, respectively.
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Table 7.1: Relative Area Cost of SPARX’ Modules
Module Size on FPGA (Slices / %) Size on ASIC (kGE / %)

Adders 471 / 31.0 18.1 / 44.8
Register File 424 / 27.9 9.5 / 23.7

Shifter 107 / 7.0 4.7 / 11.7
XOR 48 / 3.2 0.4 / 1.0

Total 1529 40.4

Comparison

While, to our knowledge, the proposed design is the first side-channel resistant, flexible ARX
accelerator, several hardware implementations of ARX ciphers have been introduced in the liter-
ature. In [CITE15] a 99-slice SCA-resistant Speck implementation for FPGAs with a throughput
of 9.7 Mbit{s is presented. The unprotected Speck implementation proposed in the same con-
tribution achieves a performance of 10.1 Mbit{s using 42 slices.
The authors of [YH07] present several unprotected 180 nm-implementations of Salsa20 that are
optimized towards either area or throughput. Their balanced iterative design can generate
255 Mbit{s at 23.4 kGE.
The unprotected high-performance ARX-accelerator CoARX[SKR�13] can generate a Salsa20-
keystream at a rate of of 1.93 GBit{s running at 700 Mhz. CoARX achieves this speed when
synthesized in a 90 nm process costing 95 kGE. While the algorithm running on CoARX can be
selected via software, the supported algorithms must already be known at (hardware-) design
time in contrast to our approach.

7.6 Conclusion
In this chapter we propose a flexible ARX-ASIP that intrinsically protects all implemented algo-
rithms against timing and first-order side-channel attacks. The resistance of our implementation
was verified practically by applying a well-established leakage detection scheme. The proposed
architecture enables support for multiple ARX algorithms such as block cipher, stream ciphers
and hash functions at the same time and permits updating of cryptographic algorithms in
the field, while keeping the cost for securely adapting the software to changing requirements
minimal.
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Chapter 8

Automated Masking of Software
Implementations on Industrial Microcontrollers

As shown in previous chapters, a gap between well-studied leakage models and ob-
served leakage on real devices makes the application of these countermeasures non-
trivial. This work provides a gadget-based concept to automated masking covering
practically relevant leakage models to achieve security on real-world devices. We
realize this concept with a fully automated compiler that transforms unprotected
microcontroller-implementations of cryptographic primitives into masked executa-
bles, capable of being executed on the target device.
In a case study, we apply our approach to a bitsliced LED implementation and per-
form a TVLA-based security evaluation of its core component: the PRESENT s-box.
The work described in this chapter was published at DATE 2021 [ABB�21].
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8.1 Introduction
Implementing countermeasures such as masking is still a tedious and error-prone task, especially
for software countermeasures running on embedded devices. This is mainly due to the following
characteristics:

The practical security of a countermeasure cannot be evaluated at a high abstraction level,
such as C-code. This is due to the various translation steps to machine code that might add,
remove, or reorder instructions along the way. Indeed, there are numerous examples of compilers
breaking otherwise secure masking schemes [BCH�20, BGG�14].

Further, the device-under-test’s internal architecture adds additional device-specific leakage
way beyond a simple Hamming-weight or value-based leakage model.

105



Chapter 8 Automated Masking of Software Implementations on Industrial Microcontrollers

For example, a register update will produce the Hamming-distance between the new and
the old value. Correct first-order masking becomes insecure in practice if two shares k0, k1
of a secret value k are combined with such leakage behavior, and information on the secret
k is leaked. Indeed, leakage across instructions invalidates not only the theoretical assump-
tion of “independent leakage” but also prevents the re-use of security unaware compiler back-
ends [PV17, BGG�14, MOW17, CGD18]. Most notable, this device-specific behavior also ap-
plies for different implementations of the same architecture (e.g., RISC-V), leading to broad
diversity of physical side-channel behavior among devices even when executing the very same
code.

8.1.1 Contribution

We tackle these issues by introducing a dependable compiler that automatically and effectively
protects insecure code. The compiler provides automated side-channel resilience in practice by
combining careful device-specific masking with secure code transformations. Our code trans-
formations are independent of device-specific leakage behavior and allow users to adapt the
approach to new devices. Informally, the approach consists of replacing vulnerable machine-
code with “gadgets”, which provide the same functionality in a power side-channel resilient
manner. We formally verify our gadgets’ security in precise device-specific leakage behavior
models and describe the modeling process.

A proof-of-concept implementation of our approach for Arm Cortex M0� microcontrollers
is developed and applied to a bitsliced implementation of the LED block cipher. Finally, we
demonstrate the effectiveness of our approach by a practical security evaluation of physical
measurements.

8.1.2 Related work

Many papers try to automate certain aspects of the implementation of countermeasures. We
focus on software countermeasures and briefly discuss the shortcomings of existing work in the
following.

