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Abstract

Probabilistic analysis can deal with a wide variety of mathematical objects. In this thesis,

we focus on statistics of Coxeter groups and STIT tessellations.

The first part of the thesis deals on two statistics of Coxeter groups, namely the generalized

d-inversions and generalized d-descents. Interim results combine probabilistic properties like

the covariance of random variable with combinatorial properties of Coxeter groups. The

dependency graph method is used to conclude a central limit for these statistics.

The second part of the thesis investigates second-order properties of a specific type of STIT

tessellation called Mondrians. We examine the (co-)variance for the number of maximal edges

and the weighted total edge length. Additionally, Mondrian analogues of the pair-correlation

functions for the random edge length measure and the random vertex process, as well as the

cross-correlation function for these functions, are deduced.

The last chapter of the thesis deals with probabilistic analysis of different types of line seg-

ments in planar isotropic STIT tessellations. Probabilities are deduced for some geometrical

and metrical properties of these.
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of this thesis and their fruitfull comments.

I owe my deepest gratitude to my mother, stepfather and brother for their endless love and

support during the whole time. Finally, I thank Jan-Kristian for his love, his support and

his patience.

i



ii



Contents

1 Introduction 1

2 Background on Coxeter statistics 5

2.1 Finite Coxeter systems and root systems . . . . . . . . . . . . . . . . . . . . . 5

2.2 Probabilistic background and Coxeter group statistics . . . . . . . . . . . . . 7

2.3 Inversion and descent statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Probabilistic analysis of Coxeter statistics 15

3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Central limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Random inversions for finite root systems . . . . . . . . . . . . . . . . . . . . 20

3.3 Concrete variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Type An−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Type Bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Type Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 Type Dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Central limit theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 The dependency graph method . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Central limit theorems for antichains in root posets and d-descents . . 42

3.4.3 Central limit theorems for d-inversions . . . . . . . . . . . . . . . . . . 44

4 Background on STIT tessellations 49

4.1 Probability measures and tessellations . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Construction of a STIT tessellation . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Properties of STIT tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Probabilistic analysis of Mondrian tessellations 55

5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii



iv CONTENTS

5.1.3 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Expected value and variance for Mondrian tessellations . . . . . . . . . . . . 61

5.2.1 The point intersection measure and expected values . . . . . . . . . . 61

5.2.2 The segment intersection measure and variances . . . . . . . . . . . . 62

5.3 Pair- and cross-correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Preparatory calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Edge pair-correlations for Mondrian tessellations . . . . . . . . . . . . 77

5.3.3 Edge-vertex cross-correlations for Mondrian tessellations . . . . . . . . 80

5.3.4 Vertex pair-correlations for Mondrian tessellations . . . . . . . . . . . 83

6 Probabilistic analysis of line segments 87

6.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Refined analysis of I-segments . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Geometrical and metrical properties of line segments . . . . . . . . . . . . . . 91

6.3.1 Geometrical properties of sides . . . . . . . . . . . . . . . . . . . . . . 91

6.3.2 Metric properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 101



List of Figures

1.1 Planar isotropic STIT tessellation and weighted planar Mondrian tessellation. 3

2.1 Root poset for the Coxeter group of type A4. . . . . . . . . . . . . . . . . . . 9

2.2 Root poset for the Coxeter group of type B4. . . . . . . . . . . . . . . . . . . 10

2.3 Inversions & descents of a signed Permutations σ ∈ B3. . . . . . . . . . . . . 11

2.4 Inversions & descents of a signed Permutations σ ∈ C3. . . . . . . . . . . . . . 13

2.5 Inversions & descents of a forked signed Permutations σ ∈ D3. . . . . . . . . 14

3.1 Root poset and one-line notation for 2-inversions & 2-descents in A4. . . . . . 17

3.2 3-descents for B4, C4 and D4 in their respective one-line notation. . . . . . . . 18

4.1 Schematic construction of a planar Mondrian tessellation. . . . . . . . . . . . 51

4.2 Parametrization of a line in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Schematic visualization of an iteration of Y0 with Y1. . . . . . . . . . . . . . . 54

5.1 Pair- and cross-correlation functions gE(r), gE,V(r), and gV(r) . . . . . . . . . 60

5.2 Projection of a horizontal line segment to E1. . . . . . . . . . . . . . . . . . . 64

5.3 Visualization of the Lebesgue measure after a diagonal-shift of a line segment

in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Line segments of a planar STIT tessellation. . . . . . . . . . . . . . . . . . . . 88

6.2 Visualization of edges adjacent to one terminus. . . . . . . . . . . . . . . . . . 92

6.3 Probabilities for typical edges adjacent to 0, 1 terminus or 2 termini. . . . . . 93

6.4 Probabilities for the number of vertices of a typical side. . . . . . . . . . . . . 94

6.5 Probabilities for the number of sides adjacent to a typical side. . . . . . . . . 95

6.6 Densities for the length of a random edge on a typical I-segment. . . . . . . . 96

6.7 Densities for the length of an I-segment covering a typical edge. . . . . . . . . 97

6.8 Densities for the length of an I-segment covering a typical side. . . . . . . . . 98

v



vi LIST OF FIGURES



Chapter 1

Introduction

This thesis consists of three parts. All of these deal with the analysis of probabilistic aspects,

with the first part focusing on Coxeter groups and the latter two on planar STIT tessellations.

Coxeter and Weyl groups are a large family of groups with connections to symmetry and

geometry. One of the best known examples of a Coxeter group is the symmetric group.

Permutations have been studied in various fields of mathematics like algebraic combinatorics,

group theory or probability (see for example [7, 10, 26]). Within this area of research, statistics

and especially those being normal distributed, are of interest. Widely known are the statistics

of descents and inversions, which can be expressed by comparing permutation entries. An

inversion of π ∈ Sn is given by a pair (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j). A descent

can then be described as an inversion with distance 1, i.e., it is given by i with 1 ≤ i ≤ n− 1

and π(i) > π(i + 1). The inversion statistic and descent statistic now count the number of

inversions and descents of a permutation, respectively. Random variables may be associated

to these statistics. These describe the number of inversions or descents a permutations is

likely to have, when picking it uniformly at random from Sn. The random variables Xdes

and Xinv are known to fulfill a central limit theorem, i.e., their normalized version converges

in distribution to the normal Gaussian distribution (see [2]).

From this starting point, the aim of the first part of the thesis is to generalize these statistics in

two different ways. These results are joint work with Christian Stump published in [21]. Bona

[7] and Pike [26] studied d-inversions of permutations by restricting the distance between the

compared permutation entries to be at most d. Similarly, one may define d-descents for

permutations as comparisons with a distance of exactly d. For a permutation π ∈ Sn, the

number of d-descents and d-inversions is then given by

desd(π) =
∣∣{1 ≤ i ≤ n− d | π(i) > π(i+ d)}

∣∣
invd(π) =

∣∣{1 ≤ i < j ≤ min{i+ d, n} | π(i) > π(j)}
∣∣
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respectively. For the associated random variable of d-inversions, Xinvd , Bona [7] and Pike

[26] conclude a central limit theorem for fixed d and for d = dn as a function of n. One sees

for example [26, Theorem 4]. Pike additionally concludes rates of convergence if dn grows

faster than n2/3 and slower than n1/3. The second generalization of these statistics pertains

their current limitation towards permutations. Following a similar approach as Kahle and

Stump in [14], we expand these statistics to other finite Weyl groups. The aforementioned

authors gave a description of the descent and inversion statistic in terms of roots and proved

normality of these in finite Coxeter groups.

As a main result, we prove the central limit theorem for d-inversions and antichains along

with the rate of convergence in classical types under some additional condition on the growth

behavior of d = dn. The result for antichains implies the central limit for d-descents.

A STIT tessellation is a special model describing a cell division process which is stable under

iteration. They were introduced by Nagel and Weiss in [24]. A planar STIT tessellation can

be described colloquially as follows. Start with a bounded and convex window of observation

W ⊂ R2. After some random time, which depends on some properties of W , this window is

cut by a random line. The driving measure of such a line is dependent on W again. This line

segment divides W into two smaller windows (called cells), which are subject to the same

procedure of being split. For some threshold t, the union of these line segments dividing

W into smaller cells is a STIT tessellation of W at time t. It is denoted by Y (t,W ). A

visualization of two STIT tessellations is given in Figure 1.1.

A lot of research has been done about those STIT tessellations (see for example [20, 23, 28,

29, 30, 34]). In particular, Schreiber and Thäle deduced in [28] formulas for the variance of

the total number of maximal edges and for the total number of vertices for general driving

measures. Likewise, abstract formulas are derived for the vertex pair-correlation and the

edge-vertex cross-correlation for a general case. As in other studies about STIT tessellations,

Schreiber and Thäle explicitly investigated isotropic STIT tessellations, i.e., those in which

the driving measure is rotation invariant. For these tessellations, more concrete formulas

could be deduced.

Another special class of STIT tessellations are planar Mondrian tessellations. In this special

case, the splitting lines are restricted to only axis-parallel cutting directions. The concrete

measure on the splitting line can include some weight parameter p ∈ (0, 1) for disparate

probabilities of appearance for the two directions. We call tessellations with this driving

measure weighted Mondrian tessellations. A visualization of a weighted planar Mondrian

tessellation with p = 0.5 is given in Figure 1.1.

Their name is reminiscent of works by the Dutch artist Piet Mondrian, which are characterized

by a grid of vertical and horizontal lines. Knowledge Mondrian tessellations are widely

used in machine learning literature. More precisely, they are used in random forest learning

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Planar isotropic STIT tessellation (left) [22, Figure 1] and
weighted planar Mondrian tessellation with p = 0.5 (right) [3, Figure 2].

[15, 16] or kernel methods [1]. Their property of being stable under iteration makes them

extremely suitable for incorporating new data into an existing model. Their wide field of

application makes it desirable investigating second-order properties of these special class of

STIT tessellations. Thus, we present results specifying the formulas for the variance and

covariance of the number of maximal edges and weighted total edge length for weighted

Mondrian tessellations. Additionally, Mondrian analogues of the pair- and cross-correlation

functions are derived. These results are joined work with Carina Betken, Tom Kaufmann

and Christoph Thäle [3].

Due to their easy accessibility, isotropic STIT tessellations are subject to other aspects of

studies. Those may be considered for different kinds of line segments. Following notation of

[17], we distinguish between three kinds of line segments, called I-segments, J-segments and

K-segments. A K-segment is an edge without any internal vertex. A J-segment is a side of a

cell of the tessellation. An I-segment, also called a maximal edge, is a union of collinear edges,

which can not be extended by another one. Exemplary properties studied in the context of

line segments are the distribution of their length, birth time or the number of internal vertices

(see [8, 17, 20, 34]). Cowan added some aspects about geometrical properties of different line

segments in [8].

The main results of Chapter 6 are the refinement of I-segments regarding some weight func-

tions and a more specified analysis of geometrical and metrical properties of line segments in

which the birth time of covering I-segments is considered.

This thesis is organized as follows.

• We will commence by presenting the necessary background on definitions and notations

of finite crystallographic root systems in Section 2.1, as well as the needed aspects from

probability theory and Coxeter statistics in Section 2.2.

3



• In Chapter 3 we begin by presenting the main results in Section 3.1 followed by an

interim result connecting the covariance as a probabilistic statement with a combinat-

orial aspect of positive roots in Section 3.2. Elaborate calculations in Section 3.3 will

lead to concrete formulas for the variances of d-descents and d-inversions in irreducible

types. Lastly, introduction and application of the dependency graph method will give

rise to the main results in Section 3.4.

• Moving on to the second aspect of the thesis, Chapter 4 begins with necessary defini-

tions and notation about probability measures and tessellations in Section 4.1. This is

followed by more specific information about the construction of STIT tessellations in

Section 4.2 and relevant properties of these in Section 4.3.

• In Chapter 5, we first present the main results in Section 5.1. We then proceed to calcu-

late the variance and covariance of the number of maximal edges and the weighted total

edge length of a Mondrian tessellation in Section 5.2. In order to compute the pair- and

cross-correlation function some extensive integral computations are outsourced to Sec-

tion 5.3.1. Results for the pair-correlation functions can then be found in Section 5.3.2

and Section 5.3.4, and for the cross-correlation in Section 5.3.3.

• In Chapter 6, we investigate the properties of line segments in isotropic planar STIT

tessellations. We begin by extending the basic definitions and notations of STIT tes-

sellations and line segments in Section 6.1. We then present our first results concerning

the refinement of I-segments by adding weight functions and how this affects their

distributions in Section 6.2. Next, we derive geometrical properties of line segment

in Section 6.3.1, before turning to their metrical properties, specifically their length

distributions, in Section 6.3.2.

4



Chapter 2

Background on Coxeter statistics

In this chapter, we set up notation and terminology concerning Coxeter systems and Coxeter

statistics, which we will use in Chapter 3. In Section 2.1, we start by recalling basic defini-

tions and important properties about Coxeter systems, for which we roughly follow [5] and

[12]. Additionally, Section 2.2 gives the most relevant probabilistic theory needed to analyze

Coxeter group statistics. In Section 2.3, we investigate the known statistics of inversions and

descents in detail and prepare for their generalization.

2.1 Finite Coxeter systems and root systems

Let S be a finite set with cardinality n. A Coxeter matrix is defined to be a function

m : S × S 7→ {1, 2, . . . ,∞} which satisfies m(s, s′) = m(s′, s) ≥ 1 for all s, s′ ∈ S, and

m(s, s′) = 1 if and only if s = s′. The generating set S along with relations (ss′)m(s,s′) = e,

where e is the identity element, form a group W which we call Coxeter group. Together with

its set of simple reflections S we call the pair (W,S) a Coxeter system. The cardinality of S
is called the rank of W and whenever |W | <∞, the Coxeter group is said to be finite. The

set of all reflections in W is given by R = {wsw−1|w ∈W, s ∈ S}.

The Coxeter matrix can also be represented by an undirected graph, called the Coxeter

diagram, which vertex set is given by S, and an unordered pair {s, s′} forming an edge if

m(s, s′) ≥ 3. Whenever m(s, s′) ≥ 4, the edge is labeled by that number. A system (W,S) is

irreducible if the Coxeter diagram is connected.

In what follows, let V be an n-dimensional Euclidean vector space with inner product 〈·, ·〉.
For each 0 6= α ∈ V , we define the reflection rα orthogonal to α by

rα(λ) = λ− 2
〈λ, α〉
〈α, α〉

α ∈ V

5



2.1. FINITE COXETER SYSTEMS AND ROOT SYSTEMS

for λ ∈ V . A finite set Φ ⊂ V is called a finite root system if for all α ∈ Φ the following two

conditions are satisfied:

i) Φ ∩ Rα = {−α, α},
ii) rα(Φ) = Φ.

Elements of Φ are called roots. A subset ∆ = {α1, . . . , αn} ⊆ Φ is called the set of simple

roots if it is linear independent and every other root β ∈ Φ can be expressed as a linear

combination with either non-negative or non-positive coefficients. A choice of simple roots

splits Φ into positive roots Φ+ and negative roots Φ−,

Φ+ =

{
n∑
i=1

λiαi | λi ∈ R+

}
∩ Φ and Φ− =

{
n∑
i=1

λiαi | λi ∈ R−

}
∩ Φ = −Φ+.

Given these sets of roots it is clear that ∆ ⊆ Φ+ ⊂ Φ = Φ+ ∪ Φ− ⊆ V .

Given a finite root system Φ we define its Weyl group W (Φ) by

W (Φ) =
〈
rβ|β ∈ Φ

〉
⊆ GL(V ).

It turns out that W (Φ) is generated by S = {rα | α ∈ ∆}, that
(
W (Φ),S

)
is a finite Coxeter

system, and that every finite Coxeter system can be obtained from a finite root system.

A root system Φ is called crystallographic if all α, β ∈ Φ satisfy the integrality criterion

2
〈α, β〉
〈α, α〉

∈ Z.

Equivalently, for all s, s′ ∈ S the corresponding entry m(s, s′) of the Coxeter matrix satisfies

m(s, s′) = {1, 2, 3, 4, 6}.

The set of positive roots comes with a natural partial order induced by the cover relation

β ≺ γ if γ − β ∈ ∆. We refer to Φ+ with this partial order as the root poset. A set of

pairwise incomparable roots in Φ+ is called an antichain. Moreover, the root poset is ranked

by the height of a root β =
∑n

i=1 λiαi ∈ Φ+, which is defined as the sum of its coefficients,

i.e., ht(β) =
∑n

i=1 λi. The height of the root poset is h− 1 for the Coxeter number h of the

related Coxeter group. The order of two roots β, γ ∈ Φ+ is set to be the order of the product

of the associated reflections sβ, sγ , i.e.,

ord(β, γ) = ord(sβsγ) = min{k ∈ N>0|(sβsγ)k = e}.

For any subset Γ ⊆ ∆, the group WΓ generated by rα for α ∈ Γ is called a parabolic

subgroup of W . For this, we also define the corresponding set of positive roots Φ+
Γ which

are non-negative linear combinations of Γ, i.e., Φ+
Γ = Φ+ ∩ span(Γ). Moreover, we let

WΓ = {w ∈ W |w(α) ∈ Φ+ for all α ∈ Γ} be the parabolic quotient. Given Γ ⊆ ∆, each

6



CHAPTER 2. BACKGROUND ON COXETER STATISTICS

group element w ∈W can be written as a unique decomposition w = wΓ ·wΓ with wΓ ∈WΓ

and wΓ ∈WΓ, see [5].

2.2 Probabilistic background and Coxeter group statistics

Let W be a finite Coxeter group. A statistic is simply a map st : W → N. One may now study

the probabilistic properties of st by asking for its value on an element in W chosen uniformly

at random. More formally, this finite random variable Xst is defined by its probabilities

P(Xst = k) =
|{w ∈W |st(w) = k}|

|W |
.

We study probabilistic properties of such random variables based on different statistics later

in Chapter 3. For this, we recall necessary probabilistic notations and properties. Let X be a

finite random variable on N. Here, finite means that only finitely many values are obtained.

Its expected value and its variance are

E[X] =
∑
k∈N

P(X = k) · k and V[X] = E[(X − E[X])2] = E[X2]− E[X]2 ,

respectively. Moreover, given a second such random variable Y , the covariance of X and Y

is

Cov(X,Y ) = Cov(Y,X) = E[XY ]− E[X]E[Y ].

Note that Cov(X,X) = V[X] and that X and Y are independent if Cov(X,Y ) = 0.

The variance of a sum of such random variables X =
∑k

i=1Xi can be calculated using the

linearity of the covariance:

V[X ] =
k∑

i,j=1

Cov(Xi, Xj) =
k∑
i=1

V[Xi] +
k∑

i,j=1
i 6=j

Cov(Xi, Xj) .

Finally, let X (n) be a sequence of such random variables. We call X (n) asymptotically normal

if its normalized version converges in distribution towards the standard Gaussian distribution,

denoted by N (0, 1). More formally, this is

X (n) − E[X (n)]

V[X (n)]
1/2

D−→ N (0, 1) ,

where X(n) D−→ X means

lim
n→∞

E[f(X(n))] = E[f(X)]

7



2.3. INVERSION AND DESCENT STATISTICS

for all bounded, continuous functions f .

2.3 Inversion and descent statistics

Statistics on Coxeter groups are often introduced for the special case of the symmetric

group Sn, which coincides with the Coxeter group of type An−1, before they are gener-

alized to other types. Two very well studied statistics are inversions and descents, for which

we recall their definitions and visualizations.

Given a permutation π ∈ Sn, an inversion is a pair (i, j) with 1 ≤ i < j ≤ n for which

π(i) > π(j). A descent is an inversion of distance 1, i.e., i is a descent of π ∈ Sn if

1 ≤ i ≤ n− 1 and π(i) > π(i+ 1). For π ∈ Sn, the sets

Inv(π) = {(i, j) | 1 ≤ i < j ≤ n and π(i) > π(j)}, (2.1)

Des(π) = {i | 1 ≤ i ≤ n and π(i) > π(i+ 1)}, (2.2)

are called the inversion set and descent set of π, respectively. Then, inv(π) = | Inv(π)| and

des(π) = |Des(π)| count the number of inversions and descents in π, respectively.

Example 2.3.1 Let π = [2, 5, 1, 4, 3] ∈ S5 be a permutation written in one-line notation.

The sets of inversions and descents are

Inv(π) = {(1, 3), (2, 3), (2, 4), (2, 5), (4, 5)} and Des(π) = {2, 4}.

respectively.

For generalizations to other finite Coxeter groups, we follow the notation of Kahle and

Stump [14] and define W -inversions and W -descents by

Inv(π) = {β ∈ Φ+|π(β) ∈ Φ−} and Des(π) = {β ∈ ∆|π(β) ∈ Φ−}, (2.3)

respectively. These definitions allow us to expand the idea of the inversion and descent

statistic to other objects of finite Weyl groups denoted again by inv(π) = | Inv(π)| and

des(π) = |Des(π)|. The next paragraphs will provide explanations of the coherence between

the two definitions as well as visualizations in classical Weyl groups. For this, we use

{e1, . . . , en} to denote the standard basis vectors of Rn.

Type An−1: We consider Sn as a Coxeter group of type An−1. Its root system ∆ ⊆ Φ+ ⊆ Φ

can be realized by

{ei+1 − ei|1 ≤ i ≤ n− 1} ⊆ {ej − ei|1 ≤ i < j ≤ n} ⊆ {ei − ej |1 ≤ i 6= j ≤ n}.

8



CHAPTER 2. BACKGROUND ON COXETER STATISTICS

A visualization of the corresponding root poset is given in Figure 2.1. Simplifying notation,

we write [ij] for ej − ei.

[12] [23] [34] [45]

[13] [24] [35]

[14] [25]

[15]

Figure 2.1: Root poset for the Coxeter group of type A4.

By Equation (2.3), a positive root β = ej − ei is an inversion if

π(β) = eπ(j) − eπ(i) ∈ Φ− ,

where the last assertion implies that π(i) > π(j) by the definition of Φ−. Since β ∈ Φ+, it is

i < j, and thus the pair (i, j) is an inversion in the sense of Equation (2.2).

The same thoughts with restriction to simple roots lead to the coherence between

An−1 - descents in (2.3) and the given description in terms of one-line-notation in (2.2).

Example 2.3.2 Let π = [2, 5, 1, 4, 3] ∈ S5 be the permutation from Example 2.3.1. Its

inversion and descent sets denoted according both definitions are,

Inv(π) = { (1, 3) , (2, 3) , (2, 4) , (2, 5) , (4, 5) } ,
Inv(π) = { e3 − e1 , e3 − e2 , e4 − e2 , e5 − e2 , e5 − e4 }

and

Des(π) = { 2 , 4 } ,
Des(π) = { e3 − e2 , e4 − e3 }

respectively.

Since

ej − ei =

j−1∑
k=i

(ek+1 − ek) = (ei+1 − ei) + · · ·+ (ej − ej−1) ∈ Φ+

we have ht(ej−ei) = j−i. Thus, the distance of the entries being compared in a permutation

written in one-line notation equals the height of the corresponding root.

Type Bn: One may realize the irreducible root system of type Bn using standard basis

vectors of Rn and set ∆ ⊆ Φ+ ⊆ Φ to be

9



2.3. INVERSION AND DESCENT STATISTICS

{e1} ∪ {ei+1 − ei|1 ≤ i ≤ n− 1} ⊆ { ei|1 ≤ i ≤ n} ∪ {ej ± ei|1 ≤ i < j ≤ n}

⊆ {±ei|1 ≤ i ≤ n} ∪ {ej ± ei|1 ≤ i 6= j ≤ n}.

A visualization of the root poset is given in Figure 2.2. Similiar to roots [ij] already seen in

type An−1, we write [k̃`] for roots of the form e` + ek and [i] for ei.

[1]

[2]

[3]

[4]

[12] [23] [34]

[13] [24]

[14][1̃2]

[2̃3]

[3̃4]

[1̃3]

[2̃4]

[1̃4]

Figure 2.2: Root poset for the Coxeter group of type B4.

The height for β = ej − ei is the same as in An−1. For the other roots, we have

ej + ei = 2e1 +

i−1∑
`=1

(e`+1 − e`) +

j−1∑
k=1

(ek+1 − ek) and ei = e1 +

i−1∑
k=1

(ek+1 − ek).

This yields the following description of the height:

ht(β) =


j − i if β = ej − ei ,

i if β = ei ,

i+ j if β = ej + ei .

Elements of the Coxeter group of type Bn may be represented by signed permutations. That

is,

Bn = {π : {±1,±2, . . . ,±n} → {±1,±2, . . . ,±n} |π is bijective and π(−i) = −π(i)}.

To find an interpretation analogous to (2.1) and (2.2) of descents and inversions for signed

10



CHAPTER 2. BACKGROUND ON COXETER STATISTICS

permutations, we set

Inv+(π) = {(i, j) | 1 ≤ i < j ≤ n and π(i) > π(j)}, (2.4)

Inv−(π) = {(̃i, j) | 1 ≤ i < j ≤ n and − π(i) > π(j)}, (2.5)

Inv◦ (π) = {i | 1 ≤ i ≤ n and π(i) < 0} = {i | 1 ≤ i ≤ n and − π(i) > π(i)}, (2.6)

which we relate to as positive, negative and neutral inversions, respectively. We then define

the descents and inversions by

Des(π) = {i | 0 ≤ i ≤ n− 1 and π(i) > π(i+ 1)} with π(0) = 0 , (2.7)

Inv(π) = Inv+(π) ∪ Inv−(π) ∪ Inv◦(π), (2.8)

respectively. The comparisons of permutation entries taken into account for these kind of

inversions are shown in Figure 2.3.

