
On the Completeness of Some First-order

Extensions of C

Grigory K. Olkhovikov∗

Department of Philosophy I
Ruhr University Bochum

grigory.olkhovikov@{rub.de, gmail.com}

Abstract

We show the completeness of several Hilbert-style systems resulting from
extending the propositional connexive logics C and C3 by the set of Nelsonian
quantiers, both in the varying domain and in the constant domain setting.
In doing so, we focus on countable signatures and proceed by variations of the
Henkin construction. We compare our work on the rst-order extensions of
C3 with the results of [10] and answer several open questions naturally arising
in this respect. In addition, we consider possible extensions of C and C3 with
a non-Nelsonian universal quantier preserving a specic rapport between the
interpretation of conditionals and the interpretation of the universal quanti-
cation which is visible in both intuitionistic logic and Nelson’s logic but is lost
if one adds the Nelsonian quantiers on top of the propositional basis provided
by C and C3. We briey explore the completeness of systems resulting from
adding this non-Nelsonian quantier either together with the Nelsonian ones or
separately to the two propositional connexive logics.

First-order logic, completeness, Nelson’s logic, paraconsistent logic

1 Introduction

The present paper contains some completeness results concerning a family of
rst-order extensions of two propositional connexive logics, C and C3.1 Among
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1More sources on connexivity in logic and on dierent systems of connexive logics can be found
in [9] and [15].
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connexive logics, C holds a special place in being, on the one hand, “one of the
simplest and most natural”[12, p.178] connexive systems, and, on the other hand,
being negation-inconsistent.

The propositional logic C was introduced in [14] as a connexive modication of
the paraconsistent version N4 of Nelson’s constructive logic of strong negation.2 The
logic C3, a variant of C which excludes the truth-value gaps, was then introduced in
[10]. The connectives of C are dened in such a way that, as long as truth-value gaps
are eradicated at the level of atoms, they also cannot occur at the level of compound
sentences. As a result, the only dierence between Hilbert-style axiomatizations of C
and C3, respectively, is the presence in the latter of the axiom ϕ∨ ∼ ϕ, corresponding
to the law of excluded middle for the strong negation.

The quantied version of C, which we will call QC in this paper, was obtained by
borrowing the semantics of ∀ and ∃ from QN4 (in the present paper, we will call them
the Nelsonian quantiers) and adding them on top of the propositional basis of C.
A Hilbert-style axiomatization of QC was also proposed in [14] and was immediately
shown to be complete via an embedding of the set of formulas of QC into positive
intuitionistic logic. However, this work has not been extended yet to the extension
of C3 with the Nelsonian quantiers, although some proof-theoretic results about
some extensions of this kind were reported already in [10]. A peculiar complication
that arose relative to this type of extensions, consisted in the fact that the simple
addition of Nelsonian quantiers to C3 led to the reinstatement of truth-value gaps.
This problem aicts one of the rst-order extensions of C3 introduced (in a purely
proof-theoretic manner) in [10], namely, QC3At. The other system introduced in
[10], QC3 eliminates them in a somewhat too direct manner. As a result, the set of
admissible models is no longer closed for the models based on the same underlying
Kripke frame so that the Kripke semantics of QC3 assumes a decidedly non-standard
avor.

One natural remedy to this adverse eect would have been to require the con-
stancy of object domains associated to the nodes in Kripke models; but, in case this

2Nelson’s original logic QN3 was introduced in [7]. It was from the very beginning a rst-
order logic, a rst-order arithmetic even, with a semantics inspired by the Kleene’s realizability
semantics. However, the guiding idea behind Nelson’s realizability clauses was clear enough so
that their translation into Kripke semantics was completely unproblematic. See one of the early
examples of such a translation — however, assuming the constancy of domains, – in [13]. QN4,
on the other hand, was only introduced explicitly in a relatively recent [8, Section 4.1]; its only
dierence from QN3 is that the gluts, that is to say, the sentences that are both true and false at
the same node of a Kripke model, are now allowed. The propositonal fragments of these logics,
which we will denote by N3 and N4, respectively, also have been objects of separate study for many
years now; in particular, N4 was introduced for the rst time, to the best of our knowledge, in [6],
and, independently, in [1].
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move is taken, and the system QC3CD is understood as the extension of C3 with
the Nelsonian quantiers under the assumption of constant domains, our attention
is also inevitably drawn to the system which is now seen as a natural intermediary
between QC and QC3CD. This third system, which we will denote by QCCD, results
from the addition of the Nelsonian ∀ and ∃ to C under the same assumption of
constant domains which we had to impose on QC3CD.

The main goal of the present paper is then to spell out what happens with the
completeness proofs in the family of the logics outlined in the previous paragraph,
namely {QC,QCCD,QC3At,QC3,QC3CD}. Given that the rst-order extensions of
the propositional connexive logics remain largely unexplored, our plan for the paper
is to provide a rm basis for further advancement by showing how fairly standard
Henkin-style constructions can be produced for these logics, rather than to surprise
the reader with new ndings. That is why we also treat the completeness of QC even
though it was already proven in [14] by an indirect argument; our aim is to spell out
a direct proof by the usual Henkin technique that allows for further modications
aimed at getting the completeness results also for the other systems.

In achieving this goal, we adapt a mix of traditional techniques for proving com-
pleteness of intuitionistic and intermediate rst-order logics; a knowledgeable reader
will not fail to notice that we are inuenced by the presentation of the completeness
proofs given in [3, Ch. 4–5] and [5, Ch. 6–7].

However, given that C departs from N3 and N4 in its understanding of the
propositonal connectives, the extension of C with the Nelsonian quantiers cannot
be viewed as the only acceptable choice, not without an additional argument that
takes into account the range of other objectively existing options for such an exten-
sion. Although in this paper we mainly conne ourselves to preparing the ground
for a comprehensive discussion of relative pros and cons of adopting the Nelsonian
quantiers in C, we also nd it important to dene and motivate, already at this
point, at least one non-Nelsonian version of the universal quantier. It turns out
that it is relatively easy to take this new quantier on board, both as an addition to
the set of Nelsonian quantiers and as the only quantier extending the connexive
propositional base — as long as one does not insist on eradicating the truth-value
gaps in the style of C3. On the other hand, for the rst-order extensions of C3 the
non-Nelsonian universal quantier exacerbates the problem of truth-value gaps to
the point where even the assumption of constant domains is now no longer sucient
to eliminate them.

The corresponding completeness results for the extensions of C featuring the non-
Nelsonian universal quantier are then obtainable by repeating, with some minimal
variations, the respective completeness proofs for the Nelsonian extensions of C and
C3, which constitutes another reason for the inclusion of this whole discussion into
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the current preparatory work on rst-order connexive logics.

The layout of the remaining part of present paper is then as follows. In Sec-
tion 2, we dene our notation and introduce the Kripke semantics for the rst-order
connexive logics with the Nelsonian quantiers. In Section 3, we recall the axiom-
atization of QC given in [14], develop the basics of the Hilbertian proof theory for
this system, and then prove both the general soundness theorem and its converse for
the case of countable signatures. In Section 4, we introduce, for the rst time in the
existing literature, the axiomatizations for the Nelsonian systems, QCCD, QC3CD,
and show how to modify the proofs given in Section 3, so that they extend to these
logics. In Section 5, we extend our completeness proofs to QC3At and QC3 and look
at the results reported about these systems in [10] in the light of the notions and
techniques developed in the previous sections. In particular, we address the question
of Existence Property in the rst-order extensions of C3. Section 6 is devoted to the
discussion of one possible denition of a non-Nelsonian universal quantier which
we denote by ł, and of the axiomatizations of some logics featuring this quantier.

Finally, in Section 7, we draw conclusions and try to map out some of the avenues
for the future research.

2 Preliminaries and Notations

2.1 The First-order Language

We start by xing some general notational conventions. In this paper, we identify
the natural numbers with nite ordinals. We denote by ω the smallest innite
ordinal. For any n ∈ ω, we will denote by ōn the sequence (o1, ▷ ▷ ▷ , on) of objects
of any kind; moreover, somewhat abusing the notation, we will sometimes denote
{o1, ▷ ▷ ▷ , on} by {ōn}. The ordered 1-tuple will be identied with its only member.
For any given m,n ∈ ω, the notation (p̄m)⌢(q̄n) denotes the concatenation of p̄m
and q̄n.

Given a set X and a k ∈ ω, the notation Xk (resp. X ̸=k) will denote the k-th
Cartesian power of X (resp. the set of all k-tuples from Xk such that their elements
are pairwise distinct). We also dene that X∞ :=



n≥0X
n. The powerset of X,

that is to say, the set of its subsets, will be denoted by P(X); on the other hand,
the power of X will be referred to by |X|, so that, for example, |X| = ω will mean
that X is countably innite. Finally, if X,Y are sets, then we will write X ⋐ Y , if
X ⊆ Y and X is nite.

Given any relation R and a set X, we will denote by R[X] the set {b | (∃a ∈
X)(R(a, b))}; this notation naturally extends to cases when R is a function f or
its inverse f−1. In case X = {a}, we will also write R[a] (resp. f−1[a]) instead
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of R[{a}] (resp. f−1[{a}]). In case ān ∈ Xn, we will denote by R⟨ān⟩ the set
{b̄n | (∀1 ≤ i ≤ n)(bi ∈ R[ai])}. Similarly, by f⟨ān⟩ we will denote the tuple
(f(a1), ▷ ▷ ▷ , f(an)).

Given any function f , we will denote its domain by dom(f); the range of f ,
denoted by rang(f) is just f [dom(f)]. In case rang(f) ⊆ X, we will also write
f : dom(f) → X. Finally, for any set X, we will denote by idX the identity function
on X.

The notations introduced above for sets and functions are also freely applied in
this paper to proper classes and class functions.

In this paper, we consider the rst-order language without equality based on
any set of predicate letters of any arity k ∈ ω. In particular, 0-ary predicates, or
propositional letters, are allowed in our language. We do not allow functions and
constants3, though.

We x a proper class Pred of possible predicate letters. Elements of Pred will
be normally denoted by capital Latin letters like P and Q. If Ω ⊆ Pred is a set,
then any function Σ : Ω → ω is called a signature. Signatures will be denoted by
letters Σ and Θ; moreover, we set that |Σ| = |dom(Σ)|. If n ∈ ω and P ∈ Σ−1[n],
then we will also write Pn ∈ Σ.

Since signatures are functions, we can take their unions and intersections, in
case the former make sense according to the general restrictions existing for such
operations.

All these notations and all of the other notations introduced in this section can
be decorated by all types of sub- and superscripts.

We are going to allow parameters in our formulas, therefore, we also x a proper
set Par which we assume to be disjoint from Pred. The elements of Par will be
denoted by small Latin letters like a, b, c, and d.

Having xed a signature Σ, and a set Π ⊆ Par we generate a language out of it
in the following way. We use Log := {∼,∧,∨,→, ∀, ∃} as the set of logical symbols
and V ar := {vi | i < ω} as the set of (individual) variables. Both of these sets
are assumed to be disjoint from Pred ∪ Par. The set L(Σ,Π) of Σ-formulas with
parameters in Π can be then dened by the usual induction on the construction of
a formula; in other words, L(Σ,Π) is the smallest set such that:

1. P (ᾱn) ∈ L(Σ,Π) for any n ∈ ω, Pn ∈ Σ, and ᾱn ∈ (V ar ∪Π)n.

2. {∼ ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), ∀xϕ, ∃xϕ} ⊆ L(Σ,Π) for all ϕ,ψ ∈ L(Σ,Π)
and x ∈ V ar.

3The parameters that we speak about are not proper constants since they are not required to
be dened at every node of an appropriate model.
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As per usual, we get that |L(Σ,Π)| = max(|Σ|, |Π|,ω).
The elements of V ar will be also denoted by x, y, z, w, and the elements of

L(Σ,Π) by Greek letters like ϕ, ψ and θ. In what follows, we will also freely use
↔, understanding ϕ ↔ ψ as an abbreviation for (ϕ → ψ) ∧ (ψ → ϕ). Moreover,
given an n ∈ ω and a ϕ̄n ∈ L(Σ,Π)n we dene that



ϕ̄n := ϕ1 ∧ ▷ ▷ ▷ ∧ ϕn with the
parentheses grouped to the left, and similarly for



ϕ̄n.

Now we can also dene the (always nite) sets of parameters, free and bound
variables occurring in a given ϕ ∈ L(Σ,Π) as well as the smallest (nite) signa-
ture associated with ϕ (to be denoted by Par(ϕ), FV (ϕ), BV (ϕ), and Sign(ϕ),
respectively). The denition is by induction on the construction of ϕ:

1. Par(P (ᾱn)) = {ᾱn} ∩ Par, FV (P (ᾱn)) = {ᾱn} ∩ V ar, BV (P (ᾱn)) = ∅, and
Sign(ϕ) = {(P,Σ(P ))}.

2. α(∼ ϕ) = α(ϕ) and α(ϕ ◦ ψ) = α(ϕ) ∪ α(ψ) for all α ∈ {Par, FV,BV, Sign}
and ◦ ∈ {∧,∨,→}.

3. Par(Qxϕ) = Par(ϕ), FV (Qxϕ) = FV (ϕ) \ {x}, BV (Qxϕ) = BV (ϕ) ∪ {x},
and Sign(Qxϕ) = Sign(ϕ) for all Q ∈ {∀, ∃}.

For any Γ ⊆ L(Σ,Π) and any α ∈ {Par, FV,BV, Sign}, we dene that α(Γ) :=


{α(ϕ) | ϕ ∈ Γ}. Note that, for an innite Γ, FV (Γ) and BV (Γ) can be countably
innte; as for the parameter sets and the associated signatures, we clearly have
|Par(Γ)|, |Sign(Γ)| ≤ max(|Γ|,ω) for all Γ ⊆ L(Σ,Π).

It is also clear that for any given ϕ ∈ L(Σ,Π), any signature Θ, and any set
Ξ ⊆ Par, we have ϕ ∈ L(Θ,Ξ) i Par(ϕ) ⊆ Ξ and Sign(ϕ) ⊆ Θ.

We will denote the set of L(Σ,Π)-formulas with free variables among the elements
of x̄n ∈ V ar ̸=n by Lx̄n

(Σ,Π); in case Π = ∅, we simply write Lx̄n
(Σ) instead

of Lx̄n
(Σ, ∅). In particular, L∅(Σ,Π) will stand for the set of Σ-sentences with

parameters in Π. If ϕ ∈ Lx̄n
(Σ,Π) (resp. Γ ⊆ Lx̄n

(Σ,Π)), then we will also express
this by writing ϕ(x̄n) (resp. Γ(x̄n)).

The formulas in L(Σ) (resp. sentences in L∅(Σ)) will be called pure Σ-formulas
(resp. pure Σ-sentences). It is L∅(Σ) that can be called a language (over Σ, which
in this case serves as a vocabulary) in the most direct and complete sense: every
pure Σ-sentence says something in every possible Σ-model. Pure formulas with
free variables are mainly of interest as possible constituent parts of pure sentences.
Parametrized formulas, including parametrized sentences, are strange hybrid entities
arising from pure sentences and formulas after these latter get (partially) interpreted
in some particular model, which leads to a replacement of some variables in a formula
by their denotations. The parametrized formulas are, therefore, always a mixture
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of linguistic entities like logical symbols or variables, and the objects in the world
referred to by these linguistic entities in a given interpretation attempt; as such they
are “neither here nor there”.

However, the admission of these logical chimeras turns out to be very helpful both
in dening the semantics and in formulating the calculi which are also complete for
the sets of pure sentences over a given vocabulary, which is the reason for their
introduction in this paper.

Given any ϕ ∈ L(Σ,Π), α ∈ V ar ∪ Π, and β ∈ Π ∪ (V ar \ BV (ϕ)), we denote
by ϕ[β◁α] ∈ L(Σ,Π) the result of simultaneously replacing every occurrence of α
by β (resp. every free occurrence in case α ∈ V ar). The precise denition of this
operation proceeds by induction on the construction of ϕ ∈ L(Σ,Π) and runs as
follows:

• P (t̄n)[β◁α] := P (s̄n), where Pn ∈ Σ, and t̄n, s̄n ∈ (V ar ∪ Π)n are such that,
for all 1 ≤ i ≤ n we have:

si :=



β, if ti = α;

ti, otherwise.

• (∼ ϕ)[β◁α] :=∼ (ϕ[β◁α]).

• (ϕ ◦ ψ)[β◁α] := ϕ[β◁α] ◦ ψ[β◁α], for ◦ ∈ {∧,∨,→}.

• For every x ∈ V ar and Q ∈ {∀, ∃}, we set:

(Qxϕ)[β◁α] :=



Qxϕ, if x = α;

Qx(ϕ[β◁α]), otherwise.

The following lemma states that our substitution operations work as expected.
We (mostly) omit the straightforward but tedious inductive proof.

Lemma 1. Let Σ be a signature, let Π be a set of parameters, let ϕ ∈ L(Σ,Π),
let s, s′ ∈ (V ar ∪ Par), and let t, t′ ∈ Par ∪ (V ar \ BV (ϕ)). Then the following
statements hold:

1. BV (ϕ[t◁s]) = BV (ϕ), FV (ϕ[t◁s]) ⊆ (FV (ϕ) \ {s}) ∪ {t}, and

Par(ϕ[t◁s]) ⊆ (Par(ϕ) \ {s}) ∪ {t}.

2. If s ◁∈ FV (ϕ) ∪ Par(ϕ), then ϕ[t◁s] = ϕ.

3. ϕ[t◁t] = ϕ.
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4. We have

ϕ[t◁s][t′◁s′] :=



























ϕ[t′◁s′], if s′ = s and s′ = t;

ϕ[t◁s], if s′ = s and s′ ̸= t;

ϕ[t′◁s′][t′◁s], if s′ ̸= s and s′ = t;

ϕ[t′◁s′][t◁s], if s′ ̸= s, s ̸= t′, and s′ ̸= t

Proof. We only sketch the proof for Part 4. If both s′ = s and s′ = t, then also
s = t. Thus we have ϕ[t◁s][t′◁s′] = ϕ[s′◁s′][t′◁s′] = ϕ[t′◁s′] by Part 3. Next, if both
s′ = s and s′ ̸= t, then we have s ̸= t. By Part 1, FV (ϕ[t◁s]) ⊆ (FV (ϕ) \ {s}) ∪ {t}
and Par(ϕ[t◁s]) ⊆ (Par(ϕ) \ {s}) ∪ {t}, therefore, s ◁∈ Par(ϕ[t◁s]) ∪ FV (ϕ[t◁s]).
But then, Part 2 implies that ϕ[t◁s][t′◁s′] = ϕ[t◁s][t′◁s] = ϕ[t◁s].

The proof for the remaining two cases proceeds by induction on the construction
of ϕ. The basis and the induction step for the connectives are straightforward. As
for the quantiers, let x ∈ V ar and Q ∈ {∀, ∃} be such that ϕ = Qxψ. We may also
assume that s ̸= s′. The following cases arise:

Case 1. Assume that s′ = t. Then, since t ◁∈ BV (ϕ), we must also have s′ ̸= x.
We have to consider the following subcases:

Case 1.1. x = s. By denition of substitution, we get that:

(Qxψ)[t◁s][t′◁s′] = (Qxψ)[t′◁s′] = Qx(ψ[t′◁s′]) = Qx(ψ[t′◁s′])[t′◁s] =

= (Qxψ)[t′◁s′][t′◁s]▷

Case 1.2. x ̸= s. Then we argue by the Induction Hypothesis:

(Qxψ)[t◁s][t′◁s′] = Qx(ψ[t◁s])[t′◁s′] = Qx(ψ[t◁s][t′◁s′]) =

= Qx(ψ[t′◁s′][t′◁s]) = (Qxψ)[t′◁s′][t′◁s]▷

Case 2. Assume that s′ ̸= t and t′ ̸= s. The following subcases are possible:
Case 2.1. x = s. It follows then from s ̸= s′ that also s′ ̸= x. The rest of the

argument is as in Case 1.1.
Case 2.2. x ̸= s. Again, two further subcases are possible. If x = s′ then

we argue similarly to Cases 1.1 and 2.1. Otherwise, we argue by the Induction
Hypothesis.

The cases given in Lemma 1.4 are not exhaustive in that the case when s ̸= s′,
s′ ̸= t, and s = t′ is not solved. The following example shows that this is not a
coincidence since under these assumptions one cannot, in general, push [t′◁s′] inside
the substitution cascade:
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Example 1. Let Σ = {(P, 2)}, let a, b, c ∈ Par be pairwise distinct. Then we
have P (a, c)[b◁a][a◁c] = P (b, c)[a◁c] = P (b, a), but P (a, c)[a◁c] = P (a, a), and
any further substitutions can only lead to formulas of the form P (d, d). There-
fore, P (a, c)[b◁a][a◁c] ̸= P (a, c)[a◁c][t1◁s1] ▷ ▷ ▷ [tn◁sn] for any n ∈ ω and any s̄n, t̄n ∈
(V ar ∪ Par)n.

The nal case in Lemma 1.4 is suciently well-behaved to allow for a (restricted)
introduction of the operation of simultaneous substitution of variables/parameters
by parameters. We formulate this fact as a separate corollary:

Corollary 1. Let Σ be a signature, let Π be a set of parameters, let ϕ ∈ L(Σ,Π),
let n ∈ ω, let s̄n ∈ (V ar ∪ Par) ̸=n and t̄n ∈ (Par \ {s̄n})

n. We let ϕ[t̄n◁s̄n] denote
ϕ[t1◁s1] ▷ ▷ ▷ [tn◁sn]. Then the following statements hold:

1. If (i1, ▷ ▷ ▷ , in) is a permutation of (1, ▷ ▷ ▷ , n), then we have

ϕ[t̄n◁s̄n] = ϕ[ti1◁si1 , ▷ ▷ ▷ , tin◁sin ]▷

2. If {si1 , ▷ ▷ ▷ , sik} = {s̄n} ∩ (FV (ϕ) ∪ Par(ϕ)), then

ϕ[t̄n◁s̄n] = ϕ[ti1◁si1 , ▷ ▷ ▷ , tik◁sik ]▷

In the special case when t1 = ▷ ▷ ▷ = tn = a ∈ Par, we will write ϕ[a◁s̄n] instead
of ϕ[t̄n◁s̄n].