Insufficient leakage assumption for practical resilience et al. Moss provided one of the first
compilers for unprotected C-code to masked assembly [MOPT12] but only rely on first-order
masking and do not consider device-specific leakage. Eldib et. Wang [EW14] use synthesis to
mask C-Code in LLVM Intermediate Representation (IR). Most notable, they indeed report
that compiler transformations break the correctness of masking.

Dependence on security of off-the-shelf compilers et al. Barthe develop a fast compiler
masking C-Code at higher-order in [BBD�16]. They depend on an off-the-shelf compiler
to produce executable code. This likely breaks security as reported in [BCH�20, BGG�14].
Further, they do not consider device-specific leakage. Likewise, et al. Agosta [ABMP13] employ
precise information flow analysis within LLVM but suffer from the same shortcomings, i.e., a
potential break at LLVM’s back-end and neglected device-specific leakage. Recently, et al.
Belleville automate application of first-order masking, capable of masking tables [BCH�20].
It is implemented as middle-end compiler pass on LLVM IR and uses formal verification on
machine code to analyze which back-end(s) potentially break the countermeasure. Indeed, they
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report at least one harmful back-end pass for ARM architectures. However, their analysis is
restricted to a basic value leakage model under the “independent leakage assumption” and is
not backed by physical security assessment. However, this is crucial as multiple passes such as
instruction scheduling and register allocation potentially break security in presence of leakage
spanning across instructions. Instead, our approach consists of assembly transformation to
prevent flaws from regular compilation.

et al. Wang [WSW19] repair register allocation of LLVM to prevent leakage arising from
register re-use, but assume that the input code is already masked. Further, the modification is
specific to the leakage model and cannot be easily extended to cover leakage across instructions.
We note that fixing compiler passes according to model assumption most likely renders the
entire compiler device-specific. Instead, our compiler passes are independent of any leakage
model assumptions.

et al. Bayrak automatically insert first-order Boolean masking in machine-code [BRN�15].
While they do not suffer from potentially harmful compiler-backends, device-specific leakage
is again out-of-scope. They also discuss pairing physical evaluation with compilation to focus
solely on detectable leakage. Unfortunately, this mandates the presence of a measurement
setup and respective expertise during compilation which somewhat contradicts the purpose of
automated security.

Conceptually, practical resilience can also be achieved by combining automated masking with
a subsequent automatic repair: Potentially insecure output of the first step could be secured by
inserting more countermeasures, as e.g. discussed in [SSB�19]. One inherent issue here is that
a repair based on inserting additional instruction is not always possible, especially if shares are
combined during computation by compiler optimizations. Instead, our work provides systematic
protection resulting in practically-resilient implementations while only relying on device-specific
gadgets.

8.2 Concept

Our core concept consists of replacing vulnerable machine-code computing on sensitive data by
invocations of gadgets that compute securely on masked data. In the end, a protected executable
is returned, which can directly be run on the targeted platform. The overall compilation,

OTS
Compiler

C-Code +
Annotations

Assembly IFA + CFA

Masked 
Gadgets

Code 
Transformation

Secure
Executable

Figure 8.1: High-level structure of our proposed automated masking approach.

depicted in Fig.. 8.1, consists of three stages: (1) compilation of annotated but unprotected
code with an optimizing off-the-shelf C-compiler (gcc), (2) information and control flow analysis
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(IFA/CFA) to mark sensitive computations for transformation, and (3) the actual substitution
of insecure instructions by secure gadgets.

The annotation for stage (1) is very simple and only consists of a specification of the sensitive
inputs to the algorithm, e.g., the plaintext and key.

Stage (3) makes use of a library of gadgets specifically designed to achieve device-specific
side-channel resilience. Pointers replace sensitive data in registers with masked data stored
in memory. The compiler inserts code to handle memory, data, masking, and demasking of
sensitive data, randomness, and the invocation of secure gadgets so that the same functionality
is computed in a side-channel resilient manner.

The gadget-based approach succeeds whenever the sensitive part of the source program can
be expressed by operations for which gadgets exist. We focus on bitsliced ciphers, which can be
represented using Boolean masking. However, the concept could also secure other types of the
input program, such as add–rotate–xor (ARX) ciphers when the required gadgets are provided
(e.g., for addition).

The realization of such compilation results in two tasks: (1) construction of device-specific
gadgets (Section 8.4) (2) vulnerability analysis and code rewriting (Section 8.5). Task (1) is
performed by security experts prior to compilation and is re-used among code to be compiled.
Task (2) results in a fully automated compiler using the gadgets of Task (1).