σ1σ2σ3 0 σ1 σ2 σ3

(a) Positive inversions for σ ∈ B3.

σ1σ2σ3 0 σ1 σ2 σ3

(b) Neutral inversions for σ ∈ B3.

σ1σ2σ3 0 σ1 σ2 σ3

(c) Negative Inversions for σ ∈ B3.

Figure 2.3: Visualization of inversions for a signed permutation σ ∈ B3.
Descents are marked in red.

We will show that these kinds of comparisons in one-line notation correspond to roots of the

form ej − ei, ej + ei and ei, respectively. For this, we recall the sign function to be

sgn(x) =


+1 if x > 0 ,

0 if x = 0 ,

−1 if x < 0 ,

for any x ∈ R.

Proposition 2.3.3 Let Φ+ be the set of positive roots for type Bn and π ∈ Bn. Then

Inv+(π) = {β = ej − ei ∈ Φ+ |π(β) ∈ Φ−},

Inv−(π) = {β = ej + ei ∈ Φ+ |π(β) ∈ Φ−},

Inv◦(π) = {β = ei ∈ Φ+ |π(β) ∈ Φ−}.

11



2.3. INVERSION AND DESCENT STATISTICS

Proof. The proof follows similar ideas already shown in the paragraph for type An. We

will show that the stated sets coincide with the sets given for positive, negative and neutral

inversions in (2.4), (2.5) and (2.6).

First, let ej − ei ∈ Inv+(π). It is π(ej − ei) = sgn(π(j)) e|π(j)| − sgn(π(i)) e|π(i)| ∈ Φ−. Then,

by definition of Φ− one distinguishes

ej − ei ∈ Inv+(π)⇔
(

sgn(π(j)) > 0 ∧ sgn(π(i)) > 0 ∧ |π(j)| < |π(i)|
)

∨
(

sgn(π(j)) < 0 ∧ sgn(π(i)) > 0
)

∨
(

sgn(π(j)) < 0 ∧ sgn(π(i)) < 0 ∧ |π(j)| < |π(i)|
)
,

where ∧, ∨ are the logical connectives “and” and “or”, respectively. These three cases simplify

to π(i) > π(j), and since j > i, it follows that (i, j) is a positive inversions in the sense of

(2.4).

The proofs for the other two identities follow analogous arguments.

Remark 2.3.4 Talking about inversions often includes a colloquial description as comparing

an entry to every other on its right. Based on Figure 2.3, one might argue that some com-

parisons, e.g. between σ2 and σ1, are missing. However, these comparisons are completely

determined by comparison of their negative versions σ2 and σ1, which is taken into account

by our definitions. Thus, it is reasonable to constrain to comparisons of two entries σi and

σj if and only if i ≤ j.

Type Cn: The root system for a Coxeter group of type Cn slightly differs from the one given

for groups of type Bn. We may choose an applicable root system ∆ ⊆ Φ+ ⊆ Φ as

{2e1} ∪ {ei+1 − ei|1 ≤ i ≤ n− 1} ⊆ { 2ei|1 ≤ i ≤ n} ∪ {ej ± ei|1 ≤ i < j ≤ n}

⊆ {±2ei|1 ≤ i ≤ n} ∪ {ej ± ei|1 ≤ i 6= j ≤ n}.

The height of some roots however differs from the case for type Bn. For ej − ei, the decom-

position into simple roots and their height is given as before. Moreover, it is

ej + ei = 2e1 +
i−1∑
`=1

(e`+1 − e`) +

j−1∑
k=1

(ek+1 − ek) and ei = 2e1 + 2
i−1∑
k=1

(ek+1 − ek).

This yields the following description of the height of β ∈ Φ+:

ht(β) =


j − i if β = ej − ei ,

2i− 1 if β = 2ei ,

i+ j − 1 if β = ej + ei .

12
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Elements of Coxeter groups of type Cn can be represented by signed permutation as in type

Bn. The one-line-notation for type Cn however omits the entry σ(0) = 0. This guarantees

that the height of a root still equals the distance of entries which are compared in one-

line notation. The inversion and descent sets are as defined for type Bn in Equations (2.7)

and (2.8). Visualizations are given in Figure 2.4.

σ1σ2σ3 σ1 σ2 σ3

(a) Positive inversions.

σ1σ2σ3 σ1 σ2 σ3

(b) Neutral inversions.

σ1σ2σ3 σ1 σ2 σ3

(c) Negative inversions.

Figure 2.4: Visualization of inversions for a signed permutation σ ∈ C3.
Descents are marked in red.

Type Dn: The root system of type Dn may be realized by setting ∆ ⊆ Φ+ ⊆ Φ as

{e2 + e1} ∪ {ei+1 − ei|1 ≤ i ≤ n− 1} ⊆ {ej ± ei|1 ≤ i < j ≤ n} ⊆ {ej ± ei|1 ≤ i 6= j ≤ n}.

The decomposition of roots of the form ej − ei is the same as before. For the other roots, we

have

ej + ei = (e2 + e1) +

j−1∑
k=2

(ek+1 − ek) +
i−1∑
`=1

(e`+1 − e`).

Thus, the height of β ∈ Φ+ in type Dn is given as

ht(β) =

j − i if β = ej − ei ,

i+ j − 2 if β = ej + ei .

The elements of Coxeter groups of type Dn can be viewed as a subset of those of type Bn

with the restriction to an even number of negative entries, i.e.,

Dn =
{
π ∈ Bn

∣∣∣ n∏
i=1

π(i) > 0
}
.

Our choice of visualizing elements of type Dn follows the idea in [25] and is shown in Fig-

ure 2.5. The inversion set for an element π ∈ Dn is given by the union of Inv+(π) and

Inv−(π).

13



2.3. INVERSION AND DESCENT STATISTICS

σ1

σ1

σ2σ3 σ2 σ3

(a) Positive inversions.

σ1

σ1

σ2σ3 σ2 σ3

(b) Negative inversions.

Figure 2.5: Visualization of inversions for a forked signed permutation
σ ∈ D3. Descents are marked in red.

For the descent and inversion statistics, Kahle and Stump showed a central limit for all finite

Coxeter groups in [14]. Another generalization can be done by restricting the distance between

permutation entries which are considered for comparisons. Such kinds of generalization were

already started by Bona [7] and Pike [26] for the symmetric group by introducing d-inversions.

In Chapter 3, we will define two statistics as generalizations of descents and inversion in a

similar sense as in [7, 26] but in general finite Weyl groups, and prove their asymptotic

normality.

14



Chapter 3

Probabilistic analysis of Coxeter

statistics

This chapter covers the results from joint work with Christian Stump in [21]. We introduce

generalized d-inversions and generalized d-descents in finite Weyl groups as natural analogues

of inversions and descents in Definition 3.1.1, and give the main results in Theorem 3.1.3,

3.1.5 and Corollary 3.1.4. For this we will combine algebraic and stochastic properties and

use the dependency graph method to conclude the central limit. Moreover, whenever our

method is applicable we will provide a bound on the rate of convergence, see Theorem 3.1.3

and Corollary 3.4.2.

3.1 Main results

Before presenting the main results of this chapter, we will introduce generalized d-inversions

and generalized d-descents in finite Weyl groups. As in Chapter 2 we will give visualization

for all classical types.

3.1.1 Set-Up

As seen in Section 2.3, the distance of the permutation entries considered for comparison

equals the height of the corresponding roots in the root poset. Thus, the following generaliz-

ation of descents and inversions according to their height seems reasonable and will find an

interpretation in one-line notation for all classical types.

Definition 3.1.1 ([21, Definition 2.4]) Let Φ be a finite crystallographic root system with

15
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positive roots Φ+ and let d ∈ N. We set

Φ
(d)
des = {β ∈ Φ+|ht(β) = d} and Φ

(d)
inv = {β ∈ Φ+|ht(β) ≤ d}. (3.1)

A generalized d-descent of an element w ∈W is an inversion inside of Φ
(d)
des and a generalized

d-inversion of an element w ∈W is an inversion inside Φ
(d)
inv.

For better readability, we will drop the term generalized in the rest of this thesis. In type

A, d - inversions coincide with the generalized descents defined by Bona [7] and Pike [26].

However, we refer to this statistic as d-inversions to emphasize that it involves multiple

comparisons. We decided to use the expression d-descents to describe a statistic which does

not seem to be investigated yet.

These statistics generalize the known inversions and descents in such a way that if d = 1, the

d-descents and d-inversions match the definition of descents. Moreover, if d = h− 1, with h

being the Coxeter number and thus h − 1 the height of the root poset, d-inversions are the

same as usual inversions.

The comparisons of permutation entries taken into account for the statistics of d-descents

and d-inversions can be visualized for classical Weyl groups as follows.

Type An: Given the root system for An as before. For n = 4 and d = 2, we have

Φ
(2)
des = {[13], [24], [35]} and Φ

(2)
inv{[12], [23], [34], [45], [13], [24], [35]}.

The set of d-descents now only considers comparisons of entries with distance exactly two

(see Figure 3.1 left). The set of d-inversions considers all comparisons with a distance at

most 2 (see Figure 3.1 right).

We continue by giving visualizations for d-descents in other classical types. Due to complexity,

we will refrain from pictorial descriptions of d-inversions in other types than An.

Types Bn, Cn, and Dn: Using the root system for the classical types as given before. With

n = 4 and d = 3, we have

Φ
(3)
des = {[1̃2], [3], [14]} , Φ

(3)
des = {[2], [1̃3], [14]} , Φ

(3)
des = {[1̃4], [2̃3], [14]}.

for B4, C4 and D4, respectively. These sets indicate that permutation entries of distance

3 are compared. However, these comparisons are subject to the additional restriction that

σi and σj are compared if and only if i < j (see Remark 2.3.4). Relevant comparisons are

illustrated using the respective visualizations for permutations of these groups in Figure 3.2.
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CHAPTER 3. PROBABILISTIC ANALYSIS OF COXETER STATISTICS

[12] [23] [34] [45]

[13] [24] [35]

[14] [25]

[15]

[13] [24] [35]

σ1 σ2 σ3 σ4 σ5

[24]

(a) Visualization of 2-descents in A4.

[12] [23] [34] [45]

[13] [24] [35]

[14] [25]

[15]

[12]

[13]

[34]

[35]

[23]

[24]

[45]

σ1 σ2 σ3 σ4 σ5

(b) Visualization of 2-inversions in A4.

Figure 3.1: Top: Root poset of type A4 with highlighted roots of Φ
(2)
des (left)

and Φ
(2)
inv (right). Bottom: One line notation of σ ∈ S5 with marked compar-

isons according to the subset of roots described above.

After having defined generalized d-descents and d-inversions in terms of roots, we now define

their related random variables. Let β ∈ Φ+ and define the corresponding Bernoulli random

variable, i.e., a random variable only taking values 0 and 1, as an indicator, whether β is an

inversion of an element w chosen uniformly at random in W . More formally, this is

Xβ(w) =

1 if w(β) ∈ Φ− ,

0 if w(β) ∈ Φ+ .
(3.2)

Another way describing this Bernoulli random variable is

P[Xβ = 1] =

∣∣{w ∈W | w(β) ∈ Φ−}
∣∣

|W |
, P[Xβ = 0] =

∣∣{w ∈W | w(β) ∈ Φ+}
∣∣

|W |
. (3.3)

Given a subset Ψ ⊆ Φ+, we set XΨ(w) =
∑

β∈ΨXβ(w). Then XΨ counts the number of

inversions of w within a given subset Ψ.

For example, one may think of Ψ as the set of simple roots which would result in the statistic

of descents. When Ψ = Φ+ is the entire set of positive roots, then XΨ is the number of

inversions. We are interested in what other choices of Ψ might lead to a central limit of XΨ.

One necessary restriction is given by |Ψ| −→ ∞. However, this is not the only limitation as

the following example shows.

Example 3.1.2 ([21, Example 2.3]) Let Φ be the root system of type An−1 as before and
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[1̃2]

[3]

[14]

σ1σ2σ3σ4 0 σ1 σ2 σ3 σ4

(a) Visualization of 3-descents in B4

[1̃3]

[2] [14]

σ1σ2σ3σ4 σ1 σ2 σ3 σ4

(b) Visualization of 3-descents in C4.

[2̃3]

[1̃4]

[14]

σ1

σ1

σ2σ3σ4 σ2 σ3 σ4

(c) Visualization of 3-descents in D4.

Figure 3.2: Visualization of 3-descents in different Weyl groups using their
respective one-line notation.

consider

Ψ(n) = {ei − e1 | 2 ≤ i ≤ n} ⊆ Φ+ .

This clearly implies |Ψ(n)| −→ ∞ as n tends to infinity. Since we’ve seen that ei − e1

corresponds to the comparisons of the i-th and 1st entry of a permutation π ∈ Sn, it is

XΨ(n)(π) = |{i | 2 ≤ i ≤ n and π(i) > π(1)}| = π(1)− 1.

This implies that XΨ(n) does not have a central limit since it is uniformly distributed with

P
(
XΨ(n)(π) = k

)
=

1

n− 1

for all 0 ≤ k ≤ n− 1 and n ∈ N≥2.

3.1.2 Central limit theorems

Having the probabilistic description for the statistic of d-descents and d-inversions at hand,

we are able to state our main results. We start with a result concerning asymptotic normality

of antichains, which easily implies the corresponding result for d-descents.

Theorem 3.1.3 ([21, Theorem 2.6]) Let {Φ(n)}n≥1 be a sequence of finite crystallographic

root systems and let {Ψ(n)}n≥1 be a sequence of antichains with Ψ(n) ⊂ Φ(n) and |Ψ(n)| −→ ∞.

The corresponding random variable XΨ(n) is then asymptotically normal. The rate of conver-

gence in distribution towards the standard Gaussian distribution is bounded by |Ψ(n)|−1/2.
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Since roots of the same height are pairwise incomparable, the sets Φ
(d)
des are antichains for any

d. The desired central limit for d-descents follows directly.

Corollary 3.1.4 ([21, Corollary 2.7]) Let {Φ(n)}n≥1 be a sequence of finite crystallographic

root systems and let {dn}n≥1 be a sequence of integers such that |Φ(dn)
des | −→ ∞. The corres-

ponding random variable X
Φ

(dn)
des

is then asymptotically normal with its rate of convergence

bounded by |Φ(dn)
des |

−1/2.

The proof of Theorem 3.1.3 provided in this thesis makes use of the dependency graph method.

However, the same result can be obtained by a result of Sommers [31], together with a result

of Kahle and Stump [14]. Providing a detailed alternative proof using the dependency graph

method will add information on bounds on the rate of convergence.

Next, we will state the analogous result for d-inversions. However, we will give bounds on

the rate of convergence in a separate corollary.

Theorem 3.1.5 ([21, Theorem 2.8]) Let {Φ(n)}n≥1 be a sequence of finite crystallographic

root systems and let {dn}n≥1 be a sequence of integers such that |Φ(dn)
inv | −→ ∞. The corres-

ponding random variable X
Φ

(dn)
inv

is then asymptotically normal.

The bound on the rate of convergence is strongly dependent on the ranks of the root sys-

tems and their relation to {dn}n≥1. The following corollary provides bounds on the rates of

convergence whenever our used method is applicable. Without loss of generality, we assume

that for all n every root poset Φ(n) contains at least one root of height dn.

Corollary 3.1.6 ([21, Corollary 2.9]) Let rn be the rank of Φ(n) and let Φ(n) =
⋃
i

Φi be the

decomposition into its irreducible components. Set

• rA to be the rank of the union of those components Φi for which rk(Φi) < dn,

• rB to be the rank of the union of those components Φi for which dn ≤ rk(Φi) ≤ d2
n, and

• rC to be the rank of the union of those components Φi for which d2
n < rk(Φi).

We then have the following bounds on the rates of convergence:

• if rA grows linearly in rn, we have the bound r
−1/2
n ,

• if rB grows linearly in rn and dn grows faster than r
2/3
n , we have the bound rn · d−3/2

n ,

• if rC grows linearly in rn and dn grows slower than r
1/3
n , we have the bound r

−1/2
n ·d3/2

n .

Given these bounds on the rate of convergence and assuming that Φ(n) is irreducible, we can

confirm the rate of convergence which were already observed in the case of the symmetric
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group in [26].

To conclude this section, we will give an overview on the following sections. The asymptotic

normality for d-descents as stated in Corollary 3.1.4 will follow from a more general result

in Theorem 3.1.3 about antichains. Known Coxeter-theoretic results are used to provide an

alternative proof of this theorem, which also provides rate of convergence. Although concrete

variances of d-descents are not needed, they are stated in Section 3.3 for classical types.

Unfortunately, we do not have a general consideration for d-inversions. The concrete formulas

for their variances in classical types are given in Theorem 3.3.1, 3.3.5, 3.3.13 and 3.3.14. Based

on these, a lower bound will be deduced in Lemma 3.4.6. The dependency graph method then

provides the asymptotic normality and, whenever possible, bounds on the rate of convergence.

The attempt to interpret d-inversions as a special case of order ideals in the root poset, i.e.,

subsets Ψ ⊆ Φ+ such that β ≤ γ ∈ Ψ implies β ∈ Ψ, failed in providing a counter example

in terms of a sequence which does not have a central limit, as well as in providing a more

general reason to always having a central limit. We state this as an open problem.

Question. Do sequences of order ideals of increasing cardinality always have a central limit?

3.2 Random inversions for finite root systems

The aim of this section is to understand the interaction between random variables Xβ with

β ∈ Φ+. The two main results are Theorem 3.2.1, exhibiting a connection between the

covariance as a probabilistic statement and Coxeter-theoretic assertions, and Theorem 3.2.7,

describing the independence of two distinct sets of random variables and thereby preparing

for the later use of the dependency graph method.

Theorem 3.2.1 ([21, Theorem 3.1]) Let β, γ ∈ Φ+ and Xβ and Xγ as in (3.2). We then

have

Cov(Xβ,Xγ) = ±
(

1

4
− 1

2 · ord(β, γ)

)
,

with the sign being positive if 〈β, γ〉 ≥ 0 and negative if 〈β, γ〉 ≤ 0. In particular, Xβ and Xγ
are independent if and only if β and γ are orthogonal.

Remark 3.2.2 ([21, Remark 3.2]) Instead of the order, one may use the angle between the

two positive roots to describe the covariance. For β, γ ∈ Φ+, the angle is

ϕ = ∠(β, γ) = arccos

(
〈β, γ〉
|β| · |γ|

)
,

20



CHAPTER 3. PROBABILISTIC ANALYSIS OF COXETER STATISTICS

and thus

Cov(Xβ,Xγ) =
1

4
− ϕ

2π
.

This avoids the case distinction based on the inner product.

We start preparing for the proof of Theorem 3.2.1 by partitioning the Weyl group W de-

pending on the property of changing the sign of positive roots β, γ ∈ Φ+. For given signs

ε, δ ∈ {+,−}, we define

W (εδ)(β, γ) =
{
w ∈W | ε · w(β) ∈ Φ+, δ · w(γ) ∈ Φ+

}
⊆W

as those elements in the Weyl group that send a pair of positive roots β and γ to positive or

negative roots depending on the given signs ε, δ, respectively. We are only interested in the

relation of the cardinalities of these four sets and state them in the following proposition.

Proposition 3.2.3 ([21, Proposition 3.4]) Let β, γ ∈ Φ+. Then

∣∣W (++)(β, γ)
∣∣ =

∣∣W (−−)(β, γ)
∣∣,∣∣W (+−)(β, γ)

∣∣ =
∣∣W (−+)(β, γ)

∣∣.
If in addition β 6= γ, then

∣∣W (++)(β, γ)
∣∣ =

(
ord(β, γ)− 1

)
·
∣∣W (+−)(β, γ)

∣∣ if 〈β, γ〉 ≥ 0,∣∣W (+−)(β, γ)
∣∣ =

(
ord(β, γ)− 1

)
·
∣∣W (++)(β, γ)

∣∣ if 〈β, γ〉 ≤ 0.

This implies equal cardinality of all four sets if and only if β and γ are orthogonal

The idea of this proof is to break it down to the two dimensional subspace span{β, γ} and the

parabolic subgroup generated by simple roots related to β and γ. For this, it is of importance

that the random variable Xβ, i.e., the property of an element changing the sign of β, only

depends on elements of the parabolic subgroup.

Lemma 3.2.4 ([21, Lemma 3.5]) Let Γ ⊆ ∆ and let w = wΓ ·wΓ ∈W be the unique parabolic

decomposition of w. For any β ∈ Φ+
Γ , it then holds that

w(β) ∈ Φ+ ⇐⇒ wΓ(β) ∈ Φ+.

Proof. By the definition of positive roots, every root in Φ+
Γ is a nonnegative linear combination

of elements in Γ. Hence, elements of the parabolic quotient WΓ keep such roots positive, i.e.,

wΓ(Φ+
Γ ) ∈ Φ+.

First, let wΓ(β) ∈ Φ+. Since β ∈ Φ+
Γ , it easily follows that wΓ(β) ∈ Φ+

Γ . Applying an
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element of the parabolic quotient generated by Γ, it is w(β) = wΓ(wΓ(β)) ∈ Φ+. Second,

let wΓ(β) /∈ Φ+. Then wΓ(β) ∈ Φ−Γ , and reuse of the above argument leads to w(β) =

wΓ(wΓ(β)) ∈ Φ−.

Using Lemma 3.2.4, we check that the random variable Xβ indeed only depends on the

parabolic root subsystem which contains β.

Corollary 3.2.5 ([21, Corollary 3.6]) Let Γ ⊆ ∆ and WΓ its parabolic subgroup. For β ∈ Φ+
Γ ,

the random variable Xβ is independent of whether it is considered on W or on WΓ.

Proof. Since Xβ is a Bernoulli random variable, it is enough to check that

P[Xβ = 1] =

∣∣{w ∈W | w(β) ∈ Φ−}
∣∣

|W |
=
|WΓ|·

∣∣{w ∈WΓ | w(β) ∈ Φ−}
∣∣

|WΓ| · |WΓ|

=

∣∣{w ∈WΓ | w(β) ∈ Φ−}
∣∣

|WΓ|
.

After Corollary 3.2.5, we can use Lemma 3.2.4 to prove Proposition 3.2.3.

Proof of Proposition 3.2.3. Starting with the first two identities. We write w◦ for the longest

element of W . The map w 7→ w◦ ·w is known to be a bijection on W interchanging inversions

and non-inversions,

Inv(w◦ · w) = Φ+ \ Inv(w) .

For elements of the given sets, it is

w ∈W (ε,δ) ⇔ w◦ · w ∈W (−ε,−δ) .

For proving the other two identities, let span{β, γ} be the linear subspace of V spanned by

the two positive roots β, γ ∈ Φ+. Then, one can find simple roots Γ = {α, α′} ⊆ ∆ such that

w
(

span{β, γ}
)

= span(Γ),

for some element w ∈ W . In particular, w(β), w(γ) ∈ Φ+
Γ . Note that W = w · W is a

bijection on W , and since we are only interested in the cardinalities, we may assume w = e

and β, γ ∈ Φ+
Γ . By Lemma 3.2.4, it holds that

W (ε,δ)(β, γ) = WΓ ×W (ε,δ)
Γ (β, γ).

This simplifies the anticipated equalities to statements regarding groups of dihedral type only.
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Thus,

∣∣W (++)(β, γ)
∣∣ = (ord (sβsγ)− 1) ·

∣∣W (+−)(β, γ)
∣∣ if 〈β, γ〉 ≥ 0,∣∣W (+−)(β, γ)

∣∣ = (ord (sβsγ)− 1) ·
∣∣W (++)(β, γ)

∣∣ if 〈β, γ〉 ≤ 0

need to be checked for types A1 ×A1, A2, B2, C2, G2 to conclude the proposition.

Example 3.2.6 ([21, Example 3.7]) Consider the Weyl group W of type G2, with simple

reflections S = {s, t} and the set of all reflections

R = {s, sts, ststs, tstst, tst, t}.

For a set of positive roots Φ+ = {β1, . . . , β6} we write sβ1 , . . . , sβ6 in the same order. Given

the root system of G2 one can deduce ord (βi, βj).

β1

β2

β3

β4

β5

β6

π
6

π
3

π
2

4π
6

5π
6

ord(βi, βj) =


6 |i− j| ∈ {1, 5},

3 |i− j| ∈ {2, 4},

2 |i− j| = 3.

Investigating the explicit inversion set of elements in G2 we get

Inv(e) = {} Inv(ststst) = {β1, β2, β3, β4, β5, β6}
Inv(s) = {β1} Inv(tstst) = {β2, β3, β4, β5, β6}

Inv(st) = {β1, β2} Inv(tsts) = {β3, β4, β5, β6}
Inv(sts) = {β1, β2, β3} Inv(tst) = {β4, β5, β6}

Inv(stst) = {β1, β2, β3, β4} Inv(ts) = {β5, β6}
Inv(ststs) = {β1, β2, β3, β4, β5} Inv(t) = {β6}

and obtain for example for β2 and β4 the following decomposition

W (++)(β2, β4) = {e, s, ts, t} , W (+−)(β2, β4) = {tsts, tst},

W (−−)(β2, β4) = {stst, ststs, ststst, tstst} , W (−+)(β2, β4) = {st, sts} .

