Infinite-volume states with irreducible localization sets for gradient models on trees
- We consider general classes of gradient models on regular trees with spin values in a countable Abelian group \(\it S\) such as \(\mathbb{Z}\) or \(\mathbb{Z}_{q}\). This includes unbounded spin models like the \(\it p\)-SOS model and finite-alphabet clock models. Under a strong coupling (low temperature) condition on the interaction, we prove the existence of families of distinct homogeneous tree-indexed Markov chain Gibbs states \(\mu_{A}\) whose single-site marginals concentrate on a given finite subset \(\it A\) \(\subset\) \(\it S\) of spin values. The existence of such states is a new and robust phenomenon which is of particular relevance for infinite spin models. These states are extremal in the set of homogeneous Gibbs states, and in particular cannot be decomposed into homogeneous Markov-chain Gibbs states with a single-valued concentration center. Whether they are also extremal in the set of all Gibbs states remains an open, challenging question. As a further application of the method we obtain the existence of new types of gradient Gibbs states with \(\mathbb{Z}\)-valued spins, whose single-site marginals do not localize, but whose correlation structure depends on the finite set \(\it A\), where we provide explicit expressions for the correlation between the height-increments along disjoint edges.
Author: | Alberto AbbondandoloGND, Florian Benedikt HenningGND, Christof KülskeORCiDGND, Pietro MajerGND |
---|---|
URN: | urn:nbn:de:hbz:294-114449 |
DOI: | https://doi.org/10.1007/s10955-024-03278-9 |
Parent Title (English): | Journal of statistical physics |
Publisher: | Springer Science + Business Media B.V. |
Place of publication: | New York |
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2025/01/13 |
Date of first Publication: | 2024/05/27 |
Publishing Institution: | Ruhr-Universität Bochum, Universitätsbibliothek |
Tag: | Brouwer fixed point theorem; Delocalization; Gibbs measure; Localization; Tree-indexed Markov chain |
Volume: | 191 |
Issue: | Article 63 |
First Page: | 63-1 |
Last Page: | 63-35 |
Note: | Dieser Beitrag ist auf Grund des DEAL-Springer-Vertrages frei zugänglich. |
Dewey Decimal Classification: | Naturwissenschaften und Mathematik / Mathematik |
open_access (DINI-Set): | open_access |
faculties: | Fakultät für Mathematik |
Licence (English): | Creative Commons - CC BY 4.0 - Attribution 4.0 International |