8.3 Security in Practice
Our goal is to reliably establish baseline protection against simple attacks such as Simple Power
Analysis (SPA), Correlation Power Analysis (CPA), and first-order Differential Power Analysis
(DPA) [KJJ99a]. Physical side-channel attacks can be classified according to the number of
sample points they exploit per measurement of execution and the amount of measured executions
in total. In the following, we establish resilience against attacks exploiting a single attacker
chosen sample point for large amounts of repeated executions. Such protection forces adversaries
to launch more complex attacks that require expertise to exploit multiple sample points. We
mandate resilience to be established and evaluated without device-dependent noise or additional
countermeasures (e.g., shuffling), which perturb physical measurements but can be removed by
pre-processing the measurements.

First-order Boolean masking can provide protection in this setting as sensitive data k is
split into shares k0, k1 such that k0 ` k1 � k where one share is a uniform random value.
Information on both shares must be recovered by an adversary to recover the masked secret
k due to the involved randomness. Attacks exploiting a single measurement point cannot be
successful if the two shares remain separated during computation and no measurement sample
reveals information on more than one share [ISW03]. The latter constraint is important for
resilience in practice as processors are well-known to emit leakage, combining shares during the
execution of software [PV17, BGG�14, MOW17, CGD18]. In contrast to existing work, we take
additional effort to ensure both constraints are met after compilation.

In [BGG�20] we show a link between side-channel resilience in practice and “Threshold Non-
Interference” (NI), a formal notion of side-channel security, in detailed models of observable side-
channel information (denoted “leakage models”). First order NI ensures that each observable
side-channel information (leakage) depends on at most one share of each masked secret. The
formal notion of security implies our intended degree of practical security in case the leakage
model contains all information that can be gained by one physical measurement sample. Slightly
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different, we exploit the indicated link to prevent human errors and speed up development: we
consolidate experienced side-channel behavior in leakage models and use the formal verification
tool scVerif [BGG�20] to ensure the absence of vulnerabilities arising from known leakage.

We briefly explain how our models are constructed, which consists of two tasks (a) deciding
whether modeled leakage is present on a device and (b) systematizing unknown leakage behavior
into formal models (the formal model is presented in [BGG�20]).
Validating the presence of modeled leakage can be done by constructing implementations that
emit detectable leakage in physical measurements (e.g., using TVLA, Section 8.6.1). The leakage
behavior under test must be activated while all other known leakage behavior must not cause
detectable leakage. This can be achieved by filling the device state with secret-independent
(e.g., constant) data, except for two carefully placed shares, which are combined by the leakage
behavior under test (see [PV17] for a detailed discussion). The tool scVerif can be used to verify
that known leakage behavior is not causing vulnerabilities in such programs. False positives
are possible when unknown leakage behavior is triggered. This can be detected once the model
becomes more complete as inconsistencies arise during the validation of another leakage (which
is why model construction is an iterative process).

Systematization of unknown leakage behavior is not straightforward: Whenever leakage is
detected, informally secure implementations, a hypothetical leakage is modeled according to
human understanding. This can be supported by verification as the newly modeled leakage
should lead to verification failure in the implementation. Often it is sufficient to revise existing
leakage behavior. Subsequently, the validation strategy (a) is employed for the hypothetical
leakage to validate its presence.

Our starting point was to validate the presence of published leakage behavior (e.g. [PV17,
BGG�14, MOW17, CGD18]), which reduced the likeliness of false positives and quickly led to
an almost robust model. We validated the completeness of our models by constructing masked
implementations which are provably secure in our model and perform a physical assessment to
detect gaps.

8.4 Gadget Design

The gadgets must provide the functionality of instructions supported by a microcontroller while
being side-channel resilient in practice. The gadgets are handed over to the compiler in the form
of a library, which allows it to construct them for a specific microcontroller and mitigate device-
specific leakage behavior (known as “hardening”).

We briefly explain the process of hardening: Device specific leakage behavior allows observing
information on more than one share within a single measurement point. Hardening means to
prevent such vulnerabilities by breaking the leakage into separate measurement points by either
(a) reordering instructions or operands and (b) inserting secret independent instructions (e.g.,
NOP). In addition, the gadgets must ensure that no sensitive data is left as residue, neither in
memory nor in registers.

As the compiler is operating in a restricted setting, some technical subtleties arise: (1) The
compiler operates on pre-sampled randomness provided in the form of a pointer, which must
be correctly maintained by the gadgets to prevent vulnerabilities from randomness re-use. (2)
The gadgets operate on dedicated pointers to memory for input and output, and in-place modi-
fication in the form of equal input and output pointer is possible, which requires loading shares
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before writing outputs. (3) For some leakage behavior, it is required to access secret independent
memory, which cannot be provided by the leakage independent compiler passes.