One easily checks with 〈β2, β4〉 > 0 that

|W (++)(β2, β4)| = |W (−−)(β2, β4)| , |W (+−)(β2, β4)| = |W (−+)(β2, β4)|,

|W (++)(β2, β4)| = (ord(β2, β4)︸ ︷︷ ︸
=3

−1) · |W (+−)(β2, β4)| .

We are finally able to prove Theorem 3.2.1. For this, we express the covariance in terms of
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expected values and use the decomposition of W in Proposition 3.2.3 to write it as a function

of ord (β, γ).

Proof of Theorem 3.2.1. We write

Cov(Xβ,Xγ) = E[Xβ · Xγ ]− E[Xβ] · E[Xγ ] = P[Xβ = Xγ = 1]− 1

4

=
|W (−−)(β, γ)|

|W |
− 1

4
.

By the first two equalities in Proposition 3.2.3, the denominator of the first term can be

rewritten, such that

Cov(Xβ,Xγ) =
|W (−−)(β, γ)|

2 ·
(
|W (−−)(β, γ)|+ |W (+−)(β, γ)|

) − 1

4
.

First let β = γ. Then W (+−)(β, γ) = ∅ and we can conclude Cov (Xβ,Xγ) = V[Xβ] = 1
4 .

Now let β 6= γ and assume 〈β, γ〉 ≤ 0. The forth equality in Proposition 3.2.3 then gives

Cov(Xβ,Xγ) =
|W (−−)(β, γ)|

2 · (|W (−−)(β, γ)|+ (ord(β, γ)− 1) · |W (−−)(β, γ)|)
− 1

4

=
1

2 · ord(β, γ)
− 1

4
,

as stated. For 〈β, γ〉 ≥ 0, one uses the third equality in Proposition 3.2.3 for analogous

calculations.

The last statement in this chapter deals with the independence of two orthogonal sets of

roots. We call Ψ,Ψ′ ⊆ Φ+ orthogonal if and only if ord(β, γ) = 2 for all β ∈ Ψ and γ ∈ Ψ′.

Moreover, let A = {Ai}mi=1 and B = {Bi}ki=1 be two finite sets of random variables with

vectors of possible outcomes a = (a1, . . . , am) and b = (b1, . . . , bk), respectively. We call A

and B independent if and only if P[A = a,B = b] = P[A = a]P[B = b]. If P[B = b] 6= 0, this

is equivalent to P[A = a | B = b] = P[A = a]. The independence of orthogonal sets of random

variables is a necessary property for the later use of the dependency graph method. Its proof

uses the unique decomposition of W into a parabolic subgroup and parabolic quotient similar

to the proof of Proposition 3.2.3.

Theorem 3.2.7 Let Ψ,Ψ′ ⊆ Φ+. If Ψ and Ψ′ are orthogonal, then the sets {Xβ}β∈Ψ and

{Xγ}γ∈Ψ′ of random variables are independent.

Proof of Theorem 3.2.7. Let Ψ,Ψ′ ⊆ Φ+ be two orthogonal sets of roots. As in the proof of
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Proposition 3.2.3, there exists an element w ∈W such that

w
(

span(Ψ)
)

= span(Γ) ,

for some simple roots Γ ⊆ ∆. Since W preserves the inner product on V , it keeps w(Ψ′) in

the orthogonal complement of span(Γ).

We aim to prove independence for the sets {Xβ}β∈Ψ and {Xγ}γ∈Ψ′ . To shorten notation, let

X = {Xβ}β∈Ψ and X ′ = {Xγ}γ∈Ψ′ . We only need to show

P[X ′ = δ | X = ε] = P[X ′ = δ]

for any fixed outcomes ε ∈ {0, 1}|Ψ| and δ ∈ {0, 1}|Ψ′|. As already seen in Lemma 3.2.4, the

outcome of X depends only on the parabolic subgroup WΓ. On the other hand, since the

random variables of X ′ live in the orthogonal complement of span(Γ), the outcome X ′ = δ

only depends on the parabolic quotient WΓ and is fixed pointwise by WΓ.

We will provide precise calculations to support our argumentation. For better readability, we

write

ε · w(Ψ) ∈ Φ− if for all β ∈ Ψ we have

w(β) ∈ Φ− if ε(β) = 1 ,

w(β) ∈ Φ+ if ε(β) = 0 ,

and analogously δ · w(Ψ′) ∈ Φ−.

We then can conclude, by the properties of WΓ and WΓ described above,

P[X ′ = δ | X = ε] =
P[X ′ = δ ,X = ε]

P[X = ε]
=

∣∣{w ∈W | ε · w(Ψ) ∈ Φ−, δ · w(Ψ′) ∈ Φ−}
∣∣∣∣{w ∈W | ε · w(Ψ) ∈ Φ−}

∣∣
=

∣∣{wΓ ∈WΓ, wΓ ∈WΓ | ε · wΓ(Ψ) ∈ Φ−, δ · wΓ(Ψ′) ∈ Φ−}
∣∣

|WΓ| · |{wΓ ∈WΓ | ε · wΓ(Ψ) ∈ Φ−|

=

∣∣{w ∈WΓ | δ · w(Ψ′) ∈ Φ−}
∣∣

|WΓ|

=

∣∣{w ∈W | δ · w(Ψ′) ∈ Φ−}
∣∣

|W |

= P[X ′ = δ] .

3.3 Concrete variances

In this chapter, we provide concrete formulas for the variances of d-descents and d-inversions

in all irreducible types A,B,C and D. Calculations for type A will be done in great de-

tail, whereas analogous considerations for all other types will be suppressed. The concrete
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variances for d-descents are not further used but are provided for its own sake. Explicit

calculations of the variance for d-inversions are necessary to conclude a lower bound for the

variance in Lemma 3.4.6. This is needed to finally derive the asymptotic normality as claimed

in Theorem 3.1.5.

3.3.1 Type An−1

In this section, we provide the variances for d-descents and d-inversions of type An−1, which

depend on the relation between d and n. The results for d-inversions are already known from

[26, Theorem 1].

Theorem 3.3.1 ([21, Theorem 4.1]) Let XΨ as in (3.2) and Φ
(d)
des,Φ

(d)
inv as in (3.1). For d < n

we have

V[X
Φ

(d)
des

] =


1
12(n+ d) if 2d ≤ n ,

1
4(n− d) if 2d ≥ n .

V[X
Φ

(d)
inv

] =


1
18d

3 + 1
24d

2 + ( 1
12n−

1
72)d if 2d ≤ n ,

−1
6d

3 + (1
3n−

7
24)d2 + (−1

6n
2 + 5

12n−
1
8)d+ ( 1

36n
3 − 1

12n
2 + 1

18n) if 2d ≥ n .

We have divided the proof into a sequence of lemmas. We first set

Na = {β ∈ Φ+ | ht(β) = a} =
{

[ij] | 1 ≤ i < j = i+ a ≤ n
}

for 1 ≤ a ≤ n − 1. The set Na then contains all positive roots of height a and we partition

the set of positive roots according to their height, i.e.Φ+ = N1 ∪N2 ∪ · · · ∪Nn−1.

The following lemma describes the cardinality of these sets, i.e.the number of roots of a given

height.

Lemma 3.3.2 ([21, Lemma 4.2]) We have

Na 6= ∅ ⇐⇒ 1 ≤ a < n and |Na| = n− a for 1 ≤ a < n .

Proof. One may rewrite Na =
{

[i, i+ a] | 1 ≤ i ≤ n− a
}

, from which we can easily conclude

the stated cardinalities.

For positive roots [ij] and their corresponding reflections s[ij], one can check
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〈
[ij], [ik]

〉
,
〈

[ji], [ki]
〉
> 0,〈

[ji], [ik]
〉
,
〈

[ij], [ki]
〉
< 0,

and ord
(
s[ij]s[k`]

)
=


1 if |{i, j} ∩ {k, `}| = 2 ,

2 if |{i, j} ∩ {k, `}| = 0 ,

3 if |{i, j} ∩ {k, `}| = 1 ,

by identifying reflections s[ij] = (i, j) as transpositions on the symmetric group.

With Theorem 3.2.1, we can conclude that the covariance of X[ij],X[k`] is zero if and only if

{i, j} ∩ {k, `} = ∅. If k 6= j we have

Cov(X[ij],X[ik]) = Cov(X[ji],X[ki]) = 1
12 , Cov(X[ji],X[ik]) = Cov(X[ij],X[ki]) = − 1

12 . (3.4)

In order to compute the variance we are interested in the number of pairs with non-zero

covariances. These are provided in the following lemma.

Lemma 3.3.3 ([21, Lemma 4.3]) For 1 ≤ a, b < n, we have∣∣∣{[ij], [k`] ∈ Na ×Nb | i = k, j 6= `}
∣∣∣ =

∣∣∣{[ij], [k`] ∈ Na ×Nb | i 6= k, j = `}
∣∣∣

=

{
n−max{a, b} a 6= b ,

0 a = b ,

for the number of pairs with positive covariance and∣∣∣{[ij], [k`] ∈ Na ×Nb | i = `, j 6= k}
∣∣∣ =

∣∣∣{[ij], [k`] ∈ Na ×Nb | j = k, i 6= `}
∣∣∣

= n−min{n, a+ b}

for the number of pairs with negative covariance.

Proof. First, we observe that if a = b, the two sets in the first equality are empty. For all

other cases, we use

Nc =
{

[i, i+ c] | 0 < i ≤ n− c
}

=
{

[j − c, j] | c < j ≤ n
}

as an alternative description for Na and Nb to obtain the given counting formulas. As an

example, we may write
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∣∣∣{[ij], [k`] ∈ Na ×Nb | i = k, j 6= `
}∣∣∣ =

∣∣∣{[ij], [i`] ∈ Na ×Nb | j 6= `
}∣∣∣

=
∣∣∣{[i, i+ a], [i, i+ b] ∈ Na ×Nb |

0 < i ≤ min{n− a, n− b}
}∣∣∣

= n−max{a, b} .

Given the number of pairs with non-zero covariances depending on the height of these roots,

we can conclude the concrete variances for type A.

Proof of Theorem 3.3.1. Combining Lemma 3.3.2, 3.3.3 and Equation (3.4), we obtain for

a = b = d that

V[X
Φ

(d)
des

] = 1
4 |Nd| − 2

12

(
n−min{n, 2d}

)
.

This is equivalent to the two cases given for V[X
Φ

(d)
des

]. For the variance of d-inversions, we

have

V[X
Φ

(d)
inv

] = 1
4

∑
1≤a≤d

|Na|+ 2
12

∑
1≤a6=b≤d

(
n−max{a, b}

)
− 2

12

∑
1≤a,b≤d

(
n−min{n, a+ b}

)
,

where the first term comes from the single variances of X[ij] for all [ij] ∈ Φ
(d)
inv. The second

sum contains the covariances for pairs of random variables (X[ij],X[ik]). It can be rewritten

as ∑
1≤a6=b≤d

(n−max{a, b}) = 2 ·
∑

1≤a<b≤d
(n− b) = 2 ·

(
− 1

6(d− 1)d(2d− 3n+ 2)
)
.

The third sum combines the covariances for pairs of random variables (X[ij],X[ki]). We first

note that the summands are zero for a+ b ≥ n. Thus, we may rewrite the sum as∑
1≤a,b≤d

(n−min{n, a+ b}) =
∑

1≤a,b≤d
a+b≤n

(n− (a+ b)) =
∑

1≤a≤d

∑
1≤b≤min{n−a,d}

(n− (a+ b)) .

We start with the first case of 2d ≤ n. Since a, b ≤ d, it is d ≤ n − a, and we can simplify

the second sum of the last expression to obtain∑
1≤a,b≤d

(n−min{n, a+ b}) =
∑

1≤a≤d

∑
1≤b≤d

(n− (a+ b)) = d2(−d+ n− 1).
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Assume next 2d ≥ n. We further consider two cases d ≤ n− a and d > n− a to conclude∑
1≤a,b≤d

(n−min{n, a+ b}) =
∑

1≤a≤n−d

∑
1≤b≤d

(n− (a+ b)) +
∑

n−d<a≤d

∑
1≤b≤n−a

(n− (a+ b))

= −1
2d(n− 2)(d− n) + 1

6(2d− n)(d2 − dn+ n2 − 3n+ 2).

Combining these sums depending on the case distinction provides the variance.

For visualization which pairs of roots are considers for the different summations, we give an

example.

Example 3.3.4 ([21, Example 4.4]) Let n = 6 and d = 4. Given the definition of Na for

1 ≤ a ≤ 4, the set Φ
(4)
inv can be partitioned into

N1 = {[12], [23], [34], [45], [56]}, |N1| = 5,

N2 = {[13], [24], [35], [46]}, |N2| = 4,

N3 = {[14], [25], [36]}, |N3| = 3,

N4 = {[15], [26]}, |N4| = 2.

By Theorem 3.3.1, the variance is

V[X
Φ

(d)
inv

] = 1
4

∑
1≤a≤d

|Na|+ 2
12

∑
1≤a6=b≤d

(n−max{a, b})− 2
12

∑
1≤a,b≤d

(n−min{n, a+ b}).

The first sum makes use of the cardinality of Na for 1 ≤ a ≤ 4, which leads to

1
4(5 + 4 + 3 + 2) = 7

2 .

Moreover, we consider the relevant pairs (a, b) for the other two summations. For the first

summations with 1 ≤ a 6= b ≤ d = 4, we have

{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}

which gives

2
12

∑
1≤a6=b≤d

(n−max{a, b}) = 2
12

(
2 · (6− 2) + 4 · (6− 3) + 6 · (6− 4)

)
= 16

3 .

For example, consider a = 1, b = 3. Since the above sum counts all pairs ([ij], [k`]) ∈ (Na, Nb)

with i = k, j 6= `, we can write down these pairs explicitly:∣∣∣{[ij], [k`] ∈ N1 ×N3|i = k, j 6= `}
∣∣∣ =

∣∣∣{[12][14], [23][25], [34][36]}
∣∣∣ = 3 = n−max{a, b} .
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Similiarly, possible pairs (a, b) for the third sum with 1 ≤ a, b ≤ d are

{
(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)

}
which lead to a third summand of

− 2
12

∑
1≤a,b≤d

(n−min{n, a+ b}) = − 2
12

(
1 · (6− 2) + 2 · (6− 3) + 3 · (6− 4) + 4 · (6− 5)

)
= −10

3 .

With all three sums, we obtain

V[X
Φ

(4)
inv

] = 7
2 + 16

3 −
10
3 = 11

2 .

3.3.2 Type Bn

In this section, we provide the variances for d-descents and d-inversions of type Bn.

Theorem 3.3.5 ([21, Theorem 4.5]) Let XΨ as in (3.2) and Φ
(d)
des,Φ

(d)
inv as in (3.1). For

1 ≤ d ≤ 2n− 1, we then have

V[X
Φ

(d)
des

] =

1
24d+ 1

12n+ 1
12

if d ≤ n
2 ,

d even ,

1
24d+ 1

12n+ 1
24

if d ≤ n
2 ,

d odd ,

1
24d+ 1

12n+ 1
6

if n
2 < d ≤ 2n

3 ,

d even ,

1
24d+ 1

12n+ 1
8

if n
2 < d ≤ 2n

3 ,

d odd ,

1
24d+ 1

12n
if 2n

3 < d ≤ n ,
d even ,

1
24d+ 1

12n+ 1
8

if 2n
3 ≤ d ≤ n ,

d odd ,

−1
8d+ 1

4n
if n ≤ d ,
d even ,

−1
8d+ 1

4n+ 1
8

if n ≤ d ,
d odd .
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V[X
Φ

(d)
inv

] =

1
36d

3 + 1
48d

2 + ( 1
12n+ 1

72)d
if d ≤ n

2 ,

d even ,

1
36d

3 + 1
48d

2 + ( 1
12n+ 1

72)d+ 1
48

if d ≤ n
2 ,

d odd ,

1
36d

3 + 3
16d

2 + (− 1
12n+ 7

72)d+ ( 1
24n

2 − 1
24n)

if n
2 ≤ d ≤

2n
3 ,

d even ,

1
36d

3 + 3
16d

2 + (− 1
12n+ 7

72)d+ ( 1
24n

2 − 1
24n+ 1

48)
if n

2 ≤ d <
2n
3 ,

d odd ,

1
36d

3 + (1
6n−

1
36)d+ (− 1

24n
2 + 1

24n)
if 2n

3 ≤ d ≤ n ,
d even ,

1
36d

3 + (1
6n+ 7

72)d+ (− 1
24n

2 − 1
24n+ 1

24)
if 2n

3 ≤ d ≤ n ,
d odd ,

− 1
12d

3 + (1
3n−

1
24)d2 + (−1

3n
2 + 1

6n−
1
24)d+ (1

9n
3 + 1

18n)
if n ≤ d ,
d even ,

− 1
12d

3 + (1
3n−

1
24)d2 + (−1

3n
2 + 1

6n+ 1
12)d+ (1

9n
3 − 1

36n+ 1
24)

if n ≤ d ,
d odd .

We divide the proof into a sequence of lemmas similar to the proof given for type A. We start

again with partitioning the set of positive roots according to their height and their form into

Na =
{

[ij] | 1 ≤ i < j ≤ n | j − i=a
}
,

Oa =
{

[i] | 1 ≤ i ≤ n | i=a
}
,

Pa =
{

[ĩj] | 1 ≤ i < j ≤ n | j + i=a
}
.

Then, the roots of height a are Na ∪ Oa ∪ Pa. In addition to Lemma 3.3.2, we have the

following cardinalities.

Lemma 3.3.6 ([21, Lemma 4.6]) We have

• Oa 6= ∅ ⇔ 1 ≤ a ≤ n and |Oa| = 1 for 1 ≤ a ≤ n

• Pa 6= ∅ ⇔ 3 ≤ a ≤ 2n− 1 and |Pa| =


ba−1

2 c if 3 ≤ a ≤ n

b2n−a+1
2 c if n+ 1 ≤ a ≤ 2n− 1

Proof. This follows directly from the definition.

Due to the higher number of interactions between positive roots, the situation is slightly more

delicate than in type An−1. We therefore describe the covariances between different kind of
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roots separately. To this end, we introduce the sets

N≤d =
d⋃
a=1

Na, O≤d =
d⋃
a=1

Oa, P≤d =
d⋃
a=1

Pa .

Proposition 3.3.7 ([21, Proposition 4.7]) For 1 ≤ d ≤ 2n− 1, we have

2 · Cov(XP≤d ,XN≤d) =

− 1
18d

3 + 1
16d

2 + 7
72d

if d ≤ n
2 ,

d even ,

− 1
18d

3 + 1
16d

2 + 1
18d−

1
16

if d ≤ n
2 ,

d odd ,

1
6d

3 + (−1
3n+ 1

16)d2 + (1
6n

2 + 1
24)d+ (− 1

36n
3 + 1

36n)
if n

2 ≤ d ≤
2n
3 ,

d even ,

1
6d

3 + (−1
3n+ 1

16)d2 + (1
6n

2)d+ (− 1
36n

3 + 1
36n−

1
16)

if n
2 ≤ d ≤

2n
3 ,

d odd ,

1
6d

3 + (−1
3n−

1
8)d2 + (1

6n
2 + 1

4n−
1
12)d+ (− 1

36n
3 − 1

12n
2 + 1

9n)
if 2n

3 ≤ d ≤ n ,
d even ,

1
6d

3 + (−1
3n−

1
8)d2 + (1

6n
2 + 1

4n)d+ (− 1
36n

3 − 1
12n

2 + 1
36n−

1
24)

if 2n
3 ≤ d ≤ n ,

d odd ,

− 1
18d

3 + (1
4n+ 1

24)d2 + (−1
3n

2 − 1
6n−

1
36)d+ (1

9n
3 + 1

6n
2 + 1

18n)
if n ≤ d ,
d even ,

− 1
18d

3 + (1
4n+ 1

24)d2 + (−1
3n

2 − 1
6n+ 1

18)d+ (1
9n

3 − 1
6n

2 − 1
36n−

1
24)

if n ≤ d ,
d odd .

2·Cov(XN≤d ,XO≤d) =
−1

8d
2 − 1

8d if d ≤ n
2 ,

3
8d

2 + (−1
2n+ 1

8)d+ (1
8n

2 − 1
8n) if n

2 ≤ d ≤ n .
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2·Cov(XP≤d ,XO≤d) =

1
8d

2 − 1
4d

if d ≤ n ,
d even ,

1
8d

2 − 1
4d+ 1

8

if d ≤ n ,
d odd ,

−1
8d

2 + 1
2nd+ (−1

4n
2 − 1

4n)
if n ≤ d ,
d even ,

−1
8d

2 + 1
2nd+ (−1

4n
2 − 1

4n+ 1
8)

if n ≤ d ,
d odd .

Cov(XP≤d ,XP≤d) =

1
36d

3 − 1
12d

2 + 1
18d

if d ≤ n ,
d even ,

1
36d

3 − 1
12d

2 + 7
72d−

1
24

if d ≤ n ,
d odd ,

− 1
36d

3 + ( 1
12n+ 1

24)d2 + (−1
6n−

1
72)d+ (− 1

36n
3 + 1

24n
2 + 5

72n)
if n ≤ d ,
d even ,

− 1
36d

3 + ( 1
12n+ 1

24)d2 + (−1
6n−

1
36)d+ (− 1

36n
3 + 1

24n
2 + 5

72n−
1
24)

if n ≤ d ,
d odd .

Cov(XO≤d ,XO≤d) = 1
4d if d ≤ n .

According to Theorem 3.2.1, the covariance of Xβ and Xγ is dependent of ord(β, γ). For

these, we recall that reflections in type Bn are given by the following transpositions:

s[ij] = (i, j)(−i,−j), s[i] = (i,−i), s[ĩj] = (i,−j)(−i, j).

Hence, the order of two reflections is

ord
(
s[ij]s[k`]

)
=


1 if |{i, j} ∩ {k, `}| = 2 ,

2 if |{i, j} ∩ {k, `}| = 0 ,

3 if |{i, j} ∩ {k, `}| = 1 .

ord
(
s[ĩj]s[k̃`]

)
=


1 if |{i, j} ∩ {k, `}| = 2 ,

2 if |{i, j} ∩ {k, `}| = 0 ,

3 if |{i, j} ∩ {k, `}| = 1 .

ord
(
s[i]s[k`]

)
=

2 if |{i} ∩ {k, `}| = 0 ,

4 if |{i} ∩ {k, `}| = 1 .
ord

(
s[i]s[k̃`]

)
=

2 if |{i} ∩ {k, `}| = 0 ,

4 if |{i} ∩ {k, `}| = 1 .
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ord
(
s[ij]s[k̃`]

)
=

2 if |{i, j} ∩ {k, `}| ∈ {0, 2} ,

3 if |{i, j} ∩ {k, `}| = 1 .
ord

(
s[i]s[j]

)
=

1 if i = j ,

2 if i 6= j .

Using Theorem 3.2.1 now leads to the following combinations of roots Na, Pb, Oc with non-

zero covariance to investigate. In what follows, we write X ∼ Y to describe interactions

between roots of type X and Y . We have

N ∼ N : Cov(X[ij],X[ik]) = 1
12 for j 6= k , Cov(X[ij],X[ki]) = − 1

12 for j 6= k ,

Cov(X[ij],X[jk]) = − 1
12 for i 6= k , Cov(X[ij],X[kj]) = 1

12 for i 6= k .

N ∼ O : Cov(X[ij],X[i]) = −1
8 , Cov(X[ij],X[j]) = 1

8 .

N ∼ P : Cov(X[ij],X[ĩk]
) = − 1

12 for j 6= k , Cov(X[ij],X[k̃i]
) = − 1

12 for j 6= k ,

Cov(X[ij],X[j̃k]
) = 1

12 for i 6= k , Cov(X[ij],X[k̃j]
) = 1

12 for i 6= k .

P ∼ O : Cov(X[ĩj],X[i]) = 1
8 , Cov(X[ĩj],X[j]) = 1

8 .

P ∼ P : Cov(X[ĩj],X[ĩk]
) = 1

12 , if j 6= k , Cov(X[ĩj],X[k̃i]
) = 1

12 if j 6= k ,

Cov(X[ĩj],X[j̃k]
) = 1

12 , if i 6= k , Cov(X[ĩj],X[k̃j]
) = 1

12 if i 6= k .

We use case-by-case analysis to investigate the number of non-zero covariances. The first

part of the interaction between Na and Pb is proved in quite detail whereas other interactions

are stated without proof since they work analogously.