The notion of substitution is necessary for the right inductive denition of a
sentence that is independent from the inductive denition of an arbitrary formula.
More precisely, let Σ be a signature, let Π be a subset of Par and let c ∈ Par,
perhaps outside Π. Then L∅(Σ,Π) is the smallest subset of L(Σ,Π) satisfying the
following conditions:

• P (c̄n) ∈ L∅(Σ,Π) for all n ≥ 1, Pn ∈ Σ, and c̄n ∈ Πn.

• If ϕ,ψ ∈ L∅(Σ,Π), then ∼ ϕ ∈ L∅(Σ,Π) and (ϕ ◦ ψ) ∈ L∅(Σ,Π) for all
◦ ∈ {∧,∨,→}.

• If x ∈ V ar and ϕ[c◁x] ∈ L∅(Σ,Π ∪ {c}), then ∀xϕ, ∃xϕ ∈ L∅(Σ,Π).

2.2 Semantics

In order to dene our semantics we rst x yet another proper class State which
is disjoint from Log ∪ V ar ∪ Pred ∪ Par.

For any given signature Σ, a Σ-model is a structure of the form M = (W,≤
, U,D, V +, V −) such that:
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• ∅ ̸= W ⊆ State is a non-empty set of states, or nodes.

• ≤⊆ W ×W is reexive and transitive (i.e. a pre-order).

• ∅ ̸= U ⊆ Par is a non-empty set of parameters serving, in this context, as the
universe of objects.

• D : W → (P(U) \ {∅}) is such that, for all w, v ∈ W we have:

w ≤ v ⇒ D(w) ⊆ D(v)▷

Given a w ∈ W , we will sometimes write Dw to denote D(w).

• For all ◦ ∈ {+,−}, we have that V ◦ : dom(Σ) ×W → P(U∞) such that, for
every Pn ∈ Σ, and all w, v ∈ W , it is true that:

– V ◦(P,w) ⊆ (Dw)
n.

– w ≤ v ⇒ V ◦(P,w) ⊆ V ◦(P, v).

Given a w ∈ W and a Pn ∈ Σ, we will often write V ◦
w(P ) in place of V ◦(P,w).

When we use subscripts and other decorated model notations, we strive for
consistency in this respect. Some examples of this notational principle are given
below:

M = (W,≤, U,D, V +, V −), M′ = (W ′,≤′,U ′, D′, (V ′)+, (V ′)−),

Mn = (Wn,≤n, Un, Dn, (Vn)
+, (Vn)

−)▷

For a given modelM, its substructure (W,≤, U,D) is called the underlying frame
of M, and M is said to be based on (W,≤, U,D).

A model M is called a constant-domain model i for all w ∈ W we have Dw = U .
A model M is called a C3-model i for all w ∈ W and for every Pn ∈ Σ, we have
V +
w (P ) ∪ V −

w (P ) = (Dw)
n. We will denote the classes of constant domain and C3-

models by CD and C3, respectively. In particular, if M ∈ CD ∩ C3, then we get
that V +

w (P ) ∪ V −
w (P ) = Un for all w ∈ W and all Pn ∈ Σ.

We would like to say that a class K of models is good (that is to say, as a basis for
a possible rst-order extension of C) i it is closed for the models based on the same
underlying frame. Similarly, we will say that a class K ⊆ C3 is C3-good (that is to
say, as a basis for a possible rst-order extension of C3), i whenever a Σ-model M
is in K and a Σ-model N ∈ C3 is based on (W,≤, U,D), then N ∈ K. The goodness
here is supposed to mean, somewhat loosely, a naturality of the resulting Kripke
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semantics, including (but not necessarily limited to) the possibility of a standard-
looking frame correspondence theory.

It is easy to see that the class of all models and CD are good, whereas C3 and
C3 ∩ CD are C3-good. Interestingly enough, C3 itself is not good, which raises
the question whether any rst-order extension of C3 can be also seen as a natural
extension of C. We will not attempt to answer it in this paper. But, even if the
question is to be answered negatively, the connection of the rst-order extensions
of C3 with their propositional base is already sucient to make them interesting to
look at.

The semantics of QC, our main system, is given by the pair of ternary (class-
)relations, |=+ and |=− which are only dened for a triple (α,β, γ) in case α is a
Σ-model M for some signature Σ, β = w ∈ W , and γ ∈ L∅(Σ, Dw). The denition
of these relations is then given by the following induction on the construction of γ
for any Σ-model M and any w ∈ W :

M, w |=◦ P (c̄n) ⇔ c̄n ∈ V ◦
w(P ) ◦ ∈ {+,−}, P ∈ Σn, c̄n ∈ (Dw)

n

M, w |=+∼ ϕ ⇔ M, w |=− ϕ

M, w |=−∼ ϕ ⇔ M, w |=+ ϕ

M, w |=+ ϕ ∧ ψ ⇔ M, w |=+ ϕ and M, w |=+ ψ

M, w |=− ϕ ∧ ψ ⇔ M, w |=− ϕ or M, w |=− ψ

M, w |=+ ϕ ∨ ψ ⇔ M, w |=+ ϕ or M, w |=+ ψ

M, w |=− ϕ ∨ ψ ⇔ M, w |=− ϕ and M, w |=− ψ

M, w |=+ ϕ → ψ ⇔ (∀v ≥ w)(M, v ̸|=+ ϕ or M, w |=+ ψ)

M, w |=− ϕ → ψ ⇔ (∀v ≥ w)(M, v ̸|=+ ϕ or M, w |=− ψ)

M, w |=+ ∀xϕ ⇔ (∀v ≥ w)(∀a ∈ Dv)(M, v |=+ ϕ[a◁x])

M, w |=− ∀xϕ ⇔ (∃a ∈ Dw)(M, w |=− ϕ[a◁x])

M, w |=+ ∃xϕ ⇔ (∃a ∈ Dw)(M, w |=+ ϕ[a◁x])

M, w |=− ∃xϕ ⇔ (∀v ≥ w)(∀a ∈ Dv)(M, v |=− ϕ[a◁x])

Given a pair (Γ,∆) ⊆ P(L∅(Σ,Π))× P(L∅(Σ,Π)), a Σ-model M, and a w ∈ W ,
we say that (M, w) satises (Γ,∆), and writeM, w |=+ (Γ,∆) i Par(Γ)∪Par(∆) ⊆
Dw, and we have M, w |=+ ϕ for every ϕ ∈ Γ and M, w ̸|=+ ψ for every ψ ∈ ∆.4

In case ∆ = ∅, we simply write M, w |=+ Γ. We say that (Γ,∆) is satisable i
M, w |=+ (Γ,∆) for some Σ-model M, and some w ∈ W . Otherwise we say that

4The provision requiring inclusion of parameter sets into Dw is necessary to exclude the cases
where the parametrized sentences from ∆ fail to hold due to the absence of the corresponding
parameters in the domain of the respective node.
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∆ follows from Γ and write Γ |= ∆; in other words, ∆ follows from Γ i for every
Σ-model M, and every w ∈ W such that Par(Γ) ∪ Par(∆) ⊆ Dw, M, w |=+ Γ

implies M, w |=+ ϕ for some ϕ ∈ ∆. As usual, we will suppress the brackets when
Γ is a singleton. Given a ψ ∈ L∅(Σ,Π), we say that ψ is satisable i {ψ} is, and
that ψ is valid i ∅ |= ψ.

These notions can be easily relativized to any given subclass K of the class of
models. Thus, we will say that ∆ follows from Γ over K (and write Γ |=K ∆) i
for every Σ-model M ∈ K, and every w ∈ W such that Par(Γ) ∪ Par(∆) ⊆ Dw,
M, w |=+ Γ implies M, w |=+ ϕ for some ϕ ∈ ∆; and similarly for the other
notions introduced in the previous paragraph. In this sense we will speak of, e.g.,
C3-consequence, CD-consequence, and so on, and will write Γ |=C3 ∆, Γ |=CD ∆,
etc.

When handling the pairs of parametrized sentences (we will often call pairs of sets
also bi-sets), we will assume that the usual set-theoretic relations and operations on
them are dened componentwise. Thus, for example, we will write (Γ,∆) ⊆ (Γ′,∆′)
i both Γ ⊆ Γ′ and ∆ ⊆ ∆′; we will understand (Γ,∆) ⋐ (Γ′,∆′), (Γ,∆) ∪ (Γ′,∆′)
and so forth in a similar way.

The following lemma is a standard consequence of the denitions given in this
subsection

Lemma 2. Let Σ be a signature, let M be a Σ-model, let w, v ∈ W be such that
w ≤ v, and let ϕ ∈ L∅(Σ, Dw). Then we have M, w |=◦ ϕ ⇒ M, v |=◦ ϕ for all
◦ ∈ {+,−}.

Proof (a sketch). The proof proceeds by induction on the construction of a para-
metrized sentence. We look into the following two cases:

Case 1. ϕ = ψ → θ. If ◦ ∈ {+,−} and w, v ∈ W are such that w ≤ v and
M, w |=◦ ψ → θ, then let v′ ∈ W be such that v′ ≥ v. By transitivity, v′ ≥ w.
Therefore, if M, v′ |=+ ψ, then, by M, w |=◦ ψ → θ, we also have M, v′ |=◦ θ. But
then, since v′ ∈ W was chosen arbitrarily under the condition that v′ ≥ v, we must
also have M, v |=◦ ψ → θ.

Case 2. ϕ = ∀xψ. If w, v ∈ W are such that w ≤ v and M, w |=+ ∀xψ, then
let v′ ∈ W and a ∈ Dv′ be such that v′ ≥ v. By transitivity, v′ ≥ w, therefore,
M, w |=+ ∀xψ implies that M, v′ |=+ ψ[a◁x]. But then, since v′ ∈ W and a ∈ Dv′

were chosen arbitrarily under the condition that v′ ≥ v, we must also have M, v |=+

∀xψ.

On the other hand, assume that M, w |=− ∀xψ, and choose an a ∈ Dw such
that M, w |=− ψ[a◁x]. By denition, a ∈ Dv, and, by the Induction Hypothesis,
M, v |=− ψ[a◁x], whence M, v |=− ∀xψ follows.
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We observe that it follows from Lemma 2, that if M happens to be a constant-
domain model, the quantier clauses can be simplied:

Corollary 2. Let Σ be a signature, let M ∈ CD be a Σ-model, let w ∈ W , and let
ϕ ∈ L∅(Σ, Dw). Then we have:

M, w |=+ ∀xϕ ⇔ (∀a ∈ U)(M, w |=+ ϕ[a◁x])

M, w |=− ∀xϕ ⇔ (∃a ∈ U)(M, w |=− ϕ[a◁x])

M, w |=+ ∃xϕ ⇔ (∃a ∈ U)(M, w |=+ ϕ[a◁x])

M, w |=− ∃xϕ ⇔ (∀a ∈ U)(M, w |=− ϕ[a◁x])

Turning now to relativizations of the consequence relation w.r.t. the model
subclasses introduced in this subsection, we observe that on the rst-order level,
in contrast with the propositional C3, restricting the class of admissible models to
C3 does not ensure the absence of truth-value gaps for arbitrary (pure) sentences.
Indeed, consider the following example.

Example 2. Let Σ := {(P, 1)} and let the Σ-model M be dened as follows:

W := {w, v}, ≤:= {(w, v)}∪id{w,v}, U := {a, b}, D := {(w, {a}), (v, {a, b})}▷

Finally, set V +
α (P ) := {a} for all α ∈ W , V −

w (P ) := ∅, and V −
v (P ) := {b}. Then

M ∈ C3, but we have both M, w ̸|=+ ∀xP (x) and M, w ̸|=− ∀xP (x)

However, the phenomena, illustrated by the above example, do not arise for the
models in CD ∩ C3, as the following lemma shows:

Lemma 3. Let Σ be a signature, let M ∈ CD ∩ C3 be a Σ-model, and let w ∈ W .
Then for any ϕ ∈ L∅(Σ, Dw) we have M, w |=◦ ϕ for some ◦ ∈ {+,−}.

Proof. By induction on the construction of ϕ. The atomic case, providing the basis
for our induction, is obvious. We consider the induction steps where we have to deal
with the following cases:

Case 1. ϕ = ψ ∧ χ. Then, by the Induction Hypothesis, we either have both
M, w |=+ ψ and M, w |=+ χ, and thus also M, w |=+ ψ ∧ χ, or else at least one of
M, w |=− ψ, M, w |=− χ holds, implying that M, w |=− ψ ∧ χ.

Case 2. ϕ = ψ ∨ χ. Similar to Case 1.
Case 3. ϕ =∼ ψ. Straightforward.
Case 4. ϕ = ψ → χ. Note that the Induction Hypothesis implies that we have

M, w |=◦ χ for some ◦ ∈ {+,−}. If now v ∈ W is such that both v ≥ w and
M, v |=+ ψ, then we will also have M, v |=◦ χ by Lemma 2. But, since v was chosen
arbitrarily, this also means that M, w |=◦ ψ → χ.
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Case 5. ϕ = ∀xψ. Then, by the Induction Hypothesis, two subcases are possible:
either we have M, w |=− ψ[a◁x] for some a ∈ U , and hence also M, w |=− ∀xψ, or
we have M, w |=+ ψ[a◁x] for all a ∈ U , and hence also M, w |=+ ∀xψ by the fact
that M is a constant-domain model.

Case 6. ϕ = ∃xψ. Similar to Case 4.

Lemma 3, together with Example 2, jointly explain why we consider CD ∩ C3 a
better setting for the rst-order version of C3 than the wider class C3, even though
this choice leads to a system which is dierent from both C3-based rst-order systems
introduced in [10]. This discussion is taken up in more detail in Section 5 below.
Of course, alternative natural settings for the rst-order C3 appear to be possible
as well, but we leave their consideration to a future research.

We may understand a logic as a class-function, that, for any given signature Σ,
returns the set of all pairs (Γ,ϕ) such that Γ ∪ {ϕ} ⊆ L∅(Σ) and ϕ is a consequence
of Γ. If we use the (Nelsonian) semantics of quantiers given in this section and
interpret ϕ being a consequence of Γ by Γ |= ϕ (resp. Γ |=CD ϕ, Γ |=CD∩C3 ϕ), then
we get the denition of QC (resp. QCCD, QC3CD).

Before we move on to the next section, we need to consider several important
operations on models, that will be used later in the paper. The rst one is a param-
eter substitution operation, very similar to the one we used for the formulas. More
precisely, let M be a Σ-model, let a ∈ U , and let b ∈ Par \U . Consider the function
f[b◁a] : U → (U \ {a}) ∪ {b} such that, for every c ∈ U we have:

f[b◁a](c) :=



b, if c = a;

c, otherwise.

Then we can dene the model M[b◁a] resulting from the substitution of b for a as
the tuple (W,≤, U[b◁a], D[b◁a], (V[b◁a])

+, (V[b◁a])
−), where:

• U[b◁a] := f[b◁a][U ] = (U \ {a}) ∪ {b}.

• For every w ∈ W :

D[b◁a](w) := f[b◁a][Dw] =



(Dw \ {a}) ∪ {b}, if a ∈ Dw;

Dw, otherwise.

• (V[b◁a])
◦(P,w) := {f[b◁a]⟨ān⟩ | ān ∈ V ◦(P,w)} for all ◦ ∈ {+,−}, Pn ∈ Σ, and

w ∈ W .

The parameter substitutions in models are closely related to the parameter substi-
tutions in formulas, so that the following lemma holds:
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Lemma 4. Let Σ be a signature, let M be a Σ-model, let a ∈ U , and let b ∈ Par\U .
For every ◦ ∈ {+,−}, every w ∈ W , and every ϕ ∈ L∅(Σ, Dw), it is true that:

M, w |=◦ ϕ ⇔ M[b◁a], w |=◦ ϕ[b◁a]▷

Proof. See Appendix A for details.

We immediately state a useful corollary to Lemma 4, namely that model substi-
tutions do not aect the satisfaction of certain formulas:

Corollary 3. Let Σ be a signature, let M be a Σ-model, let a ∈ U , and let b ∈
Par \ U . For every ◦ ∈ {+,−}, every w ∈ W , and every ϕ ∈ L∅(Σ, Dw \ {a}), it is
true that:

M, w |=◦ ϕ ⇔ M[b◁a], w |=◦ ϕ▷

Proof. Note that, by Lemma 1.2, we must have ϕ[b◁a] = ϕ. The corollary now
follows from Lemma 4.

Another useful operation on models allows us to add a new object to the domain
of a model, as long as we make it indistinguishable from some already existing
object. More precisely, let M be a Σ-model, let a ∈ U , and let b ∈ Par \ U .
Consider the relation ρ[b:=a] := id(U∪{b}) ∪ {(a, b)}. Then we can dene the model
M[b:=a] resulting from the addition of b as a copy a, setting it to the following tuple
(W,≤, U[b:=a], D[b:=a], (V[b:=a])

+, (V[b:=a])
−), where:

• U[b:=a] := ρ[b:=a][U ] = U ∪ {b}.

• For every w ∈ W :

D[b:=a](w) := ρ[b:=a][Dw] =



Dw ∪ {b}, if a ∈ Dw;

Dw, otherwise.

• (V[b:=a])
◦(P,w) :=



{ρ[b:=a]⟨ān⟩ | ān ∈ V ◦(P,w)} for all ◦ ∈ {+,−}, Pn ∈ Σ,
and w ∈ W .

Just as in the case of model substitution, the operation of adding a new copy of an
existing object displays a close relation to a certain kind of parameter substitutions
in formulas. As a result, the following lemma holds:

Lemma 5. Let Σ be a signature, let M be a Σ-model, let a ∈ U , and let b ∈ Par\U .
For every n ∈ ω, every tuple x̄n ∈ V ar ̸=n, every ◦ ∈ {+,−}, every w ∈ W , and
every ϕ ∈ Lx̄n

(Σ, Dw), it is true that:

M, w |=◦ ϕ[a◁x̄n] ⇔ M[b:=a], w |=◦ ϕ[b◁x̄n]▷
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Proof. See Appendix B for details.

Lemma 5 also implies a useful corollary which we would like to state before we
move on to axiomatizations of our logics.

Corollary 4. Let Σ be a signature, let M be a Σ-model, let a ∈ U , and let b ∈
Par \ U . For every ◦ ∈ {+,−}, every w ∈ W , and every ϕ ∈ L∅(Σ, Dw), it is true
that:

M, w |=◦ ϕ ⇔ M[b:=a], w |=◦ ϕ▷

Proof. Note that, by Lemma 1.2, we must have ϕ[a◁x̄n] = ϕ = ϕ[b◁x̄n] for every
n ∈ ω and every tuple x̄n ∈ V ar ̸=n. The corollary now follows from Lemma 5.

We note, in passing, that the subclasses of models that we have considered so
far, like CD, C3, and CD ∩ C3, are clearly closed for both operations on models.

3 A Hilbert-style Axiomatization of QC

We now start with the axiomatization work for QC, the rst of the three logics
introduced in the previous section. We will give a direct argument showing that
the axiomatization of QC, as it is given in [14], is in general sound relative to the
semantics dened above; in case the signature is assumed to be at most countable,
we will also show completeness.

In this way, we will show that, for a countable signature Σ, the set of all pairs
(Γ,ϕ) such that Γ ∪ {ϕ} ⊆ L∅(Σ), and ϕ follows from Γ, is recursively enumerable;
in fact, our results will show that, even if we allow Γ ∪ {ϕ} ⊆ L∅(Σ,Π) for an at
most countable Π ⊆ Par, the respective set of pairs of the form (Γ,ϕ) remains
enumerable. This is due to the fact that our axiomatization is given in a form that
makes a generation of parametrized sentences from other sentences (parametrized or
pure) an indispensable by-product in the process of the generation of pure sentences
following from other pure sentences. The readers can easily convince themselves of
this indispensability by paying attention to the form of axioms like (A15) below, as
well as to their possible interaction with the rules like (MP).

Similar remarks apply to the axiomatizations of the other logical systems con-
sidered in this paper.