An inherent difficulty is the execution of gadgets in contexts which are determined only after
construction is complete (i.e., during compilation) as it corresponds to dynamic composition
of masked implementations: Vulnerabilities might arise when a set of shares is reused as input
to multiple gadgets as most composition strategies for masked gadgets assume independently
shared inputs (e.g. t-SNI [BBD�16]). The easiest approach is to refresh all inputs within each
gadget. A more efficient approach is to analyze which shares are reused during compilation and
only selectively refresh these shares. Another problem arises when gadgets receive two inputs
pointing to the same shares. This case can happen in non-optimized code when protecting AND
R0 R0 the corresponding gadget potentially produces vulnerable leakage. Again, this is easy to
circumvent within the compiler or by refreshing inputs internally. Our compiler refreshes all
shared values used more than once.

For our case study, the compiler requires gadgets to replace the assembly instructions EORS
(exclusive or), ANDS (logical conjunction), MOV (copy), MVNS (copy negation), BICS (a& b), as
well as gadgets to copy and refresh masked values which are adapted from [BGG�20].

8.5 Code Transformation

In this section, we describe the overall process that produces a masked executable from an
unmasked C-code. The input program needs to be annotated in order to enable the tainting
phase of the code transformation. This annotation consists of one or more in-line assembly
statements marking the initial sensitive values in the interface functions of the code (e.g. main
or encrypt). In the first step, an off-the-shelf C-compiler for the target processor is used
to generate optimized assembly code from the input C-program. Specifically, the bare-metal
ARM-GCC compiler is invoked with the command arm-none-eabi-gcc {source file} -S
-mthumb -mcpu=cortex-m0plus -O3. The operations described in the following sections are
then performed on the assembly code.

8.5.1 Parsing and Tainting

In the parsing step of the transformation, we extract the hierarchical structure and control flow
of the input assembly program while keeping all low-level information including opcodes and
register allocation used in every instruction. Our implementation relies on several assumptions
to implement this: (1) The input program is composed of data and a text segment and includes
a prologue and an epilogue consisting of directives. (2) The data segment occurs once and does
not intersect with the text segment. (3) The text segment is divided into one or more functions
that do not intersect. Each section is marked by a prologue and epilogue of directives. (4) Every
function has exactly one return instruction. (5) The number of loop iterations must be known at
compile time. (6) Access to memory locations which depends on sensitive data is not supported.
While assumptions 1 to 3 are enforced by the compiler 4 to 6 must be guaranteed by the input
program. Note that, while assumption five seems strong, the targeted algorithms, such as block
ciphers, do generally not need variable loops.

On the highest level, the data and code segments of the program are identified and then pro-
cessed separately. The data segment is then scanned for data objects and their meta-information
is stored. In the next step, basic blocks followed by functions are identified in the text segment.
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To this end, the assembly code is parsed line by line, the instruction class is determined (e.g.
load/store, arithmetic, branch) and the control flow graph is constructed iteratively. Addition-
ally, conditional blocks and program loops are identified in this process.

The following tainting step is necessary to identify the instructions that operate on sensitive
data as well as sensitive data itself. To this end, our compiler creates a tainting context that
holds the complete program state including registers and the relevant memory segments. The
context is then copied for each encountered basic block to prevent side effects caused by splits
in the program flow. Note that the tainting process is also able to determine the size of arrays
that contain sensitive data by relying on assumption (5) from above.

8.5.2 Instruction Replacement

In the final step of the code transformation process, the previously tainted instructions are
replaced by secure gadgets. To this end, every sensitive value is replaced by a pointer to the
first share of its masked realization. The required memory for this process is allocated on the
stack or a data segment, depending on context. There is no need to store the size of a value or
additional pointers to subsequent shares of the same variable, as the transformation assumes
that all variables have a size of one word. Therefore, the other shares of the value can be placed
successively in memory as depicted in Fig. 8.2. For every array in the input data segment that

Register

Value

Register

Pointer

Share 1

Share 2

…

Figure 8.2: Masking of sensitive variable in register.

was tainted a new data object is allocated to store the shared data. Subsequently, the original
array is replaced by pointers to the shares. The compiler also allocates a memory segment used
to hold an entropy pool and a global pointer to the first entropy word. The gadgets use this
pointer at runtime to obtain entropy and increment it after each access. Note that the compiler
does not create code that generates the entropy needed by the secure gadgets, giving the choice
about the source of randomness (e.g., internal source or external input) to the user. The final
global transformation inserts code to mask and unmask the sensitive data at top-level functions.

The transformation of the program code is then applied on function level, basic-block level
and finally instruction level.

Function Level The following transformations are applied to the functions: (1) Reservation
of additional stack space for temporarily storing shares of sensitive variables. In our proof-of-
concept implementation, sufficient space for shared values corresponding to all general purpose
registers is allocated. The purpose of this ”shadow register” for masked values will be explained
in Sect. 8.5.2. In a future optimization, the required stack space could be reduced by analyzing
which registers do specifically need this inside each function. (2) A stack base-pointer is created
which allows referencing the temporary storage described above. (3) The link register is pushed.
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This is necessary because the gadgets are called using linked branches and will therefore over-
write the original link register. (4) Additional push and pop instructions are inserted in order
to save registers that are used by the transformation tool. (5) Some minor optimizations are
performed , e.g., the removal of successive mov instructions with the same source and target.