Proposition 3.3.8 ([21, Proposition 4.8]) We consider the two sets Na and Pb for type Bn

with 1 ≤ a ≤ n and 3 ≤ b ≤ 2n − 1. The four cases with non-zero covariance for Na ∼ Pb

above are as follows:

∣∣∣{[ij], [k̃l] ∈ Na × Pb | i = k, j 6= `}
∣∣∣ =

n− a ≤ b b−1
2
c b b−1

2
c ≤ n− a

1 ≤ b− n 2n− (a+ b) + 1 b1
2(2n− b+ 1)c

b− n ≤ 1 n− a b b−1
2 c

∣∣∣{[ij], [k̃l] ∈ Na × Pb | i = `, j 6= k}
∣∣∣ =

b− 1 ≤ n− a n− a ≤ b− 1

d b+1
2
e b b−1

2 c b1
2(2n− 2a− b+ 1)c

∣∣∣{[ij], [k̃l] ∈ Na × Pb | j = k, i 6= `}
∣∣∣ =

b b−1
2
c

a + 1 ≤ b− n b1
2(2n− b+ 1)c

b− n ≤ a + 1 b1
2(b− 2a− 1)c
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∣∣∣{[ij], [k̃l] ∈ Na × Pb | j = `, i 6= k}
∣∣∣ =

n ≤ b− 1 b− 1 ≤ n

a + 1 ≤ d b+1
2
e d1

2(2n− b+ 1)e b b−1
2 c

d b+1
2
e ≤ a + 1 n− a b− a− 1

Proof. We only give a proof for the first counting formula. For that, more explicit descriptions

of Na and Pb are

Na = {[i, i+ a] | 1 ≤ i ≤ n− a} ,

Pb = {[k̃, b− k] | max{1, b− n} ≤ k ≤ b b−1
2 c}.

Combining these for i = k, we obtain

max(1, b− n) ≤ i = k ≤ min(n− a, b b−1
2 c) ,

which leads to the stated cardinalities in the first table.

Given all cardinalities, we can prove the stated covariances between the roots of Na and Pb.

Proof of Proposition 3.3.7. Again, we will only give a proof for the first case of this proposi-

tion since the others follow analogously. Let a, b ≤ d ≤ n
2 and d be even. We investigate the

tables in Proposition 3.3.8 and extract the relevant cases under this restriction. For the first

table, the only relevant case is b− n ≤ 1 and b b−1
2 c ≤ n− a. We obtain

∑
1≤a,b≤d

∣∣∣{[ij], [k̃`] ∈ Na × Pb | i = k}
∣∣∣ =

d∑
a=1

d∑
b=1

b b−1
2 c =

1

4
d2(d− 2) .

Similarly, investigation of the second table reveals the only relevant case b− 1 ≤ n− a. This

leads to

∑
1≤a,b≤d

∣∣∣{[ij], [k̃`] ∈ Na × Pb | i = `}
∣∣∣ =

d∑
a=1

d∑
b=1

b b−1
2 c =

1

4
d2(d− 2) .

Investigating the third table, the only relevant case is b− n ≤ a+ 1. Since it is a+ 1 ≤ j =

k ≤ b b−1
2 c, we obtain an additional restriction b ≥ 2a+ 3, and thus

∑
1≤a,b≤d

∣∣∣{[ij], [k̃`] ∈ Na × Pb | j = k}
∣∣∣ =

d−4
2∑

a=1

d∑
b=2a+3

b1
2(b− 2a− 1)c =

1

24
d(d2 − 6d+ 8) .
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Investigating the last table, both cases with b− 1 ≤ n are relevant, yielding∑
1≤a,b≤d

∣∣∣{[ij], [k̃`] ∈ Na × Pb | j = `}
∣∣∣ =

d−2∑
a=1

min(2a+1,d)∑
b=a+2

(b− a− 1) +

d−2
2∑

a=1

d∑
b=2a+2

b b−1
2 c = 1

8(d− 2)d(d− 1) .

Lastly, one combines these numbers of interactions with the right value of their covariances,

which yields to

Cov(XP≤d ,XN≤d) = 1
12

(
1
24d(d2 − 6d+ 8) + 1

8(d− 2)d(d− 1)− 1
4d

2(d− 2)− 1
4d

2(d− 2)
)

= − 1
36d

3 + 1
32d

2 + 7
144d .

The calculations for the other cases stated in Proposition 3.3.7 follow analog considerations

about interactions between the sets Na, Pb and Oc. The results will be given without proofs.

Proposition 3.3.9 ([21, Proposition 4.9]) Let Na and Ob be sets of negative and neutral roots

for type Bn with 1 ≤ a, b ≤ n. Depending on relations between n, a and b, the cardinalities of

the two relevant cases for Na ∼ Ob are as follows:

∣∣∣{[ij], [k] ∈ Na ×Ob | i = k}
∣∣∣ =

{
1 1 ≤ b ≤ n− a ,
0 else .

∣∣∣{[ij], [k] ∈ Na ×Ob | j = k}
∣∣∣ =

{
1 a+ 1 ≤ b ≤ n ,
0 else .

Proposition 3.3.10 ([21, Proposition 4.10]) Let Pa and Ob be sets of positive and neutral

roots for type Bn with 3 ≤ a ≤ 2n − 1 and 1 ≤ b ≤ n. Depending on relations between n, a

and b, the cardinalities of the two relevant cases for Pa ∼ Ob are as follows:

∣∣∣{[ĩj], [k] ∈ Pa ×Ob | i = k}
∣∣∣ =

{
1 max(1, a− n) ≤ b ≤ ba−1

2 c ,
0 else .

∣∣∣{[ĩj], [k] ∈ Pa ×Ob | j = k}
∣∣∣ =

{
1 ba+1

2 c ≤ b ≤ min(n, a− 1) ,

0 else .

Proposition 3.3.11 ([21, Proposition 4.11]) Let Pa and Pb be sets of positive roots for type

Bn with 3 ≤ a, b ≤ 2n− 1. Depending on relations between n, a and b, the cardinalities of the

two relevant cases for Pa ∼ Pb are as follows:
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∣∣∣{[ĩj], [k̃`] ∈ Pa × Pb | i = k}
∣∣∣ =

b a−1
2
c ≤ b b−1

2
c b b−1

2
c ≤ b a−1

2
c

a− n, b− n ≤ 1 ba−1
2 c b b−1

2 c
1, b− n ≤ a− n b1

2(2n− a+ 1)c b1
2(2n− 2a+ b+ 1)c

1, a− n ≤ b− n b1
2(2n− 2b+ a+ 1)c b1

2(2n− b+ 1)c∣∣∣{[ĩj], [k̃`] ∈ Pa × Pb | i = `}
∣∣∣ =

b a−1
2
c ≤ n, b− 1 n ≤ b a−1

2
c, b− 1 b− 1 ≤ b a−1

2
c, n

a− n, d b+1
2
e ≤ 1 ba−1

2 c n b− 1

1, d b+1
2
e ≤ a− n b1

2(2n− a+ 1)c 2n− a+ 1 n+ b− a
1, a− n ≤ d b+1

2
e ba−1

2 c − d
b+1

2 e+ 1 b1
2(2n− b+ 1)c b1

2(b− 1)c∣∣∣{[ĩj], [k̃`] ∈ Pa × Pb | j = k}
∣∣∣ =

b b−1
2
c ≤ n, a− 1 n ≤ b b−1

2
c, a− 1 a− 1 ≤ b b−1

2
c, n

1, b− n ≤ d a+1
2
e b b−1

2 c − d
a+1

2 e+ 1 b1
2(2n− a+ 1)c b1

2(a− 1)c
d a+1

2
e, b− n ≤ 1 b b−1

2 c n a− 1

1, d a+1
2
e ≤ b− n b1

2(2n− b+ 1)c 2n− b+ 1 n+ a− b∣∣∣{[ĩj], [k̃`] ∈ Pa × Pb | i = k}
∣∣∣ =

n ≤ a− 1, b− 1 a− 1 ≤ n, b− 1 b− 1 ≤ n, b− 1

d b+1
2
e ≤ d a+1

2
e b1

2(2n− a+ 1)c b1
2(a− 1)c b1

2(2b− a− 1)c
d a+1

2
e ≤ d b+1

2
e b1

2(2n− b+ 1)c b1
2(2a− b− 1)c b1

2(b− 1)c

Proposition 3.3.12 ([21, Proposition 4.12]) Let Oa and Ob be sets of neutral roots for type

Bn with 1 ≤ a, b ≤ n. The relevant interactions of Oa ∼ Ob are as follows:

∣∣∣{[i], [j] ∈ Oa ×Ob | i = j}
∣∣∣ =

{
1 a = b

0 else .

Given the number of non-zero covariances for all tuples of roots of different kind, we can

deduce the variance by summing according given restrictions. Again, we will only provide

explicit calculations for the first case of Theorem 3.3.5.

Proof of Theorem 3.3.5. Consider the first case with d ≤ n
2 and d even. Using Lemma 3.3.2
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together with Propositions 3.3.8, 3.3.9, 3.3.10, 3.3.11, and 3.3.12 gives

V[X
Φ

(d)
inv

] = Cov (XN≤d,XN≤d) + 2 Cov (XP≤d,XN≤d) + 2 Cov (XN≤d,XO≤d)+

2 Cov (XP≤d,XO≤d) + Cov (XP≤d,XP≤d) + Cov (XO≤d,XO≤d)

=
[ 1

72
d(4d2 + 3d+ 6n− 1)

]
+
[
− 1

18d
3 + 1

16d
2 + 7

72d
]

+
[
− 1

8d
2 − 1

8d
]
+

[
1
8d

2 − 1
4d
]

+
[

1
36d

3 − 1
12d

2 + 1
18d
]

+ 1
4d

=
1

36
d3 +

1

48
d2 +

( 1

12
n+

1

72

)
d .

3.3.3 Type Cn

In this section, we provide the variances for d-descents and d-inversions of type Cn. The

explicit proofs are omitted since they are analogous to calculations before.

Theorem 3.3.13 ([21, Proposition 4.13]) Let XΨ as in (3.2) and Φ
(d)
des,Φ

(d)
inv as in (3.1). For

1 ≤ d ≤ 2n− 1, we have that

V[X
Φ

(d)
des

] =

1
24d+ 1

12n
if d ≤ 2n

3 ,

d even ,

1
24d+ 1

12n+ 1
24

if d ≤ 2n
3 ,

d odd ,

1
24d+ 1

12n
if 2n

3 ≤ d ≤ n ,
d even ,

1
24d+ 1

12n+ 1
8

if 2n
3 < d ≤ n ,

d odd ,

−1
8d+ 1

4n
if n ≤ d ,
d even ,

−1
8d+ 1

4n+ 1
8

if n ≤ d ,
d odd .
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V[X
Φ

(d)
inv

] =

1
36d

3 + 1
48d

2 + ( 1
12n+ 1

72)d
if d ≤ 2n

3 ,

d even ,

1
36d

3 + 1
48d

2 + ( 1
12n+ 1

72)d+ 1
48

if d ≤ 2n
3 ,

d odd ,

1
36d

3 + 11
96d

2 + (− 1
24n+ 11

144)d+ ( 1
24n

2 − 1
24)

if 2n
3 ≤ d ≤ n ,

d even ,

1
36d

3 + 11
96d

2 + (− 1
24n+ 5

36)d+ ( 1
24n

2 − 1
12n+ 5

96)
if 2n

3 < d ≤ n ,
d odd ,

− 1
12d

3 + (1
3n−

13
96)d2 + (−1

3n
2 + 11

24n−
1
16)d+ (1

9n
3 − 5

24n
2 + 7

72n)
if n ≤ d ,
d even ,

− 1
12d

3 + (1
3n−

13
96)d2 + (−1

3n
2 + 11

24n−
1
16)d+ (1

9n
3 − 5

24n
2 + 1

18n+ 5
96)

if n ≤ d ,
d odd .

The case-by-case analysis for the interactions in type Cn only differs from type Bn in the

heights of the roots. For positive roots in type Cn, the partition according their type and

height is given by

Na =
{

[ij] | 1 ≤ i < j ≤ n | j − i = a
}
,

Oa =
{

[i] | 1 ≤ i ≤ n | 2i− 1 = a
}
,

Pa =
{

[ĩj] | 1 ≤ i < j ≤ n | j + i− 1 = a
}
.

Then, the roots of height a are Na ∪Oa ∪Pa. All considerations are completely analogous to

those for type Bn, hence they will not be given here.

3.3.4 Type Dn

In this section, we provide the variances for d-descents and d-inversions of type Dn, again

without proofs.

Theorem 3.3.14 ([21, Proposition 4.14]) Let XΨ as in (3.2) and Φ
(d)
des,Φ

(d)
inv as in (3.1). We

then have for 1 ≤ d ≤ 2n− 3 that
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V[X
Φ

(d)
des

] =

1
24d+ 1

12n+ 1
6

if d < n
2 ,

d even ,

1
24d+ 1

12n+ 1
8

if d < n
2 ,

d odd ,

1
24d+ 1

12n+ 1
3

if n
2 ≤ d <

2n
3 ,

d even ,

1
24d+ 1

12n+ 7
24

if n
2 ≤ d ≤

2n
3 ,

d odd ,

1
24d+ 1

12n+ 1
6

if 2n
3 ≤ d < n ,

d even ,

1
24d+ 1

12n+ 7
24

if 2n
3 ≤ d < n ,

d odd ,

−1
8d+ 1

4n−
1
4

if n ≤ d ,
d even ,

−1
8d+ 1

4n−
1
8

if n ≤ d ,
d odd .

V[X
Φ

(d)
inv

] =

1
36d

3 + 1
48d

2 + ( 1
12n+ 1

72)d
if d < n

2 ,

d even ,

1
36d

3 + 1
48d

2 + ( 1
12n+ 1

18)d+ 1
16

if d < n
2 ,

d odd ,

1
36d

3 + 17
48d

2 + (−1
4n+ 5

9)d+ ( 1
12n

2 − 1
4n+ 1

6)
if n

2 ≤ d <
2n
3 ,

d even ,

1
36d

3 + 17
48d

2 + (−1
4n+ 5

9)d+ ( 1
12n

2 − 1
4n+ 11

48)
if n

2 ≤ d <
2n
3 ,

d odd ,

1
36d

3 + 1
6d

2 + 13
72d

if 2n
3 ≤ d < n ,

d even ,

1
36d

3 + 1
6d

2 + 11
36d+ (− 1

12n−
1
6)

if 2n
3 ≤ d < n ,

d odd ,

− 1
12d

3 + (1
3n−

5
12)d2 + (−1

3n
2 + n− 17

24)d+ (1
9n

3 − 5
12n

2 + 13
18n−

5
12)

if n ≤ d ,
d even ,

− 1
12d

3 + (1
3n−

5
12)d2 + (−1

3n
2 + n− 7

12)d+ (1
9n

3 − 5
12n

2 + 23
36n−

1
4)

if n ≤ d ,
d odd .
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Recall that the roots of Dn are a subset of the roots of Type Bn, which we already considered.

They just differ in their heights. The partition of positive roots according their type and

height in type Dn is given by

Na =
{

[ij] | 1 ≤ i < j ≤ n | j − i = a
}
, Pa =

{
[ĩj] | 1 ≤ i < j ≤ n | j + i− 2 = a

}
.

Then roots of height a are Na ∪ Pa.

Again, all considerations are completely analogous to those for type Bn, and are thus sup-

pressed.

3.4 Central limit theorems

This final section of the chapter will combine the Coxeter-theoretic properties from Section 3.2

and the dependency graph method to conclude the stated central limit theorem. Bounds on

the rates of convergence are provided where the method is applicable. The result for d-

inversions will make use of a lower bound on their variance, which is deduced from the

concrete variances given in Section 3.3.

3.4.1 The dependency graph method

Let {X (n,j)} with n ≥ 0 and 1 ≤ j ≤ kn be a triangular array of random variables. For a

fixed n, we define Gn = (V,E) with

V = {1, . . . , kn} and E = {{i, j} | i 6= j, X (n,i) and X (n,j) are dependent}.

If moreover for any disjoined subsets I, L ⊆ V with no edges between I and J , the corres-

ponding sets of random variables {X (n,i)}i∈I and {X (n,`)}`∈L are independent, the graph is

called the n-th dependency graph of {X (n,`)}. In this case, Gn is a dependency graph in the

sense of [13] and its dependency degree δn is the maximal vertex degree of Gn.

We present the following theorem due to Janson [13] in a slightly adapted version.

Theorem 3.4.1 [13, Theorem 2] Let {X (n,j)} with n ≥ 0 and 1 ≤ j ≤ kn be a triangular

array of Bernoulli random variables, admitting the conditions of a dependency graph with

dependency degree (δn)n≥0. Then the sequence X (n) = X (n,1) + · · ·+X (n,kn) is asymptotically

normal if there exists an m ∈ N such that

kn · δm−1
n

V[X (n)]
m/2
−→ 0 .
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Corollary 3.4.2 [11, Corollary 4.3 & Theorem 4.7] If the assertion in the previous theorem

is satisfied for m = 3, we obtain a bound for the rate of convergence given by

sup
x∈R

∣∣∣P[X (n) ≤ x]− P[N (0, 1) ≤ x]
∣∣∣ ≤ kn · δ2

n · V[X (n)]
−3/2 −→ 0 .

In the following sections, Theorem 3.4.1 is used as the main tool to prove asymptotic normality

for antichains, stated in Theorem 3.1.3, which directly implies the result for d-descents given

in Corollary 3.1.4. To provide the proof for d-inversions in Theorem 3.1.5, we first provide a

lower bound on the variance, deduced from the concrete calculations in Section 3.3.

For the following proofs, we introduce three notation about limiting behavior of functions.

For functions f, g : N+ → R≥0, we write f . g, if there exists ε > 0 and an N ∈ N such that

for all n ≥ N , it holds that f(n) ≤ εg(n). We moreover write f � g, if for all ε > 0 there

exists an N ∈ N with this property. We finally write

f ≈ g for f . g . f .

3.4.2 Central limit theorems for antichains in root posets and d-descents

For this subsections, let {Φ(n)}n≥1 be a sequence of finite crystallographic root systems and

let {Ψ(n)}n≥1 be a sequence of antichains in the respective root posets. We will investigate

the random variable XΨ(n) as given in (3.2) and proof asymptotic normality along with the

stated bounds on the rate of convergence using the dependency graph method from above.

We start with stating some properties of roots in antichains and their corresponding random

variables.

Lemma 3.4.3 ([21, Lemma 5.4]) Let Ψ ⊂ Φ+ be an antichain. Then the following holds:

• 〈β, γ〉 ≤ 0 for all β 6= γ in Ψ,

• there are at most |Ψ|−1 many pairs of dependent random variables Xβ,Xγ for β, γ ∈ Ψ,

• the dependency degree δ is at most 3.

Proof. First consider Ψ ⊂ ∆. For any two simple roots, the inner product is less or equal

to zero, thus the first statement is satisfied. The dependency graph of XΨ then equals the

Coxeter graph of the parabolic subsystem generated by Ψ. These graphs are known to satisfy

the second and third statement. In the case of Ψ being a general antichain, the roots may

be send to a subset of simple roots by an element in W , as proved in [31]. Since the three

properties are invariant under such a group action on Φ, the statements are satisfied for

general antichains.
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Proposition 3.4.4 ([21, Proposition 5.5]) The variance of XΨ(n) grows linearly with the

cardinality of the antichain, i.e.,

V[XΨ(n) ] ≈ |Ψ(n)|.

Proof. Given Theorem 3.2.1, we may rewrite V[XΨ(n) ] as

V[XΨ(n) ] =
∑

β∈Ψ(n)

V[Xβ] +
∑

β,γ∈Ψ(n)

β 6=γ

Cov(Xβ,Xγ) =
1

4

|Ψ(n)| −
∑

β,γ∈Ψ(n)

β 6=γ

(
1− 2

ord(β, γ)

) .

Since β 6= γ, it is ord(β, γ) ∈ {2, 3, 4, 6}. We immediately obtain V[XΨ(n) ] ≤ |Ψ
(n)|
4 under the

assumption that ord(β, γ) = 2 for all (β, γ).

Now we aim to find a lower bound for V[XΨ(n) ] by showing that

∑
β,γ∈Ψ(n)

β 6=γ

(
1− 2

ord(β, γ)

)
≤ 2

3
|Ψ(n)| .

As in the proof of Lemma 3.4.3, roots of Ψ(n) can be transferred to simple roots of a parabolic

subsystem, which is not necessary irreducible. Therefore, we use Ψ(n) = ∆1 ∪ · · · ∪ ∆k as

decomposition in such a way that ∆i consists of simple roots of an irreducible root system.

Before proceeding, we note that if β ∈ ∆i and γ ∈ ∆j with i 6= j, they are independent, i.e.,

ord (β, γ) = 2. Second, for β, γ ∈ ∆i, there are exactly 2 (|∆i| − 1) pairs (β, γ) ∈ ∆2
i with

order greater or equal to three, and at most two pairs (β′, γ′) and (γ′, β′) with ord(β′, γ′) > 3.

We then obtain

∑
β,γ∈Ψ(n)

β 6=γ

(
1− 2

ord(β, γ)

)
=

k∑
i=1

∑
β,γ∈∆i
β 6=γ

(
1− 2

ord(β, γ)

)
≤

k∑
i=1

(
2

3

(
|∆i| − 2

)
+

4

3

)
=

2

3
|Ψ(n)| .

This summarizes to |Ψ
(n)|
12 ≤ V[XΨ(n) ] ≤ |Ψ

(n)|
4 .

Proof of Theorem 3.1.3. We need to check that Theorem 3.4.1 applies in this setting. First,

XΨ(n) is a sum of Bernoulli random variables. Second, Theorem 3.2.7 proved that the corres-

ponding triangular array forms a dependency graphs. Third, Lemma 3.4.3 showed that δn is

globally bounded by 3. Finally, by Proposition 3.4.4 it was shown that the variance grows

linearly with |Ψ(n)| = kn. Investigation of the term in Theorem 3.4.1 with these assumption

leads to
kn · δm−1

n

V[XΨ(n) ]
m/2
≈
∣∣Ψ(n)

∣∣2−m2 −→ 0

for any m ≥ 3. Therefore, XΨ(n) is asymptotically normal by Theorem 3.4.1, and with
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Corollary 3.4.2, the bound on the rate of convergence is |Ψ(n)|−1/2.

Remark 3.4.5 The central limit for antichains in root posets, as stated in Theorem 3.1.3, can

be derived by combining arguments from [14] and [31]. As already mentioned, any antichain

may be sent to a set of simple roots by an element in W [31]. Thus, the situation is now

stated in terms of some simple roots ∆(n) of the root system Φ(n). As Corollary 3.2.5 showed,

the random variable X (n)
Ψ may be considered in a parabolic subgroup W∆(n) . For this setup,

a central limit was already proven in [14, Theorem 6.2]. However, the given approach using

the dependency method extends the result by bounds on the rate of convergence.

3.4.3 Central limit theorems for d-inversions

In this section, let {Φ(n)}n≥1 be a sequence of finite crystallographic root systems, and let

{dn}n≥1 be a sequence of integers. We recall the random variable counting d-inversions

X
Φ

(dn)
inv

=
∑

β∈Φ
(dn)
inv

Xβ with Φ
(dn)
inv = {β ∈ Φ+ | htβ ≤ dn}

and use the dependency graph method to prove asymptotic normality. Whenever applicable,

we provide bounds on the rate of convergence. To avoid a case-by-case analysis for all classical

types, we start with a lemma in which we deduce a lower bound for the variance, based on

the concrete variances in Section 3.3.

Lemma 3.4.6 ([21, Lemma 5.7]) There exists a global constant ε > 0 such that for any

irreducible root system Φ of rank r and any parameter d, we have

V[X
Φ

(d+1)
inv

] ≥ V[X
Φ

(d)
inv

] >


ε · r3 if r ≤ d ,

ε · d3 if d ≤ r ≤ d2 ,

ε · r · d if d2 ≤ r .

Proof. The first property that the variance (weakly) increases in d can be checked by invest-

igating the derivative in d for all concrete polynomials in Section 3.3 and noticing that these

are nonnegative. Alternatively, one takes the difference between two variances for consecutive

parameters in d.

Several uses of the first inequality result in

V[X
Φ

(d)
inv

] ≥ V[X
Φ

(k)
inv

]

with k = min{d, r/2}. We therefore only need to consider the concrete variances for cases

with 2d ≤ r. In all classical types, the variance of this case includes terms with positive
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coefficients for both rd and d3. We will analyze each case separately and provide an lower

bound for each using the parameter ε > 0. While the optimal bounds may differ for each case,

we can find a global parameter that satisfies all cases for all classical types and exceptional

groups.

First, we consider r ≤ d. With k = r/2, we can find an ε > 0 such that

V[X
Φ

(d)
inv

] ≥ V[X
Φ

(r/2)
inv

] > ε · r3 .

Secondly, we will consider the case where d ≤ r ≤ d2 and divide it into two subcases. If

d ≤ r/2, it is k = d and we can find an ε > 0 such that

V[X
Φ

(d)
inv

] > ε · d3.

If d ≥ r/2, it is k = r/2. We can find an ε > 0 such that

V[X
Φ

(d)
inv

] ≥ V[X
Φ

(r/2)
inv

] > ε · r3 ≥ ε · d3 ,

where the last inequality uses the assumption of r ≥ d.

Finally, we consider the case where d2 ≤ r. If d > 1, we have 2d ≤ d2 ≤ r and k = d. Then,

there exists some ε > 0 such that

V[X
Φ

(d)
inv

] > ε · rd .

For the case d = 1, this bound holds trivially.