Given a signature Σ and an innite set Π of parameters, the (Σ,Π)-instantiation
of Hilbert-style axiomatization presented in [14] includes all parametrized sentences
that are instances of the following schemes (for all ϕ,ψ,χ ∈ L∅(Σ,Π), all c ∈ Π, all
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x ∈ V ar, and all θ ∈ Lx(Σ,Π)):

ϕ → (ψ → ϕ) (A1)

(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)) (A2)

(ϕ ∧ ψ) → ϕ (A3)

(ϕ ∧ ψ) → ψ (A4)

(χ → ϕ) → ((χ → ψ) → (χ → (ϕ ∧ ψ))) (A5)

ϕ → (ϕ ∨ ψ) (A6)

ψ → (ϕ ∨ ψ) (A7)

(ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)) (A8)

∼∼ ϕ ↔ ϕ (A9)

∼ (ϕ ∧ ψ) ↔ (∼ ϕ∨ ∼ ψ) (A10)

∼ (ϕ ∨ ψ) ↔ (∼ ϕ∧ ∼ ψ) (A11)

∼ (ϕ → ψ) ↔ (ϕ →∼ ψ) (A12)

∼ ∃xθ ↔ ∀x ∼ θ (A13)

∼ ∀xθ ↔ ∃x ∼ θ (A14)

∀xθ → θ[c◁x] (A15)

θ[c◁x] → ∃xθ (A16)

The rules of inference are then as follows:

From ϕ,ϕ → ψ infer ψ (MP)

From ϕ → θ[c◁x] infer ϕ → ∀xθ (R∀)

From θ[c◁x] → ψ infer ∃xθ → ψ (R∃)

Given any particular application of the rules (R∀) and (R∃) the parameter c is called
the main parameter of the rule application and must have no occurrences in ϕ → ψ.5

For any ∆ ⋐ L∅(Σ,Π) and any ϕ̄n ∈ L∅(Σ,Π)
n, such that ∆ ⊆ {ϕ̄n}, we say that

ϕ̄n is a (Σ,Π)-deduction in QC of ϕn from the premises ∆ i, for every 1 ≤ i ≤ n,
ϕi is either (1) an instance of (A1)–(A16), or (2) ϕi ∈ ∆, or (3) ϕi is obtained from
some ϕj ,ϕk such that 1 ≤ j, k < i by an application of (MP), or else (4) is obtained
from some ϕj such that 1 ≤ j < i by an application of either (R∀) or (R∃) and

5We do not need to require that x ◁∈ FV (ϕ) since we assume that our deductions consist of
parametrized sentences. Moreover, note that a parameter is always substitutable for a variable,
hence the usual provisions associated to axiom schemas like (A15) and (A16) can be omitted in our
case.
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the main parameter of this application is outside Par(∆). Moreover, ϕ̄n is called a
proof i it is a deduction from the empty set of premises. For any Γ ⊆ L∅(Σ,Π),
we say that ϕ ∈ L∅(Σ,Π) is (Σ,Π)-deducible from Γ (and write Γ ⊢(Σ,Π) ϕ) i there

exists a (Σ,Π)-deduction ϕ̄n from the premises ∆ for some ∆ ⋐ Γ such that ϕn = ϕ.
We say that ϕ ∈ L∅(Σ,Π) is deducible from Γ (and write Γ ⊢ ϕ) i for every innite
set Par(Γ ∪ {ϕ}) ⊆ Ξ ⊆ Par, we have Γ ⊢(Sign(Γ∪{ϕ}),Ξ) ϕ.

We now take a brief look at some properties of deducibility. We establish, rst,
that certain renamings of parameters in deductions by “fresh” parameters are always
possible:

Lemma 6. Let Σ be a signature, let Π ⊆ Par be a set, and let ∆∪ {ϕ} ⋐ L∅(Σ,Π),
let ϕ̄n be a (Σ,Π)-deduction of ϕ from the premises in ∆, and let ām ∈ Par ̸=m

be a non-repeating listing of Par({ϕ̄n}) \ Par(∆ ∪ {ϕ}). Assume, moreover, that
b̄m ∈ (Par\Par({ϕ̄n}))

̸=m. Then ϕ1[b̄m◁ām], ▷ ▷ ▷ ,ϕn[b̄m◁ām] is a (Σ, Par(∆∪{ϕ})∪
{b̄m})-deduction of ϕ = ϕn from the premises in ∆.

Proof. By Lemma 1.2 and the choice of ām, we know that the formulas from ∆∪{ϕ}
are not aected by the substitution of b̄m for ām; on the other hand, for every
1 ≤ i ≤ n we have that:

Par(ϕi[b̄m◁ām]) ⊆ (Par(ϕi) \ {ām}) ∪ {b̄m} (by Lemma 1.1)

⊆ (Par({ϕ̄n}) \ {ām}) ∪ {b̄m}

= (Par({ϕ̄n}) \ (Par({ϕ̄n}) \ Par(∆ ∪ {ϕ}))) ∪ {b̄m}

= Par(∆ ∪ {ϕ}) ∪ {b̄m} (by (∆ ∪ {ϕ}) ⊆ {ϕ̄n})

It remains to show that ϕ1[b̄m◁ām], ▷ ▷ ▷ ,ϕn[b̄m◁ām] is indeed a deduction; in doing
so, we proceed by induction on r ≤ n. More precisely, we show that, for every such
r, ϕ1[b̄m◁ām], ▷ ▷ ▷ ,ϕr[b̄m◁ām] is a (Σ, Par(∆ ∪ {ϕ}) ∪ {b̄m})-deduction of ϕr[b̄m◁ām]
from the premises in ∆ ∩ {ϕ̄k}.

Basis. r = 1. The following cases are then possible:

Case 1. ϕ1 ∈ ∆. Then, by Lemma 1.2 and the fact that {ām}∩Par(∆) = ∅, we
must have ϕ1[b̄m◁ām] = ϕ1 ∈ ∆.

Case 2. ϕ1 is an instance of an axiom schema. Then ϕ1[b̄m◁ām] is clearly an
instance of the same axiom schema.

Step. r = k+1. Then, by IH, ϕ1[b̄m◁ām], ▷ ▷ ▷ ,ϕk[b̄m◁ām] is a (Σ, Par(∆∪ {ϕ})∪
{b̄m})-deduction of ϕk[b̄m◁ām] from the premises in ∆ ∩ {ϕ̄k}. If now ϕr is in ∆

or an instance of an axiom schema, then we reason as in the Basis. Otherwise, the
following cases are possible:
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Case 1. For some i, j such that 1 ≤ i, j ≤ k it is true that ϕj = ϕi → ϕr.
But then ϕj [b̄m◁ām] = ϕi[b̄m◁ām] → ϕr[b̄m◁ām] so that ϕr[b̄m◁ām] is obtained by an
application of (MP) from ϕj [b̄m◁ām] and ϕi[b̄m◁ām].

Case 2. For some 1 ≤ i ≤ k we have ϕi = ψ → χ[c◁x] for corresponding x, c, ψ,
and χ, such that c ◁∈ Par(∆) ∪ Par(ψ → χ), whereas ϕr = ψ → ∀xχ.

Two subcases are then possible.
Case 2.1. c ∈ Par(ϕ). Then we get that c ◁∈ {ām} ∪ {b̄m}, and we reason as

follows:

ϕi[b̄m◁ām] = (ψ → χ[c◁x])[b̄m◁ām]

= ψ[b̄m◁ām] → χ[c◁x][b̄m◁ām]

= ψ[b̄m◁ām] → χ[b̄m◁ām][c◁x] (by Lemma 1.4)

On the other hand, we have

ϕn[b̄m◁ām] = ψ[b̄m◁ām] → ∀x(χ[b̄m◁ām])

= ψ[b̄m◁ām] → ∀x(χ[b̄m◁ām])

It remains to notice that c ◁∈ Par(∆), and that:

Par(ψ[b̄m◁ām] → χ[b̄m◁ām]) ⊆ Par(ψ → χ) ∪ {b̄m},

therefore, by the choice of b̄m, we must have

c ◁∈ Par(ψ[b̄m◁ām] → χ[b̄m◁ām])▷

Case 2.2. c ◁∈ Par(ϕ). Then c ◁∈ Par(∆) ∪ Par(ϕ) and yet c occurs in our
deduction, therefore, c = aj for some 1 ≤ j ≤ m. We may assume, wlog, that j = m

(otherwise, we can just re-shue our listing ām).
But then we get that:

ϕi[b̄m◁ām] = (ψ → χ[am◁x])[b̄m◁ām]

= ψ[b̄m◁ām] → χ[am◁x][b̄m◁ām]

= ψ[b̄m◁ām] → χ[b̄m◁ām][bm◁x] (by Lemma 1.4)

= ψ[b̄m−1◁ām−1] → χ[b̄m−1◁ām−1][bm◁x]

(by Corollary 1.2 and am = c ◁∈ Par(ψ → χ))

On the other hand, we have

ϕn[b̄m◁ām] = ψ[b̄m◁ām] → ∀x(χ[b̄m◁ām])

= ψ[b̄m−1◁ām−1] → ∀x(χ[b̄m−1◁ām−1])
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again, by Corollary 1.2 and am = c ◁∈ Par(ψ → χ). It remains to notice that
bm ◁∈ Par(∆), and that:

Par(ψ[b̄m−1◁ām−1] → χ[b̄m−1◁ām−1]) ⊆ Par(ψ → χ) ∪ {b̄m−1}

⊆ Par({ϕ̄n}) ∪ {b̄m−1},

therefore, by the choice of b̄m, we must have

bm ◁∈ Par(ψ[b̄m−1◁ām−1] → χ[b̄m−1◁ām−1])▷

Therefore, ϕn[b̄m◁ām] is obtained from ϕi[b̄m◁ām] by a correct application of (R∀).

Case 3. For some 1 ≤ i ≤ k we have ϕi = ψ[c◁x] → χ for corresponding x, c, ψ,
and χ, such that c ◁∈ Par(∆) ∪ Par(ψ → χ), whereas ϕr = ∃ψ → χ. This case is
dual to Case 2.

Lemma 7. Let Σ be a signature, let Π ⊆ Par be a set, and let Γ∪ {ϕ} ⊆ L∅(Σ,Π).
Then Γ ⊢ ϕ i Γ ⊢(Sign(Γ∪{ϕ}),Ξ) ϕ for some innite set Par(Γ ∪ {ϕ}) ⊆ Ξ ⊆ Par.

Proof. The left-to-right direction is trivial. As for the right-to-left direction, assume
that the set Par(Γ∪{ϕ}) ⊆ Ξ ⊆ Par is innite, and that we have Γ ⊢(Sign(Γ∪{ϕ}),Ξ) ϕ.

Then for some ∆ ⋐ Γ and for some ϕ̄n ∈ L∅(Sign(Γ∪ {ϕ}),Ξ)n it is true that ϕ̄n is
a (Sign(Γ ∪ {ϕ}),Ξ)-deduction of ϕ = ϕn from the premises in ∆. Let m ∈ ω and
let ām ∈ Ξ ̸=m be a non-repeating listing of Par({ϕ̄n}) \ Par(∆ ∪ ϕ).

Choose any innite parameter set Ξ′ ⊇ Par(Γ∪ {ϕ}). Since Par({ϕ̄n}) is nite,
we can choose a non-repeating tuple b̄m ∈ Par ̸=m such that {b̄m} ⊆ Ξ′ \Par({ϕ̄n}).
Now Lemma 6 implies that ϕ1[b̄m◁ām], ▷ ▷ ▷ ,ϕn[b̄m◁ām] is a (Sign(Γ∪ {ϕ}), Par(∆∪
ϕ) ∪ {b̄m})-deduction (and hence also a (Sign(Γ ∪ {ϕ}),Ξ′)-deduction) of ϕ = ϕn

from the premises in ∆.

Next, we need to establish some particular deducibility relations to be used later:

Lemma 8. Let Σ be a signature, let Π ⊆ Par be a set, let ϕ,ψ,χ ∈ L∅(Σ,Π), let
Γ ⊆ L∅(Σ,Π), and let a ∈ Par \ Par(Γ). Next, let x ∈ V ar, and let θ ∈ Lx(Σ,Π).
Moreover, let m,n ∈ ω, ϕ̄n ∈ L∅(Σ,Π)

n, and ψ̄m ∈ L∅(Σ,Π)m be such that {ϕ̄n} ⊆
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{ψ̄m}. Then the following deducibility relations hold:

⊢ ϕ → ϕ (T1)

⊢ (ϕ → (ψ → χ)) ↔ ((ϕ ∧ ψ) → χ) ↔ (ψ → (ϕ → χ)) (T2)

⊢ ((ϕ → ψ) ∧ (ϕ ∨ ψ ∨ χ)) → (ψ ∨ χ) (T3)

⊢ ((ϕ → ψ) ∧ (ϕ ∧ χ)) → (ϕ ∧ ψ ∧ χ) (T4)

⊢


ψ̄m →


ϕ̄n (T5)

⊢


ϕ̄n →


ψ̄m (T6)

⊢ ∀x(θ → ϕ) ↔ (∃xθ → ϕ) (T7)

⊢ ∀x(ϕ → θ) ↔ (ϕ → ∀xθ) (T8)

(Γ ⊢ ϕ → ψ&Γ ⊢ ψ → χ) ⇒ Γ ⊢ ϕ → χ (DR1)

The proof is as in the intuitionistic (and classical) case. Using (T5) and (T6),
we may extend our notational conventions and write



Γ and


Γ for an arbitrary
Γ ⋐ L∅(Σ,Π).

Lemma 9 (Deduction Theorem). Let Σ be a signature, let Π ⊆ Par be a set, and
let Γ ∪ {ϕ,ψ} ⊆ L∅(Σ,Π). Then Γ,ϕ ⊢ ψ i Γ ⊢ ϕ → ψ.

Proof. The right-to-left direction is straightforward due to the presence of (MP) in
our system. As for the other direction, assume that, for some innite Ξ ⊆ Par such
that Par(Γ ∪ {ϕ,ψ}) ⊆ Ξ, and for some n ∈ ω, the sequence ϕ̄n ∈ L∅(Sign(Γ ∪
{ϕ,ψ}),Ξ)n is a (Sign(Γ ∪ {ϕ,ψ}),Ξ)-deduction of ψ = ϕn from the premises in
∆ ⋐ Γ ∪ {ϕ}.

Now, if ϕ ◁∈ ∆, then we must also have Γ ⊢ ψ. But then we can append to ϕ̄n

the sentence ψ → (ϕ → ψ) as an instance of (A1) followed by ϕ → ψ as the result
of applying (MP) to the previous sentence and ψ. The resulting sequence is clearly
a deduction of ϕ → ψ from the premises in ∆ ⊆ Γ so that Γ ⊢ ϕ → ψ.

On the other hand, if ϕ ∈ ∆, then consider the sequence ϕ → ϕ1, ▷ ▷ ▷ ,ϕ → ϕn,
and show, by induction on n, that, for every 1 ≤ k ≤ n, we can add enough elements
to it so that its initial fragment ϕ → ϕ1, ▷ ▷ ▷ ,ϕ → ϕk turns into a deduction of ϕ → ϕk

from the premises in (∆ \ {ϕ}) ∩ {ϕ̄k}.

Basis. k = 1. We reason as in the intuitionistic (and classical) case.

Step. k = r + 1 for some r ≥ 1. In case ϕk is in ∆ ∪ {ϕ}, or is an instance of
an axiom schema, or is obtained from earlier formulas by an application of (MP),
we again reason as in the intuitionistic (and classical) case. There remain two cases
connected with the use of the quantier rules:
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Case 1. For some 1 ≤ i ≤ r we have ϕi = θ → χ[c◁x] for corresponding x, c,
θ, and χ, such that c ◁∈ Par(∆ ∪ {ϕ}) ∪ Par(θ → χ), whereas ϕk = θ → ∀xχ. The
Induction Hypothesis then implies that for some s ∈ ω we have transformed the
sequence ϕ → ϕ1, ▷ ▷ ▷ ,ϕ → ϕr into some (Sign(Γ ∪ {ϕ,ψ}),Ξ)-deduction χ1, ▷ ▷ ▷ ,χs

of ϕ → ϕr = χs from the premises in (∆ \ {ϕ}) ∩ {ϕ̄r}. We now extend χ1, ▷ ▷ ▷ ,χs

by adding the proof of (ϕ → (θ → χ[c◁x])) → ((ϕ ∧ θ) → χ[c◁x]) as an instance of
(T2) followed by an occurrence of (ϕ ∧ θ) → χ[c◁x] resulting from an application of
(MP) to this instance of (T2) and the formula ϕ → (θ → χ[c◁x]) = ϕ → ϕi = χj for
some 1 ≤ j ≤ s. Immediately after that, we add the formula (ϕ ∧ θ) → ∀xχ. Since
c ◁∈ Par(∆ ∪ {θ,ϕ,χ}), the latter formula is obtained from (ϕ ∧ θ) → χ[c◁x] by an
application of (R∀). We insert, next, the proof of ((ϕ ∧ θ) → ∀xχ) → (ϕ → (θ →
∀xχ)) as an instance of (T2). The sentence ϕ → (θ → ∀xχ) = ϕ → ϕk now follows
from the latter sentence and from (ϕ ∧ θ) → ∀xχ by an application of (MP).

Case 2. For some 1 ≤ i ≤ r we have ϕi = θ[c◁x] → χ for corresponding x, c,
θ, and χ, such that c ◁∈ Par(∆ ∪ {ϕ}) ∪ Par(θ → χ), whereas ϕk = ∃xθ → χ. The
reasoning here is parallel to the argument for Case 1.

We immediately state a useful corollary:

Corollary 5. Let Σ be a signature, let Π ⊆ Par be a set, let Γ ∪ {ϕ} ⊆ L∅(Σ,Π),
let ∆ ⋐ L∅(Σ,Π), let x ∈ V ar, let ψ ∈ Lx(Σ,Π), and let a ∈ Par \ Par(Γ ∪ {ψ}).
Then the following statements hold:

1. Γ ∪∆ ⊢ ϕ ⇔ Γ ⊢


∆ → ϕ.

2. Γ ⊢ ψ[a◁x] ⇔ Γ ⊢ ∀xψ.

Proof. (Part 1). By Lemma 9 and (T2).

(Part 2). The right-to-left direction follows by (A15). For the left-to-right direc-
tion, note that Sign(ψ)must be non-empty, so choose any k ∈ ω and any P such that
P k ∈ Sign(ψ). By (T1) and (A16), we must have ⊢ χ for χ := ∃x̄k(P (x̄k) → P (x̄k)),
hence also Γ ⊢ χ. On the other hand, since Par(χ) = ∅, we must have Γ ∪ {χ} ⊢
ψ[a◁x], so that, by Lemma 9, also Γ ⊢ χ → ψ[a◁x]. Since a ◁∈ Par(Γ ∪ {χ → ψ}),
the rule (R∀) is applicable, and we get that Γ ⊢ χ → ∀xψ. One further application
of (MP) gives us that Γ ⊢ ∀xψ.

Our proof system is sound relative to the semantics of QC introduced in the
previous section; more precisely, the following theorem holds:

Theorem 1. Let Σ be a signature, let Π ⊆ Par be a set, and let Γ∪{ϕ} ⊆ L∅(Σ,Π).
If Γ ⊢ ϕ, then Γ |= ϕ.
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Proof. Assume that Γ ⊢ ϕ. Fix any innite parameter set Ξ ⊆ Par(Γ ∪ {ϕ}) and
any (Sign(Γ∪{ϕ}),Ξ)-deduction ϕ̄n of ϕ = ϕn from the premises in ∆ ⋐ Γ. We will
show that, for every r ≤ n, we have ∆ |= ϕr by induction on r, whence Γ |= ϕ = ϕn

obviously follows.

Basis. r = 1. Let Σ ⊇ Sign(Γ ∪ {ϕ1}), let M be a Σ-model and let w ∈ W be
such that Dw ⊇ Par(∆∪{ϕ1}) and M, w |=+ ∆. Two cases are possible. If ϕ1 is an
instance of an axiom schema, then clearly M, w |=+ ϕ1. Otherwise, we must have
ϕ1 ∈ ∆, and then M, w |=+ ϕ1 follows from M, w |=+ ∆.

Step. r = k + 1. Then the Induction Hypothesis implies that ∆ |=+ ϕi for any
1 ≤ i ≤ k. Again, let Σ ⊇ Sign(∆ ∪ {ϕr}), let M be a Σ-model and let w ∈ W be
such that Dw ⊇ Par(∆ ∪ {ϕr}) and M, w |=+ ∆. If ϕr is an instance of an axiom
schema or a premise, then we reason as in the Basis. Otherwise the following cases
are possible:

Case 1. For some i, j such that 1 ≤ i, j ≤ k it is true that ϕj = ϕi → ϕr.
Again, let Σ ⊇ Sign(∆ ∪ {ϕr}), let M be a Σ-model and let w ∈ W be such that
Dw ⊇ Par(∆∪{ϕr}) andM, w |=+ ∆. Assume, for contradiction, thatM, w ̸|=+ ϕr.
Then we choose a tuple ām ∈ Par ̸=m such that {ām} = Par(ϕi) \ Dw and choose
any b ∈ Dw. Next, we set M′ := M[a1:=b]▷▷▷[am:=b]. By Corollary 4, we have both
M′, w |=+ ∆ and M′, w ̸|=+ ϕr. On the other hand, Par(ϕi) ∪ Par(ϕr) ⊆ D′

w so
that the Induction Hypothesis implies that M′, w |=+ ϕi ∧ (ϕi → ϕr), which is in
contradiction with M′, w ̸|=+ ϕr.

Case 2. For some 1 ≤ i ≤ k we have ϕi = ψ → χ[c◁x] for corresponding
x, c, ψ, and χ, such that c ◁∈ Par(∆) ∪ Par(ψ → χ), whereas ϕr = ψ → ∀xχ.
Again, let Σ ⊇ Sign(∆ ∪ {ϕr}), let M be a Σ-model and let w ∈ W be such
that Dw ⊇ Par(∆ ∪ {ϕr}) and M, w |=+ ∆. Observe that we have then that
∆ ⊢ ψ → χ[c◁x]. Assume, for contradiction, that M, w ̸|=+ ψ → ∀xχ. Then there
must be a v ∈ W such that w ≤ v and we have both M, v |=+ ψ and M, v ̸|=+ ∀xχ;
the latter means that, for some u ∈ W such that v ≤ u and for some a ∈ Du

we must have M, u ̸|=+ χ[a◁x]. By transitivity of ≤ and Lemma 2, we get that
M, u |=+ (∆ ∪ {ψ}, {χ[a◁x]}). If a = c, then we are done. Otherwise, we choose
any d ∈ Par \ U and set M′ := M[d◁c][c:=a]. By Corollary 3 and Corollary 4,
we get that M′, u |=+ ∆ ∪ {ψ}; on the other hand, we get, by Corollary 3, that
M[d◁c], u ̸|=+ χ[a◁x][d◁c]. However, by the choice of a, c we have c ◁∈ Par(χ) ∪ {a}
and so Lemma 1.2 implies that χ[a◁x][d◁c] = χ[a◁x]. Therefore, M[d◁c], u ̸|=+

χ[a◁x], whence, by Lemma 5, it follows that M′, u ̸|=+ χ[c◁x]. Now, since c ∈ D′
u,

and the Induction Hypothesis implies that ∆ |=+ ψ → χ[c◁x], we must also have
M′, u |=+ ψ → χ[c◁x]. The obtained contradiction shows that, in fact, we must
have had M, w |=+ ψ → ∀xχ all along.