Basic Block Level The transformations on the basic block level counteract the code expan-
sion produced by the masking compiler. This is necessary as the range of simple conditional
branches and unconditional branches on the target platform is only 254 B and 2 kB respectively.
The code expansion can prohibit the use of either type of branch instruction. Therefore, the
transformation replaces branches with linked long jumps that have a range of 16 MB, except if
the branch targets its own basic block and the block is sufficiently small.

Instruction Level In the final transformation step, the actual instruction replacement is per-
formed. As the gadgets expect their parameters and store the result in specific registers, blending
code is inserted before and after the gadget call which moves the data to the correct registers.
As this blending code plays an important role in overhead generation (both in time and space)
a future optimization could combine ”glue”-code of consecutive gadget calls. If the vulnerable
instruction is not a mov, load or store instruction it is replaced by a call to its corresponding se-
cure gadget at this point. For the remaining instructions, the shadow register file must be used.
This is necessary because an unmasked value in the input program corresponds to a pointer in
the masked program as explained above. If load, store or mov instruction directly operate on
these pointers, semantic equivalence of the input and output program can not be assured. To
see this, consider the following sequence of instructions operating directly on unmasked values:
mov r1, r0; xor r1, r1, r2.

Here, the value of r0 should not change. However, if the values are replaced by pointers
and the xor-operation is replaced by a gadget operating on the referenced data, r1 would now
point to the (masked) value r1 xor r2. To prevent this, the move instruction is modified in
the following way: The shared data pointed to by r0 is copied to the shadow register file on the
stack corresponding to r1 and a pointer to the first share is stored in r1. Loading and storing
data produces similar problems, that are solved with the same approach.

8.5.3 Security of Transformations

The compiler produces secure implementations when provided with secure gadgets. Two cases
have to be considered; leakage arising during execution of gadgets and in compiler generated
code. The former is true by definition. The latter holds since the compiler generated code
operates on pointers to sensitive data but never accesses the data itself without using secure
gadgets (including freeing of memory). The argument relies on the fact that no hidden memory
accesses are performed based on pointer operations. Such behavior would become visible in the
physical evaluation of securely masked gadgets and thus poses no immediate threat.

8.6 Case Study
We chose a bitsliced implementation of the LED-128 block cipher [GPPR11] as our case study
target. LED-128 is based on a Substitution-Permutation Network and uses a 128 bit key to

112



8.6 Case Study

encrypt a 64 bit plaintext to the ciphertext in 12 � 4 rounds. Each round consists of an addition
of round constants, the non-linear SubCells layer relying on the 4-bit PRESENT s-boxes,
followed by the ShiftRow and MixColumnsSerial layers. After every four rounds, a round key
is added to the state. Our source C-program realizes LED as a bitsliced implementation using
the whole 32-bit register width of the target platform.

8.6.1 Security Evaluation

We perform a physical validation of the s-box implementation masked by our compiler, analyzing
the effectiveness of the masking against both power and Electro-Magnetic (EM) side-channel
attacks.

The evaluation is performed on an industrial Arm Cortex M0� Microcontroller Unit (MCU),
specifically an FRDM-KL82Z prototyping board with removed capacitors. The supply voltage
is set to 1.8 V and clock frequency of 96 MHz is used.

For measuring, a Teledyne LeCroy HDO6154 oscilloscope with a sampling rate of 2.5 GSamples{s
is used. The power consumption is measured with a Teledyne LeCroy AP033 active differential
probe placed in the MCU’s power supply line (bandwidth 500 MHz). EM emanation is mea-
sured with Langer EMV ICR HH500-75 IC near field probe (coil diameter 500 µm, bandwidth
1 GHz).

A lateral scan over the front side of the MCU is performed to find the optimal position for
the EM probe. The resulting heatmap reflects whether the EM signals acquired during the
computations show clear, high peaks or whether no structures related to the computation can
be observed. Step size for the lateral scan is set to one-tenth of the EM probe’s coil diameter to
have sufficient lateral resolution. In subsequent , the EM probe is positioned over the location
providing the optimal EM signal.