For further analysis, we decompose the given root system Φ = Φ(n) into irreducible compon-

ents

Φ = ΦA ∪ ΦB ∪ ΦC =
⋃
i∈A

Φi ∪
⋃
i∈B

Φi ∪
⋃
i∈C

Φi,

where the sets are chosen according to Lemma 3.4.6 as

A = {i | ri < d}, B = {i | d ≤ ri ≤ d2}, C = {i | d2 < ri} , (3.5)

with ri = rk(Φi). One notes that different irreducible components Φi and Φj for i 6= j live

in orthogonal subspaces. We set rA =
∑

i∈A ri = rk(ΦA) and rB and rC analogously, and

observe that rn = rk(Φ(n)) = rA + rB + rC .

Since Theorem 3.1.5 requires |Φ(dn)
inv | −→ ∞, it is rn −→∞ as well. Without loss of generality,

we further assume that there exists at least one positive root in Φ(n) of height dn. Otherwise,

we set Φ(dn) = Φ(dn−1) and replace dn with dn − 1 without modifying the random variable.

The union of the root posets of {Φ(n)
i | i ∈ A ∪ B ∪ C} is the root poset of Φ(n). We use
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notation from Theorem 3.4.1 and write δn for the n-th dependency degree.

Proposition 3.4.7 ([21, Proposition 5.8]) We have

|Φ(dn)
inv | . rn · dn and δn . dn .

Proof. The first property follows from the observation that the number of roots of a given

height is bounded by the rank.

For the second statement we count the maximal number of dependencies. In general, two

roots can only be dependent if they are in the same irreducible component. We will distinguish

between exceptional and classical type. Let β ∈ Φ
(dn)
inv . First, suppose that β is an element of

an irreducible component of exceptional type. Then the number of roots dependent to β is

globally bounded. Second, consider β, γ as two elements of the same irreducible component

of classical type A,B,C or D. Then β, γ are of the following form ej−ei, ei, ej +ei. We have

seen that β ∈ {ej − ei, ei, ej + ei} and γ ∈ {ek − e`, ek, ek + e`} are dependent if and only

if they share one of their indices. This implies that there are at most 4dn roots dependent

of β.

Proof of Theorem 3.1.5 & Corollary 3.1.6. For easier readability, we write σ2
n = V[X

Φ
(dn)
inv

]

and σ2
i for the variance of the corresponding random variable of the irreducible component Φi.

Due to independency of random variables of different irreducible components , we can write

σ2
n = σ2

A + σ2
B + σ2

C =
∑
i∈A

σ2
i +

∑
i∈B

σ2
i +

∑
i∈C

σ2
i

with the same sets A,B and C used for the decomposition Φ(n) = ΦA ∪ ΦB ∪ ΦC in Equa-

tion (3.5).

By Lemma 3.4.6, we conclude

σ2
A =

∑
i∈A

σ2
i > ε · r3

A, σ2
B =

∑
i∈B

σ2
i > ε · |B| · d3, σ2

C =
∑
i∈C

σ2
i > ε · d · rC .

with a global constant ε. For the first inequality, we used
∑

i∈A r
3
i ≈ (

∑
i∈A ri)

3 = r3
A. The

others follow directly from the lemma.

We can finally start investigating the asymptotic normality of d-inversions by using The-

orem 3.4.1. With Proposition 3.4.7, this theorem simplifies to finding an m ∈ N such that

|Φ(dn)
inv | · δm−1

n

σmn
.
rn · dmn
σmn

−→ 0 .

We will distinguish between the limiting behavior of rn, which we have seen to satisfy
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rn = rA + rB + rC .

Suppose rn ≈ rA: Then σ2
n ≈ σ2

A & r
3
n. Thus,

rn · dmn
σmn

. r
1−3m

2
n · dmn . r

1−m2
n −→ 0 for m = 3 ,

where the second step uses that the height of a root poset is at most linear in its rank, i.e.,

dn . rn.

Suppose rn ≈ rC : Then σ2
n & rn · dn, and from (3.5) it is d2

n . rn. Thus,

rn · dmn
σmn

. r
1−m2
n · d

m
2
n . r

1−m4
n −→ 0 for m = 5 .

This proves the asymptotic normality without a bound on the rate of convergence. However,

if we strengthen our assumption to d3
n � rn, we obtain

r
1−m2
n · d

m
2
n � r

1−m2 +
m
6

n = r
1−2m

6
n ,

and thus
rn · dmn
σmn

. r
1−2m

6
n −→ 0 for m = 3

in this case.

Suppose rn ≈ rB: Then σ2
n & |B| · d3

n, and thus

rn · dmn
σmn

. rn · d
−m2
n

∣∣B ∣∣−m2 .
From (3.5), it is ri ≤ d2

n for i ∈ B. Thus, we can compute

rn ≈ rB =
∑
i∈B

ri ≤
∑
i∈B

d2
n = d2

n · |B|. (3.6)

With rn →∞, we conclude that either |B| → ∞ or d2
n →∞. This gives

rn · d
−m2
n

∣∣B ∣∣−m2 . d2−m2
n

∣∣B ∣∣1−m2 −→ 0 for m = 5 .

If we even assume r2
n � d3

n, we obtain

rn · d
−m2
n

∣∣B ∣∣−m2 −→ 0 for m = 3 .
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Chapter 4

Background on STIT tessellations

This chapter introduces necessary definitions and notations of probability theory, which are

being used throughout the Chapter 5 and 6. We start by giving information about random

measures and random tessellations in Section 4.1 before describing the construction of a

STIT tessellation in Section 4.2. Lastly, important properties of STIT tessellations are given

in Section 4.3.

4.1 Probability measures and tessellations

Let P be a locally compact space with a countable base and B(P) the Borel-σ-algebra of X.

The set of all Borel measures on P is given by M = M(P). It contains in particular all η

with η(C) < ∞ for all compact subsets C ⊆ P. The set M is equipped with the σ-algebra

M, which is generated by evaluation maps ΦA : M → R ∪ {∞} and ΦA(η) = η(A) for every

A ∈ B(P). Further let N = {η ∈M | η(A) ∈ N0 ∪ {∞}, ∀A ∈ B} be the set of all counting

measures on E. We use
D
= to denote equality in distribution.

Definition 4.1.1 A random measure X is a measurable map from some probability space

(Ω,A,P) into the measurable space (M,M) of locally finite measures. It is called a point

process in P if it is concentrated on N almost surely. Its distribution is given by the image

measure of P under X. In symbols, this is PX = X(P). The intensity measure γ of this

random point process X is given by γ(A) := EX(A) for all A ∈ B(P).

Throughout most parts of this thesis, we consider random measures on Rd with d = 2.

Whenever this applies, we will refer to this as planar. In some cases we will adapt definitions

and properties in varying degree of scope to this special case.

Definition 4.1.2 A random measure X on Rd is stationary if X
D
= X + x for all x ∈ Rd. It
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is called isotropic if X
D
= ϑX for all ϑ ∈ SOd.

A distribution often used in random measure theory and the theory of point processes is the

Palm distribution. Following [27, Section 3.3], let X be a stationary random measure on Rd

with intensity γ > 0. Given a Borel set B ∈ B and A ∈M, the Palm distribution of X is

P0(A) =
E
∫
B 1A(X − x)X(dx)

EX(B)
.

In Chapter 5, we use the Palm distribution with respect to the random vertex process of

a tessellation and with respect to the edge length measure concentrated on the skeleton.

Intuitively, it describes the conditional distribution of a random measure, given that 0 is a

typical point. In this definition, the typical point itself is considered. One might omit this

point and consider ϕ \ {0}. This yields to the reduced Palm distribution.

Definition 4.1.3 (see [32]) Let C be the set of compact and convex polygons in R2. A

(planar) tessellation is a subset C ⊂ C with the following properties:

1. int(c1) ∩ int(c2) = ∅ for c1, c2 ∈ C with c1 6= c2,

2.
⋃
c∈C

c = R2,

3. |{c ∈ C | C ∩B 6= ∅}| <∞ for any bounded B ⊂ R2.

In words, this means given the two-dimensional Euclidean space, a tessellation is a division

into a set of non-overlapping cells, whose union covers the whole plane and which is locally

finite. Note that a tessellation can alternatively be interpreted as the union of the boundaries

of the polygons, called the skeleton of the tessellation, and denoted by SC .

Let T be the set of all planar tessellations and T the σ-algebra of T generated by

{C ∈ T : SC ∩ [−r, r]2 6= ∅}

for all r > 0. A random planar tessellation is then given by a random variable Γ in [T,T].

The properties of stationarity and isotropy can be defined analogously to their definitions for

random measures. A random tessellation Γ is called stationary if it is invariant under shifts.

More formally, for all x ∈ R2 it yields

Γ
D
= Γ + x .

Moreover, it is called isotropic if

Γ
D
= ϑΓ
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for all rotations ϑ ∈ SO2.

4.2 Construction of a STIT tessellation

STIT tessellations were introduced by Nagel and Weiß [24] for the d-dimensional Euclidean

space. We give a simplified description of its construction for the case of R2, which is sufficient

for the content of this thesis.

Imagine the 2-dimensional Euclidean space and a window of observation W = [−r, r]2, r > 0.

This window is given a lifetime, which is exponentially distributed. After its lifetime has

passed, the window is divided by a random line L into two cells , say W+ = W ∩ L+ and

W− = W ∩L− where L+ and L− denote the two half-planes induced by L. This process can

be repeated by associating independent lifetimes to W+ and W− after which these cells are

cut by a random line again. At a given observation time t this process is stopped. At that

time, W is divided into a random number of non-intersecting random polygons. This state

is called the realization of the tessellation within W and is denoted by Y (t,W ). A picture of

such a process is shown in Figure 4.1.

Figure 4.1: Schematic construction of a planar STIT tessellation within a
square observation window with only two directions of cutting at different

times.

More precise, we give a description for the lifetimes and the distribution of the random lines

used in this construction. Let [R2] be the space of lines in R2 and [R2]0 the lines passing

through the origin. These spaces come with natural Borel σ-fields. Note that each line in

R2 is completely determined by its angle α to the x-axis and their minimal signed distance

r towards the origin (see Figure 4.2).

One may identify [R2] as the product of [0, π) ×R and define a locally finite and translation-

invariant probability measure Λ = ϑ × ` on this product. In this setting, ϑ is called the

directional measure and ` is the Lebesgue measure on R. For any polygon A, we write [A]
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`

0

r
α

Figure 4.2: Visualization of a line ` in R2 being parameterized by its angle
α and distance from the origin r.

for all lines g ∈ [R2] intersecting with A, i.e.,

[A] = {g ∈ [R2] | g ∩A 6= ∅} ∈ B([R2]).

With these ideas how to describe lines and their intersection with polygons we will complete

the construction of a STIT tessellation by giving information about the life-time of cells and

the distribution of lines added to this process.

Given a cell c ⊂ R2, we set Λ([c]) as parameter, with which its lifetime is exponentially

distributed. Moreover, Λ(· ∩ [c])/Λ([c]) is the distribution according to which a cell c is split

by a line. Further restrictions on the probability measure Λ are widely known and often

used whenever general computations become too complicated. In this thesis, two restrictive

sub-classes of STITs are of importance.

Isotopic STIT: Tessellations which are invariant under rotation are called isotropic. The

definition of Λ given in the construction above will result in such an isotropic STIT tessellation

if and only if ϑ is the uniform distribution on [0, π). This class is studied extensively in a

number of publications, see for example [17, 18, 19, 28, 29].

Mondrian tessellations: Reminiscent of the famous painting by Piet Mondrian, the Mondrian

tessellations are restricted to axis-parallel line segments, which can be equipped with equal

or non-equal weights. For this, let {e1, e2} be the standard orthonormal basis of R2 and

Ei = span(ei) for i ∈ {1, 2}. A weighted planar Mondrian tessellation is given by a STIT

tessellation Y (t,W ) for which

Λp(·) = p

∫
R

1(E1 + τe2 ∈ ·)dτ + (1− p)
∫
R

(E2 + τe1 ∈ ·)dτ (4.1)

is chosen as the driving measure on the space [R2] for some weight parameter p ∈ (0, 1) and

time parameter t > 0. One may rewrite this measure in terms of the product space [0, π)×R
with the Dirac measure on 0 and π/2 and the Lebesgue measure on R.

A visualization of an planar isotropic STIT tessellation and a planar weighted Mondrian

tessellation with weight p = 0.5 is given in Figure 1.1.
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Since these set-ups will appear in different chapters of this thesis, we are going to use Y (t,W )

as a general notation for Mondrian tessellations in Chapter 5 and for isotropic STIT tessel-

lation in Chapter 6.

4.3 Properties of STIT tessellations

In the remainder of this section, we will explain important properties of tessellations needed

for the results in Chapter 5 and Chapter 6.

First, one might question the effect of W used in the construction of a STIT tessellation. It

is well known by [18] that STIT tessellations can be extended to the whole plane, thus the

choice of W does not matter. This property is due to their consistency which means that the

intersection of a given tessellation in W , i.e., Y (t,W ) and a set V with V ⊆ W , is equal in

distribution to a tessellation of V . More formally, this is

Y (t,W ) ∩ V D
= Y (t, V ) .

This property implies that there exists a global and stationary tessellation Y (t) such that

Y (t) ∩W D
= Y (t,W )

for all compact and convex W ⊂ R2. STIT tessellations satisfy this condition. Nagel and

Biehler [4] even proved that the measure Λ used for the construction of a STIT tessellation

is the only suitable measure which allows a consistent extension.

Already emphasized by their name, another important property of STIT tessellations is

their stability under iteration. The idea of a single iteration is described as follows. Let

{c0,k|k ∈ N≥1} be the set of cells in Y0 and define {Y c0,k
1 |c0,k ∈ Y0} as the set of independent

but identically distributed copies of Y1. Thus, there is one copy of Y1 for each cell in Y0. The

iteration of Y0 with Y1 is then given by

Y0 � Y1 = {c0,k ∩ ck,i | c0,k ∈ Y0, ck,i ∈ Y
c0,k

1 with int(c0,k) ∩ int(ck,i) 6= ∅}.

A picture of such an iteration is seen in Figure 4.3. This idea of iterating two tessellation

can be extended to multiple iterations.

Definition 4.3.1 A random stationary tessellation Y is called stable under iteration (or

STIT) if

Y
D
= n(Y � · · ·� Y︸ ︷︷ ︸

n-times

)

for all n ∈ N.
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iid
.

cop
ies

Y1

Y0 Y0 � Y1

Figure 4.3: Schematic visualization of an iteration of Y0 with Y1. The three
iid copies of Y1 are iterated in the upper, lower left, and lower right cell (from

left to right) of Y0.

Another interesting property of a STIT tessellation is given by the point process induced by

certain intersection points. Given a STIT tessellation Y (t) and a fixed line g ∈ [R2], Nagel

and Weiß showed in [23, Lemma 5] that the process induced by the intersection points of g

and the skeleton of Y (t) is a stationary Poisson point process on g. This is that given an

interval where g intersects W , the number of intersection points of g with the skeleton of

Y (t) is Poisson distributed. Whats more, for a collection of non overlapping intervals, the

random variables counting the number of points in each interval are independent.
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Chapter 5

Probabilistic analysis of Mondrian

tessellations

This chapter is based on research together with Betken, Kaufmann and Thäle in [3]. Through-

out this chapter, a tessellation Y (t,W ) is understood as a planar Mondrian tessellation with

time parameter t > 0 and within an observation window W ⊂ R2 being a convex polygon.

The main results will be stated in Section 5.1. Concrete formulas for the (co-)variances for the

number of maximal edges in Y (t,W ) and the weighted total edge length of Y (t,W ) will be

presented in Section 5.2. A somehow modified version of the known pair- and cross-correlation

functions will be given in Section 5.3.

5.1 Main results

5.1.1 Set-up

Given a square W = [−r, r]2 ⊂ R2 with r > 0, a time parameter t > 0 and a Mondrian

tessellation Y (t,W ). We follow [28] and define Σφ(Y ) and Aφ(Y ) for some bounded and

measurable functional φ on line segments, i.e., on [R2] ∩ W . Let Y be a realization of

Y (t,W ) for some t > 0. We define

Σφ(Y ) :=
∑

e∈MaxEdges(Y )

φ(e), (5.1)

and

Aφ(Y ) =

∫
[W ]

∑
e∈ Segments(Y ∩L)

φ(e) Λp(dL), (5.2)
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with L ∈ [W ] and where MaxEdges(Y ) are the cell splittingg edges, which are referred to

as I-segments later in Chapter 6.

There are two explicit functionals φ of interest in this chapter.

1. Let φ ≡ 1. Then Σφ(Y ) simply counts the number of maximal edges in Y .

2. Let φ(e) = Λp([e]) as given in Equation (4.1). Then Σφ(Y ) is the weighted total edge

length of Y , where all maximal edges parallel to e1 are weighted by p and those parallel

to e2 are weighted with 1 − p. This follows from the fact that for any measurable set

A ⊂ R2, the expression Λp([A]) simplifies to

Λp([A]) = p

∫
R

1(E1 + τe2 ∈ [A])dτ + (1− p)
∫
R

(E2 + τe1 ∈ [A])dτ (5.3)

= p`1(ΠE2A) + (1− p)`1(ΠE1A),

where ΠEi(A) denotes the orthogonal projection of A onto Ei for i ∈ {1, 2}.

5.1.2 Variances

This section states the results about the variances of ΣΛp and Σ1 and their covariance. We

start by giving an easier result of their expected values known from [28, Section 2.3] as a

proposition.

Proposition 5.1.1 ([3, Proposition 2.1]) Consider a Mondrian tessellation Y (t,W ) with

weight p ∈ (0, 1). Then, for any compact and convex W ⊂ R2,

E[ΣΛp(Y (t,W ))] = 2tp(1− p)`2(W )

and

E[Σ1(Y (t,W ))] = t2p(1− p) `2(W ) + t(p `1(ΠE2W ) + (1− p) `1(ΠE1W )) .

If W = [−a, a]× [−b, b], with a, b > 0, these expressions specify to

E[ΣΛp(Y (t,W ))] = 8tp(1−p)ab and E[Σ1(Y (t,W ))] = 4t2p(1−p)ab+2t(pb+(1−p)a).

We now turn to second-order properties of these functionals and remark that for general

planar STIT tessellations, results are known from [28, Theorem 1]. These quite abstract

formulas for the variance and covariance of Σ1 and ΣΛp have been specified to isotropic STIT

tessellations using integral geometry (see for instance [28, Section 3.4]). It turned out that

specifying them to Mondrian tessellations isn’t a trivial task.
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Theorem 5.1.2 [28, Theorem 2.3] Let W = [−a, a]× [−b, b], with a, b > 0, be an observation

window, and let Y (t,W ) be a Mondrian tessellation with weight p ∈ (0, 1).

(i) The variance of the weighted total edge length ΣΛp of Y (t,W ) is given by

V[ΣΛp(Y (t,W ))] = −8abp(1− p)
(

(1− p)g1(2at(1− p)) + pg1(2btp)
)

with g1(x) =
∑∞

k=1(−1)k xk

k(k+1)! non-positive and monotonically decreasing on [0,∞).

(ii) The variance of the number of maximal edges Σ1 of Y (t,W ) is given by

V[Σ1(Y (t,W ))] = 2tbp+ 2ta(1− p) + 12abt2p(1− p)

− 16abt2p(1− p)
(

(1− p)g2(2a(1− p)t) + pg2(2btp)
)

with g2(x) =
∑∞

k=1(−1)k xk

k(k+1)(k+2)! .

(iii) The covariances of Σ1 and ΣΛp for Y (t,W ) is given by

Cov(ΣΛp(Y (t,W )),Σ1(Y (t,W )))

= 8tabp(1− p)
(

1−
[
(1− p)g3(2at(1− p)) + pg3(2btp)

])
with g3(x) =

∑∞
k=1(−1)k xk

k(k+1)(k+1)! .

We can specialize these results by choosing a square as the window of observation, i.e.,

W = Qr = [−r, r]2 with r > 0. Moreover, we will examine the behavior of the variance

as r approaches infinity. We write f(x) � g(x) if for two functions f, g : [0,∞) 7→ R, it is
f(x)
g(x) 7→ 1 as x 7→ ∞.

Corollary 5.1.3 ([3, Corollary 2.4]) Let Qr = [−r, r]2 with r > 0 be a square and Y (t, Qr)

be a Mondrian tessellation with weight p ∈ (0, 1). Then, as r →∞,

V[ΣΛp(Y (t, Qr))] � 8p(1− p)r2 log(r), V[Σ1(Y (t, Qr))] � 8t2p(1− p)r2 log(r)

and

Cov(ΣΛp(Y (t, Qr)),Σ1(Y (t, Qr))) � 8tp(1− p)r2 log(r).

Remark 5.1.4 ([3, Remark 2.5]) Since asymptotic formulas are also known for isotropic

planar STIT tessellations and rectangular Poisson line processes, it seems reasonable to com-

pare their results with the one for weighted Mondrians. By Λiso we denote the isometric

invariant measure on the space of lines in R2 and normalize the measure in such a way that

its value for lines passing the square [0, 1]2 equals 4
π . More formally, this is Λiso([[0, 1]2]) = 4

π .
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It is also used in literature like [27].

(i) For the isotropic STIT tessellation, we combine results from [28, Sections 3.4] and [29,

Theorem 3] to obtain

V[ΣΛiso(Y (t, B2
r ))] � 16

π
r2 log(r) and V[Σ1(Y (t, B2

r ))] � 16

π
t2r2 log(r),

where B2
r is a disc of radius r > 0 and r 7→ ∞. For the covariance, it can be deduced

from [28, Theorem 1] that

Cov(ΣΛiso(Y (t, B2
r )),Σ1(Yt(B

2
r ))) � 16

π
tr2 log(r).

(ii) For the rectangular Poisson line process we consider the stationary planar Poisson line

process, ηp with intensity measure tΛp for t > 0 and a square Qr = [−r, r]2 with r > 0.

The variances for the weighted edge length and the number of maximal edges are given

by

V[ΣΛp(Qr)] = 4tp(1− p)r3 and V[Σ1(Qr)] � 2t3p(1− p)r3,

respectively.

5.1.3 Correlation Function

In case of isotropic planar STIT tessellations, explicit formulas for the pair-correlations func-

tion of the vertex point process and the random edge length measure were derived in [28]

and [29], respectively. Moreover, the cross-correlation function between the point process

and the random length measure is given in [28]. To find analogues of these correlation func-

tions, their concepts need to be adapted to the setting of planar Mondrian tessellations in

a suitable way. For that, let Y (t) be a weighted planar Mondrian tessellation with t > 0

and weight p ∈ (0, 1). Let Rp = [0, 1 − p] × [0, p] be a rectangle depending on the weight

parameter p and Rr,p = rRp be a rescaled version with r > 0. In order to obtain analogues

of Ripley’s K-function, we may consider Y (t) under the Palm distribution with respect to

the random edge length measure Et concentrated on its skeleton. Then, following [32], we let

t2KE(r) be the total edge length of Y (t) in Rr,p. Similarly, we may consider Y (t) under the

Palm distribution with respect to the random vertex point process Vt. With λV = t2p(1− p)
denoting the intensity of the vertex process in Y (t), we let λ2

VKV(r) be the total number

of vertices of Y (t) in Rr,p again. Whereas usually a ball of radius r > 0 is considered in

Ripley’s K-function, when the driving measure is isotropic, we consider Rr,p instead, because

Λp is non-isotropic. More precisely, the ball is the associated zonoid related to an isotropic

directional distribution (see [27, Section 4.6]), whereas the rectangle with side length p and

1− p is the one related to the directional distribution used in the Mondrian case.
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Since these functions are still quite complicated, we will provide their normalized derivatives,

which in our cases exist. A suitable normalization is

gE(r) =
1

2p(1− p)r
dKE(r)

dr
and gV(r) =

1

2p(1− p)r
dKV(r)

dr
, (5.4)

where the dependence on t > 0 is suppressed for better readability. Since these modified

functions are based on a rectangular Rr,p instead of a ball of radius r, we use 2p(1 + p)r

instead of 2πr for normalization. This means that instead of Λiso([B2
r ]) = 2πr, one uses

Λp([Rr,p]) = 2p(1− p)r for normalization. Given these little distinctions, we refer to these

functions as Mondrian pair-correlation function of Et and Vt, respectively. Following similar

thoughts, we define the Mondrian cross-correlation function of Et and Vt, based on the known

definition of the cross K-function for the isotropic case, by

gE,V(r) =
1

2p(1− p)r
dKE,V(r)

dr
. (5.5)

The dependence on t > 0 is suppressed again.

For stationary and isotropic STIT tessellations, Schreiber and Thäle provided the edge-pair-

correlation function in [29, Theorem 7.1], as well as the vertex-pair-correlation and cross-

correlation function in [28, Corollary 4 & 3]. We now state their Mondrian analogue.

Theorem 5.1.5 ([3, Theorem 2.6]) Let Y (t) be a Mondrian tessellation with weight p ∈ (0, 1)

and time parameter t > 0. Then

gE(r) = 1 +
1

2t2r2

( 1

p2
+

1

(1− p)2
− e−trp

2

p2
− e−tr(1−p)

2

(1− p)2

)
.

Theorem 5.1.6 ([3, Theorem 2.7]) Let Y (t) be a Mondrian tessellation with weight p ∈ (0, 1)

and time parameter t > 0. Then

gE,V(r) = 1 +
1

t2r2p(1− p)

[
1

p
+

1

1− p
− 1

2tr(1− p)3
− 1

2trp3

−e−tr(1−p)2

(
1

2(1− p)
− 1

2tr(1− p)3

)
− e−trp2

(
1

2p
− 1

2trp3

)]
.