Case 3. For some 1 ≤ i ≤ k we have ϕi = ψ[c◁x] → χ for corresponding x, c, ψ,
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and χ, such that c ◁∈ Par(∆) ∪ Par(ψ → χ), whereas ϕr = ∃xψ → χ. This case is
dual to Case 2.

We now proceed to show the converse of Theorem 1. We will only show it
for countable signatures and countable parameter sets. Again, we start with some
denitions. A given bi-set (Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)), is called:

• Non-trivial, if ∆ ̸= ∅ and Γ ̸⊢


∆′ for every ∅ ̸= ∆′
⋐ ∆.

• Complete, if Γ ∪∆ = L∅(Sign(Γ ∪∆), Par(Γ ∪∆)).

• ∃-complete, if for every ∃xϕ ∈ L∅(Sign(Γ∪∆), Par(Γ∪∆)) such that ∃xϕ ∈ Γ,
there exists an a ∈ Par(Γ ∪∆) such that ϕ[a◁x] ∈ Γ.

A given (Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) is called (Σ,Π)-appropriate i Sign(Γ∪∆) =
Σ, Par(Γ ∪ ∆) = Π, and (Γ,∆) is non-trivial, complete, and ∃-complete. In the
lemmas that follow below, we list some properties of non-trivial bi-sets and then,
more specically, some properties of the non-trivial bi-sets that also happen to be
appropriate.

Lemma 10. Let Σ be a signature, let Π ⊆ Par be a set, and let

(Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) be non-trivial. Then the following statements hold:

1. If (Γ′,∆′) ⊆ (Γ,∆) and ∆′ ̸= ∅, then (Γ′,∆′) is non-trivial.

2. If ϕ ∈ L∅(Σ,Π), then one of (Γ ∪ {ϕ},∆), (Γ,∆ ∪ {ϕ}) is non-trivial.

3. If ∃xϕ ∈ L∅(Σ,Π), and a ∈ Par \ Π, then one of (Γ ∪ {∃xϕ,ϕ[a◁x]},∆),
(Γ,∆ ∪ {∃xϕ}) is non-trivial.

4. If ϕ → ψ ∈ ∆, then (Γ ∪ {ϕ}, {ψ}) is non-trivial.

5. If ∼ (ϕ → ψ) ∈ ∆, then (Γ ∪ {ϕ}, {∼ ψ}) is non-trivial.

6. If ∀xϕ ∈ ∆, and a ∈ Par \Π, then (Γ, {ϕ[a◁x]}) is non-trivial.

7. If ∼ ∃xϕ ∈ ∆, and a ∈ Par \Π, then (Γ, {∼ ϕ[a◁x]}) is non-trivial.

Proof. Part 1 is straightforward. As for Part 2, assume that both (Γ ∪ {ϕ},∆) and
(Γ,∆ ∪ {ϕ}) are trivial. Then there must be ∆′,∆′′

⋐ ∆ such that (wlog, due
to (A6) and (MP)), both Γ ∪ {ϕ} ⊢



∆′ and Γ ⊢ ϕ ∨


∆′′. By Lemma 9, the
former deducibility relation implies that also Γ ⊢ ϕ →



∆′. Applying (A6) and
(T3), we infer that Γ ⊢



∆′ ∨


∆′′. Applying (T6) next, we can show that also
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Γ ⊢


(∆′ ∪∆′′) (we basically need to erase the repetitions in


∆′ ∨


∆′′). Since
∆′ ∪∆′′

⋐ ∆, this contradicts the non-triviality of (Γ,∆).
(Part 3). Again, assume that both (Γ ∪ {∃xϕ,ϕ[a◁x]},∆) and (Γ,∆ ∪ {∃xϕ})

are trivial. Then, by Part 2, (Γ ∪ {∃xϕ},∆) must be non-trivial. Let ∆′
⋐ ∆ be

such that Γ ∪ {∃xϕ,ϕ[a◁x]} ⊢


∆′. By Lemma 9, we must have then Γ ∪ {∃xϕ} ⊢
ϕ[a◁x] →



∆′. Since a ∈ Par, by its choice, is outside Par(Γ ∪∆ ∪ {ϕ}), we get
that:

Γ ∪ {∃xϕ} ⊢ ∃xϕ →


∆
′ (by (R∃))

Γ ∪ {∃xϕ} ⊢


∆
′ (by (MP))

The latter deducibility clearly contradicts the non-triviality of (Γ ∪ {∃xϕ},∆).
(Part 4). Assume that ϕ → ψ ∈ ∆, but (Γ ∪ {ϕ}, {ψ}) is trivial, that is to say,

that we have Γ ∪ {ϕ} ⊢ ψ. By Lemma 9, we have Γ ⊢ ϕ → ψ, which contradicts the
non-triviality of (Γ,∆).

(Part 5). Assume that ∼ (ϕ → ψ) ∈ ∆. By Part 2, either (Γ ∪ {ϕ →∼ ψ},∆)
or (Γ,∆ ∪ {ϕ →∼ ψ}) must be non-trivial. The former case is in contradiction
with (A12), therefore, (Γ,∆ ∪ {ϕ →∼ ψ}) must be non-trivial, and, by Part 4,
(Γ ∪ {ϕ}, {∼ ψ}) must be non-trivial as well.

(Part 6). Assume that ∀xϕ ∈ ∆, and that a ∈ Par \ Π, but (Γ, {ϕ[a◁x]}) is
trivial, that is to say, that we have Γ ⊢ ϕ[a◁x]. By Corollary 5.2, we must have then
that Γ ⊢ ∀xϕ which is in contradiction with the non-triviality of (Γ,∆).

(Part 7). Assume that ∼ ∃xϕ ∈ ∆, and that a ∈ Par \ Π. By Part 2, either
(Γ ∪ {∀x ∼ ϕ},∆) or (Γ,∆ ∪ {∀x ∼ ϕ}) must be non-trivial. The former case is in
contradiction with (A13), therefore, (Γ,∆ ∪ {∀x ∼ ϕ}) must be non-trivial, and, by
Part 6, (Γ, {∼ ϕ[a◁x]}) must be non-trivial as well.

Lemma 11. Let Σ be a signature, let Π ⊆ Par be a set, and let
(Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) be (Σ,Π)-appropriate. Let ϕ,ψ ∈ L∅(Σ,Π), let x ∈
V ar, and let χ ∈ Lx(Σ,Π). Then the following statements hold:

1. If Γ ⊢ ϕ, then ϕ ∈ Γ.

2. ϕ ∧ ψ ∈ Γ i ϕ,ψ ∈ Γ.

3. ∼ (ϕ ∧ ψ) ∈ Γ i ∼ ϕ ∈ Γ or ∼ ψ ∈ Γ.

4. ϕ ∨ ψ ∈ Γ i ϕ ∈ Γ or ψ ∈ Γ.

5. ∼ (ϕ ∨ ψ) ∈ Γ i ∼ ϕ,∼ ψ ∈ Γ.

6. ∼∼ ϕ ∈ Γ i ϕ ∈ Γ.
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7. ∃xχ ∈ Γ i χ[a◁x] ∈ Γ for some a ∈ Par(Γ ∪∆).

8. ∼ ∀xχ ∈ Γ,∆ i ∼ χ[a◁x] ∈ Γ for some a ∈ Par(Γ ∪∆).

9. If ϕ → ψ ∈ Γ and ϕ ∈ Γ, then ψ ∈ Γ.

10. If ∼ (ϕ → ψ) ∈ Γ and ϕ ∈ Γ, then ∼ ψ ∈ Γ.

11. If ∀xχ ∈ Γ and a ∈ Par(Γ ∪∆), then χ[a◁x] ∈ Γ.

12. If ∼ ∃xχ ∈ Γ and a ∈ Par(Γ ∪∆), then ∼ χ[a◁x] ∈ Γ.

Proof. Part 1 follows from the non-triviality and completeness of (Γ,∆).
Most of the remaining parts are proven by a straightforward reference to Part

1 plus the corresponding part of our axiomatization sometimes combined with the
reference to the earlier dual parts of the Lemma. Exceptions are Part 4 (reference
to (T1)) and Part 7, where one must use the ∃-completeness of (Γ,∆).

Certain types of non-trivial bi-sets are in general extendable to certain types of
appropriate bi-sets, which is the subject of the next lemma:

Lemma 12. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let (Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) be non-trivial. Then, for every
Ξ ⊆ Par disjoint from Π and such that |Ξ| = ω, there exists a (Σ,Π∪Ξ)-appropriate
bi-set (Γ′,∆′) such that (Γ′,∆′) ⊇ (Γ,∆).

Proof. Let {an | n ∈ ω} be an enumeration of Ξ, and let {ψn | n ∈ ω} be an
enumeration of L∅(Σ,Π∪Ξ). We now dene a countably innite increasing chain of
non-trivial bi-sets

(Γ0,∆0) ⊆ ▷ ▷ ▷ ⊆ (Γn,∆n) ⊆ ▷ ▷ ▷

by setting (Γ,∆) := (Γ0,∆0), and for any k ∈ ω, if ψk is not of the form ∃xϕ we set:

(Γk+1,∆k+1) :=



(Γk ∪ {ψk},∆k), if (Γk ∪ {ψk},∆k) is non-trivial

(Γk,∆k ∪ {ψk}), otherwise.

In case ψk has the form ∃xϕ, we set

ν[Γk,∆k,ψk] := {n ∈ ω | an ∈ Ξ \ Par(Γk ∪∆k ∪ {ψk})}

and dene:

(Γk+1,∆k+1) :=















(Γk ∪ {∃xϕ,ϕ[am◁x]},∆k), if m = min ν[Γk,∆k, ∃xϕ]

and (Γk ∪ {∃xϕ,ϕ[am◁x]},∆k) is non-trivial

(Γk,∆k ∪ {∃xϕ}), otherwise.
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We show that the chain (Γ0,∆0) ⊆ ▷ ▷ ▷ ⊆ (Γn,∆n) ⊆ ▷ ▷ ▷ is well-dened and that, for
every k ∈ ω the bi-set (Γk,∆k) is non-trivial and we have |ν[Γk,∆k,ψk]| = ω.

This claim is obviously true when k = 0. If k = r + 1, and the claim is true
for (Γr,∆r), then (Γr+1,∆r+1) is well-dened by the Induction Hypothesis and
is non-trivial by Lemma 10.2–3. Finally, we have Par(Γr+1 ∪ ∆r+1 ∪ {ψr+1}) =
Par(Γr ∪∆r ∪ {ψr,ψr+1}) in case ψr is not of the form ∃xϕ and Par(Γr+1 ∪∆r+1 ∪
{ψr+1}) ⊆ Par(Γr ∪ ∆r ∪ {∃xϕ,ϕ[am◁x],ψk+1}) for certain fresh am ∈ Par when
ψr = ∃xϕ. In both cases the dierence with Par(Γr ∪∆r ∪ {ψr}) is clearly nite so
that |ν[Γr+1,∆r+1,ψr+1]| = ω obviously holds.

We now set (Γ′,∆′) := (


n∈ω Γn,


n∈ω ∆n) and show that this bi-set satises the
requirements of the Lemma. It is clear that (Γ′,∆′) ⊇ (Γ,∆). Moreover, for every
k ∈ ω, we have ψk ∈ Γk+1 ∪∆k+1, therefore it is also clear that Sign(Γ′ ∪∆′) = Σ,
that Par(Γ′ ∪∆′) = Π ∪ Ξ, and that (Γ′,∆′) is complete.

It remains to show non-triviality and ∃-completeness of (Γ′,∆′). If ∅ ̸= ∆∗
⋐ ∆′

is such that Γ′ ⊢


∆∗, then consider any deduction of


∆∗ from the premises in
Γ∗

⋐ Γ and choose any k ∈ ω such that (Γ∗,∆∗) ⊆ (Γk,∆k). Then Γk ⊢


∆∗,
which contradicts the non-triviality of (Γk,∆k).

As for the ∃-completeness, if ∃xϕ ∈ Γ′, then ∃xϕ ∈ L∅(Σ,Π ∪ Ξ), therefore, for
some k ∈ ω, we must have ∃xϕ = ψk. Clearly, ψk ∈ ∆k+1 ⊆ ∆′ would contradict
the non-triviality of (Γ′,∆′). Therefore, we must have ∃xϕ,ϕ[am◁x] ∈ Γk+1 ⊆ Γ′ for
an appropriate am ∈ Ξ.

We are now in a position to prove the completeness of our axiomatization in
the countable case. Given a signature Σ and a parameter set Π, we will call a
bi-set (Γ,∆) (Σ,Π)-nice i (Γ,∆) is (Σ,Ξ)-appropriate, for some Ξ ⊆ Π such that
|Π \ Ξ| = ω. Given a (Σ,Π)-appropriate bi-set (Γ,∆), and a countably innite
Ξ ⊆ Par which is disjoint from Π, we can dene the following Σ-model M(Γ,∆,Ξ) by
setting:

• W(Γ,∆,Ξ) := {(Γ′,∆′) | (Γ′,∆′) is (Σ,Π ∪ Ξ)-nice}.

• For (Γ0,∆0), (Γ1,∆1) ∈ W(Γ,∆,Ξ), we have (Γ0,∆0) ≤(Γ,∆,Ξ) (Γ1,∆1) i Γ0 ⊆
Γ1.

• U(Γ,∆,Ξ) := Π ∪ Ξ.

• For (Γ0,∆0) ∈ W(Γ,∆,Ξ), we have D(Γ,∆,Ξ)(Γ0,∆0) := Par(Γ0 ∪∆0).

• For (Γ0,∆0) ∈ W(Γ,∆,Ξ), n ∈ ω, Pn ∈ Sign(Γ0 ∪∆0), and ān ∈ Par(Γ0 ∪∆0)
n

we have ān ∈ V +
(Γ,∆,Ξ)(P, (Γ0,∆0)) i P (ān) ∈ Γ0.
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• For (Γ0,∆0) ∈ W(Γ,∆,Ξ), n ∈ ω, Pn ∈ Sign(Γ0 ∪∆0), and ān ∈ Par(Γ0 ∪∆0)
n

we have ān ∈ V −
(Γ,∆,Ξ)(P, (Γ0,∆0)) i ∼ P (ān) ∈ Γ0.

It is straightforward to show that M(Γ,∆,Ξ) is indeed a model of QC, and using the
usual methods, a truth lemma can be shown for this model:

Lemma 13. Let (Γ,∆) be a (Σ,Π)-appropriate bi-set and let Ξ ⊆ Par be countably
innite and disjoint from Π. Then, for every (Γ0,∆0) ∈ W(Γ,∆,Ξ) and every ϕ ∈
L∅(Σ,Π ∪ Ξ) it is true that:

1. M(Γ,∆,Ξ), (Γ0,∆0) |=
+ ϕ i ϕ ∈ Γ0.

2. M(Γ,∆,Ξ), (Γ0,∆0) |=
− ϕ i ∼ ϕ ∈ Γ0.

Proof. We prove both parts of the Lemma simultaneously by induction on the con-
struction of ϕ ∈ L∅(Σ,Π ∪ Ξ).

Basis. ϕ is atomic. Both parts of the Lemma hold by the denition of V +
(Γ,∆,Ξ)

and V −
(Γ,∆,Ξ)

Step. The following cases are possible.
Case 1. ϕ = ψ ∧χ for some ψ,χ ∈ L∅(Σ,Π∪Ξ). Then, for Part 1 of the Lemma

we reason as follows:

M(Γ,∆,Ξ), (Γ0,∆0) |=
+ ψ ∧ χ ⇔ M(Γ,∆,Ξ), (Γ0,∆0) |=

+ ψ

and M(Γ,∆,Ξ), (Γ0,∆0) |=
+ χ

⇔ ψ ∈ Γ0 and χ ∈ Γ0 (by IH)

⇔ ψ ∧ χ ∈ Γ0 (by Lemma 11.2)

For Part 2, the reasoning is similar:

M(Γ,∆,Ξ), (Γ0,∆0) |=
− ψ ∧ χ ⇔ M(Γ,∆,Ξ), (Γ0,∆0) |=

− ψ

or M(Γ,∆,Ξ), (Γ0,∆0) |=
− χ

⇔∼ ψ ∈ Γ0 or ∼ χ ∈ Γ0 (by IH)

⇔∼ (ψ ∧ χ) ∈ Γ0 (by Lemma 11.3)

Case 2. ϕ = ψ ∨ χ for some ψ,χ ∈ L∅(Σ,Π ∪ Ξ). Similar to Case 1.
Case 3. ϕ =∼ ψ or some ψ ∈ L∅(Σ,Π ∪ Ξ). Then, for Part 1 of the Lemma we

reason as follows:

M(Γ,∆,Ξ), (Γ0,∆0) |=
+∼ ψ ⇔ M(Γ,∆,Ξ), (Γ0,∆0) |=

− ψ

⇔∼ ψ ∈ Γ0 (by IH)
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As for Part 2, the argument is as follows:

M(Γ,∆,Ξ), (Γ0,∆0) |=
−∼ ψ ⇔ M(Γ,∆,Ξ), (Γ0,∆0) |=

+ ψ

⇔ ψ ∈ Γ0 (by IH)

⇔∼∼ ψ ∈ Γ0 (by Lemma 11.6)

Case 4. ϕ = ψ → χ for some ψ,χ ∈ L∅(Σ,Π ∪ Ξ). Again, we consider Part 1
rst:

(⇐). If ψ → χ ∈ Γ0, and (Γ0,∆0) ≤(Γ,∆,Ξ) (Γ1,∆1), then Γ0 ⊆ Γ1 so that
ψ → χ ∈ Γ1. Now, if M(Γ,∆,Ξ), (Γ1,∆1) |=

+ ψ, then, by the Induction Hypothesis,
ψ ∈ Γ1, and, by Lemma 11.9, χ ∈ Γ1. Applying the Induction Hypothesis one more
time, we get that M(Γ,∆,Ξ), (Γ1,∆1) |=+ χ. Since (Γ1,∆1) ≥(Γ,∆,Ξ) (Γ0,∆0) was
chosen arbitrarily, we get that M(Γ,∆,Ξ), (Γ0,∆0) |=

+ ψ → χ.
(⇒). If ψ → χ ◁∈ Γ0, then, by the completeness of (Γ0,∆0), we get that ψ →

χ ∈ ∆0. But then, by Lemma 10.4, we get that (Γ0 ∪ {ψ}, {χ}) must be non-
trivial, and, clearly Par(Γ0 ∪ {ψ,χ}) ⊆ Par(Γ0 ∪∆0). Therefore, the parameter set
Π′ := (Π ∪ Ξ) \ Par(Γ0 ∪ {ψ,χ}) must be countably innite. Now, we partition Π′

into two further countably innite sets, Π0 and Π1. By Lemma 12, we can nd a
(Σ, Par(Γ0 ∪ {ψ,χ}) ∪ Π0)-appropriate bi-set (Γ1,∆1) ⊇ (Γ0 ∪ {ψ}, {χ}). For this
latter bi-set, we have that (Π ∪ Ξ) \ Par(Γ1 ∪ ∆1) = Π1, so that (Γ1,∆1) is also
(Σ,Π ∪ Ξ)-nice and thus in W(Γ,∆,Ξ). Moreover, we must have Γ1 ⊇ Γ0 so that
(Γ1,∆1) ≥(Γ,∆,Ξ) (Γ0,∆0). Next, we have ψ ∈ Γ1 so that the Induction Hypothesis
implies that M(Γ,∆,Ξ), (Γ1,∆1) |=

+ ψ. Finally, we have χ ∈ ∆1, hence also χ ◁∈ Γ1

by the non-triviality of (Γ1,∆1), whence further M(Γ,∆,Ξ), (Γ1,∆1) ̸|=+ χ by the
Induction Hypothesis. But then M(Γ,∆,Ξ), (Γ0,∆0) ̸|=

+ ψ → χ.
Part 2 of the Lemma in this Case is similar to Part 1.
Case 5. ϕ = ∀xψ for some ψ ∈ Lx(Σ,Π ∪ Ξ). We consider Part 1 rst:
(⇐). If ∀xψ ∈ Γ0, and (Γ0,∆0) ≤(Γ,∆,Ξ) (Γ1,∆1), then Γ0 ⊆ Γ1 so that ∀xψ ∈

Γ1. Now, if a ∈ D(Γ,∆,Ξ)(Γ1,∆1) = Par(Γ1 ∪∆1), then, by Lemma 11.11, ψ[a◁x] ∈
Γ1, and further, by the Induction Hypothesis, M(Γ,∆,Ξ), (Γ1,∆1) |=

+ ψ[a◁x]. Since
(Γ1,∆1) ≥(Γ,∆,Ξ) (Γ0,∆0) and a ∈ D(Γ,∆,Ξ)(Γ1,∆1) were chosen arbitrarily, we get
that M(Γ,∆,Ξ), (Γ0,∆0) |=

+ ∀xψ.
(⇒). If ∀xψ ◁∈ Γ0, then, by the completeness of (Γ0,∆0), we get that ∀xψ ∈ ∆0.