To identify the period of s-box processing in the measured traces, spill actions just before and
after the s-box calculations are introduced. These serve as triggers near the start of the s-box
calculation by intentionally producing high values in the following t-tests (for test calibration)
and to characterize the signal-to-noise ratio. Despite accurate triggers, power and EM traces
are synchronized based on reference patterns and determine the highest cross-correlation of
optimally shifted traces against this reference pattern.

et al. Schneider provide a detailed discussion of the underlying analysis method, capable
of robustly assessing the physical vulnerability of cryptographic devices. Two-tailed t-tests
are performed on sets of power consumption and EM emanation traces separately. For this,
one million measurements are taken with alternating inputs, i.e., either the input was chosen
randomly, or a fixed input was sent to the s-box calculation (known as fixed vs. random t-
test). The critical t-value limits are shown by dashed lines in the results in Figure 8.3 and
Figure 8.5. T-values above or below these lines indicate significant leakage, i.e., the detectable
difference between the two groups respective their distributions and therefore distinguishability
of calculations using fixed inputs and calculations using random inputs. The method allows
detecting leakage without making assumption on a specific leakage model, yielding a robust
indication that the implemented countermeasure efficiently prevents leakage.

The analysis is performed by sending fixed input bytes (respective random input bytes) to-
gether with required entropy bytes to the protected s-box implementation on the MCU. No
leakage should be visible if the implementation is properly masked.
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Figure 8.3: t-test results for power and EM traces in unprotected s-box

Figure 8.4: Exemplary power (left) and EM trace (right) of the protected s-box

The unprotected implementation shows detectable leakage after just 500 measurements as
depicted in the results of the t-test in Figure 8.3.

For the s-box implementation masked by our compiler, one million traces were recorded,
and some sample traces are depicted in Figure 8.4. The results of leakage detection visible in
Figure 8.5 show that there is only at the beginning and end of the test program an indication
of exploitable leakage, due to the artificially introduced spill actions. However, there is no
indication of any relevant leakage during the masked s-box computation despite the high number
of measurements.

We conclude that without masking, there is extreme data input dependence visible after only
500 traces. After automated protection with our tool, no data dependency is visible in both the
power and EM domains, even when using 106 traces.

8.6.2 Performance

In this section we provide the relevant overhead produced by the proof-of-concept implementa-
tion of our proposed approach to automated masking. When applied to our LED benchmark
implementation, our automated masking tool identifies 57.4 %, i.e., 666 of the 1161 instructions
in the unmasked input program’s assembly code as sensitive. After masking, the number of
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Figure 8.5: t-test results for power and EM traces in the protected s-box

instructions in the code is increased to 8418 (x7.3) and the runtime by x39.3. When our tool
is applied to just the s-box, 63 out of 73 (86.3 %) instructions are sensitive. In this case, the
number of instructions is increased to 835 (x11.4) and the runtime by 11.7. Note that the timing
overhead includes the time needed for masking and unmasking the input data. The required
randomness is and 599.6 kB and 324 B respectively.

8.7 Conclusion
We present a dependable compiler providing automated protection against first-order power
side-channel attacks. The compiler substitutes vulnerable machine-code with secure gadgets
specifically designed to mitigate vulnerabilities arising from device-specific leakage. Further,
the security of our compiler cannot be invalidated by optimizing compilation passes which
might break otherwise secure masking. The devised transformations are independent of specific
side-channel behavior and thus can to be ported to devices with more diverse side-channel
behavior. Our gadgets are formally verified in precise models, and the resilience in practice is
successfully evaluated in physical measurements.

Since the approach naturally extends to higher-orders of security, this would be an interesting
subject for future work.
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Chapter 9

Conclusion

In this chapter, we summarize the results presented in this thesis. Finally, we provide
directions for interesting future work.
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9.1 Conclusion

In the first part of this thesis we studied the field of leakage assessment in the context of passive
physical side-channel attacks. After identifying problems in traditional test-based TVLA, we
developed a new approach for leakage assessment using confidence intervals. This allows eval-
uators to avoid some of the main downsides of TVLA, such as its inability to provide negative
results and its fundamental dependency on measurement noise. By combining the proposed
scheme with an efficient side-channel data acquisition system, we provide analysts with an ef-
fective and efficient framework for side-channel leakage assessment. In order to allow evaluation
of implementations against more advanced attacks that exploit multiple leakage samples, we
developed an extension to the confidence-interval-based TVLA method to the multivariate set-
ting. As the computational complexity is very high in this case, we discussed several techniques
that allow a more efficient evaluation.

In the second part of this thesis we developed masked realizations for two critical functions
that are central to several cryptographic implementations: a comparison for lattice-based KEMs
and a modular addition. Due to the immense impact that large-scale quantum computers would
have on today’s digital infrastructure by rendering all non-PQC asymmetric encryption schemes
obsolete, post-quantum secure algorithms are a major direction of cryptographic research. If
PQC devices are potentially subjected to side-channel attacks, the implementations should be
protected by countermeasures. The efficient masked algorithm that we presented can be an
important component of these countermeasures.

