Protective effects on the retina after ranibizumab treatment in an ischemia model

  • Retinal ischemia is common in eye disorders, like diabetic retinopathy or retinal vascular occlusion. The goal of this study was to evaluate the potential protective effects of an intravitreally injected vascular endothelia l growth factor (VEGF) inhibitor (ranibizumab) on retinal cells in an ischemia animal model via immunohistochemistry (IF) and quantitative real-time PCR (PCR). A positive binding of ranibizumab to rat VEGF-A was confirmed via dot blot. One eye underwent ischemia and a subgroup received ranibizumab. A significant VEGF increase was detected in aqueous humor of ischemic eyes (p = 0.032), whereas VEGF levels were low in ranibizumab eyes (p = 0.99). Ischemic retinas showed a significantly lower retinal ganglion cell number (RGC; IF Brn 3a: p<0.001, IF RBPMS: p<0.001; PCR: p = 0.002). The ranibizumab group displayed fewer RGCs (IF Brn-3a: 0.3, IF RBPMS: p<0.001; PCR: p = 0.007), but more than the ischemia group (IF Brn-3a: p = 0.04, IF RBPMS: p = 0.03). Photoreceptor area was decreased after ischemia (IF: p = 0.049; PCR: p = 0.511), while the ranibizumab group (IF: p = 0.947; PCR: p = 0.122) was comparable to controls. In the ischemia (p<0.001) and ranibizumab group (p<0.001) a decrease of ChAT\(^{+}\) amacrine cells was found, which was less prominent in the ranibizumab group. VEGF-receptor 2 (VEGF-R2; IF: p<0.001; PCR: p = 0.021) and macroglia (GFAP; IF: p<0.001; PCR: p<0.001) activation was present in ischemic retinas. The activation was weaker in ranibizumab retinas (VEGF-R2: IF: p = 0.1; PCR: p = 0.03; GFAP: IF: p = 0.1; PCR: p = 0.015). An increase in the number of total (IF: p = 0.003; PCR: p = 0.023) and activated microglia (IF: p<0.001; PCR: p = 0.009) was detected after ischemia. These levels were higher in the ranibizumab group (Iba1: IF: p<0.001; PCR: p = 0.018; CD68: IF: p<0.001; PCR: p = 0.004). Our findings demonstrate that photoreceptors and RGCs are protected by ranibizumab treatment. Only amacrine cells cannot be rescued. They seem to be particularly sensitive to ischemic damage and need maybe an earlier intervention.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stephanie Christine JoachimORCiDGND, Marina RennerGND, Jacqueline ReinhardORCiDGND, Carsten TheißORCiDGND, Caroline MayORCiDGND, Stephanie LohmannGND, Sabrina ReinehrORCiDGND, Gesa StuteGND, Andreas FaissnerORCiDGND, Katrin Marcus-AlicORCiDGND, Burkhard DickORCiDGND
URN:urn:nbn:de:hbz:294-59535
DOI:https://doi.org/10.1371/journal.pone.0182407
Parent Title (English):PLoS one
Document Type:Article
Language:English
Date of Publication (online):2018/07/17
Date of first Publication:2017/08/11
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Tag:Open Access Fonds
Volume:12
Issue:8
First Page:1
Last Page:22
Note:
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft (DFG) and the Open Access Publication Fund of Ruhr-Universität Bochum.
Note:
PLoS ONE, Bd. 12.2017, H. 8, Artikelnummer e0182407
Institutes/Facilities:Experimental Eye Research Institute
Dewey Decimal Classification:Technik, Medizin, angewandte Wissenschaften / Medizin, Gesundheit
open_access (DINI-Set):open_access
faculties:Medizinische Fakultät
Licence (English):License LogoCreative Commons - CC BY 4.0 - Attribution 4.0 International