Theorem 5.1.7 ([3, Theorem 2.8]) Let Yt be a Mondrian tessellation with weight p ∈ (0, 1)

and time parameter t > 0. Then

gV(r) = 1 +
1

t2r2p2(1− p)2

[
4− 2

trp2
+

1

t2r2p4
− 2

tr(1− p)2
+

1

t2r2(1− p)4
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−e−trp2

(
1

2
− 1

trp2
+

1

t2r2p4

)
− e−tr(1−p)2

(
1

2
− 1

tr(1− p)2
+

1

t2r2(1− p)4

)]
.

For t = 1, the dependence of gE(r), gE,V(r) and gV(r) on r is shown in Figure 5.1 for different

weights p ∈ {0.5, 0.75, 0.9}.

Figure 5.1: Let t = 1. From left to right: gE(r), gE,V(r), and gV(r).

Remark 5.1.8 ([3, Remark 2.9]) As before, one might compare these results to their equi-

valent statements for the planar isotropic STIT tessellations and the rectangular Poisson line

process.

(i) For the isotropic case, it is shown by Schreiber and Thäle in [30] that the pair-correlation

function of the random edge length measure Et has the form

gE(r) = 1 +
1

2t2r2

(
1− e−

2
π
tr
)
.

The same authors have shown in [29] that the pair-correlation function of the vertex

point process Vt and the cross-correlation function of the random edge length measure

and the vertex point process are given as follows:

gE,V(r) = 1 +
1

t2r2
− π

4t3r3
− e−

2
π
tr

2t2r2

(
1− π

2tr

)
and

gV(r) = 1 +
2

t2r2
− π

t3r3
+

π2

4t4r4
− e−

2
π
tr

2t2r2

(
1− π

tr
+

π2

2t2r2

)
.

(ii) For the rectangular Poisson line process, which was defined in more detail in Re-

mark 5.1.4, one uses the theorem of Slivnyak-Mecke (see for example [33, Example

4.3]) to conclude that the cross- and pair-correlation functions in this setting are given

by

gE(r) = 1 +
1

tr
, gE,V(r) = 1 +

1

4trp(1− p)
and gV(r) = 1 +

1

2trp2(1− p)2
.
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5.2 Expected value and variance for Mondrian tessellations

In order to obtain first and second order properties, one usually makes use of the functionals

Σφ and Aφ along with some martingale results already proven in [28, Proposition 1]. In

Section 5.2.1, we start by introducing the point intersection measure and then prove the

stated expected values for Σ1 and ΣΛp . The definition of the segment intersection measure

and the proof of the variances for these functionals are given in Section 5.2.2.

5.2.1 The point intersection measure and expected values

We start with the definition of the point intersection measure on R2, which will be our main

tool for proving first order properties. It is given by

� Λp ∩ Λp � ( · ) :=

∫
[R2]

∫
[L]

1(L ∩ L′ ∈ · ) Λp(dL
′)Λp(dL).

Applied to our setting of planar Mondrian tessellations, L and L′ are restricted to axis-parallel

lines, i.e.. L = Ei + τej and L′ = Ej + τei for i, j ∈ {1, 2} and i 6= j. Together with their

weights, we can conclude for a measurable set A ⊂ R2 that

� Λp ∩ Λp � (A) =

∫
[R2]

∫
[L]

1(L ∩ L′ ∩A 6= ∅) Λp(dL
′)Λp(dL)

= 2p(1− p)
∫
R

∫
R

1((E2 + τe1) ∩ (E1 + σe2) ∩A 6= ∅) dσ dτ

= 2p(1− p)
∫
R

`1((E2 + τe1) ∩A) dτ

= 2p(1− p)`2(A). (5.6)

Together with results from [28], we can prove the stated expectations.

Proof of Proposition 5.1.1. General expressions for the expected values are given in [28,

Equations (8) and (9)] by

E[ΣΛp(Y (t,W ))] = t� Λp ∩ Λp � (W ) (5.7)

and E[Σ1(Y (t,W ))] = tΛp([W ]) +
t2

2
� Λp ∩ Λp � (W ). (5.8)

For ΣΛp we combine (5.6) and (5.7) to conclude that

E[ΣΛp(Y (t,W ))] = 2tp(1− p)`2(W )
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and for W = [−a, a]× [−b, b] with a, b > 0, it is

E[ΣΛp(Y (t,W ))] = 8abtp(1− p).

For Σ1, we combine (5.3) and (5.8) to conclude that

E[Σ1(Y (t,W )))] = t(p`1(ΠE2W ) + (1− p)`1(ΠE1W )) +
t2

2
2p(1− p)`2(W )

and for W = [−a, a]× [−b, b] a, b > 0, it is

E[Σ1(Y (t,W ))] = 4t2p(1− p)ab+ 2t(pb+ (1− p)a).

5.2.2 The segment intersection measure and variances

In order to calculate the variances, we introduce the segment intersection measure, which is

defined on the space of all line segments in R2, denoted by S(R2). It is given by

� (Λp × Λp) ∩ Λp � ( · ) :=

∫
[R2]

∫
[L]

∫
[L]

δL(L1,L2)( · ) Λp(dL1) Λp(dL2) Λp(dL), (5.9)

where δx is the Dirac measure for a point x ∈ R2. This measure will be used for proving the

properties of second order. Given a measurable set A ⊂ R2 and S(A) as the space of all line

segments completely lying in A, one get

� (Λp × Λp) ∩ Λp � (S(A) ) =

∫
[R2]

∫
[L]

∫
[L]

δL(L1,L2)(S(A)) Λp(dL1) Λp(dL2) Λp(dL)

=

∫
[R2]

∫
[L]

∫
[L]

1{L(L1, L2) ⊂ A}Λp(dL1) Λp(dL2) Λp(dL),

where we recall that for a line L intersecting with L1, L2, we write L(L1, L2) for the segment

between the intersection points. We will continue this consideration with a case distinction.

We first consider L = E1 + σe2, and since lines of this direction appear with weight p, part

of the integral can be written as

p

∫
R

∫
[E1+σe2]

∫
[E1+σe2]

1{(E1 + σe2) ∩ L1, (E1 + σe2) ∩ L2 ⊂ A}Λp(dL1) Λp(dL2)dσ. (5.10)
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In order to have (E1 +σe2)∩Li 6= ∅ for i ∈ {1, 2}, the lines (E1 +σe2) and L1, L2 have to be

perpendicular. Thus, in this case it is L1 = E2 + τ1e1 and L2 = E2 + τ2e1 for some τ1, τ2 ∈ R.

It easily follows that their intersection points are given as (τ1, σ) and (τ2, σ) which leads to

(5.10) being equal to

= p(1− p)2

∫
R

∫
R

∫
R

1{(τ1, σ), (τ2, σ) ⊂ A} dτ1 dτ2 dσ. (5.11)

We now consider L = E2 + σe1. With similar deliberations as before, it is

(1− p)
∫
R

∫
[E2+σe1]

∫
[E2+σe1]

1{(E2 + σe1) ∩ L1, (E2 + σe1) ∩ L2 ⊂ A}Λp(dL1) Λp(dL2) dσ

= (1− p)p2

∫
R

∫
R

∫
R

1{(σ, τ1), (σ, τ2) ⊂ A}dτ1 dτ2 dσ. (5.12)

At this point, we can finally give a more explicit formula for the segment intersection measure

in our setting by adding (5.11) and (5.12). We obtain

� (Λp × Λp) ∩ Λp � (S(A)) = p(1− p)2

∫
R

∫
R

∫
R

1{(τ1, σ), (τ2, σ) ⊂ A} dτ1 dτ2 dσ

+ (1− p)p2

∫
R

∫
R

∫
R

1{(σ, τ1), (σ, τ2) ⊂ A}dτ1 dτ2 dσ. (5.13)

We are now able to combine this formula of the segment intersection measure with known

results from [28] to prove the stated variances for ΣΛp and Σ1.

Proof of Theorem 5.1.2. First, we combine [28, Theorem 1] and Equations (13) and (14) in

[28] to obtain

V[ΣΛp(Y (t,W ))] =

t∫
0

∫
[W ]

∫
[L∩W ]

∫
[L∩W ]

exp(−uΛp([L(L1, L2)])) Λp(dL2) Λp(dL1) Λp(dL) du

=

∫
[W ]

∫
[L∩W ]

∫
[L∩W ]

1

Λp([L(L1, L2)])

(
exp(−tΛp([L(L1, L2)]))− 1

)
× Λp(dL2) Λp(dL1) Λp(dL)

by Fubini’s theorem. As already discussed before, it is necessary that L is perpendicular to
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W

E1

E2

L

L1 L2

(ϑ, σ)(τ, σ)

ΠE1
(L(L1,L2))

Figure 5.2: Visualization of the projection ΠE1
(L(L1, L2)) of L(L1, L2) with

L1 = E2 + τe1, L2 = E2 + ϑe1 and L = E1 + σe2.

L1, L2 to ensure L(L1, L2) 6= ∅. Thus, we consider

L = Ei + σej , L1 = Ej + τei, and L2 = Ej + ϑei

for some σ, τ, ϑ ∈ R and i, j ∈ {1, 2} with i 6= j.

For i = 1, j = 2, it is L = E1 + σe2, L1 = E2 + τe1 and L2 = E2 + ϑe1. Using the definition

of Λp(·) as in (5.3), we have

Λp([L(L1, L2)]) = (1− p) |τ − ϑ| 1{(τ, σ) ∈W}1{(ϑ, σ) ∈W}.

The situation is visualized in Figure 5.2.

For i = 2, j = 1, we get by using analog considerations that

Λp([L(L1, L2)]) = p |τ − ϑ| 1{(σ, τ) ∈W}1{(σ, ϑ) ∈W}.

Hence, these two cases are considered to conclude

V[ΣΛp(Y (t,W ))] = −
∫

[W ]

∫
[L∩W ]

∫
[L∩W ]

1

Λp([L(L1, L2)])

(
exp(−tΛp([L(L1, L2)]))− 1

)
× Λp(dL2) Λp(dL1) Λp(dL)

= −

(
p(1− p)2

b∫
−b

a∫
−a

a∫
−a

1

|τ − ϑ|

(
exp(−t(1− p)|τ − ϑ|)− 1

)
dϑ dτ dσ
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+ (1− p)p2

a∫
−a

b∫
−b

b∫
−b

1

|τ − ϑ|

(
exp(−tp|τ − ϑ|)− 1

)
dϑ dτ dσ

)

= −2

(
p(1− p)2

b∫
−b

a∫
−a

τ∫
−a

1

τ − ϑ

(
exp(−t(1− p)(τ − ϑ))− 1

)
dϑ dτ dσ

+ (1− p)p2

a∫
−a

b∫
−b

τ∫
−b

1

τ − ϑ

(
exp(−tp(τ − ϑ))− 1

)
dϑ dτ dσ

)

by Fubini’s theorem. For the inner integrals, we use the description of exp(x) by its formal

power series and obtain

τ∫
−a

1

τ − ϑ

(
exp(−t(1− p)(τ − ϑ))− 1

)
dϑ =

τ+a∫
0

1

ϑ
(exp(−t(1− p)ϑ)− 1) dϑ

=

τ+a∫
0

1

ϑ

∞∑
k=1

(−1)k
(t(1− p)ϑ)k

k!
dϑ =

∞∑
k=1

(−1)k
(t(1− p))k

k!

(τ + a)k

k

and

τ∫
−b

1

τ − ϑ

(
exp(−tp(τ − ϑ))− 1

)
dϑ =

∞∑
k=1

(−1)k
(tp)k

k!

(τ + b)k

k
,

respectively. Continuing with the two integrals and using integration by substitution, it is

b∫
−b

a∫
−a

∞∑
k=1

(−1)k
(t(1− p))k

k!

(τ + a)k

k
dτ dσ = 4ab

∞∑
k=1

(−1)k
(2at(1− p))k

(k + 1)!k

and

a∫
−a

b∫
−b

∞∑
k=1

(−1)k
(tp)k

k!

(τ + b)k

k
dτ dσ = 4ab

∞∑
k=1

(−1)k
(2btp)k

(k + 1)!k
.

Together with g1(x) as stated in Theorem 5.1.2(i), the result is proven.

Continuing with Theorem 5.1.2(ii), we combine Proposition 5.1.1 and Equation (12) from

[28] to obtain

V[Σ1(Y (t,W ))] = tΛp([W ]) + 3

t∫
0

E[ΣΛp(Y (s,W ))] ds+ 2

t∫
0

s∫
0

V[ΣΛp(Y (u,W ))] du.

65



5.2. EXPECTED VALUE AND VARIANCE FOR MONDRIAN TESSELLATIONS

Starting with the first expression, we use the definition of Λp as in (5.3) to conclude

tΛp([W ]) = 2tbp+ 2ta(1− p).

For the second expression, we use Equation (8) in [28], which states that

3

t∫
0

E[ΣΛp(Y (s,W ))] ds =
3t2

2
� Λp ∩ Λp � (W ) , (5.14)

and which simplifies with (5.6) to

3

2
t2 � Λp ∩ Λp � (W ) = 12t2ab p(1− p).

For the last term, we use Theorem 5.1.2 (i) to obtain

2

t∫
0

s∫
0

V[ΣΛp(Y (u,W ))] duds

= −16abp(1− p)
t∫

0

s∫
0

(
(1− p)g1(2a(1− p)u) + pg1(2bpu)

)
duds.

Now, by using the definition of g1(x) as stated in Theorem 5.1.2(i), we get

t∫
0

s∫
0

g1(2a(1− p)u) duds =
∞∑
k=1

(−1)k
(2a(1− p))k

k(k + 1)!

t∫
0

s∫
0

uk duds

= t2
∞∑
k=1

(−1)k
(2a(1− p)t)k

k(k + 1)(k + 2)!
,

and similarly

t∫
0

s∫
0

g1(2bup) duds = t2
∞∑
k=1

(−1)k
(2bpt)k

k(k + 1)(k + 2)!
.

Adding all three terms and setting g2(x) =
∑∞

k=1(−1)k xk

k(k+1)(k+2)! , the stated variance for

Σ1 follows.

Last, we prove the covariance stated in Theorem 5.1.2 (iii). We use Equations (11) and (8)
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in [28] to see that

Cov(ΣΛp(Y (t,W )),Σ1(Y (t,W ))) = t� Λp ∩ Λp � (W ) +

t∫
0

V[ΣΛp(Y (s,W ))] ds.

For the first term, one simply uses (5.6) to obtain

t� Λp ∩ Λp � (W ) = 8tabp(1− p).

For the integral, we conclude, using the definitions of ΣΛp and g1(x), that

t∫
0

V[ΣΛp(Ys(W ))] ds = −8abp(1− p)
t∫

0

(1− p)g1(2a(1− p)s) + pg1(2bps) ds

= −8abp(1− p)
∞∑
k=1

(−1)k
(1− p)(2a(1− p))k + p(2bp)k

k(k + 1)!

t∫
0

sk ds

= −8tabp(1− p)
∞∑
k=1

(−1)k
(1− p)(2at(1− p))k + p(2btp)k

k(k + 1)(k + 1)!

= −8tabp(1− p)
(

(1− p)g3(2at(1− p)) + pg3(2btp)
)
,

which in combination with the first term yields the result.

Proof of Corollary 5.1.3. One can check that g1(x) � log(x), g2(x) � −1
2 log(x) and that

g3(x) � − log(x), as x→∞. For example, by [6, Equation 1.1.3] one may rewrite

g1(x) = 1− γ − Γ(0, x)− log(x)− 1

x
+

exp(−x)

x

where γ denotes the Euler-Mascheroni constant and Γ(0, x) the upper incomplete Gamma-

function, for which

exp(−x)

x

(
1− 1

x

)
≤ Γ(0, x) ≤ exp(−x)

x

(
1− 1

x
+

1

x2

)
for x −→∞ is satisfied by [6]. Thus, we conclude

g1(x) � − log(x)

for x −→∞. With Theorem 5.1.2, the results then follow.
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5.3 Pair- and cross-correlations

The goal of this section is to establish the pair- and cross-correlation functions for Mondrian

tessellations, as stated in Theorem 5.1.5, 5.1.6, and Theorem 5.1.7. To accomplish this, we

will utilize results from [28, Section 3], which are stated in a more general setting than that

of Mondrian tessellations. Therefore, we will need to perform certain computations to adapt

these results to our specific case. We begin by collecting all relevant definitions and heavy

computations of integrals in Section 5.3.1, which will be used later in the specific calculations

for the edge pair correlation (Section 5.3.2), edge-vertex cross-correlation (Section 5.3.3) and

vertex pair correlation (Section 5.3.4). All the subsections 5.3.2 - 5.3.4, follow a similar

structure, which can be described in five steps.

Firstly, we adapt the concrete formula for the covariance measure directly from [28] to the

Mondrian setting, or derive such a formula in case of the edge length measure using similar

considerations. Secondly, we use some results from Section 5.3.1 to transfer these terms to

a suitable form, such that the reduced covariance measure can be deduced as a third step.

This can be achieved by utilizing [9, Equations (8.1.1a) and (8.1.7)], which states that given

some measurable product A×B ⊂ R2 × R2, the reduced covariance measure can be defined

by

Cov(X )(A×B) =

∫
A

∫
B−x

Ĉov(X )(dy) `2(dx) , (5.15)

for X being the random edge length measure Et, the total number of vertices Vt or the

combined process (Et,Vt) in our cases. Fourthly, we obtain the reduced second moment

measure as an interim result by [9, Equation (8.1.6)], from which we deduce the Mondrian

analogue of Ripley’s K-function. Lastly, we take the derivative and normalization as described

in (5.4) and (5.5) to obtain the correlation functions.

5.3.1 Preparatory calculations

First, we start with relevant definitions which we adopt from [28, Section 3]. Given two edge

functionals

Jf (e) :=

∫
e

f(x)dx and ηf (e) :=
∑

x∈V ertices(e)

f(x)

for some bounded and measurable functions f : R2 7→ R with bounded support. By

V ertices(e) we denote the set of inner points in a maximal edge, i.e., splitting edges of the

tessellation. We can define the covariance measures by choosing a pair of these functionals.
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We obtain the covariance measure for the random edge length measure Et by∫
(R2)2

(f ⊗ g)(x) Cov(Et)(dx) = Cov(ΣJf (Y (t)),ΣJg(Y (t))),

for the cross-covariance of the vertex process Vt and the random edge length measure Et by∫
(R2)2

(f ⊗ g)(x) Cov(Vt, Et)(dx) = Cov(Σηf (Y (t)),ΣJg(Y (t))),

and for the vertex process Vt by∫
(R2)2

(f ⊗ g)(x) Cov(Vt)(dx) = Cov(Σηf (Y (t)),Σηg(Y (t))).

We will use more precise formulas for the cases of the cross-covariance and the vertex process

given in [28, Theorem 2 & 3]. Additionally, we will obtain a concrete formula for the covari-

ance measure of the random edge length measure. In our setting, we will use the notation

∆e :=
∑

x∈V ertices(e)

δx and `1(· ∩ e)(A) := `1(A ∩ e) (5.16)

for some A ⊆ R2 for ηf and Jf , respectively. Moreover, we define

(Λp[· ∩ e])(A) := Λp([A ∩ e]) (5.17)

for segments e ∈ Y (t).

We can give more concrete descriptions of ∆e and Λp[· ∩ e] by using the fact that every

segment e in a Mondrian tessellation is either parallel to E1 or to E2. This implies that

either the second or the first coordinate of its endpoints coincide. To make it more precise,

given a segment e which is parallel to E1, its endpoints can be given as (τ, σ) and (ω, σ) for

some σ, τ, ω ∈ R. Equivalently, if e is parallel to E2, its endpoints can be given as (σ, τ) and

(σ, ω). To simplify notation, we will describe segments using their endpoints and write (τω)σ

for segments parallel to E1 and σ(τω) for those parallel to E2. With this distinction between

the two kinds of segments, we can conclude

∆e =


δ(τ,σ) + δ(ω,σ) for e = (τω)σ,

δ(σ,τ) + δ(σ,ω) for e = σ(τω),

(5.18)
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and

Λp([· ∩ (τω)σ]) = (1− p) `1(· ∩ (τω)σ), Λp([· ∩ σ(τω)]) = p `1(· ∩ σ(τω)). (5.19)

For simplification of notation, we define the two integrals for bounded measurable functions

f : R2 → R with bounded support and t > 0 as

I1(f(s); t) :=

t∫
0

f(s) ds, (5.20)

and

In(f(s); t) :=

t∫
0

s1∫
0

. . .

sn−1∫
0

f(s) ds dsn−1 . . . ds1 =
1

(n− 1)!

t∫
0

(t− s)n−1f(s)ds, (5.21)

for integers n ≥ 2.

Proofs for the Mondrian pair and cross correlations are based on more general results in

[28], which include a number of integrals for which simplifications can be given in case of

Mondrian tessellations. This section provides several lemmas transferring those integrals

either to a simpler form or calculating their concrete values.

We start with a lemma simplifying the expression in [28, Theorem 3]. It concerns integrals

over a product measures of dirac measure and 1-dimensional Lebesgue measures. This lemma

prepares a later use of a diagonal shift argument in the sense of [9, Corollary 8.1.III].

Lemma 5.3.1 [28, Lemma 4.1] Let A,B ∈ B(R2). For any q ∈ [0, 1] and j ∈ N, we simplify

the following integrals over different product measures.

(i) Product of a dirac measure with 1-dimensional Lebesgue measure∫
R

∫
R

∫
R

(δ(τ,σ) ⊗ `1(· ∩ (τϑ)σ)(A×B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

`1(B − w ∩ (0z)0)) Ij
(
s2 exp(−sq|z|); t

)
dz dw

and ∫
R

∫
R

∫
R

(δ(σ,τ) ⊗ `1(· ∩ σ(τϑ))(A×B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

`1(B − w ∩ 0(0z))) Ij
(
s2 exp(−sq|z|); t

)
dz dw.
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(ii) Product of two 1-dimensional Lebesgue measures∫
R

∫
R

∫
R

(`1(· ∩ (τϑ)σ)⊗ `1(· ∩ (τϑ)σ)(A×B)) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(B − w) dx dy
)
Ij
(
s2 exp(−sq|z|); t

)
dz dw

and∫
R

∫
R

∫
R

(`1(· ∩ σ(τϑ))⊗ `1(· ∩ σ(τϑ)))(A×B)) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

( ∫
0(0z)

∫
0(0z)

δy−x(·) dx dy
)
Ij
(
s2 exp(−sq|z|); t

)
dz dw.

(iii) Product of two dirac measure∫
R

∫
R

∫
R

(δ(τ,σ) ⊗ δ(τ,σ))(A×B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δω(A)

∫
R

δ0(B − w) Ij
(
s2 exp(−sq|z|); t

)
dz dw,

where 0 := (0, 0). Furthermore,

∫
R

∫
R

∫
R

(δ(τ,σ) ⊗ δ(ϑ,σ))(A×B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

δ(z,0)(B − w) Ij
(
s2 exp(−sq|z|); t

)
dz dw

and ∫
R

∫
R

∫
R

(δ(σ,τ) ⊗ δ(σ,ϑ))(A×B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

δ(0,z)(B − w) Ij
(
s2 exp(−sq|z|); t

)
dz dw.

Proof. In each part of this lemma, results are stated for vertical and horizontal line segments.

Since the proofs are similar, we will only provide the proof for one version of (i) and (ii) each.

In (iii), we will restrain from proving the third equality.
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B

B−(τ, σ)

E1

E2

τ ϑ

σ

ϑ− τ

(B−(τ,σ)∩(0(ϑ−τ))σ)

(B ∩ (τϑ)σ)

Figure 5.3: Visualization of the equality of the Lebesgue measure when shift-
ing a line segment by (τ, σ).

We start with the first equality in (i), we note that shifting a line segment (τ, ϑ)σ to start at

the origin will not change the Lebesgue measure if B is shifted by (τ, σ), i.e., `1(B∩ (τϑ)σ) =

`1(B − (τ, σ) ∩ (0(ϑ− τ))0) for any τ, ϑ, σ ∈ R, see Figure 5.3. We can conclude∫
R

∫
R

∫
R

δ(τ,σ)(A) `1(B ∩ (τϑ)σ) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R

∫
R

δ(τ,σ)(A)

∫
R

`1(B − (τ, σ) ∩ (0(ϑ− τ))0)) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ.