Modular additions form an essential part of many cryptographic schemes. In this thesis,
we studied Kogge-Stone, Sklansky and Brent-Kung adders in respect to their suitability for
boolean masking in hardware, which is especially relevant in applications where arithmetic and
boolean operations are combined. We implemented all variants using a TI and multivariately
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secure HPC2 gadgets. Our analysis showed that the three architectures have different use cases
depending on the constrains regarding area, latency and randomness.

The final part of this thesis focused on holistic side-channel protection measures that can
protect different concrete cipher using generic approaches. This simplifies the complicated and
expensive task of realizing a dedicated masking scheme for every algorithm running on a device
and can thereby speed up development cycles. To this end, we developed a masked ASIP that
can intrinsically protect ARX algorithms that are executed by it. In order to achieve this, the
proposed architecture relies on an ALU masked with the TI scheme. A strict separation of
sensitive and non-sensitive data allows a high performance although the hardware implementa-
tion is generic to support all ARX algorithms. Due to this architecture, it is possible to realize
secure implementations of new ciphers without the need to consider side-channels. In our final
contribution, we proposed an automatic masking approach that can be realized using off-the-
shelf microcontrollers to achieve a similar result. Taking into account device specific leakage,
a set of secure gadgets and a compiling process were developed that can transform unmasked
implementations of bitsliced ciphers into securely masked ones.

9.2 Related Research Areas and Future Work

This section discusses some areas that, while not directly considered in this thesis, are connected
to field of side-channel attacks. Additionally, we provide some directions for future work which
are related to the contributions presented in this thesis.

The focus of this thesis was the field of passive side-channel attacks on cryptographic im-
plementations. We considered instantaneous power consumption, electromagnetic emanations
and – to a lesser degree – timing variations leading to information leakage. Other side channels
worth studying include photonic emission [SNK�12a] due to hot-carrier luminescence, acoustic
emissions due to vibrating electronic components [GST17] and thermal effects [HS13].

Microarchitectural side-channels can also be exploited and their presence poses a significant
threat to computing devices. They generally rely on induced timing variations of code execution
depending on sensitive data. In contrast to the types of side-channel attacks discussed in this
thesis, microarchitectural side-channel attacks such as Spectre [KGG�18] do not primarily target
cryptographic implementations, but general purpose CPUs and programs running on them.

Fault injection attacks form another field of powerful implementation attacks. Here an ad-
versary tries to either disturb the control flow of the device under test or to change the data
processed by the device. This can then result in either faulty computations which can then
be exploited to reveal sensitive information or in bypassing security checks, e.g, for passwords.
Several vectors to achieve this are available, such as voltage spikes at the target’s supply lines,
electromagnetic pulses in order to induce currents on the device or laser beams that can disturb
small areas on the target. Finally, the joint consideration of side-channel attacks and fault
attacks is another an important subject of study, both in terms of security assessment as well
as in the design of countermeasures. On the attack side, either side-channel information can
be used to guide fault injection attacks or fault injections are used to circumvent side-channel
attack countermeasures.
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Leakage Assessment
While the introduction of confidence intervals to TVLA solves some problems of this evaluation
approach, others are still open. For example, in fixed-versus-random measurements, it is not
immediately obvious how to choose the fixed value. While there are partial solutions for this
problem, e.g., by choosing the fixed value randomly and repeating the evaluation multiple times,
the evaluation results can depend on that choice and the number of repetitions.

In the context of multivariate assessment, the computational complexity is still a significant
obstacle. Therefore, improvements in this regard are very welcome, especially if the worst-case
sensitivity loss of complexity reductions can be bound.

Masking Cryptographic Primitives
Several lattice-based KEMs do not use a prime modulus, but are based on a ring with a power-
of-two modulus, were our proposed comparison can not be applied. As the authors of [BDH�21]
noted, it is possible to perform a modulus conversion in this case, but the associated overhead
would likely nullify the performance gains of our scheme. Therefore, an adaption to non-
prime moduli might be a worthwhile research topic. Additionally, the complete realization
of multivariately secure PQC schemes, especially KEMs, will help to provide insights on the
overhead induced by countermeasures.

In regard to masked hardware architectures for modular addition, other structures, such as
Knowles or Han-Carlson adders, could be studied. The application of different masking schemes
could also potentially improve the performance. Furthermore, the architectures studied in this
thesis have a regular structure which might be exploited to reduce the randomness requirements.

Side-Channel Resistant Integrated Systems
Both approaches presented in the final part of this theses can be extended to provide multivariate
security. In the case of SPARX, this could be achieved by realizing the secure ALU using
higher-order secure masking schemes. However, care must be taken regarding the load-store
architecture that might require adaptions.