We know that (Π ∪ Ξ) \ Par(Γ0 ∪ ∆0) is innite, therefore, we can choose any
parameter a in this set. Now Lemma 10.6 tells us that (Γ0, {ψ[a◁x]}) must be
non-trivial, and, clearly Par(Γ0 ∪ {ψ[a◁x]}) ⊆ Par(Γ0 ∪∆0) ∪ {a}. Therefore, the
parameter set Π′ := (Π ∪ Ξ) \ Par(Γ0 ∪ {ψ[a◁x]}) must be countably innite. We
partition Π′ into two further countably innite sets, Π0 and Π1. By Lemma 12, we
can nd a (Σ, Par(Γ0∪{ψ[a◁x]})∪Π0)-appropriate bi-set (Γ1,∆1) ⊇ (Γ0, {ψ[a◁x]}).
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For this latter bi-set, we have that (Π∪Ξ) \Par(Γ1 ∪∆1) = Π1, so that (Γ1,∆1) is
also (Σ,Π ∪ Ξ)-nice and thus in W(Γ,∆,Ξ). Moreover, we must have Γ1 ⊇ Γ0 so that
(Γ1,∆1) ≥(Γ,∆,Ξ) (Γ0,∆0). Next, we have ψ[a◁x] ∈ ∆1, hence also ψ[a◁x] ◁∈ Γ1 by
the non-triviality of (Γ1,∆1), whence further M(Γ,∆,Ξ), (Γ1,∆1) ̸|=

+ ψ[a◁x] by the
Induction Hypothesis. But then M(Γ,∆,Ξ), (Γ0,∆0) ̸|=

+ ∀xψ.
We know turn to Part 2 of the Lemma, and reason as follows:

∼ ∀xψ ∈ Γ0 ⇔ (∃a ∈ Par(Γ0 ∪∆0))(∼ ψ[a◁x] ∈ Γ0) (by Lemma 11.8)

⇔ (∃a ∈ Par(Γ0 ∪∆0)(M(Γ,∆,Ξ), (Γ0,∆0) |=
− ψ[a◁x]) (by IH)

⇔ M(Γ,∆,Ξ), (Γ0,∆0) |=
− ∀xψ

Case 6. ϕ = ∃xψ for some ψ ∈ Lx(Σ,Π ∪ Ξ). Similar to Case 5.

Theorem 2. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let Γ ∪ {ϕ} ⊆ L∅(Σ,Π). If Γ |= ϕ then Γ ⊢ ϕ.

Proof. We argue by contraposition. If Γ ̸⊢ ϕ, then the bi-set (Γ, {ϕ}) must be
non-trivial. But then, choose two innitely countable parameter sets Ξ0 and Ξ1

such that {Π,Ξ0,Ξ1} forms a pairwise disjoint family of sets. Then we can nd,
by Lemma 12, a (Π ∪ Ξ0)-appropriate bi-set (Γ′,∆′) ⊇ (Γ, {ϕ}); (Γ′,∆′) is also
(Π ∪ Ξ0 ∪ Ξ1)-nice. We clearly have ϕ ∈ ∆′, so also ϕ ◁∈ Γ′ by the non-triviality of
(Γ′,∆′). Now Lemma 13 implies that we have both M(Γ′,∆′,Ξ1), (Γ

′,∆′) |=+ Γ′ ⊇ Γ

and M(Γ′,∆′,Ξ1), (Γ
′,∆′) ̸|=+ ϕ. Therefore, Γ ̸|= ϕ as desired.

4 Hilbert-style axiomatizations of QCCD and QC3CD

In order to obtain the axiomatization of QCCD, we extend the set of axioms with
the parametrized sentences which are instances of the following scheme:

∀x(ϕ ∨ ψ) → (ϕ ∨ ∀xψ) (A17)

We do not need to require separately that x ◁∈ FV (ϕ) since this already follows from
the fact that ∀x(ϕ ∨ ψ) → (ϕ ∨ ∀xψ) is a parametrized sentence.

We can then dene the notion of (Σ,Π)CD-deduction and the deducibility re-
lation ⊢CD for this extended system. Lemmas 6–9 then extend to our amended
deduction and deducibility notions and the only change in the proofs is that one
needs to mention the extended set of axioms in place of the set of axioms for QC.

Similarly, we can now prove the following theorem in almost the same way as
Theorem 1:
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Theorem 3. Let Σ be a signature, let Π ⊆ Par be a set, and let Γ∪{ϕ} ⊆ L∅(Σ,Π).
If Γ ⊢CD ϕ, then Γ |=CD ϕ.

Turning now to the converse of Theorem 3 in the countable case, we observe,
rst, that we need to extend the notion of an appropriate bi-set. More precisely,
given a bi-set (Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)), we say that (Γ,∆) is ∀-complete i
for every ∀xϕ ∈ L∅(Sign(Γ ∪ ∆), Par(Γ ∪ ∆)) such that ∀xϕ ∈ ∆, there exists an
a ∈ Par(Γ ∪ ∆) such that ϕ[a◁x] ∈ ∆. A bi-set (Γ,∆) is then called (Σ,Π)CD-
appropriate i it is (Σ,Π)-appropriate (in the sense of the previous section, except
that non-triviality is understood relative to ⊢CD) and ∀-complete.

Next, we need to extend the lemma on non-trivial bi-sets:

Lemma 14. Let Σ be a signature, let Π ⊆ Par be a set, and let
(Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) be CD-non-trivial. Then all of the statements in
Lemma 10 hold, and, in addition, it is true that, if ∀xϕ ∈ L∅(Σ,Π), and a ∈ Par\Π,
then one of (Γ ∪ {∀xϕ},∆), (Γ,∆ ∪ {∀xϕ,ϕ[a◁x]}) is CD-non-trivial.

Proof. The proof of Lemma 10 can be simply repeated replacing the non-triviality
everywhere with the CD-non-triviality. As for the additional part, assume that
both (Γ ∪ {∀xϕ},∆) and (Γ,∆ ∪ {∀xϕ,ϕ[a◁x]}) are CD-trivial. Then, by Lemma
10.2, (Γ,∆ ∪ {∀xϕ}) must be CD-non-trivial. Let ∅ ̸= ∆′

⋐ ∆ be such that, wlog,
Γ ⊢CD ϕ[a◁x] ∨ (∀xϕ ∨



∆′). Since x ◁∈ FV (∀xϕ ∨


∆′), Lemma 1.2 implies
that Γ ⊢CD (ϕ ∨ (∀xϕ ∨



∆′))[a◁x]. By Corollary 5.2, we must have then Γ ⊢CD

∀x(ϕ ∨ (∀xϕ ∨


∆′)), whence, by (A17) and (MP), Γ ⊢CD ∀xϕ ∨ ∀xϕ ∨


∆′. By
(T6), we get, next, that Γ ⊢CD ∀xϕ∨



∆′, which contradicts the CD-non-triviality
of (Γ,∆ ∪ {∀xϕ}).

We note, furthermore, that Lemma 11 (on appropriate bi-sets) carries over to
CD-appropriate bi-sets without any non-trivial change in the proof. Next, we show
that in the countable case any CD-non-trivial bi-set can be extended to a CD-
appropriate one over an extended set of parameters.

Lemma 15. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let (Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) be CD-non-trivial. Then, for
every Ξ ⊆ Par disjoint from Π and such that |Ξ| = ω, there exists a (Σ,Π ∪ Ξ)CD-
appropriate bi-set (Γ′,∆′) such that (Γ′,∆′) ⊇ (Γ,∆).

Proof. We adapt the proof of Lemma 12 to our current environment. Again, let
{an | n ∈ ω} be an enumeration of Ξ, and let {ψn | n ∈ ω} be an enumeration of
L∅(Σ,Π∪Ξ). We now dene a countably innite increasing chain of CD-non-trivial
bi-sets

(Γ0,∆0) ⊆ ▷ ▷ ▷ ⊆ (Γn,∆n) ⊆ ▷ ▷ ▷
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by setting (Γ,∆) := (Γ0,∆0), and for any k ∈ ω, if ψk is neither of the form ∃xϕ
nor of the form ∀xϕ, then we set:

(Γk+1,∆k+1) :=



(Γk ∪ {ψk},∆k), if (Γk ∪ {ψk},∆k) is CD-non-trivial

(Γk,∆k ∪ {ψk}), otherwise.

For the remaining cases, we will use the subsets of ω of the form ν[Γk,∆k,ψk] as
dened in the proof of Lemma 12.

Namely, in case ψk has the form ∃xϕ, we set:

(Γk+1,∆k+1) :=















(Γk ∪ {∃xϕ,ϕ[am◁x]},∆k) if m = min ν[Γk,∆k, ∃xϕ]

and (Γk ∪ {∃xϕ,ϕ[am◁x]},∆k) is CD-non-trivial

(Γk,∆k ∪ {∃xϕ}), otherwise.

Finally, in case ψk has the form ∀xϕ, we set:

(Γk+1,∆k+1) :=



(Γk ∪ {∀xϕ},∆k), if (Γk ∪ {∀xϕ},∆k) is CD-non-trivial

(Γk,∆k ∪ {∀xϕ,ϕ[am◁x]}), if m = min ν[Γk,∆k, ∀xϕ], otherwise.

The rest of the argument is exactly as in the proof of Lemma 12 except that we need
to add the reference to Lemma 14 in order to show that in the latter case the bi-set
remains CD-non-trivial. Another addition is the argument for ∀-completeness of
the resulting set (Γ′,∆′) := (



n∈ω Γn,


n∈ω ∆n) which is similar to the one for the
∃-completeness given in the proof of Lemma 12.

Before we start with the construction of the canonical model, we need one nal
ingredient which was not necessary in the case of QC but which is normally required
as long as the domains are assumed to be constant. We formulate this additional
argumentative ingredient in the following lemma:

Lemma 16. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, let (Γ,∆) ⊆ (L∅(Σ,Π), L∅(Σ,Π)) be (Σ,Π)CD-appropriate, and let
(Γ0,∆0) ⋐ (L∅(Σ,Π), L∅(Σ,Π)) be such that (Γ ∪ Γ0,∆0) is CD-non-trivial. Then
there exists a (Σ,Π)CD-appropriate bi-set (Γ′,∆′) such that (Γ′,∆′) ⊇ (Γ ∪ Γ0,∆0).

Proof. Once again we re-use the construction from Lemma 15 with a further ad-
ditional twist. Namely, we let {an | n ∈ ω} be an enumeration of Π and we let
{ψn | n ∈ ω} be an enumeration of L∅(Σ,Π). But this time we dene a countably
innite increasing chain of nite bi-sets

(Γ0,∆0) ⊆ ▷ ▷ ▷ ⊆ (Γn,∆n) ⊆ ▷ ▷ ▷
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such that, for every k ∈ ω, the bi-set (Γ ∪ Γk,∆k) is CD-non-trivial. In this chain,
(Γ0,∆0) is given in the formulation of the lemma and for any k ∈ ω, if ψk is neither
of the form ∃xϕ nor of the form ∀xϕ, then we set:

(Γk+1,∆k+1) :=



(Γk ∪ {ψk},∆k), if (Γ ∪ Γk ∪ {ψk},∆k) is CD-non-trivial

(Γk,∆k ∪ {ψk}), otherwise.

In case ψk has the form ∃xϕ, we set:

µΓ[Γk,∆k, ∃xϕ] := {n ∈ ω | an ∈ Π | (Γ ∪ Γk ∪ {∃xϕ,ϕ[am◁x]},∆k) is CD-non-trivial}

and we dene:

(Γk+1,∆k+1) :=















(Γk ∪ {∃xϕ,ϕ[am◁x]},∆k),

if µΓ[Γk,∆k, ∃xϕ] ̸= ∅ and m = minµΓ[Γk,∆k, ∃xϕ]

(Γk,∆k ∪ {∃xϕ}), if µΓ[Γk,∆k, ∃xϕ] = ∅▷

Finally, in case ψk has the form ∀xϕ, we set

µΓ[Γk,∆k, ∀xϕ] := {n ∈ ω | an ∈ Π | (Γ ∪ Γk,∆k ∪ {∀xϕ,ϕ[am◁x]}) is CD-non-trivial}

and we dene:

(Γk+1,∆k+1) :=















(Γk ∪ {∀xϕ},∆k), if µΓ[Γk,∆k, ∀xϕ] = ∅

(Γk,∆k ∪ {∀xϕ,ϕ[am◁x]}),

if µΓ[Γk,∆k, ∀xϕ] ̸= ∅ and m = minµΓ[Γk,∆k, ∀xϕ]▷

We show that the chain (Γ0,∆0) ⊆ ▷ ▷ ▷ ⊆ (Γn,∆n) ⊆ ▷ ▷ ▷ is well-dened and that, for
every k ∈ ω, we have (Γk,∆k) ⋐ (L∅(Σ,Π), L∅(Σ,Π)) and the bi-set (Γ ∪ Γk,∆k) is
CD-non-trivial.

This claim is obviously true when k = 0. If k = r + 1, and the claim is true
for (Γr,∆r), then (Γr+1,∆r+1) is well-dened by the Induction Hypothesis and we
clearly have (Γr+1,∆r+1) ⋐ (L∅(Σ,Π), L∅(Σ,Π)). It remains to show the CD-non-
triviality, and, in doing so, we have to consider the three cases in our denition:

Case 1. ψr is neither of the form ∃xϕ nor of the form ∀xϕ. Then the CD-non-
triviality of (Γ ∪ Γr+1,∆r+1) follows from (the CD-version of) Lemma 10.2.

Case 2. ψr has the form ∃xϕ. If µΓ[Γr,∆r, ∃xϕ] ̸= ∅, then we are done. Other-
wise, we must have µΓ[Γr,∆r, ∃xϕ] = ∅. If now (Γ ∪ Γr,∆r ∪ {∃xϕ}) is CD-trivial,
then by (the CD-version of) Lemma 10.2, the bi-set (Γ ∪ Γr ∪ {∃xϕ},∆r) must be
CD-non-trivial. On the other hand, since µΓ[Γr,∆r, ∃xϕ] = ∅, we must have, wlog,

(∀m ∈ ω)(Γ ∪ Γr ∪ {∃xϕ,ϕ[am◁x]} ⊢CD



∆r) (1)
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We now reason as follows:

(∀m ∈ ω)(Γ ⊢CD (∃xϕ ∧ ϕ[am◁x] ∧


Γr) →


∆r) (by (1) and Cor. 5.1) (2)

(∀m ∈ ω)(Γ ⊢CD (ϕ[am◁x] ∧


Γr) →


∆r) (by (2), (T4) and (DR1)) (3)

(∀m ∈ ω)(Γ ⊢CD ϕ[am◁x] → (


Γr →


∆r)) (by (3), (T2) and (DR1)) (4)

Now, since (Γr,∆r) ⋐ (L∅(Σ,Π), L∅(Σ,Π)), Lemma 1.2 implies that

(∀m ∈ ω)(Γ ⊢CD (ϕ → (


Γr →


∆r))[am◁x]) (5)

Since we clearly have (ϕ → (


Γr →


∆r))[am◁x] ∈ L∅(Σ,Π) for every m ∈ ω, the
(CD-version of) Lemma 11.1 allows us to infer that:

(∀m ∈ ω)((ϕ → (


Γr →


∆r))[am◁x] ∈ Γ) (6)

By the CD-non-triviality of (Γ,∆), it follows, further, that:

(∀m ∈ ω)((ϕ → (


Γr →


∆r))[am◁x] ◁∈ ∆) (7)

Finally, since {an | n ∈ ω} is an enumeration of Π, ∀-completeness of (Γ,∆) implies
that:

∀x(ϕ → (


Γr →


∆r)) ◁∈ ∆ (8)

Applying the completeness of (Γ,∆), we get that:

Γ ⊢CD ∀x(ϕ → (


Γr →


∆r)) (9)

Now it remains to apply (T7) and (T2) to get, successively:

Γ ⊢CD ∃xϕ → (


Γr →


∆r) (10)

and:

Γ ⊢CD (∃xϕ ∧


Γr) →


∆r (11)

but the latter equation implies, by Corollary 5.1, that Γ ∪ Γr ∪ {∃xϕ} ⊢CD



∆r

which is in contradiction with the CD-non-triviality of (Γ ∪ Γr ∪ {∃xϕ},∆r). The
obtained contradiction shows that we must have µΓ[Γr,∆r, ∃xϕ] ̸= ∅, whence the
CD-non-triviality of (Γ ∪ Γr+1,∆r+1) easily follows.

Case 3. ψr has the form ∀xϕ. If µΓ[Γr,∆r, ∀xϕ] ̸= ∅, then we are done. Other-
wise, we must have µΓ[Γr,∆r, ∀xϕ] = ∅. If now (Γ ∪ Γr ∪ {∀xϕ},∆r) is CD-trivial,
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then by (the CD-version of) Lemma 10.2, the bi-set (Γ ∪ Γr,∆r ∪ {∀xϕ}) must be
CD-non-trivial. On the other hand, since µΓ[Γr,∆r, ∀xϕ] = ∅, we must have, wlog,

(∀m ∈ ω)(Γ ∪ Γr ⊢CD ∀xϕ ∨ ϕ[am◁x] ∨


∆r) (12)

(∀m ∈ ω)(Γ ∪ Γr ⊢CD ϕ[am◁x] ∨


∆r) (by (12), (T3), and (A15)) (13)

(∀m ∈ ω)(Γ ⊢CD



Γr → ϕ[am◁x] ∨


∆r) (by (13) and Cor. 5.1) (14)

Now, since (Γr,∆r) ⋐ (L∅(Σ,Π), L∅(Σ,Π)), Lemma 1.2 implies that

(∀m ∈ ω)(Γ ⊢CD (


Γr → ϕ ∨


∆r)[am◁x]) (15)

Since we clearly have (


Γr → ϕ ∨


∆r)[am◁x] ∈ L∅(Σ,Π) for every m ∈ ω, the
(CD-version of) Lemma 11.1 allows us to infer that:

(∀m ∈ ω)((


Γr → ϕ ∨


∆r)[am◁x] ∈ Γ) (16)

By the CD-non-triviality of (Γ,∆), it follows, further, that:

(∀m ∈ ω)((


Γr → ϕ ∨


∆r)[am◁x] ◁∈ ∆) (17)

Finally, since {an | n ∈ ω} is an enumeration of Π, ∀-completeness of (Γ,∆) implies
that:

∀x(


Γr → ϕ ∨


∆r) ◁∈ ∆ (18)

Applying again the completeness of (Γ,∆), we get that:

Γ ⊢CD ∀x(


Γr → ϕ ∨


∆r) (19)

Now it remains to apply (T8), (DR1), and (A17) to get, successively:

Γ ⊢CD



Γr → ∀x(ϕ ∨


∆r) (20)

and:
Γ ⊢CD



Γr → ∀xϕ ∨


∆r (21)

but the latter equation implies, by Corollary 5.1, that Γ ∪ Γr ⊢CD ∀xϕ ∨


∆r

which is in contradiction with the CD-non-triviality of (Γ ∪ Γr,∆r ∪ {∀xϕ}). The
obtained contradiction shows that we must have µΓ[Γr,∆r, ∀xϕ] ̸= ∅, whence the
CD-non-triviality of (Γ ∪ Γr+1,∆r+1) easily follows.

Having dened our chain of bi-sets, we set:

(Γ′,∆′) = (Γ ∪


n∈ω

Γn,


n∈ω

∆n),
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and we show that this latter bi-set satises the conditions of the Lemma arguing
as in the proofs of Lemmas 12 and 15. For example, to show that (Γ′,∆′) is ∀-
complete, assume that ∀xϕ ∈ ∆′ ⊆ L∅(Σ,Π). Then, for some k ∈ ω, we must
have ∀xϕ = ψk. Consider (Γk+1,∆k+1). If µΓ[Γk,∆k, ∀xϕ] = ∅, then we must have
∀xϕ ∈ Γk+1 ⊆ Γ′, which would contradict the non-triviality of (Γ′,∆′). Therefore,
we must have µΓ[Γk,∆k, ∀xϕ] ̸= ∅, but then also ϕ[am◁x] ∈ ∆k+1 ⊆ ∆′ for m =
minµΓ[Γk,∆k, ∀xϕ].

Our canonical model construction for QCCD now looks as follows. Given a signa-
ture Σ, a parameter set Π, and a (Σ,Π)CD-appropriate bi-set (Γ,∆), we can dene
the following constant domain Σ-model M(Γ,∆) by setting:

• W(Γ,∆) := {(Γ′,∆′) | (Γ′,∆′) is (Σ,Π)CD-appropriate}.

• For (Γ0,∆0), (Γ1,∆1) ∈ W(Γ,∆), we have (Γ0,∆0) ≤(Γ,∆) (Γ1,∆1) i Γ0 ⊆ Γ1.

• U(Γ,∆) := Π = D(Γ,∆)(Γ0,∆0) = Par(Γ0 ∪∆0) for every (Γ0,∆0) ∈ W(Γ,∆).

• For (Γ0,∆0) ∈ W(Γ,∆), n ∈ ω, Pn ∈ Σ = Sign(Γ0 ∪ ∆0), and ān ∈ Πn =

Par(Γ0 ∪∆0)
n we have ān ∈ V +

(Γ,∆)(P, (Γ0,∆0)) i P (ān) ∈ Γ0.

• For (Γ0,∆0) ∈ W(Γ,∆), n ∈ ω, Pn ∈ Σ = Sign(Γ0 ∪ ∆0), and ān ∈ Πn =

Par(Γ0 ∪∆0)
n we have ān ∈ V −

(Γ,∆)(P, (Γ0,∆0)) i ∼ P (ān) ∈ Γ0.

It is straightforward to show that M(Γ,∆) is indeed a constant domain model of QC,
and using the usual methods, a truth lemma can be shown for this model:

Lemma 17. Let (Γ,∆) be a (Σ,Π)CD-appropriate bi-set. Then, for every (Γ0,∆0) ∈
W(Γ,∆) and every ϕ ∈ L∅(Σ,Π) it is true that:

1. M(Γ,∆), (Γ0,∆0) |=
+ ϕ i ϕ ∈ Γ0.

2. M(Γ,∆), (Γ0,∆0) |=
− ϕ i ∼ ϕ ∈ Γ0.

Proof. We prove both parts of the Lemma simultaneously by induction on the con-
struction of ϕ ∈ L∅(Σ,Π). The proof for the induction basis and for the induction
steps associated with ∧, ∨, and ∼ are exactly as in the proof of Lemma 13. We
consider the remaining cases:

Step. The following cases are possible.