Substituting z = ϑ− τ , one may rewrite the given integral as∫
R

∫
R

δ(τ,σ)(A)

∫
R

`1(B − (τ, σ) ∩ (0z)0)) Ij
(
s2 exp(−sq|z|); t

)
dz dτ dσ ,

which proves the first equality of (i) if ω = (τ, σ). Continuing with (ii), we replace the

Lebesgue measure by integrals of Dirac measures and use a similar shift of the subsets A and

B to obtain∫
R

∫
R

∫
R

`1(A ∩ (τϑ)σ)`1(B ∩ (τϑ)σ) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dτ dϑ dσ

=

∫
R

∫
R

∫
R

( ∫
(τϑ)σ

∫
(τϑ)σ

δx(A)δy(B) dx dy
)
Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dτ dϑ dσ

=

∫
R

∫
R

∫
R

( ∫
(0(ϑ−τ))0

∫
(0(ϑ−τ))0

δx(A− (τ, σ))δy(B − (τ, σ)) dx dy
)

× Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dτ dϑ dσ
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=

∫
R2

∫
R

( ∫
(0z)0

∫
(0z)0

δw+x(A)δy(B − w) Ij
(
s2 exp(−sq|z|); t

)
dx dy

)
dz dw,

where we again substituted z = ϑ−τ and set (τ, σ) = w. With another substitution w̃ = w+x,

we conclude∫
R2

∫
R

( ∫
(0z)0

∫
(0z)0

δw+x(A)δy(B − w) dx dy
)
Ij
(
s2 exp(−sq|z|); t

)
dz dw

=

∫
R2

δw̃(A)

∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(B − w̃) dx dy
)
Ij
(
s2 exp(−sq|z|); t

)
dz dw̃,

which proves the first equality in (ii). We proceed with the first and second term of (iii) in a

similar way. By substitution of z = ϑ− τ and putting w = (τ, σ), we conclude∫
R

∫
R

∫
R

δ(τ,σ)(A)δ(τ,σ)(B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

δ0(B − w) Ij
(
s2 exp(−sq|z|); t

)
dz dw.

for the first, and∫
R

∫
R

∫
R

δ(τ,σ)(A)δ(ϑ,σ)(B) Ij
(
s2 exp(−sq|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

δ(z,0)(B − w)Ij
(
s2 exp(−sq|z|); t

)
dz dw

for the second term in (iii).

The next lemma explicitly takes into account that our tessellation is considered in a growing

window rRp = [0, r(1−p)]× [0, rp]. In this situation, the Dirac and Lebesgue measure of line

segments is specified as follows. For z > 0,

δ(z,0)(rRp) = 1[0,(1−p)r](z) , `1(rRp ∩ (0z)0) =

z for z ∈ (0, r(1− p)],

(1− p)r for z > r(1− p),
(5.22)

δ(0,z)(rRp) = 1[0,pr](z) , `1(rRp ∩ 0(0z)) =

z for z ∈ (0, rp],

pr for z > rp.
(5.23)
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Moreover, if z ≤ 0 it is `1(rRp ∩ (0z)0) = `1(rRp ∩ 0(0z)) = 0 .

Lemma 5.3.2 ([3, Lemma 4.2]) Let u1, u2 : (0,∞) × [0, 1] → (0,∞) and set Rr,p =

[0, u1(r, p)]× [0, u2(r, p)]. It holds that

∫
(0z)0

∫
(0z)0

δy−x(Rr,p) dx dy =


zu1(r, p)− u1(r,p)2

2 for |z| ≥ u1(r, p),

z2

2 for 0 < |z| < u1(r, p),

and

∫
0(0z)

∫
0(0z)

δy−x(Rr,p) dx dy =


zu2(r, p)− u2(r,p)2

2 for |z| ≥ u2(r, p),

z2

2 for 0 < |z| < u2(r, p).

Proof. Once again, we constrain ourselves to proving the first statement, since the other

works analogously. We first note that for any z ∈ R+ and x, y ∈ (0z)0

δy−x(Rr,p) = δ(y,0)(Rr,p + (x, 0)) = 1 if and only if y ∈ [x, x+ u1(r, p)].

We will first assume z ≥ 0 and z ≥ u1(r, p). We then have

∫
(0z)0

∫
(0z)0

δy−x(Rr,p) dy dx =

z∫
0

(x+u1(r,p))∧z∫
x

1 dy dx

=

z−u1(r,p)∫
0

x+u1(r,p)∫
x

1 dy dx+

z∫
z−u1(r,p)

z∫
x

1 dy dx

= u1(r, p)(z − u1(r, p)) +

z∫
z−u1(r,p)

(z − x) dx

= u1(r, p)(z − u1(r, p)) +
u1(r, p)2

2

= zu1(r, p)− u1(r, p)2

2
,

and for 0 ≤ z ≤ u1(r, p), we get

∫
0(0z)

∫
0(0z)

δy−x(Rr,p) dy dx =

z∫
0

z∫
x

1 dx dy =

z∫
0

(z − x) dx =
z2

2
.

Proofs for z ≤ 0 and for the second claim work analogously.
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Since stating the Mondrian pair- and cross-correlation functions involves taking derivatives

of analogs of Ripley’s K-function, we will provide a lemma about differentiation of integrals

needed in the following subsections.

Lemma 5.3.3 Let u1, u2 : R × [0, 1] 7→ R+ be two differentiable functions and Rr,p =

[0, u1(r, p)]× [0, u2(r, p)]. It then holds that

d

dr

[∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(Rr,p) dy dx
)
Ij
(
s2 exp(−sqz); t

)
dz

]

= 2u′1(r, p)

∞∫
u1(r,p)

(
z − u1(r, p))

)
Ij
(
s2 exp(−sqz); t

)
dz (5.24)

and

d

dr

[∫
R

( ∫
0(0z)

∫
0(0z)

δy−x(Rr,p) dy dx
)
Ij
(
s2 exp(−sqz); t

)
dz

]

= 2u′2(r, p)

∞∫
u2(r,p)

(
z − u2(r, p))

)
Ij
(
s2 exp(−sqz); t

)
dz . (5.25)

Before starting with the proof, we notice that given a differentiable function u : R×[0, 1]→ R+

and k ∈ N, it is

d

dr

[
u(r, p)k

u(r,p)∫
0

f(z) Ij
(
s2 exp(−sqz); t

)
dz

]

= k u(r, p)k−1 u′(r, p)

u(r,p)∫
0

f(z) Ij
(
s2 exp(−sqz); t

)
dz

+ u(r, p)k u′(r, p) f((u(r, p))) Ij
(
s2 exp(−squ(r, p)); t

)
(5.26)

and

d

dr

[
u(r, p)k

∞∫
u(r,p)

f(z) Ij
(
s2 exp(−sqz); t

)
dz

]

= k u(r, p)k−1 u′(r, p)

∞∫
u(r,p)

f(z) Ij
(
s2 exp(−sqz); t

)
dz
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− u(r, p)k u′(r, p) f((u(r, p))) Ij
(
s2 exp(−squ(r, p)); t

)
, (5.27)

where u′ denotes the partial derivative of u with respect to the r-coordinate. This is easily

given by the Leibniz product rule.

Proof of Lemma 5.3.3. We will provide proof for the second claim. First, by Lemma 5.3.2

we obtain

d

dr

[∫
R

( ∫
0(0z)

∫
0(0z)

δy−x(Rr,p) dy dx
)
Ij
(
s2 exp(−sqz); t

)
dz

]

=
d

dr

[ u2(r,p)∫
0

z2 Ij
(
s2 exp(−sqz); t

)
dz + 2

∞∫
u2(r,p)

(
zu2(r, p)− u2(r, p)2

2

)
Ij
(
s2 exp(−sqz); t

)
dz

]

=
d

dr

[ u2(r,p)∫
0

z2 Ij
(
s2 exp(−sqz); t

)
dz

+ 2u2(r, p)

∞∫
u2(r,p)

z Ij
(
s2 exp(−sqz); t

)
dz

− u2(r, p)2

∞∫
u2(r,p)

Ij
(
s2 exp(−sqz); t

)
dz

]

For the first summand, we use (5.26) with k = 0 and f(z) = z2 and obtain

d

dr

[ u2(r,p)∫
0

z2 Ij
(
s2 exp(−sqz); t

)
dz

]
= u2(r, p)2 u′2(r, p) Ij

(
s2 exp(−squ2(r, p)); t

)
.

For the second summand, we use (5.27) with k = 1 and f(z) = z to obtain

d

dr

[
2u2(r, p)

∞∫
u2(r,p)

z Ij
(
s2 exp(−sqz); t

)
dz

]

= 2u′2(r, p)

∞∫
u2(r,p)

z Ij
(
s2 exp(−sqz); t

)
dz − 2u2(r, p)2u′2(r, p) Ij

(
s2 exp(−squ2(r, p)); t

)
.
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Lastly, the third summand simplifies by (5.27) with k = 2 and f(z) = 1 to

d

dr

[
u2(r, p)2

∞∫
u2(r,p)

Ij
(
s2 exp(−sqz); t

) ]

=2u2(r, p)u′2(r, p)

∞∫
u2(r,p)

Ij
(
s2 exp(−s(1− p)z); t

)
dz

+ u2(r, p)2u′2(r, p) Ij
(
s2 exp(−squ2(r, p)); t

)
.

Putting these terms back together finishes the proof for the second claim.

Since the integrals Ij
(
s2 exp(−sqz); t

)
for j ∈ {1, 2, 3} will appear several times in the fol-

lowing calculations for the Mondrian correlations, we will provide explicit formulas for the

most relevant terms without proofs.

Lemma 5.3.4 ([3, Lemma 4.3]) Let q ∈ [0, 1], t ∈ [0,∞), s ∈ [0, t], j ∈ {1, 2, 3} and Ij as

defined in (5.20) and (5.21). Then it holds that

Ij(s2 exp(−sq); t)

= q−(j+2)

( j−1∑
r=0

[
(−1)r+j+1(qt)r

(j + 1− r)!
(j − 1− r)! r!

]
− exp(−qt)

(
qt(qt+ 2j) +

(j + 1)!

(j − 1)!

))

and, for y ≥ 0,

∞∫
y

z Ij(s2 exp(−sqz); t) dz

= y−jq−(2+j)

(
(−1)j+1

j−1∑
r=0

(−1)r
1 + j − r

r!
(yqt)r + (−1)j exp(−yqt)

(
(1 + j) + yqt

))
.

5.3.2 Edge pair-correlations for Mondrian tessellations

This section now takes the relevant statements from before and will prove the edge pair-

correlation for Mondrian tessellations.

Proof of Theorem 5.1.5. As a first step, we adapt calculations from [28, Section 3.3] and

martingale arguments given in [28, Equation (3)] to our setting. By Equation (5.2), one can
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conclude that

∫
(R2)2

(f ⊗ g)(x) Cov(Et)(dx) =

t∫
0

EAJfJg(Y (s))ds ,

which can be simplified, using [28, Equation (24)] with driving measure Λp, to

=
1

2

∫
S(R2)

Jf (e)Jg(e)

t∫
0

s2 exp(−sΛp([e]))ds� (Λp × Λp) ∩ Λp � (de).

By shortening the notation of the second integral by (5.20), and by applying the segment

intersection measure as in Equation (5.9) and the explicit edge functional for Jf , yields

Cov(Et)(· × ·)

=
1

2

∫
S(R2)

`1(· ∩ e)⊗ `1(· ∩ e)(· × ·) I1(s2 exp(−sΛp([e])); t)× � (Λp × Λp) ∩ Λp � (de)

=
1

2

∫
[R2]

∫
[L]

∫
[L]

`1(· ∩ L(L1, L2))⊗ `1(· ∩ L(L1, L2))(· × ·) I1(s2 exp(−sΛp([L(L1, L2)])); t)

× Λp(dL1) Λp(dL2)Λp(dL)

=
1

2
p(1− p)2

∫
R

∫
R

∫
R

`1(· ∩ (τϑ)σ)⊗ `1(· ∩ (τϑ)σ) (· × ·)

I1(s2 exp(−s(1− p)|τ − ϑ|); t) dτ dϑ dσ

+
1

2
p2(1− p)

∫
R

∫
R

∫
R

`1(· ∩ σ(τϑ))⊗ `1(· ∩ σ(τϑ)) (· × ·)

I1(s2 exp(−sp|τ − ϑ|); t) dτ dϑ dσ. (5.28)

As for the second step of this proof, we prepare Equation (5.28) such that the reduced

covariance measure can be deduced by (5.15). For this, we use Lemma 5.3.1 and obtain

1

2
p(1− p)2

∫
R

∫
R

∫
R

`1(A ∩ (τϑ)σ) `1(B ∩ (τϑ)σ) I1(s2 exp(−s(1− p)|τ − ϑ|); t) dτ dϑ dσ

+
1

2
p2(1− p)

∫
R

∫
R

∫
R

`1(A ∩ σ(τϑ))⊗ `1(B ∩ σ(τϑ))I1(s2 exp(−sp|τ − ϑ|); t) dτ dϑ dσ

=
1

2
p(1− p)2

∫
R2

δw(A)

∫
R

∫
(0z)0

∫
(0z)0

δy−x(B − w) dx dy I1(s2 exp(−s(1− p)|z|); t) dz dw
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+
1

2
p2(1− p)

∫
R2

δw(A)

∫
R

∫
0(0z)

∫
0(0z)

δy−x(B − w) dx dy I1(s2 exp(−sp|z|); t) dz dw. (5.29)

Finally able to deduce the reduced covariance measure in a third step by Equation (5.15), we

conclude

Ĉov(Et)( · ) =
1

2
p(1− p)2

∫
R

∫
(0z)0

∫
(0z)0

δy−x(·) dx dy I1(s2 exp(−s(1− p)|z|); t) dz

+
1

2
p2(1− p)

∫
R

∫
0(0z)

∫
0(0z)

δy−x(·) dx dy I1(s2 exp(−sp|z|); t) dz .

As fourth step of the proof, we use the coherence between the reduced covariance measure

and the second moment measure K̂(Et) given in [9, Equation (8.1.6)]. We can conclude that

K̂(Et)(·) = Ĉov(Et)( · ) + t2`2(·) .

In a more general sense, the factor t2 represents the square of the intensity of Et, which

is simply equal to t, as stated in [28, Equation (8)]. Using λE = t again, one can define

the modified Ripley’s K-function, which in our setting is applied to Rrp. Thus, we get the

Mondrian analogue as

KE(r) :=
1

t2
K̂(Et)(Rr,p),

where Rr,p = [0, r(1 − p)] × [0, rp]. By these two coherences and the reduced covariance

measure, we can finally conclude the Mondrian analogue of the K-function as

KE(r) = r2p(1− p) +
p(1− p)2

2t2

∫
R

∫
(0z)0

∫
(0z)0

δy−x(Rr,p) dx dy I1(s2 exp(−s(1− p)|z|); t) dz

+
p2(1− p)

2t2

∫
R

∫
0(0z)

∫
0(0z)

δy−x(Rr,p) dx dy I1(s2 exp(−sp|z|); t) dz .

As the fifth step, we use Lemma 5.3.3 which gives

d

dr
KE(r) = 2rp(1− p) +

p(1− p)3

t2

∞∫
(1−p)r

(z − (1− p)r) I1(s2 exp(−s(1− p)z); t) dz

+
p3(1− p)

t2

∞∫
rp

(z − rp) I1(s2 exp(−spz); t) dz.

Finally, as the last step, the normalization of KE(r) as described in (5.4) along with the
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explicit calculations for the integrals in Lemma 5.3.4, results in the pair-correlation function

stated in Theorem 5.1.5.

5.3.3 Edge-vertex cross-correlations for Mondrian tessellations

In this section, we collect all relevant results from previous sections and follow the same five

steps to prove the Mondrian cross-correlation of the vertex process Vt and the random edge

length measure Et.

Proof of Theorem 5.1.6. As first step, we use the explicit formula for the cross-covariance

measure from [28, Theorem 3] for general locally finite driving measures Λ together with

some modification to match our settings. For this, we use the segments intersection measure

given in (5.9) as well as concrete description of a line segments. This yields

Cov(Vt, Et)(· × ·)

=

∫
[W ]

∫
[L∩W ]

∫
[L∩W ]

[
1

2
∆L(L1,L2) ⊗ `1(· ∩ L(L1, L2)) (· × ·) I1

(
s2 exp(−sΛp([L(L1, L2)]); t

)

+ Λp
(
[· ∩ L(L1, L2)]

)
⊗ `1(· ∩ L(L1, L2)) (· × ·) I2

(
s2 exp(−sΛp([L(L1, L2)])); t

)]

× Λp(dL1) Λp(dL2) Λp(dL). (5.30)

With the specific measure Λp(·) for Mondrian tessellations given in (5.3), and Equations (5.13),

(5.18) and (5.19), we obtain

Cov(Vt, Et)(· × ·)

= p(1− p)2

∫
R

∫
R

∫
R

[1

2

(
δ(τ,σ) + δ(ϑ,σ)

)
⊗ `1(· ∩ (τϑ)σ) (· × ·) I1

(
s2 exp(−s(1− p)|τ − ϑ|); t

)
+ (1− p)

(
`1(· ∩ (τϑ)σ)⊗ `1(· ∩ (τϑ)σ)

)
(· × ·) I2

(
s2 exp(−s(1− p)|τ − ϑ|); t

)]
dτ dϑ dσ

+ p2(1− p)
∫
R

∫
R

∫
R

[1

2

(
δ(σ,τ) + δ(σ,ϑ)

)
⊗ `1(· ∩ σ(τϑ)) (· × ·) I1

(
s2 exp(−sp|τ − ϑ|); t

)
+ p
(
`1(· ∩ σ(τϑ))⊗ `1(· ∩ σ(τϑ))

)
(· × ·) I2

(
s2 exp(−sp|τ − ϑ|); t

)]
dτ dϑ dσ . (5.31)

For the second step, we apply Lemma 5.3.1(i) to the first summand of each integral and use
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Lemma 5.3.1(ii) to simplify the second summands. For A,B ∈ B(R2), we obtain

p(1− p)2

2

∫
R

∫
R

∫
R

(
δ(τ,σ) + δ(ϑ,σ)

)
⊗ `1(· ∩ (τϑ)σ)(A×B)

I1
(
s2 exp(−s(1− p)|τ − ϑ|); t

)
dτ dϑ dσ

= p(1− p)2

∫
R2

δw(A)

∫
R

`1(B − w ∩ (0z)0)I1
(
s2 exp(−s(1− p)|z|); t

)
dz dw (5.32)

for the first term and

p(1− p)3

∫
R

∫
R

∫
R

(
`1(· ∩ (τϑ)σ)⊗ `1(· ∩ (τϑ)σ)

)
(A×B)

I2
(
s2 exp(−s(1− p)|τ − ϑ|); t

)]
dτ dϑ dσ

= p(1− p)3

∫
R2

δw(A)

∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(B − w) dx dy
)

I2
(
s2 exp(−s(1− p)|z|); t

)
dz dw (5.33)

for the second term of the first integral. The second term can be simplified similarly.

As a third step, we can proceed with the diagonal-shift argument as described in (5.15), as

we have done previously. We can deduce the reduced covariance measure as follows:

ĈovV,E( · )

= p(1− p)

(
(1− p)

∫
R

`1(· ∩ (0z)0) I1
(
s2 exp(−s(1− p)|z|; t

)
dz

+ p

∫
R

`1(· ∩ 0(0z)) I1
(
s2 exp(−sp|z|; t

)
dz

+ (1− p)2

∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(·) dx dy
)
I2
(
s2 exp(−s(1− p)|z|); t

)
dz

+ p2

∫
R

( ∫
0(0z)

∫
0(0z)

δy−x(·) dx dy
)
I2
(
s2 exp(−sp|z|); t

)
dz

)
. (5.34)

Let λV and λE denote the intensities for the vertex and edge process, respectively. We can

81



5.3. PAIR- AND CROSS-CORRELATIONS

deduce the reduced second moment measure as

K̂V,E( · ) = ĈovV,E( · ) + λVλE`2(·) .

The Mondrian cross K-function of Vt and Et is then defined as

KV,E(r) =
1

λVλE
K̂V,E(Rr,p) =

1

λVλE
ĈovV,E(Rr,p ) + `2(Rr,p) . (5.35)

The intensities are known as λV = t2p(1−p) and λE = t. For the reduced covariance measure

given by Equation (5.34), we simplify notation by using T1(r), T2(r), T3(r) and T4(r) for the

first, second, third and fourth summand, respectively. This yields

KV,E(Rr,p) = r2p(1− p) +
1

t3

[
(1− p)T1(r) + p T2(r) + (1− p)2 T3(r) + p2 T4(r)

]
. (5.36)

As a final step, we can obtain the cross-correlation function gV,E(r) by taking the derivative

and applying suitable normalization. With Equations (5.22) and (5.23), we can simplify T1(r)

and T2(r), before using (5.26), (5.27) to conclude that

dT1(r)

dr
=

d

dr

[ r(1−p)∫
0

z I1
(
s2 exp(−s(1− p)z); t

)
dz

+ r(1− p)
∞∫

r(1−p)

I1
(
s2 exp(−s(1− p)z); t

)
dz

]

= r(1− p)2I1
(
s2 exp(−s(1− p)2r); t

)
+ (1− p)

∞∫
r(1−p)

I1
(
s2 exp(−s(1− p)z); t

)
dz

− r(1− p)2I1
(
s2 exp(−s(1− p)2r; t

)
= (1− p)

∞∫
r(1−p)

I1
(
s2 exp(−s(1− p)z); t

)
dz

and

dT2(r)

dr
=

d

dr

[ rp∫
0

z I1
(
s2 exp(−spz); t

)
dz + rp

∞∫
rp

I1
(
s2 exp(−spz); t

)
dz

]

= p

∞∫
rp

I1
(
s2 exp(−spz); t

)
dz.
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For the third and fourth term, we use Lemma 5.3.3 to see that

dT3(r)

dr
=

d

dr

[∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(Rr,p) dx dy
)
I2
(
s2 exp(−s(1− p)|z|); t

)
dz

]

= 2(1− p)
∞∫

r(1−p)

(
z − r(1− p)

)
I2
(
s2 exp(−s(1− p)z); t

)
dz

and

dT4(r)

dr
=

d

dr

[∫
R

( ∫
0(0z)

∫
0(0z)

δy−x(Rr,p) dx dy
)
I2
(
s2 exp(−sp|z|); t

)
dz

]

= 2p

∞∫
rp

(
z − rp

)
I2
(
s2 exp(−spz); t

)
dz.

By the explicit formula of the integrals given in Lemma 5.3.4, we obtain

dT1(r)

dr
= I1(1− p) , dT2(r)

dr
= I1(p) ,

dT3(r)

dr
= I2(1− p) , dT4(r)

dr
= I2(p)

with

I1(q) =
1− exp(−trq2)(1 + trq2)

r2q5

and

I2(q) =
2trq2 − 3 + exp(−trp2)(3 + trq2)

r2q6
− trq2 − 2 + exp(−trq2)(2 + trq2)

r3q7
.

Putting these expressions back together in (5.36) and finally normalizing by multiplication

with 1
2rp(1−p) , one obtains the cross-correlation function gV,E(r).

5.3.4 Vertex pair-correlations for Mondrian tessellations

This sections aim is proving the Mondrian vertex pair-correlation as stated in Theorem 5.1.7.

As in the previous section, we use the general result stated in [28, Theorem 2] and specialize

this results to Mondrians. To finally obtain the pair-correlation function, we once more follow

the same five steps.

Proof. As a first step, we use the explicit formula for the covariance measure given in [28,
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Theorem 2] with Λp as driving measure. This yields to

Cov(Vt)(· × ·)

=

∫
S(R2)

1

2
(∆e ⊗∆e)(· × ·) I1(s2 exp(−sΛp([e])); t)� (Λp × Λp) ∩ Λp � (de)

+

∫
S(R2)

(∆e ⊗ Λp([· ∩ e]) + Λp([· ∩ e])⊗∆e)(· × ·)

I2(s2 exp(−sΛp([e])); t)� (Λp × Λp) ∩ Λp � (de)

+ 4

∫
S(R2)

(Λp([· ∩ e])⊗ Λp([· ∩ e]))(· × ·)

I3(s2 exp(−sΛp([e])); t)� (Λp × Λp) ∩ Λp � (de). (5.37)

We will investigate each summand separately and will give the explicit formulas for each

step of the proof for the first summand. The Mondrian specific expressions of the segment

intersection measure (5.9) and for line segments e together with (5.18) yields∫
S(R2)

1

2
(∆e ⊗∆e)(· × ·) I1(s2 exp(−sΛp([e])); t)� (Λp × Λp) ∩ Λp � (de)

=

∫
[R2]

∫
[L]

∫
[L]

1

2
(∆L(L1,L2) ⊗∆L(L1,L2))(· × ·)

I1(s2 exp(−sΛp([L(L1, L2)])); t) Λp(dL1) Λp(dL2) Λp(dL)

= p(1− p)2

∫
R

∫
R

∫
R

1

2

(
(δ(τ,σ) + δ(ϑ,σ))⊗ (δ(τ,σ) + δ(ϑ,σ))

)
(· × ·)

I1(s2 exp(−s(1− p)|τ − ϑ|); t) dϑ dτ dσ

+ (1− p)p2

∫
R

∫
R

∫
R

1

2

(
(δ(σ,τ) + δ(σ,ϑ))⊗ (δ(σ,τ) + δ(σ,ϑ))

)
(· × ·)

I1(s2 exp(−sp|τ − ϑ|); t) dϑ dτ dσ. (5.38)

As a second step, we prepare for the diagonal shift argument to obtain the reduced cov-

ariance measure by (5.15) again. For this, let A × B be a measurable product. The first

summand of Equation (5.38) simplifies to four products which are investigated separately.