The masked compiler could be extended to provide security against multivariate attacks by
substituting the proposed gadgets by higher-order secure ones. As this will change the number
of shares, the memory allocation of the compiler needs to be adapted. As the proof-of-concept
compiler that we developed generates significant overhead in terms of randomness consumption
and clock cycles, more efficient designs could increase practical usability.
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Appendix A

Supplementary Material

A.1 Moment Estimation using Histograms.
The required statistical moments can be efficiently computed from histograms as shown in
[RGV17] for the univariate case. We implemented a similar approach extended to the multi-
variate case. However, even in a bivariate scenario computing a two-dimensional histogram over
16 bit combined values would require 65 535 bins per two-dimensional sample point, which itself
is quadratic over the one-dimensional samples, e.g., roughly 6 TB for 8 bit 1D traces of 5000
samples using 32 bit counters. Note that one histogram per set is needed, doubling the memory
requirement.

To reduce the number of histogram bins, we normalize the input traces per point by the
minimum of the first few thousands traces and record the amplitude of the normalized signal.
In our experiments this reduced the bins necessary for the histogram computation by multiple
factors of two. We keep the normalization trace and thus do not loose any information.

The runtime of this approach was not significantly lower in our experiments. We suspect
that the semi-random memory access pattern on the very large histograms is a main cause for
the absence of performance gains similar to the univariate case and therefore recommend the
traditional algorithm of [SM15] for the calculation of the statistical moments.
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A.2 Evaluation Results for DOM-AES.
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Figure A.1: Per-cycle confidence interval maps for DOM-AES with 16-fold AoT. Best param-
eters regarding detected tuples are chosen according to Table A.1. From top-left:
Full, downsampling, averaging, 1-norm, 2-norm, PCA.
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A.3 Subroutines of A2B Conversion

Table A.1: Evaluation results for the masked DOM-AES implementation. Confidence interval
bounds are in mV2.

Algorithm Dim. γmin γmax γmin{γmax #Tuples
Full 312.5 3393.51 4065.50 0.83 185

Downsampling
1 710.23 797.14 0.89 123
4 2219.41 2502.42 0.85 164
16 2863.33 3412.99 0.84 178

Averaging
1 946.83 1086.57 0.87 80
4 2314.2 2687.4 0.86 167
16 2800.8 3293.82 0.85 178

1-Norm
1 6.18 � 106 8.35 � 106 0.74 154
4 1.38 � 107 1.59 � 107 0.87 168
16 1.01 � 106 1.19 � 106 0.85 174

2-Norm
1 4.35 � 104 5.86 � 104 0.74 128
4 1.47 � 105 1.71 � 105 0.86 168
16 5.30 � 104 6.23 � 104 0.85 174

PCA
1 3.08 � 105 3.12 � 105 0.87 78
4 3.03 � 105 3.54 � 105 0.86 131
16 3.00 � 105 3.56 � 105 0.84 127

A.3 Subroutines of A2B Conversion
For more details on the algorithms and a definition of the subroutines, we refer to the original
publications [CGV14] and [BBE�18].

Algorithm 6 Expand [CGV14]
Input: pxiq1¤i¤n P F2
Output: pyiq1¤i¤2n P F2 such that

À2n
i�1 yi �

Àn
i�1 xi

1: priq1¤i¤n
$Ð F2

2: pyiq1¤i¤n Ð pxi ` riq1¤i¤n

3: py2i�1q1¤i¤n Ð priq1¤i¤n return pyiq1¤i¤2n

127



Appendix A Supplementary Material

Algorithm 7 SecAdd [BBE�18]
Input: x � pxiq1¤i¤n P F2k , y � pyiq1¤i¤n P F2k such that

À
i xi � x,

À
i yi � y

Output: z � pziq1¤i¤n P F2k such that
À

i zi � x� y mod 2k

1: p Ð x` y
2: g Ð SecAndpx, yq
3: for j � 1 to W � rlog2pk � 1qs� 1 do
4: pow Ð 2j�1

5: a Ð g    ppowq
6: a Ð SecAndpa, pq
7: g Ð g` a
8: a1 Ð p    ppowq
9: a1 Ð RefreshXORpa1, kq

10: p Ð SecAndpp, a1q
11: end for
12: a Ð g    p2W q
13: a Ð SecAndpa, pq
14: g Ð g` a
15: z Ð x` y` pg    1q
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Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,

https://newhopecrypto.org/data/NewHope_2018_12_02.pdf
https://newhopecrypto.org/data/NewHope_2018_12_02.pdf


Bibliography

Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129. ACM, 2016.
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[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential power
analysis in the presence of hardware countermeasures. In Çetin Kaya Koç and
Christof Paar, editors, CHES 2000, volume 1965 of LNCS, pages 252–263. Springer,
Heidelberg, August 2000.
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■ Florian Bache and Tim Güneysu. Boolean masking for arithmetic additions at arbitrary
order in hardware. Applied Sciences, 12(5), 2022

■ Florian Bache, Christina Plump, Jonas Wloka, Tim Güneysu, and Rolf Drechsler. Evalua-
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