Case 4. ϕ = ψ → χ for some ψ,χ ∈ L∅(Σ,Π). We consider Part 1 rst:

(⇒). If ψ → χ ◁∈ Γ0, then, by the completeness of (Γ0,∆0), we get that ψ → χ ∈
∆0. But then, by (the CD-version of) Lemma 10.4, we get that (Γ0∪{ψ}, {χ}) must

92



On Completeness of Some First-order Extensions of C

be CD-non-trivial. Next, by Lemma 16, there must be a (Γ1,∆1) ∈ W(Γ,∆) such
that (Γ1,∆1) ⊇ (Γ0 ∪ {ψ}, {χ}). Now, ψ ∈ Γ1 implies, by the Induction Hypothesis,
that M(Γ,∆), (Γ1,∆1) |=

+ ψ. On the other hand, we have χ ∈ ∆1, hence also χ ◁∈ Γ1

by the CD-non-triviality of (Γ1,∆1), whence, further, M(Γ,∆), (Γ1,∆1) ̸|=
+ χ by the

Induction Hypothesis. But then M(Γ,∆), (Γ0,∆0) ̸|=
+ ψ → χ.

The proofs for the (⇐)-part and for Part 2 are as in Lemma 13.
Case 5. ϕ = ∀xψ for some ψ ∈ Lx(Σ,Π). We consider Part 1 rst:
(⇒). If ∀xψ ◁∈ Γ0, then, by the completeness of (Γ0,∆0), we get that ∀xψ ∈

∆0. Therefore, by ∀-completeness of (Γ0,∆0), we must have ψ[a◁x] ∈ ∆ for
some a ∈ Π. By the CD-non-triviality of (Γ0,∆0), it follows that ψ[a◁x] ◁∈ Γ0,
whence further M(Γ,∆), (Γ0,∆0) ̸|=

+ ψ[a◁x] by the Induction Hypothesis. But then
M(Γ,∆), (Γ0,∆0) ̸|=

+ ∀xψ.
Again, the proofs for the (⇐)-part and for Part 2 are as in Lemma 13, and the

case of the existential quantier is parallel to Case 5.

We now formulate and prove the converse of Theorem 3 for the countable case:

Theorem 4. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let Γ ∪ {ϕ} ⊆ L∅(Σ,Π). If Γ |=CD ϕ then Γ ⊢CD ϕ.

Proof. Again, we argue by contraposition. If Γ ̸⊢CD ϕ, then the bi-set (Γ, {ϕ})
must be CD-non-trivial. But then, choose an innitely countable parameter set
Ξ disjoint from Π. We can nd, by Lemma 15, a (Σ,Π ∪ Ξ)CD-appropriate bi-set
(Γ′,∆′) ⊇ (Γ, {ϕ}). We clearly have ϕ ∈ ∆′, so also ϕ ◁∈ Γ′ by the CD-non-triviality
of (Γ′,∆′). Now Lemma 17 implies that we have both M(Γ′,∆′), (Γ

′,∆′) |=+ Γ′ ⊇ Γ

and M(Γ′,∆′), (Γ
′,∆′) ̸|=+ ϕ. Therefore, Γ ̸|=CD ϕ as desired.

It is now easy to see that one can obtain a complete axiomatization for QC3CD by
extending the axiomatization for QCCD with the following additional axiom schema:

ϕ∨ ∼ ϕ (A18)

Re-using, with a slight modication, the previous denitions of this sort, one can
dene the deducibility relation ⊢C3CD and prove the following theorem:

Theorem 5. Let Σ be a signature, let Π ⊆ Par be a set, and let Γ∪{ϕ} ⊆ L∅(Σ,Π).
If Γ ⊢C3CD ϕ, then Γ |=C3∩CD ϕ.

Moreover, by repeating the series of constructions leading to Theorem 4 above,
it is straigtforward to check that the presence of (A18) in our axiomatization guar-
antees that the respective canonical model is in C3. Proceeding in this way, one also
arrives at the corresponding completeness theorem for the countable case:
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Theorem 6. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let Γ ∪ {ϕ} ⊆ L∅(Σ,Π). If Γ |=C3∩CD ϕ then Γ ⊢C3CD ϕ.

5 Comparison of QC3CD with the systems QC3 and QC3At

The systems QC3 and QC3At were introduced in [10], purely proof-theoretically,
as the rst-order extensions of C3. Each of these two systems was given in two forms:
rst, in the form of a Hilbert-style calculus and then in the form of its (unlabelled)
sequent counterpart. The two forms were shown in [10] to be equivalent in the sense
that the derivability relations from a nite set of premises obtained in each of the
two types of proof systems were shown to coincide for both QC3 and QC3At.

Since in the present paper we are focusing on the Hilbert-style axiomatizations
of various rst-order extensions of C, we will omit the discussion of sequent calculi
introduced in [10]. As for the Hilbert-style calculi for QC3 and QC3At, they are
obtained by extending the axiomatization of QC by (A18) in the case of QC3 and
by the following restriction of (A18) in the case of QC3At:

ϕ∨ ∼ ϕ for ϕ atomic (A18At)

It is clear that QC3At can be shown to axiomatize the logic of C3-models by a trivial
modication of the completeness proof given for QC in Section 3 of the present paper.
Denoting by ⊢C3 the deducibility relation induced by QC3At, we get the following

Theorem 7. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let Γ ∪ {ϕ} ⊆ L∅(Σ,Π). Then Γ |=C3 ϕ i Γ ⊢C3 ϕ.

Proof (a sketch). We repeat the proofs of Theorem 1 and 2, noting that the canonical
Σ-model M(Γ,∆,Ξ) constructed for a given (Σ,Π)-appropriate bi-set (Γ,∆), and a
given countably innite Ξ ⊆ Par disjoint from Π must be in C3, due to the presence
of (A18At) in our system and by Lemma 11.4.

Incidentally, the observation made in the proof of Theorem 7 also implies that
one can equivalently axiomatize QC3CD by replacing (A18) with (A18At). Of course,
one could also directly infer the remaining cases of (A18) in the axiomatization of
QC3CD based on (A18At) arguing by induction on the construction of a parametrized
sentence, but the semantic argument provides us with a shortcut to this result as
well.

The question of the right semantics for QC3 is more tricky. Example 2 shows
that QC3 is strictly stronger than the logic of C3-models which we just recognized as
QC3At. On the other hand, Theorem 6 above shows that QC3 must be a subsystem
of QC3CD. There remains the question whether this subsystem is proper.
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First of all, it is clear that, seen from a semantical point of view, QC3 must be the
logic of QC3-complete models, where, for any given signature Σ, a Σ-model is QC3-
complete i for every w ∈ W and every ϕ ∈ L∅(Σ, Dw) it is true that M, w |=+ ϕ
or M, w |=− ϕ. So let us denote by QC3 the class of QC3-complete models and
by ⊢QC3 the deducibility relation induced by QC3. The corresponding completeness
proof is obtained from the completeness proof for QC by a trivial modication very
similar to the one required in the case of QC3At. In this way, we get that:

Theorem 8. Let Σ be an at most countable signature, let Π ⊆ Par be an at most
countable set, and let Γ ∪ {ϕ} ⊆ L∅(Σ,Π). Then Γ |=QC3 ϕ i Γ ⊢QC3 ϕ.

Proof (a sketch). Similar to Theorem 7.

Now, Example 2 shows that C3 ̸⊆ QC3, and, on the other hand, Lemma 3 shows
that C3 ∩ CD ⊆ QC3. The question is whether we also have QC3 ⊆ C3 ∩ CD. The
following example can be used to show that this question must be answered in the
negative:

Example 3. Consider the signature Σ = {(p, 0), (Q, 1)} and consider the following
varying-domain Σ-model M, where W = {1, 2}, ≤ is the natural order on W ,
U = {a, b}, D(1) = {a}, D(2) = U , V +(p, i) = 1 i i = 2, V −(p, i) = 1 for all
i ∈ W , and we have V +(Q, i) = {a} and V −(Q, i) = D(i) for all i ∈ W .

The following lemma can then be shown to hold:

Lemma 18. Let Σ and M be dened as in the Example 3. Then the following
statements are true:

1. M is QC3-complete.

2. M, 1 ̸|=+ ∀x(p ∨Q(x)) → (p ∨ ∀xQ(x)).

Even though the model M of Example 3 is an obvious paraconsistent variant
of a model often used to show that (A17) fails in intuitionistic logic, the proof of
Lemma 18 requires a surprisingly careful and tiresome induction on the construction
of the parametrized sentence. It is therefore relegated to Appendix C.

Lemma 18 shows that QC3 is a proper subsystem of QC3CD (as long as the
signature is not too small) since we must have M, 1 |=+ QC3, yet M, 1 ̸|=+ ∀x(p ∨
Q(x)) → (p ∨ ∀xQ(x)) ∈ QC3CD.

It also shows that C3 ∩ CD ⊊ QC3 (as long as the signature is not too small).
Finally, it shows that the frame correspondence theory in its usual form is not

possible for QC3, since the class of QC3-complete models in the corresponding sig-
nature is neither good nor C3-good. Indeed, whereas M of Example 3 was shown
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to be QC3-complete, this is not the case for the model N ∈ C3 which only diers
from M in that N , 1 ̸|=− Q(a). That N ◁∈ QC3 is evident from the fact that we
have both N , 1 ̸|=+ ∀xQ(x) and N , 1 ̸|=− ∀xQ(x).

To sum up, we have shown that all the systems in the set {QC3At,QC3,QC3CD}
are pairwise disjoint. Out of these three systems, QC3At is complete relative to
a C3-good class of models, but suers from the truth-value gap problem in that
it fails to verify the general form of the law of excluded middle given by (A18);
it is also inconvenient that the set of theorems of QC3At is not closed for formula
substitutions. The truth-value gap problem is avoided in QC3, however, this system
is complete relative to a class of models which, as is shown above, is not C3-good and
it is not clear how to supply QC3 with a better semantics. Therefore, at least as long
as a better candidate is not found and proposed, we are inclined to favor QC3CD as
the correct rst-order version of the propositional logic C3 since it is both complete
relative to a C3-good class of models and veries the unrestricted version of the law
of excluded middle which we take to be a distinctive mark of C3-like systems.

We end this section with a brief discussion of constructive truth and constructible
falsity properties in the rst-order extensions of C, since this subject was also dis-
cussed in [10]. It is known that in the intuitionistic rst-order logic, its characteristic
constructive understanding of truth manifests itself in the following properties:

(DP ) Disjunctive Property: for every signature Σ, if ϕ,ψ ∈ L∅(Σ) and ϕ ∨ ψ is a
theorem, then either ϕ or ψ is a theorem.

(EP ) Existence Property: for every signature Σ, if ∃xϕ ∈ L∅(Σ) and ∃xϕ is a theo-
rem then there exists an a ∈ Par such that ϕ[a◁x] is a theorem.

Whereas both (DP) and (EP) fail in classical logic, they are preserved in the rst-
order Nelson’s logics, both QN3 and QN4; moreover, they are complemented in these
logics by the following constructible falsity counterparts, showing that the treatment
of falsehoods now also becomes constructive:

(DPF ) Negated Conjunction Property: for every signature Σ, if ϕ,ψ ∈ L∅(Σ) and
∼ (ϕ ∧ ψ) is a theorem, then either ∼ ϕ or ∼ ψ is a theorem.

(EPF ) Negated Universal Property: for every signature Σ, if ∼ ∀xϕ ∈ L∅(Σ) and
∼ ∀xϕ is a theorem then there exists an a ∈ Par such that ∼ ϕ[a◁x] is a
theorem.

The logic QC is known to have all the four properties in {DP,DPF , EP,EPF }.
6 It

6Apparently this was known at the time of writing [14], although, quite surprisingly, neither
EP nor EPF are mentioned there; on the other hand, the satisfaction of both DP and DPF is
established in [14, Proposition 2].
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is easy to see that the same sort of arguments can be used to show that the said four
properties of constructive truth and constructible falsity are still satised by QCCD.

With the rst-order extensions of C3 the situation is a little bit more tricky. Due
to the presence of (A18At) in all such systems, it is easy to see right away that both
DP and DPF must fail. However, a proof-theoretic argument given for [10, Theorem
6.5] shows that, surprisingly, both EP and EPF are still satised by QC3At.

It remains to see whether this rather peculiar (although not completely unknown:
see [11]) phenomenon persists when we extend QC3At to QC3 and then further to
QC3CD. The answer is, again, in the negative:

Proposition 1. Both QC3 and QC3CD fail every property in {EP,EPF }

Proof. Indeed, consider signature Σ = {(P, 1)}. Then the pure Σ-sentence
∃x(∀xP (x)∨ ∼ P (x)) is provable in both QC3 and QC3CD, as the following deriva-
tion in QC3 shows (where a ∈ Par is chosen arbitrarily):

∼ P (a) → (∀xP (x)∨ ∼ P (a)) by (A7) (22)

(∀xP (x)∨ ∼ P (a)) → ∃x(∀xP (x)∨ ∼ P (x)) by (A16) (23)

∼ P (a) → ∃x(∀xP (x)∨ ∼ P (x)) from (22)–(23) by (DR1) (24)

∃x ∼ P (x) → ∃x(∀xP (x)∨ ∼ P (x)) from (24) by (R∃) (25)

∼ ∀xP (x) → ∃x ∼ P (x) by (A14) (26)

∼ ∀xP (x) → ∃x(∀xP (x)∨ ∼ P (x)) from (25)–(26) by (DR1) (27)

∀xP (x) → (∀xP (x)∨ ∼ P (a)) by (A6) (28)

∀xP (x) → ∃x(∀xP (x)∨ ∼ P (x)) from (23),(28) by (DR1) (29)

(∀xP (x)∨ ∼ ∀xP (x)) → ∃x(∀xP (x)∨ ∼ P (x)) from (27),(29) by (A8) (30)

∀xP (x)∨ ∼ ∀xP (x) by (A18) (31)

∃x(∀xP (x)∨ ∼ P (x)) from (30),(31) by (MP) (32)

However, ∀xP (x)∨ ∼ P (a) is not a theorem of QC3CD for any a ∈ Par (and hence
also not a theorem of its proper subsystem QC3) as the following constant domain
C3-model shows.

Indeed, let Σ = {(P, 1)} and let Σ-model M be such that with W = {1},
≤= {(1, 1)}, U = D(1) = {a, b}, V +(P, 1) = {a} and V −(P, 1) = {b}. It is easy
to see that we have both M, 1 ̸|=+∼ P (a) and M, 1 ̸|=+ ∀xP (x). The preceding
argument disproves EP for both QC3 and QC3CD; as for EPF , it is enough to notice
that the formula ∼ ∀x(∼ ∀xP (x) ∧ P (x)) is provable by applying (A14), (A11) and
(A9) to ∃x(∀xP (x)∨ ∼ P (x)). On the other hand, ∼ (P (a)∧ ∼ ∀xP (x)) is not a
theorem for any a ∈ Par as is witnessed by the model M dened above.
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6 The peculiar quantier ł

Both intuitionistic logic and some of the logics inspired by it, display a very
close parallelism between the interpretation of the implication connective and the
interpretation of the universal quantier. For example, in one typical description
of the intuitionistic meaning of logical symbols (clearly paraphrasing the so-called
Brouwer-Heyting-Kolmogorov interpretation) we can read that:

The second group is composed of ∀, →, and ¬. A proof of ∀xA(x) is a
construction of which we can recognize that, when applied to any number
n, it yields a proof of A(n̄). Such a proof is therefore an operation that
carries natural numbers into proofs. A proof of A → B is a construction
of which we can recognize that, applied to any proof of A, it yields a
proof of B. Such a proof is therefore an operation carrying proofs into
proofs.

(M. Dummett — [2, p. 8])

We see that → and ∀ are grouped together in that they both refer to a general
construction producing proofs, the one out of (other) proofs, the other out of objects
in the domain of discourse, which, in the example at hand, are natural numbers. The
dierence between the two constructions consists, rst of all, in the input allowed by
each of them. And this dierence is not that big, since both natural numbers and
proofs are, according to intuitionism, just two varieties of constructions, and one
of this varieties can serve as a representative of the other one as the goedelization
technique has taught us.

The other obvious dierence is of course that the implicational construction
returns a proof of one and the same sentence for every possible input, whereas the
universal quantier construction each time returns a proof of a dierent substitution
instance based on the input. This dierence is much more serious and we are not
going to downplay it, although it does not cancel the objectively existing close
parallelism between the two constructions.

This close parallelism is also reected in the Kripke semantics for intuitionistic
logic by the coincidence of the quantier patterns in the corresponding clauses in
the denition of the satisfaction relation. These clauses can be given, in view of the
notational conventions accepted in this paper, as follows:

M, w |= ϕ → ψ ⇔ (∀v ≥ w)(M, v |= ϕ ⇒ M, v |= ψ)

M, w |= ∀xψ ⇔ (∀v ≥ w)(∀a)(a ∈ Dv ⇒ M, v |= ψ[a◁x])
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The introduction of Nelson’s logic made it necessary to conceive of the falsica-
tion conditions for connectives and quantiers as something possibly dierent from
a mere negation of verication conditions. Thus, although the clauses above were
still accepted for the denition of the verication relation |=+, the conditions for
falsifying the implications and universally quantied sentences had to be given inde-
pendently. But also in this extension of intuitionistic logic the parallelism between
the implication and the universal quantier remained untouched, as is evident from
the formulation of these conditions used in both QN3 and QN4 (again, adapted to
our notational conventions):

M, w |=− ϕ → ψ ⇔ M, w |=+ ϕ and M, w |=− ψ

M, w |=− ∀xψ ⇔ (∃a)(a ∈ Dw and M, w |=− ψ[a◁x])

One could rephrase the idea behind these stipulations along the lines of the BHK
approach to Nelson’s logic by saying that a falsication of a conditional sentence
consists in the fact that a proof of an antecedent has been constructed, along with a
refutation of a consequent. Similarly, a falsication of a quantied sentence means
that an object has been constructed, along with a refutation of a substitution in-
stance of the quantied formula induced by this object.

Now, in QC as well as in the other Nelsonian extensions of C considered in this
paper, this parallelism of the falsication conditions between → and ∀ appears to
be lost in that we have:

M, w |=− ϕ → ψ ⇔ (∀v ≥ w)(M, v |=+ ϕ ⇒ M, v |=− ψ),

whereas the falsication clause for the universal quantier remains Nelsonian. Thro-
ugh the BHK lens, the matter looks as if we are now saying that a proper refutation
of a conditional sentence must be a general construction, which, given a proof of
the antecedent, spits out a refutation of the consequent (and does that recognizably,
as M. Dummett would probably insist). However, were we to think of the possible
refutations of the universally quantied sentences along the same lines, we would
probably have to say that a proper refutation of a universally quantied sentence
must be a general construction, which, given a construction of a possible object in
our domain, recognizably returns a refutation of the substitution instance of the
quantied formula induced by this object. It is natural to think that a formal
explication of this idea may have looked as something like this:

M, w |=− ∀xϕ ⇔ (∀v ≥ w)(∀a)(a ∈ Dv ⇒ M, v |=− ϕ[a◁x])▷

However, it is now evident that, in doing so, we are just ascribing to the universal
quantier the falsication condition borrowed from the Nelsonian existential quan-
tier (also used in the semantics of QC).
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We leave it to the reader to judge whether the idea of keeping the interpretations
of ∀ and → bound together also in the rst-order extensions of C has any intuitive
appeal.7 In the present paper, we conne ourselves to pointing out some of the
formal consequences of realizing this idea by having a quantier with the verication
clause borrowed from the Nelsonian ∀ and the verication clause borrowed from the
Nelsonian ∃. We will denote this quantier by ł and will assign it the following
semantics:

M, w |=+
łxϕ ⇔ (∀v ≥ w)(∀a ∈ Dv)(M, v |= ϕ[a◁x])

M, w |=−
łxϕ ⇔ (∀v ≥ w)(∀a ∈ Dv)(M, v |=− ϕ[a◁x])▷

One very interesting property of ł is that it commutes with the strong negation,
that is to say, the following principle becomes valid:

∼ łxϕ ↔ łx ∼ ϕ (A19)

One may also express this property of ł by saying that this quantier is “self-
dual”. It is also clear that if we simply want to extend with ł the language of any
system in the set {QC,QCCD}, then we can obtain a sound and complete (in the
countable case) axiomatization for such an extension by simply adding the following
two schemas to the list of its axioms:

łxϕ ↔ ∀xϕ (A20)

∼ łxϕ ↔∼ ∃xϕ (A21)

The situation is somewhat dierent if we wish to have ł as the only quantier in
our language. In this case, given an axiomatization for any system in {QC,QCCD},
one has to omit the axioms (A13)–(A17) together with the rules (R∀) and (R∃), and
replace them with (A19) and the following ł-analogues of (A15), (A17) and (R∀),
respectively:

łxθ → θ[c◁x] (A15ł)

łx(ϕ ∨ ψ) → (ϕ ∨łxψ) (A17ł)

From ϕ → θ[c◁x] infer ϕ → łxθ (R∀ł)

In this way, we get two additional systems C(ł) and CCD(ł).
The soundness and completeness proofs for these new systems are simpler ver-

sions of the proofs given in the earlier sections of this paper for their Nelsonian

7The reader may usefully compare our discourse with the attempt at “connexivization” of other
propositional connectives besides → and ∼ in [4].
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analogues. For example, in the completeness proof of C(ł), we no longer need to
require that appropriate (and nice) bi-sets are ∃-complete, moreover, we no longer
need several auxiliary statements like Lemma 10.8 and the second case in the main
construction given in the proof of Lemma 12 is no longer relevant. These simpli-
cations also apply to CCD(ł). However, in the case of CCD(ł), we will still need
both the ∀-completeness (more precisely, its ł-analogue) and Case 3 in the main
construction given in the proofs of the statements like Lemma 15 and 16. The rest
of the argument is basically the same as for the corresponding Nelsonian systems.

