Random inscribed polytopes in projective geometries

  • We establish central limit theorems for natural volumes of random inscribed polytopes in projective Riemannian or Finsler geometries. In addition, normal approximation of dual volumes and the mean width of random polyhedral sets are obtained. We deduce these results by proving a general central limit theorem for the weighted volume of the convex hull of random points chosen from the boundary of a smooth convex body according to a positive and continuous density in Euclidean space. In the background are geometric estimates for weighted surface bodies and a Berry–Esseen bound for functionals of independent random variables.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Florian BesauGND, Daniel RosenGND, Christoph ThäleGND
URN:urn:nbn:de:hbz:294-100619
DOI:https://doi.org/10.1007/s00208-021-02257-9
Parent Title (German):Mathematische Annalen
Publisher:Springer
Place of publication:Berlin
Document Type:Article
Language:English
Date of Publication (online):2023/08/28
Date of first Publication:2021/08/25
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Volume:381
First Page:1345
Last Page:1372
Note:
Dieser Beitrag ist auf Grund des DEAL-Springer-Vertrages frei zugänglich.
Dewey Decimal Classification:Naturwissenschaften und Mathematik / Mathematik
open_access (DINI-Set):open_access
faculties:Fakultät für Mathematik
Licence (English):License LogoCreative Commons - CC BY 4.0 - Attribution 4.0 International