By Lemma 5.3.1(iii), we obtain∫
R

∫
R

∫
R

δ(τ,σ)(A)δ(τ,σ)(B) I1
(
s2 exp(−s(1− p)|τ − ϑ|); t

)
dϑ dτ dσ
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=

∫
R

∫
R

∫
R

δ(ϑ,σ)(A)δ(ϑ,σ)(B) I1
(
s2 exp(−s(1− p)|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

δ0(B − w)I1
(
s2 exp(−s(1− p)|z|); t

)
dz dw

and ∫
R

∫
R

∫
R

δ(τ,σ)(A)δ(ϑ,σ)(B) I1
(
s2 exp(−s(1− p)|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R

∫
R

∫
R

δ(ϑ,σ)(A)δ(τ,σ)(B) I1
(
s2 exp(−s(1− p)|τ − ϑ|); t

)
dϑ dτ dσ

=

∫
R2

δw(A)

∫
R

δ(z,0)(B − w) I1
(
s2 exp(−s(1− p)|z|); t

)
dz dw .

The second summand in (5.37) can be simplified in the same way.

As third step, we use the diagonal shift argument from (5.15) again and obtain the reduced

covariance measure of the vertex process as

Ĉov(Vt)( · ) = p(1− p)

[
(1− p)

(∫
R

δ0(·)I1
(
s2 exp(−s(1− p)|z|); t

)
dz

+

∫
R

δ(z,0)(·) I1
(
s2 exp(−s(1− p)|z|); t

)
dz

)

+ p

(∫
R

δ0(·)I1
(
s2 exp(−sp|z|); t

)
dz +

∫
R

δ(0,z)(·) I1
(
s2 exp(−sp|z|); t

)
dz

)

+ 4

(
(1− p)2

∫
R

`1(· ∩ (0z)0) I2
(
s2 exp(−s(1− p)|z|); t

)
dz

+ p2

∫
R

`1(· ∩ 0(0z)) I2
(
s2 exp(−sp|z|); t

)
dz

+ (1− p)3

∫
R

( ∫
(0z)0

∫
(0z)0

δy−x(·) dx dy
)
I3
(
s2 exp(−s(1− p)|z|); t

)
dz

+ p3

∫
R

( ∫
0(0z)

∫
0(0z)

δy−x(·) dx dy
)
I3
(
s2 exp(−sp|z|); t

)
dz

)]
.

As the fourth step, we use the intensity ΛV = t2p(1 − p) and the coherences of the reduced
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covariance measure and Ripley’s K-function to conclude

KV(r) =
1

λ2
V
K̂(Vt)(Rr,p) =

1

(t2p(1− p))2
Ĉov(Vt)(Rr,p) + `2(Rr,p). (5.39)

Simplifiying notation, we write S1(r) for the first two integral expressions, S2(r) for the

third and fourth integral, and Si(r) with 3 ≤ i ≤ 6 for the last four integral expressions,

respectively. We obtain

K(Vt)(Rr,p) =

r2p(1− p) +
1

t2(1− p)

[
(1− p)S1(r) + pS2(r)

+ 4
(

(1− p)2S3(r) + p2S4(r) + (1− p)3S5(r) + p3S6(r)
)]
.

As a final step, we take the derivative of each summand separately before applying suitable

normalization. For S1(r), we use Equation (5.26) after some simplification and obtain

dS1(r)

dr
=

d

dr

[ ∫
R

δ0(Rr,p)I1
(
s2 exp(−s(1− p)|z|); t

)
dz

+

∫
R

δ(z,0)(Rr,p) I1
(
s2 exp(−s(1− p)|z|); t

)
dz

]

=
d

dr

[
2

∞∫
0

I1
(
s2 exp(−s(1− p)z); t

)
dz +

(1−p)r∫
0

I1
(
s2 exp(−s(1− p)z); t

)
dz

]

= (1− p) I1
(
s2 exp(−s(1− p)2r); t

)
.

Likewise, S2(r) yields

dS2(r)

dr
=

d

dr

[ ∫
R

δ0(Rr,p)I1
(
s2 exp(−sp|z|); t

)
dz +

∫
R

δ(0,z)(Rr,p) I1
(
s2 exp(−sp|z|); t

)
dz

]
= p I1

(
s2 exp(−sp2r); t

)
.

We obtain the derivatives of S3(r) and S4(r) in a similar way to those of T1(r) and T2(r).

The derivatives of S5(r) and S6(r) follow similar considerations to those of T3(r) and T4(r).

Putting all derivatives back together and using concrete values for the integrals according to

Lemma 5.3.4, we obtain the pair-correlation function as stated in Theorem 5.1.7.
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Chapter 6

Probabilistic analysis of line

segments

Different kinds of line segments appear in STIT tessellations. These are investigated under

various aspects in several publications (see for example [8, 17, 34]). Topics of research often

involves the distributions of their length, birth time or the number of internal vertices. We

first describe the set-up and necessary notations, as well as known results including probability

density functions for the length, birth time and number of internal vertices in Section 6.1.

From these, we derive some refined results. In Section 6.2, we first give the probability

density functions and expected values of these properties conditioned on the birth time of

an I-segment. Another refinement concerns differently weighted I-segments and their density

functions. In Section 6.3, we use some of these results to refine geometrical and metrical

properties proven by Cowan [8] in a set-up without birth time dependencies.

6.1 Set-up

In this section, we introduce additional terms and notations necessary for this chapter and

recall relevant results. The main focus for the third part of this thesis are different kinds of

line segments within planar STIT tessellations, namely I-, J- and K-segments. A line segment

between two vertices but without any internal vertices is called a K-segment or an edge. Line

segments of a planar STIT tessellation which are sides of a cell are referred to as J-segments

or sides. Lastly, an I-segment is the union of collinear edges which can not be lengthened by

another edge. Therefore, they are also referred to as maximal edges.

For X ∈ {I, J,K}, we define X to be the set of all segments of type X and γX as the intensity

of segments of type X. For a given segment x, we denote its center by m(x) and we write X
for the typical X-segment. For non-negative functions f on X, the following identity may be
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6.1. SET-UP

I-segment

side side

edgeedgeedge &
side

edge &
side

side

Figure 6.1: Snippet of a planar STIT tessellation with line segments labeled
according their types.

used to define the typical X-segment :

Ef(X ) =
1

γX
E

∑
x∈X

m(x)∈[0,1]2

f (x−m(x)) .

Intuitively, X is the line segment which is randomly chosen among all X-segments with

their center in a bounded window. One might add a translation invariant weight function

w : X → R+ to influence the probability with which an segments is chosen. A typical

w-weighted X-segment is then defined by

Ef(Xw) =
1

E
∑
x∈X

m(x)∈[0,1]2

w(x)

∑
x∈X

m(x)∈[0,1]2

f (x−m(x)) w(x) ,

where Xw denotes the typical X-segments weighted with w. In what follows, we are interested

in properties of typical I-segments. More precisely, we consider their length, birth time or

number of internal vertices. Also, we use five different weight functions w ∈ {`, β, ξ, ξ+1, ξ+2},
which, defined on I, refer to the length, birth time, number of internal vertices, number of

internal edges and number of internal sides, respectively. The latter two notations suggest

a description for the number of internal edges and sides in terms of the number of internal

vertices, i.e., the number of internal edges (sides) in an I-segment is given by its number of

internal vertices plus one (two).

One main groundwork for the following results is the property of STIT tessellations inducing

a stationary Poisson point process on a line g intersecting the skeleton of Y (t) (see Sec-

tion 4.3). One may think about g as a line, which covers an I-Segment of the tessellation.

This Poisson point process may be considered as a superimposition of two marked Poisson

processes. Two properties of these are of importance for the last section. First, consider the

I-segment as a horizontal line. The probability for edges pointing upward or downward from

the intersection points is 1
2 . Second, the points are distributed uniformly at random within

a given interval. Based on these properties, Cowan deduced geometrical results concerning

different line segments in [8], and since these are not dependent on the birth time of an
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I-segment, we can adopt them to our analysis in Section 6.3.1.

6.2 Refined analysis of I-segments

Within planar STIT tessellations, I-segments are one of the most studied line segments when

it comes to properties like distribution function of their length, birth time or number of

internal vertices (see for example [20, 34]). The joint probability density function of these is

given by

h`(I),β(I),ξ(I)(x, s,m) =
4s2

πt2
( 4
πx(t− s))m

m!
e−

2
π
x(2t−s) (6.1)

in [20, Equation (5.13)]. Integration and summation will lead to the probability density

functions of a single mark. These and their expected values are:

h`(I)(x) =
1

t2x3

(
π2 − (π2 + 2πtx+ 2t2x2) · e−

2
π
tx
)
, E[`(I)] =

π

t
,

hβ(I)(s) =
2s

t2
, E[β(I)] =

2t

3
,

pm = hξ(I)(m) = 2m+1

1∫
0

(1− a)2am

(1 + a)m+1
da, E[ξ(I)] = 2.

One may deduce other joint and conditional density functions from these results. Relevant

density functions and expected values for this chapter are collected in the following corollary.

Corollary 6.2.1 For the length `(I), birth time β(I) and number of internal vertices ξ(I) for

typical I-segments, some selected joint and conditional density functions are given as follows:

pm|s = hξ(I)|β(I)=s(m) = s(2(t−s))m
(2t−s)m+1 E[ξ(I) | β(I) = s] = 2

(
t
s − 1

)
h`(I)|β(I)=s,ξ(I)=m(x) = xm(2(2t−s))m+1

πm+1m!
e−

2
π
x(2t−s) E[`(I) | β(I) = s, ξ(I) = m] = (m+1)π

2(2t−s)

h`(I)|β(I)=s(x) = 2
πse
− 2
π
sx E[`(I) | β(I) = s] = π

2s

The proof of this corollary simply uses integration of (6.1) and division of the probability

density functions of a single mark.

Another refinement of I-segments may concern distributions for weighted versions of these

segments.

Proposition 6.2.2 For a given weight function w ∈ {`, β, ξ, ξ+1, ξ+2} defined on I, the joint

probability density function of the length, birth time and number of internal vertices of a
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w-weighted I-segment is given by

h(`w(I),βw(I),ξw(I)(x, s,m) =
1

Ew(I)
· w(I) · h`(I),β(I),ξ(I)(x, s,m) .

Proof. We start with the probability

P(`(Iw) ≤ x, β(Iw) ≤ s, ξ(Iw) = m) = E[1(`(Iw) ≤ x, β(Iw) ≤ s, ξ(Iw) = m)]

=
1

Ew(I)
E[w(I) 1(`(Iw) ≤ x, β(Iw) ≤ s, ξ(Iw) = m)]

=
1

Ew(I)

s∫
0

x∫
0

w(I)h`(I),β(I),ξ(I)(a, b,m) da db

and obtain the density function by taking the derivative with respect to s and x, what

concludes the proof.

In particular, we will attach weights which we can describe with the number of internal

vertices. These are

ξ(I) = m, ξ+1(I) = m+ 1 , ξ+2(I) = m+ 2,

for the number of internal vertices, number of internal edges and number of internal sides,

respectively.

Lemma 6.2.3 Let ξ(I), ξ+2(I) and ξ+1(I) be the weight functions defined as before. The

probability density functions for the birth time distribution of typical I-segments according

their weight are given by

hβ(Iξ)(s) =
2

t

(
1− s

t

)
, hβ(Iξ+1 )(s) =

2

3t

(
2− s

t

)
, hβ(Iξ+2 )(s) =

1

t
.

Proof. We use Proposition 6.2.2 to deduce a joint probability density function followed by

integration and summation to obtain the stated marginal distributions. For (d,w) = (0, ξ)

(respectively (1, ξ+1), and (2, ξ+2)), we have

hβ(Iw)(s) =

∞∫
0

∞∑
m=0

1

d+ 2
· (m+ d) · h`(I),β(I),ξ(I)(x, s,m)dx .

For example, for (d,w) = (0, ξ) we have

hβ(Iξ)(s) =

∞∫
0

∞∑
m=0

1

2
·m · h`(I),β(I),ξ(I)(x, s,m)dx
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=
4s2

2πt2

∞∫
0

e−
2
π
x(2t−s)

∞∑
m=0

( 4
πx(t− s))m

(m− 1)!
dx .

Using the power series of the real exponential function leads to

hβ(Iξ)(s) =
8s2(t− s)
π2t2

∞∫
0

xe−
2
π
xsds =

2

t

(
1− s

t

)
,

where the last step uses integration by parts.

6.3 Geometrical and metrical properties of line segments

In this section, we refine several results of Cowan [8]. Specifically, Cowan studied the prob-

ability of specific geometrical and metrical properties of line segments. Here, we refine his

calculations by conditioning on the birth time of (covering) I-segments. In the first part, we

focus on geometrical properties of side, whereas the second deals with the length distribution

of different line segments.

6.3.1 Geometrical properties of sides

We write P for a geometrical property, e.g. the position of a side on its covering I-segment,

and define ρ as the probability that a side satisfies this property. The probability may be

obtained by counting these sides in two different ways. First, one can consider the intensity

of all sides within a tessellation and multiply with the probability for a side satisfying P.

This is ρ · γJ with γJ being the intensity of sides. Second one may also multiply the intensity

of I-segments with the expected number of sides fulfilling P on a typical I-segment. For the

latter, we write En(P). Putting these together, one obtain

ργJ = γIEn(P)

⇒ ρ =
γI
γJ

En(P) =
1

4

∞∑
m=0

hξ(I)(m)E[n(P) | m] .

One may use similar considerations to ask for those probabilities under the condition that

I-segments are chosen according to their birth time s. For this, we use the density function

and side intensity conditioned on the birth time s, which yields the weighted probability

ρs =
s

2t

∞∑
m=0

hξ(I)|β(I)=s(m)E[n(P) | m] . (6.2)
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Figure 6.2: An I-segment with inner vertices all pointing in the same dir-
ections (left) or pointing in different directions (right) with sides adjacent to

exactly one terminus highlighted in red.

Given this identity, we can investigate the first geometrical questions in [8] adapted to our

setting of I-segments with birth time dependency.

Problem 1: Position of the typical side in the covering I-Segment

We can distinguish sides of a STIT tessellation by their position on the covering I-segment.

For this problem we write ρa,s for the probability that the typical side, lying on an I-segment

with birth time s is adjacent to a termini.

a) A typical side is adjacent to both termini

This property emerges whenever all internal vertices within an I-segment are pointing in the

same direction. As the probabilities for pointing up- or downwards are both 1
2 , the probability

for m internal vertices pointing the same direction is 2·
(

1
2

)m
. Thus, the probability of a typical

side being adjacent to both termini is

ρ2,s =
s

2t
·
∞∑
m=0

s · (2(t− s))m

(2t− s)m+1
·
(1

2

)m−1
=
s2

t2
.

b) A typical side is adjacent to exactly one terminus

We consider two different cases here. First, suppose all inner vertices are either pointing

upwards or downwards. In this setting, there are exactly two sides with this property, one at

each terminus (see Figure 6.2, left). The probability for this is given by 1
2 as in a). For the

second case, both directions of pointing occur. Thus, there are four sides with this property,

two at each end of the I-segment (see Figure 6.2, right). We obtain

ρ1,s =
s

2t
·
∞∑
m=1

s · (2(t− s))m

(2t− s)m+1
·
[
2 ·
(1

2

)m−1
+ 4 ·

(
1−

(1

2

)m−1)]
=

2s(t− s)
t2

.

c) A typical side is adjacent to none terminus

For this, we simply use complementary probability. We obtain

ρ0,s = 1−
(s2

t2

)
−
(2s(t− s)

t2

)
=

(t− s)2

t2
.

The birth time dependency of these probabilities is shown in Figure 6.3. Former results by

Cowan in [8] state that the probabilities, if I-segments are not conditioned on their birth
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time, equal 1
3 for all cases.

ρ0,s

ρ1,s

ρ2,s

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 6.3: Let t = 1. The probability ρa,s with a ∈ {0, 1, 2}.

Remark 6.3.1 One may recover results by Cowan in [8] by multiplying the probabilities

above with the density function of the birth time distribution of I-segments conditioned on

the number of sides and integrating over s. More formally, for ρ2,s we have

t∫
0

s2

t2
· 1

t
ds =

1

t3

t∫
0

s2 =
1

3
.

Problem 2: Number of internal vertices of a typical side

In this problem, we focus on the number of internal vertices within the interior of a typical

side, which is covered by an I-segment with birth time s. In other words, this problem is

about the number of consecutive vertices pointing in the same direction. We again use results

from Cowan in [8] for the expected value, since these are not dependent on s. He concludes

that for a internal vertices,

En(Pa | m) =


0 for m < a ,(

1
2

)a−1
for m = a ,

(m− a+ 3)
(

1
2

)(a+1)
for m > a .

Again using Equation (6.2), we get

ρa,s =
s

2t
·
[s · (2(t− s))a

(2t− s)a+1
·
(

1

2

)a−1

+

∞∑
m=a+1

s · (2(t− s))m

(2t− s)m+1
· (m− a+ 3)

(
1

2

)(a+1) ]
=

t · (t− s)a

(2t− s)a+1
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where ρa,s describes the probability of a typical side, lying on an I-segment with birth time

s, contains a internal vertices. The expected number of internal vertices dependent on the

birth time is 1− s
t . Fixing the number of internal vertices, Figure 6.4 shows the change of its

probability dependent on s. Naturally, sides on I-segments born early tend to have a higher

number of internal vertices than those appearing later.

ρ0,s

0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

ρ1,s ρ2,s ρ3,s

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

Figure 6.4: Let t = 1. The probability ρa,s with a = 0 (left) and a ∈ {1, 2, 3}
(right).

Problem 3: Number of sides adjacent to a typical side

We say two sides J, J ′ are adjacent if J ⊆ J ′ or J ′ ⊆ J . The calculation for the expected

value in this situation is quite complicated, but as they are independent of s, we refer to [8]

for more details. We write ρa,s for the probability that a typical side, lying on an I-segment

with birth time s, is adjacent to a sides. These are

ρ1,s =
s

2t
·
∞∑
m=3

s · (2(t− s))m

(2t− s)m+1
· m− 2

4
=

(t− s)3

t(2t− s)2
,

ρ2,s =
s

2t
·

[
2 · hξ(I)|β(I)=s(0) + 2 · hξ(I)|β(I)=s(1)

+
7

2
· hξ(I)|β(I)=s(2) +

∞∑
m=3

hξ(I)|β(I)=s(m) ·
(

4 +
5

8
(m− 2)

)]

=
5t4 − 4st3 − 3s2t2 + 4s3t− s4

t(2t− s)3
,

and for a ≥ 3

ρa,s =
s

2t
·

[(
1

2

)a−3

hξ(I)|β(I)=s(a− 2) +

(
1

2

)a−2

hξ(I)|β(I)=s(a) +
7

2
hξ(I)|β(I)=s(2)
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+

∞∑
m=3

(
4 +

5

8
(m− 2)

)
· hξ(I)|β(I)=s(m)

]

=
t3 · (t− s)a−2

(2t− s)a+1
.

Given these probabilities, we can again recover known results for non-weighted I-segments

in Cowan [8] in the same manner as explained in Remark 6.3.1. The expected value for the

number of internal vertices is 2 + s
(

1
t −

1
2t−s

)
. The probabilities for some concrete number

of internal vertices are shown in Figure 6.5.

ρ2,s

0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1.0

ρ1,s ρ3,s ρ4,s

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

Figure 6.5: Let t = 1. The probability ρa,s with a = 2 (left) and a ∈ {1, 3, 4}
(right).

6.3.2 Metric properties

Similar to the section before, metric properties of (typical) line segments have been studied

by Cowan in [8]. Here, we specialize to (covering) I-segments of a given birth time. For this,

we use the conditional density function for the length distribution of I-segments given its

number of internal vertices and birth time. This function was given in Corollary 6.2.1 as

h`(I)|β(I)=s,ξ(I)=m(x) =
xm(2(2t− s))m+1

πm+1m!
· e−

2
π
x(2t−s).

The length distribution of a segment within a STIT tessellation does not only depend on its

type but also on the way sampling these segments. To clarify and distinguish between two

ways of sampling, in what follows we write `XY for the length distribution of line segments of

type Y when sampling according to segments of type X.

Length of a random edge on a typical I-segment sampled according its birth time s

In this first setting, we pick a typical I-segment with a given birth time s and ask about

the length distribution of a randomly chosen edge on this I-segment. For this, we use [8,

Corollary 3] which states that the probability density function of the length x of a random
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edge lying on a typical I-segment with length y and m internal vertices. This is

h`(K)|`(I)=y,ξ(I)=m(x) =
m

y

(
1− x

y

)m−1

.

The proof of this identity uses the spacing properties of m internal vertices which are inde-

pendent and uniformly distributed along the I-segment. This density does not depend on the

birth time of the I-segment and can thus be used in our setup unchanged.

We can now conclude the density function for the conditional length distribution of an ran-

domly chosen edge to be

`IK(x|β(I) = s) = p0|s · h`(I)|β(I)=s,ξ(I)=0(x)

+

∞∑
m=1

pm|s

∞∫
x

h`(I)|β(I)=s,ξ(I)=m(y)× m

y

(
1− x

y

)m−1
dy

=
2(2t− s)

π
e−

2
π
x(2t−s).

s=0.25 s=0.5 s=1

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Figure 6.6: Let t = 1. Length of a random edge covered by a typical I-
segment dependent on its birth time s ∈ {0.25, 0.5, 1}.

The mean length is π
2(2t−s) . The densities are visualized for some choices of s in Figure 6.6.

Length of an I-segment with birth time s covering a typical edge

In this setting, a typical edge K, which is covered by an I-segment with birth time s, is

picked out of the STIT tessellation. We are now interested in the length distribution of this

covering I-segment. This way of sampling promotes picking I-segments with a higher number

of edges and therefore segments with a higher number of internal vertices. Hence, the chosen

I-segments with birth time s will contain m internal vertices with the probability

qKξ(I)|β(I)=s(m) =
m+ 1

E[ξ(I)|β(I) = s] + 1
pm|s =

(m+ 1)s

2t− s
pm|s .
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This leads to the following length distribution for I-segments covering a typical edge and with

birth time s:

`KI (x|β(I) = s) =

∞∑
m=0

h`(I)|β(I)=m,ξ(I)=s(x) · qKξ(I)|β(I)=s(m)

=
2s2

π(2t− s)

(
1 + 4

πx(t− s)
)
e−

2
π sx.

The mean length in this setting is π
(

1
s −

1
2(2t−s)

)
. The densities for some values of s are

given in Figure 6.7.

s=0.25 =0.5 s=1

2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

Figure 6.7: Let t = 1. Length of an I-segments with birth time
s ∈ {0.25, 0.5, 1} covering a typical edge.

Length of a random edge of an I-segment with birth time s covering a typical edge

For this way of sampling, we use the probability qKξ(I)|β(I)=s(m) as before and write I | K for

I-segments covering a typical K-segment. Thus, the density function is

`
I|K
K (x|β(I) = s) = qKξ(I)|β(I)=s(0) · h`(I)|β(I)=s,ξ(I)=0(x)

+
∞∑
m=1

qKξ(I)|β(I)=s(m)

∞∫
x

h`(I)|β(I)=s,ξ(I)=m(y) · m
y

(
1− x

y

)m−1
dy

=
2(2t− s)

π
e−

2
π x(2t−s) .

The mean length in this setting is π
2(2t−s) .

Remark 6.3.2 This density equals the one for picking a typical I-segments and choosing a

random K-segment, i.e., `IK(x | β(I) = s). Nevertheless, the densities deduced by Cowan [8]

for the respective processes without birth time dependency differ. They can be recovered by
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either multiplying with hβ(I)(s) or hβ(Iξ+1 )(s). More precisely, this is

`IK(x) =

t∫
0

2(2t− s)
π

e−
2
π
x(2t−s) · 2s

t2
ds ,

`
I|K
K (x) =

t∫
0

2(2t− s)
π

e−
2
π
x(2t−s) · 2

3t

(
2− s

t

)
ds .

As for the length distribution of an I-segment, one can alter the question from above a little

by picking those segments covering a typical side instead of a typical edge. Hence, I-segments

with a higher number of internal sides are chosen preferably. Again, one may use the number

of internal vertices to conclude that an I-segment with birth time s is picked with probability

qJξ(I)|β(I)=s(m) =
m+ 2

E[ξ(I)|β(I) = s] + 2
pm|s =

(m+ 2)s

2t
pm|s .

Length of an I-segment with birth time s covering a typical side

The calculation strongly follows the one before. We only change the additional factor to be

qJξ(I)|β(I)=s(m). Thus, the length distribution is

`JI (x|β(I) = s) =

∞∑
m=0

h`(I)|β(I)=s,ξ(I)=m(x) · qJξ(I)|β(I)=s(m)

=
2s2

πt

(
1 +

2

π
x(t− s)

)
e−

2
π
sx.

The mean length in this setting is π
(

1
s −

1
2t

)
. The densities for some s are given in Figure 6.8.

s=0.25 =0.5 s=1

2 4 6 8 10 12 140.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 6.8: Let t = 1. Length of an I-segments with birth time
s ∈ {0.25, 0.5, 1} covering a typical side.

In Cowan’s analysis [8], a more precise subdivision of edges was considered for detailed
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examination. Thereby one takes into account, whether an edge is a side of zero, one or two

cells. To further enhance the calculations incorporating birth time dependency, it would be

worthwhile to extend the above considerations to these subdivisions. Another aspect worth

investigating is exploring the birth times of edges and sides. However, it is important to note

that these line segments not only have a birth time but also a time of death as edges and

sides may be divided by the point process on their covering I-segment. Thus, conditioning

on these particular parameters can be challenging.
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