The introduction of ł into rst-order extensions of C3, however, can only be
easily done in the case of QC3At, whereł can function both as an addition to the set
of Nelsonian quantiers and as the only quantier in the same fashion as for QC. In
the case of QC3 one needs to further amend its already non-standard semantics and
speak of the (QC3+ł)-complete models and (C3+ł)-complete models depending
on whether we add ł together with the set of Nelsonian quantiers or alone. In
this case (QC3+ł)-complete (resp. (C3+ł)-complete) models are the models that
never display truth-value gaps for the parametrized sentences in the language based
on {∧,∨,∼,→, ∀, ∃,ł} (resp. {∧,∨,∼,→,ł}) as the set of logical symbols.

We have seen in Section 5, that the class of QC3-complete models is not closed for
the models based on the same underlying frame; the same clearly holds for the classes
of (C3+ł)-complete models and (QC3+ł)-complete models. Indeed, the model M
constructed in the proof of Proposition 1 is neither (C3+ł)-complete nor (QC3+ł)-
complete since we have both M, 1 ̸|=+

łxP (x) and M, 1 ̸|=−
łxP (x). However,

the model M′ which is only dierent from M in that we have M′, 1 |=+ P (b) is
easily shown to be both (C3+ł)-complete and (QC3+ł)-complete. The following
lemma provides the main stepping stone to the latter claim:

Lemma 19. Denote by Lł the language based on {∧,∨,∼,→, ∀, ∃,ł} as the set of
logical symbols. Let x ∈ V ar, let Σ = {(P, 1)} and let Σ-model M′ be such that with
W = {1}, ≤= {(1, 1)}, U = D(1) = {a, b}, V +(P, 1) = {a, b} and V −(P, 1) = ∅.
Then, for all ϕ ∈ Lł

x (Σ, U) and for every ◦ ∈ {+,−} it is true that:

M′, 1 |=◦ ϕ[a◁x] ⇔ M′, 1 |=◦ ϕ[b◁x]▷

Proof. By induction on the construction of ϕ[a◁x]. Both the basis and the induction
step cases for the propositional connectives are straightforward (for the implication
case, note that our model consists of a single state). We treat the quantier cases.

Case 1. ϕ[a◁x] = ∀yψ[a◁x]. We may assume, wlog, that y ̸= x, and we reason
as follows:

(Part 1). We have M′, 1 |=+ ϕ[a◁x] i M′, 1 |=+ ψ[a◁x, a◁y]∧ψ[a◁x, b◁y] i, by
Corollary 2.1, M′, 1 |=+ ψ[a◁y, a◁x] ∧ ψ[b◁y, a◁x], i, by the Induction Hypothesis,
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M′, 1 |=+ ψ[a◁y, b◁x] ∧ ψ[b◁y, b◁x], i, by Corollary 2.1, M′, 1 |=+ ψ[b◁x, a◁y] ∧
ψ[b◁x, b◁y] i M′, 1 |=+ ϕ[b◁x].

(Part 2). We have M′, 1 |=− ϕ[a◁x] i, for some c ∈ {a, b}, we have M′, 1 |=−

ψ[a◁x, c◁y] i, by Corollary 2.1, M′, 1 |=− ψ[c◁y, a◁x] for this c, i, by the Induction
Hypothesis, M′, 1 |=− ψ[c◁y, b◁x] for the said c, i, by Corollary 2.1, M′, 1 |=−

ψ[b◁x, c◁y] i M′, 1 |=− ϕ[b◁x].
Case 2. ϕ[a◁x] = ∃yψ[a◁x]. Similar to Case 1.
Case 3. ϕ[a◁x] = łyψ[a◁x]. We argue similarly to Part 1 of Case 1, since we

know that for any ◦ ∈ {+,−} we have M′, 1 |=◦ ϕ[a◁x] i M′, 1 |=◦ ψ[a◁x, a◁y] ∧
ψ[a◁x, b◁y] i, by Corollary 2.1, M′, 1 |=◦ ψ[a◁y, a◁x] ∧ ψ[b◁y, a◁x], i, by the
Induction Hypothesis, M′, 1 |=◦ ψ[a◁y, b◁x] ∧ ψ[b◁y, b◁x], i, by Corollary 2.1,
M′, 1 |=◦ ψ[b◁x, a◁y] ∧ ψ[b◁x, b◁y] i M′, 1 |=◦ ϕ[b◁x].

The following Proposition then makes our claim about M′ more precise:

Proposition 2. Let Σ, M′, and Lł be dened as in Lemma 19. Then for every
ϕ ∈ Lł

∅ (Σ, U) it is true that M′, 1 |=◦ ϕ for some ◦ ∈ {+,−}.

Proof. Again, we argue by induction on the construction of ϕ ∈ Lł

∅ (Σ, U). The basis
and most of the induction cases are as in the proof of Lemma 3 since M′ ∈ CD∩C3.
As for the only new induction case, assume that ϕ = łxψ. Then, by the Induction
Hypothesis, we must have eitherM′, 1 |=+ ψ[a◁x] orM′, 1 |=− ψ[a◁x]. In the former
case, Lemma 19 implies that also M′, 1 |=+ ψ[b◁x] and hence M′, 1 |=+ ϕ. In the
latter case, Lemma 19 implies that also M′, 1 |=− ψ[b◁x] and hence M′, 1 |=− ϕ.

The fact that M,M′ ∈ CD is particularly important in that it shows that, as
long as ł is present in the language, even the imposition of constant domains does
not return us to a standard type of semantics and thus cannot be considered as
any sort of remedy for the truth-value gap problem. In other words, not only do
the classes of (QC3+ł)-complete models and (C3+ł)-complete models fail to be
C3-good themselves, but their intersections with CD also fail to be C3-good.

Due to this phenomenon, also the addition of ł to QC3CD inevitably leads to a
system with a non-standard semantics and with poor prospects for any traditional
forms of frame correspondence theory.

7 Conclusion and future work

In the main part of our paper, we were focused on the completeness for the
three systems QC, QCCD, and QC3CD. These systems naturally arise as the result
of extension of the propositional paraconsistent logics C and C3 with the Nelsonian
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quantiers. We have succeeded in proving the general version of the soundness
theorem for all these logics, as well as its converse in the countable case.

The Henkin technique used in these proofs proved to be easily adaptable to the
treatment of the systems QC3At and QC3, introduced in [10], even though it turned
out that QC3 is a somewhat inconvenient extension of C3 since its class of intended
models is not closed for the models based on the same underlying frame even if we
restrict our attention to C3-models only. Finally, we have answered in the negative
the question about the existence properties in QC3 and QC3CD.

Moreover, we have considered a relatively novel and peculiar quantier ł which
combines the verication and falsication conditions of the two Nelsonian quantiers.
The intuitive motivation for the introduction of ł in place of the Nelsonian version
of ∀ is that such an introduction would be parallel to the amendment of the Nelsonian
interpretation of the implication connective in C. We have sketched the application
of the techniques developed in the main part of our paper to the systems where
ł is either added to the Nelsonian quantiers or replaces them, and found that,
in each case, a modicum of an amendment allows to obtain a Hilbert-style proof
system which is sound and (in the countable case) complete for the logic at hand.
We have also observed how the presence of this novel quantier tends to exacerbate
the problem of truth-value gap reinstatement in rst-order extensions of C3 which
appeared earlier in relation to Nelsonian quantiers in QC3At.

However, the more general issue of the possibility of extending C with a (par-
tially) non-Nelsonian set of quantiers is by no means exhausted by the sketchy
discourse contained in Section 6 of our paper. It is our hope that we will be able
to return to this topic in our future research and to consider other well-motivated
examples of non-Nelsonian quantiers which show a certain degree of harmony with
the basic motivating intuitions of C.

Turning one more time to the family of logics extending C with the Nelsonian
set of quantiers, we would like to add that one can easily see that the argument
for the completeness of QC given in our paper can be straightforwardly extended to
the signatures of arbitrary power by replacing every induction on ω with a suitable
transnite induction and by increasing the power of the sets of “fresh parameters”
used in Lemmas 12 and 13 accordingly.

Unfortunately, such an easy extension is not possible in the case of QCCD, and
QC3CD, since the proof of the respective version of Lemma 16 for any of the two
systems requires essentially that every bi-set in the increasing chain obtained in its
main construction is nite. However, a standard workaround for this diculty is
also well-known and boils down to giving an independent proof of the compactness
theorem for the system at hand. Again, in our future work, we hope to provide a
satisfactorily complete version of such a proof and thus to close the issue of com-
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pleteness for the axiomatizations of QCCD, and QC3CD presented in this paper.
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A Proof of Lemma 4

The proof proceeds by induction on the construction of ϕ for all ◦ ∈ {+,−} and
all w ∈ W simultaneously.
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Basis. Let ϕ = P (ān) for some Pn ∈ Σ and some ān ∈ (Dw)
n. Then we have:

M, w |=◦ P (ān) ⇔ ān ∈ V ◦(P,w)

⇔ f[b◁a]⟨ān⟩ ∈ (V[b◁a])
◦(P,w)

⇔ M[b◁a], w |=◦ P (f[b◁a]⟨ān⟩)

⇔ M[b◁a], w |=◦ P (ān)[b◁a]

Step. The cases for ∧, ∨, and → are straightforward, given that the parameter
substitutions in formulas commute with the connectives. We consider the quantiers:

Case 1. We have ◦ = + and ϕ = ∀xψ for some ψ ∈ Lx(Σ, Dw). Then we have,
for the (⇒)-part:

M, w |=+ ∀xψ ⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[c◁x])

⇔ (∀v ≥ w)(∀c ∈ Dv)(M[b◁a], v |=+ ψ[c◁x][b◁a]) (by IH)

If now v ≥ w and d ∈ D[b◁a](v), then two cases are possible:
Case 1.1. d ∈ Dv \ {a}. Then we must have M[b◁a], v |=+ ψ[d◁x][b◁a] =

ψ[b◁a][d◁x] by Lemma 1.4 and the fact that d ̸= a and x ◁∈ {a, b}.
Case 1.2. d = b. Then a ∈ Dv and we must have M[b◁a], v |=+ ψ[a◁x][b◁a] =

ψ[b◁a][b◁x] = ψ[b◁a][d◁x] by Lemma 1.4.
Summing up, we get that (∀v ≥ w)(∀d ∈ D[b◁a](v))(M[b◁a], v |=+ ψ[b◁a][d◁x]),

so that M[b◁a], w |=+ ∀x(ψ[b◁a]) and hence also M[b◁a], w |=+ (∀xψ)[b◁a].
For the (⇐)-part, we have:

M[b◁a], w |=+ (∀xψ)[b◁a] ⇔ M[b◁a], w |=+ ∀x(ψ[b◁a])

⇔ (∀v ≥ w)(∀d ∈ D[b◁a](v))(M[b◁a], v |=+ ψ[b◁a][d◁x])

⇔ (∀v ≥ w)(∀d ∈ D[b◁a](v))(M[b◁a], v |=+ ψ[d◁x][b◁a]),

where the latter equivalence holds by Lemma 1.4. and the fact that d ̸= a and
x ◁∈ {a, b}. But then the Induction Hypothesis implies that (∀v ≥ w)(∀d ∈ Dv \
{a})(M, v |=+ ψ[d◁x]). In case a ◁∈ Dv, we also get that M, w |=+ ∀xψ. Otherwise,
we must have a ∈ Dv and, therefore, b ∈ D[b◁a](v). Now, given any v ≥ w, our chain
of equivalences implies that M[b◁a], v |=+ ψ[b◁x][b◁a] = ψ[b◁a][b◁x] = ψ[a◁x][b◁a]
by Lemma 1.4 and the fact that a ̸= b and x ◁∈ {a, b}. Therefore, the Induction
Hypothesis again implies that M, v |=+ ψ[a◁x], and we get that M, w |=+ ∀xψ also
in this case.

Case 2. We have ◦ = − and ϕ = ∀xψ for some ψ ∈ Lx(Σ, Dw). Then we have,
for the (⇒)-part:

M, w |=− ∀xψ ⇔ (∃c ∈ Dw)(M, w |=− ψ[c◁x])

⇔ (∃c ∈ Dw)(M[b◁a], w |=− ψ[c◁x][b◁a]) (by IH)
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We now choose the corresponding c ∈ Dw. If c ∈ Dw \ {a}, then also c ∈ D[b◁a](w),
and we must have M[b◁a], w |=− ψ[c◁x][b◁a] = ψ[b◁a][c◁x] by Lemma 1.4. and the
fact that b ̸= x and a ◁∈ {c, x}, whence M[b◁a], w |=− ∀xψ[b◁a]. Otherwise, we must
have c = a ∈ Dw so that also b ∈ D[b◁a](w). But then, M[b◁a], w |=− ψ[a◁x][b◁a] =
ψ[b◁a][b◁x] by Lemma 1.4, and, again, M[b◁a], w |=− ∀xψ[b◁a] follows.

For the (⇐)-part, we have:

M[b◁a], w |=− (∀xψ)[b◁a] ⇔ (∃d ∈ D[b◁a](w))(M[b◁a], w |=− ψ[b◁a][d◁x])

⇔ (∃d ∈ D[b◁a](w))(M[b◁a], w |=− ψ[d◁x][b◁a]),

where the latter equivalence holds by Lemma 1.4. and the fact that d ̸= a and
x ◁∈ {a, b}. Now, if d ∈ Dw \ {a}, then also M, w |=− ψ[d◁x] by the Induction
Hypothesis, and thus M, w |=− ∀xψ. Otherwise, we must have d = b, but then also
a ∈ Dw, and we get that M[b◁a], w |=− ψ[d◁x][b◁a] = ψ[b◁a][b◁x] = ψ[a◁x][b◁a] by
Lemma 1.4 and a ̸= x. Therefore, M, w |=− ψ[a◁x] by the Induction Hypothesis,
and, again, M, w |=− ∀xψ.

The case of the existential quantier is parallel to the case of the universal
quantier.

B Proof of Lemma 5

Again, the proof is by induction on the construction of ϕ[a◁x̄n] for all ◦ ∈ {+,−},
all x̄n ∈ V ar ̸=n, and all w ∈ W simultaneously.

Basis. Let ϕ[a◁x̄n] = P (ām) for some Pm ∈ Σ and some ām ∈ (Dw)
m. If now

M, w |=◦ P (ām), then ām ∈ V ◦(P,w). Let ϕ[b◁x̄n] = P (b̄m). We want to show
that b̄m ∈ ρ[b:=a]⟨ām⟩ ⊆ (V[b:=a])

◦(P,w). Indeed, x an 1 ≤ i ≤ m. If ai ̸= a, then
ai does not replace an occurrence of xj for any 1 ≤ j ≤ n, and, therefore, also
bi = ai ∈ ρ[b:=a][ai]. Otherwise ai = a, and then, depending on whether a replaces
an occurrence of xj for some 1 ≤ j ≤ n or not, we will have bi = a or bi = b, so, in
any case, bi ∈ ρ[b:=a][ai]. But then b̄m ∈ ρ[b:=a]⟨ām⟩ ⊆ (V[b:=a])

◦(P,w), and we must

have M[b:=a], w |=◦ P (b̄m).

In the other direction, if ϕ[b◁x̄n] = P (b̄m) and M[b:=a], w |=◦ P (b̄m), then we

must have b̄m ∈ ρ[b:=a]⟨c̄m⟩ for some c̄m ∈ V ◦(P,w). Moreover, it is easy to see

that there exists a unique c̄m ∈ (Dw)
m such that b̄m ∈ ρ[b:=a]⟨c̄m⟩ (since we have

to replace all b’s in b̄m with a’s in order for c̄m to end up in (Dw)
m), so we must

have c̄m ∈ V ◦(P,w) for this unique tuple. Let ϕ[a◁x̄n] = P (ām). We will show that
ām = c̄m. Indeed, x an 1 ≤ i ≤ m. If bi ◁∈ {a, b}, then ci ρ[b:=a] bi implies that
ci = bi; on the other hand, if bi ◁∈ {a, b}, then bi does not replace an occurrence
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of xj in ϕ ∈ Lx̄n
(Σ, Dw) for any 1 ≤ j ≤ n, and we must have ai = bi. Therefore

ai = ci. Next, if bi = b, then ci = a since c̄m ∈ (Dw)
m and b ◁∈ Dw; on the other

hand, if bi = b then bi must replace an occurrence of xj in ϕ ∈ Lx̄n
(Σ, Dw) for some

1 ≤ j ≤ n. This same occurrence will be replaced by a in P (ām), hence ai = a.
Summing up, we get that ci = a = ai. Finally, if bi = a, then, again ci = a and also
the occurrence of bi does not replace an occurrence of any xj , so also ai = a. Again
we get that ci = a = ai.

In this way, we see that ām = c̄m ∈ V ◦(P,w) and thus M, w |=◦ P (ām) =
ϕ[a◁x̄n].

Step. The cases for ∧, ∨, and → are straightforward, given that the parameter
substitutions in formulas commute with the connectives. We consider the quantiers:

Case 1. We have ◦ = + and ϕ = ∀yψ for some ψ ∈ L(x̄n)⌢y(Σ, Dw) and some
y ∈ V ar \ {x̄n}. Then we have, for the (⇒)-part:

M,w |=+ (∀yψ)[a◁x̄n] ⇔ M, w |=+ ∀y(ψ[a◁x̄n])

⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[a◁x̄n][c◁y])

⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[c◁y][a◁x̄n]) (by Lemma 1.4 and y ◁∈ {x̄n})

⇔ (∀v ≥ w)(∀c ∈ Dv)(M[b:=a], v |=+ ψ[c◁y][b◁x̄n]) (by IH)

⇔ (∀v ≥ w)(∀c ∈ Dv)(M[b:=a], v |=+ ψ[b◁x̄n][c◁y]) (by Lemma 1.4 and y ◁∈ {x̄n})

We now x any v ≥ w. In case a ◁∈ Dv, we have Dv = D[b:=a](v) so we can already
conclude that (∀c ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[b◁x̄n][c◁y]). Otherwise, we have
a ∈ Dv and D[b:=a](v) = Dv ∪ {b}, so, in particular, we have that M[b:=a], v |=+

ψ[b◁x̄n][a◁y]. By Lemma 1.4 and y ◁∈ {x̄n}, we conclude that M[b:=a], v |=+

ψ[a◁y][b◁x̄n]. Now, the Induction Hypothesis implies that M, v |=+ ψ[a◁y][a◁x̄n] =
ψ[a◁x̄n][a◁y], and, applying the Induction Hypothesis one more time, we get that
M[b:=a], v |=+ ψ[b◁x̄n][b◁y]. Summing this up with the fact that

(∀c ∈ Dv)(M[b:=a], v |=+ ψ[b◁x̄n][c◁y]), we again arrive at the conclusion that

(∀c ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[b◁x̄n][c◁y]).

Since we thus get the latter conclusion for an arbitrary v ≥ w, we infer that
(∀v ≥ w)(∀c ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[b◁x̄n][c◁y]), whence it follows that
M[b:=a], w |=+ ∀y(ψ[b◁x̄n]) = (∀yψ)[b◁x̄n].

107



Grigory K. Olkhovikov

Turning now to the (⇐)-part, we reason as follows:

M[b:=a],w |=+ (∀yψ)[b◁x̄n] ⇔ M[b:=a], w |=+ ∀y(ψ[b◁x̄n])

⇔ (∀v ≥ w)(∀d ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[b◁x̄n][d◁y])

⇔ (∀v ≥ w)(∀d ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[d◁y][b◁x̄n])

(by Lemma 1.4 and y ◁∈ {x̄n})

⇒ (∀v ≥ w)(∀c ∈ Dv)(M[b:=a], v |=+ ψ[c◁y][b◁x̄n])

(by Dv ⊆ D[b:=a](v))

⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[c◁y][a◁x̄n]) (by IH)

⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[a◁x̄n][c◁y])

(by Lemma 1.4 and y ◁∈ {x̄n})

⇔ M, w |=+ ∀y(ψ[a◁x̄n]) = (∀yψ)[a◁x̄n]

Case 2. We have ◦ = + and ϕ = ∀yψ for some ψ ∈ Lx̄n
(Σ, Dw), where y = xi

for some 1 ≤ i ≤ n. Then we must have n ≥ 1. If now n > 1, then we have
∀yψ[a◁x̄n] = ∀yψ[a◁(x1, ▷ ▷ ▷ , xi−1, xi+1, ▷ ▷ ▷ , xn)], and similarly for ∀yψ[b◁x̄n], so we
can reason as in Case 1 replacing x̄n everywhere with (x1, ▷ ▷ ▷ , xi−1, xi+1, ▷ ▷ ▷ , xn). In
case n = 1, we must have y = x1. Then we have, for the (⇒)-part:

M, w |=+ (∀x1ψ)[a◁x1] ⇔ M, w |=+ ∀x1ψ

⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[c◁x1])

⇔ (∀v ≥ w)(∀c ∈ Dv)(M, v |=+ ψ[c◁x1][a◁x1]) (by Lemma 1.4)

⇔ (∀v ≥ w)(∀c ∈ Dv)(M[b:=a], v |=+ ψ[c◁x1][b◁x1]) (by IH)

⇔ (∀v ≥ w)(∀c ∈ Dv)(M[b:=a], v |=+ ψ[c◁x1]) (by Lemma 1.4)

We now x any v ≥ w. In case a ◁∈ Dv, we have Dv = D[b:=a](v) so we can already
conclude that (∀c ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[c◁x1]). Otherwise, we have a ∈ Dv

and D[b:=a](v) = Dv ∪ {b}, so, in particular, we have that M, v |=+ ψ[a◁x1]. Now,
the Induction Hypothesis implies that M[b:=a], v |=+ ψ[b◁x1]. Summing this up with
the fact that (∀c ∈ Dv)(M[b:=a], v |=+ ψ[c◁x1]), we again arrive at the conclusion
that (∀c ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[c◁x1]).

