Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning

  • Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses \(\textit {in vivo}\) suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an important role for DA acting on D1/D5 receptors in the support of long-lasting and learning-related forms of synaptic plasticity at MF-CA3 synapses and provide further evidence for an important neuromodulatory role for this receptor in experience-dependent synaptic encoding in the hippocampal subfields.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hardy HagenaGND, Denise Manahan-VaughanORCiDGND
URN:urn:nbn:de:hbz:294-70072
DOI:https://doi.org/10.3389/fnsyn.2016.00031
Parent Title (English):Frontiers in synaptic neuroscience
Publisher:Frontiers Research Foundation
Place of publication:Lausanne
Document Type:Article
Language:English
Date of Publication (online):2020/02/18
Date of first Publication:2016/09/23
Publishing Institution:Ruhr-Universität Bochum, Universitätsbibliothek
Tag:CA3; D1/D5; D2/D3; dopamine; in vivo; learning; mossy fibers; synaptic plasticity
Volume:8
First Page:31-1
Last Page:31-12
Institutes/Facilities:Institut für Physiologie, Abteilung für Neurophysiologie
Research Department of Neuroscience
Sonderforschungsbereich 1280, A04 - Neurale Mechanismen des Extinktionslernens
Sonderforschungsbereich 874, Integration und Repräsentation sensorischer Prozesse
open_access (DINI-Set):open_access
faculties:International Graduate School of Neuroscience (IGSN)
Licence (English):License LogoCreative Commons - CC BY 4.0 - Attribution 4.0 International