Since we thus get the latter conclusion for an arbitrary v ≥ w, we infer that (∀v ≥
w)(∀c ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[c◁x1]), whence it follows that M[b:=a], w |=+

∀x1ψ = (∀x1ψ)[b◁x1].
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Turning now to the (⇐)-part, we reason as follows:

M[b:=a], w |=+ (∀x1ψ)[b◁x1] ⇔ M[b:=a], w |=+ ∀x1ψ

⇔ (∀v ≥ w)(∀d ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[d◁x1])

⇔ (∀v ≥ w)(∀d ∈ D[b:=a](v))(M[b:=a], v |=+ ψ[d◁x1][b◁x1]) (by Lemma 1.4)

⇒ (∀v ≥ w)(∀d ∈ Dv)(M[b:=a], v |=+ ψ[d◁x1][b◁x1]) (by Dv ⊆ D[b:=a](v))

⇔ (∀v ≥ w)(∀d ∈ Dv)(M, v |=+ ψ[d◁x1][a◁x1]) (by IH)

⇔ (∀v ≥ w)(∀d ∈ Dv)(M, v |=+ ψ[d◁x1]) (by Lemma 1.4)

⇔ M, w |=+ ∀x1ψ = (∀x1ψ)[a◁x1]

Case 3. We have ◦ = − and ϕ = ∀yψ for some ψ ∈ L(x̄n)⌢y(Σ, Dw) and some
y ∈ V ar \ {x̄n}. Then we have, for the (⇒)-part:

M, w |=− (∀yψ)[a◁x̄n] ⇔ M, w |=− ∀y(ψ[a◁x̄n])

⇔ (∃c ∈ Dw)(M, w |=− ψ[a◁x̄n][c◁y])

⇔ (∃c ∈ Dw)(M, w |=− ψ[c◁y][a◁x̄n]) (by Lemma 1.4 and y ◁∈ {x̄n})

⇔ (∃c ∈ Dw)(M[b:=a], w |=− ψ[c◁y][b◁x̄n]) (by IH)

⇔ (∃c ∈ Dw)(M[b:=a], w |=− ψ[b◁x̄n][c◁y]) (by Lemma 1.4 and y ◁∈ {x̄n})

⇒ (∃c ∈ D[b:=a](w))(M[b:=a], w |=− ψ[b◁x̄n][c◁y]) (by Dw ⊆ D[b:=a](w))

⇔ M[b:=a], w |=− ∀y(ψ[b◁x̄n]) = (∀yψ)[b◁x̄n]

Turning now to the (⇐)-part, we reason as follows:

M[b:=a], w |=− (∀yψ)[b◁x̄n] ⇔ M[b:=a], w |=− ∀y(ψ[b◁x̄n])

⇔ (∃d ∈ D[b:=a](w))(M[b:=a], w |=− ψ[b◁x̄n][d◁y])

⇔ (∃d ∈ D[b:=a](w))(M[b:=a], w |=− ψ[d◁y][b◁x̄n]) (by Lemma 1.4 and y ◁∈ {x̄n})

We now choose a corresponding d ∈ D[b:=a](w). If d ∈ Dw, then, by IH, we get that
M, w |=− ψ[d◁y][a◁x̄n] whence M, w |=− ψ[a◁x̄n][d◁y] by Lemma 1.4 and y ◁∈ {x̄n}.
Now M, w |=− ∀y(ψ[a◁x̄n]) = (∀yψ)[a◁x̄n] follows immediately.

Otherwise we have d = b, and we get that M[b:=a], w |=− ψ[b◁y][b◁x̄n] =
ψ[b◁(x̄n)

⌢y], whence, by IH, M, w |=− ψ[a◁(x̄n)
⌢y] = ψ[a◁x̄n][a◁y]. Hence also

M, w |=− ∀y(ψ[a◁x̄n]) = (∀yψ)[a◁x̄n] follows.
Case 4. We have ◦ = − and ϕ = ∀yψ for some ψ ∈ Lx̄n

(Σ, Dw), where y = xi
for some 1 ≤ i ≤ n. Then we must have n ≥ 1. Again, the subcase n > 1 can be
reduced to Case 3 above. In case n = 1, we must have y = x1. Then we have, for
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the (⇒)-part:

M, w |=− (∀x1ψ)[a◁x1] ⇔ M, w |=− ∀x1ψ

⇔ (∃c ∈ Dw)(M, w |=− ψ[c◁x1])

⇔ (∃c ∈ Dw)(M, w |=− ψ[c◁x1][a◁x1]) (by Lemma 1.4)

⇔ (∃c ∈ Dw)(M[b:=a], w |=− ψ[c◁x1][b◁x1]) (by IH)

⇔ (∃c ∈ Dw)(M[b:=a], w |=− ψ[c◁x1]) (by Lemma 1.4)

⇒ (∃c ∈ D[b:=a](w))(M[b:=a], w |=▷ ψ[c◁x1]) (by Dv ⊆ D[b:=a](v))

⇔ M[b:=a], w |=− ∀x1ψ = (∀x1ψ)[b◁x1]

Turning now to the (⇐)-part, we reason as follows:

M[b:=a], w |=− (∀x1ψ)[b◁x1] ⇔ M[b:=a], w |=− ∀x1ψ

⇔ (∃d ∈ D[b:=a](w))(M[b:=a], w |=− ψ[d◁x1])

We now choose a corresponding d ∈ D[b:=a](w). In the subcase d ∈ Dw we are done
by the Induction Hypothesis.

In the subcase d = b, we must have a ∈ Dw, and we get that M[b:=a], w |=−

ψ[b◁x1], whence, by the Induction Hypothesis, M, w |=− ψ[a◁x1].

In this way, we get that M, w |=− ∀x1ψ = (∀x1ψ)[a◁x1] in both subcases.

The case of the existential quantier is parallel to the case of the universal
quantier.

C Proof of Lemma 18

We assume that the signature Σ and the Σ-model M are dened as in Example
3. We prove a couple of auxiliary lemmas rst:

Lemma 20. Let ϕ ∈ L∅(Σ, U). Then, for some ◦ ∈ {+,−}, we have M, 2 |=◦ ϕ.

Proof. 2 is the maximal state in M.

Lemma 21. Let x ∈ V ar, let ϕ ∈ Lx(Σ, U). Then the following statements hold:

1. If both M, 2 |=+ ϕ[b◁x] and M, 2 ̸|=− ϕ[b◁x], then M, 2 |=+ ϕ[a◁x].

2. If both M, 2 |=− ϕ[b◁x] and M, 2 ̸|=+ ϕ[b◁x], then M, 2 |=− ϕ[a◁x].
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Proof. By induction on the construction of ϕ[b◁x].
Basis. If ϕ[b◁x] is atomic, then we must have ϕ[b◁x] ∈ {Q(a), Q(b), p}.
(Part 1). The situation when both M, 2 |=+ ϕ[b◁x] and M, 2 ̸|=− ϕ[b◁x] is

therefore impossible, so our statement holds vacuously.
(Part 2). If both M, 2 |=− ϕ[b◁x] and M, 2 ̸|=+ ϕ[b◁x], then we must have

ϕ[b◁x] = Q(b). Two cases are possible:
Case 1. ϕ = Q(b). Then ϕ[a◁x] = Q(b), and we have M, 2 |=− ϕ[a◁x] = Q(b) =

ϕ[b◁x] by our assumption.
Case 2. ϕ = Q(x). Then ϕ[a◁x] = Q(a), and we have M, 2 |=− ϕ[a◁x] = Q(a)

by the denition of M.
Step. The following cases are possible:
Case 1. ϕ[b◁x] = ψ[b◁x] ∧ χ[b◁x].
(Part 1). If both M, 2 |=+ ϕ[b◁x] and M, 2 ̸|=− ϕ[b◁x], then we must have, on

the one hand, that both M, 2 |=+ ψ[b◁x] and M, 2 |=+ χ[b◁x]. On the other hand,
we must have both M, 2 ̸|=− ψ[b◁x] and M, 2 ̸|=− χ[b◁x]. Therefore, by IHp1, we
must have also that M, 2 |=+ ψ[a◁x] ∧ χ[a◁x].

(Part 2). If both M, 2 |=− ϕ[b◁x] and M, 2 ̸|=+ ϕ[b◁x], then we must have, on
the one hand, that either M, 2 |=− ψ[b◁x] or M, 2 |=− χ[b◁x]. On the other hand,
we must have either M, 2 ̸|=+ ψ[b◁x] or M, 2 ̸|=+ χ[b◁x].

Assume, wlog, that M, 2 |=− ψ[b◁x]. If also M, 2 ̸|=+ ψ[b◁x], then, by IHp2,
we must have M, 2 |=− ψ[a◁x], whence M, 2 |=− ψ[a◁x] ∧ χ[a◁x]. Otherwise,
we must have M, 2 |=+ ψ[b◁x], but then we must have M, 2 ̸|=+ χ[b◁x], and, by
Lemma 20, that M, 2 |=− χ[b◁x]. But now IHp2 is again applicable and yields that
M, 2 |=− χ[a◁x] whence also M, 2 |=− ψ[a◁x] ∧ χ[a◁x].

Case 2. ϕ[b◁x] = ψ[b◁x] ∨ χ[b◁x]. Similar to Case 1.
Case 3. ϕ[b◁x] =∼ ψ[b◁x].
(Part 1). If both M, 2 |=+ ϕ[b◁x] and M, 2 ̸|=− ϕ[b◁x], then we must have both

M, 2 |=− ψ[b◁x] and M, 2 ̸|=+ ψ[b◁x]. But then, also M, 2 |=− ψ[a◁x] follows by
IHp2 and, further, M, 2 |=+∼ ψ[a◁x].

(Part 2). Parallel to Part 1.
Case 4. ϕ[b◁x] = ψ[b◁x] → χ[b◁x].
(Part 1). If both M, 2 |=+ ϕ[b◁x] and M, 2 ̸|=− ϕ[b◁x], then we must have

M, 2 ̸|=− χ[b◁x] since 2 is the maximal node; whence Lemma 20 implies that also
M, 2 |=+ χ[b◁x]. Now, by IHp1, we also get that M, 2 |=+ χ[a◁x], whence, further,
M, 2 |=+ ψ[a◁x] → χ[a◁x].

(Part 2). If both M, 2 |=− ϕ[b◁x] and M, 2 ̸|=+ ϕ[b◁x], then we must have
M, 2 ̸|=+ χ[b◁x] since 2 is the maximal node; whence Lemma 20 implies that also
M, 2 |=− χ[b◁x]. Now, by IHp2, we also get that M, 2 |=− χ[a◁x], whence, further,
M, 2 |=− ψ[a◁x] → χ[a◁x].
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Case 5. ϕ[b◁x] = ∀yψ[b◁x]. We may assume, wlog, that y ̸= x. Note that
we have, by Corollary 1, that ψ[b◁x][c◁y] = ψ[c◁y][b◁x] for every c ∈ U under this
condition.

(Part 1). If both M, 2 |=+ ϕ[b◁x] and M, 2 ̸|=− ϕ[b◁x], then we must have,
on the one hand, both M, 2 |=+ ψ[a◁y][b◁x] and M, 2 |=+ ψ[b◁y][b◁x]. On the
other hand, we must have both M, 2 ̸|=− ψ[a◁y][b◁x] and M, 2 ̸|=− ψ[b◁y][b◁x].
But then IHp1 implies that both M, 2 |=+ ψ[a◁y][a◁x] = ψ[a◁x][a◁y] and M, 2 |=+

ψ[b◁y][a◁x] = ψ[a◁x][b◁y], whence, given that 2 is a maximal node, it follows that
M, 2 |=+ ∀yψ[a◁x].

(Part 2). If both M, 2 |=− ϕ[b◁x] and M, 2 ̸|=+ ϕ[b◁x], then we must have, on
the one hand, either M, 2 |=− ψ[a◁y][b◁x] or M, 2 |=− ψ[b◁y][b◁x]. On the other
hand, we must have either M, 2 ̸|=+ ψ[a◁y][b◁x] or M, 2 ̸|=+ ψ[b◁y][b◁x].

Assume, wlog, that M, 2 |=− ψ[a◁y][b◁x]. If also M, 2 ̸|=+ ψ[a◁y][b◁x], then,
by IHp2, we must have M, 2 |=− ψ[a◁y][a◁x] = ψ[a◁x][a◁y], whence M, 2 |=−

∀yψ[a◁x]. Otherwise, we must have M, 2 ̸|=+ ψ[b◁y][b◁x], whence, by Lemma 20,
it follows that M, 2 |=− ψ[b◁y][b◁x]. But then IHp2 is applicable and yields that
M, 2 |=− ψ[b◁y][a◁x] = ψ[a◁x][b◁y], whence again M, 2 |=− ∀yψ[a◁x].

Case 6. ϕ[b◁x] = ∃yψ[b◁x]. Similar to Case 5.

Lemma 22. Let x ∈ V ar, let ϕ ∈ Lx(Σ, {a}). Then the following statements hold:

1. If both M, 1 |=+ ϕ[a◁x] and M, 1 ̸|=− ϕ[a◁x], then M, 2 |=+ ϕ[b◁x].

2. If both M, 1 |=− ϕ[a◁x] and M, 1 ̸|=+ ϕ[a◁x], then M, 2 |=− ϕ[b◁x].

3. For some ◦ ∈ {+,−}, we have M, 1 |=◦ ϕ[a◁x].

Proof. By induction on the construction of ϕ[a◁x].
Basis. If ϕ[a◁x] is atomic, then we must have ϕ[a◁x] ∈ {Q(a), p}.
(Part 1). The situation when both M, 1 |=+ ϕ[a◁x] and M, 1 ̸|=− ϕ[a◁x] is

therefore impossible, so our statement holds vacuously.
(Part 2). If both M, 1 |=− ϕ[a◁x] and M, 1 ̸|=+ ϕ[a◁x], then we must have

ϕ[a◁x] = p. Then ϕ[b◁x] = p as well, and we have M, 2 |=− ϕ[b◁x] = p by the
denition of M.

(Part 3). Trivial by the denition of M.
Step. The following cases are possible:
Case 1. ϕ[a◁x] = ψ[a◁x] ∧ χ[a◁x].
(Part 1). If both M, 1 |=+ ϕ[a◁x] and M, 1 ̸|=− ϕ[a◁x], then we must have, on

the one hand, that both M, 1 |=+ ψ[a◁x] and M, 1 |=+ χ[a◁x]. On the other hand,
we must have both M, 1 ̸|=− ψ[a◁x] and M, 1 ̸|=− χ[a◁x]. Therefore, by IHp1, we
must have also that M, 2 |=+ ψ[b◁x] ∧ χ[b◁x].
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(Part 2). If both M, 1 |=− ϕ[a◁x] and M, 1 ̸|=+ ϕ[a◁x], then we must have, on
the one hand, that either M, 1 |=− ψ[a◁x] or M, 1 |=− χ[a◁x]. On the other hand,
we must have either M, 1 ̸|=+ ψ[a◁x] or M, 1 ̸|=+ χ[a◁x].

Assume, wlog, that M, 1 |=− ψ[a◁x]. If also M, 1 ̸|=+ ψ[a◁x], then, by IHp2, we
must have M, 2 |=− ψ[b◁x], whence M, 2 |=− ψ[b◁x] ∧ χ[b◁x]. Otherwise, we must
have M, 1 |=+ ψ[a◁x], but then we must have M, 1 ̸|=+ χ[a◁x], and, by IHp3, that
M, 1 |=− χ[a◁x]. But now IHp2 is again applicable and yields that M, 2 |=− χ[b◁x]
whence also M, 2 |=− ψ[b◁x] ∧ χ[b◁x].

(Part 3). Trivial (by application of the corresponding truth-table).

Case 2. ϕ[a◁x] = ψ[a◁x] ∨ χ[a◁x]. Similar to Case 1.

Case 3. ϕ[a◁x] =∼ ψ[a◁x].

(Part 1). If both M, 1 |=+ ϕ[a◁x] and M, 1 ̸|=− ϕ[a◁x], then we must have both
M, 1 |=− ψ[a◁x] and M, 1 ̸|=+ ψ[a◁x]. But then, also M, 2 |=− ψ[b◁x] follows by
IHp2 and, further, M, 2 |=+∼ ψ[b◁x].

(Part 2). Parallel to Part 1.

(Part 3). Trivial (by application of the corresponding truth-table).

Case 4. ϕ[a◁x] = ψ[a◁x] → χ[a◁x].

(Part 1). If both M, 1 |=+ ϕ[a◁x] and M, 1 ̸|=− ϕ[a◁x], then assume that
M, 2 ̸|=+ ϕ[b◁x]. The latter means that we have both M, 2 |=+ ψ[b◁x] and M, 2 ̸|=+

χ[b◁x], whence it follows, by IHp1, that either M, 1 ̸|=+ χ[a◁x] or M, 1 |=− χ[a◁x].
By IHp3, we know that we must have M, 1 |=− χ[a◁x] in both cases. But the
latter means that we must have M, 1 |=− ψ[a◁x] → χ[a◁x], which contradicts our
assumption. Therefore, we must have M, 2 |=+ ϕ[b◁x].

(Part 2). If both M, 1 |=− ϕ[a◁x] and M, 1 ̸|=+ ϕ[a◁x], then assume that
M, 2 ̸|=− ϕ[b◁x]. The latter means that we have both M, 2 |=+ ψ[b◁x] and M, 2 ̸|=−

χ[b◁x], whence it follows, by IHp2, that either M, 1 ̸|=− χ[a◁x] or M, 1 |=+ χ[a◁x].
By IHp3, we know that we must have M, 1 |=+ χ[a◁x] in both cases. But the
latter means that we must have M, 1 |=+ ψ[a◁x] → χ[a◁x], which contradicts our
assumption. Therefore, we must have M, 2 |=− ϕ[b◁x].

(Part 3). Trivial (by application of the corresponding truth-table).

Case 5. ϕ[b◁x] = ∀yψ[b◁x]. We may assume, wlog, that y ̸= x. Note that
we have, by Corollary 1, that ψ[b◁x][c◁y] = ψ[c◁y][b◁x] for every c ∈ U under this
condition.

(Part 1). Assume that both M, 1 |=+ ϕ[a◁x] and M, 1 ̸|=− ϕ[a◁x]. Now
M, 1 |=+ ϕ[a◁x] implies that M, 1 |=+ ψ[a◁x][a◁y], whereas M, 1 ̸|=− ϕ[a◁x], by
the denition of M, implies that M, 1 ̸|=− ψ[a◁x][a◁y]. Therefore, by IHp1, we
must have M, 2 |=+ ψ[a◁y][b◁x].

Next, choose a z ∈ V ar such that z ◁∈ FV (ψ[a◁y][a◁x])∪BV (ψ[a◁y][a◁x])∪{x, y}
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and consider ψ[z◁x][z◁y]. Then Lemma 1.4 and Lemma 1.2 imply that

ψ[z◁x][z◁y][b◁z] = ψ[z◁x][b◁z][b◁y] = ψ[b◁z][b◁x][b◁y] = ψ[b◁x][b◁y]▷

A parallel argument shows that also ψ[z◁x][z◁y][a◁z] = ψ[a◁x][a◁y]. Thus we have
shown that both M, 1 |=+ ψ[z◁x][z◁y][a◁z] and M, 1 ̸|=− ψ[z◁x][z◁y][a◁z], whence,
by IHp1, M, 2 |=+ ψ[z◁x][z◁y][b◁z] = ψ[b◁x][b◁y].

Thus we have shown that

M, 2 |=+ ψ[b◁x][a◁y] ∧ ψ[b◁x][b◁y],

so that also M, 2 |=+ ϕ[b◁x] = ∀yψ[b◁x] holds.
(Part 2). If both M, 1 |=− ϕ[a◁x] and M, 1 ̸|=+ ϕ[a◁x], then assume that

M, 2 ̸|=− ϕ[b◁x]. The latter means that we have both M, 2 ̸|=− ψ[a◁y][b◁x] and
M, 2 ̸|=− ψ[b◁y][b◁x]. Now Lemma 20 implies that we must also have both M, 2 |=+

ψ[a◁y][b◁x] and M, 2 |=+ ψ[b◁y][b◁x], whence, by Lemma 21.1, we must have both
M, 2 |=+ ψ[a◁y][a◁x] = ψ[a◁x][a◁y] and M, 2 |=+ ψ[b◁y][a◁x] = ψ[a◁x][b◁y].

Next, since we have M, 2 ̸|=− ψ[a◁y][b◁x], it also follows by IHp2 that either
M, 1 ̸|=− ψ[a◁y][a◁x] or M, 1 |=+ ψ[a◁y][a◁x]. By IHp3, M, 1 |=+ ψ[a◁y][a◁x] =
ψ[a◁x][a◁y] holds in both cases.

Summing up, we have shown that all of the following holds:

M, 1 |=+ ψ[a◁x][a◁y], M, 2 |=+ ψ[a◁x][a◁y], M, 2 |=+ ψ[a◁x][b◁y],

which, by denition of M, implies that M, 1 |=+ ∀yψ[a◁x], contrary to our assump-
tion. The obtained contradiction shows that we must have M, 2 |=− ϕ[b◁x].

(Part 3). Assume thatM, 1 ̸|=− ϕ[a◁x]. Then we must haveM, 1 ̸|=− ϕ[a◁x][a◁y],
whence IHp3 further implies that M, 1 |=+ ϕ[a◁x][a◁y]. But then, by IHp1, it
follows that M, 2 |=+ ϕ[a◁x][b◁y]. Moreover, we must have M, 2 |=+ ϕ[a◁x][a◁y] by
monotonicity. Summing up, we get that M, 1 |=+ ∀yψ[a◁x] = ϕ[a◁x].

Case 6. ϕ[b◁x] = ∃yψ[b◁x]. Similar to Case 5.

Proof of Lemma 18. (Part 1). By Lemma 20 and Lemma 22.3.
(Part 2). We have M, 1 |=+ p∨Q(a) as well as M, 2 |=+ p∨Q(a) and M, 2 |=+

p ∨ Q(b), so that M, 1 |=+ ∀x(p ∨ Q(x)). However, we also have M, 1 ̸|=+ p and
M, 2 ̸|=+ Q(b), whence M, 1 ̸|=+ ∀xQ(x), so that, nally, M, 1 ̸|=+ p∨ ∀xQ(x).
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